Science.gov

Sample records for biofilms microbial life

  1. Biofilms: Microbial Life on Surfaces

    PubMed Central

    2002-01-01

    Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management. PMID:12194761

  2. Biofilms: A microbial home

    PubMed Central

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  3. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents?

    PubMed

    Pandin, Caroline; Le Coq, Dominique; Canette, Alexis; Aymerich, Stéphane; Briandet, Romain

    2017-02-16

    Almost one-third of crop yields are lost every year due to microbial alterations and diseases. The main control strategy to limit these losses is the use of an array of chemicals active against spoilage and unwanted pathogenic microorganisms. Their massive use has led to extensive environmental pollution, human poisoning and a variety of diseases. An emerging alternative to this chemical approach is the use of microbial biocontrol agents. Biopesticides have been used with success in several fields, but a better understanding of their mode of action is necessary to better control their activity and increase their use. Very few studies have considered that biofilms are the preferred mode of life of microorganisms in the target agricultural biotopes. Increasing evidence shows that the spatial organization of microbial communities on crop surfaces may drive important bioprotection mechanisms. The aim of this review is to summarize the evidence of biofilm formation by biocontrol agents on crops and discuss how this surface-associated mode of life may influence their biology and interactions with other microorganisms and the host and, finally, their overall beneficial activity.

  4. Overview of microbial biofilms.

    PubMed

    Costerton, J W

    1995-09-01

    As the success of this two-issue special section of the Journal of Industrial Microbiology attests, the study of microbial biofilms is truly burgeoning as the uniqueness and the importance of this mode of growth is increasingly recognized. Because of its universality the biofilm concept impacts virtually all of the subdivisions of Microbiology (including Medical, Dental, Agricultural, Industrial and Environmental) and these two issues incorporate contributions from authors in all of these disciplines. Some time ago we reasoned that bacteria cannot possibly be aware (sic) of their precise location, in terms of this spectrum of anthrocentric subspecialties, and that their behavior must be dictated by a standard set of phenotypic responses to environmental conditions in what must seem to them (sic) to be a continuum of very similar aquatic ecosystems. In this overview I will, therefore, stress the common features of microbial biofilms that we should bear in mind as we use this simple universal concept to seek to understand bacterial behavior in literally hundreds of aquatic ecosystems traditionally studied by dozens of subspecies of microbiologists reared in sharply different scientific and academic conventions.

  5. Manipulation of Biofilm Microbial Ecology

    SciTech Connect

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  6. Manipulatiaon of Biofilm Microbial Ecology

    SciTech Connect

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  7. Microbial biofilm studies of the Environmental Control and Life Support System water recovery test for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Obenhuber, D. C.; Huff, T. L.; Rodgers, E. B.

    1991-01-01

    Analysis of biofilm accumulation, studies of iodine disinfection of biofilm, and the potential for microbially influenced corrosion in the water recovery test (WRT) are presented. The analysis of WRT components showed the presence of biofilms and organic deposits in selected tubing. Water samples from the WRT contained sulfate-reducing and acid-producing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples, but stainless steel corrosion rates were not accelerated.

  8. Biofilms 2015: Multidisciplinary Approaches Shed Light into Microbial Life on Surfaces

    PubMed Central

    Yildiz, Fitnat

    2016-01-01

    The 7th ASM Conference on Biofilms was held in Chicago, Illinois, from 24 to 29 October 2015. The conference provided an international forum for biofilm researchers across academic and industry platforms, and from different scientific disciplines, to present and discuss new findings and ideas. The meeting covered a wide range of topics, spanning environmental sciences, applied biology, evolution, ecology, physiology, and molecular biology of the biofilm lifestyle. This report summarizes the presentations with regard to emerging biofilm-related themes. PMID:26977109

  9. Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities

    SciTech Connect

    Singer, Steven; Erickson, Brian K; Verberkmoes, Nathan C; Hwang, Mona; Shah, Manesh B; Hettich, Robert {Bob} L; Banfield, Jillian F.; Thelen, Michael P.

    2010-01-01

    Characterizing proteins recovered from natural microbial communities affords the opportunity to correlate protein expression and modification with environmental factors, including species composition and successional stage. Proteogenomic and biochemical studies of pellicle biofilms from subsurface acid mine drainage streams have shown abundant cytochromes from the dominant organism, Leptospirillum Group II. These cytochromes are proposed to be key proteins in aerobic Fe(II) oxidation, the dominant mode of cellular energy generation by the biofilms. In this study, we determined that posttranslational modification and expression of amino-acid sequence variants change as a function of biofilm maturation. For Cytochrome579 (Cyt579), the most abundant cytochrome in the biofilms, late developmental-stage biofilms differed from early-stage biofilms in N-terminal truncations and decreased redox potentials. Expression of sequence variants of two monoheme c-type cytochromes also depended on biofilm development. For Cyt572, an abundant membrane-bound cytochrome, the expression of multiple sequence variants was observed in both early and late developmental-stage biofilms; however, redox potentials of Cyt572 from these different sources did not vary significantly. These cytochrome analyses show a complex response of the Leptospirillum Group II electron transport chain to growth within a microbial community and illustrate the power of multiple proteomics techniques to define biochemistry in natural systems.

  10. Microbial biofilm studies of the environmental control and life support system water recovery test for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Obenhuber, D. C.; Huff, T. L.

    1992-01-01

    NASA is developing a water recovery system (WRS) for Space Station Freedom to reclaim human waste water for reuse by astronauts as hygiene or potable water. A water recovery test (WRT) currently in progress investigates the performance of a prototype of the WRS. Analysis of biofilm accumulation, the potential for microbially influenced corrosion (MIC) in the WRT, and studies of iodine disinfection of biofilm are reported. Analysis of WRT components indicated the presence of organic deposits and biofilms in selected tubing. Water samples for the WRT contained acid-producing and sulfate-reducing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples; however, stainless steel corrosion rates were not accelerated. Biofilm iodine sensitivity tests using an experimental laboratory scale recycled water system containing a microbial check valve (MCV) demonstrated that an iodine concentration of 1 to 2 mg/L was ineffective in eliminating microbial biofilm. For complete disinfection, an initial concentration of 16 mg/L was required, which was gradually reduced by the MCV over 4 to 8 hours to 1 to 2 mg/L. This treatment may be useful in controlling biofilm formation.

  11. Cooperation and conflict in microbial biofilms.

    PubMed

    Xavier, Joao B; Foster, Kevin R

    2007-01-16

    Biofilms, in which cells attach to surfaces and secrete slime (polymeric substances), are central to microbial life. Biofilms are often thought to require high levels of cooperation because extracellular polymeric substances are a shared resource produced by one cell that can be used by others. Here we examine this hypothesis by using a detailed individual-based simulation of a biofilm to investigate the outcome of evolutionary competitions between strains that differ in their level of polymer production. Our model includes a biochemical description of the carbon fluxes for growth and polymer production, and it explicitly calculates diffusion-reaction effects and the resulting solute gradients in the biofilm. An emergent property of these simple but realistic mechanistic assumptions is a strong evolutionary advantage to extracellular polymer production. Polymer secretion is altruistic to cells above a focal cell: it pushes later generations in their lineage up and out into better oxygen conditions, but it harms others; polymer production suffocates neighboring nonpolymer producers. This property, analogous to vertical growth in plants, suggests that polymer secretion provides a strong competitive advantage to cell lineages within mixed-genotype biofilms: global cooperation is not required. Our model fundamentally changes how biofilms are expected to respond to changing social conditions; the presence of multiple strains in a biofilm should promote rather than inhibit polymer secretion.

  12. Microbial biofilms: biosurfactants as antibiofilm agents.

    PubMed

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  13. Microbial biofilms on building stone

    NASA Astrophysics Data System (ADS)

    Hoppert, M.; Kemmling, A.; Kämper, M.

    2003-04-01

    Microbial biofilms are ubiquitous in aquatic and terrestric ecosystems as well as on man-made material. The organisms take part in biogenic weathering on natural rocks as well as on building stone [1]. Though the presence of biofilms on stone monuments exposed to the outdoor environment is obvious, thin films also occur on monuments under controllable indoor environment conditions. Numerous biofilm organisms produce large volumes of extracellular polymer (EP), mainly polysaccharides. Hydrated, gel-like EP acts as glue between the organisms and the material surface and forms a protected environment for the microbial cells. The contact zone between EP and the material surface is the crucial reactive interface of the bio-organic cover and the underlying building material. At this interface, all hazardous compounds (e.g. organic acids), after diffusion transfer via EP, react with the material surface. Upon dehydration, volume of EP greatly decreases. The thin, varnish-like EP layer still protects the dormant cells from irreversible inactivation. Periodic shrinking and swelling of the EP induces mechanical stress on the stone surface, epecially when the polymer penetrates small pores and cavities in the underlying material surface. Thus, monitoring and structure/functional analysis of EP and EP production by organisms is important to understand biogenic weathering phenomena and building stone deterioration. The study presented here describes biofilms on the surfaces of building material in outdoor and indoor environments. The application of marker techniques and visualization of samples with light and electron microscopy illustrates the role of EP at microscale. EP forms the matrix that encloses microorganisms, dust particles and mineral grains in a rigid film. EP penetrates small pore spaces of the underlying substratum and may also facilitate subsequent penetration of the microorganisms into the material. EP seals the material surface and cements the superficial layer

  14. MICROBIAL BIOFILMS AS INDICATORS OF ESTUARINE CONDITION

    EPA Science Inventory

    Microbial biofilms are complex communities of bacteria, protozoa, microalgae, and micrometazoa which exist in a polymer matrix on submerged surfaces. Their development is integrative of environmental conditions and is affected by local biodiversity, the availability of organic ma...

  15. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  16. Microbial Biofilms and Chronic Wounds

    PubMed Central

    Omar, Amin; Wright, J. Barry; Schultz, Gregory; Burrell, Robert; Nadworny, Patricia

    2017-01-01

    Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described. PMID:28272369

  17. Microbial Biofilms and Chronic Wounds.

    PubMed

    Omar, Amin; Wright, J Barry; Schultz, Gregory; Burrell, Robert; Nadworny, Patricia

    2017-03-07

    Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described.

  18. Microbial biofilms in intertidal systems: an overview

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.

    2000-07-01

    Intertidal marine systems are highly dynamic systems which are characterized by periodic fluctuations in environmental parameters. Microbial processes play critical roles in the remineralization of nutrients and primary production in intertidal systems. Many of the geochemical and biological processes which are mediated by microorganisms occur within microenvironments which can be measured over micrometer spatial scales. These processes are localized by cells within a matrix of extracellular polymeric secretions (EPS), collectively called a "microbial biofilm". Recent examinations of intertidal systems by a range of investigators using new approaches show an abundance of biofilm communities. The purpose of this overview is to examine recent information concerning the roles of microbial biofilms in intertidal systems. The microbial biofilm is a common adaptation of natural bacteria and other microorganisms. In the fluctuating environments of intertidal systems, biofilms form protective microenvironments and may structure a range of microbial processes. The EPS matrix of biofilm forms sticky coatings on individual sediment particles and detrital surfaces, which act as a stabilizing anchor to buffer cells and their extracellular processes during the frequent physical stresses (e.g., changes in salinity and temperature, UV irradiation, dessication). EPS is an operational definition designed to encompass a range of large microbially-secreted molecules having widely varying physical and chemical properties, and a range of biological roles. Examinations of EPS using Raman and Fourier-transform infared spectroscopy, and atomic-force microscopy suggest that some EPS gels possess physical and chemical properties which may hasten the development of sharp geochemical gradients, and contribute a protective effect to cells. Biofilm polymers act as a sorptive sponge which binds and concentrates organic molecules and ions close to cells. Concurrently, the EPS appear to localize

  19. Quorum sensing and microbial biofilms.

    PubMed

    Irie, Y; Parsek, M R

    2008-01-01

    Some bacterial species engage in two well-documented social behaviors: the formation of surface-associated communities known as biofilms, and intercellular signaling, or quorum sensing. Recent studies have begun to reveal how these two social behaviors are related in different species. This chapter will review the role quorum sensing plays in biofilm formation for different species. In addition, different aspects of quorum sensing in the context of multispecies biofilms will be discussed.

  20. Microbial Biofilms: from Ecology to Molecular Genetics

    PubMed Central

    Davey, Mary Ellen; O'toole, George A.

    2000-01-01

    Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development. PMID:11104821

  1. Microbial Biofilms: Persisters, Tolerance and Dosing

    NASA Astrophysics Data System (ADS)

    Cogan, N. G.

    2005-03-01

    Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling, medical implants and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. Much of current research is focused on the recalcitrance of biofilms to typical antibiotic and antimicrobial treatments. Although the polymer component of biofilms impedes the penetration of antimicrobials through reaction-diffusion limitation, this does not explain the observed tolerance, it merely delays the action of the agent. Heterogeneities in growth-rate also slow the eradication of the bacteria since most antimicrobials are far less effective for non-growing, or slowly growing bacteria. This also does not fully describe biofilm tolerance, since heterogeneities arr primairly a result of nutrient consumption. In this investigation, we describe the formation of `persister' cells which neither grow nor die in the presence of antibiotics. We propose that the cells are of a different phenotype than typical bacterial cells and the expression of the phenotype is regulated by the growth rate and the antibiotic concentration. We describe several experiments which describe the dynamics of persister cells and which motivate a dosing protocol that calls for periodic dosing of the population. We then introduce a mathematical model, which describes the effect of such a dosing regiment and indicates that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is introduced and the similar behavior is demonstrated analytically.

  2. Biophysical controls on cluster dynamics and architectural differentiation of microbial biofilms in contrasting flow environments.

    PubMed

    Hödl, Iris; Mari, Lorenzo; Bertuzzo, Enrico; Suweis, Samir; Besemer, Katharina; Rinaldo, Andrea; Battin, Tom J

    2014-03-01

    Ecology, with a traditional focus on plants and animals, seeks to understand the mechanisms underlying structure and dynamics of communities. In microbial ecology, the focus is changing from planktonic communities to attached biofilms that dominate microbial life in numerous systems. Therefore, interest in the structure and function of biofilms is on the rise. Biofilms can form reproducible physical structures (i.e. architecture) at the millimetre-scale, which are central to their functioning. However, the spatial dynamics of the clusters conferring physical structure to biofilms remains often elusive. By experimenting with complex microbial communities forming biofilms in contrasting hydrodynamic microenvironments in stream mesocosms, we show that morphogenesis results in 'ripple-like' and 'star-like' architectures--as they have also been reported from monospecies bacterial biofilms, for instance. To explore the potential contribution of demographic processes to these architectures, we propose a size-structured population model to simulate the dynamics of biofilm growth and cluster size distribution. Our findings establish that basic physical and demographic processes are key forces that shape apparently universal biofilm architectures as they occur in diverse microbial but also in single-species bacterial biofilms.

  3. Biophysical controls on cluster dynamics and architectural differentiation of microbial biofilms in contrasting flow environments

    PubMed Central

    Hödl, Iris; Mari, Lorenzo; Bertuzzo, Enrico; Suweis, Samir; Besemer, Katharina; Rinaldo, Andrea; Battin, Tom J

    2014-01-01

    Ecology, with a traditional focus on plants and animals, seeks to understand the mechanisms underlying structure and dynamics of communities. In microbial ecology, the focus is changing from planktonic communities to attached biofilms that dominate microbial life in numerous systems. Therefore, interest in the structure and function of biofilms is on the rise. Biofilms can form reproducible physical structures (i.e. architecture) at the millimetre-scale, which are central to their functioning. However, the spatial dynamics of the clusters conferring physical structure to biofilms remains often elusive. By experimenting with complex microbial communities forming biofilms in contrasting hydrodynamic microenvironments in stream mesocosms, we show that morphogenesis results in ‘ripple-like’ and ‘star-like’ architectures – as they have also been reported from monospecies bacterial biofilms, for instance. To explore the potential contribution of demographic processes to these architectures, we propose a size-structured population model to simulate the dynamics of biofilm growth and cluster size distribution. Our findings establish that basic physical and demographic processes are key forces that shape apparently universal biofilm architectures as they occur in diverse microbial but also in single-species bacterial biofilms. PMID:23879839

  4. Microbial biofilm formation and its consequences for the CELSS program

    NASA Technical Reports Server (NTRS)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  5. MICROBIAL BIOFILMS AS INTEGRATIVE SENSORS OF ENVIRONMENTAL QUALITY

    EPA Science Inventory

    Snyder, Richard A., Michael A. Lewis, Andreas Nocker and Joe E. Lepo. In press. Microbial Biofilms as Integrative Sensors of Environmental Quality. In: Estuarine Indicators Workshop Proceedings. CRC Press, Boca Raton, FL. 34 p. (ERL,GB 1198).

    Microbial biofilms are comple...

  6. Detection of a microbial biofilm in intra-amniotic infection

    PubMed Central

    ROMERO, Roberto; SCHAUDINN, Christoph; KUSANOVIC, Juan Pedro; GORUR, Amita; GOTSCH, Francesca; WEBSTER, Paul; NHAN-CHANG, Chia-Ling; EREZ, Offer; KIM, Chong Jai; ESPINOZA, Jimmy; GONÇALVES, Luis F.; VAISBUCH, Edi; MAZAKI-TOVI, Shali; HASSAN, Sonia S.; COSTERTON, J. William

    2008-01-01

    Objective Microbial biofilms are communities of sessile microorganisms formed by cells that are attached irreversibly to a substratum or interface or to each other and embedded in a hydrated matrix of extracellular polymeric substances. Microbial biofilms have been implicated in >80% of human infections such as periodontitis, urethritis, endocarditis, and device-associated infections. Thus far, intra-amniotic infection has been attributed to planktonic (free-floating) bacteria. A case is presented in which “amniotic fluid sludge” was found to contain microbial biofilms. This represents the first report of a microbial biofilm in the amniotic cavity. Study Design “Amniotic fluid sludge” was detected by transvaginal sonography, and retrieved by transvaginal amniotomy. Bacteria were identified using scanning electron microscope and fluorescence in situ hybridization for conserved regions of the microbial genome; and the exopolymeric matrix was identified by histochemistry using the wheat germ agglutinin lectin method. The structure of the biofilm was imaged with confocal laser scanning microscopy. Results “Amniotic fluid sludge” was imaged with scanning electron microscopy, which allowed identification of bacteria embedded in an amorphous material and inflammatory cells. Bacteria were demonstrated using fluorescent in situ hybredization using a eubacteria probe. Extracellular matrix was identified with the wheat germ agglutinin lectin stain. Confocal microscopy allowed three-dimensional visualization of the microbial biofilm. Conclusion Microbial biofilms have been identified in a case of intra-amniotic infection with “amniotic fluid sludge.” PMID:18166328

  7. Microbial composition and antibiotic resistance of biofilms recovered from endotracheal tubes of mechanically ventilated patients.

    PubMed

    Vandecandelaere, Ilse; Coenye, Tom

    2015-01-01

    In critically ill patients, breathing is impaired and mechanical ventilation, using an endotracheal tube (ET) connected to a ventilator, is necessary. Although mechanical ventilation is a life-saving procedure, it is not without risk. Because of several reasons, a biofilm often forms at the distal end of the ET and this biofilm is a persistent source of bacteria which can infect the lungs, causing ventilator-associated pneumonia (VAP). There is a link between the microbial flora of ET biofilms and the microorganisms involved in the onset of VAP. Culture dependent and independent techniques were already used to identify the microbial flora of ET biofilms and also, the antibiotic resistance of microorganisms obtained from ET biofilms was determined. The ESKAPE pathogens play a dominant role in the onset of VAP and these organisms were frequently identified in ET biofilms. Also, antibiotic resistant microorganisms were frequently present in ET biofilms. Members of the normal oral flora were also identified in ET biofilms but it is thought that these organisms initiate ET biofilm formation and are not directly involved in the development of VAP.

  8. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    EPA Science Inventory

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  9. The Role of Microbial Biofilms as Ecosystem Engineers in Streams

    NASA Astrophysics Data System (ADS)

    Battin, T. I.; Battin, T. I.; Kaplan, L. A.; Newbold, J. D.

    2001-12-01

    Microbial biofilms growing on and through the surface of streambeds physically alter the interface between the water column and benthic zone and influence the biogeochemistry within the steambed and hyporheic zone. We monitored the development of biofilms within stream-side flumes, and were able to relate changes in biofilm structure to concomitant changes in hydrodynamics, particle deposition, and dissolved organic carbon (DOC) uptake. Biofilm development was assessed by measurements of ash free dry mass, bacterial density, concentrations of chlorophyll a and exopolysaccharides, and confocal microscopy of fluorescent-stained biotic and abiotic assemblages. The microbial biofilms were followed through an initial colonization period, the development of mm-thick mats that included streamers undulating in the current, and the eventual erosion and sloughing of these structural features. As the biofilms matured, hydrologic exchange rate, transient storage capacity, and particle deposition rates increased, reached a plateau, and eventually declined. The uptake of glucose and arabinose, added in nM concentrations to the flumes, showed a preferential uptake of glucose over arabinose. However, as the biofilms grew, the differences between the uptake of these two saccharides declined. This change is consistent with a shift in the rate-limiting step for DOC uptake from internal biofilm processes to greater diffusion-limitation as biofilm thickness, and thus the diffusion barrier, increased. We suggest that microscale processes, which alter biofilm structure, in turn alter large-scale physical and biogeochemical processes, including streamwater/subsurface hydrodynamics and organic matter fluxes.

  10. Targeting microbial biofilms using Ficin, a nonspecific plant protease

    PubMed Central

    Baidamshina, Diana R.; Trizna, Elena Y.; Holyavka, Marina G.; Bogachev, Mikhail I.; Artyukhov, Valeriy G.; Akhatova, Farida S.; Rozhina, Elvira V.; Fakhrullin, Rawil F.; Kayumov, Airat R.

    2017-01-01

    Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses. Biofilm-embedded bacteria are generally inaccessible for antimicrobials, therefore the disruption of biofilm matrix is the potent approach to eradicate microbial biofilms. We demonstrate here the destruction of Staphylococcus aureus and Staphylococcus epidermidis biofilms with Ficin, a nonspecific plant protease. The biofilm thickness decreased two-fold after 24 hours treatment with Ficin at 10 μg/ml and six-fold at 1000 μg/ml concentration. We confirmed the successful destruction of biofilm structures and the significant decrease of non-specific bacterial adhesion to the surfaces after Ficin treatment using confocal laser scanning and atomic force microscopy. Importantly, Ficin treatment enhanced the effects of antibiotics on biofilms-embedded cells via disruption of biofilm matrices. Pre-treatment with Ficin (1000 μg/ml) considerably reduced the concentrations of ciprofloxacin and bezalkonium chloride required to suppress the viable Staphylococci by 3 orders of magnitude. We also demonstrated that Ficin is not cytotoxic towards human breast adenocarcinoma cells (MCF7) and dog adipose derived stem cells. Overall, Ficin is a potent tool for staphylococcal biofilm treatment and fabrication of novel antimicrobial therapeutics for medical and veterinary applications. PMID:28387349

  11. A computational model for biofilm-based microbial fuel cells.

    PubMed

    Picioreanu, Cristian; Head, Ian M; Katuri, Krishna P; van Loosdrecht, Mark C M; Scott, Keith

    2007-07-01

    This study describes and evaluates a computational model for microbial fuel cells (MFCs) based on redox mediators with several populations of suspended and attached biofilm microorganisms, and multiple dissolved chemical species. A number of biological, chemical and electrochemical reactions can occur in the bulk liquid, in the biofilm and at the electrode surface. The evolution in time of important MFC parameters (current, charge, voltage and power production, consumption of substrates, suspended and attached biomass growth) has been simulated under several operational conditions. Model calculations evaluated the effect of different substrate utilization yields, standard potential of the redox mediator, ratio of suspended to biofilm cells, initial substrate and mediator concentrations, mediator diffusivity, mass transfer boundary layer, external load resistance, endogenous metabolism, repeated substrate additions and competition between different microbial groups in the biofilm. Two- and three-dimensional model simulations revealed the heterogeneous current distribution over the planar anode surface for younger and patchy biofilms, but becoming uniform in older and more homogeneous biofilms. For uniformly flat biofilms one-dimensional models should give sufficiently accurate descriptions of produced currents. Voltage- and power-current characteristics can also be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, the model predictions are tested with previously reported experimental data obtained in a batch MFC with a Geobacter biofilm fed with acetate. The potential of the general modeling framework presented here is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.

  12. The biofilm ecology of microbial biofouling, biocide resistance and corrosion

    SciTech Connect

    White, D.C. |; Kirkegaard, R.D.; Palmer, R.J. Jr.; Flemming, C.A.; Chen, G.; Leung, K.T.; Phiefer, C.B.; Arrage, A.A. |

    1997-06-01

    In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. Heterogeneous distribution of microbes and/or their metabolic activity can promote microbially influenced corrosion (MIC) which is a multibillion dollar problem. Consequently, it is important that biofilm microbial ecology be understood so it can be manipulated rationally. It is usually simple to select organisms that form biofilms by flowing a considerably dilute media over a substratum, and propagating the organisms that attach. To examine the biofilm most expeditiously, the biomass accumulation, desquamation, and metabolic activities need to be monitored on-line and non-destructively. This on-line monitoring becomes even more valuable if the activities can be locally mapped in time and space within the biofilm. Herein the authors describe quantitative measures of microbial biofouling, the ecology of pathogens in drinking water distributions systems, and localization of microbial biofilms and activities with localized MIC.

  13. Method for Studying Microbial Biofilms in Flowing-Water Systems

    PubMed Central

    Pedersen, Karsten

    1982-01-01

    A method for the study of microbial biofilms in flowing-water systems was developed with special reference to the flow conditions in electrochemical concentration cells. Seawater was circulated in a semiclosed flow system through biofilm reactors (3 cm s−1) with microscope cover slips arranged in lamellar piles parallel with the flow. At fixed time intervals cover slips with their biofilm were removed from the pile, stained with crystal violet, and mounted on microscope slides. The absorbances of the slides were measured at 590 nm and plotted against time to give microbial biofilm development. From calibration experiments a staining time of 1 min and a rinse time of 10 min in a tap water flow (3 cm s−1) were considered sufficient. When an analysis of variance was performed on biofilm development data, 78% of the total variance was found to be due to random natural effects; the rest could be explained by experimental effects. The absorbance values correlated well with protein N, dry weight, and organic weight in two biofilm experiments, one with a biofilm with a high (75%) and one with a low (∼25%, normal) inorganic content. Comparisons of regression lines revealed that the absorbance of the stained biofilms was an estimate closely related to biofilm dry weight. PMID:16345929

  14. Influence of microbial biofilms on reactive transport in porous media

    NASA Astrophysics Data System (ADS)

    Gerlach, Robin; Cunningham, Al.

    2012-05-01

    Microbial biofilms form in natural and engineered systems and can significantly affect the hydrodynamics in porous media. Subsurface remediation, enhanced oil recovery, abatement of saltwater intrusion, filtration, deep-subsurface sequestration of supercritical carbon dioxide, and biofouling of injection or recovery wells are examples of proposed or implemented beneficial porous media biofilm applications. The thickness of the desired biofilm depends on a number of factors including desirable groundwater flow velocity and residence time of contaminated groundwater within the biofilm barrier as well as the prevailing hydraulic gradient. In order to better understand the influence of biofilms on reactive transport in porous media and ultimately improve biofilm-based porous media technologies, bench and mesoscale studies have been ongoing in our laboratories. This manuscript summarizes some of our past, current, and future efforts in this area and gives an outlook and overview of research and development needs.

  15. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-03-17

    Biofilm is a community of microbes that typically inhabits on surfaces and is encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environments and influence our life tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium, known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicates the eradication of the biofilm infection and leading to the development of chronic infections. In this review, we discuss a history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms of its own or in association with other bacterial species (i.e., multi-species biofilms) are discussed in detail.

  16. A mucosal model to study microbial biofilm development and anti-biofilm therapeutics

    PubMed Central

    Anderson, Michele J.; Parks, Patrick J.; Peterson, Marnie L.

    2013-01-01

    Biofilms are a sessile colony of bacteria which adhere to and persist on surfaces. The ability of bacteria to form biofilms is considered a virulence factor, and in fact is central to the pathogenesis of some organisms. Biofilms are inherently resistant to chemotherapy and host immune responses. Clinically, biofilms are considered a primary cause of a majority of infections, such as otitis media, pneumonia in cystic fibrosis patients and endocarditis. However, the vast majority of the data on biofilm formation comes from traditional microtiter-based or flow displacement assays with no consideration given to host factors. These assays, which have been a valuable tool in high-throughput screening for biofilm-related factors, do not mimic a host-pathogen interaction and may contribute to an inappropriate estimation of the role of some factors in clinical biofilm formation. We describe the development of a novel ex vivo model of biofilm formation on a mucosal surface by an important mucosal pathogen, methicillin resistant S. aureus (MRSA). This model is being used for the identification of microbial virulence factors important in mucosal biofilm formation and novel anti-biofilm therapies. PMID:23246911

  17. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  18. Microbial biofilm study by synchrotron X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  19. Laser Microbial Killing and Biofilm Disruption

    NASA Astrophysics Data System (ADS)

    Krespi, Yosef P.; Kizhner, Victor

    2009-06-01

    Objectives: To analyze the ability of NIR lasers to reduce bacterial load and demonstrate the capability of fiber-based Q-switched Nd:YAG laser disrupting biofilm. Study Design: NIR diode laser was tested in vitro and in vivo using pathogenic microorganisms (S. aureus, S. pneumoniae, P. aeruginosa). In addition biofilms were grown from clinical Pseudomonas isolates and placed in culture plates, screws, tympanostomy tubes and PET sutures. Methods: In the animal experiments acute rhinosinusitis model was created by packing the rabbit nose with bacteria soaked solution. The nasal pack was removed in two days and nose was exposed to laser irradiation. A 940 nm diode laser with fiber diffuser was used. Nasal cultures were obtained before and after the laser treatments. Animals were sacrificed fifteen days following laser treatment and bacteriologic/histologic results analyzed. Q-switched Nd:YAG laser generated shockwave pulses were delivered on biofilm using special probes over culture plates, screws, tubes, and PET sutures for the biofilm experiments. Results: Average of two log bacteria reduction was achieved with NIR laser compared to controls. Histologic studies demonstrated preservation of tissue integrity without significant damage to mucosa. Biofilms were imaged before, during and after treatment using a confocal microscope. During laser-generated shockwave application, biofilm was initially seen to oscillate and eventually break off. Large and small pieces of biofilm were totally and instantly removed from the surface to which they were attached in seconds. Conclusions: Significant bacterial reduction was achieved with NIR laser therapy in this experimental in vitro and animal study. In addition we disrupted Pseudomonas aeruginosa biofilms using Q-switched Nd:YAG laser and special probes generating plasma and shockwave. This new and innovative method of bacteria killing and biofilm disruption without injuring host tissue may have clinical application in the

  20. Use of antimicrobial peptides against microbial biofilms: advantages and limits.

    PubMed

    Batoni, Giovanna; Maisetta, Giuseppantonio; Brancatisano, Franca Lisa; Esin, Semih; Campa, Mario

    2011-01-01

    The formation of surface-attached cellular agglomerates, the so-called biofilms, contributes significantly to bacterial resistance to antibiotics and innate host defenses. Bacterial biofilms are associated to various pathological conditions in humans such as cystic fibrosis, colonization of indwelling medical devices and dental plaque formation involved in caries and periodontitis. Over the last years, natural antimicrobial peptides (AMPs) have attracted considerable interest as a new class of antimicrobial drugs for a number of reasons. Among these, there are the broad activity spectrum, the relative selectivity towards their targets (microbial membranes), the rapid mechanism of action and, above all, the low frequency in selecting resistant strains. Since biofilm resistance to antibiotics is mainly due to the slow growth rate and low metabolic activity of bacteria in such community, the use of AMPs to inhibit biofilm formation could be potentially an attractive therapeutic approach. In fact, due to the prevalent mechanism of action of AMPs, which relies on their ability to permeabilize and/or to form pores within the cytoplasmic membranes, they have a high potential to act also on slow growing or even non-growing bacteria. This review will highlight the most important findings obtained testing AMPs in in vitro and in vivo models of bacterial biofilms, pointing out the possible advantages and limits of their use against microbial biofilm-related infections.

  1. Embryo fossilization is a biological process mediated by microbial biofilms

    PubMed Central

    Raff, Elizabeth C.; Schollaert, Kaila L.; Nelson, David E.; Donoghue, Philip C. J.; Thomas, Ceri-Wyn; Turner, F. Rudolf; Stein, Barry D.; Dong, Xiping; Bengtson, Stefan; Huldtgren, Therese; Stampanoni, Marco; Chongyu, Yin; Raff, Rudolf A.

    2008-01-01

    Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process. PMID:19047625

  2. Life Support Systems Microbial Challenges

    NASA Technical Reports Server (NTRS)

    Roman, Monserrate C.

    2009-01-01

    This viewgraph presentation reviews the current microbial challenges of environmental control and life support systems. The contents include: 1) Environmental Control and Life Support Systems (ECLSS) What is it?; 2) A Look Inside the International Space Station (ISS); 3) The Complexity of a Water Recycling System; 4) ISS Microbiology Acceptability Limits; 5) Overview of Current Microbial Challenges; 6) In a Perfect World What we Would like to Have; and 7) The Future.

  3. Microbial genomes: Blueprints for life

    SciTech Connect

    Relman, David A.; Strauss, Evelyn

    2000-12-31

    Complete microbial genome sequences hold the promise of profound new insights into microbial pathogenesis, evolution, diagnostics, and therapeutics. From these insights will come a new foundation for understanding the evolution of single-celled life, as well as the evolution of more complex life forms. This report is an in-depth analysis of scientific issues that provides recommendations and will be widely disseminated to the scientific community, federal agencies, industry and the public.

  4. Modelling mechanical characteristics of microbial biofilms by network theory

    PubMed Central

    Ehret, Alexander E.; Böl, Markus

    2013-01-01

    In this contribution, we present a constitutive model to describe the mechanical behaviour of microbial biofilms based on classical approaches in the continuum theory of polymer networks. Although the model is particularly developed for the well-studied biofilms formed by mucoid Pseudomonas aeruginosa strains, it could easily be adapted to other biofilms. The basic assumption behind the model is that the network of extracellular polymeric substances can be described as a superposition of worm-like chain networks, each connected by transient junctions of a certain lifetime. Several models that were applied to biofilms previously are included in the presented approach as special cases, and for small shear strains, the governing equations are those of four parallel Maxwell elements. Rheological data given in the literature are very adequately captured by the proposed model, and the simulated response for a series of compression tests at large strains is in good qualitative agreement with reported experimental behaviour. PMID:23034354

  5. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  6. Utilization of microbial biofilms as monitors of bioremediation

    SciTech Connect

    Peacock, Aaron D.; IstokD., Jonathan; Krumholz, Lee R.; Geyer, Roland; Kinsall, Barry Lee; Watson, David B; Sublette, K.; White, David C.

    2004-03-01

    A down-well aquifer microbial sampling system was developed using glass wool or Bio-Sep beads as a solid-phase support matrix. Here we describe the use of these devices to monitor the groundwater microbial community dynamics during field bioremediation experiments at the U.S. Department of Energy Natural and Accelerated Bioremediation Research Programs Field Research Center at the Oak Ridge National Laboratory. During the 6-week deployment, microbial biofilms colonized glass wool and bead internal surfaces. Changes in viable biomass, community composition, metabolic status, and respiratory state were reflected in sampler composition, type of donor, and groundwater pH. Biofilms that formed on Bio-Sep beads had 2-13 times greater viable biomass; however, the bead communities were less metabolically active [higher cyclopropane/monoenoic phospholipid fatty acid (PLFA) ratios] and had a lower aerobic respiratory state (lower total respiratory quinone/PLFA ratio and ubiquinone/menaquinone ratio) than the biofilms formed on glass wool. Anaerobic growth in these systems was characterized by plasmalogen phospholipids and was greater in the wells that received electron donor additions. Partial 16S rDNA sequences indicated that Geobacter and nitrate-reducing organisms were induced by the acetate, ethanol, or glucose additions. DNA and lipid biomarkers were extracted and recovered without the complications that commonly plague sediment samples due to the presence of clay or dissolved organic matter. Although microbial community composition in the groundwater or adjacent sediments may differ from those formed on down-well biofilm samplers, the metabolic activity responses of the biofilms to modifications in groundwater geochemistry record the responses of the microbial community to biostimulation while providing integrative sampling and ease of recovery for biomarker analysis.

  7. Microbial biofilms: impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections.

    PubMed

    Mihai, Mara Madalina; Holban, Alina Maria; Giurcaneanu, Calin; Popa, Liliana Gabriela; Oanea, Raluca Mihaela; Lazar, Veronica; Chifiriuc, Mariana Carmen; Popa, Marcela; Popa, Mircea Ioan

    2015-01-01

    The majority of chronic infections are associated with mono- or polymicrobial biofilms, having a significant impact on the patients' quality of life and survival rates. Although the use of medical devices revolutionized health care services and significantly improved patient outcomes, it also led to complications associated with biofilms and to the emergence of multidrug resistant bacteria. Immunocompromised patients, institutionalized or hospitalized individuals, elderly people are at greater risk due to life-threatening septic complications, but immunocompetent individuals with predisposing genetic or acquired diseases can also be affected, almost any body part being able to shelter persistent biofilms. Moreover, chronic biofilm-related infections can lead to the occurrence of systemic diseases, as in the case of chronic periodontitis, linked to atherosclerosis, cardiovascular disease and diabetes. The more researchers discover, new unknown issues add up to the complexity of biofilm infections, in which microbial species establish relationships of cooperation and competition, and elaborate phenotypic differentiation into functional, adapted communities. Their interaction with the host's immune system or with therapeutic agents contributes to the complex puzzle that still misses a lot of pieces. In this comprehensive review we aimed to highlight the microbial composition, developmental stages, architecture and properties of medical biofilms, as well as the diagnostic tools used in the management of biofilm related infections. Also, we present recently acquired knowledge on the etiopathogenesis, diagnosis and treatment of four chronic diseases associated with biofilm development in tissues (chronic periodontitis, chronic lung infection in cystic fibrosis, chronic wounds) and artificial substrata (medical devices-related infections).

  8. Life Support Systems Microbial Challenges

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.

    2010-01-01

    Many microbiological studies were performed during the development of the Space Station Water Recovery and Management System from1990-2009. Studies include assessments of: (1) bulk phase (planktonic) microbial population (2) biofilms, (3) microbially influenced corrosion (4) biofouling treatments. This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recovery Tests (WRT) from 1990 to 1998. This report provides an overview of some of the microbiological analyses performed during the Space Station WRT program. These tests not only integrated several technologies with the goal of producing water that met NASA s potable water specifications, but also integrated humans, and therefore human flora into the protocols. At the time these tests were performed, not much was known (or published) about the microbial composition of these types of wastewater. It is important to note that design changes to the WRS have been implemented over the years and results discussed in this report might be directly related to test configurations that were not chosen for the final flight configuration. Results microbiological analyses performed Conclusion from the during the WRT showed that it was possible to recycle water from different sources, including urine, and produce water that can exceed the quality of municipally produced water.

  9. Microbial Surface Colonization and Biofilm Development in Marine Environments

    PubMed Central

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  10. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    PubMed

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm.

  11. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Suresh, Anil K; Srijanto, Bernadeta R; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  12. Microbial Biofilm Growth on Irradiated, Spent Nuclear Fuel Cladding

    SciTech Connect

    S.M. Frank

    2009-02-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 × 103 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments.

  13. Cloth colorization caused by microbial biofilm.

    PubMed

    Tsuchiya, Yuki; Ohta, Jun; Ishida, Yoshiki; Morisaki, Hisao

    2008-07-15

    In this study, cloth disfeaturement was investigated biologically. To clarify whether or not microbes can cause cloth disfeaturement, and to identify the microbes causing the disfeaturement, worn cloth samples were incubated on sweat-ingredient agar medium. Non-sterilized cloth samples became yellow-colored during incubation, and bacterial strains belonging to the genera Bacillus, Brevibacterium, Kocuria, Micrococcus and Staphylococcus were isolated from the yellow-colored parts. Two major isolates close to the genera Bacillus and Micrococcus were inoculated separately or together on cloth samples to examine whether or not these isolates can cause colorization. When the isolate close to Micrococcus was inoculated on its own or mixed with the isolate close to Bacillus, the samples turned yellow to a greater extent and a biofilm-like structure was observed by SEM on the colored areas. In contrast, the isolate close to Bacillus alone barely caused any colorization, and no biofilm-like structure was observed. From the yellow-colored samples, bacterial strains with the same 16S rRNA gene sequences as those of the inoculated strains were re-isolated. These results strongly suggest that the bacterial strain belonging to genus Micrococcus causes cloth colorization by forming a biofilm structure.

  14. Molecular survey of concrete sewer biofilm microbial communities.

    PubMed

    Santo Domingo, Jorge W; Revetta, Randy P; Iker, Brandon; Gomez-Alvarez, Vicente; Garcia, Jarissa; Sullivan, John; Weast, James

    2011-10-01

    The microbial composition of concrete biofilms within wastewater collection systems was studied using molecular assays. SSU rDNA clone libraries were generated from 16 concrete surfaces of manholes, a combined sewer overflow, and sections of a corroded sewer pipe. Of the 2457 sequences analyzed, α-, β-, γ-, and δ-Proteobacteria represented 15%, 22%, 11%, and 4% of the clones, respectively. β-Proteobacteria (47%) sequences were more abundant in the pipe crown than any of the other concrete surfaces. While 178 to 493 Operational Taxonomic Units (OTUs) were associated with the different concrete samples, only four sequences were shared among the different clone libraries. Bacteria implicated in concrete corrosion were found in the clone libraries while archaea, fungi, and several bacterial groups were also detected using group-specific assays. The results showed that concrete sewer biofilms are more diverse than previously reported. A more comprehensive molecular database will be needed to better study the dynamics of concrete biofilms.

  15. Laboratory Evolution of Microbial Interactions in Bacterial Biofilms.

    PubMed

    Martin, Marivic; Hölscher, Theresa; Dragoš, Anna; Cooper, Vaughn S; Kovács, Ákos T

    2016-10-01

    Microbial adaptation is conspicuous in essentially every environment, but the mechanisms of adaptive evolution are poorly understood. Studying evolution in the laboratory under controlled conditions can be a tractable approach, particularly when new, discernible phenotypes evolve rapidly. This is especially the case in the spatially structured environments of biofilms, which promote the occurrence and stability of new, heritable phenotypes. Further, diversity in biofilms can give rise to nascent social interactions among coexisting mutants and enable the study of the emerging field of sociomicrobiology. Here, we review findings from laboratory evolution experiments with either Pseudomonas fluorescens or Burkholderia cenocepacia in spatially structured environments that promote biofilm formation. In both systems, ecotypes with overlapping niches evolve and produce competitive or facilitative interactions that lead to novel community attributes, demonstrating the parallelism of adaptive processes captured in the lab.

  16. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems

    PubMed Central

    Auguet, O.; Pijuan, M.; Batista, J.; Gutierrez, O.

    2015-01-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7 ± 72.3 mg S-H2S liter−1 day−1), whereas emissions of CH4 remained low (17.9 ± 15.9 mg COD-CH4 liter−1 day−1). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6 ± 16.6 mg COD-CH4 liter−1 day−1), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  17. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Pyrak-Nolte, L. J.; Atekwana, E. A.; Werkema, D. D.; Haugen, M. E.

    2009-12-01

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand columns. A control column (non-biostimulated) and a biostimulated column were studied in a 2D acoustic scanning apparatus, and a second set of columns were constructed with Ag-AgCl electrodes for complex conductivity measurements. At the completion of the 29-day experiment, compressional wave amplitudes and arrival times for the control column were observed to be relatively uniform over the scanned 2D region. However, the biostimulated sample exhibited a high degree of spatial variability within the column for both the amplitude and arrival times. Furthermore, portions of the sample exhibited increased attenuation (~ 80%) concurrent with an increase in the arrival times, while other portions exhibited decreased attenuation (~ 45%) and decreased arrival time. The acoustic amplitude and arrival times changed significantly in the biostimulated column between Days 5 and 7 of the experiment and are consistent with a peak in the imaginary conductivity (σ”) values. The σ” response corresponds to different stages of biofilm development. That is, we interpret the peak σ” with the maximum biofilm thickness and decreasing σ” due to cell death or detachment. Environmental scanning electron microscope (ESEM) imaging confirmed microbial cell attachment to sand surfaces in the biostimulated columns, showed apparent differences in the morphology of attached biomass between regions of increased and decreased attenuation, and indicated no mineral precipitation or biomineralization. The heterogeneity in the elastic properties arises from the differences in the morphology and structure of attached biofilms. These results suggest that combining acoustic imaging and complex conductivity techniques

  18. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance.

    PubMed

    Patil, Sunil A; Harnisch, Falk; Kapadnis, Balasaheb; Schröder, Uwe

    2010-10-15

    In this paper we investigate the temperature dependence and temperature limits of waste water derived anodic microbial biofilms. We demonstrate that these biofilms are active in a temperature range between 5°C and 45°C. Elevated temperatures during initial biofilm growth not only accelerate the biofilm formation process, they also influence the bioelectrocatalytic performance of these biofilms when measured at identical operation temperatures. For example, the time required for biofilm formation decreases from above 40 days at 15°C to 3.5 days at 35°C. Biofilms grown at elevated temperatures are more electrochemically active at these temperatures than those grown at lower incubation temperature. Thus, at 30°C current densities of 520 μA cm(-2) and 881 μA cm(-2) are achieved by biofilms grown at 22°C and 35°C, respectively. Vice versa, and of great practical relevance for waste water treatment plants in areas of moderate climate, at low operation temperatures, biofilms grown at lower temperatures outperform those grown at higher temperatures. We further demonstrate that all biofilms possess similar lower (0°C) and upper (50°C) temperature limits--defining the operational limits of a respective microbial fuel cell or microbial biosensor--as well as similar electrochemical electron transfer characteristics.

  19. Microbial exopolymers link predator and prey in a model yeast biofilm system.

    PubMed

    Joubert, L-M; Wolfaardt, G M; Botha, A

    2006-08-01

    Protistan grazing on biofilms is potentially an important conduit enabling energy flow between microbial trophic levels. Contrary to the widely held assumption that protistan feeding primarily involves ingestion of biofilm cells, with negative consequences for the biofilm, this study demonstrated preferential grazing on the noncellular biofilm matrix by a ciliate, with selective ingestion of yeast and bacterial cells of planktonic origin over attached and biofilm-derived planktonic cells. Introducing a ciliate to two biofilm-forming Cryptococcus species, as well as two bacterial species in a model biofilm system, fluorescent probes were applied to determine ingestion of cellular and noncellular biofilm fractions. Fluoromicroscopy, as well as photometric quantification, confirmed that protistan grazing enhanced yeast biofilm metabolism, and an increase in biofilm biomass and viability. We propose that the extracellular polymeric matrix of biofilms may act as an interface regulating interaction between predator and prey, while serving as source of nutrients and energy for protists.

  20. Advances in microbial biofilm prevention on indwelling medical devices with emphasis on usage of acoustic energy.

    PubMed

    Dror, Naama; Mandel, Mathilda; Hazan, Zadik; Lavie, Gad

    2009-01-01

    Microbial biofilms are a major impediment to the use of indwelling medical devices, generating device-related infections with high morbidity and mortality. Major efforts directed towards preventing and eradicating the biofilm problem face difficulties because biofilms protect themselves very effectively by producing a polysaccharide coating, reducing biofilm sensitivity to antimicrobial agents. Techniques applied to combating biofilms have been primarily chemical. These have met with partial and limited success rates, leading to current trends of eradicating biofilms through physico-mechanical strategies. Here we review the different approaches that have been developed to control biofilm formation and removal, focusing on the utilization of acoustic energy to achieve these objectives.

  1. The physiology and collective recalcitrance of microbial biofilm communities.

    PubMed

    Gilbert, Peter; Maira-Litran, Tomas; McBain, Andrew J; Rickard, Alexander H; Whyte, Fraser W

    2002-01-01

    Microbial biofilms impinge upon all aspects of our lives. Whilst much of this impact is positive, there are many areas in which the presence and activities of biofilms are regarded as problematic and in need of control. It is in this respect that biofilms reveal their recalcitrance towards many of the long-established antibiotics, and industrial and medical treatment strategies. The nature of the resistance of biofilms, in spite of much research, remains an enigma. Whilst it is recognized that reaction--diffusion limitation properties of the biofilm matrix towards the majority of treatment agents will impede access, this cannot be the sole explanation of the observed resistance. Rather, it will delay the death of cells within the community to various extents. Similarly, it is recognized that biofilm communities are phenotypically heterogeneous and that their eradication will reflect the susceptibility of the most resistant phenotype. The nutrient and gaseous gradients that generate this heterogeneity will, however, be destroyed as a result of antimicrobial treatments and cause the phenotype of the survivors to alter from slow-growing resistant cells to fast-growing susceptible ones. Accordingly both explanations can only delay death of the community. In order to explain more fully the long-term recalcitrance of biofilms towards such a wide variety of biocidal agents, more radical hypotheses must be considered. Amongst these are that multidrug efflux pumps could be up-regulated on expression of a biofilm phenotype. Whilst this is an appealing and simple explanation, because of its ability to explain the breadth of agents to which biofilms are resistant, recent work has suggested that this is not the case. Alternative hypotheses attempt to explain the diversity of agents by invoking a common cause of death for which singular resistance mechanisms could be applied. It is therefore suggested that an altruistic majority of sublethally damaged cells in a population

  2. INVESTIGATING THE EFFECT OF MICROBIAL GROWTH AND BIOFILM FORMATION ON SEISMIC WAVE PROPAGATION IN SEDIMENT

    EPA Science Inventory

    Previous laboratory investigations have demonstrated that the seismic methods are sensitive to microbially-induced changes in porous media through the generation of biogenic gases and biomineralization. The seismic signatures associated with microbial growth and biofilm formation...

  3. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    EPA Science Inventory

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  4. [Biofilm--short characteristic of microbial growth related to drinking water distribution systems].

    PubMed

    Szczotko, Maciej

    2007-01-01

    General information about drinking water biofilms containing few steps biofilm forming process, microorganisms' short characterization and potential risk related to microbial presence in water installations has been presented. A part of review concerns European Acceptance Scheme (EAS) basis and current methods applied for assessment of susceptibility of materials contacting with drinking water to microbial growth.

  5. Biofilms: an emergent form of bacterial life.

    PubMed

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

  6. Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells.

    PubMed

    Cristiani, P; Carvalho, M L; Guerrini, E; Daghio, M; Santoro, C; Li, B

    2013-08-01

    The oxygen reduction due to microaerophilic biofilms grown on graphite cathodes (biocathodes) in Single Chamber Microbial Fuel Cells (SCMFCs) is proved and analysed in this paper. Pt-free cathode performances are compared with those of different platinum-loaded cathodes, before and after the biofilm growth. Membraneless SCMFCs were operating in batch-mode, filled with wastewater. A substrate (fuel) of sodium acetate (0.03 M) was periodically added and the experiment lasted more than six months. A maximum of power densities, up to 0.5 W m(-2), were reached when biofilms developed on the electrodes and the cathodic potential decreased (open circuit potential of 50-200 mV vs. SHE). The power output was almost constant with an acetate concentration of 0.01-0.05 M and it fell down when the pH of the media exceeded 9.5, independently of the Pt-free/Pt-loading at the cathodes. Current densities varied in the range of 1-5 Am(-2) (cathode area of 5 cm(2)). Quasi-stationary polarization curves performed with a three-electrode configuration on cathodic and anodic electrodes showed that the anodic overpotential, more than the cathodic one, may limit the current density in the SCMFCs for a long-term operation.

  7. Optical Sensing of Microbial Life on Surfaces

    PubMed Central

    Triggs, G. J.; Krauss, T. F.

    2015-01-01

    The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface. PMID:26637605

  8. Potential microbial bioinvasions via ships' ballast water, sediment, and biofilm.

    PubMed

    Drake, Lisa A; Doblin, Martina A; Dobbs, Fred C

    2007-01-01

    A prominent vector of aquatic invasive species to coastal regions is the discharge of water, sediments, and biofilm from ships' ballast-water tanks. During eight years of studying ships arriving to the lower Chesapeake Bay, we developed an understanding of the mechanisms by which invasive microorganisms might arrive to the region via ships. Within a given ship, habitats included ballast water, unpumpable water and sediment (collectively known as residuals), and biofilms formed on internal surfaces of ballast-water tanks. We sampled 69 vessels arriving from foreign and domestic ports, largely from Western Europe, the Mediterranean region, and the US East and Gulf coasts. All habitats contained bacteria and viruses. By extrapolating the measured concentration of a microbial metric to the estimated volume of ballast water, biofilm, or residual sediment and water within an average vessel, we calculated the potential total number of microorganisms contained by each habitat, thus creating a hierarchy of risk of delivery. The estimated concentration of microorganisms was greatest in ballast water>sediment and water residuals>biofilms. From these results, it is clear microorganisms may be transported within ships in a variety of ways. Using temperature tolerance as a measure of survivability and the temperature difference between ballast-water samples and the water into which the ballast water was discharged, we estimated 56% of microorganisms could survive in the lower Bay. Extrapolated delivery and survival of microorganisms to the Port of Hampton Roads in lower Chesapeake Bay shows on the order of 10(20) microorganisms (6.8 x 10(19) viruses and 3.9 x 10(18) bacteria cells) are discharged annually to the region.

  9. Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability.

    PubMed

    Li, Shuangshuang; Peng, Chengrong; Wang, Chun; Zheng, Jiaoli; Hu, Yao; Li, Dunhai

    2017-01-01

    Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.

  10. Microbial Communities in Biofilms of an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Das Gupta, S.; Fang, J.

    2008-12-01

    Phospholipids were extracted to determine the microbial biomass and community structure of biofims from an acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana. The distribution of specific biomarkers indicated the presence of a variety of microorganisms. Phototrophic microeukaryotes, which include Euglena mutabilis, algae, and cyanobacteria were the most dominant organisms, as indicated by the presence of polyunsaturated fatty acids. The presence of terminally methyl branched fatty acids suggests the presence of Gram-positive bacteria, and the mid-methyl branched fatty acids indicates the presence of sulfate-reducing bacteria. Fungi appear to also be an important part of the AMD microbial communities as suggested by the presence of 18:2 fatty acid. The acidophilic microeukaryotes Euglena dominated the biofilm microbial communities. These microorganisms appear to play a prominent role in the formation and preservation of stromatolites and in releasing oxygen to the atmosphere by oxygenic photosynthesis. Thus, the AMD environment comprises a host of microorganisms spreading out within the phylogenetic tree of life. Novel insights on the roles of microbial consortia in the formation and preservation of stromatolites and the production of oxygen through photosynthesis in AMD systems may have significance in the understanding of the interaction of Precambrian microbial communities in environments that produced microbially-mediated sedimentary structures and that caused oxygenation of Earth's atmosphere.

  11. Detection of microbial Life in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Dornmayr-Pfaffenhuemer, M.; Legat, A.; Gruber, C.; Weidler, G.; Gerbl, F.

    2007-08-01

    In recent years microbial communities were detected, which dwell in rocks, soil and caves deep below the surface of the Earth. This has led to a new view of the diversity of the terrestrial biosphere and of the physico-chemical boundaries for life. Two types of subterranean environments are Permo-Triassic salt sediments and thermal radioactive springs from igneous rocks in the Alps. Viable extremely halophilic archaea were isolated from ancient salt sediments which are estimated to be about 250 million years old (1). Chemotaxonomic and molecular characterization showed that they represent novel species, e. g. Halococcus salifodinae, Hcc. dombrowskiiand Halobacterium noricense. Simulation experiments with artificial halite suggested that these microorganisms probably survived while embedded in fluid inclusions. In the thermal springs, evidence for numerous novel microorganisms was found by 16S rDNA sequencing and probing for some metabolic genes; in addition, scanning electron microscopy of biofilms on the rock surfaces revealed great diversity of morphotypes (2). These communities appear to be active and growing, although their energy and carbon sources are entirely unknown. The characterization of subsurface inhabitants is of astrobiological relevance since extraterrestrial halite has been detected (3) and since microbial life on Mars, if existent, may have retreated into the subsurface. As a long-term goal, a thorough census of terrestrial microorganisms should be taken and their survival potential be determined in view of future missions for the search for extraterrestrial life, including planning precautions against possible forward contamination by space probes. (1) Fendrihan, S., Legat, A., Gruber, C., Pfaffenhuemer, M., Weidler, G., Gerbl, F., Stan-Lotter, H. (2006) Extremely halophilic archaea and the issue of long term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605. (2) Weidler, G.W., Dornmayr-Pfaffenhuemer, M., Gerbl

  12. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms

    PubMed Central

    Debebe, Tewodros; Krüger, Monika; Huse, Klaus; Kacza, Johannes; Mühlberg, Katja; König, Brigitte; Birkenmeier, Gerd

    2016-01-01

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well. PMID:27658257

  13. Microscale Microbial-Geochemical Linkages Controlling Biofilm Metal Behaviour in an AMD Environment

    NASA Astrophysics Data System (ADS)

    Haack, E. A.; Warren, L. A.

    2001-12-01

    In AMD environments, biogeochemical processes involving metal solid phase capture within microbial biofilms may play a large role in controlling overall system metal transport. Our research aims to map observed metal behaviour within natural biofilms from a metal-contaminated environment as a function of changes in microbial community structure and associated shifts in internal geochemical gradients. We have used a combined field and laboratory approach to begin characterizing biogeochemical linkages within biofilms. Biofilm and overlying water column samples were collected from May-September, 2001, from shallow surficial seepage streams at the Strathcona tailings (Falconbridge Ltd., Sudbury). In situ geochemical profiles of both the overlying water column (pH, temperature, O2, redox, conductivity) and within the biofilms (pH, O2, H2S) were recorded at the time of sampling. Biofilm oxygen profiles indicated the presence of a photosynthetic surface layer, followed by rapid oxygen depletion and anoxia deeper into the biofilm. Both the O2 and H2S profiles inferred the presence of stratified microbial communities within the biofilms. Biofilm pH profiles indicated a small relative increase in pH with depth from the biofilm-water interface (reaching values of 4.0) compared to the overlying water column (3.4). Higher biofilm pH values reflect both intense microbial activity sufficient to impact pH even at such low ambient pH, and the creation of more favourable conditions for biofilm solid-phase metal capture. Sulfate and silicate minerals were identified as the bulk mineral components of the biofilms by X-Ray diffraction (XRD) analysis. These minerals, however, were not important metal sorbents. Rather, greater than 80 percent of the total Ni and Co content of the biofilms was shown to be associated with the manganese oxyhydroxide and organic/sulfide phases of the biofilm material, as determined by a sequential extraction scheme using microwave digestion. Mn

  14. Factors Regulating Microbial Biofilm Development in a System with Slowly Flowing Seawater

    PubMed Central

    Pedersen, Karsten

    1982-01-01

    Microbial biofilm development was followed under growth conditions similar to those of a projected salinity power plant. Microscope glass cover slips were piled in biofilm reactors to imitate the membrane stacks in such a plant. A staining technique closely correlating absorbance values with biofilm dry weight was used for the study. Generally, the biofilms consisted of solitary and filamentous bacteria which were evenly distributed with considerable amounts of various protozoa and entrapped debris of organic origin. Protozoa predation was shown to decrease the amount of biofilm produced. The biofilm development lag phase was longer at lower temperatures. The subsequent growth phase was approximately arithmetic until stationary phase appeared. Adaptation of a hyperbolic saturation function gave curves that agreed well with the logarithm of the amount of biofilm as a function of time. Increased flow velocity, temperature, and nutrient concentration increased the biofilm production rate. An exponential relationship was shown between biofilm production rate and flow velocity within the range of 0 to 15 cm s−1. Intervals in which the biofilms were exposed to fresh water decreased the biofilm production rate more than four times. If the cover slips were inoculated with untreated seawater for 24 h, subsequent UV treatment had an insignificant effect on the biofilm formation. Images PMID:16346136

  15. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system.

    PubMed

    Lee, On On; Wang, Yong; Tian, Renmao; Zhang, Weipeng; Shek, Chun Shum; Bougouffa, Salim; Al-Suwailem, Abdulaziz; Batang, Zenon B; Xu, Wei; Wang, Guang Chao; Zhang, Xixiang; Lafi, Feras F; Bajic, Vladmir B; Qian, Pei-Yuan

    2014-01-08

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  16. Role of discontinuous chlorination on microbial production by drinking water biofilms.

    PubMed

    Codony, Francesc; Morató, Jordi; Mas, Jordi

    2005-05-01

    Microbial quality in water distribution systems is strongly affected by the development of microbial biofilms. Production and release of microbial cells by the biofilm affect microbial levels in the water column and in some cases this fact constitutes a public health concern. In this study, we attempt to analyze in which way the existence of different episodes of chlorine depletion affects both biofilm formation and microbial load of an artificial laboratory system. The work was carried out using two parallel packed bed reactors both supplied with running tap water. One of the reactors was used as a control and was permanently exposed to the action of chlorine. In the other reactor, chlorine was neutralized at selected times during the experiment and for periods of variable length. During the experiment the concentration of total and viable cells from the effluent was monitored at the exit of each of the reactors. The data obtained were used to estimate microbial production from the biofilms. As an average, release of microbial cells to the water phase increased tenfold in the absence of chlorine. The results also indicate that disinfectant efficiency against the biofilm was not recovered when chlorine returned to normal levels after each event of chlorine neutralization. Cell viability in the water phase in the presence of chlorine was low at the beginning of the experiment but increased 4 orders of magnitude after five neutralization periods. Therefore, subsequent episodes of chlorine depletion may accelerate the development of microbial communities with reduced susceptibility to disinfection in real drinking water systems.

  17. Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies

    PubMed Central

    Delcaru, Cristina; Alexandru, Ionela; Podgoreanu, Paulina; Grosu, Mirela; Stavropoulos, Elisabeth; Chifiriuc, Mariana Carmen; Lazar, Veronica

    2016-01-01

    Urinary tract infections (UTIs) are one of the most important causes of morbidity and health care spending affecting persons of all ages. Bacterial biofilms play an important role in UTIs, responsible for persistent infections leading to recurrences and relapses. UTIs associated with microbial biofilms developed on catheters account for a high percentage of all nosocomial infections and are the most common source of Gram-negative bacteremia in hospitalized patients. The purpose of this mini-review is to present the role of microbial biofilms in the etiology of female UTI and different male prostatitis syndromes, their consequences, as well as the challenges for therapy. PMID:27916925

  18. Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies.

    PubMed

    Delcaru, Cristina; Alexandru, Ionela; Podgoreanu, Paulina; Grosu, Mirela; Stavropoulos, Elisabeth; Chifiriuc, Mariana Carmen; Lazar, Veronica

    2016-11-30

    Urinary tract infections (UTIs) are one of the most important causes of morbidity and health care spending affecting persons of all ages. Bacterial biofilms play an important role in UTIs, responsible for persistent infections leading to recurrences and relapses. UTIs associated with microbial biofilms developed on catheters account for a high percentage of all nosocomial infections and are the most common source of Gram-negative bacteremia in hospitalized patients. The purpose of this mini-review is to present the role of microbial biofilms in the etiology of female UTI and different male prostatitis syndromes, their consequences, as well as the challenges for therapy.

  19. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    PubMed Central

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  20. Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling

    PubMed Central

    Liu, Yiwen; Sun, Jing; Peng, Lai; Wang, Dongbo; Dai, Xiaohu; Ni, Bing-Jie

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria–substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm. PMID:27273460

  1. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    PubMed

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments.

  2. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques.

    PubMed

    Holá, Veronika; Ruzicka, Filip; Horka, Marie

    2010-08-01

    Infections of the urinary tract account for >40% of nosocomial infections; most of these are infections in catheterized patients. Bacterial colonization of the urinary tract and catheters causes not only the particular infection but also a number of complications, for example blockage of catheters with crystallic deposits of bacterial origin, generation of gravels and pyelonephritis. Infections of urinary catheters are only rarely single-species infections. The longer a patient is catheterized, the higher the diversity of biofilm microbial communities. The aims of this study were to investigate the microbial diversity on the catheters and to compare the ability to form biofilm among isolated microbial species. The next aim was to discriminate particular causative agents of infections of the urinary tract and their importance as biofilm formers in the microbial community on the urinary catheter. We examined catheters from 535 patients and isolated 1555 strains of microorganisms. Most of the catheters were infected by three or more microorganisms; only 12.5% showed monomicrobial infection. Among the microorganisms isolated from the urinary catheters, there were significant differences in biofilm-forming ability, and we therefore conclude that some microbial species have greater potential to cause a biofilm-based infection, whereas others can be only passive members of the biofilm community.

  3. Conduction-based modeling of the biofilm anode of a microbial fuel cell.

    PubMed

    Kato Marcus, Andrew; Torres, César I; Rittmann, Bruce E

    2007-12-15

    The biofilm of a microbial fuel cell (MFC) experiences biofilm-related (growth and mass transport) and electrochemical (electron conduction and charger-transfer) processes. We developed a dynamic, one-dimensional, multi-species model for the biofilm in three steps. First, we formulated the biofilm on the anode as a "biofilm anode" with the following two properties: (1) The biofilm has a conductive solid matrix characterized by the biofilm conductivity (kappa(bio)). (2) The biofilm matrix accepts electrons from biofilm bacteria and conducts the electrons to the anode. Second, we derived the Nernst-Monod expression to describe the rate of electron-donor (ED) oxidation. Third, we linked these components using the principles of mass balance and Ohm's law. We then solved the model to study dual limitation in biofilm by the ED concentration and local potential. Our model illustrates that kappa(bio) strongly influences the ED and current fluxes, the type of limitation in biofilm, and the biomass distribution. A larger kappa(bio) increases the ED and current fluxes, and, consequently, the ED mass-transfer resistance becomes significant. A significant gradient in ED concentration, local potential, or both can develop in the biofilm anode, and the biomass actively respires only where ED concentration and local potential are high. When kappa(bio) is relatively large (i.e., > or =10(-3) mS cm(-1)), active biomass can persist up to tens of micrometers away from the anode. Increases in biofilm thickness and accumulation of inert biomass accentuate dual limitation and reduce the current density. These limitations can be alleviated with increases in the specific detachment rate and biofilm density.

  4. Biofilm growth on polyvinylchloride surface incubated in suboptimal microbial warm water and effect of sanitizers on biofilm removal post biofilm formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An in vitro experiment was conducted to understand the nature of biofilm growth on polyvinyl chloride (PVC) surface when exposed to sub optimal quality microbial water (> 4 log10 cfu/ml) obtained from poultry drinking water source mimicking water in waterlines during the first week of poultry broodi...

  5. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques

  6. How to Study Biofilms after Microbial Colonization of Materials Used in Orthopaedic Implants

    PubMed Central

    Drago, Lorenzo; Agrappi, Serse; Bortolin, Monica; Toscano, Marco; Romanò, Carlo Luca; De Vecchi, Elena

    2016-01-01

    Over the years, various techniques have been proposed for the quantitative evaluation of microbial biofilms. Spectrophotometry after crystal violet staining is a widespread method for biofilm evaluation, but several data indicate that it does not guarantee a good specificity, although it is rather easy to use and cost saving. Confocal laser microscopy is one of the most sensitive and specific tools to study biofilms, and it is largely used for research. However, in some cases, no quantitative measurement of the matrix thickness or of the amount of embedded microorganisms has been performed, due to limitation in availability of dedicated software. For this reason, we have developed a protocol to evaluate the microbial biofilm formed on sandblasted titanium used for orthopaedic implants, that allows measurement of biomass volume and the amount of included cells. Results indicate good reproducibility in terms of measurement of biomass and microbial cells. Moreover, this protocol has proved to be applicable for evaluation of the efficacy of different anti-biofilm treatments used in the orthopaedic setting. Summing up, the protocol here described is a valid and inexpensive method for the study of microbial biofilm on prosthetic implant materials. PMID:26927075

  7. Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches.

    PubMed

    Beltrán, Yislem; Cerqueda-García, Daniel; Taş, Neslihan; Thomé, Patricia E; Iglesias-Prieto, Roberto; Falcón, Luisa I

    2016-01-01

    Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs.

  8. Microbial interactions in marine water amended by eroded benthic biofilm: A case study from an intertidal mudflat

    NASA Astrophysics Data System (ADS)

    Montanié, Hélène; Ory, Pascaline; Orvain, Francis; Delmas, Daniel; Dupuy, Christine; Hartmann, Hans J.

    2014-09-01

    In shallow macrotidal ecosystems with large intertidal mudflats, the sediment-water coupling plays a crucial role in structuring the pelagic microbial food web functioning, since inorganic and organic matter and microbial components (viruses and microbes) of the microphytobenthic biofilm can be suspended toward the water column. Two experimental bioassays were conducted in March and July 2008 to investigate the importance of biofilm input for the pelagic microbial and viral loops. Pelagic inocula (< 0.6 μ- and < 10 μ filtrates) were diluted either with < 30 kDa-ultrafiltered seawater or with this ultrafiltrate enriched with the respective size-fractionated benthic biofilm or with < 30 kDa-benthic compounds (BC). The kinetics of heterotrophic nanoflagellates (HNF), bacteria and viruses were assessed together with bacterial and viral genomic fingerprints, bacterial enzymatic activities and viral life strategies. The experimental design allowed us to evaluate the effect of BC modulated by those of benthic size-fractionated microorganisms (virus + bacteria, + HNF). BC presented (1) in March, a positive effect on viruses and bacteria weakened by pelagic HNF. Benthic microorganisms consolidated this negative effect and sustained the viral production together with a relatively diverse and uneven bacterial assemblage structure; (2) in July, no direct impact on viruses but a positive effect on bacteria modulated by HNF, which indirectly enhanced viral multiplication. Both effects were intensified by benthic microorganisms and bacterial assemblage structure became more even. HNF indirectly profited from BC more in March than in July. The microbial loop would be stimulated by biofilm during periods of high resources (March) and the viral loop during periods of depleted resources (July).

  9. Comparative sensitivity to the fungicide tebuconazole of biofilm and plankton microbial communities in freshwater ecosystems.

    PubMed

    Artigas, J; Pascault, N; Bouchez, A; Chastain, J; Debroas, D; Humbert, J F; Leloup, J; Tadonleke, R D; ter Halle, A; Pesce, S

    2014-01-15

    Stream and lake ecosystems in agricultural watersheds are exposed to fungicide inputs that can threaten the structure and functioning of aquatic microbial communities. This research analyzes the impact of the triazole fungicide tebuconazole (TBZ) on natural biofilm and plankton microbial communities from sites presenting different degrees of agricultural contamination. Biofilm and plankton communities from less-polluted (LP) and polluted (P) sites were exposed to nominal concentrations of 0 (control), 2 and 20 μg TBZ L(-1) in 3-week microcosm experiments. Descriptors of microbial community structure (bacterial density and chlorophyll-a concentration) and function (bacterial respiration and production and photosynthesis) were analyzed to chart the effects of TBZ and the kinetics of TBZ attenuation in water during the experiments. The results showed TBZ-induced effects on biofilm function (inhibition of substrate-induced respiration and photosynthetic activity), especially in LP-site communities, whereas plankton communities experienced a transitory stimulation of bacterial densities in communities from both LP and P sites. TBZ attenuation was stronger in biofilm (60-75%) than plankton (15-18%) experiments, probably due to greater adsorption on biofilms. The differences between biofilm and plankton responses to TBZ were likely explained by differences in community structure (presence of extracellular polymeric substances (EPS) matrix) and microbial composition. Biofilm communities also exhibited different sensitivity levels according to their in-field pre-exposure to fungicide, with P-site communities demonstrating adaptation capacities to TBZ. This study indicates that TBZ toxicity to non-targeted aquatic microbial communities essentially composed by microalgae and bacteria was moderate, and that its effects varied between stream and lake microbial communities.

  10. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro

    PubMed Central

    Junka, Adam Feliks; Szymczyk, Patrycja; Smutnicka, Danuta; Kos, Marcin; Smolina, Iryna; Bartoszewicz, Marzenna; Chlebus, Edward; Turniak, Michal; Sedghizadeh, Parish P.

    2014-01-01

    Introduction It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestra formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore, we developed an in vitro model to test this hypothesis. Materials and Methods Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of S.mutans, S.aureus, P.aeruginosa and C.albicans, and mixed-species biofilms of C.albicans + S.mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups were also established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-CT metrotomography, x-ray spectroscopy and confocal microscopy with planimetric analysis. Additionally, quantitative cultures and pH assessment were performed. ANOVA was used to test for significance between treatment and control groups. Results All investigated biofilms were able to cause significant (P<0.05) and morphologically characteristic alterations in HA structure as compared to controls. The highest number of alterations observed was caused by mixed biofilms of C.albicans + S.mutans. S. mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. Conclusion These findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics. PMID:25544303

  11. Life in the "plastisphere": microbial communities on plastic marine debris.

    PubMed

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-02

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.

  12. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    PubMed

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m(2) and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation.

  13. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  14. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.

    PubMed

    Yang, Yonggang; Sun, Guoping; Guo, Jun; Xu, Meiying

    2011-07-01

    Biofilms formation capacities of Shewanella species in microbial fuel cells (MFCs) and their roles in current generation have been documented to be species-dependent. Understandings of the biofilms growth and metabolism are essential to optimize the current generation of MFCs. Shewanella decolorationis S12 was used in both closed-circuit and open-circuit MFCs in this study. The anodic S. decolorationis S12 biofilms could generate fivefold more current than the planktonic cells, playing a dominant role in current generation. Anodic biofilms viability was sustained at 98 ± 1.2% in closed-circuit while biofilms viability in open-circuit decreased to 72 ± 7% within 96 h. The unviable domain in open-circuit MFCs biofilms majorly located at the inner layer of biofilm. The decreased biofilms viability in open-circuit MFCs could be recovered by switching into closed-circuit, indicating that the current-generating anode in MFCs could serve as a favorable electron acceptor and provide sufficient energy to support cell growth and metabolism inside biofilms.

  15. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.

    PubMed

    Chung, Kyungmi; Okabe, Satoshi

    2009-07-01

    A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m(3) was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry.

  16. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development.

    PubMed

    Katharios-Lanwermeyer, S; Xi, C; Jakubovics, N S; Rickard, A H

    2014-01-01

    Coaggregation is the specific recognition and adherence of genetically distinct microorganisms. Because most biofilms are polymicrobial communities, there is potential for coaggregation to play an integral role in spatiotemporal biofilm development and the moderation of biofilm community composition. However, understanding of the mechanisms contributing to coaggregation and the relevance of coaggregation to biofilm ecology is at a very early stage. The purpose of this review is to highlight recent advances in the understanding of microbial coaggregation within different environments and to describe the possible ecological ramifications of such interactions. Bacteria that coaggregate with many partner species within different environments will be highlighted, including oral streptococci and oral bridging organisms such as fusobacteria, as well as the freshwater sphingomonads and acinetobacters. Irrespective of environment, it is proposed that coaggregation is essential for the orchestrated development of multi-species biofilms.

  17. The performance of microbial anodes in municipal wastewater: Pre-grown multispecies biofilm vs. natural inocula.

    PubMed

    Madjarov, Joana; Prokhorova, Anna; Messinger, Thorsten; Gescher, Johannes; Kerzenmacher, Sven

    2016-12-01

    In this study, different inoculation strategies for continuously operated microbial anodes are analyzed and compared. After 20daysof operation with municipal wastewater anodes pre-incubated with a biofilm of the exoelectrogenic species Geobacter and Shewanella showed current densities of (65±8) μA/cm(2). This is comparable to the current densities of non-inoculated anodes and anodes inoculated with sewage sludge. Analysis of the barcoded pre-grown multispecies biofilms reveal that 99% of the original biofilm was detached after 20daysof operation with municipal wastewater. This is in contrast to previous experiments where a pre-grown biofilm of exoelectrogens was operated in batch mode. To implement pre-grown biofilms in continuous systems it will thus be necessary to reveal a window of process parameters in which typical exoelectrogenic microorganisms including model organisms can be kept and/or enriched on anodes.

  18. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment.

    PubMed

    Rivalland, Caroline; Madhkour, Sonia; Salvin, Paule; Robert, Florent

    2015-12-01

    Electroactive biofilms were formed from French Guiana mangrove sediments for the analysis of bacterial communities' composition. The electrochemical monitoring of three biofilm generations revealed that the bacterial selection occurring at the anode, supposedly leading microbial electrochemical systems (MESs) to be more efficient, was not the only parameter to be taken into account so as to get the best electrical performance (maximum current density). Indeed, first biofilm generations produced a stable current density reaching about 18 A/m(2) while second and third generations produced current densities of about 10 A/m(2). MES bacterial consortia were characterized thanks to molecular biology techniques: DGGE and MiSeq® sequencing (Illumina®). High-throughput sequencing data statistical analysis confirmed preliminary DGGE data analysis, showing strong similarities between electroactive biofilms of second and third generations, but also revealing both selection and stabilization of the biofilms.

  19. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms.

    PubMed

    Thallinger, Barbara; Prasetyo, Endry N; Nyanhongo, Gibson S; Guebitz, Georg M

    2013-01-01

    With the increasing prevalence of antibiotic resistance, antimicrobial enzymes aimed at the disruption of bacterial cellular machinery and biofilm formation are under intense investigation. Several enzyme-based products have already been commercialized for application in the healthcare, food and biomedical industries. Successful removal of complex biofilms requires the use of multi-enzyme formulations that contain enzymes capable of degrading microbial DNA, polysaccharides, proteins and quorum-sensing molecules. The inclusion of anti-quorum sensing enzymes prevents biofilm reformation. The development of effective complex enzyme formulations is urgently needed to deal with the problems associated with biofilm formation in manufacturing, environmental protection and healthcare settings. Nevertheless, advances in synthetic biology, enzyme engineering and whole DNA-Sequencing technologies show great potential to facilitate the development of more effective antimicrobial and anti-biofilm enzymes.

  20. A framework for modeling electroactive microbial biofilms performing direct electron transfer.

    PubMed

    Korth, Benjamin; Rosa, Luis F M; Harnisch, Falk; Picioreanu, Cristian

    2015-12-01

    A modeling platform for microbial electrodes based on electroactive microbial biofilms performing direct electron transfer (DET) is presented. Microbial catabolism and anabolism were coupled with intracellular and extracellular electron transfer, leading to biofilm growth and current generation. The model includes homogeneous electron transfer from cells to a conductive biofilm component, biofilm matrix conduction, and heterogeneous electron transfer to the electrode. Model results for Geobacter based anodes, both at constant electrode potential and in voltammetric (dynamic electrode potential) conditions, were compared to experimental data from different sources. The model can satisfactorily describe microscale (concentration, pH and redox gradients) and macroscale (electric currents, biofilm thickness) properties of Geobacter biofilms. The concentration of electrochemically accessible redox centers, here denominated as cytochromes, involved in the extracellular electron transfer, plays the key role and may differ between constant potential (300 mM) and dynamic potential (3mM) conditions. Model results also indicate that the homogeneous and heterogeneous electron transfer rates have to be within the same order of magnitude (1.2 s(-1)) for reversible extracellular electron transfer.

  1. Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond.

    PubMed

    Golby, Susanne; Ceri, Howard; Gieg, Lisa M; Chatterjee, Indranil; Marques, Lyriam L R; Turner, Raymond J

    2012-01-01

    Bitumen extraction from the oil sands of Alberta has resulted in millions of cubic meters of waste stored on-site in tailings ponds. Unique microbial ecology is expected in these ponds, which may be key to their bioremediation potential. We considered that direct culturing of microbes from a tailings sample as biofilms could lead to the recovery of microbial communities that provide good representation of the ecology of the tailings. Culturing of mixed species biofilms in vitro using the Calgary Biofilm Device (CBD) under aerobic, microaerobic, and anaerobic growth conditions was successful both with and without the addition of various growth nutrients. Denaturant gradient gel electrophoresis and 16S rRNA gene pyrotag sequencing revealed that unique mixed biofilm communities were recovered under each incubation condition, with the dominant species belonging to Pseudomonas, Thauera, Hydrogenophaga, Rhodoferax, and Acidovorax. This work used an approach that allowed organisms to grow as a biofilm directly from a sample collected of their environment, and the biofilms cultivated in vitro were representative of the endogenous environmental community. For the first time, representative environmental mixed species biofilms have been isolated and grown under laboratory conditions from an oil sands tailings pond environment and a description of their composition is provided.

  2. Microbial biofilms in seafood: a food-hygiene challenge.

    PubMed

    Mizan, Md Furkanur Rahaman; Jahid, Iqbal Kabir; Ha, Sang-Do

    2015-08-01

    Seafood forms a part of a healthy diet. However, seafood can be contaminated with foodborne pathogens, resulting in disease outbreaks. Because people consume large amounts of seafood, such disease outbreaks are increasing worldwide. Seafood contamination is largely due to the naturally occurring phenomenon of biofilm formation. The common seafood bacterial pathogens that form biofilms are Vibrio spp., Aeromonas hydrophila, Salmonella spp., and Listeria monocytogenes. As these organisms pose a global health threat, recent research has focused on elucidating methods to eliminate these biofilm-forming bacteria from seafood, thereby improving food hygiene. Therefore, we highlight recent advances in our understanding of the underlying molecular mechanisms of biofilm formation, the factors that regulate biofilm development and the role of quorum sensing and biofilm formation in the virulence of foodborne pathogens. Currently, several novel methods have been successfully developed for controlling biofilms present in seafood. In this review, we also discuss the epidemiology of seafood-related diseases and the novel methods that could be used for future control of biofilm formation in seafood.

  3. Oral Epithelial Cell Responses to Multispecies Microbial Biofilms

    PubMed Central

    Peyyala, R.; Kirakodu, S.S.; Novak, K.F.; Ebersole, J.L

    2013-01-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms. PMID:23300185

  4. The role of microbial biofilms in deterioration of space station candidate materials.

    PubMed

    Gu, J D; Roman, M; Esselman, T; Mitchell, R

    1998-01-01

    Formation of microbial biofilms on surfaces of a wide range of materials being considered as candidates for use on the International Space Station was investigated. The materials included a fibre-reinforced polymeric composite, an adhesive sealant, a polyimide insulation foam, teflon cable insulation, titanium, and an aliphatic polyurethane coating. They were exposed to a natural mixed population of bacteria under controlled conditions of temperature and relative humidity (RH). Biofilms formed on the surfaces of the materials at a wide range of temperatures and RHs. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. The biocide, diiodomethyl-p-tolyl sulfone, impregnated in the polyurethane coating, was ineffective against microbial colonization and growth. Degradation of the polyurethane coatings was monitored with electrochemical impedance spectroscopy (EIS). The impedance spectra indicated that microbial degradation of the coating occurred in several stages. The initial decreases in impedance were due to the transport of water and solutes into the polymeric matrices. Further decreases were a result of polymer degradation by microorganisms. Our data showed that these candidate materials for space application are susceptible to biofilm formation and subsequent degradation. Our study suggests that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.

  5. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.

    PubMed

    Commault, Audrey S; Lear, Gavin; Weld, Richard J

    2015-12-01

    Geobacter-dominated biofilms can be selected under stringent conditions that limit the growth of competing bacteria. However, in many practical applications, such stringent conditions cannot be maintained and the efficacy and stability of these artificial biofilms may be challenged. In this work, biofilms were selected on low-potential anodes (-0.36 V vs Ag/AgCl, i.e. -0.08 V vs SHE) in minimal acetate or ethanol media. Selection conditions were then relaxed by transferring the biofilms to synthetic wastewater supplemented with soil as a source of competing bacteria. We tracked community succession and functional changes in these biofilms. The Geobacter-dominated biofilms showed stability in their community composition and electrochemical properties, with Geobacter sp. being still electrically active after six weeks in synthetic wastewater with power densities of 100±19 mW·m(-2) (against 74±14 mW·m(-2) at week 0) for all treatments. After six weeks, the ethanol-selected biofilms, despite their high taxon richness and their efficiency at removing the chemical oxygen demand (0.8 g·L(-1) removed against the initial 1.3 g·L(-1) injected), were the least stable in terms of community structure. These findings have important implications for environmental microbial fuel cells based on Geobacter-dominated biofilms and suggest that they could be stable in challenging environments.

  6. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.

    PubMed

    Saba, Beenish; Christy, Ann D; Yu, Zhongtang; Co, Anne C; Islam, Rafiq; Tuovinen, Olli H

    2017-02-01

    Microbial fuel cells (MFCs) were designed for laboratory scale experiments to study electroactive biofilms in anodic chambers. Anodic biofilms and current generation during biofilm growth were examined using single chambered MFCs submersed in algal catholyte. A culture of the marine green alga Nanochloropsis salina was used as a biocatholyte, and a rumen fluid microbiota was the anodic chamber inoculum. Electrical impedance spectroscopy was performed under varying external resistance once a week to identify mass transport limitations at the biofilm-electrolyte interface during the four-week experiment. The power generation increased from 249 to 461mWm(-2) during the time course. Confocal laser scanning microscopy imaging showed that the depth of the bacterial biofilm on the anode was about 65μm. There were more viable bacteria on the biofilm surface and near the biofilm-electrolyte interface as compared to those close to the anode surface. The results suggest that biofilm growth on the anode creates a conductive layer, which can help overcome mass transport limitations in MFCs.

  7. Mixed biofilms formed by C. albicans and non-albicans species: a study of microbial interactions.

    PubMed

    Santos, Jéssica Diane dos; Piva, Elisabete; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Most Candida infections are related to microbial biofilms often formed by the association of different species. The objective of this study was to evaluate the interactions between Candida albicans and non-albicans species in biofilms formed in vitro. The non-albicans species studied were:Candida tropicalis, Candida glabrata and Candida krusei. Single and mixed biofilms (formed by clinical isolates of C. albicans and non-albicans species) were developed from standardized suspensions of each strain (10(7) cells/mL), on flat-bottom 96-well microtiter plates for 48 hour. These biofilms were analyzed by counting colony-forming units (CFU/mL) in Candida HiChrome agar and by determining cell viability, using the XTT 2,3-bis (2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide colorimetric assay. The results for both the CFU/mL count and the XTT colorimetric assay showed that all the species studied were capable of forming high levels of in vitro biofilm. The number of CFU/mL and the metabolic activity of C. albicans were reduced in mixed biofilms with non-albicans species, as compared with a single C. albicans biofilm. Among the species tested, C. krusei exerted the highest inhibitory action against C. albicans. In conclusion, C. albicans established antagonistic interactions with non-albicans Candida species in mixed biofilms.

  8. An Electrochemical Strategy to Measure the Thickness of Electroactive Microbial Biofilms

    PubMed Central

    Millo, Diego

    2015-01-01

    The study of electroactive microbial biofilms often requires knowledge of the biofilm thickness. Unfortunately, this parameter is, nowadays, only accessible through expensive microscopic techniques. This work overcomes this limitation by presenting a new strategy, exploiting the use of chronoamperometry (CA) alone. A mixed-culture biofilm is exposed to an O2-saturated solution during anode respiration to suppress its catalytic activity. Assuming that inactivation of the electrocatalytic process is caused by O2 diffusion through the biofilm, a simple relation allows the use of the time constant extracted from the fitting of the curve of the CA trace during inactivation for the straightforward and quantitative determination of biofilm thickness. The biofilm thickness obtained with this method obeys the expected trend reported for biofilm growth and is in agreement with optical measurements. Contrary to the techniques usually employed to determine biofilm thickness, this new strategy is very rapid, nondisruptive, inexpensive, and may become a convenient alternative with respect to expensive and time-consuming microscopic techniques. PMID:27525209

  9. Biofilms of Clostridium species.

    PubMed

    Pantaléon, Véronique; Bouttier, Sylvie; Soavelomandroso, Anna Philibertine; Janoir, Claire; Candela, Thomas

    2014-12-01

    The biofilm is a microbial community embedded in a synthesized matrix and is the main bacterial way of life. A biofilm adheres on surfaces or is found on interfaces. It protects bacteria from the environment, toxic molecules and may have a role in virulence. Clostridium species are spread throughout both environments and hosts, but their biofilms have not been extensively described in comparison with other bacterial species. In this review we describe all biofilms formed by Clostridium species during both industrial processes and in mammals where biofilms may be formed either during infections or associated to microbiota in the gut. We have specifically focussed on Clostridium difficile and Clostridium perfringens biofilms, which have been studied in vitro. Regulatory processes including sporulation and germination highlight how these Clostridium species live in biofilms. Furthermore, biofilms may have a role in the survival and spreading of Clostridium species.

  10. Unraveling microbial biofilms of importance for food microbiology.

    PubMed

    Winkelströter, Lizziane Kretli; Teixeira, Fernanda Barbosa dos Reis; Silva, Eliane Pereira; Alves, Virgínia Farias; De Martinis, Elaine Cristina Pereira

    2014-07-01

    The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.

  11. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  12. Sampling natural biofilms: a new route to build efficient microbial anodes.

    PubMed

    Erable, Benjamin; Roncato, Marie-Anne; Achouak, Wafa; Bergel, Alain

    2009-05-01

    Electrochemically active biofilms were constructed on graphite anodes under constant polarization at -0.1V vs saturated calomel reference (SCE) with 10 mM acetate as substrate. The reactors were inoculated with three different microbial samples that were drawn from exactly the same place in a French Atlantic coastal port (i) by scraping the biofilm that had formed naturally on the surface of a floating bridge, (ii) by taking marine sediments just under the floating bridge, and (iii) by taking nearby beach sand. Current densities of 2.0 A/m2 were reached using the biofilm sample as inoculum while only 0.4 A/m2 and 0.8 A/m2 were obtained using the underlying sediments and the beach sand, respectively. The structure of bacterial communities forming biofilms was characterized by denaturing gradient gel electrophoresis (DGGE) analysis, and revealed differences between samples with the increase in relative intensities of some bands and the appearance of others. Bacteria close related to Bacteroidetes, Halomonas, and Marinobacterium were retrieved only from the efficient EA-biofilms formed from natural biofilms, whereas, bacteria close related to Mesoflavibacter were predominant on biofilm formed from sediments. The marine biofilm was selected as the inoculum to further optimize the microbial anode. Epifluorescence microscopy and SEM confirmed that maintaining the electrode under constant polarization promoted rapid settlement of the electrode surface by a bacterial monolayer film. The microbial anode was progressively adapted to the consumption of acetate by three serial additions of substrate, thus improving the Coulombic efficiency of acetate consumption from 31 to 89%. The possible oxidation of sulfide played only a very small part in the current production and the biofilm was not able to oxidize hydrogen. Graphite proved to be more efficient than dimensionally stable anode (DSA) or stainless steel butthis result might be due to differences in the surface roughness

  13. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    PubMed

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  14. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells.

    PubMed

    Liu, Ying; Harnisch, Falk; Fricke, Katja; Schröder, Uwe; Climent, Victor; Feliu, Juan Miguel

    2010-05-15

    In this communication we show that the achievable maximum current density for mature wastewater-based microbial biofilms is strongly dependent on the electrode material and the operation temperature. On graphite and polycrystalline carbon rods, the catalytic current of about 500 microA cm(-2) (projected surface area) at 30 degrees C was achieved. Carbon fiber veil or carbon-paper based materials, having a large microbially-accessible surface gave a projected current density approximately 40% higher than on graphite rod. In contrast, the biofilm cannot form well on graphite foil. Elevating the temperature from 30 to 40 degrees C increased current density by 80% on graphite rod anodes. Interestingly, the formal potential of the active site (-0.12 V (vs. standard hydrogen electrode (SHE))) is similar to all electrocatalytically active microbial biofilms and to that found for Geobacter sulfurreducens in previous studies. In addition, the real surface area values measured by BET surface area technique cannot provide a reasonable explanation for suitability of an electrode material for the formation of electrochemically active biofilm.

  15. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure.

    PubMed

    Ancion, Pierre-Yves; Lear, Gavin; Dopheide, Andrew; Lewis, Gillian D

    2013-02-01

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota.

  16. Biofilm growth on polyvinylchloride surface incubated in suboptimal microbial warm water and effect of sanitizers on biofilm removal post biofilm formation.

    PubMed

    Maharjan, Pramir; Huff, Geraldine; Zhang, Wen; Watkins, Susan

    2017-01-01

    An in vitro experiment was conducted to understand the nature of biofilm growth on polyvinyl chloride (PVC) surface when exposed to suboptimal-quality microbial water (>4 log10 cfu/mL) obtained from a poultry drinking water source mimicking water in waterlines during the first week of poultry brooding condition. PVC sections (internal surface area of 15.16 cm(2)) were utilized in the study to grow biofilm. After a 7-d test period, test coupons with 7-day-old biofilm were transferred into autoclaved municipal water and then treated with either chlorine-based or hydrogen peroxide-based sanitizer at bird drinking water rate, to see the impact on removal of biofilm formed on test coupons. Two trials (T1 and T2) were conducted. Test coupons used in T1 and T2 had the bacterial growth of 3.67 (SEM 0.04) and 3.97 (SEM 0.11) log10 cfu/cm(2) on d 7. After sanitizer application, chlorine-based sanitizer removed bacteria in biofilm completely (0 cfu/cm(2)) within 24 h post treatment whereas hydrogen peroxide-based sanitizer reduced the counts to 1.68 log10 cfu/cm(2) (P < 0.05) by 48 h post sanitizer application. Control remained the same (P > 0.05). Results indicated that biofilm formation can occur quickly under suboptimal water condition on PVC surface, and sanitizer application helped mitigate already formed biofilm, yet chlorine proved to be more effective than hydrogen peroxide.

  17. Microbial Extremophiles in Aspect of Limits of Life

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Tang, Jane

    2007-01-01

    During Earth's evolution accompanied by geophysical and climatic changes a number of ecosystems have been formed. These ecosystems differ by the broad variety of physicochemical and biological factors composing our environment. Traditionally, pH and salinity are considered as geochemical extremes, as opposed to the temperature, pressure and radiation that are referred to as physical extremes (Van den Burg, 2003). Life inhabits all possible places on Earth interacting with the environment and within itself (cross species relations). In nature it is very rare when an ecotope is inhabited by a single species. As a rule, most ecosystems contain the functionally related and evolutionarily adjusted communities (consortia and populations). In contrast to the multicellular structure of eukaryotes (tissues, organs, systems of organs, whole organism), the highest organized form of prokaryotic life in nature is the benthic colonization in biofilms and microbial mats. In these complex structures all microbial cells of different species are distributed in space and time according to their functions and to physicochemical gradients that allow more effective system support, self-protection, and energy distribution. In vitro, of course, the most primitive organized structure for bacterial and archaeal cultures is the colony, the size, shape, color, consistency, and other characteristics of which could carry varies specifics on species or subspecies levels. In table 1 all known types of microbial communities are shown (Pikuta et a]., 2005). In deep underground (lithospheric) and deep-sea ecosystems an additional factor - pressure, and irradiation - could also be included in the list of microbial communities. Currently the beststudied ecosystems are: human body (due to the medical importance), and fresh water and marine ecosystems (due to the reason of an environmental safety). For a long time, extremophiles were terra incognita, since the environments with aggressive parameters

  18. Biofilm evidence and the microbial diversity of horse wounds.

    PubMed

    Freeman, Karen; Woods, Emma; Welsby, Sarah; Percival, Steven L; Cochrane, Christine A

    2009-02-01

    Evidence of biofilms in human chronic wounds are thought to be responsible for preventing healing in a timely manner. However, biofilm evidence in horse wounds has not yet been documented. Consequently, this study aimed to determine whether biofilms could be detected in wounds, and to investigate the microbiology of chronic wounds in horses. Prior to analysis, wound surfaces were irrigated with 5 mL of sterile saline to remove debris. All wounds were swabbed twice (1 cm2 area) using sterile cotton-tipped swabs. In addition to this, 2 tissue biopsies were taken to investigate evidence of biofilm and the microbiology richness of the wounds. All swabs and 1 biopsy sample were transported to the laboratory in Robertson's cooked meat broth. Traditional culturable techniques and denaturing gradient gel electrophoresis with PCR were utilized to identify common bacteria isolated in all wounds. Following analysis of a number of the biopsy samples, biofilms could be clearly seen. The most common bacteria isolated from each wound analysed included Pseudomonas aeruginosa, Staphylococcus epidermidis, Serratia marcescens, Enterococcus faecalis, and Providencia rettgeri. Sequencing of the 16S ribosmonal DNAs, selected on the basis of DGGE profiling, enabled identification of bacterial species not identified using culturable technology. This study is the first to identify biofilms in the chronic wounds of horses. In addition, this study also demonstrated the importance of combining DGGE-PCR with culture techniques to provide better microbiology analysis of chronic wounds.

  19. Microbial competition in porous environments can select against rapid biofilm growth.

    PubMed

    Coyte, Katharine Z; Tabuteau, Hervé; Gaffney, Eamonn A; Foster, Kevin R; Durham, William M

    2017-01-10

    Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow-biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live.

  20. Experimental and modeling approach to study sorption of dissolved hydrophobic organic contaminants to microbial biofilms.

    PubMed

    Wicke, Daniel; Böckelmann, Uta; Reemtsma, Thorsten

    2007-05-01

    A biofilm reactor was developed to investigate the sorption of polycyclic aromatic hydrocarbons (PAH) as model compounds for hydrophobic organic contaminants (HOC) to intact microbial biofilms at environmentally realistic concentrations. When operated as a differential column batch reactor, the system can be used to study the thermodynamics as well as the kinetics of the exchange of HOC between an aqueous phase and microbial biofilms. Organic carbon normalized partition coefficients (K(oc)) for phenanthrene, fluoranthene and pyrene were at the lower end of those known for other organic sorbents. Intra-biofilm diffusion coefficients (D) were calculated from decrease in solute concentration over time using a model for diffusion through a plane sheet and ranged from 0.23 to 0.45x10(-9)cm(2)s(-1) for the three PAH. These diffusion coefficients are about four orders of magnitude lower than those reported in literature for free aqueous solution. These data and the experimental approach presented here are useful to assess the importance of microbial biofilms for exchange processes of HOC in heterogeneous systems such as water distribution systems, membranes and aquifers, sewer systems or surface soils.

  1. Extraterrestrial Life in the Microbial Age

    NASA Astrophysics Data System (ADS)

    Gronstal, Aaron L.

    Humankind has long been fascinated with the potential for alien civilizations within the Solar System and beyond (e.g., Crowe and Dowd 2013; Sullivan 2013). Despite the early optimism for life beyond Earth, humankind has yet to make first contact with an alien race. Historical discourse on the topic of alien life can provide some useful input into questions about how the people of Earth today might respond to contact with alien life (e.g., Dick 2013). However, this discourse is primarily devoted to understanding humankind's response to intelligent life. We must recognize that the search for life's potential beyond Earth has dramatically changed since the dawn of the Space Age. We now know that advanced civilizations are not common on planets in our solar system. The search for life on nearby worlds is now limited to non-intelligent, microbial life. Any chance we have of contacting intelligent life lies in receiving transmissions from distant worlds, and contact with such cultures would be greatly limited by the vast expanse of space. This chapter discusses the need for more attention paid to the possible social, economic, and legal ramifications that the discovery of non-intelligent, alien microbial life might bring.

  2. Biofilm vivacity and destruction on antimicrobial nanosurfaces assayed within a microbial fuel cell.

    PubMed

    Sugnaux, Marc; Fischer, Fabian

    2016-08-01

    A novel method was developed to assay the antimicrobial capacity of nanostructured surfaces for medical implants in a bicathodic microbial fuel cell. Nano-structured gold surfaces with protruding nanopillars and nanorings were investigated. Escherichia coli K12 were used as a model microbe to record electronic effects caused by the interaction with nanosurfaces. The nanostructured gold surfaces enabled power density maxima up to 1910mW/m(2), indicating fair vivacity, while flat surfaces on the nanoscale provided almost no power 0.35mW/m(2). The biofilm presence on antimicrobial nanosurfaces was confirmed by the addition of ampicillin and its bactericidal effect resulted in oscillating and declining potentiometric signals. Current density experiments showed that biofilms on antimicrobial nanostructured electrodes caused low currents, indicating that E.coli biofilm remained functional before destruction. The bicathodic microbial fuel cell sensor is a novel tool for evaluating antimicrobial effects caused by nanosurfaces and antibiotics.

  3. Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem.

    PubMed

    Veach, Allison M; Stegen, James C; Brown, Shawn P; Dodds, Walter K; Jumpponen, Ari

    2016-09-01

    Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. We examined microbial succession of biofilm communities at three sites in a third-order stream at Konza Prairie over a 2- to 64-day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms did not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta-, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early-stage succession (≤16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem.

  4. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm

    PubMed Central

    He, Xuesong; Hu, Wei; He, Jian; Guo, Lihong; Lux, Renate; Shi, Wenyuan

    2012-01-01

    As part of the human gastrointestinal tract, the oral cavity represents a complex biological system and harbors diverse bacterial species. Unlike the gut microbiota which is often considered a health asset, studies of the oral commensal microbial flora have been largely limited to their implication in oral diseases such as dental caries and periodontal diseases; Little emphasis has been given to their potential beneficial roles, especially the protective effects against oral colonization by foreign/pathogenic bacteria. In this study, we used the salivary microbiota derived from healthy human subjects to investigate protective effects against the colonization and integration of Pseudomonas aeruginosa, an opportunistic bacterial pathogen, into developing and pre-formed salivary biofilms. When co-cultivated in saliva medium, P. aeruginosa persisted in the planktonic phase, but failed to integrate into salivary microbial community during biofilm formation. Furthermore, in the saliva medium supplemented with 0.05% (w/v) sucrose, the oral flora inhibited the growth of P. aeruginosa by producing lactic acid. More interestingly, while pre-formed salivary biofilms were able to prevent P. aeruginosa colonization, the same biofilms recovered from mild chlorhexidine gluconate treatment displayed a shift in microbial composition and showed a drastic reduction in protection. Our study indicates that normal oral communities with balanced microbial compositions could be important in effectively preventing the integration of foreign/pathogenic bacterial species, such as P. aeruginosa. PMID:22053962

  5. Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem

    SciTech Connect

    Veach, Allison M.; Stegen, James C.; Brown, Shawn P.; Dodds, Walter K.; Jumpponen, Ari

    2016-09-06

    Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. In this study, we examined microbial succession of biofilm communities at three sites in a third-order stream at Konza Prairie over a 2- to 64-day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms did not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta-, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early-stage succession (≤16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Finally, our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem.

  6. Microbial diversity in biofilms on water distribution pipes of different materials.

    PubMed

    Yu, J; Kim, D; Lee, T

    2010-01-01

    The effects of pipe materials on biofilm formation potential (BFP) and microbial communities in biofilms were analyzed. Pipe coupons made of six different materials (CU, copper; CP, chlorinated poly vinyl chloride; PB, polybutylene; PE, polyethylene; SS, stainless steel; ST, steel coated with zinc) were incubated in drinking water, mixed water (inoculated with 10% (v/v) of river water) and drinking water inoculated with Escherichia coli JM109 (E. coli), respectively. The highest BFPs were observed from steel pipes, SS and ST, while CU showed the lowest BFP values. Of the plastic materials, the BFP of CP in drinking water (96 pg ATP/cm(2)) and mixed water (183 pg ATP/cm(2)) were comparable to those of CU, but the other plastic materials, PB and PE, displayed relatively high BFP. The Number of E. coli in the drinking water inoculated with cultures of E. coli strain showed similar trends with BFP values of the pipe coupons incubated in drinking water and mixed water. Molecular analysis of microbial communities indicated the presence of alpha- and beta-proteobacteria, actinobacteria and bacteroidetes in biofilm on the pipe materials. However, the DGGE profile of bacterial 16S rDNA fragments showed significant differences among different materials, suggesting that the pipe materials affect not only BFP but also microbial diversity. Some plastic materials, such as CP, would be suitable for plumbing, particularly for drinking water distribution pipes, due to its low BFP and little microbial diversity in biofilm.

  7. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms.

    PubMed

    Gaglio, Raimondo; Cruciata, Margherita; Di Gerlando, Rosalia; Scatassa, Maria Luisa; Cardamone, Cinzia; Mancuso, Isabella; Sardina, Maria Teresa; Moschetti, Giancarlo; Portolano, Baldassare; Settanni, Luca

    2015-11-06

    Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese.

  8. Microbial Interactions Associated with Biofilms Attached to Trichodesmium spp. and Detrital Particles in the Ocean

    DTIC Science & Technology

    2010-06-01

    Trichodesmium spp. and detrital ( photosynthetically -derived sinking particulate organic carbon, POC) particles. These hot spots of microbial activity...compounds toxic to algae (e.g. prodigiosin, Nakashima et al., 2006), two processes which may directly impact the fate of photosynthetically derived...within biofilms attached to the bloom forming cyanobacterium, Trichodesmium, as well as photosynthetically -derived, detrital sinking-particulate organic

  9. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms.

    PubMed

    Mitra, Sayani; Sana, Barindra; Mukherjee, Joydeep

    2014-01-01

    This review is a retrospective of ecological effects of bioactivities produced by biofilms of surface-dwelling marine/intertidal microbes as well as of the industrial and environmental biotechnologies developed exploiting the knowledge of biofilm formation. Some examples of significant interest pertaining to the ecological aspects of biofilm-forming species belonging to the Roseobacter clade include autochthonous bacteria from turbot larvae-rearing units with potential application as a probiotic as well as production of tropodithietic acid and indigoidine. Species of the Pseudoalteromonas genus are important examples of successful surface colonizers through elaboration of the AlpP protein and antimicrobial agents possessing broad-spectrum antagonistic activity against medical and environmental isolates. Further examples of significance comprise antiprotozoan activity of Pseudoalteromonas tunicata elicited by violacein, inhibition of fungal colonization, antifouling activities, inhibition of algal spore germination, and 2-n-pentyl-4-quinolinol production. Nitrous oxide, an important greenhouse gas, emanates from surface-attached microbial activity of marine animals. Marine and intertidal biofilms have been applied in the biotechnological production of violacein, phenylnannolones, and exopolysaccharides from marine and tropical intertidal environments. More examples of importance encompass production of protease, cellulase, and xylanase, melanin, and riboflavin. Antifouling activity of Bacillus sp. and application of anammox bacterial biofilms in bioremediation are described. Marine biofilms have been used as anodes and cathodes in microbial fuel cells. Some of the reaction vessels for biofilm cultivation reviewed are roller bottle, rotating disc bioreactor, polymethylmethacrylate conico-cylindrical flask, fixed bed reactor, artificial microbial mats, packed-bed bioreactors, and the Tanaka photobioreactor.

  10. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    PubMed Central

    Lang, Jennifer M.; Erb, Racheal; Pechal, Jennifer L.; Wallace, John R.; McEwan, Ryan W.; Benbow, Mark Eric

    2016-01-01

    Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI) of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses) and epilithic (biofilms on unglazed ceramic tiles) communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context. PMID:27681897

  11. A personal history of research on microbial biofilms and biofilm infections.

    PubMed

    Høiby, Niels

    2014-04-01

    The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already shown 80-90 years ago to be important for biofouling on submerged surfaces, e.g. ships. The concept of biofilm infections and their importance in medicine is, however, < 40 years old and was started by Jendresen's observations of acquired dental pellicles and my own observations of heaps of Pseudomonas aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by Costerton. In the following decades, it became obvious that biofilm infections are widespread in medicine, and their importance is now generally accepted.

  12. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    PubMed Central

    Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.

    2010-01-01

    Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227

  13. Microbial biofilm modulation by ultrasound: current concepts and controversies.

    PubMed

    Erriu, Matteo; Blus, Cornelio; Szmukler-Moncler, Serge; Buogo, Silvano; Levi, Raffaello; Barbato, Giulio; Madonnaripa, Daniele; Denotti, Gloria; Piras, Vincenzo; Orrù, Germano

    2014-01-01

    Biofilm elimination is often necessary during antimicrobial therapy or industrial medical manufacturing decontamination. In this context, ultrasound treatment has been frequently described in the literature for its antibiofilm effectiveness, but at the same time, various authors have described ultrasound as a formidable enhancer of bacterial viability. This discrepancy has found no solution in the current literature for around 9 years; some works have shown that every time bacteria are exposed to an ultrasonic field, both destruction and stimulation phenomena co-exist. This co-existence proves to have different final effects based on various factors such as: ultrasound frequency and intensity, the bacterial species involved, the material used for ultrasound diffusion, the presence of cavitation effects and the forms of bacterial planktonic or biofilm. The aim of this work is to analyze current concepts regarding ultrasound effect on prokaryotic cells, and in particular ultrasound activity on bacterial biofilm.

  14. Power limits for microbial life

    PubMed Central

    LaRowe, Douglas E.; Amend, Jan P.

    2015-01-01

    To better understand the origin, evolution, and extent of life, we seek to determine the minimum flux of energy needed for organisms to remain viable. Despite the difficulties associated with direct measurement of the power limits for life, it is possible to use existing data and models to constrain the minimum flux of energy required to sustain microorganisms. Here, a we apply a bioenergetic model to a well characterized marine sedimentary environment in order to quantify the amount of power organisms use in an ultralow-energy setting. In particular, we show a direct link between power consumption in this environment and the amount of biomass (cells cm-3) found in it. The power supply resulting from the aerobic degradation of particular organic carbon (POC) at IODP Site U1370 in the South Pacific Gyre is between ∼10-12 and 10-16 W cm-3. The rates of POC degradation are calculated using a continuum model while Gibbs energies have been computed using geochemical data describing the sediment as a function of depth. Although laboratory-determined values of maintenance power do a poor job of representing the amount of biomass in U1370 sediments, the number of cells per cm-3 can be well-captured using a maintenance power, 190 zW cell-1, two orders of magnitude lower than the lowest value reported in the literature. In addition, we have combined cell counts and calculated power supplies to determine that, on average, the microorganisms at Site U1370 require 50–3500 zW cell-1, with most values under ∼300 zW cell-1. Furthermore, we carried out an analysis of the absolute minimum power requirement for a single cell to remain viable to be on the order of 1 zW cell-1. PMID:26236299

  15. Investigation of Hyporheic Microbial Biofilms as Indicators of Heavy Metal Toxicity in the Clark Fork Basin, Montana

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Hwang, C.; Bouskill, N.; Hornberger, M.; Fields, M. W.

    2015-12-01

    Water-saturated sediments that underlie a stream channel contain microbial biofilms that are often responsible for the majority of the metabolic activity in river and stream ecosystems. Metal contamination from mining effluent can modify the biofilm community structure, diversity, and activity. Developing a mechanistic understanding of the biofilm response to metal contamination could provide a useful bioindicator of metal toxicity due to the ease of standard biofilm sampling, environmental ubiquity of biofilms and the rapid response of biofilms to environmental perturbation and metal toxicity. Here we present data on the structure of the biofilm community (e.g., microbial population composition and diversity) and trace metal concentrations in water, bed sediment and biota (benthic insects) across 15 sites in the Clark Fork Basin. Sample sites were selected across a historically-monitored metal pollution gradient at shallow riffles with bed sediment predominantly composed of pebbles, cobbles, and sand. Bed-sediment samples (for biofilm analysis) were obtained from the top 20 centimeters of the hyporheic zone and sieved using sterile sieves to obtain homogeneous sediment samples with particle sizes ranging from 1.70 to 2.36 millimeters. Linear discriminant analysis and effect size statistical methods were used to integrate the metals concentration data (for water and benthic-insects samples) with the microbial community analysis to identify microbial biomarkers of metal toxicity. The development of rapid microbial biomarker tools could provide reproducible and quantitative insights into the effectiveness of remediation activities on metal toxicity and advances in the field of environmental biomonitoring.

  16. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  17. Stratified Microbial Structure and Activity in Sulfide- and Methane-Producing Anaerobic Sewer Biofilms

    PubMed Central

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie

    2014-01-01

    Simultaneous production of sulfide and methane by anaerobic sewer biofilms has recently been observed, suggesting that sulfate-reducing bacteria (SRB) and methanogenic archaea (MA), microorganisms known to compete for the same substrates, can coexist in this environment. This study investigated the community structures and activities of SRB and MA in anaerobic sewer biofilms (average thickness of 800 μm) using a combination of microelectrode measurements, molecular techniques, and mathematical modeling. It was seen that sulfide was mainly produced in the outer layer of the biofilm, between the depths of 0 and 300 μm, which is in good agreement with the distribution of SRB population as revealed by cryosection-fluorescence in situ hybridization (FISH). SRB had a higher relative abundance of 20% on the surface layer, which decreased gradually to below 3% at a depth of 400 μm. In contrast, MA mainly inhabited the inner layer of the biofilm. Their relative abundances increased from 10% to 75% at depths of 200 μm and 700 μm, respectively, from the biofilm surface layer. High-throughput pyrosequencing of 16S rRNA amplicons showed that SRB in the biofilm were mainly affiliated with five genera, Desulfobulbus, Desulfomicrobium, Desulfovibrio, Desulfatiferula, and Desulforegula, while about 90% of the MA population belonged to the genus Methanosaeta. The spatial organizations of SRB and MA revealed by pyrosequencing were consistent with the FISH results. A biofilm model was constructed to simulate the SRB and MA distributions in the anaerobic sewer biofilm. The good fit between model predictions and the experimental data indicate that the coexistence and spatial structure of SRB and MA in the biofilm resulted from the microbial types and their metabolic transformations and interactions with substrates. PMID:25192994

  18. Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming.

    PubMed

    Romaní, Anna M; Borrego, Carles M; Díaz-Villanueva, Verónica; Freixa, Anna; Gich, Frederic; Ylla, Irene

    2014-08-01

    Biofilms are dynamic players in biogeochemical cycling in running waters and are subjected to environmental stressors like those provoked by climate change. We investigated whether a 2°C increase in flowing water would affect prokaryotic community composition and heterotrophic metabolic activities of biofilms grown under light or dark conditions. Neither light nor temperature treatments were relevant for selecting a specific bacterial community at initial phases (7-day-old biofilms), but both variables affected the composition and function of mature biofilms (28-day-old). In dark-grown biofilms, changes in the prokaryotic community composition due to warming were mainly related to rotifer grazing, but no significant changes were observed in functional fingerprints. In light-grown biofilms, warming also affected protozoan densities, but its effect on prokaryotic density and composition was less evident. In contrast, heterotrophic metabolic activities in light-grown biofilms under warming showed a decrease in the functional diversity towards a specialized use of several carbohydrates. Results suggest that prokaryotes are functionally redundant in dark biofilms but functionally plastic in light biofilms. The more complex and self-serving light-grown biofilm determines a more buffered response to temperature than dark-grown biofilms. Despite the moderate increase in temperature of only 2°C, warming conditions drive significant changes in freshwater biofilms, which responded by finely tuning a complex network of interactions among microbial populations within the biofilm matrix.

  19. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors.

    PubMed

    Ta, Chieu Anh Kim; Arnason, John Thor

    2015-12-26

    Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.

  20. Solid and Aqueous Geochemical Controls on Phylogenetic Diversity and Abundance of Microbial Biofilms

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P. C.

    2015-12-01

    In the subsurface, the vast majority of microorganisms are found in biofilms attached to mineral surfaces. The fickle nature of these environments (chemically and physically) likely causes dynamic ecological shifts in these microbial communities. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the role of mineralogy as part of a microbe-mineral-water ecosystem under variable pressures (mineralogy, pH, carbon, phosphate). Following multivariate analyses, pH was identified as the key physicochemical property associated with variation in both phylogenetic and taxonomic diversity as well as overall community structure (P<0.05). In particular, the ability of minerals, media, or a combination of the two to buffer metabolically generated acidity impacted community structure under oligotrophic and eutrophic conditions. Additionally, we found that media phosphate limitations were significantly correlated to greater biofilm accumulation (P<0.002), but lower species richness (P<0.001) and Shannon diversity (P<0.001); while mineral-bound phosphate limitations were significantly correlated to lesser biofilm accumulation (P<0.05) but not to species richness or diversity. Carbon (as acetate, lactate, or formate) added to the media was correlated with a significant increase in biofilm accumulation (P<0.04), and overall Shannon diversity (P<0.006), but not significantly correlated with overall species richness. Although variable in magnitude, the effect of surface chemistry on microbial diversity (both phylogenetic and taxonomic) was statistically significant, in all reactors, regardless of environmental pressures. Phylogenetically, surface type (carbonate, silicate, or Al-silicate) controlled ~70-90%, meaning that organisms attached to similar surfaces were significantly more genetically similar. Taxonomy and proportional abundance was significantly sensitive to variations in media chemistry with consistent patterns emerging among

  1. A Biofilm Treatment Approach for Produced Water from Hydraulic Fracturing Using Engineered Microbial Mats

    NASA Astrophysics Data System (ADS)

    Akyon, B.; Stachler, E.; Bibby, K. J.

    2015-12-01

    Hydraulic fracturing results in large volumes of wastewater, called "produced water". Treatment of produced water is challenged by its high salt, organic compound, and radionuclide concentrations. Current disposal approaches include deep well injection and physical-chemical treatment for surface disposal; however, deep well injection has been recently linked to induced seismicity and physical-chemical treatments suffer from fouling and high cost. The reuse of the produced water has emerged as a desirable management option; however, this requires pretreatment to generate a water of usable quality and limit microbial activity. Biological treatment is an underexplored area in produced water management and has the potential to remove organics and reduce overall costs for physiochemical treatment or reuse. Suspended growth biological treatment techniques are known to be limited by salinity motivating a more robust biofilm approach: 'microbial mats'. In this study, we used engineered microbial mats as a biofilm treatment for the produced water. Evaluation of the biodegradation performance of microbial mats in synthetic and real produced waters showed microbial activity at up to 100,000 mg/L TDS concentration (three times the salt concentration of the ocean). Organic removal rates reached to 1.45 mg COD/gramwet-day at 91,351 mg/L TDS in real produced water samples and initial evaluation demonstrated the potential for field-scale application. Metagenomic analyses of microbial mats demonstrated an adaptive shift in the microbial community treating different samples, suggesting the wide applicability of this treatment approach for produced waters with varying chemical composition. On-going studies focus on the evaluation of the removal of the organics and the contaminants of high concern in produced water using microbial mats as well as the effect of the biofilm growth conditions on the biodegradation in changing salt concentrations.

  2. Multi-technique approach to assess the effects of microbial biofilms involved in copper plumbing corrosion.

    PubMed

    Vargas, Ignacio T; Alsina, Marco A; Pavissich, Juan P; Jeria, Gustavo A; Pastén, Pablo A; Walczak, Magdalena; Pizarro, Gonzalo E

    2014-06-01

    Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions. MIC is currently considered as a series of interdependent processes occurring at the metal-liquid interface. The presence of a biofilm results in the following effects: (a) the formation of localized microenvironments with distinct pH, dissolved oxygen concentrations, and redox conditions; (b) sorption and desorption of labile copper bonded to organic compounds under changing water chemistry conditions; (c) change in morphology by deposition of solid corrosion by-products; (d) diffusive transport of reactive chemical species from or towards the metal surface; and (e) detachment of scale particles under flow conditions. Using a multi-technique approach that combines pipe and coupon experiments this paper reviews the effects of microbial biofilms on the corrosion of copper plumbing systems, and proposes an integrated conceptual model for this phenomenon supported by new experimental data.

  3. Growth dynamic of Naegleria fowleri in a microbial freshwater biofilm.

    PubMed

    Goudot, Sébastien; Herbelin, Pascaline; Mathieu, Laurence; Soreau, Sylvie; Banas, Sandrine; Jorand, Frédéric

    2012-09-01

    The presence of pathogenic free-living amoebae (FLA) such as Naegleria fowleri in freshwater environments is a potential public health risk. Although its occurrence in various water sources has been well reported, its presence and associated factors in biofilm remain unknown. In this study, the density of N. fowleri in biofilms spontaneously growing on glass slides fed by raw freshwater were followed at 32 °C and 42 °C for 45 days. The biofilms were collected with their substrata and characterized for their structure, numbered for their bacterial density, thermophilic free-living amoebae, and pathogenic N. fowleri. The cell density of N. fowleri within the biofilms was significantly affected both by the temperature and the nutrient level (bacteria/amoeba ratio). At 32 °C, the density remained constantly low (1-10 N. fowleri/cm(2)) indicating that the amoebae were in a survival state, whereas at 42 °C the density reached 30-900 N. fowleri/cm(2) indicating an active growth phase. The nutrient level, as well, strongly affected the apparent specific growth rate (μ) of N. fowleri in the range of 0.03-0.23 h(-1). At 42 °C a hyperbolic relationship was found between μ and the bacteria/amoeba ratio. A ratio of 10(6) to 10(7) bacteria/amoeba was needed to approach the apparent μ(max) value (0.23 h(-1)). Data analysis also showed that a threshold for the nutrient level of close to 10(4) bacteria/amoeba is needed to detect the growth of N. fowleri in freshwater biofilm. This study emphasizes the important role of the temperature and bacteria as prey to promote not only the growth of N. fowleri, but also its survival.

  4. Biofilms and biofilm reactors. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the formation and characterization of biofilms. Biofilms occur in fermentation, wastewater treatment, packed-bed reactors, fluidized-bed reactors, medical prostheses, fouling, biomass reactors, waste supply systems, and other aquatic systems. Topics include microorganism makeup of biofilms, controlling biofilm formation, biological and chemical properties, model studies, kinetic studies, and biofilm identification and detection. (Contains a minimum of 209 citations and includes a subject term index and title list.)

  5. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    PubMed

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  6. Detection of microbial biofilms on food processing surfaces: hyperspectral fluorescence imaging study

    NASA Astrophysics Data System (ADS)

    Jun, Won; Kim, Moon S.; Chao, Kaunglin; Lefcourt, Alan M.; Roberts, Michael S.; McNaughton, James L.

    2009-05-01

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this investigation was to determine a minimal number of spectral bands suitable to differentiate microbial biofilm formation from the four background materials typically used during food processing. Ultimately, the resultant spectral information will be used in development of handheld portable imaging devices that can be used as visual aid tools for sanitation and safety inspection (microbial contamination) of the food processing surfaces. Pathogenic E. coli O157:H7 and Salmonella cells were grown in low strength M9 minimal medium on various surfaces at 22 +/- 2 °C for 2 days for biofilm formation. Biofilm autofluorescence under UV excitation (320 to 400 nm) obtained by hyperspectral fluorescence imaging system showed broad emissions in the blue-green regions of the spectrum with emission maxima at approximately 480 nm for both E. coli O157:H7 and Salmonella biofilms. Fluorescence images at 480 nm revealed that for background materials with near-uniform fluorescence responses such as stainless steel and formica cutting board, regardless of the background intensity, biofilm formation can be distinguished. This suggested that a broad spectral band in the blue-green regions can be used for handheld imaging devices for sanitation inspection of stainless, cutting board, and formica surfaces. The non-uniform fluorescence responses of granite make distinctions between biofilm and background difficult. To further investigate potential detection of the biofilm formations on granite surfaces with multispectral approaches, principal component analysis (PCA) was performed using the hyperspectral fluorescence image data. The resultant PCA score images revealed distinct contrast between

  7. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    PubMed Central

    Lee, On On; Wang, Yong; Tian, Renmao; Zhang, Weipeng; Shek, Chun Shum; Bougouffa, Salim; Al-Suwailem, Abdulaziz; Batang, Zenon B.; Xu, Wei; Wang, Guang Chao; Zhang, Xixiang; Lafi, Feras F.; Bajic, Vladmir B.; Qian, Pei-Yuan

    2014-01-01

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development. PMID:24399144

  8. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms.

    PubMed

    Morris, C E; Monier, J; Jacques, M

    1997-04-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique.

  9. Comparing the temporal colonization and microbial diversity of showerhead biofilms in Hawai'i and Colorado.

    PubMed

    Abe, Jonathan; Alop-Mabuti, Aleena; Burger, Peyton; Button, Jackson; Ellsberry, Madeline; Hitzeman, Jaycinth; Morgenstern, David; Nunies, Kasey; Strother, Mara; Darling-Munson, Jared; Chan, Yvonne L; Cassady, Robert; Vasconcellos, Sarah Maile K; Iseman, Michael D; Chan, Edward D; Honda, Jennifer R

    2016-02-01

    The household is a potential source of opportunistic pathogens to humans, a particularly critical issue for immunodeficient individuals. An important human-microbe interface is the biofilm that develops on showerhead surfaces. Once microbe-laden biofilms become aerosolized, they can potentially be inhaled into the lungs. Understanding how quickly a new showerhead becomes colonized would provide useful information to minimize exposure to potentially pathogenic environmental microbes. High school scientists sampled the inner surfaces of pre-existing and newly fitted showerheads monthly over a nine-month period and applied standard microbiologic culture techniques to qualitatively assess microbial growth. Water chemistry was also monitored using commercial test strips. Sampling was performed in households on Oahu, Hawai'i and Denver, Colorado, representing warm/humid and cold/arid environments, respectively. Pre-existing showerheads in Hawai'i showed more diverse microbial growth and significantly greater microbial numbers than a comparable showerhead from Colorado. New, chrome-plated or plastic showerheads in Hawai'i showed diverse and abundant growth one month after installment compared to new showerheads from Colorado. The pH, total chlorine and water hardness levels varied significantly between the Hawai'i and Colorado samples. Enthusiastic student and teacher participation allowed us to answer long-standing questions regarding the temporal colonization of microbial biofilms on pre-existing and new showerhead surfaces.

  10. Microbial diversity in marine biofilms along a water quality gradient on the Great Barrier Reef.

    PubMed

    Kriwy, Pascal; Uthicke, Sven

    2011-04-01

    Microbial communities are potential indicators for water quality as they respond rapidly to environmental changes. In the Whitsunday Islands, Australia, microbial biofilm communities from two offshore islands were compared to those from two inshore islands subjected to poor water quality. Biofilm community composition was characterized using three culture-independent molecular techniques. The clone libraries indicated high genetic diversity, with somewhat higher scores in the offshore sites (57%) compared to the inshore sites (41%). The majority of microbes in the biofilms were related to Alphaproteobacteria (39.8%), Gammaproteobacteria (14.1%), Bacteroidetes (13.2%), diatoms (8.3%) and Cyanobacteria (3.9%). Redundancy analysis (RDA) for the CARD-FISH data showed distinct microbial assemblages between offshore and inshore communities. Additionally, 5 out of 13 water quality parameters (DIN, Chla, POP, TSS and POC) explained a significant amount of variation in the microbial communities and high values of these were associated with inshore communities. Analysis of variance (ANOVA) indicated that Cyanobacteria (p=0.01), Bacteroidetes (p=0.04) and to some extent Alphaproteobacteria (p=0.07), were significantly more abundant in the offshore biofilm communities. Principal Component Analysis (PCA) of DGGE data showed clear grouping of cyanobacterial communities into inshore and offshore communities. Reasons for community shifts in the bacterial lineages are currently not resolved. One possible causative factor may be that autotrophic primary producers are more dominant in offshore sites due to the higher light availability as well as the limitation by DIN. The trends found in this study are the bases for more detailed research on microbial indicator species for changes in water quality.

  11. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion.

    PubMed

    Beale, D J; Morrison, P D; Key, C; Palombo, E A

    2014-01-01

    This study builds upon previous research that demonstrated the simplicity of obtaining metabolite profiles of bacteria in urban water networks, by using the metabolic profile of bacteria extracted from a reticulation pipe biofilm, which is known to cause microbial influenced corrosion (MIC). The extracellular metabolites of the isolated bacteria, and those bacteria in consortium, were analysed in isolation, and after exposure to low levels of copper. Applying chemometric analytical methodologies to the metabolomic data, we were able to better understand the profile of the isolated biofilm bacteria, which were differentiated according to their activity and copper exposure. It was found that the metabolic activity of the isolated bacteria and the bacteria in consortium varied according to the bacterium's ability to metabolise copper. This demonstrates the power of metabolomic techniques for the discrimination of water reticulation biofilms comprising similar bacteria in consortium, but undergoing different physico-chemical activities, such as corrosion and corrosion inhibition.

  12. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system

    PubMed Central

    2012-01-01

    Background Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Results Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP) and bottom pipe (BP) communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems) and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. Conclusions The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms. PMID:22727216

  13. Regional hydrology controls stream microbial biofilms: evidence from a glacial catchment

    NASA Astrophysics Data System (ADS)

    Battin, T. J.; Wille, A.; Psenner, R.; Richter, A.

    2004-08-01

    Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater hydrogeochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal), groundwater-fed (krenal) and snow-fed (rhithral) streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment) of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportional high microbial growth. Krenal and rhithral streams with more constant and favorable environments serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g. snowmelt) of elevated hydrologic linkage among streams. Ice and snow dynamics have a crucial impact on microbial biofilms, and we thus need better understanding of the microbial ecology and enhanced consideration of critical hydrological episodes in future models predicting alpine stream communities.

  14. Toxicity response of electroactive microbial biofilms--a decisive feature for potential biosensor and power source applications.

    PubMed

    Patil, Sunil; Harnisch, Falk; Schröder, Uwe

    2010-09-10

    Herein, we investigate the effect of exemplary biocides on wastewater-derived electroactive microbial biofilms. We show that the current response of these biofilms as a measure of their bioelectrocatalytic performance is not affected by the presence of antimicrobial compounds such as the sulfonamide-based antibiotics sulfamethaxozole and sulfadiazin, the disinfectant chloramine B and the metal ions Cu(2+), Ag(+), Pb(2+), and Hg(2+), even at concentrations an order of magnitude higher than average concentrations of these compounds in wastewaters. In contrast to the electroactive biofilms, planktonic cells of the same origin, studied in a mediator-based microbial fuel cell, are massively affected by the presence of the antimicrobial agents.

  15. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms

    PubMed Central

    Gaglio, Raimondo; Cruciata, Margherita; Di Gerlando, Rosalia; Scatassa, Maria Luisa; Cardamone, Cinzia; Mancuso, Isabella; Sardina, Maria Teresa; Moschetti, Giancarlo; Portolano, Baldassare

    2015-01-01

    Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese. PMID:26546430

  16. Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem

    DOE PAGES

    Veach, Allison M.; Stegen, James C.; Brown, Shawn P.; ...

    2016-09-06

    Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. In this study, we examined microbial succession of biofilm communities at three sites in a third-order stream at Konza Prairie over a 2- to 64-day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms didmore » not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta-, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early-stage succession (≤16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Finally, our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem.« less

  17. Imaging Microbial Biofilms in Opaque Three-dimensional Porous Media: Opportunities and Limitations (Invited)

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Iltis, G.

    2013-12-01

    Microbial biofilms are observed in both natural and engineered subsurface environments and can dramatically alter the physical properties of porous media. Current understanding of biofilm formation and the associated impacts to structural and hydrodynamic properties of porous media are limited by our ability to observe changes to pore morphology non-destructively. Imaging biofilm within opaque porous media has historically presented a significant challenge. X-ray computed microtomography has traditionally been used for non-destructive imaging of a variety of processes and phenomena in porous media, yet, the conventional contrast agents used in tomography research tend to diffuse quite readily into both the aqueous phase as well as the porous media-associated biofilm, thereby preventing delineation of the two phases. A couple of new methods for imaging biofilm within opaque porous media using x-ray microtomography have been developed in recent years, and this presentation will discuss advantages and limitations to using polychromatic vs. monochromatic (synchrotron) radiation, as well as different types, and various concentrations of, contrast agents.

  18. The phylogenetic structure of microbial biofilms and free-living bacteria in a small stream.

    PubMed

    Brablcová, Lenka; Buriánková, Iva; Badurová, Pavlína; Rulík, Martin

    2013-05-01

    The phylogenetic composition, bacterial biomass, and biovolume of both planktonic and biofilm communities were studied in a low-order Bystřice stream near Olomouc City, in the Czech Republic. The aim of the study was to compare the microbial communities colonizing different biofilm substrata (stream aggregates, stream sediment, underwater tree roots, stream stones, and aquatic macrophytes) to those of free-living bacteria. The phylogenetic composition was analyzed using fluorescence in situ hybridization for main phylogenetic groups. All phylogenetic groups studied were detected in all sample types. The stream stone was the substratum where nearly all phylogenetic groups were the most abundant, while the lowest proportion to the DAPI-stained cells was found for free-living bacteria. The probe specific for the domain Bacteria detected 20.6 to 45.8 % of DAPI-stained cells while the probe specific for the domain Archaea detected 4.3 to 17.9 %. The most abundant group of Proteobacteria was Alphaproteobacteria with a mean of 14.2 %, and the least abundant was Betaproteobacteria with a mean of 11.4 %. The average value of the Cytophaga-Flavobacteria group was 10.5 %. Total cell numbers and bacterial biomass were highest in sediment and root biofilm. The value of cell biovolume was highest in stone biofilm and lowest in sediment. Overall, this study revealed relevant differences in phylogenetic composition, bacterial biomass, and biovolume between different stream biofilms and free-living bacteria.

  19. Implications of in situ calcification for photosynthesis in a ~ 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Westall, Frances; Cavalazzi, Barbara; Lemelle, Laurence; Marrocchi, Yves; Rouzaud, Jean-Noël; Simionovici, Alexandre; Salomé, Murielle; Mostefaoui, Smail; Andreazza, Caroline; Foucher, Frédéric; Toporski, Jan; Jauss, Andrea; Thiel, Volker; Southam, Gordon; MacLean, Lachlan; Wirick, Susan; Hofmann, Axel; Meibom, Anders; Robert, François; Défarge, Christian

    2011-10-01

    Timing the appearance of photosynthetic microorganisms is crucial to understanding the evolution of life on Earth. The ability of the biosphere to use sunlight as a source of energy (photoautotrophy) would have been essential for increasing biomass and for increasing the biogeochemical capacity of all prokaryotes across the range of redox reactions that support life. Typical proxies for photosynthesis in the rock record include features, such as a mat-like, laminated morphology (stratiform, domical, conical) often associated with bulk geochemical signatures, such as calcification, and a fractionated carbon isotope signature. However, to date, in situ, calcification related to photosynthesis has not been demonstrated in the oldest known microbial mats. We here use in situ nanometre-scale techniques to investigate the structural and compositional architecture in a 3.3 billion-year (Ga) old microbial biofilm from the Barberton greenstone belt, thus documenting in situ calcification that was most likely related to anoxygenic photosynthesis. The Josefsdal Chert Microbial Biofilm (JCMB) formed in a littoral (photic) environment. It is characterised by a distinct vertical structural and compositional organisation. The lower part is calcified in situ by aragonite, progressing upwards into uncalcified kerogen characterised by up to 1% sulphur, followed by an upper layer that contains intact filaments at the surface. Crystallites of pseudomorphed pyrite are also associated with the biofilm suggesting calcification related to the activity of heterotrophic sulphur reducing bacteria. In this anoxygenic, nutrient-limited environment, the carbon required by the sulphur reducing bacteria could only have been produced by photoautotrophy. We conclude that the Josfsdal Chert Microbial Biofilm was formed by a consortium of anoxygenic microorganisms, including photosynthesisers and sulphur reducing bacteria.

  20. Role of Cyanobacterial Exopolysaccharides in Phototrophic Biofilms and in Complex Microbial Mats

    PubMed Central

    Rossi, Federico; De Philippis, Roberto

    2015-01-01

    Exopolysaccharides (EPSs) are an important class of biopolymers with great ecological importance. In natural environments, they are a common feature of microbial biofilms, where they play key protective and structural roles. As the primary colonizers of constrained environments, such as desert soils and lithic and exposed substrates, cyanobacteria are the first contributors to the synthesis of the EPSs constituting the extracellular polymeric matrix that favors the formation of microbial associations with varying levels of complexity called biofilms. Cyanobacterial colonization represents the first step for the formation of biofilms with different levels of complexity. In all of the possible systems in which cyanobacteria are involved, the synthesis of EPSs contributes a structurally-stable and hydrated microenvironment, as well as chemical/physical protection against biotic and abiotic stress factors. Notwithstanding the important roles of cyanobacterial EPSs, many aspects related to their roles and the relative elicited biotic and abiotic factors have still to be clarified. The aim of this survey is to outline the state-of-the-art of the importance of the cyanobacterial EPS excretion, both for the producing cells and for the microbial associations in which cyanobacteria are a key component. PMID:25837843

  1. [Microbial reduction of Cu2+ mediated by electroactive biofilms].

    PubMed

    Liu, Yi; Zhou, Shun-Gui; Yuan, Yong; Liu, Zhi

    2014-04-01

    The formation, electron transfer mechanism and environmental effect of electrochemically active biofilms (EABs) have become a hot research topic in environmental science. In this study, bacteria were enriched on a carbon felt to form an EAB under controlled potential conditions. The electrochemical properties of the EAB were evaluated with electrochemical methods. The process of copper reduction and transformation mediated by the EAB was revealed. Analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology, content and state of copper in the biofilm. The results showed that the EAB could utilize acetate as electron donor to produce electrons and Cu2+ was reduced to Cu or Cu+. Laser scanning confocal microscope (LSCM) was employed to probe the toxic effects of Cu2+ on the EAB. Copper toxicity on the microbes was reduced in the presence of acetate because of the reduction transformation of Cu2+ to less toxic Cu or Cu+. The results from this study are expected to be instructive for using EABs to stabilize and recover copper from copper-contaminated environments.

  2. Microbial community structure and metabolic property of biofilms in vermifiltration for liquid-state sludge stabilization using PLFA profiles.

    PubMed

    Zhao, Chunhui; Xing, Meiyan; Yang, Jian; Lu, Yongsen; Lv, Baoyi

    2014-01-01

    To investigate effects of earthworms on microbial community structure and metabolic properties of biofilms in vermifiltration for liquid-state sludge stabilization, a vermifilter (VF) with earthworms and a conventional biofilter (BF) without earthworms were compared. The Shannon index of fungi in VF was 16% higher than that in BF, which indicated earthworm activities significantly enhanced fungi diversity. The ratio of monounsaturated to saturated (mono:sat) PLFAs of VF biofilms was higher than that of BF biofilms, which indicated the physiological and nutritional stress for microbial community in VF was relieved due to the increasing of soluble substances caused by the earthworm ingestion. Further investigation showed that the burrowing action of earthworms promoted the aeration condition and led to aerobic microorganisms were predominant in VF. Those results indicated earthworms improved microbial community structure and metabolic properties of biofilms and thus resulted in the overall optimization of the vermifiltration system for liquid-state sludge stabilization.

  3. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.

    PubMed

    Baranitharan, E; Khan, Maksudur R; Prasad, D M R; Teo, Wee Fei Aaron; Tan, Geok Yuan Annie; Jose, Rajan

    2015-01-01

    Anode biofilm is a crucial component in microbial fuel cells (MFCs) for electrogenesis. Better knowledge about the biofilm development process on electrode surface is believed to improve MFC performance. In this study, double-chamber microbial fuel cell was operated with diluted POME (initial COD = 1,000 mg L(-1)) and polyacrylonitrile carbon felt was used as electrode. The maximum power density, COD removal efficiency and Coulombic efficiency were found as 22 mW m(-2), 70 and 24 %, respectively. FTIR and TGA analysis confirmed the formation of biofilm on the electrode surface during MFC operation. The impact of anode biofilm on anodic polarization resistance was investigated using electrochemical impedance spectroscopy (EIS) and microbial community changes during MFC operation using denaturing gradient gel electrophoresis (DGGE). The EIS-simulated results showed the reduction of charge transfer resistance (R ct) by 16.9 % after 14 days of operation of the cell, which confirms that the development of the microbial biofilm on the anode decreases the R ct and therefore improves power generation. DGGE analysis showed the variation in the biofilm composition during the biofilm growth until it forms an initial stable microbial community, thereafter the change in the diversity would be less. The power density showed was directly dependent on the biofilm development and increased significantly during the initial biofilm development period. Furthermore, DGGE patterns obtained from 7th and 14th day suggest the presence of less diversity and probable functional redundancy within the anodic communities possibly responsible for the stable MFC performance in changing environmental conditions.

  4. Effect of Coffea canephora aqueous extract on microbial counts in ex vivo oral biofilms: a case study.

    PubMed

    Antonio, Andréa Gonçalves; Iorio, Natália Lopes Pontes; Farah, Adriana; Netto dos Santos, Kátia Regina; Maia, Lucianne Cople

    2012-05-01

    In the present study, the ex vivo antimicrobial effect of brewed coffee was tested on oral biofilms. For this, unsweetened and sweetened (10 % sucrose) brewed light-roasted Coffea canephora at 20 % was used in biofilms formed by non-stimulated saliva from three volunteers. After 30 min contact with unsweetened and sweetened brews, the average microorganism count in the biofilms reduced by 15.2 % and 12.4 %, respectively, with no statistical difference among them. We also observed a drop of microorganisms in the biofilms after treatment with sucrose solution at 5 % compared to control (saline) and to sucrose at 1 % and 3 %. In conclusion, Coffea canephora extract reduces the microbial count in oral biofilm, and our data suggest that sucrose concentration in coffee brew can influence its antimicrobial property against the referred biofilm.

  5. Characteristics of microbial biofilm on wooden vats ('gerles') in PDO Salers cheese.

    PubMed

    Didienne, Robert; Defargues, Catherine; Callon, Cécile; Meylheuc, Thierry; Hulin, Sophie; Montel, Marie-Christine

    2012-05-15

    The purpose of this study was to characterize microbial biofilms from 'gerles' (wooden vats for making PDO Salers cheese) and identify their role in milk inoculation and in preventing pathogen development. Gerles from ten farms producing PDO Salers cheese were subjected to microbial analysis during at least 4 periods spread over two years. They were distinguished by their levels of Lactobacillus (between 4.50 and 6.01 log CFU/cm(2)), Gram negative bacteria (between 1.45 and 4.56 log CFU/cm(2)), yeasts (between 2.91 and 5.57 log CFU/cm(2)), and moulds (between 1.72 and 4.52 log CFU/cm(2)). They were then classed into 4 groups according their microbial characteristics. These 4 groups were characterized by different milk inoculations (with either sour whey or starter culture, daily or not), and different washing procedures (with water or whey from cheese making). The farm gerles were not contaminated by Salmonella, Listeria monocytogenes or Staphylococcus aureus. Only one slight, punctual contamination was found on one gerle among the ten studied. Even when the milk was deliberately contaminated with L. monocytogenes and S. aureus in the 40 L experimental gerles, these pathogens were found neither on the gerle surfaces nor in the cheeses. Using 40 L experimental gerles it was shown that the microbial biofilms on the gerle surfaces formed in less than one week and then remained stable. They were mainly composed of a great diversity of lactic acid bacteria (Leuconostoc pseudomesenteroides, Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus hilgardii,…), Gram positive catalase positive bacteria (Curtobacterium flaccumfaciens, Curtobacterium oceanosedimentum Citrococcus spp., Brachybacterium rhamnosum, Kocuria rhizophila, Arthrobacter spp.…) and yeast (Kluyveromyces lactis, Kluyveromyces marxianus). In less than 1 min, even in a 500 L farm gerle, the gerle's microbial biofilm can inoculate pasteurized milk with micro-organisms at levels

  6. Microbial Diversity in the Early In Vivo-Formed Dental Biofilm

    PubMed Central

    Heller, D.; Helmerhorst, E. J.; Gower, A. C.; Siqueira, W. L.; Paster, B. J.

    2016-01-01

    Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations, plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least 92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes over time were noted for Streptococcus anginosus and Streptococcus intermedius (P = 0.02), Streptococcus mitis bv. 2 (P = 0.0002), Streptococcus oralis (P = 0.0002), Streptococcus cluster I (P = 0.003), G. haemolysans (P = 0.0005), and Stenotrophomonas maltophilia (P = 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential association with periodontal disease. PMID:26746720

  7. Waste water derived electroactive microbial biofilms: growth, maintenance, and basic characterization.

    PubMed

    Gimkiewicz, Carla; Harnisch, Falk

    2013-12-29

    The growth of anodic electroactive microbial biofilms from waste water inocula in a fed-batch reactor is demonstrated using a three-electrode setup controlled by a potentiostat. Thereby the use of potentiostats allows an exact adjustment of the electrode potential and ensures reproducible microbial culturing conditions. During growth the current production is monitored using chronoamperometry (CA). Based on these data the maximum current density (jmax) and the coulombic efficiency (CE) are discussed as measures for characterization of the bioelectrocatalytic performance. Cyclic voltammetry (CV), a nondestructive, i.e. noninvasive, method, is used to study the extracellular electron transfer (EET) of electroactive bacteria. CV measurements are performed on anodic biofilm electrodes in the presence of the microbial substrate, i.e. turnover conditions, and in the absence of the substrate, i.e. nonturnover conditions, using different scan rates. Subsequently, data analysis is exemplified and fundamental thermodynamic parameters of the microbial EET are derived and explained: peak potential (Ep), peak current density (jp), formal potential (E(f)) and peak separation (ΔEp). Additionally the limits of the method and the state-of the art data analysis are addressed. Thereby this video-article shall provide a guide for the basic experimental steps and the fundamental data analysis.

  8. Waste Water Derived Electroactive Microbial Biofilms: Growth, Maintenance, and Basic Characterization

    PubMed Central

    Gimkiewicz, Carla; Harnisch, Falk

    2013-01-01

    The growth of anodic electroactive microbial biofilms from waste water inocula in a fed-batch reactor is demonstrated using a three-electrode setup controlled by a potentiostat. Thereby the use of potentiostats allows an exact adjustment of the electrode potential and ensures reproducible microbial culturing conditions. During growth the current production is monitored using chronoamperometry (CA). Based on these data the maximum current density (jmax) and the coulombic efficiency (CE) are discussed as measures for characterization of the bioelectrocatalytic performance. Cyclic voltammetry (CV), a nondestructive, i.e. noninvasive, method, is used to study the extracellular electron transfer (EET) of electroactive bacteria. CV measurements are performed on anodic biofilm electrodes in the presence of the microbial substrate, i.e. turnover conditions, and in the absence of the substrate, i.e. nonturnover conditions, using different scan rates. Subsequently, data analysis is exemplified and fundamental thermodynamic parameters of the microbial EET are derived and explained: peak potential (Ep), peak current density (jp), formal potential (Ef) and peak separation (ΔEp). Additionally the limits of the method and the state-of the art data analysis are addressed. Thereby this video-article shall provide a guide for the basic experimental steps and the fundamental data analysis. PMID:24430581

  9. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms.

    PubMed

    Harnisch, Falk; Freguia, Stefano

    2012-03-05

    Electroactive microbial biofilms and the microorganisms embedded therein are not only of crucial fundamental interest because they play an important role in redox cycles that occur in nature, they are also attracting increasing attention as key component of microbial bioelectrochemcial systems (BES). In these systems, interconversion of chemical and electrical energy and the associated exchange of electrons between living microbial cells and solid electrodes take place. The fascinating prospects and promise of BES technology have considerably increased the research on electroactive microbial biofilms over recent years. As a consequence, the research community is truly multifaceted, with backgrounds and interests ranging from molecular biology, via chemistry, to engineering. One of the most-important and most-widespread applied electrochemical techniques is cyclic voltammetry (CV). This Focus Review illustrates the power of this electrochemical technique and the versatility of the information that can be gained by its application for the electrochemical freshman. This Review will also pinpoint hurdles in using this technique, especially for the non-electrochemist, and the limitations of present models for data analysis. Because it aims to be a basic introduction, this Review will not discuss the latest intricacies in the field.

  10. Microbial Life of North Pacific Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Koos, R.; Manz, W.; Reitner, J.

    2003-12-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep

  11. Impact of flow conditions on ammonium uptake and microbial community structure in benthic biofilms

    NASA Astrophysics Data System (ADS)

    Arnon, Shai; Yanuka, Keren; Nejidat, Ali

    2010-05-01

    Excess nitrogen in surface waters is widely recognized to be a major global problem that adversely affects ecosystems, human health, and the economy. Today, most efforts to understand and model nutrient dynamics at large scales relies on macro-scale parameterization, such as mean channel geometry and velocity with uniform flow assumptions, as well as gross averages of in-situ nutrient transformation rates. However, there is increasing evidence that nutrient transformations in hyporheic zone are regulated by coupling between physical, chemical, and microbiological processes. Ignoring this greatly hinders the estimation of average biochemical transformation rates under the variable flow conditions found in aquatic systems. We used a combination of macro- and micro-scale observations in laboratory flumes to show that interplay between hydrodynamic transport, redox gradients, and microbial metabolism controls ammonium utilization by hyporheic microbial communities. Biofilm structural characteristics were quantified using denaturing gradient gel electrophoresis (DGGE) and real time PCR, while redox and pH gradients were measured using microelectrodes. We found that overlying velocities had profound effect on ammonium uptake due to mass transfer of ammonium from the bulk water to the benthic biofilms, but also due to the delivery of oxygen into the sediment bed. Under laminar flow conditions we didn't observe any change of ammonium uptake as a response to increase in overlying velocity. However, under non-laminar conditions we observe monotonic increase in ammonium uptake, with the greatest uptake under the fastest flow condition. We will discuss ammonium uptake rates results in the context of the different microbial communities and the micro-scale observations that were obtained using the microelectrodes. We anticipate that combined knowledge of the response of the microbial community and bulk nitrogen utilization rates to flow conditions will support the development of

  12. Large-scale environmental controls on microbial biofilms in high-alpine streams

    NASA Astrophysics Data System (ADS)

    Battin, T. J.; Wille, A.; Psenner, R.; Richter, A.

    Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal), groundwater-fed (krenal) and snow-fed (rhithral) streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment) of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt) of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  13. Assessment of Microbial Diversity in Biofilms Recovered from Endotracheal Tubes Using Culture Dependent and Independent Approaches

    PubMed Central

    Vandecandelaere, Ilse; Matthijs, Nele; Van Nieuwerburgh, Filip; Deforce, Dieter; Vosters, Peter; De Bus, Liesbet; Nelis, Hans J.; Depuydt, Pieter; Coenye, Tom

    2012-01-01

    Ventilator-associated pneumonia (VAP) is a common nosocomial infection in mechanically ventilated patients. Biofilm formation is one of the mechanisms through which the endotracheal tube (ET) facilitates bacterial contamination of the lower airways. In the present study, we analyzed the composition of the ET biofilm flora by means of culture dependent and culture independent (16 S rRNA gene clone libraries and pyrosequencing) approaches. Overall, the microbial diversity was high and members of different phylogenetic lineages were detected (Actinobacteria, beta-Proteobacteria, Candida spp., Clostridia, epsilon-Proteobacteria, Firmicutes, Fusobacteria and gamma-Proteobacteria). Culture dependent analysis, based on the use of selective growth media and conventional microbiological tests, resulted in the identification of typical aerobic nosocomial pathogens which are known to play a role in the development of VAP, e.g. Staphylococcus aureus and Pseudomonas aeruginosa. Other opportunistic pathogens were also identified, including Staphylococcus epidermidis and Kocuria varians. In general, there was little correlation between the results obtained by sequencing 16 S rRNA gene clone libraries and by cultivation. Pyrosequencing of PCR amplified 16 S rRNA genes of four selected samples resulted in the identification of a much wider variety of bacteria. The results from the pyrosequencing analysis suggest that these four samples were dominated by members of the normal oral flora such as Prevotella spp., Peptostreptococcus spp. and lactic acid bacteria. A combination of methods is recommended to obtain a complete picture of the microbial diversity of the ET biofilm. PMID:22693635

  14. Analysis of Structural and Physiological Profiles To Assess the Effects of Cu on Biofilm Microbial Communities

    PubMed Central

    Massieux, B.; Boivin, M. E. Y.; van den Ende, F. P.; Langenskiöld, J.; Marvan, P.; Barranguet, C.; Admiraal, W.; Laanbroek, H. J.; Zwart, G.

    2004-01-01

    We investigated the effects of copper on the structure and physiology of freshwater biofilm microbial communities. For this purpose, biofilms that were grown during 4 weeks in a shallow, slightly polluted ditch were exposed, in aquaria in our laboratory, to a range of copper concentrations (0, 1, 3, and 10 μM). Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community in all aquaria. The extent of change was related to the concentration of copper applied, indicating that copper directly or indirectly caused the effects. Concomitantly with these changes in structure, changes in the metabolic potential of the heterotrophic bacterial community were apparent from changes in substrate use profiles as assessed on Biolog plates. The structure of the phototrophic community also changed during the experiment, as observed by microscopic analysis in combination with DGGE analysis of eukaryotic microorganisms and cyanobacteria. However, the extent of community change, as observed by DGGE, was not significantly greater in the copper treatments than in the control. Yet microscopic analysis showed a development toward a greater proportion of cyanobacteria in the treatments with the highest copper concentrations. Furthermore, copper did affect the physiology of the phototrophic community, as evidenced by the fact that a decrease in photosynthetic capacity was detected in the treatment with the highest copper concentration. Therefore, we conclude that copper affected the physiology of the biofilm and had an effect on the structure of the communities composing this biofilm. PMID:15294780

  15. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.

    PubMed

    Yuan, Yong; Shin, Hyosul; Kang, Chan; Kim, Sunghyun

    2016-04-01

    An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2).

  16. Biofilms.

    PubMed

    Callow, J A; Callow, M E

    2006-01-01

    Biofilms of bacteria, frequently in association with algae, protozoa and fungi, are found on all submerged structures in the marine environment. Although it is likely that for the majority of organisms a biofilmed surface is not a pre-requisite for settlement, in practice, colonization by spores and larvae of fouling organisms almost always takes place via a biofilmed surface. Therefore, the properties of the latter may be expected to influence colonization, positively or negatively. Biofilms are responsible for a range of surface-associated and diffusible signals, which may moderate the settling behaviour of cells, spores and larvae. However, there is no consensus view regarding either cause and effect or the mechanism(s) by which biofilms moderate settlement. Studies with mixed biofilms, especially field experiments, are difficult to interpret because of the conflicting signals produced by different members of the biofilm community as well as their spatial organisation. Molecular techniques highlight the deficiencies of culture methods in identifying biofilm bacteria; hence, the strains with the most impact on settlement of spores and larvae may not yet have been isolated and cultured. Furthermore, secondary products isolated from cultured organisms may not reflect the situation that pertains in nature. The evidence that bacterial quorum sensing signal molecules stimulate settlement of spores of the green macroalga, Ulva, is discussed in some detail. New molecular and analytical tools should provide the opportunity to improve our fundamental understanding of the interactions between fouling organisms and biofilms, which in turn may inform novel strategies to control biofouling.

  17. The microbial community structure of drinking water biofilms can be affected by phosphorus availability.

    PubMed

    Keinänen, Minna M; Korhonen, Leena K; Lehtola, Markku J; Miettinen, Ilkka T; Martikainen, Pertti J; Vartiainen, Terttu; Suutari, Merja H

    2002-01-01

    Microbial communities in biofilms grown for 4 and 11 weeks under the flow of drinking water supplemented with 0, 1, 2, and 5 microg of phosphorus liter(-1) and in drinking and warm waters were compared by using phospholipid fatty acids (PLFAs) and lipopolysaccharide 3-hydroxy fatty acids (LPS 3-OH-FAs). Phosphate increased the proportion of PLFAs 16:1 omega 7c and 18:1 omega 7c and affected LPS 3-OH-FAs after 11 weeks of growth, indicating an increase in gram-negative bacteria and changes in their community structure. Differences in community structures between biofilms and drinking and warm waters can be assumed from PLFAs and LPS 3-OH-FAs, concomitantly with adaptive changes in fatty acid chain length, cyclization, and unsaturation.

  18. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.

    PubMed

    Yuan, Yong; Zhou, Shungui; Xu, Nan; Zhuang, Li

    2011-02-01

    This study used a simple and efficient electrochemical technique, cyclic voltammogram (CV), to quantitatively measure the electron transfer capability of anodic biofilms enriched with acetate and glucose in single-chamber microbial fuel cells (MFCs). Two pairs of distinct redox peaks were observed by CV measurements in both biofilms, identical to the CV features of a pure Geobacter strain. The CVs also revealed a higher density of electroactive species in the acetate-enriched biofilm than that in the glucose-enriched biofilm. Based on the scan rate analysis, the apparent electron transfer rate constants (k(app)) in the acetate-enriched biofilm and glucose-enriched biofilm were determined to be 0.82 and 0.15s(-1), respectively, which supported the higher power output of the MFC fed with acetate. Meanwhile, the pH dependence of the biofilms was studied by monitoring the changes of the biofilm redox peak currents and potentials. It is concluded that redox reaction of the electrochemical active species in biofilms is pH dependent, and both electrons and protons are involved in the redox reactions.

  19. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  20. Identification of Biofilm Matrix-Associated Proteins from an Acid Mine Drainage Microbial Community

    SciTech Connect

    Jiao, Yongqin; D'Haeseleer, Patrik M; Dill, Brian; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.; Thelen, Michael P.

    2011-01-01

    In microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80% of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by 2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as -N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.

  1. The subsurface origin of microbial life on the Earth.

    PubMed

    Trevors, J T

    2002-10-01

    Life on Earth can be divided into life on the surface made possible by photosynthesis and subsurface life with chemical energy as the driving force. An understanding of both environments is central to our understanding of the origin of life, the search for novel microbial species in the subsurface and for extraterrestrial life or life signatures. In this manuscript, the surface and subsurface worlds are examined with a focus on the origin or assembly of bacterial life.

  2. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    PubMed Central

    Ishii, Shun'ichi; Shimoyama, Takefumi; Hotta, Yasuaki; Watanabe, Kazuya

    2008-01-01

    Background Microbial fuel cells (MFCs) are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC) was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate) became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community. PMID:18186940

  3. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    PubMed

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  4. Interactions between microbial biofilms and marine fouling algae: a mini review.

    PubMed

    Mieszkin, Sophie; Callow, Maureen E; Callow, James A

    2013-01-01

    Natural and artificial substrata immersed in the marine environment are typically colonized by microorganisms, which may moderate the settlement/recruitment of algal spores and invertebrate larvae of macrofouling organisms. This mini-review summarizes the major interactions occurring between microbial biofilms and marine fouling algae, including their effects on the settlement, growth and morphology of the adult plants. The roles of chemical compounds that are produced by both bacteria and algae and which drive the interactions are reviewed. The possibility of using such bioactive compounds to control macrofouling will be discussed.

  5. Fate of organo-mineral particles in streams: Microbial degradation by streamwater & biofilm assemblages

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Raich, M.; Wanek, W.; Battin, T. J.

    2013-12-01

    Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (× 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (× 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed

  6. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems. PMID:19177226

  7. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  8. A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs).

    PubMed

    Saratale, Ganesh Dattatraya; Saratale, Rijuta Ganesh; Shahid, Muhammad Kashif; Zhen, Guangyin; Kumar, Gopalakrishnan; Shin, Han-Seung; Choi, Young-Gyun; Kim, Sang-Hyoun

    2017-07-01

    Microbial fuel cells (MFCs) are biocatalyzed systems which can drive electrical energy by directly converting chemical energy using microbial biocatalyst and are considered as one of the important propitious technologies for sustainable energy production. Much research on MFCs experiments is under way with great potential to become an alternative to produce clean energy from renewable waste. MFCs have been one of the most promising technologies for generating clean energy industry in the future. This article summarizes the important findings in electro-active biofilm formation and the role of exo-electrogens in electron transfer in MFCs. This study provides and brings special attention on the effects of various operating and biological parameters on the biofilm formation in MFCs. In addition, it also highlights the significance of different molecular techniques used in the microbial community analysis of electro-active biofilm. It reviews the challenges as well as the emerging opportunities required to develop MFCs at commercial level, electro-active biofilms and to understand potential application of microbiological niches are also depicted. Thus, this review is believed to widen the efforts towards the development of electro-active biofilm and will provide the research directions to overcome energy and environmental challenges.

  9. Biodiversity, community structure and function of biofilms in stream ecosystems.

    PubMed

    Besemer, Katharina

    2015-12-01

    Multi-species, surface-attached biofilms often dominate microbial life in streams and rivers, where they contribute substantially to biogeochemical processes. The microbial diversity of natural biofilms is huge, and may have important implications for the functioning of aquatic environments and the ecosystem services they provide. Yet the causes and consequences of biofilm biodiversity remain insufficiently understood. This review aims to give an overview of current knowledge on the distribution of stream biofilm biodiversity, the mechanisms generating biodiversity patterns and the relationship between biofilm biodiversity and ecosystem functioning.

  10. Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance In Vitro

    PubMed Central

    2014-01-01

    Background Microbial biofilms have been associated with the development of chronic human infections and represent a clinical challenge given their increased antimicrobial tolerance. Staphylococcus aureus is a major human pathogen causing a diverse range of diseases, of which biofilms are often involved. Staphylococcal attachment and the formation of biofilms have been shown to be facilitated by host factors that accumulate on surfaces. To better understand how host factors enhance staphylococcal biofilm formation, we evaluated the effect of whole human plasma on biofilm formation in clinical isolates of S. aureus and the expression of seven microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) known to be involved in biofilm formation by quantitative real-time PCR. We also evaluated whether plasma augmented changes in S. aureus biofilm morphology and antimicrobial resistance. Results Exposure of clinical isolates of S. aureus to human plasma (10%) within media, and to a lesser extent when coated onto plates, significantly enhanced biofilm formation in all of the clinical isolates tested. Compared to biofilms grown under non-supplemented conditions, plasma-augmented biofilms displayed significant changes in both the biofilm phenotype and cell morphology as determined by confocal scanning laser microscopy (CLSM) and scanning electron microscopy (SEM), respectively. Exposure of bacteria to plasma resulted in a significant fold-increase in MSCRAMM expression in both a time and isolate-dependent manner. Additionally, plasma-augmented biofilms displayed an increased tolerance to vancomycin compared to biofilms grown in non-supplemented media. Conclusions Collectively, these studies support previous findings demonstrating a role for host factors in biofilm formation and provide further insight into how plasma, a preferred growth medium for staphylococcal biofilm formation enhances as well as augments other intrinsic properties of S. aureus biofilms

  11. Microbial life beneath a high arctic glacier.

    PubMed

    Skidmore, M L; Foght, J M; Sharp, M J

    2000-08-01

    The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4 degrees C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4 degrees C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3 degrees C in the dark (to simulate nearly in situ conditions), producing (14)CO(2) from radiolabeled sodium acetate with minimal organic amendment (> or =38 microM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (< or =-1.8 degrees C) for 66 days. Electron microscopy of thawed basal ice samples revealed various cell morphologies, including dividing cells. This suggests that the subglacial environment beneath a polythermal glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO(2) and CH(4) beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.

  12. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion.

    PubMed

    Picioreanu, C; van Loosdrecht, M C M; Katuri, K P; Scott, K; Head, I M

    2008-01-01

    This study describes the integration of IWA's anaerobic digestion model (ADM1) within a computational model of microbial fuel cells (MFCs). Several populations of methanogenic and electroactive microorganisms coexist suspended in the anolyte and in the biofilm attached to the anode. A number of biological, chemical and electrochemical reactions occur in the bulk liquid, in the biofilm and at the electrode surface, involving glucose, organic acids, H2 and redox mediators. Model output includes the evolution in time of important measurable MFC parameters (current production, consumption of substrates, suspended and attached biomass growth). Two- and three-dimensional model simulations reveal the importance of current and biomass heterogeneous distribution over the planar anode surface. Voltage- and power-current characteristics can be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, model simulations are compared with experimental results showing that, in a batch MFC, smaller electrical resistance of the circuit leads to selection of electroactive bacteria. Higher coulombic yields are so obtained because electrons from substrate are transferred to anode rather than following the methanogenesis pathway. In addition to higher currents, faster COD consumption rates are so achieved. The potential of this general modelling framework is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.

  13. The ecology and biogeochemistry of stream biofilms.

    PubMed

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  14. Initial development and structure of biofilms on microbial fuel cell anodes

    PubMed Central

    2010-01-01

    Background Microbial fuel cells (MFCs) rely on electrochemically active bacteria to capture the chemical energy contained in organics and convert it to electrical energy. Bacteria develop biofilms on the MFC electrodes, allowing considerable conversion capacity and opportunities for extracellular electron transfer (EET). The present knowledge on EET is centred around two Gram-negative models, i.e. Shewanella and Geobacter species, as it is believed that Gram-positives cannot perform EET by themselves as the Gram-negatives can. To understand how bacteria form biofilms within MFCs and how their development, structure and viability affects electron transfer, we performed pure and co-culture experiments. Results Biofilm viability was maintained highest nearer the anode during closed circuit operation (current flowing), in contrast to when the anode was in open circuit (soluble electron acceptor) where viability was highest on top of the biofilm, furthest from the anode. Closed circuit anode Pseudomonas aeruginosa biofilms were considerably thinner compared to the open circuit anode (30 ± 3 μm and 42 ± 3 μm respectively), which is likely due to the higher energetic gain of soluble electron acceptors used. The two Gram-positive bacteria used only provided a fraction of current produced by the Gram-negative organisms. Power output of co-cultures Gram-positive Enterococcus faecium and either Gram-negative organisms, increased by 30-70% relative to the single cultures. Over time the co-culture biofilms segregated, in particular, Pseudomonas aeruginosa creating towers piercing through a thin, uniform layer of Enterococcus faecium. P. aeruginosa and E. faecium together generated a current of 1.8 ± 0.4 mA while alone they produced 0.9 ± 0.01 and 0.2 ± 0.05 mA respectively. Conclusion We postulate that this segregation may be an essential difference in strategy for electron transfer and substrate capture between the Gram-negative and the Gram-positive bacteria used here

  15. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.

    PubMed

    Ramasamy, Ramaraja P; Ren, Zhiyong; Mench, Matthew M; Regan, John M

    2008-09-01

    Electrochemical impedance spectroscopy (EIS) was used to study the behavior of a microbial fuel cell (MFC) during initial biofilm growth in an acetate-fed, two-chamber MFC system with ferricyanide in the cathode. EIS experiments were performed both on the full cell (between cathode and anode) as well as on individual electrodes. The Nyquist plots of the EIS data were fitted with an equivalent electrical circuit to estimate the contributions of various intrinsic resistances to the overall internal MFC impedance. During initial development of the anode biofilm, the anode polarization resistance was found to decrease by over 70% at open circuit and by over 45% at 27 microA/cm(2), and a simultaneous increase in power density by about 120% was observed. The exchange current density for the bio-electrochemical reaction on the anode was estimated to be in the range of 40-60 nA/cm(2) for an immature biofilm after 5 days of closed circuit operation, which increased to around 182 nA/cm(2) after more than 3 weeks of operation and stable performance in an identical parallel system. The polarization resistance of the anode was 30-40 times higher than that of the ferricyanide cathode for the conditions tested, even with an established biofilm. For a two-chamber MFC system with a Nafion 117 membrane and an inter-electrode spacing of 15 cm, the membrane and electrolyte solution dominate the ohmic resistance and contribute to over 95% of the MFC internal impedance. Detailed EIS analyses provide new insights into the dominant kinetic resistance of the anode bio-electrochemical reaction and its influence on the overall power output of the MFC system, even in the high internal resistance system used in this study. These results suggest that new strategies to address this kinetic constraint of the anode bio-electrochemical reactions are needed to complement the reduction of ohmic resistance in modern designs.

  16. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  17. Deciphering the Contribution of Biofilm to the Pathogenesis of Peritoneal Dialysis Infections: Characterization and Microbial Behaviour on Dialysis Fluids.

    PubMed

    Sampaio, Joana; Machado, Diana; Gomes, Ana Marta; Machado, Idalina; Santos, Cledir; Lima, Nelson; Carvalho, Maria João; Cabrita, António; Rodrigues, Anabela; Martins, Margarida

    2016-01-01

    Infections are major complications in peritoneal dialysis (PD) with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = 16) and non-infectious causes (n = 31). Microbial density on the catheter was assessed by culture methods and the isolated microorganisms identified by matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry. The effect of conventional and three biocompatible PD solutions on 16 Coagulase Negative Staphylococci (CNS) and 10 Pseudomonas aeruginosa strains planktonic growth and biofilm formation was evaluated. Cultures were positive in 87.5% of the catheters removed due infectious and 90.3% removed due to non-infectious causes. However, microbial yields were higher on the cuffs of catheters removed due to infection vs. non-infection. Staphylococci (CNS and Staphylococcus aureus) and P. aeruginosa were the predominant species: 32% and 20% in the infection and 43.3% and 22.7% in the non-infection group, respectively. In general, PD solutions had a detrimental effect on planktonic CNS and P. aeruginosa strains growth. All strains formed biofilms in the presence of PD solutions. The solutions had a more detrimental effect on P. aeruginosa than CNS strains. No major differences were observed between conventional and biocompatible solutions, although in icodextrin solution biofilm biomass was lower than in bicarbonate/lactate solution. Overall, we show that microbial biofilm is universal in PD catheters with the subclinical menace of Staphylococci and P. aeruginosa. Cuffs colonization may significantly contribute to infection. PD solutions differentially

  18. Deciphering the Contribution of Biofilm to the Pathogenesis of Peritoneal Dialysis Infections: Characterization and Microbial Behaviour on Dialysis Fluids

    PubMed Central

    Sampaio, Joana; Machado, Diana; Gomes, Ana Marta; Machado, Idalina; Santos, Cledir; Lima, Nelson; Carvalho, Maria João; Cabrita, António

    2016-01-01

    Infections are major complications in peritoneal dialysis (PD) with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = 16) and non-infectious causes (n = 31). Microbial density on the catheter was assessed by culture methods and the isolated microorganisms identified by matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry. The effect of conventional and three biocompatible PD solutions on 16 Coagulase Negative Staphylococci (CNS) and 10 Pseudomonas aeruginosa strains planktonic growth and biofilm formation was evaluated. Cultures were positive in 87.5% of the catheters removed due infectious and 90.3% removed due to non-infectious causes. However, microbial yields were higher on the cuffs of catheters removed due to infection vs. non-infection. Staphylococci (CNS and Staphylococcus aureus) and P. aeruginosa were the predominant species: 32% and 20% in the infection and 43.3% and 22.7% in the non-infection group, respectively. In general, PD solutions had a detrimental effect on planktonic CNS and P. aeruginosa strains growth. All strains formed biofilms in the presence of PD solutions. The solutions had a more detrimental effect on P. aeruginosa than CNS strains. No major differences were observed between conventional and biocompatible solutions, although in icodextrin solution biofilm biomass was lower than in bicarbonate/lactate solution. Overall, we show that microbial biofilm is universal in PD catheters with the subclinical menace of Staphylococci and P. aeruginosa. Cuffs colonization may significantly contribute to infection. PD solutions differentially

  19. Sulfur as a Matrix for the Development of Microbial Biofilm Communities

    NASA Astrophysics Data System (ADS)

    Parker, C.; Bell, E.; Johnson, J. E.; Ma, X.; Stamps, B. W.; Rideout, J.; Johnson, H. A.; Vuono, D.; Spear, J. R.; Hanselmann, K.

    2013-12-01

    The high temperature, low oxygen, and high sulfide concentration of many hot springs select for a low diversity of organisms. The stringent requirements for growth and survival limit the types of interactions, which allow the microbial sulfur metabolism to be examined in depth. We combined geochemical, microbial and molecular data to understand mat development in the warm, oxygen-poor sulfidic Stinking Spring, Utah, USA. The upper flow zone of this spring has a variety of observable microbial biofilm structures that are linked to the activities of both sulfide-oxidizing and oxygenic bacteria. The diverse architecture of the microbial assemblages consist of bulbous ridge structures on the bottom of the streambed, floating mats that cover a large portion of the water surface area, and two morphologically different streamers; green long filaments and white shorter filaments, which both contain large amounts of elemental sulfur. We performed structural analysis using phase contrast and epifluorescence microscopy, and SEM coupled with EDS mapping. Amplicon sequenced 16S rRNA genes analyzed by QIIME and ARB indicated that the predominant organisms present were the cyanobacterial genus Leptolyngbya, and an ɛ-Proteobacteria closely related to the sulfur oxidizing genus Sulfurovum. Metagenomic analysis was conducted on six libraries from three locations using MG-RAST to analyze for genes associated with sulfur metabolism, specifically sulfur oxidation (sox) genes. The presence of sox genes and the microbial sulfur deposition strategy changes downstream as the sulfide concentration decreases. When sulfide is low, the streamers themselves become white and shorter with elemental sulfur deposited intracellularly, and diatoms seem to dominate over cyanobacteria, but do not form associations with the streamer structures. We propose that the microbial biofilms and green streamers present in the sulfide-rich section of the stream are formed in a multi-step process. Initial growth

  20. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    SciTech Connect

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  1. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2003-09-30

    light scattering and refractive index measurements, were conducted. Quantitative imaging of in-situ sediment, generated by nanoplast -embedded natural...polymeric secretions using Nanoplast resin. BioTechniques 27: 1246-1252. Decho, A.W. 1999. Microbial biofilms in intertidal systems: an overview

  2. Methods for Observing Microbial Biofilms Directly on Leaf Surfaces and Recovering Them for Isolation of Culturable Microorganisms

    PubMed Central

    Morris, C. E.; Monier, J.; Jacques, M.

    1997-01-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique. PMID:16535579

  3. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers

    NASA Astrophysics Data System (ADS)

    Passarelli, Claire; Meziane, Tarik; Thiney, Najet; Boeuf, Dominique; Jesus, Bruno; Ruivo, Mickael; Jeanthon, Christian; Hubas, Cédric

    2015-02-01

    Biofilms, or microbial mats, are common associations of microorganisms in tidal flats; they generally consist of a large diversity of organisms embedded in a matrix of Extracellular Polymeric Substances (EPS). These molecules are mainly composed of carbohydrates and proteins, but their detailed monomer compositions and seasonal variations are currently unknown. Yet this composition determines the numerous roles of biofilms in these systems. This study investigated the changes in composition of carbohydrates in intertidal microbial mats over a year to decipher seasonal variations in biofilms and in varying hydrodynamic conditions. This work also aimed to assess how these compositions are related to microbial assemblages. In this context, natural biofilms whose development was influenced or not by artificial structures mimicking polychaete tubes were sampled monthly for over a year in intertidal flats of the Chausey archipelago. Biofilms were compared through the analysis of their fatty acid and pigment contents, and the monosaccharide composition of their EPS carbohydrates. Carbohydrates from both colloidal and bound EPS contained mainly glucose and, to a lower extent, galactose and mannose but they showed significant differences in their detailed monosaccharide compositions. These two fractions displayed different seasonal evolution, even if glucose accumulated in both fractions in summer; bound EPS only were affected by artificial biogenic structures. Sediment composition in fatty acids and pigments showed that microbial communities were dominated by diatoms and heterotrophic bacteria. Their relative proportions, as well as those of other groups like cryptophytes, changed between times and treatments. The changes in EPS composition were not fully explained by modifications of microbial assemblages but also depended on the processes taking place in sediments and on environmental conditions. These variations of EPS compositions are likely to alter different

  4. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    PubMed

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  5. Possibilities for the Detection of Microbial Life on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Knacke, Roger F.

    2003-11-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  6. Possibilities for the detection of microbial life on extrasolar planets.

    PubMed

    Knacke, Roger F

    2003-01-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  7. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Carmen Mariana

    2014-01-01

    Microbial biofilms are associated with drastically enhanced resistance to most of the antimicrobial agents and with frequent treatment failures, generating the search for novel strategies which can eradicate infections by preventing the persistent colonization of the hospital environment, medical devices or human tissues. Some of the current approaches for fighting biofilms are represented by the development of novel biomaterials with increased resistance to microbial colonization and by the improvement of the current therapeutic solutions with the aid of nano (bio)technology. This special issues includes papers describing the applications of nanotechnology and biomaterials science for the development of improved drug delivery systems and nanostructured surfaces for the prevention and treatment of medical biofilms. Nanomaterials display unique and well-defined physical and chemical properties making them useful for biomedical applications, such as: very high surface area to volume ratio, biocompatibility, biodegradation, safety for human ingestion, capacity to support surface modification and therefore, to be combined with other bioactive molecules or substrata and more importantly being seemingly not attracting antimicrobial resistance. The use of biomaterials is significantly contributing to the reduction of the excessive use of antibiotics, and consequently to the decrease of the emergence rate of resistant microorganisms, as well as of the associated toxic effects. Various biomaterials with intrinsic antimicrobial activity (inorganic nanoparticles, polymers, composites), medical devices for drug delivery, as well as factors influencing their antimicrobial properties are presented. One of the presented papers reviews the recent literature on the use of magnetic nanoparticles (MNP)-based nanomaterials in antimicrobial applications for biomedicine, focusing on the growth inhibition and killing of bacteria and fungi, and, on viral inactivation. The anti

  8. Functional gene composition, diversity and redundancy in microbial stream biofilm communities.

    PubMed

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition.

  9. Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities

    PubMed Central

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D.

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition. PMID:25849814

  10. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

    PubMed

    Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis

    2012-08-01

    The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production.

  11. Microbial life in a liquid asphalt desert.

    PubMed

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M; Guinan, Edward; Lehto, Harry J; Hallam, Steven J

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.

  12. Microbial Life in a Liquid Asphalt Desert

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C.; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M.; Guinan, Edward; Lehto, Harry J.; Hallam, Steven J.

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 107 cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.

  13. Eukaryotic life in biofilms formed in a uranium mine

    PubMed Central

    Zirnstein, Isabel; Arnold, Thuro; Krawczyk-Bärsch, Evelyn; Jenk, Ulf; Bernhard, Gert; Röske, Isolde

    2012-01-01

    The underground uranium mine Königstein (Saxony, Germany), currently in the process of remediation, represents an underground acid mine drainage (AMD) environment, that is, low pH conditions and high concentrations of heavy metals including uranium, in which eye-catching biofilm formations were observed. During active uranium mining from 1984 to 1990, technical leaching with sulphuric acid was applied underground on-site resulting in a change of the underground mine environment and initiated the formation of AMD and also the growth of AMD-related copious biofilms. Biofilms grow underground in the mine galleries in a depth of 250 m (50 m above sea level) either as stalactite-like slime communities or as acid streamers in the drainage channels. The eukaryotic diversity of these biofilms was analyzed by microscopic investigations and by molecular methods, that is, 18S rDNA PCR, cloning, and sequencing. The biofilm communities of the Königstein environment showed a low eukaryotic biodiversity and consisted of a variety of groups belonging to nine major taxa: ciliates, flagellates, amoebae, heterolobosea, fungi, apicomplexa, stramenopiles, rotifers and arthropoda, and a large number of uncultured eukaryotes, denoted as acidotolerant eukaryotic cluster (AEC). In Königstein, the flagellates Bodo saltans, the stramenopiles Diplophrys archeri, and the phylum of rotifers, class Bdelloidea, were detected for the first time in an AMD environment characterized by high concentrations of uranium. This study shows that not only bacteria and archaea may live in radioactive contaminated environments, but also species of eukaryotes, clearly indicating their potential influence on carbon cycling and metal immobilization within AMD-affected environment. PMID:22950016

  14. Microbial Life Under Extreme Energy Limitation

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Jorgensen, Bo Barker

    2013-01-01

    A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 104- to 106-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.

  15. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2011-10-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2)), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine-triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m(2)) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol-ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers.

  16. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.

    PubMed

    Jayasinghe, Nadeera; Franks, Ashley; Nevin, Kelly P; Mahadevan, Radhakrishnan

    2014-10-01

    Microbial fuel cells (MFCs) have been proposed as an alternative energy resource for the conversion of organic compounds to electricity. In an MFC, microorganisms such as Geobacter sulfurreducens form an anode-associated biofilm that can completely oxidize organic matter (electron donor) to carbon dioxide with direct electron transfer to the anode (electron acceptor). Mathematical models are useful in analyzing biofilm processes; however, existing models rely on Nernst-Monod type expressions, and evaluate extracellular processes separated from the intracellular metabolism of the microorganism. Thus, models that combine both extracellular and intracellular components, while addressing spatial heterogeneity, are essential for improved representation of biofilm processes. The goal of this work is to develop a model that integrates genome-scale metabolic models with the model of biofilm environment. This integrated model shows the variations of electrical current production and biofilm thickness under the presence/absence of NH4 in the bulk solution, and under varying maintenance energy demands. Further, sensitivity analysis suggested that conductivity is not limiting electrical current generation and that increasing cell density can lead to enhanced current generation. In addition, the modeling results also highlight instances such as the transformation into respiring cells, where the mechanism of electrical current generation during biofilm development is not yet clearly understood.

  17. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino

    2015-11-01

    At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.

  18. Comparative Evaluation of Antimicrobial Activity of Pomegranate-Containing Mouthwash Against Oral-Biofilm Forming Organisms: An Invitro Microbial Study

    PubMed Central

    Dabholkar, Charuta Sadanand; Shah, Mona; Bajaj, Monika; Doshi, Yogesh

    2016-01-01

    Introduction Pomegranate is considered “A pharmacy unto itself”. Hydrolysable tannins called punicalagins which have free scavenging properties are the most abundant polyphenols found in pomegranate-containing mouthwash. Aim To evaluate antimicrobial effect of pomegranate- containing mouthwash on oral biofilm-forming bacteria. Materials and Methods The mouthwashes used were divided into three groups- Group A: Chlorhexidine mouthwash (Hexidine); Group B: Herbal Mouthwash (Hiora) and Group C: Pomegranate-containing Mouthwash (Life-extension). Each mouthwash was diluted to five different concentrations. Reference strains of Streptococcus mutans (S.mutans) (ATCC 25175), Streptococcus salivarius (S.salivarius) (ATCC 7073), and Aggregatibacter actinomycetemcomitans (A.a) (NCTC 9710) were selected as being colonizers in dental biofilm formation. On each culture plate, five wells of 5mm were prepared and mouthwashes with different concentrations were added, followed by incubation in a CO2 jar for 24 hours at 37°C. Inhibition zone diameters were measured using a digital caliper. Results Chlorhexidine (0.12%) presented a zone of inhibition between 38.46% to 96.15% for all the three organisms, while Hiora presented zone of inhibition ranging from 33.33% to 69.23% but was resistant at <10 ml of dilution. Pomegranate mouthwash presented a zone of inhibition ranging from 38.48 to 57.69%, but was resistant at <10ml for S.mutans, and <25ml for A.a and S.salivarius. ANOVA test was done to compare the dilution of mouthwashes for a particular organism and Tukey’s multiple comparison tests were done to find the exact difference. A significant difference was seen between all the three groups at 50ml and 75 ml of dilution. At 75 ml concentration, a statistical difference was found between Groups B & C and Groups A & B; and at 50 ml between Groups A&C. Conclusion All the three types of mouthwash exhibit anti-microbial activity against biofilm forming organisms but at varying

  19. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Geng, Nan; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-09-01

    The transport behaviors of copper oxide (CuO) NPs in wastewater matrix and their possible impacts on microbial activities of stable wastewater biofilms cultivated in a lab scale rotating biological contactor (RBC) were investigated. Significant aggregation of CuO NPs was observed in the wastewater samples, depending on their mass concentrations. Extracellular polymeric substance (EPS)-adsorbed copper accounted for a large proportion of the total copper accumulated in biofilms. The microelectrode profiles showed that a single pulse exposure to 50mg/L CuO resulted in a deeper penetration depth of oxygen in biofilms compared to the CuO NP free biofilms. The maximum oxygen consumption rate shifted to the deeper parts of biofilms, indicating that the respiration activities of bacteria in the top region of the biofilms was significantly inhibited by CuO NPs. Biofilms secreted more EPS in response to the nano-CuO stress, with higher production of proteins compared to polysaccharides.

  20. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions

    PubMed Central

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes. PMID:27330290

  1. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions.

    PubMed

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes.

  2. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities.

  3. Performance evaluation and microbial community of a sequencing batch biofilm reactor (SBBR) treating mariculture wastewater at different chlortetracycline concentrations.

    PubMed

    Zheng, Dong; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Wang, Sen; Wang, Xuejiao

    2016-11-01

    The effects of chlortetracycline (CTC) on the performance, microbial activity, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater. Low CTC concentration (less than 6 mg/L) had no obvious effect on the SBBR performance, whereas high CTC concentration could inhibit the chemical oxygen demand (COD) and nitrogen removal of the SBBR. The microbial activity of the biofilm in the SBBR decreased with the increase of CTC concentration from 0 to 35 mg/L. The protein (PN) contents were always higher than the PS contents in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) at different CTC concentrations. The chemical compositions of LB-EPS and TB-EPS had obvious variations with the increase of CTC concentration from 0 to 35 mg/L. The high-throughput sequencing revealed the effects of CTC on the microbial communities of the biofilm at phylum, class and genus level. The relative abundances of some genera displayed a decreasing tendency with the increase of CTC concentration from 0 to 35 mg/L, such as Nitrospira, Paracoccus, Hyphomicrobium, Azospirillum. However, the relative abundances of the genera Flavobacterium, Aequorivita, Buchnera, Azonexus and Thioalbus increased with the increase of CTC concentration.

  4. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially life-threatening infections. Other types of medical devices such as bronchoscopes and duod...

  5. Enhanced biofilm distribution and cell performance of microfluidic microbial fuel cells with multiple anolyte inlets.

    PubMed

    Yang, Yang; Ye, Dingding; Liao, Qiang; Zhang, Pengqing; Zhu, Xun; Li, Jun; Fu, Qian

    2016-05-15

    A laminar-flow controlled microfluidic microbial fuel cell (MMFC) is considered as a promising approach to be a bio-electrochemical system (BES). But poor bacterial colonization and low power generation are two severe bottlenecks to restrict its development. In this study, we reported a MMFC with multiple anolyte inlets (MMFC-MI) to enhance the biofilm formation and promote the power density of MMFCs. Voltage profiles during the inoculation process demonstrated MMFC-MI had a faster start-up process than the conventional microfluidic microbial fuel cell with one inlet (MMFC-OI). Meanwhile, benefited from the periodical replenishment of boundary layer near the electrode, a more densely-packed bacterial aggregation was observed along the flow direction and also the substantially low internal resistance for MMFC-MI. Most importantly, the output power density of MMFC-MI was the highest value among the reported µl-scale MFCs to our best knowledge. The presented MMFC-MI appears promising for bio-chip technology and extends the scope of microfluidic energy.

  6. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community.

    PubMed

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-06-08

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.

  7. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    PubMed Central

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  8. Microbial geomorphology: A neglected link between life and landscape

    NASA Astrophysics Data System (ADS)

    Viles, Heather A.

    2012-07-01

    Whilst recognition is increasing that life and landscapes are intimately related, as evidenced by growing research into ecosystem engineering, biogeomorphology and allied topics, the microbial contribution to such interactions has been relatively neglected. A revolution in environmental microbiology, based on molecular techniques, is now driving a reconsideration of the role of microbial processes in geomorphology at all scales. Recent research illustrates the hitherto unknown microbial diversity present in many extreme geomorphic environments, such as hyperarid deserts, subglacial lakes, hot springs, and much richer microbial life than previously suspected within the soils and sediments that blanket most other landscapes. Such microbial communities have been found to play important geomorphic roles across a wide range of environments, notably in weathering, precipitation of minerals and protecting surfaces from erosion. These geomorphic roles can also be conceptualised as examples of ecosystem engineering, and can pave the way for further plant-geomorphology and zoogeomorphology processes. Three key aspects which emerge from a review of microbial influences on Earth surface processes are a) that microbes play roles on a continuum from full control to passive involvement, b) that complex and widespread communities of microorganisms are involved and c) that microbial activity usually affects several Earth surface processes at once. Examples of the contribution of microbial life to geomorphology over long, medium and short timescales suggest that microorganisms play key geomorphological roles in two major situations; on the cusp between stable states, and in extreme environments where higher plant and animal life is limited and many abiotic processes are also constrained. The dominant link between microbial life and geomorphology appears to take on different forms depending on the timescale under consideration, with a stabilising microbial role apparent over short

  9. Microbial characterization of anode-respiring bacteria within biofilms developed from cultures previously enriched in dissimilatory metal-reducing bacteria.

    PubMed

    Pierra, Mélanie; Carmona-Martínez, Alessandro A; Trably, Eric; Godon, Jean-Jacques; Bernet, Nicolas

    2015-11-01

    This work evaluated the use of a culture enriched in DMRB as a strategy to enrich ARB on anodes. DMRB were enriched with Fe(III) as final electron acceptor and then transferred to a potentiostatically-controlled system with an anode as sole final electron acceptor. Three successive iron-enrichment cultures were carried out. The first step of enrichment revealed a successful selection of the high current-producing ARB Geoalkalibacter subterraneus. After few successive enrichment steps, the microbial community analysis in electroactive biofilms showed a significant divergence with an impact on the biofilm electroactivity. Enrichment of ARB in electroactive biofilms through the pre-selection of DMRB should therefore be carefully considered.

  10. Microbial life in the deep terrestrial subsurface

    SciTech Connect

    Fliermans, C.B.; Balkwill, D.L.; Beeman, R.E.

    1988-12-31

    The distribution and function of microorganisms is a vital issue in microbial ecology. The US Department of Energy`s Program, ``Microbiology of the Deep Subsurface,`` concentrates on establishing fundamental scientific information about organisms at depth, and the use of these organisms for remediation of contaminants in deep vadose zone and groundwater environments. This investigation effectively extends the Biosphere hundreds of meters into the Geosphere and has implications to a variety of subsurface activities.

  11. Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure.

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi; Gu, Qihao

    2017-02-01

    The growing production and application of CuO nanoparticles increase the chance that these particles will be released into wastewater treatment plants (WWTPs) and interact with microorganisms. However, the toxicity response mechanism of biofilm to NP exposure may be different from that of activated sludge due to the denser and stronger microbial aggregate structure of biofilm. Thus, in this study, the response to CuO NPs of wastewater biofilm collected from a rotating biological contactor was investigated. Short-term exposure (24h) to CuO NPs led to a great loss in cell viability, and SEM-EDS images revealed that the nano-CuO aggregates were not transformed to Cu-S species in the biofilm samples. In response, more extracellular polymeric substance (EPS) (especially loosely bound-EPS) was produced in wastewater biofilm exposed to CuO NPs, with a higher content of protein compared to polysaccharides. The shifts of fluorescence intensity and peak locations in 3D-EEM fluorescence spectra indicated chemical changes of the EPS components. FT-IR analysis revealed that exposure to nano-CuO had more distinct effects on the functional groups of proteins and polysaccharides in LB-EPS. Illumina sequencing of 16S rRNA gene amplicons revealed that CuO NPs enhanced bacterial diversity. The bacterial community structure significantly shifted, with a significantly increased abundance of Comamonas, a slight increase in Zoogloea, and a notable decrease in Flavobacterium. The shifts of these dominant genera may be associated with altered EPS production, which might result in microbial community function fluctuations. In conclusion, exposure to high concentrations of CuO NPs has the potential to shape wastewater biofilm bacterial community structure.

  12. Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water

    PubMed Central

    Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.

    2015-01-01

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  13. Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water.

    PubMed

    Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-06-15

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds.

  14. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    NASA Technical Reports Server (NTRS)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  15. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms.

    PubMed

    Nichols, P D; Henson, J M; Guckert, J B; Nivens, D E; White, D C

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  16. Revisiting life strategy concepts in environmental microbial ecology.

    PubMed

    Ho, Adrian; Di Lonardo, D Paolo; Bodelier, Paul L E

    2017-03-01

    Microorganisms are physiologically diverse, possessing disparate genomic features and mechanisms for adaptation (functional traits), which reflect on their associated life strategies and determine at least to some extent their prevalence and distribution in the environment. Unlike animals and plants, there is an unprecedented diversity and intractable metabolic versatility among bacteria, making classification or grouping these microorganisms based on their functional traits as has been done in animal and plant ecology challenging. Nevertheless, based on representative pure cultures, microbial traits distinguishing different life strategies had been proposed, and had been the focus of previous reviews. In the environment, however, the vast majority of naturally occurring microorganisms have yet to be isolated, restricting the association of life strategies to broad phylogenetic groups and/or physiological characteristics. Here, we reviewed the literature to determine how microbial life strategy concepts (i.e. copio- and oligotrophic strategists, and competitor-stress tolerator-ruderals framework) are applied in complex microbial communities. Because of the scarcity of direct empirical evidence elucidating the associated life strategies in complex communities, we rely heavily on observational studies determining the response of microorganisms to (a)biotic cues (e.g. resource availability) to infer microbial life strategies. Although our focus is on the life strategies of bacteria, parallels were drawn from the fungal community. Our literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions. This suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect in community response

  17. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera.

    PubMed

    Kiely, Patrick D; Call, Douglas F; Yates, Matthew D; Regan, John M; Logan, Bruce E

    2010-09-01

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (approximately 30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m(2), whereas the original mixed culture produced up to 10 mW/m(2). Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m(2)) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates.

  18. Regenerable Microbial Check Valve - Life cycle tests results

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.; Flanagan, David T.

    1992-01-01

    Life cycle regeneration testing of the Microbial Check Valve (MCV) that is used on the Shuttle Orbiter to provide microbial control of potable water is currently in progress. Four beds are being challenged with simulated reclaimed waters and repeatedly regenerated. Preliminary results indicate that contaminant systems exhibit unique regeneration periodicities. Cyclic throughput diminishes with increasing cumulative flow. It is considered to be feasible to design a regenerable MCV system which will function without human intervention and with minimal resupply penalty for the 30 year life of the Space Station.

  19. Experimental evolution in biofilm populations

    PubMed Central

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  20. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Li, Chang Ming

    2016-10-01

    To overcoming their respective shortcomings of graphene and carbon nanotube, a hierarchically porous multi-walled carbon nanotube@reduced graphene oxide (MWCNT@rGO) hybrid is fabricated through a versatile and scalable solvent method, in which the architecture is tailored by inserting MWCNTs as scaffolds into the rGO skeleton. An appropriate amount of inserted 1-D MWCNTs not only effectively prevent the aggregation of rGO sheets but also act as bridges to increase multidirectional connections between 2-D rGO sheets, resulting in a 3-D hierarchically porous structure with large surface area and excellent biocompatibility for rich bacterial biofilm and high electron transfer rate. The MWCNT@rGO1:2/biofilm anode delivers a maximum power density of 789 mW m-2 in Shewanella putrefaciens CN32 microbial fuel cells, which is much higher than that of individual MWCNT and rGO, in particular, 6-folder higher than that of conventional carbon cloth. The great enhancement is ascribed to a synergistic effect of the integrated biofilm and hierarchically porous structure of MWCNT@rGO1:2/biofilm anode, in which the biofilm provides a large amount of bacterial cells to raise the concentration of local electron shuttles for accelerating the direct electrochemistry on the 3-D hierarchically porous structured anodes.

  1. Structure and microbial diversity of biofilms on different pipe materials of a model drinking water distribution systems.

    PubMed

    Rożej, Agnieszka; Cydzik-Kwiatkowska, Agnieszka; Kowalska, Beata; Kowalski, Dariusz

    2015-01-01

    The experiment was conducted in three model drinking water distribution systems (DWDSs) made of unplasticized polyvinyl chloride (PVC), silane cross-linked polyethylene (PEX) and high density polyethylene (HDPE) pipes to which tap water was introduced. After 2 years of system operation, microbial communities in the DWDSs were characterized with scanning electron microscopy, heterotrophic plate count, and denaturing gradient gel electrophoresis. The most extensive biofilms were found in HDPE pipes where bacteria were either attached to mineral deposits or immersed in exopolymers. On PEX surfaces, bacteria did not form large aggregates; however, they were present in the highest number (1.24 × 10(7) cells cm(-2)). PVC biofilm did not contain mineral deposits but was made of single cells with a high abundance of Pseudomonas aeruginosa, which can be harmful to human health. The members of Proteobacteria and Bacteroidetes were found in all biofilms and the water phase. Sphingomonadales and Methylophilaceae bacteria were found only in PEX samples, whereas Geothrix fermentans, which can reduce Fe(III), were identified only in PEX biofilm. The DNA sequences closely related to the members of Alphaproteobacteria were the most characteristic and intense amplicons detected in the HDPE biofilm.

  2. Bad to the Bone: On In Vitro and Ex Vivo Microbial Biofilm Ability to Directly Destroy Colonized Bone Surfaces without Participation of Host Immunity or Osteoclastogenesis

    PubMed Central

    Junka, Adam; Szymczyk, Patrycja; Ziółkowski, Grzegorz; Karuga-Kuzniewska, Ewa; Smutnicka, Danuta; Bil-Lula, Iwona; Bartoszewicz, Marzenna; Mahabady, Susan; Sedghizadeh, Parish Paymon

    2017-01-01

    Bone infections are a significant public health burden associated with morbidity and mortality in patients. Microbial biofilm pathogens are the causative agents in chronic osteomyelitis. Research on the pathogenesis of osteomyelitis has focused on indirect bone destruction by host immune cells and cytokines secondary to microbial insult. Direct bone resorption by biofilm pathogens has not yet been seriously considered. In this study, common osteomyelitis pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Streptococcus mutans) were grown as biofilms in multiple in vitro and ex vivo experiments to analyze quantitative and qualitative aspects of bone destruction during infection. Pathogens were grown as single or mixed species biofilms on the following substrates: hydroxyapatite, rat jawbone, or polystyrene wells, and in various media. Biofilm growth was evaluated by scanning electron microscopy and pH levels were monitored over time. Histomorphologic and quantitative effects of biofilms on tested substrates were analyzed by microcomputed tomography and quantitative cultures. All tested biofilms demonstrated significant damage to bone. Scanning electron microscopy indicated that all strains formed mature biofilms within 7 days on all substrate surfaces regardless of media. Experimental conditions impacted pH levels, although this had no impact on biofilm growth or bone destruction. Presence of biofilm led to bone dissolution with a decrease of total volume by 20.17±2.93% upon microcomputed tomography analysis, which was statistically significant as compared to controls (p <0.05, ANOVA). Quantitative cultures indicated that media and substrate did not impact biofilm formation (Kruskall-Wallis test, post-hoc Dunne’s test; p <0.05). Overall, these results indicate that biofilms associated with osteomyelitis have the ability to directly resorb bone. These findings should lead to a more complete understanding of the etiopathogenesis of

  3. Bad to the Bone: On In Vitro and Ex Vivo Microbial Biofilm Ability to Directly Destroy Colonized Bone Surfaces without Participation of Host Immunity or Osteoclastogenesis.

    PubMed

    Junka, Adam; Szymczyk, Patrycja; Ziółkowski, Grzegorz; Karuga-Kuzniewska, Ewa; Smutnicka, Danuta; Bil-Lula, Iwona; Bartoszewicz, Marzenna; Mahabady, Susan; Sedghizadeh, Parish Paymon

    2017-01-01

    Bone infections are a significant public health burden associated with morbidity and mortality in patients. Microbial biofilm pathogens are the causative agents in chronic osteomyelitis. Research on the pathogenesis of osteomyelitis has focused on indirect bone destruction by host immune cells and cytokines secondary to microbial insult. Direct bone resorption by biofilm pathogens has not yet been seriously considered. In this study, common osteomyelitis pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Streptococcus mutans) were grown as biofilms in multiple in vitro and ex vivo experiments to analyze quantitative and qualitative aspects of bone destruction during infection. Pathogens were grown as single or mixed species biofilms on the following substrates: hydroxyapatite, rat jawbone, or polystyrene wells, and in various media. Biofilm growth was evaluated by scanning electron microscopy and pH levels were monitored over time. Histomorphologic and quantitative effects of biofilms on tested substrates were analyzed by microcomputed tomography and quantitative cultures. All tested biofilms demonstrated significant damage to bone. Scanning electron microscopy indicated that all strains formed mature biofilms within 7 days on all substrate surfaces regardless of media. Experimental conditions impacted pH levels, although this had no impact on biofilm growth or bone destruction. Presence of biofilm led to bone dissolution with a decrease of total volume by 20.17±2.93% upon microcomputed tomography analysis, which was statistically significant as compared to controls (p <0.05, ANOVA). Quantitative cultures indicated that media and substrate did not impact biofilm formation (Kruskall-Wallis test, post-hoc Dunne's test; p <0.05). Overall, these results indicate that biofilms associated with osteomyelitis have the ability to directly resorb bone. These findings should lead to a more complete understanding of the etiopathogenesis of

  4. Microbial biofilm proliferation within sealer-root dentin interfaces is affected by sealer type and aging period

    PubMed Central

    Roth, Karina A; Friedman, Shimon; Lévesque, Céline M; Basrani, Bettina R; Finer, Yoav

    2012-01-01

    Background Root canal fillings are intended to prevent microbial proliferation over time in the canal after treatment. Objective To assess biofilm proliferation within the sealer-dentin interfaces of two methacrylate resin-based systems, self-etch (SE) and total-etch (TE), and an epoxy resin-based sealer (EP), aged for up to 6 months. Methods Standardized specimens (n=45) comprising the coronal 5 mm of human roots were filled with the test materials and gutta-percha. Specimens were either not pre-incubated (control; n=9), or incubated in sterile saline for 1 week, 1 month, 3 months or 6 months (n=3/group). Monospecies biofilms of Enterococcus faecalis were grown on the specimens for 7 days in a chemostat-based biofilm fermentor mimicking pathogenic oral conditions. The extent of E. faecalis proliferation within the sealer-dentin interface for each material and incubation period group was assessed using fluorescence microscopy of dihydroethidium-stained specimens. Results TE had less biofilm proliferation than both EP and SE (p<0.01). Deeper biofilm proliferation was detected in SE and EP specimens aged for 1 and 3 months than those aged for 1 week or 6 months (p<0.05). Maximum depth of biofilm penetration was recorded for SE at 1 month (p<0.05). Conclusion Within the test model used, the self-etch and epoxy resin-based sealers were more susceptible to interfacial biofilm proliferation than the total-etch restorative material. This susceptibility diminished after aging the materials’ interfaces for 6 months. PMID:22892745

  5. Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure.

    PubMed

    Stevenson, Bradley S; Drilling, Heather S; Lawson, Paul A; Duncan, Kathleen E; Parisi, Victoria A; Suflita, Joseph M

    2011-04-01

    The oil-water-gas environments of oil production facilities harbour abundant and diverse microbial communities that can participate in deleterious processes such as biocorrosion. Several molecular methods, including pyrosequencing of 16S rRNA libraries, were used to characterize the microbial communities from an oil production facility on the Alaskan North Slope. The communities in produced water and a sample from a 'pig envelope' were compared in order to identify specific populations or communities associated with biocorrosion. The 'pigs' are used for physical mitigation of pipeline corrosion and fouling and the samples are enriched in surface-associated solids (i.e. paraffins, minerals and biofilm) and coincidentally, microorganisms (over 10(5) -fold). Throughout the oil production facility, bacteria were more abundant (10- to 150-fold) than archaea, with thermophilic members of the phyla Firmicutes (Thermoanaerobacter and Thermacetogenium) and Synergistes (Thermovirga) dominating the community. However, the structure (relative abundances of taxa) of the microbial community in the pig envelope was distinct due to the increased relative abundances of the genera Thermacetogenium and Thermovirga. The data presented here suggest that bulk fluid is representative of the biofilm communities associated with biocorrosion but that certain populations are more abundant in biofilms, which should be the focus of monitoring and mitigation strategies.

  6. Molecular characterization of microbial communities and quantification of Mycobacterium immunogenum in metal removal fluids and their associated biofilms.

    PubMed

    Wu, Jianfeng; Franzblau, Alfred; Xi, Chuanwu

    2016-03-01

    A number of human health effects have been associated with exposure to metal removal fluids (MRFs). Multiple lines of research suggest that a newly identified organism, Mycobacterium immunogenum (MI), appears to have an etiologic role in hypersensitivity pneumonitis (HP) in case of MRFs exposed workers. However, our knowledge of this organism, other possible causative agents (e.g., Pseudomonads), and the microbial ecology of MRFs in general, is limited. In this study, culture-based methods and small subunit ribosomal RNA gene clone library approach were used to characterize microbial communities in MRF bulk fluid and associated biofilm samples collected from fluid systems in an automobile engine plant. PCR amplification data using universal primers indicate that all samples had bacterial and fungal contaminated. Five among 15 samples formed colonies on the Mycobacteria agar 7H9 suggesting the likely presence of Mycobacteria in these five samples. This observation was confirmed with PCR amplification of 16S rRNA gene fragment using Mycobacteria specific primers. Two additional samples, Biofilm-1 and Biofilm-3, were positive in PCR amplification for Mycobacteria, yet no colonies formed on the 7H9 cultivation agar plates. Real-time PCR was used to quantify the abundance of M. immunogenum in these samples, and the data showed that the copies of M. immunogenum 16S rRNA gene in the samples ranges from 4.33 × 10(4) copy/ml to 4.61 × 10(7) copy/ml. Clone library analysis revealed that Paecilomyces sp. and Acremonium sp. and Acremonium-like were dominant fungi in MRF samples. Various bacterial species from the major phylum of proteobacteria were found and Pseudomonas is the dominant bacterial genus in these samples. Mycobacteria (more specifically MI) were found in all biofilm samples, including biofilms collected from inside the MRF systems and from adjacent environmental surfaces, suggesting that biofilms may play an important role in microbial ecology in MRFs

  7. A Novel Strategy for Control of Microbial Biofilms through Generation of Biocide at the Biofilm-Surface Interface

    PubMed Central

    Wood, P.; Jones, M.; Bhakoo, M.; Gilbert, P.

    1996-01-01

    Biofilms of a mucoid clinical isolate of Pseudomonas aeruginosa (24 h; ca. 10(sup6) CFU/cm(sup2)) were established by immersion of polymer discs in nutrient broth cultures at 37(deg)C. Biofilms exposed for 30 min to various concentrations (0 to 3 mg/ml) of hydrogen peroxide or potassium monopersulfate were rinsed and shaken vigorously in sterile saline to detach loosely associated cells, and the residual viable attached population was quantified by a blot succession method on agar plates. Incorporation of copper and cobalt phthalocyanine catalysts within the polymers significantly enhanced the activity of these oxidizing biocides towards biofilm bacteria by several orders of magnitude. Biofilms established on the control discs resisted treatment with concentrations of either agent of up to 3 mg/ml. Enhancement through incorporation of a catalyst was such that concentrations of potassium monopersulfate of as low as 20 (mu)g/ml gave no recoverable survivors either on the discs or within the washings. Catalysts such as these will promote the formation of active oxygen species from a number of oxidizing agents such as peroxides and persulfates, and it is thought that generation of these at the surface-biofilm interface concentrates the antimicrobial effect to the interfacial cells and generates a diffusion pump which further provides active species to the biofilm matrix. The survivors of low-concentration treatments with these agents were more readily removed from the catalyst-containing discs than from the control discs. This indicated advantages gained in hygienic cleansing of such modified surfaces. PMID:16535366

  8. Atmospheres and evolution. [of microbial life on earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1981-01-01

    Studies concerning the regulation of the earth atmosphere and the relation of atmospheric changes to the evolution of microbial life are reviewed. The improbable nature of the composition of the earth atmosphere in light of the atmospheric compositions of Mars and Venus and equilibrium considerations is pointed out, and evidence for the existence of microbial (procaryotic) life on earth as far back as 3.5 billion years ago is presented. The emergence of eucaryotic life in the Phanerozoic due to evolving symbioses between different procaryotic species is discussed with examples given of present-day symbiotic relationships between bacteria and eucaryotes. The idea that atmospheric gases are kept in balance mainly by the actions of bacterial cells is then considered, and it is argued that species diversity is necessary for the maintenance and origin of life on earth in its present form.

  9. Slow Microbial Life in the Seabed

    NASA Astrophysics Data System (ADS)

    Jørgensen, Bo Barker; Marshall, Ian P. G.

    2016-01-01

    Global microbial cell numbers in the seabed exceed those in the overlying water column, yet these organisms receive less than 1% of the energy fixed as organic matter in the ocean. The microorganisms of this marine deep biosphere subsist as stable and diverse communities with extremely low energy availability. Growth is exceedingly slow, possibly regulated by virus-induced mortality, and the mean generation times are tens to thousands of years. Intermediate substrates such as acetate are maintained at low micromolar concentrations, yet their turnover time may be several hundred years. Owing to slow growth, a cell community may go through only 10,000 generations from the time it is buried beneath the mixed surface layer until it reaches a depth of tens of meters several million years later. We discuss the efficiency of the energy-conserving machinery of subsurface microorganisms and how they may minimize energy consumption through necessary maintenance, repair, and growth.

  10. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.

    2014-12-01

    Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that

  11. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools

  12. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    PubMed

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  13. Raoultella electrica sp. nov., isolated from anodic biofilms of a glucose-fed microbial fuel cell.

    PubMed

    Kimura, Zen-ichiro; Chung, Kyung Mi; Itoh, Hiroaki; Hiraishi, Akira; Okabe, Satoshi

    2014-04-01

    A Gram-stain-negative, non-spore-forming, rod-shaped bacterium, designated strain 1GB(T), was isolated from anodic biofilms of a glucose-fed microbial fuel cell. Strain 1GB(T) was facultatively anaerobic and chemo-organotrophic, having both a respiratory and a fermentative type of metabolism, and utilized a wide variety of sugars as carbon and energy sources. Cells grown aerobically contained Q-8 as the major quinone, but excreted Q-9 and a small amount of Q-10 when cultured with an electrode serving as the sole electron acceptor. The G+C content of the genomic DNA of 1GB(T) was 54.5 mol%. Multilocus sequence typing (MLST) analysis showed that strain 1GB(T) represented a distinct lineage within the genus Raoultella (98.5-99.4 % 16S rRNA gene sequence similarity and 94.0-96.5 % sequence similarity based on the three concatenated housekeeping genes gyrA, rpoB and parC. Strain 1GB(T) exhibited DNA-DNA hybridization relatedness of 7-43 % with type strains of all established species of the genus Raoultella. On the basis of these phenotypic, phylogenetic and genotypic data, the name Raoultella electrica sp. nov. is proposed for strain 1GB(T). The type strain is 1GB(T) ( = NBRC 109676(T) = KCTC 32430(T)).

  14. Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell.

    PubMed

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-01-01

    A Gram-negative, non-spore-forming, rod-shaped bacterial strain, AR20(T), was isolated from anodic biofilms of an acetate-fed microbial fuel cell in Japan and subjected to a polyphasic taxonomic study. Strain AR20(T) grew optimally at pH 7.0-8.0 and 25°C. It contained Q-8 as the predominant ubiquinone and C16:0, summed feature 3 (C16:1ω7c and/or iso-C15:02OH), and C18:1ω7c as the major fatty acids. The DNA G+C content was 67.1 mol%. A neighbor-joining phylogenetic tree revealed that strain AR20(T) clustered with three type strains of the genus Hydrogenophaga (H. flava, H. bisanensis and H. pseudoflava). Strain AR20(T) exhibited 16S rRNA gene sequence similarity values of 95.8-97.7% to the type strains of the genus Hydrogenophaga. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain AR20(T) is considered a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga electricum sp. nov. is proposed. The type strain is AR20(T) (= KCTC 32195(T) = NBRC 109341(T)).

  15. Impact of sulfadiazine on performance and microbial community of a sequencing batch biofilm reactor treating synthetic mariculture wastewater.

    PubMed

    Li, Zhiwei; Chang, Qingbo; Li, Shanshan; Gao, Mengchun; She, Zonglian; Guo, Liang; Zhao, Yangguo; Jin, Chunji; Zheng, Dong; Xu, Qiaoyan

    2017-03-22

    The impact of sulfadiazine on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater due to the application of sulfadiazine as an antibiotic in mariculture. The COD and nitrogen removals kept stable at 0-6mg/L sulfadiazine and were inhibited at 10-35mg/L sulfadiazine. The microbial activities related to organic matter and nitrogen removals reduced with an increase in sulfadiazine concentration. The presence of sulfadiazine could affect the production and chemical composition of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) in the biofilm. High-throughput sequencing demonstrated that sulfadiazine could impact on the microbial richness and diversity of SBBR treating mariculture wastewater. The relative abundances of Nitrosomonas, Nitrospira, Paracoccus, Hyphomicrobium, Rhodanobacter, Thauera and Steroidobacter decreased with an increase in sulfadiazine concentration, indicating that the presence of sulfadiazine decreased the relative abundance of some nitrifying and denitrifying bacteria.

  16. Backwash intensity and frequency impact the microbial community structure and function in a fixed-bed biofilm reactor.

    PubMed

    Li, Xu; Yuen, Wangki; Morgenroth, Eberhard; Raskin, Lutgarde

    2012-11-01

    Linkages among bioreactor operation and performance and microbial community structure were investigated for a fixed-bed biofilm system designed to remove perchlorate from drinking water. Perchlorate removal was monitored to evaluate reactor performance during and after the frequency and intensity of the backwash procedure were changed, while the microbial community structure was studied using clone libraries and quantitative PCR targeting the 16S rRNA gene. When backwash frequency was increased from once per month to once per day, perchlorate removal initially deteriorated and then recovered, and the relative abundance of perchlorate-reducing bacteria (PRB) initially increased and then decreased. This apparent discrepancy suggested that bacterial populations other than PRB played an indirect role in perchlorate removal, likely by consuming dissolved oxygen, a competing electron acceptor. When backwash intensity was increased, the reactor gradually lost its ability to remove perchlorate, and concurrently the relative abundance of PRB decreased. The results indicated that changes in reactor operation had a profound impact on reactor performance through altering the microbial community structure. Backwashing is an important yet poorly characterized procedure when operating fixed-bed biofilm reactors. Compared to backwash intensity, changes in backwash frequency exerted less disturbance on the microbial community in the current study. If this finding can be confirmed in future work, backwash frequency may serve as the primary parameter when optimizing backwash procedures.

  17. Medical Biofilms

    PubMed Central

    2009-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation. Unwanted biofilms can create enormous increases in fluid frictional resistances, unacceptable reductions in heat transfer efficiency, product contamination, enhanced material deterioration, and accelerated corrosion. Missing from B&B has been an equivalent research dialogue regarding the basic molecular microbiology, immunology, and biotechnological aspects of medical biofilms. Presented here are the current problems related to medical biofilms; current concepts of biofilm formation, persistence, and interactions with the host immune system; and emerging technologies for controlling medical biofilms. PMID:18366134

  18. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    PubMed Central

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  19. Microbial adhesion and biofilm formation on microfiltration membranes: a detailed characterization using model organisms with increasing complexity.

    PubMed

    Vanysacker, L; Denis, C; Declerck, P; Piasecka, A; Vankelecom, I F J

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  20. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model.

    PubMed

    Thurnheer, T; Bostanci, N; Belibasakis, G N

    2016-04-01

    The development of dental caries and periodontal diseases result from distinct shifts in the microbiota of the tooth-associated biofilm. This in vitro study aimed to investigate changes in biofilm composition and structure, during the shift from a 'supragingival' aerobic profile to a 'subgingival' anaerobic profile. Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans and Veillonella dispar were aerobically grown in saliva-containing medium on hydroxyapatite disks. After 64 h, Campylobacter rectus, Prevotella intermedia and Streptococcus anginosus were further added along with human serum, while culture conditions were shifted to microaerophilic. After 96 h, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were finally added and the biofilm was grown anaerobically for another 64 h. At the end of each phase, biofilms were harvested for species-specific quantification and localization. Apart from C. albicans, all other species gradually increased during aerobic and microaerophilic conditions, but remained steady during anaerobic conditions. Biofilm thickness was doubled during the microaerophilic phase, but remained steady throughout the anaerobic phase. Extracellular polysaccharide presence was gradually reduced throughout the growth period. Biofilm viability was reduced during the microaerophilic conversion, but was recovered during the anaerobic phase. This in vitro study has characterized the dynamic structural shifts occurring in an oral biofilm model during the switch from aerobic to anaerobic conditions, potentially modeling the conversion of supragingival to subgingival biofilms. Within the limitations of this experimental model, the findings may provide novel insights into the ecology of oral biofilms.

  1. COD and nitrogen removal and microbial communities in a novel waterfall biofilm reactor operated at different COD/TN ratios.

    PubMed

    Wang, Siyao; Pu, Yuewu; Wei, Cheng

    2017-01-28

    The aim of this study was to characterize the pollutant removal efficiency and the microbial communities that arose in a newly designed waterfall biofilm reactor (WFBR) at different chemical oxygen demand/total nitrogen (COD/TN) ratios. The reactor was operated continuously for 28 days at different COD/TN ratios, and its efficiency was evaluated. Results showed that as the thickness of the biofilm increased, the structure of the biofilm encouraged anaerobic-aerobic, anoxic-anaerobic, and fully anaerobic conditions in one reactor. The COD/TN ratios used had a significant effect on the removal of COD and nitrogen components. At a COD/TN ratio of 14, the ammonium nitrogen removal efficiency reached its highest value (99%), but the COD removal efficiency remained at approximately 90%. High-throughput sequencing revealed that the highest community diversity and richness were seen at a COD/TN ratio of 18, and the major phyla were Proteobacteria (average abundance of 47%), Actinobacteria (24%), and Bacteroidetes (13%). As the COD/TN ratios increased from 7 to 18, the abundance of Proteobacteria gradually increased from 25% to 68%. These results could provide important guidance for the design of new wastewater treatment systems and also enrich our theoretical understanding of microbial ecology.

  2. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells.

    PubMed

    Ren, Zhiyong; Ramasamy, Ramaraja P; Cloud-Owen, Susan Red; Yan, Hengjing; Mench, Matthew M; Regan, John M

    2011-01-01

    The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance.

  3. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    SciTech Connect

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  4. A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment.

    PubMed

    Nasrolahi, Ali; Stratil, Stephanie B; Jacob, Katharina J; Wahl, Martin

    2012-09-01

    Effects of epibiotic bacteria associated with macroalgae on barnacle larval attachment were investigated. Eight bacterial isolates obtained from samples of three macroalga species were cultured as monospecies bacterial films and tested for their activity against barnacle (Amphibalanus improvisus) attachment in field experiments (Western Baltic Sea). Furthermore, natural biofilm communities associated with the surface of the local brown alga, Fucus vesiculosus, which were exposed to different temperatures (5, 15 and 20 °C), were harvested and subsequently tested. Generally, monospecies bacterial biofilms, as well as natural microbial assemblages, inhibited barnacle attachment by 20-67%. denaturing gradient gel electrophoresis fingerprints showed that temperature treatment shifted the bacterial community composition and weakened the repellent effects at 20 °C. Repellent effects were absent when settlement pressure of cyprids was high. Nonviable bacteria tended to repel cyprids when compared to the unfilmed surfaces. We conclude that biofilms can have a repellent effect benefiting the host by preventing heavy fouling on its surface. However, severe settlement pressure, as well as stressful temperature, may reduce the protective effects of the alga's biofilm. Our results add to the notion that the performance of F. vesiculosus may be reduced by multiple stressors in the course of global warming.

  5. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  6. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  7. Modeling the Effects of Hydrodynamic Regimes on Microbial Communities within Fluvial Biofilms: Combining Deterministic and Stochastic Processes.

    PubMed

    Li, Yi; Wang, Chao; Zhang, Wenlong; Wang, Peifang; Niu, Lihua; Hou, Jun; Wang, Jing; Wang, Linqiong

    2015-11-03

    To fully understand the effects of hydrodynamics on a microbial community, the roles of niche-based and neutral processes must be considered in a mathematical model. To this end, a two-dimensional model combining mechanisms of immigration, dispersal, and niche differentiation was first established to describe the effects of hydrodynamics on bacterial communities within fluvial biofilms. Deterministic factors of the model were identified via the calculation of Spearman's rank correlation coefficients between parameters of hydrodynamics and the bacterial community. It was found that turbulent kinetic energy and turbulent intensity were considered as a set of reasonable predictors of community composition, whereas flow velocity and turbulent intensity can be combined together to predict biofilm bacterial biomass. According to the modeling result, the bacterial community could get its favorable assembly condition with a flow velocity ranging from 0.041 to 0.061 m/s. However, the driving force for biofilm community assembly changed with the local hydrodynamics. Individuals reproduction within the biofilm was the main driving force with flow velocity less than 0.05 m/s, while cell migration played a much more important role with velocity larger than 0.05 m/s. The developed model could be considered as a useful tool for improving the technologies of water environment protection and remediation.

  8. [Biofilms and their significance in medical microbiology].

    PubMed

    Cernohorská, L; Votava, M

    2002-11-01

    Microorganisms are able to adhere to various surfaces and to form there a three-dimensional structure known as biofilm. In biofilms, microbial cells show characteristics and behaviours different from those of plankton cells. Intercellular signalizations of the quorum-sensing type regulate interaction between members of the biofilm. Bacteria embedded in the biofilm can escape and form well known planktonic forms, that are obviously only a part of the bacterial life cycle. Bacteria adhere also to medically important surfaces such as catheters, either urinary or intravenous ones, artificial heart valves, orthopedic implants and so on and contribute to device-related infections like cystitis, catheter-related sepsis, endocarditis etc. Once a biofilm has been established on a surface, the bacteria harboured inside are less exposed to the host's immune response and less susceptible to antibiotics. As an important cause of nosocomial infections the biofilm must remain in the centre of the microbiologist's attention.

  9. Sub-Optimal Treatment of Bacterial Biofilms

    PubMed Central

    Song, Tianyan; Duperthuy, Marylise; Wai, Sun Nyunt

    2016-01-01

    Bacterial biofilm is an emerging clinical problem recognized in the treatment of infectious diseases within the last two decades. The appearance of microbial biofilm in clinical settings is steadily increasing due to several reasons including the increased use of quality of life-improving artificial devices. In contrast to infections caused by planktonic bacteria that respond relatively well to standard antibiotic therapy, biofilm-forming bacteria tend to cause chronic infections whereby infections persist despite seemingly adequate antibiotic therapy. This review briefly describes the responses of biofilm matrix components and biofilm-associated bacteria towards sub-lethal concentrations of antimicrobial agents, which may include the generation of genetic and phenotypic variabilities. Clinical implications of bacterial biofilms in relation to antibiotic treatments are also discussed. PMID:27338489

  10. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.

    PubMed

    Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi

    2009-10-01

    Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was

  11. The Universe: a Cryogenic Habitat for Microbial Life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    Panspermia, an ancient idea, posits that microbial life is ubiquitous in the Universe. After several decades of almost irrational rejection, panspermia is at last coming to be regarded as a serious contender for the beginnings of life on our planet. Astronomical data is shown to be consistent with the widespread distribution of complex organic molecules and dust particles that may have a biological provenance. A minuscule (10-21) survival rate of freeze-dried bacteria in space is all that is needed to ensure the continual recycling of cosmic microbial life in the galaxy. Evidence that terrestrial life may have come from elsewhere in the solar system has accumulated over the past decade. Mars is seen by some as a possible source of terrestrial life, but some hundreds of billions of comets that enveloped the entire solar system, are a far more likely primordial reservoir of life. Comets would then have seeded Earth, Mars, and indeed all other habitable planetary bodies in the inner regions of the solar system. The implications of this point of view, which was developed in conjunction with the late Sir Fred Hoyle since the 1970's, are now becoming amenable to direct empirical test by studies of pristine organic material in the stratosphere. The ancient theory of panspermia may be on the verge of vindication, in which case the entire universe would be a grand crucible of cryomicrobiology.

  12. The universe: a cryogenic habitat for microbial life.

    PubMed

    Wickramasinghe, Chandra

    2004-04-01

    Panspermia, an ancient idea, posits that microbial life is ubiquitous in the Universe. After several decades of almost irrational rejection, panspermia is at last coming to be regarded as a serious contender for the beginnings of life on our planet. Astronomical data is shown to be consistent with the widespread distribution of complex organic molecules and dust particles that may have a biological provenance. A minuscule (10(-21)) survival rate of freeze-dried bacteria in space is all that is needed to ensure the continual re-cycling of cosmic microbial life in the galaxy. Evidence that terrestrial life may have come from elsewhere in the solar system has accumulated over the past decade. Mars is seen by some as a possible source of terrestrial life, but some hundreds of billions of comets that enveloped the entire solar system, are a far more likely primordial reservoir of life. Comets would then have seeded Earth, Mars, and indeed all other habitable planetary bodies in the inner regions of the solar system. The implications of this point of view, which was developed in conjunction with the late Sir Fred Hoyle since the 1970s, are now becoming amenable to direct empirical test by studies of pristine organic material in the stratosphere. The ancient theory of panspermia may be on the verge of vindication, in which case the entire universe would be a grand crucible of cryomicrobiology.

  13. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    PubMed

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-02-15

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.The Journal of Antibiotics advance online publication, 15 February 2017; doi:10.1038/ja.2017.10.

  14. Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): investigation at the single-cell level.

    PubMed

    Borderie, Fabien; Denis, Michel; Barani, Aude; Alaoui-Sossé, Badr; Aleya, Lotfi

    2016-06-01

    The authors investigated the microbial composition of phototrophic biofilms proliferating in a show cave using flow cytometry for the first time in such a context. Results are based on several biofilms sampled in the Moidons Caves (France) and concern both heterotrophic prokaryotes and autotrophic microorganisms. Heterotrophic microorganisms with low nucleic acid content were dominant in biofilms, as can be expected from the oligotrophic conditions prevailing within the cave. Analysis of the biofilm autotrophic components revealed the presence of several taxa, particularly the unicellular green algae Chlorella minutissima, specifically well adapted to this cave. Relationships between flow cytometry results and environmental variables determined in the cave were established and discussed so as to better understand biofilm proliferation processes in caves.

  15. Toxic metal resistance in biofilms: diversity of microbial responses and their evolution.

    PubMed

    Koechler, Sandrine; Farasin, Julien; Cleiss-Arnold, Jessica; Arsène-Ploetze, Florence

    2015-12-01

    Since biofilms are an important issue in the fields of medicine and health, several recent microbiological studies have focused on their formation and their contribution to toxic compound resistance mechanisms. In this review, we describe how metals impact biofilm formation and resistance, and how biofilms can help cells resist toxic metals. First, the organic matrix acts as a barrier isolating the cells from many environmental stresses. Secondly, the metabolism of the cells changes, and a slowly-growing or non-growing sub-population of cells known as persisters emerges. Thirdly, in the case of multispecies biofilms, metabolic interactions are developed, allowing cells to be more persistent or to have greater capacity to survive than a single species biofilm. Finally, we discuss how the high density of the cells may promote horizontal gene transfer processes, resulting in the acquisition of new features. All these crucial mechanisms enable microorganisms to survive and colonize toxic environments, and probably accelerate ongoing evolutionary processes.

  16. Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments.

    PubMed

    Marcato-Romain, C E; Pechaud, Y; Paul, E; Girbal-Neuhauser, E; Dossat-Létisse, V

    2012-01-01

    This study aimed to characterize biofilms from the paper industry and evaluate the effectiveness of enzymatic treatments in reducing them. The extracellular polymeric substances (EPS) extracted from six industrial biofilms were studied. EPS were mainly proteins, the protein to polysaccharide ratio ranging from 1.3 to 8.6 depending on where the sampling point was situated in the paper making process. Eight hydrolytic enzymes were screened on a 24-h multi-species biofilm. The enzymes were tested at various concentrations and contact durations. Glycosidases and lipases were inefficient or only slightly efficient for biofilm reduction, while proteases were more efficient: after treatment for 24 h with pepsin, Alcalase® or Savinase®, the removal exceeded 80%. Savinase® appeared to be the most adequate for industrial conditions and was tested on an industrial biofilm sample. This enzyme led to a significant release of proteins from the EPS matrix, indicating its potential efficiency on an industrial scale.

  17. Subduction zone forearc serpentinites as incubators for deep microbial life.

    PubMed

    Plümper, Oliver; King, Helen E; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P; Rost, Detlef; Zack, Thomas

    2017-04-10

    Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ∼10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth's largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth's history such as the late heavy bombardment and global mass extinctions.

  18. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems

    PubMed Central

    Talagrand-Reboul, Emilie; Jumas-Bilak, Estelle; Lamy, Brigitte

    2017-01-01

    Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges. PMID:28163702

  19. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.

    PubMed

    Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry

    2015-10-15

    This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (<10 nT and 2 V/m) in the biofilm-exposed region at a distance of 1 m from the electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case.

  20. Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave-assisted solvothermal route

    NASA Astrophysics Data System (ADS)

    Qureshi, Nilam; Patil, Rajendra; Shinde, Manish; Umarji, Govind; Causin, Valerio; Gade, Wasudev; Mulik, Uttam; Bhalerao, Anand; Amalnerkar, Dinesh P.

    2015-03-01

    The incessant use of antibiotics against infectious diseases has translated into a vicious circle of developing new antibiotic drug and its resistant strains in short period of time due to inherent nature of micro-organisms to alter their genes. Many researchers have been trying to formulate inorganic nanoparticles-based antiseptics that may be linked to broad-spectrum activity and far lower propensity to induce microbial resistance than antibiotics. The way-out approaches in this direction are nanomaterials based (1) bactericidal and (2) bacteriostatic activities. We, herein, present hitherto unreported observations on microbial abatement using non-cytotoxic molybdenum disulfide nanostructures (MSNs) which are synthesized using microwave assisted solvothermal route. Inhibition of biofilm formation using MSNs is a unique feature of our study. Furthermore, this study evinces antimicrobial mechanism of MSNs by reactive oxygen species (ROS) dependent generation of superoxide anion radical via disruption of cellular functions.

  1. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    PubMed

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  2. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    PubMed Central

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  3. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.

    PubMed

    Nevin, K P; Richter, H; Covalla, S F; Johnson, J P; Woodard, T L; Orloff, A L; Jia, H; Zhang, M; Lovley, D R

    2008-10-01

    It has been previously noted that mixed communities typically produce more power in microbial fuel cells than pure cultures. If true, this has important implications for the design of microbial fuel cells and for studying the process of electron transfer on anode biofilms. To further evaluate this, Geobacter sulfurreducens was grown with acetate as fuel in a continuous flow 'ministack' system in which the carbon cloth anode and cathode were positioned in close proximity, and the cation-selective membrane surface area was maximized in order to overcome some of the electrochemical limitations that were inherent in fuel cells previously employed for the study of pure cultures. Reducing the size of the anode in order to eliminate cathode limitation resulted in maximum current and power densities per m(2) of anode surface of 4.56 A m(-2) and 1.88 W m(-2) respectively. Electron recovery as current from acetate oxidation was c. 100% when oxygen diffusion into the system was minimized. This performance is comparable to the highest levels previously reported for mixed communities in similar microbial fuel cells and slightly higher than the power output of an anaerobic sludge inoculum in the same ministack system. Minimizing the volume of the anode chamber yielded a volumetric power density of 2.15 kW m(-3), which is the highest power density per volume yet reported for a microbial fuel cell. Geobacter sulfurreducens formed relatively uniform biofilms 3-18 mum thick on the carbon cloth anodes. When graphite sticks served as the anode, the current density (3.10 A m(-2)) was somewhat less than with the carbon cloth anodes, but the biofilms were thicker (c. 50 mum) with a more complex pillar and channel structure. These results suggest that the previously observed disparity in power production in pure and mixed culture microbial fuel cell systems can be attributed more to differences in the fuel cell designs than to any inherent superior capability of mixed cultures to produce

  4. Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod

    PubMed Central

    Horváthová, Terézia; Babik, Wiesław; Bauchinger, Ulf

    2016-01-01

    Abstract Feeding on plant material is common among animals, but how different animals overcome the dietary deficiencies imposed by this feeding strategy is not well understood. Microorganisms are generally considered to play a vital role in the nutritional ecology of plant feeding animals. Commonly microbes living inside animal bodies are considered more important, but recent studies suggest external microbes significantly shape plant-feeding strategies in invertebrates. Here we investigate how external microbes that typically form biofilm on primary plant material affect growth rates in a terrestrial isopod species Porcellio scaber. We experimentally manipulated the amount of biofilm on three different primary diet sources and quantified growth and survival of individuals that fed on food with either a small or large amount of biofilm. In addition, we tested how dietary manipulation shapes the composition of bacterial communities in the gut. The presence of visible biofilm significantly affected the growth of isopods: individuals that fed on the primary diet source with a large amount of biofilm gained more mass than individuals feeding on a diet with marginal biofilm. Diet also significantly affected the bacterial gut community. The primary diet source mainly determined the taxonomic composition of the bacterial community in the isopod gut, whereas the amount of biofilm affected the relative abundance of bacterial taxa. Our study suggests that terrestrial isopods may cope with low-quality plant matter by feeding on biofilm, with decomposition of plant material by organisms outside of the feeding organism (here a terrestrial isopod) probably playing a major role. Future investigations may be directed towards the primary diet source, plant matter, and the secondary diet source, biofilm, and should assess if both components are indeed uptaken in detritivorous species. PMID:27110187

  5. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.

    PubMed

    Uría, Naroa; Muñoz Berbel, Xavier; Sánchez, Olga; Muñoz, Francesc Xavier; Mas, Jordi

    2011-12-01

    Current output of microbial fuel cells (MFCs) depends on a number of engineering variables mainly related to the design of the fuel cell reactor and the materials used. In most cases the engineering of MFCs relies on the premise that for a constant biomass, current output correlates well with the metabolic activity of the cells. In this study we analyze to what extent, MFC output is also affected by the mode of operation, emphasizing how discontinuous operation can affect temporal patterns of current output. The experimental work has been carried out with Shewanella oneidensis MR-1, grown in conventional two-chamber MFCs subject to periodic interruptions of the external circuit. Our results indicate that after closure of the external circuit, current intensity shows a peak that decays back to basal values. The result suggests that the MFC has the ability to store charge during open circuit situations. Further studies using chronoamperometric analyses were carried out using isolated biofilms of Shewanella oneidensis MR-1 developed in a MFC and placed in an electrochemistry chamber in the presence of an electron donor. The results of these studies indicate that the amount of excess current over the basal level released by the biofilm after periods of circuit disconnection is proportional to the duration of the disconnection period up to a maximum of approximately 60 min. The results indicate that biofilms of Shewanella oneidensis MR-1 have the ability to store charge when oxidizing organic substrates in the absence of an external acceptor.

  6. Trace metal interactions with microbial biofilms in natural and engineered systems

    SciTech Connect

    Lion, L.W.; Shuler, M.L.; Hsieh, K.M.; Ghiorse, W.C. )

    1988-01-01

    Trace metal adsorption and desorption are important processes in natural aquatic systems and in designed treatment systems. Adsorption of metals onto particulate matter and humic substances has been documented in fresh water and marine systems. Although biofilms coating surfaces are well documented, the chemical mechanisms concerning metal removal have not been investigated thoroughly. Biofilms consist predominantly of bacterial cells enmeshed in a network of negatively charged extracellular polymers. The biofilms are assumed to contain ferromanganese deposits which can play an important role in trace metal absorption. Microorganisms have developed resistance to metal toxicity, especially since the Industrial Revolution. Detoxification mechanisms include biomethylation, biosynthesis of intracellular traps, cellular efflux, synthesis of chelating agents, and surface precipitation. Mathematical models have been developed to describe various aspects of trace metal interaction with surfaces: (1) cellular growth, attachment, and polymer production; (2) metal binding to inorganic surfaces; (3) metal binding to cellular surfaces; and (4) biofilm model integrated with a metal-binding model.

  7. Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral fluorescence imaging methods were utilized to evaluate the potential of multispectral fluorescence methods for detection of pathogenic biofilm formations on four types of food contact surface materials: stainless steel, high density polyethylene (HDPE) commonly used for cutting boards,...

  8. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    PubMed

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density.

  9. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    PubMed Central

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  10. Uranium removal and microbial community in a H2-based membrane biofilm reactor.

    PubMed

    Zhou, Chen; Ontiveros-Valencia, Aura; Cornette de Saint Cyr, Louis; Zevin, Alexander S; Carey, Sara E; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2014-11-01

    We evaluated a hydrogen-based membrane biofilm reactor (MBfR) for its capacity to reduce and remove hexavalent uranium [U(VI)] from water. After a startup period that allowed slow-growing U(VI) reducers to form biofilms, the MBfR successfully achieved and maintained 94-95% U(VI) removal over 8 months when the U surface loading was 6-11 e(-) mEq/m(2)-day. The MBfR biofilm was capable of self-recovery after a disturbance due to oxygen exposure. Nanocrystalline UO2 aggregates and amorphous U precipitates were associated with vegetative cells and apparently mature spores that accumulated in the biofilm matrix. Despite inoculation with a concentrated suspension of Desulfovibrio vulgaris, this bacterium was not present in the U(VI)-reducing biofilm. Instead, the most abundant group in the biofilm community contained U(VI) reducers in the Rhodocyclaceae family when U(VI) was the only electron acceptor. When sulfate was present, the community dramatically shifted to the Clostridiaceae family, which included spores that were potentially involved in U(VI) reduction.

  11. Hydrophobicity of diverse bacterial populations in activated sludge and biofilm revealed by microbial adhesion to hydrocarbons assay and high-throughput sequencing.

    PubMed

    Chao, Yuanqing; Guo, Feng; Fang, Herbert H P; Zhang, Tong

    2014-02-01

    Cell hydrophobicity is one of the key physicochemical properties of bacteria in activated sludge (AS) and biofilms can influence the efficient operation of wastewater treatment plants (WWTPs). In the present study the cell hydrophobicity of diverse bacterial populations in AS and biofilms from the Shatin and Stanley WWTPs of Hong Kong was characterized by combining the microbial adhesion to hydrocarbons (MATH) assay with the Illumina high-throughput sequencing. The results indicated that, at the phylum level, a majority of bacteria in AS and biofilms showed medium hydrophobicity. Most of the top 20 bacterial genera in the AS samples were hydrophilic. However, the top 20 genera in biofilms showed higher hydrophobicity than in the top 20 genera in AS samples, suggesting more hydrophobic bacteria existed in biofilms than in AS. Meanwhile, the hydrophobicity of two specific bacterial groups, including foaming and biosurfactant-producing bacteria, were also evaluated. The results demonstrated that, by combining the MATH assay with the Illumina sequencing approach, bacterial hydrophobicity could be evaluated with high efficiency and coverage in complex systems with high microbial diversity, e.g. AS and biofilms in WWTPs.

  12. Microbial Community Structure and Physiological Status of Different Types of Biofilms in an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2009-12-01

    A unique aspect of the acid mine drainage (AMD) system at the Green Valley coal mine site (GVS) in western Indiana is the abundance of biofims and biolaminates - stromatolites. Three major types of biofilms have been observed from the AMD site: bright green biofilm dominated by the acidophilic, oxygenic photosynthetic protozoan Euglena mutabilis, olive green biofilm of photosynthetic diatom belonging to the genus Nitzschia, and an olive-green to brownish-green filamentous algae-dominated community. These biofilms are either attached to hard substrata of the effluent channel, or floating at the surface of the effluent with abundant oxygen bubbles, with or without encrusted Fe precipitates. We analyzed lipids (hydrocarbons, wax esters, phospholipids, glycolipids, and neutral lipids) to determine the microbial biomass, community structure and physiological status of biofims collected from the GVS site. Distinctive lipid compositions were observed. The attached, red-crusted biofilms were characterized by abundant wax esters, monounsaturated fatty acids, whereas the floating biofilms by phytadienes, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids. The accumulation of abundant wax esters probably reflects the readily available carbon and limitation of nutrients to the biofilm. Alternatively, the wax esters may be the biochemical relics of the anaerobic past of the Earth and the detection of these compounds has important implications for the evolution of eukaryotes and the paleo-environmental conditions on early Earth. This type of biochemical machine may have allowed early eukaryotes to survive recurrent anoxic conditions on early Earth.

  13. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.

    PubMed

    Chung, Kyungmi; Fujiki, Itto; Okabe, Satoshi

    2011-01-01

    A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m(2) was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m(2) after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na(+) and Ca(2+)) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation.

  14. Under the sea: microbial life in volcanic oceanic crust.

    PubMed

    Edwards, Katrina J; Wheat, C Geoffrey; Sylvan, Jason B

    2011-09-06

    Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.

  15. Modeling central metabolism and energy biosynthesis across microbial life

    DOE PAGES

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential

  16. Modeling central metabolism and energy biosynthesis across microbial life

    SciTech Connect

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L.; Henry, Christopher S.

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to

  17. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms.

    PubMed

    Rosi-Marshall, Emma J; Kincaid, Dustin W; Bechtold, Heather A; Royer, Todd V; Rojas, Miguel; Kelly, John J

    2013-04-01

    Pharmaceutical and personal care products are ubiquitous in surface waters but their effects on aquatic biofilms and associated ecosystem properties are not well understood. We measured in situ responses of stream biofilms to six common pharmaceutical compounds (caffeine, cimetidine, ciprofloxacin, diphenhydramine, metformin, ranitidine, and a mixture of each) by deploying pharmaceutical-diffusing substrates in streams in Indiana, Maryland, and New York. Results were consistent across seasons and geographic locations. On average, algal biomass was suppressed by 22%, 4%, 22%, and 18% relative to controls by caffeine, ciprofloxacin, diphenhydramine, and the mixed treatment, respectively. Biofilm respiration was significantly suppressed by caffeine (53%), cimetidine (51%), ciprofloxacin (91%), diphenhydramine (63%), and the mixed treatment (40%). In autumn in New York, photosynthesis was also significantly suppressed by diphenhydramine (99%) and the mixed treatment (88%). Pyrosequencing of 16S rRNA genes was used to examine the effects of caffeine and diphenhydramine on biofilm bacterial community composition at the three sites. Relative to the controls, diphenhydramine exposure significantly altered bacterial community composition and resulted in significant relative increases in Pseudomonas sp. and decreases in Flavobacterium sp. in all three streams. These ubiquitous pharmaceuticals, alone or in combination, influenced stream biofilms, which could have consequences for higher trophic levels and important ecosystem processes.

  18. Suitable microscopic entropy for the origin of microbial life: microbiological methods are challenges.

    PubMed

    Trevors, J T

    2010-12-01

    A hypothesis is proposed that the first living microbial cell(s) on Earth assembled about 3.6-4 billion years ago when an environmental microscopic entropy (balance between order and disorder; suitable amount of randomness) was within a range suitable for the origin of microbial cell(s) in a hydrogel environment. An earlier origin of microbial life was not possible as the elements, molecules and entropy conditions necessary for life were not available at the microscopic level. Methodology limitations to study postulated past origin of microbial life events and to mimic these events in the laboratory, are still obstacles to understanding the origin of life.

  19. Focus on the physics of biofilms

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  20. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  1. 3D Imaging of Microbial Biofilms: Integration of Synchrotron Imaging and an Interactive Visualization Interface

    SciTech Connect

    Thomas, Mathew; Marshall, Matthew J.; Miller, Erin A.; Kuprat, Andrew P.; Kleese van Dam, Kerstin; Carson, James P.

    2014-08-26

    Understanding the interactions of structured communities known as “biofilms” and other complex matrixes is possible through the X-ray micro tomography imaging of the biofilms. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilms and bacteria in the datasets. The datasets are very large and often require manual interventions due to low contrast between objects and high noise levels. Thus new software is required for the effectual interpretation and analysis of the data. This work specifies the evolution and application of the ability to analyze and visualize high resolution X-ray micro tomography datasets.

  2. Effect of florfenicol on performance and microbial community of a sequencing batch biofilm reactor treating mariculture wastewater.

    PubMed

    Gao, Feng; Li, Zhiwei; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Wu, Juan; Jin, Chunji; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Wang, Sen

    2017-03-16

    The effects of florfenicol (FF) on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater. The chemical oxygen demand (COD) and nitrogen removal were inhibited at high FF concentrations. The specific oxygen utilization rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) were decreased with an increase in the FF concentration from 0 to 35 mg/L. The chemical compositions of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) could be affected with an increase in the FF concentration. The high-throughput sequencing indicated some obvious variations in the microbial community at different FF concentrations. The relative abundance of Nitrosomonas and Nitrospira showed a decreasing tendency with an increase in the FF concentration, suggesting that FF could affect the nitrification process of SBBR. Some genera capable of reducing nitrate to nitrogen gas could be inhibited by the addition of FF in the influent, such as Azospirillum and Hyphomicrobium.

  3. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor.

    PubMed

    Orandi, S; Lewis, D M; Moheimani, N R

    2012-09-01

    An indigenous mining algal-microbial consortium was immobilised within a laboratory-scale photo-rotating biological contactor (PRBC) that was used to investigate the potential for heavy metal removal from acid mine drainage (AMD). The microbial consortium, dominated by Ulothrix sp., was collected from the AMD at the Sar Cheshmeh copper mine in Iran. This paper discusses the parameters required to establish an algal-microbial biofilm used for heavy metal removal, including nutrient requirements and rotational speed. The PRBC was tested using synthesised AMD with the multi-ion and acidic composition of wastewater (containing 18 elements, and with a pH of 3.5 ± 0.5), from which the microbial consortium was collected. The biofilm was successfully developed on the PRBC's disc consortium over 60 days of batch-mode operation. The PRBC was then run continuously with a 24 h hydraulic residence time (HRT) over a ten-week period. Water analysis, performed on a weekly basis, demonstrated the ability of the algal-microbial biofilm to remove 20-50 % of the various metals in the order Cu > Ni > Mn > Zn > Sb > Se > Co > Al. These results clearly indicate the significant potential for indigenous AMD microorganisms to be exploited within a PRBC for AMD treatment.

  4. Stabilization of Plutonium in Subsursface Environments via Microbial Reduction and Biofilm Formation

    SciTech Connect

    Holden, Patricia

    2006-06-01

    Our work is towards mechanistically understanding interactions of unsaturated bacterial biofilms and their extracellular polymeric substances (EPS) with actinide metals and metal surrogates under vadose zone conditions. Because metal contaminants in the vadose zone co-occur with organic pollutants, some of our work has included experiments with organic pollutants.

  5. Stabilization of Plutonium in Subsursface Environments via Microbial Reduction and Biofilm Formation

    SciTech Connect

    Holden, Patricia; Neu, Mary P.

    2005-06-01

    Our work is towards mechanistically understanding interactions of unsaturated bacterial biofilms and their extracellular polymeric substances (EPS) with actinide metals and metal surrogates under vadose zone conditions. Because metal contaminants in the vadose zone co-occur with organic pollutants, some of our work has included experiments with organic pollutants.

  6. Detection of microbial biofilms on food processing surfaces: Hyperspectral fluorescence imaging study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this inve...

  7. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms

    PubMed Central

    Kühl, Michael; Jørgensen, Bo Barker

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively. PMID:16348687

  8. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms.

    PubMed

    Gomes, Fernanda; Saavedra, Maria José; Henriques, Mariana

    2016-04-01

    Bovine mastitis (BM) is a disease with high incidence worldwide and one of the most relevant bovine pathologies and the most costly to the dairy industry. BM is an inflammation of the udder and represents one of the most difficult veterinary diseases to control. Biofilm formation is considered a selective advantage for pathogens causing mastitis, facilitating bacterial persistence in the udder. In fact, recently some authors drew attention to the biofilm formation ability presented by several mastitis causing pathogens and to its possible relation with recurrent mastitis infections and with the increased resistance to antimicrobial agents and host immune defence system. Actually, up to now, several researchers reported the potential role of cells in this mode of growth in the previous facts mentioned. As a consequence of the presence of biofilms, the infection here focused is more difficult to treat and eradicate, making this problem a more relevant pressing issue. Thus, we believe that a deeper knowledge of these structures in mastitis can help to determine the best control strategy to be used in veterinary practice in order to reduce losses in the dairy industry and to ensure milk safety and quality. The aim of this paper was to review the existing research and consequently to provide an overview of the role of biofilms in BM infections.

  9. Effect of different disinfection protocols on microbial and biofilm contamination of dental unit waterlines in community dental practices.

    PubMed

    Dallolio, Laura; Scuderi, Amalia; Rini, Maria S; Valente, Sabrina; Farruggia, Patrizia; Sabattini, Maria A Bucci; Pasquinelli, Gianandrea; Acacci, Anna; Roncarati, Greta; Leoni, Erica

    2014-02-18

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02%) and stabilized chlorine dioxide (0.22%), respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  10. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    PubMed Central

    Dallolio, Laura; Scuderi, Amalia; Rini, Maria S.; Valente, Sabrina; Farruggia, Patrizia; Bucci Sabattini, Maria A.; Pasquinelli, Gianandrea; Acacci, Anna; Roncarati, Greta; Leoni, Erica

    2014-01-01

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02%) and stabilized chlorine dioxide (0.22%), respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions. PMID:24552789

  11. Electrochemical response of a biofilm community to changes in electron-acceptor redox potential elucidated using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Arbour, T.; Wrighton, K. C.; Mullin, S. W.; Luef, B.; Gilbert, B.; Banfield, J. F.

    2012-12-01

    Currently, we have limited insight into how mineral properties affect dissimilatory metal-reducing bacteria (DMRB) or the microbial communities that contain them. Advances in our understanding of DMRB metabolism have been achieved using microbial fuel cells (MFCs), which exploit the ability of these organisms to transfer electrons extracellularly. By replacing the mineral electron acceptor with a conductive electrode under potentiostat control, the activity of microorganisms capable of interfacial electron transfer can be quantified by the current flowing through the electrode and related to the thermodynamics of respiration. We seek to understand how communities and their individual members respond to changes in mineralogy, and expect mineral redox potential to be a primary control. The ability to precisely control the redox potential of the electron-accepting anodic electrode is our primary motivation for using MFCs. We inoculated duplicate MFCs containing 10 mM acetate in phosphate buffered media with a slurry of subsurface sediment and groundwater obtained from the Integrated Field-Scale Research Challenge Site at Rifle, CO. Electroactive biofilms were established on graphite anodes poised at a favorable potential (0.0 V vs. SHE) before poising at -0.2 V—a potential representative of natural iron reduction. The current was stable across both anodes over more than 100 days of operation, and the percentage of the electrons in acetate recovered as current ("Coulombic efficiency") was typically 70 to >90%. Current density reached 0.4 A/m2 at -0.2 V, to a max of over 1.0 A/m2 at or above ~0.0 V (based on geometric electrode surface area). Media exchanges and biofilm cyclic voltammetry (CV) experiments indicate that electrode-attached microbial communities were responsible for primary electron transfer. Cryo-electron and confocal fluorescence microscopies of the biofilm reveal numerous morphologies of viable microorganisms that are currently being characterized

  12. Mercury induced community tolerance in microbial biofilms is related to pollution gradients in a long-term polluted river.

    PubMed

    Kovac Virsek, Manca; Hubad, Barbara; Lapanje, Ales

    2013-11-15

    The net toxicity of different forms of mercury, in the long-term during their transformation processes, leads to the selection of resistant bacterial cells and this result in community tolerance which is pollution induced. Accordingly, based on profiles of a bacterial community structure, analysis of Hg resistant culturable bacteria and quantification of merA genes, we assessed development of pollution induced community tolerance in a mercury-polluted gradient in the Idrijca River. TTGE analysis did not show effects of mercury pollution to bacterial community diversity, while quantification of merA genes showed that merA genes can be correlated precisely (R(2)=0.83) with the total concentration of mercury in the biofilm microbial communities in the pollution gradient.

  13. Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system.

    PubMed

    Cao, Xian; Wang, Hui; Li, Xiao-Qi; Fang, Zhou; Li, Xian-Ning

    2017-03-01

    In this study, a microbial fuel cell (MFC)-biofilm electrode reactor (BER) coupled system was established for degradation of the azo dye Reactive Brilliant Red X-3B. In this system, electrical energy generated by the MFC degrades the azo dye in the BER without the need for an external power supply, and the effluent from the BER was used as the inflow for the MFC, with further degradation. The results indicated that the X-3B removal efficiency was 29.87% higher using this coupled system than in a control group. Moreover, a method was developed to prevent voltage reversal in stacked MFCs. Current was the key factor influencing removal efficiency in the BER. The X-3B degradation pathway and the types and transfer processes of intermediate products were further explored in our system coupled with gas chromatography-mass spectrometry.

  14. Biogeochemical signals from deep microbial life in terrestrial crust.

    PubMed

    Suzuki, Yohey; Konno, Uta; Fukuda, Akari; Komatsu, Daisuke D; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi

    2014-01-01

    In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.

  15. Biogeochemical Signals from Deep Microbial Life in Terrestrial Crust

    PubMed Central

    Fukuda, Akari; Komatsu, Daisuke D.; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi

    2014-01-01

    In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230

  16. Spatially Oscillating Activity and Microbial Succession of Mercury-Reducing Biofilms in a Technical-Scale Bioremediation System

    PubMed Central

    von Canstein, Harald; Li, Ying; Leonhäuser, Johannes; Haase, Elke; Felske, Andreas; Deckwer, Wolf-Dieter; Wagner-Döbler, Irene

    2002-01-01

    Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader. PMID:11916716

  17. Microbial mats and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1990-01-01

    Microbial mats have descended from perhaps the oldest and most widespread biological communities known. Mats harbor microbes that are crucial for studies of bacterial phylogeny and physiology. They illustrate how several oxygen-sensitive biochemical processes have adapted to oxygen, and they show how life adapted to dry land long before the rise of plants. The search for the earliest grazing protists and metazoa in stromatolites is aided by observations of mats: in them, organic compounds characteristic of ancient photosynthetic protists can be identified. Recent mat studies suggest that the 13C/12C increase observed over geological time in stromatolitic organic matter was driven at least in part by a long-term decline in atmospheric carbon dioxide levels.

  18. Reproducible analyses of microbial food for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  19. Fluids from aging ocean crust that support microbial life.

    PubMed

    Cowen, James P; Giovannoni, Stephen J; Kenig, Fabien; Johnson, H Paul; Butterfield, David; Rappé, Michael S; Hutnak, Michael; Lam, Phyllis

    2003-01-03

    Little is known about the potential for life in the vast, low-temperature (<100 degrees C) reservoir of fluids within mid-ocean ridge flank and ocean basin crust. Recently, an overpressured 300-meter-deep borehole was fitted with an experimental seal (CORK) delivering crustal fluids to the sea floor for discrete and large-volume sampling and characterization. Results demonstrate that the 65 degrees C fluids from 3.5-million-year-old ocean crust support microbial growth. Ribosomal RNA gene sequence data indicate the presence of diverse Bacteria and Archaea, including gene clones of varying degrees of relatedness to known nitrate reducers (with ammonia production), thermophilic sulfate reducers, and thermophilic fermentative heterotrophs, all consistent with fluid chemistry.

  20. Exploration of deep intraterrestrial microbial life: current perspectives.

    PubMed

    Pedersen, K

    2000-04-01

    Intraterrestrial life has been found at depths of several thousand metres in deep sub-sea floor sediments and in the basement crust beneath the sediments. It has also been found at up to 2800-m depth in continental sedimentary rocks, 5300-m depth in igneous rock aquifers and in fluid inclusions in ancient salt deposits from salt mines. The biomass of these intraterrestrial organisms may be equal to the total weight of all marine and terrestrial plants. The intraterrestrial microbes generally seem to be active at very low but significant rates and several investigations indicate chemolithoautotrophs to form a chemosynthetic base. Hydrogen, methane and carbon dioxide gases are continuously generated in the interior of our planet and probably constitute sustainable sources of carbon and energy for deep intraterrestrial biosphere ecosystems. Several prospective research areas are foreseen to focus on the importance of microbial communities for metabolic processes such as anaerobic utilisation of hydrocarbons and anaerobic methane oxidation.

  1. Application of Biofilm Covered Activated Carbon Particles as a Microbial Inoculum Delivery System for Enhanced Bioaugmentation of PCBs in Contaminated Sediment

    DTIC Science & Technology

    2013-09-01

    respiration ) removing the available oxygen in the sediment thus creating complete anaerobic conditions for the dechlorinating populations. The...aspects of microbial degradation, this project evaluated an approach, where anaerobically dechlorinating biofilms were added to sediment as a delivery...system ……………… 12 4.Materials and methods ……………… 14 4.1 Growth of anaerobic cultures for mesocosm inoculum ……………… 14 4.2 Biofilm formation on

  2. Microbial diversities (16S and 18S rDNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    EPA Science Inventory

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...

  3. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  4. The pulsed light inactivation of veterinary relevant microbial biofilms and the use of a RTPCR assay to detect parasite species within biofilm structures

    PubMed Central

    Garvey, M.; Coughlan, G.; Murphy, N.; Rowan, N.

    2016-01-01

    The presence of pathogenic organisms namely parasite species and bacteria in biofilms in veterinary settings, is a public health concern in relation to human and animal exposure. Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed animals to humans, especially in cases of wound infection and the shedding of faecal matter. This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose. PMID:26862516

  5. Methanogenic Activity and Structural Characteristics of the Microbial Biofilm On a Needle-Punched Polyester Support

    PubMed Central

    Harvey, Martin; Forsberg, Cecil W.; Beveridge, Terry J.; Pos, Jack; Ogilvie, John R.

    1984-01-01

    In a downflow stationary fixed-film anaerobic reactor receiving a swine waste influent, few bacteria were observed to be tightly adherent to the surfaces of the needle-punched polyester support material. However, there was a morphologically complex, dense population of bacteria trapped within the matrix. Frequently large microcolonies of a uniform morphological type of bacteria were observed. These were particularly evident for methanosarcina-like bacteria which grew forming large aggregates of unseparated cells. Leafy deposits of electron-dense, calcium- and phosphorus-enriched material coated the polyester matrix and some cells. As the biofilm matured there was more extensive mineral deposition which completely entrapped cells. The entrapped cells appeared to autolyze, and many were partially degraded. Further impregnation of the matrix with minerals and apparent cell death may eventually have a deleterious effect on the methanogenic activity of the biofilm. Images PMID:16346629

  6. Composition of Microbial Oral Biofilms during Maturation in Young Healthy Adults

    PubMed Central

    Langfeldt, Daniela; Neulinger, Sven C.; Heuer, Wieland; Staufenbiel, Ingmar; Künzel, Sven; Baines, John F.; Eberhard, Jörg; Schmitz, Ruth A.

    2014-01-01

    In the present study we aimed to analyze the bacterial community structure of oral biofilms at different maturation stages in young healthy adults. Oral biofilms established on membrane filters were collected from 32 human subjects after 5 different maturation intervals (1, 3, 5, 9 and 14 days) and the respective phylogenetic diversity was analyzed by 16S rDNA amplicon sequencing. Our analyses revealed highly diverse entire colonization profiles, spread into 8 phyla/candidate divisions and in 15 different bacterial classes. A large inter-individual difference in the subjects’ microbiota was observed, comprising 35% of the total variance, but lacking conspicuous general temporal trends in both alpha and beta diversity. We further obtained strong evidence that subjects can be categorized into three clusters based on three differently occurring and mutually exclusive species clusters. PMID:24503584

  7. Three-dimensional bright-field scanning transmission electron microscopy elucidate novel nanostructure in microbial biofilms.

    PubMed

    Hickey, William J; Shetty, Ameesha R; Massey, Randall J; Toso, Daniel B; Austin, Jotham

    2017-01-01

    Bacterial biofilms play key roles in environmental and biomedical processes, and understanding their activities requires comprehension of their nanoarchitectural characteristics. Electron microscopy (EM) is an essential tool for nanostructural analysis, but conventional EM methods are limited in that they either provide topographical information alone, or are suitable for imaging only relatively thin (<300 nm) sample volumes. For biofilm investigations, these are significant restrictions. Understanding structural relations between cells requires imaging of a sample volume sufficiently large to encompass multiple cells and the capture of both external and internal details of cell structure. An emerging EM technique with such capabilities is bright-field scanning transmission electron microscopy (BF-STEM) and in the present report BF-STEM was coupled with tomography to elucidate nanostructure in biofilms formed by the polycyclic aromatic hydrocarbon-degrading soil bacterium, Delftia acidovorans Cs1-4. Dual-axis BF-STEM enabled high-resolution 3-D tomographic recontructions (6-10 nm) visualization of thick (1250 and 1500 nm) sections. The 3-D data revealed that novel extracellular structures, termed nanopods, were polymorphic and formed complex networks within cell clusters. BF-STEM tomography enabled visualization of conduits formed by nanopods that could enable intercellular movement of outer membrane vesicles, and thereby enable direct communication between cells. This report is the first to document application of dual-axis BF-STEM tomography to obtain high-resolution 3-D images of novel nanostructures in bacterial biofilms. Future work with dual-axis BF-STEM tomography combined with correlative light electron microscopy may provide deeper insights into physiological functions associated with nanopods as well as other nanostructures.

  8. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms.

    PubMed

    Dominiak, Dominik Marek; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2011-03-01

    A new approach for quantification of extracellular DNA (eDNA) in mixed biofilms at microscale resolution was developed and combined with other staining techniques to assess the origin, abundance and role of eDNA in activated sludge biofilms. Most eDNA was found in close proximity to living cells in microcolonies, suggesting that most of it originated from an active secretion or alternatively, by lysis of a sub-population of cells. When the staining was combined with fluorescence in situ hybridization for identification of the microorganisms, it was found that the eDNA content varied among the different probe-defined species. The highest amount of eDNA was found in and around the microcolonies of denitrifiers belonging to the genera Curvibacter and Thauera, the ammonium-oxidizing Nitrosomonas and the nitrite-oxidizing Nitrospira. Other floc-formers also produced eDNA, although in lower amounts. The total eDNA content in activated sludge varied from 4 to 52 mg per gram volatile suspended solids in different wastewater treatment plants. Very high local concentrations within some microcolonies were found with up to approximately 300 mg of eDNA per g of organic matter. DNase digestion of activated sludge led to general floc disintegration and disruption of the microcolonies with high eDNA content, implying that eDNA was an important structural component in activated sludge biofilms.

  9. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    PubMed

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

  10. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    PubMed

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-05

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions.

  11. Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.

    2015-12-01

    Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the

  12. Biophysics of Biofilm Infection

    PubMed Central

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could: 1) allow prevailing hydrodynamic shear to remove biofilm, 2) increase the efficacy of designed interventions for removing biofilms, 3) enable phagocytic engulfment of softened biofilm aggregates, and 4) improve phagocyte mobility and access to biofilm. PMID:24376149

  13. Three-dimensional X-ray microcomputed tomography of carbonates and biofilm on operated cathode in single chamber microbial fuel cell.

    PubMed

    Santini, Maurizio; Guilizzoni, Manfredo; Lorenzi, Massimo; Atanassov, Plamen; Marsili, Enrico; Fest-Santini, Stephanie; Cristiani, Pierangela; Santoro, Carlo

    2015-09-10

    Power output limitation is one of the main concerns that need to be addressed for full-scale applications of the microbial fuel cell technology. Fouling and biofilm growth on the cathode of single chamber microbial fuel cells (SCMFC) affects their performance in long-term operation with wastewater. In this study, the authors report the power output and cathode polarization curves of a membraneless SCMFC, fed with raw primary wastewater and sodium acetate for over 6 months. At the end of the experiment, the whole cathode surface is analyzed through X-ray microcomputed tomography (microCT), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) to characterize the fouling layer and the biofilm. EDX shows the distribution of Ca, Na, K, P, S, and other elements on the two faces of the cathode. Na-carbonates and Ca-carbonates are predominant on the air (outer) side and the water (inner) side, respectively. The three-dimensional reconstruction by X-ray microCT shows biofilm spots unevenly distributed above the Ca-carbonate layer on the inner (water) side of the cathode. These results indicate that carbonates layer, rather than biofilm, might lower the oxygen reduction reaction rate at the cathode during long-term SCMFC operation.

  14. Performance and microbial community of a sequencing batch biofilm reactor treating synthetic mariculture wastewater under long-term exposure to norfloxacin.

    PubMed

    Zheng, Dong; Chang, Qingbo; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Wang, Xuejiao; Guo, Liang; Zhao, Yangguo; Jin, Chunji; Gao, Feng

    2016-12-01

    The performance and microbial community of a sequencing batch biofilm reactor (SBBR) treating synthetic mariculture wastewater were evaluated under long-term exposure to norfloxacin (NFX) due to the overuse of antibiotics during the mariculture. The COD and NH4(+)-N removals had no distinct change at 0-6mgL(-1) NFX and were inhibited at 6-35mgL(-1) NFX. The specific oxygen uptake rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) of the biofilm kept a decreasing tendency with the increase of NFX concentration from 0 to 35mgL(-1). The presence of NFX promoted the microorganisms to secrete more extracellular polymeric substances (EPS) and affected the chemical compositions of EPS. The microbial richness and diversity showed some obvious variations at different NFX concentrations. The present results demonstrated that NFX inhibited the SBBR performance and should decrease the NFX dosage in the mariculture.

  15. Quantitative Analysis of Three Hydrogenotrophic Microbial Groups, Methanogenic Archaea, Sulfate-Reducing Bacteria, and Acetogenic Bacteria, within Plaque Biofilms Associated with Human Periodontal Disease▿

    PubMed Central

    Vianna, M. E.; Holtgraewe, S.; Seyfarth, I.; Conrads, G.; Horz, H. P.

    2008-01-01

    Human subgingival plaque biofilms are highly complex microbial ecosystems that may depend on H2-metabolizing processes. Here we investigated the ubiquity and proportions of methanogenic archaea, sulfate reducers, and acetogens in plaque samples from 102 periodontitis patients. In contrast to the case for 65 healthy control subjects, hydrogenotrophic groups were almost consistently detected in periodontal pockets, with the proportions of methanogens and sulfate reducers being significantly elevated in severe cases. In addition, antagonistic interactions among the three microbial groups indicated that they may function as alternative syntrophic partners of secondary fermenting periodontal pathogens. PMID:18326571

  16. Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy.

    PubMed

    Hu, Zhiqiang; Hidalgo, Gabriela; Houston, Paul L; Hay, Anthony G; Shuler, Michael L; Abruña, Héctor D; Ghiorse, William C; Lion, Leonard W

    2005-07-01

    The spatial distributions of zinc, a representative transition metal, and active biomass in bacterial biofilms were determined using two-photon laser scanning microscopy (2P-LSM). Application of 2P-LSM permits analysis of thicker biofilms than are amenable to observation with confocal laser scanning microscopy and also provides selective excitation of a smaller focal volume with greater depth localization. Thin Escherichia coli PHL628 biofilms were grown in a minimal mineral salts medium using pyruvate as the carbon and energy source under batch conditions, and thick biofilms were grown in Luria-Bertani medium using a continuous-flow drip system. The biofilms were visualized by 2P-LSM and shown to have heterogeneous structures with dispersed dense cell clusters, rough surfaces, and void spaces. Contrary to homogeneous biofilm model predictions that active biomass would be located predominantly in the outer regions of the biofilm and inactive or dead biomass (biomass debris) in the inner regions, significant active biomass fractions were observed at all depths in biofilms (up to 350 microm) using live/dead fluorescent stains. The active fractions were dependent on biofilm thickness and are attributed to the heterogeneous characteristics of biofilm structures. A zinc-binding fluorochrome (8-hydroxy-5-dimethylsulfoamidoquinoline) was synthesized and used to visualize the spatial location of added Zn within biofilms. Zn was distributed evenly in a thin (12 microm) biofilm but was located only at the surface of thick biofilms, penetrating less than 20 microm after 1 h of exposure. The relatively slow movement of Zn into deeper biofilm layers provides direct evidence in support of the concept that thick biofilms may confer resistance to toxic metal species by binding metals at the biofilm-bulk liquid interface, thereby retarding metal diffusion into the biofilm (G. M. Teitzel and M. R. Park, Appl. Environ. Microbiol. 69:2313-2320, 2003).

  17. Effects of nitrate treatment on a mixed species, oil field microbial biofilm.

    PubMed

    Dunsmore, Braden; Youldon, James; Thrasher, David R; Vance, Ian

    2006-06-01

    Biofilms of bacteria, indigenous to oil field produced water, were grown in square section, glass capillary flow cells at 45 degrees C. Initially, in situ image analysis microscopy revealed predominantly coccoid bacteria (length-to-width ratio measurements (l (c):w (c)) of bacterial cells gave a mean value of 1.1), while chemical measurements confirmed sulphate reduction and sulphide production. After nitrate ion addition at 100 and 80 mg/l, in the two repeat experiments respectively, the dominance of rod-shaped bacteria (mean l (c):w (c) = 2.8) was observed. This coincided with the occurrence of nitrate reduction in the treated flow cells. Beneficially, no significant increase in biofilm cover was observed after the addition of nitrate. The dominant culturable nitrate-reducing bacterium was Marinobacter aquaeolei. The l (c):w (c) ratio measured here concurs with previously reported cell dimensions for this organism. Several Marinobacter strains were also isolated from different oil fields in the North Sea where nitrate treatment has been applied to successfully treat reservoir souring, implying that this genus may play an important role in nitrate treatment.

  18. Comparison of microbial community assays for the assessment of stream biofilm ecology.

    PubMed

    Vinten, A J A; Artz, R R E; Thomas, N; Potts, J M; Avery, L; Langan, S J; Watson, H; Cook, Y; Taylor, C; Abel, C; Reid, E; Singh, B K

    2011-06-01

    We investigated a range of microbiological community assays performed on scrapes of biofilms formed on artificial diffusing substrates deployed in 8 streams in eastern Scotland, with a view to using them to characterize ecological response to stream water quality. The assays considered were: Multiplex Terminal Restriction Fragment Length Polymorphism or M-TRFLP (a molecular method), Phospholipid Fatty Acid or PLFA analysis (a biochemical method) and MICRORESP™ (a physiological method) alongside TDI, diatom species, and chlorophyll a content. Four of the streams were classified as of excellent status (3-6μg/L Soluble Reactive Phosphorus (SRP)) with respect to soluble P content under the EU Water Framework Directive and four were of borderline good/moderate or moderate status (43-577μg/L SRP). At each site, 3 replicates of 3 solute diffusion treatments were deployed in a Latin square design. Solute diffusion treatments were: KCl (as a control solute), N and P (to investigate the effect of nutrient enrichment), or the herbicide isoproturon (as a "high impact" control, which aimed to affect biofilm growth in a way detectable by all assays). Biofilms were sampled after 4weeks deployment in a low flow period of early summer 2006. The chlorophyll a content of biofilms after 4weeks was 2.0±0.29mg/m(2) (mean±se). Dry matter content was 16.0±13.1g/m(2). The M-TRFLP was successfully used for generating community profiles of cyanobacteria, algae and bacteria and was much faster than diatom identification. The PFLA and TDI were successful after an increase in the sample size, due to low counts. The MICRORESP(™) assays were often below or near detection limit. We estimated the per-sample times for the successful assays as follows: M-TRFLP: 20min, PLFA 40min, TDI 90min. Using MANOVA on the first 5 principal co-ordinates, all the assays except MICRORESP(™) showed significant differences between sites, but none of the assays showed a significant effect of either initial

  19. Influence of Disinfectant Residual on Biofilm Development, Microbial Ecology, and Pathogen Fate and Transport in Drinking Water Infrastructure

    EPA Science Inventory

    This project focuses on providing basic data to bound risk estimates resulting from pathogens associated with pipe biofilms. Researchers will compare biofilm pathogen effects under two different disinfection scenarios (free chlorine or chloramines) for a conventionally treated s...

  20. Metagenome Analyses of Corroded Concrete Wastewater Pipe Biofilms Reveals a Complex Microbial System

    EPA Science Inventory

    Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Taxonomic and functio...

  1. Cobop: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2001-09-30

    investigators (see above). The collaborative experiment was held at RSMAS (Miami) during April 2001. Quantitative imaging, generated by nanoplast -embedded...1999. Confocal Imaging of in situ natual microbial communities and their extracellular polymeric secretions using Nanoplast resin. BioTechniques 27

  2. COBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    1999-09-30

    nanoplast -embedded natural sediments, were generated by scanning confocal laser microscopy. RESULTS Results show that certain sediment sites, which contain an...Imaging of in situ natual microbial communities and their extracellular polymeric secretions using Nanoplast resin. BioTechniques 27: (in press) Decho

  3. CMEIAS JFrad: a digital computing tool to discriminate the fractal geometry of landscape architectures and spatial patterns of individual cells in microbial biofilms.

    PubMed

    Ji, Zhou; Card, Kyle J; Dazzo, Frank B

    2015-04-01

    Image analysis of fractal geometry can be used to gain deeper insights into complex ecophysiological patterns and processes occurring within natural microbial biofilm landscapes, including the scale-dependent heterogeneities of their spatial architecture, biomass, and cell-cell interactions, all driven by the colonization behavior of optimal spatial positioning of organisms to maximize their efficiency in utilization of allocated nutrient resources. Here, we introduce CMEIAS JFrad, a new computing technology that analyzes the fractal geometry of complex biofilm architectures in digital landscape images. The software uniquely features a data-mining opportunity based on a comprehensive collection of 11 different mathematical methods to compute fractal dimension that are implemented into a wizard design to maximize ease-of-use for semi-automatic analysis of single images or fully automatic analysis of multiple images in a batch process. As examples of application, quantitative analyses of fractal dimension were used to optimize the important variable settings of brightness threshold and minimum object size in order to discriminate the complex architecture of freshwater microbial biofilms at multiple spatial scales, and also to differentiate the spatial patterns of individual bacterial cells that influence their cooperative interactions, resource use, and apportionment in situ. Version 1.0 of JFrad is implemented into a software package containing the program files, user manual, and tutorial images that will be freely available at http://cme.msu.edu/cmeias/. This improvement in computational image informatics will strengthen microscopy-based approaches to analyze the dynamic landscape ecology of microbial biofilm populations and communities in situ at spatial resolutions that range from single cells to microcolonies.

  4. Kinetic analysis of microbial sulfate reduction by Desulfovibrio desulfuricans in an anaerobic upflow porous media biofilm reactor

    SciTech Connect

    Chen, Chingi; Mueller, R.F.; Griebe, T. . National Science Foundation Engineering Research Center for Biofilm Engineering)

    1994-02-20

    An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H[sub 2]S) in oil field porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in the porous media reactor system.

  5. Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Lu, Xinxin; Mou, Xiaozhen; Ashbolt, Nicholas J

    2014-05-01

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, yet knowledge about the microbial composition of DW biofilms developed on common in-premise plumbing material is limited. Utilizing 16S and 18S rRNA gene pyrosequencing, this study characterized the microbial community structure within DW biofilms established on unplasticized polyvinyl chloride (uPVC) and copper (Cu) surfaces and the impact of introducing Legionella pneumophila (Lp) and Acanthamoeba polyphaga. Mature (> 1 year old) biofilms were developed before inoculation with sterilized DW (control, Con), Lp, or Lp and A. polyphaga (LpAp). Comparison of uPVC and Cu biofilms indicated significant differences between bacterial (P = 0.001) and eukaryotic (P < 0.01) members attributable to the unique presence of several family taxa: Burkholderiaceae, Characeae, Epistylidae, Goniomonadaceae, Paramoebidae, Plasmodiophoridae, Plectidae, Sphenomonadidae, and Toxariaceae within uPVC biofilms; and Enterobacteriaceae, Erythrobacteraceae, Methylophilaceae, Acanthamoebidae, and Chlamydomonadaceae within Cu biofilms. Introduction of Lp alone or with A. polyphaga had no effect on bacterial community profiles (P > 0.05) but did affect eukaryotic members (uPVC, P < 0.01; Cu, P = 0.001). Thus, established DW biofilms host complex communities that may vary based on substratum matrix and maintain consistent bacterial communities despite introduction of Lp, an environmental pathogen.

  6. Microbial life in volcanic/geothermal areas: how soil geochemistry shapes microbial communities

    NASA Astrophysics Data System (ADS)

    Gagliano, Antonina Lisa; D'Alessandro, Walter; Franzetti, Andrea; Parello, Francesco; Tagliavia, Marcello; Quatrini, Paola

    2015-04-01

    Extreme environments, such as volcanic/geothermal areas, are sites of complex interactions between geosphere and biosphere. Although biotic and abiotic components are strictly related, they were separately studied for long time. Nowadays, innovative and interdisciplinary approaches are available to explore microbial life thriving in these environments. Pantelleria island (Italy) hosts a high enthalpy geothermal system characterized by high CH4 and low H2S fluxes. Two selected sites, FAV1 and FAV2, located at Favara Grande, the main exhalative area of the island, show similar physical conditions with a surface temperature close to 60° C and a soil gas composition enriched in CH4, H2 and CO2. FAV1 soil is characterized by harsher conditions (pH 3.4 and 12% of H2O content); conversely, milder conditions were recorded at site FAV2 (pH 5.8 and 4% of H2O content). High methanotrophic activity (59.2 nmol g-1 h-1) and wide diversity of methanotrophic bacteria were preliminary detected at FAV2, while no activity was detected at FAV1(1). Our aim was to investigate how the soil microbial communities of these two close geothermal sites at Pantelleria island respond to different geochemical conditions. Bacterial and Archaeal communities of the sites were investigated by MiSeq Illumina sequencing of hypervariable regions of the 16S rRNA gene. More than 33,000 reads were obtained for Bacteria and Archaea from soil samples of the two sites. At FAV1 99% of the bacterial sequences were assigned to four main phyla (Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi). FAV2 sequences were distributed in the same phyla with the exception of Chloroflexi that was represented below 1%. Results indicate a high abundance of thermo-acidophilic chemolithotrophs in site FAV1 dominated by Acidithiobacillus ferrooxidans (25%), Nitrosococcus halophilus (10%), Alicyclobacillus spp. (7%) and the rare species Ktedonobacter racemifer (11%). The bacterial community at FAV2 soil is dominated by

  7. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle.

    PubMed

    Cavalcanti, I M G; Del Bel Cury, A A; Jenkinson, H F; Nobbs, A H

    2017-02-01

    The fungus Candida albicans is carried orally and causes a range of superficial infections that may become systemic. Oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque and on oral mucosa. The aims of this study were to determine the mechanisms by which S. oralis and A. oris interact with each other and with C. albicans in biofilm development. Spatial distribution of microorganisms was visualized by confocal laser scanning microscopy of biofilms labeled by differential fluorescence or by fluorescence in situ hybridization (FISH). Actinomyces oris and S. oralis formed robust dual-species biofilms, or three-species biofilms with C. albicans. The bacterial components tended to dominate the lower levels of the biofilms while C. albicans occupied the upper levels. Non-fimbriated A. oris was compromised in biofilm formation in the absence or presence of streptococci, but was incorporated into upper biofilm layers through binding to C. albicans. Biofilm growth and hyphal filament production by C. albicans was enhanced by S. oralis. It is suggested that the interkingdom biofilms are metabolically coordinated to house all three components, and this study demonstrates that adhesive interactions between them determine spatial distribution and biofilm architecture. The physical and chemical communication processes occurring in these communities potentially augment C. albicans persistence at multiple oral cavity sites.

  8. Influences of metal ions on microcystin-LR degradation capacity and dynamics in microbial distribution of biofilm collected from water treatment plant nearby Kasumigaura Lake.

    PubMed

    Wang, Xin; Utsumi, Motoo; Gao, Yu; Li, Qintong; Tian, Xiaowei; Shimizu, Kazuya; Sugiura, Norio

    2016-03-01

    Microcystins-LR (MC-LR) which is a kind of potent hepatotoxin for humans and wildlife can be biodegraded by microbial community. In this study, the capacity of biofilm in degrading MC-LR was investigated with and without additional metal ions (Mn(2+), Zn(2+) and Cu(2+)) at the concentration of 1 mg L(-1). The results indicated that the degradation rate of MC-LR by biofilm was inhibited by introduced Mn(2+) and Cu(2+) during the whole culture period. MC-LR cannot be degraded until a period of culture time passed both in the cases with Zn(2+) and Cu(2+) (2 and 8 days for Zn(2+) and Cu(2+), respectively). The results of mlrA gene analysis showed that the abundance of MC-LR degradation bacteria (MCLDB) in the microbial community under Mn(2+) condition was generally lower than that under no additional metal ion condition. Meanwhile, a two days lag phase for the proliferation of MCLDB occurred after introducing Zn(2+). And a dynamic change of MCLDB from Cu(2+) inhibited species to Cu(2+) promoted species was observed under Cu(2+) condition. The maximum ratio of MCLDB to overall bacteria under various conditions during culture process was found to follow the tendency as: Cu(2+) > Zn(2+) ≈ no additional metal ion (Control) > Mn(2+), suggesting the adverse effect of Mn(2+), no obvious effect of Zn(2+) and positive effect of Cu(2+) on the distribution ratio of MCLDB over the biofilm.

  9. Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools.

    PubMed

    Di Luca, Mariagrazia; Maccari, Giuseppe; Nifosì, Riccardo

    2014-04-01

    The treatment for biofilm infections is particularly challenging because bacteria in these conditions become refractory to antibiotic drugs. The reduced effectiveness of current therapies spurs research for the identification of novel molecules endowed with antimicrobial activities and new mechanisms of antibiofilm action. Antimicrobial peptides (AMPs) have been receiving increasing attention as potential therapeutic agents, because they represent a novel class of antibiotics with a wide spectrum of activity and a low rate in inducing bacterial resistance. Over the past decades, a large number of naturally occurring AMPs have been identified or predicted from various organisms as effector molecules of the innate immune system playing a crucial role in the first line of defense. Recent studies have shown the ability of some AMPs to act against microbial biofilms, in particular during early phases of biofilm development. Here, we provide a review of the antimicrobial peptides tested on biofilms, highlighting their advantages and disadvantages for prophylactic and therapeutic applications. In addition, we describe the strategies and methods for de novo design of potentially active AMPs and discuss how informatics and computational tools may be exploited to improve antibiofilm effectiveness.

  10. Anti-Microbial, Anti-Biofilm Activities and Cell Selectivity of the NRC-16 Peptide Derived from Witch Flounder, Glyptocephalus cynoglossus

    PubMed Central

    Gopal, Ramamourthy; Lee, Jun Ho; Kim, Young Gwon; Kim, Myeong-Sun; Seo, Chang Ho; Park, Yoonkyung

    2013-01-01

    Previous studies had identified novel antimicrobial peptides derived from witch flounder. In this work, we extended the search for the activity of peptide that showed antibacterial activity on clinically isolated bacterial cells and bacterial biofilm. Pseudomonas aeruginosa was obtained from otitis media and cholelithiasis patients, while Staphylococcus aureus was isolated from otitis media patients. We found that synthetic peptide NRC-16 displays antimicrobial activity and is not sensitive to salt during its bactericidal activity. Interestingly, this peptide also led to significant inhibition of biofilm formation at a concentration of 4–16 μM. NRC-16 peptide is able to block biofilm formation at concentrations just above its minimum inhibitory concentration while conventional antibiotics did not inhibit the biofilm formation except ciprofloxacin and piperacillin. It did not cause significant lysis of human RBC, and is not cytotoxic to HaCaT cells and RAW264.7 cells, thereby indicating its selective antimicrobial activity. In addition, the peptide’s binding and permeation activities were assessed by tryptophan fluorescence, calcein leakage and circular dichroism using model mammalian membranes composed of phosphatidylcholine (PC), PC/cholesterol (CH) and PC/sphingomyelin (SM). These experiments confirmed that NRC-16 does not interact with any of the liposomes but the control peptide melittin did. Taken together, we found that NRC-16 has potent antimicrobial and antibiofilm activities with less cytotoxicity, and thus can be considered for treatment of microbial infection in the future. PMID:23760014

  11. Community living long before man: fossil and living microbial mats and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lopez Baluja, L.; Awramik, S. M.; Sagan, D.

    1986-01-01

    Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.

  12. Microbial biofilms for the removal of Cu²⁺ from CMP wastewater.

    PubMed

    Mosier, Aaron P; Behnke, Jason; Jin, Eileen T; Cady, Nathaniel C

    2015-09-01

    The modern semiconductor industry relies heavily on a process known as chemical mechanical planarization, which uses physical and chemical processes to remove excess material from the surface of silicon wafers during microchip fabrication. This process results in large volumes of wastewater containing dissolved metals including copper (Cu(2+)), which must then be filtered and treated before release into municipal waste systems. We have investigated the potential use of bacterial and fungal biomass as an alternative to the currently used ion-exchange resins for the adsorption of dissolved Cu(2+) from high-throughput industrial waste streams. A library of candidate microorganisms, including Lactobacillus casei and Pichia pastoris, was screened for ability to bind Cu(2+) from solution and to form static biofilm communities within packed-bed adsorption columns. The binding efficiency of these biomass-based adsorption columns was assessed under various flow conditions and compared to that of industrially used ion-exchange resins. We demonstrated the potential to regenerate the biomass within the adsorption columns through the use of a hydrochloric acid wash, and subsequently reuse the columns for additional copper binding. While the binding efficiency and capacity of the developed L. casei/P. pastoris biomass filters was inferior to ion-exchange resin, the potential for repeated reuse of these filters, coupled with the advantages of a more sustainable "green" adsorption process, make this technique an attractive candidate for use in industrial-scale CMP wastewater treatment.

  13. Energy, ecology and the distribution of microbial life

    PubMed Central

    Macalady, Jennifer L.; Hamilton, Trinity L.; Grettenberger, Christen L.; Jones, Daniel S.; Tsao, Leah E.; Burgos, William D.

    2013-01-01

    Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time. PMID:23754819

  14. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    PubMed

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory.

  15. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces

    PubMed Central

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  16. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces.

    PubMed

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils.

  17. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    PubMed Central

    Gautier, Céline; Renault, Pierre; Briandet, Romain; Guédon, Eric

    2015-01-01

    Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations. PMID:26035177

  18. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    PubMed

    Couvigny, Benoit; Thérial, Claire; Gautier, Céline; Renault, Pierre; Briandet, Romain; Guédon, Eric

    2015-01-01

    Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  19. Dissolved carbon dioxide and oxygen concentrations in purge of vacuum-packaged pork chops and the relationship to shelf life and models for estimating microbial populations.

    PubMed

    Adams, K R; Niebuhr, S E; Dickson, J S

    2015-12-01

    The objectives of this study were to determine the dissolved CO2 and O2 concentrations in the purge of vacuum-packaged pork chops over a 60 day storage period, and to elucidate the relationship of dissolved CO2 and O2 to the microbial populations and shelf life. As the populations of spoilage bacteria increased, the dissolved CO2 increased and the dissolved O2 decreased in the purge. Lactic acid bacteria dominated the spoilage microflora, followed by Enterobacteriaceae and Brochothrix thermosphacta. The surface pH decreased to 5.4 due to carbonic acid and lactic acid production before rising to 5.7 due to ammonia production. A mathematical model was developed which estimated microbial populations based on dissolved CO2 concentrations. Scanning electron microscope images were also taken of the packaging film to observe the biofilm development. The SEM images revealed a two-layer biofilm on the packaging film that was the result of the tri-phase growth environment.

  20. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.

    PubMed

    Lidbury, Ian; Johnson, Vivienne; Hall-Spencer, Jason M; Munn, Colin B; Cunliffe, Michael

    2012-05-01

    The impacts of ocean acidification on coastal biofilms are poorly understood. Carbon dioxide vent areas provide an opportunity to make predictions about the impacts of ocean acidification. We compared biofilms that colonised glass slides in areas exposed to ambient and elevated levels of pCO(2) along a coastal pH gradient, with biofilms grown at ambient and reduced light levels. Biofilm production was highest under ambient light levels, but under both light regimes biofilm production was enhanced in seawater with high pCO(2). Uronic acids are a component of biofilms and increased significantly with high pCO(2). Bacteria and Eukarya denaturing gradient gel electrophoresis profile analysis showed clear differences in the structures of ambient and reduced light biofilm communities, and biofilms grown at high pCO(2) compared with ambient conditions. This study characterises biofilm response to natural seabed CO(2) seeps and provides a baseline understanding of how coastal ecosystems may respond to increased pCO(2) levels.

  1. Bacterial cellulose may provide the microbial-life biosignature in the rock records

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Podolich, O.; Kukharenko, O.; Reshetnyak, G.; Shpylova, S.; Sosnin, M.; Khirunenko, L.; Kozyrovska, N.; de Vera, J.-P.

    2014-03-01

    Bacterial cellulose (BC) is a matrix for a biofilm formation, which is critical for survival and persistence of microbes in harsh environments. BC could play a significant role in the formation of microbial mats in pristine ecosystems on Earth. The prime objective of this study was to measure to what extent spectral and other characteristics of BC were changed under the performance of BC interaction with the earthly rock - anorthosite - via microorganisms. The spectral analyses (Fourier Transform Infrared FT-IR, spectroscopy, and atomic absorption spectroscopy) showed unprecedented accumulation of chemical elements in the BC-based biofilm. The absorption capacity of IR by BC was shielded a little by mineral crust formed by microorganisms on the BC-based biofilm surface, especially clearly seen in the range of 1200-900 cm-1 in FT-IR spectra. Confocal scanning laser microscopy analysis revealed that elements bioleached from anorthosite created surface coats on the BC nanofibril web. At the same time, the vibrational spectra bands showed the presence of the characteristic region of anomeric carbons (960-730 cm-1), wherein a band at 897 cm-1 confirmed the presence of β-1, 4-linkages, which may serve as the cellulose fingerprint region. Results show that BC may be a biosignature for search signs of living organisms in rock records.

  2. Microbial Biofilms on Needleless Connectors for Central Venous Catheters: Comparison of Standard and Silver-Coated Devices Collected from Patients in an Acute Care Hospital

    PubMed Central

    Perez, Elizabeth; Williams, Margaret; Jacob, Jesse T.; Reyes, Mary Dent; Chernetsky Tejedor, Sheri; Steinberg, James P.; Rowe, Lori; Ganakammal, Satishkumar Ranganathan; Changayil, Shankar; Weil, M. Ryan

    2014-01-01

    Microorganisms may colonize needleless connectors (NCs) on intravascular catheters, forming biofilms and predisposing patients to catheter-associated infection (CAI). Standard and silver-coated NCs were collected from catheterized intensive care unit patients to characterize biofilm formation using culture-dependent and culture-independent methods and to investigate the associations between NC usage and biofilm characteristics. Viable microorganisms were detected by plate counts from 46% of standard NCs and 59% of silver-coated NCs (P = 0.11). There were no significant associations (P > 0.05, chi-square test) between catheter type, side of catheter placement, number of catheter lumens, site of catheter placement, or NC placement duration and positive NC findings. There was an association (P = 0.04, chi-square test) between infusion type and positive findings for standard NCs. Viable microorganisms exhibiting intracellular esterase activity were detected on >90% of both NC types (P = 0.751), suggesting that a large percentage of organisms were not culturable using the conditions provided in this study. Amplification of the 16S rRNA gene from selected NCs provided a substantially larger number of operational taxonomic units per NC than did plate counts (26 to 43 versus 1 to 4 operational taxonomic units/NC, respectively), suggesting that culture-dependent methods may substantially underestimate microbial diversity on NCs. NC bacterial communities were clustered by patient and venous access type and may reflect the composition of the patient's local microbiome but also may contain organisms from the health care environment. NCs provide a portal of entry for a wide diversity of opportunistic pathogens to colonize the catheter lumen, forming a biofilm and increasing the potential for CAI, highlighting the importance of catheter maintenance practices to reduce microbial contamination. PMID:24371233

  3. Microbial biofilms on needleless connectors for central venous catheters: comparison of standard and silver-coated devices collected from patients in an acute care hospital.

    PubMed

    Perez, Elizabeth; Williams, Margaret; Jacob, Jesse T; Reyes, Mary Dent; Chernetsky Tejedor, Sheri; Steinberg, James P; Rowe, Lori; Ganakammal, Satishkumar Ranganathan; Changayil, Shankar; Weil, M Ryan; Donlan, Rodney M

    2014-03-01

    Microorganisms may colonize needleless connectors (NCs) on intravascular catheters, forming biofilms and predisposing patients to catheter-associated infection (CAI). Standard and silver-coated NCs were collected from catheterized intensive care unit patients to characterize biofilm formation using culture-dependent and culture-independent methods and to investigate the associations between NC usage and biofilm characteristics. Viable microorganisms were detected by plate counts from 46% of standard NCs and 59% of silver-coated NCs (P=0.11). There were no significant associations (P>0.05, chi-square test) between catheter type, side of catheter placement, number of catheter lumens, site of catheter placement, or NC placement duration and positive NC findings. There was an association (P=0.04, chi-square test) between infusion type and positive findings for standard NCs. Viable microorganisms exhibiting intracellular esterase activity were detected on >90% of both NC types (P=0.751), suggesting that a large percentage of organisms were not culturable using the conditions provided in this study. Amplification of the 16S rRNA gene from selected NCs provided a substantially larger number of operational taxonomic units per NC than did plate counts (26 to 43 versus 1 to 4 operational taxonomic units/NC, respectively), suggesting that culture-dependent methods may substantially underestimate microbial diversity on NCs. NC bacterial communities were clustered by patient and venous access type and may reflect the composition of the patient's local microbiome but also may contain organisms from the health care environment. NCs provide a portal of entry for a wide diversity of opportunistic pathogens to colonize the catheter lumen, forming a biofilm and increasing the potential for CAI, highlighting the importance of catheter maintenance practices to reduce microbial contamination.

  4. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells

    PubMed Central

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  5. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.

    PubMed

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  6. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.

    PubMed

    Babauta, Jerome T; Hsu, Lewis; Atci, Erhan; Kagan, Jeff; Chadwick, Bart; Beyenal, Haluk

    2014-10-01

    In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results.

  7. Chronic Wound Biofilm Model

    PubMed Central

    Ganesh, Kasturi; Sinha, Mithun; Mathew-Steiner, Shomita S.; Das, Amitava; Roy, Sashwati; Sen, Chandan K.

    2015-01-01

    Significance: Multispecies microbial biofilms may contribute to wound chronicity by derailing the inherent reparative process of the host tissue. In the biofilm form, bacteria are encased within an extracellular polymeric substance and become recalcitrant to antimicrobials and host defenses. For biofilms of relevance to human health, there are two primary contributing factors: the microbial species involved and host response which, in turn, shapes microbial processes over time. This progressive interaction between microbial species and the host is an iterative process that helps evolve an acute-phase infection to a pathogenic chronic biofilm. Thus, long-term wound infection studies are needed to understand the longitudinal cascade of events that culminate into a pathogenic wound biofilm. Recent Advances: Our laboratory has recently published the first long-term (2 month) study of polymicrobial wound biofilm infection in a translationally valuable porcine wound model. Critical Issues: It is widely recognized that the porcine system represents the most translationally valuable approach to experimentally model human skin wounds. A meaningful experimental biofilm model must be in vivo, include mixed species of clinically relevant microbes, and be studied longitudinally long term. Cross-validation of such experimental findings with findings from biofilm-infected patient wounds is critically important. Future Directions: Additional value may be added to the experimental system described above by studying pigs with underlying health complications (e.g., metabolic syndrome), as is typically seen in patient populations. PMID:26155380

  8. Kinetic analysis of microbial sulfate reduction by desulfovibrio desulfuricans in an anaerobic upflow porous media biofilm reactor.

    PubMed

    Chen, C I; Mueller, R F; Griebe, T

    1994-02-20

    An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H(2)S) in oil field porous media. The reactor was a packed bed (50 x 5.5 cm) tubular reactor. Sea sand (140 to 375 mum) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. (c) 1994 John Wiley & Sons, Inc.

  9. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    PubMed

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs.

  10. Biofilm-associated persistence of food-borne pathogens.

    PubMed

    Bridier, A; Sanchez-Vizuete, P; Guilbaud, M; Piard, J-C; Naïtali, M; Briandet, R

    2015-02-01

    Microbial life abounds on surfaces in both natural and industrial environments, one of which is the food industry. A solid substrate, water and some nutrients are sufficient to allow the construction of a microbial fortress, a so-called biofilm. Survival strategies developed by these surface-associated ecosystems are beginning to be deciphered in the context of rudimentary laboratory biofilms. Gelatinous organic matrices consisting of complex mixtures of self-produced biopolymers ensure the cohesion of these biological structures and contribute to their resistance and persistence. Moreover, far from being just simple three-dimensional assemblies of identical cells, biofilms are composed of heterogeneous sub-populations with distinctive behaviours that contribute to their global ecological success. In the clinical field, biofilm-associated infections (BAI) are known to trigger chronic infections that require dedicated therapies. A similar belief emerging in the food industry, where biofilm tolerance to environmental stresses, including cleaning and disinfection/sanitation, can result in the persistence of bacterial pathogens and the recurrent cross-contamination of food products. The present review focuses on the principal mechanisms involved in the formation of biofilms of food-borne pathogens, where biofilm behaviour is driven by its three-dimensional heterogeneity and by species interactions within these biostructures, and we look at some emergent control strategies.

  11. Mucosal biofilms of Candida albicans.

    PubMed

    Ganguly, Shantanu; Mitchell, Aaron P

    2011-08-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties.

  12. Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive

    NASA Technical Reports Server (NTRS)

    DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.

    2000-01-01

    Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.

  13. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  14. Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling.

    PubMed

    Martin, Kelly J; Picioreanu, Cristian; Nerenberg, Robert

    2015-09-01

    The membrane biofilm reactor (MBfR) is a novel technology that safely delivers hydrogen to the base of a denitrifying biofilm via gas-supplying membranes. While hydrogen is an effective electron donor for denitrifying bacteria (DNB), it also supports sulfate-reducing bacteria (SRB) and methanogens (MET), which consume hydrogen and create undesirable by-products. SRB and MET are only competitive for hydrogen when local nitrate concentrations are low, therefore SRB and MET primarily grow near the base of the biofilm. In an MBfR, hydrogen concentrations are greatest at the base of the biofilm, making SRB and MET more likely to proliferate in an MBfR system than a conventional biofilm reactor. Modeling results showed that because of this, control of the hydrogen concentration via the intramembrane pressure was a key tool for limiting SRB and MET development. Another means is biofilm management, which supported both sloughing and erosive detachment. For the conditions simulated, maintaining thinner biofilms promoted higher denitrification fluxes and limited the presence of SRB and MET. The 2-d modeling showed that periodic biofilm sloughing helped control slow-growing SRB and MET. Moreover, the rough (non-flat) membrane assembly in the 2-d model provided a special niche for SRB and MET that was not represented in the 1-d model. This study compared 1-d and 2-d biofilm model applicability for simulating competition in counter-diffusional biofilms. Although more computationally expensive, the 2-d model captured important mechanisms unseen in the 1-d model.

  15. A prospective study on evaluation of pathogenesis, biofilm formation, antibiotic susceptibility of microbial community in urinary catheter

    NASA Astrophysics Data System (ADS)

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study is aimed to isolate, detect biofilm formation ability and antibiotic susceptibility of urinary catheter adherent microorganisms from elderly hospitalized patient at the Universiti Kebangsaan Malaysia Medical Center. Microorganisms were isolated from three samples of urinary catheters (UC) surface; one of the acute vascular rejection patient (UCB) and two from benign prostate hyperplasia patients (UCC and UCD). A total of 100 isolates was isolated with 35 from UCB, 38 (UCC) and 28 (UCD). Ninety six were identified as Gram-negative bacilli, one Gram-positive bacilli and three yeasts. Results of biofilm forming on sterile foley catheter showed that all the isolates can form biofilm at different degrees; strong biofilm forming: 32% from the 35 isolates (UCB), 25% out of 38 isolates (UCC), 26% out of 28 isolates (UCD). As for moderate biofilm forming; 3% from UCB, 10% from UCC and 2% from UCD. Weak biofilm forming in UCC (3%). The antibiotic susceptibility for (UCB) isolates showed highly resistant to ampicillin, novobiocin and penicillin 100 (%), kanamycin (97%), tetracycline (94%), chloramphenicol (91%), streptomycin (77%) and showed low level of resistance to gentamycin (17%), while all the isolates from (UCC-D) showed high resistant towards ampicillin and penicillin, novobiocin (94%), tetracycline (61%), streptomycin (53%), gentamycin (50%) and low level of resistance to kanamycin (48%), chloramphenicol (47%). The findings indicate that these isolates can spread within the community on urinary catheters surface and produce strong biofilm, therefore, monitoring antibiotic susceptibility of bacteria isolated in the aggregation is recommended.

  16. Microbial genesis, life and death in glacial ice.

    PubMed

    Price, P Buford

    2009-01-01

    Arguments are given that terrestrial RNA and DNA may have originated in a frozen environment more than 4 billion years ago. Scenarios are developed for atmospheric transport of microbes onto glacial ice, their adaptation to subzero temperatures in the ice, and their incorporation into one of three habitats - liquid veins, mineral grain surfaces, or isolated inside 1 of the crystals that make up polycrystalline ice. The Arrhenius dependence of microbial metabolic rate on temperature is shown to match that required to repair damage owing to spontaneous DNA depurination and amino acid racemization. Even for the oldest glacial ice, microbial lifetime is shown not to be shortened by radiation damage from 238U, 232Th, or 40K in mineral dust in ice, by phage-induced lysis, or by penetrating cosmic radiation. Instead, death of those cells adapted to the hostile conditions in glacial ice is probably due to exhaustion of available nutrients. By contrast, in permafrost microbial death is more likely due to alpha-particle radiation damage from U and Th in the soil and rocks intermixed with ice. For residence times in ice longer than a million years, spore formers may be unable to compete in longevity with vegetative cells that are able to repair DNA damage via survival metabolism.

  17. Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation

    SciTech Connect

    Hakim Boukhalfa; Gary A. Icopini; Sean D. Reilly; Mary P. Neu

    2007-04-19

    Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium in solution is present as hexavalent plutonyl, PuO2 2+.

  18. Microbial Life in a Fjord: Metagenomic Analysis of a Microbial Mat in Chilean Patagonia

    PubMed Central

    Ugalde, Juan A.; Gallardo, Maria J.; Belmar, Camila; Muñoz, Práxedes; Ruiz-Tagle, Nathaly; Ferrada-Fuentes, Sandra; Espinoza, Carola; Allen, Eric E.; Gallardo, Victor A.

    2013-01-01

    The current study describes the taxonomic and functional composition of metagenomic sequences obtained from a filamentous microbial mat isolated from the Comau fjord, located in the northernmost part of the Chilean Patagonia. The taxonomic composition of the microbial community showed a high proportion of members of the Gammaproteobacteria, including a high number of sequences that were recruited to the genomes of Moritella marina MP-1 and Colwelliapsycherythraea 34H, suggesting the presence of populations related to these two psychrophilic bacterial species. Functional analysis of the community indicated a high proportion of genes coding for the transport and metabolism of amino acids, as well as in energy production. Among the energy production functions, we found protein-coding genes for sulfate and nitrate reduction, both processes associated with Gammaproteobacteria-related sequences. This report provides the first examination of the taxonomic composition and genetic diversity associated with these conspicuous microbial mat communities and provides a framework for future microbial studies in the Comau fjord. PMID:24015199

  19. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics

    PubMed Central

    Sgier, Linn; Freimann, Remo; Zupanic, Anze; Kroll, Alexandra

    2016-01-01

    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring. PMID:27188265

  20. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics.

    PubMed

    Sgier, Linn; Freimann, Remo; Zupanic, Anze; Kroll, Alexandra

    2016-05-18

    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring.

  1. Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors.

    PubMed

    Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J

    2017-03-01

    Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts.

  2. Microbial diversity of the supra- and subgingival biofilm of healthy individuals after brushing with chlorhexidine- or silver-coated toothbrush bristles.

    PubMed

    do Nascimento, Cássio; Paulo, Diana Ferreira; Pita, Murillo Sucena; Pedrazzi, Vinícius; de Albuquerque Junior, Rubens Ferreira

    2015-02-01

    Nanoparticulate silver has recently been reported as an effective antimicrobial agent. The aim of this clinical study was to investigate the potential changes on the oral microbiota of healthy individuals after controlled brushing with chlorhexidine- or silver-coated toothbrush bristles. Twenty-four healthy participants were enrolled in this investigation and randomly submitted to 3 interventions. All the participants received, in a crossover format, the following toothbrushing interventions: (i) chlorhexidine-coated bristles, (ii) silver-coated bristles, and (iii) conventional toothbrush (Control). All the interventions had a duration of 30 days. The DNA checkerboard hybridization method was used to identify and quantify up to 43 microbial species colonizing the supra- and subgingival biofilm. The supragingival samples presented higher genome counts than the subgingival samples (p < 0.0001). The total genome counts from the Control group showed the highest values, followed by the silver and chlorhexidine groups (p < 0.0001). After 4 weeks of brushing, the silver-coated and chlorhexidine-coated bristles were capable of reducing or maintaining lower levels of the bacterial counts of the putative periodontal pathogens Tanerella forsythia, Treponema denticola, and Porphyromonas gingivalis. Other major periodontal pathogens, such as Prevotella intermedia, Fusobacterium nucleatum, Prevotella nigrescens, and Parvimonas micra, were also detected at lower levels. The toothbrush bristles impregnated with silver nanoparticles reduced the total and individual genome count in the supra- and subgingival biofilm after 4 weeks of brushing. Chlorhexidine was not effective in reducing the total genome counts in both supra- or subgingival biofilm after 4 weeks of brushing. Chlorhexidine reduced the individual genome counts in the supragingival biofilm for most of the target species, including putative periodontal pathogens.

  3. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  4. Intelligibility in microbial complex systems: Wittgenstein and the score of life.

    PubMed

    Baquero, Fernando; Moya, Andrés

    2012-01-01

    Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the "score of life" metaphor is more accurate to express the complexity of living systems than the classic "book of life." Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life.

  5. Marine Microbial Mats and the Search for Evidence of Life in Deep Time and Space

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2011-01-01

    Cyanobacterial mats in extensive seawater evaporation ponds at Guerrero Negro, Baja California, Mexico, have been excellent subjects for microbial ecology research. The studies reviewed here have documented the steep and rapidly changing environmental gradients experienced by mat microorganisms and the very high rates of biogeochemical processes that they maintained. Recent genetic studies have revealed an enormous diversity of bacteria as well as the spatial distribution of Bacteria, Archaea and Eukarya. These findings, together with emerging insights into the intimate interactions between these diverse populations, have contributed substantially to our understanding of the origins, environmental impacts, and biosignatures of photosynthetic microbial mats. The biosignatures (preservable cells, sedimentary fabrics, organic compounds, minerals, stable isotope patterns, etc.) potentially can serve as indicators of past life on early Earth. They also can inform our search for evidence of any life on Mars. Mars exploration has revealed evidence of evaporite deposits and thermal spring deposits; similar deposits on Earth once hosted ancient microbial mat ecosystems.

  6. Endolithic microbial life in hot and cold deserts

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1980-01-01

    Endolithic microorganisms (those living inside rocks) occur in hot and cold deserts and exist under extreme environmental conditions. These conditions are discussed on a comparative basis. Quantitative estimates of biomass are comparable in hot and cold deserts. Despite the obvious differences between the hot and cold desert environment, survival strategies show some common features. These endolithic organisms are able to 'switch' rapidly their metabolic activities on and off in response to changes in the environment. Conditions in hot deserts impose a more severe environmental stress on the organisms than in the cold Antarctic desert. This is reflected in the composition of the microbial flora which in hot desert rocks consist entirely of prokaryotic microorganisms, while under cold desert conditions eukaryotes predominate.

  7. The sociobiology of biofilms.

    PubMed

    Nadell, Carey D; Xavier, Joao B; Foster, Kevin R

    2009-01-01

    Biofilms are densely packed communities of microbial cells that grow on surfaces and surround themselves with secreted polymers. Many bacterial species form biofilms, and their study has revealed them to be complex and diverse. The structural and physiological complexity of biofilms has led to the idea that they are coordinated and cooperative groups, analogous to multicellular organisms. We evaluate this idea by addressing the findings of microbiologists from the perspective of sociobiology, including theories of collective behavior (self-organization) and social evolution. This yields two main conclusions. First, the appearance of organization in biofilms can emerge without active coordination. That is, biofilm properties such as phenotypic differentiation, species stratification and channel formation do not necessarily require that cells communicate with one another using specialized signaling molecules. Second, while local cooperation among bacteria may often occur, the evolution of cooperation among all cells is unlikely for most biofilms. Strong conflict can arise among multiple species and strains in a biofilm, and spontaneous mutation can generate conflict even within biofilms initiated by genetically identical cells. Biofilms will typically result from a balance between competition and cooperation, and we argue that understanding this balance is central to building a complete and predictive model of biofilm formation.

  8. Microbial fuel cells applied to the metabolically based detection of extraterrestrial life.

    PubMed

    Abrevaya, Ximena C; Mauas, Pablo J D; Cortón, Eduardo

    2010-12-01

    Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.

  9. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.

    PubMed

    Deatherage, Brooke L; Cookson, Brad T

    2012-06-01

    Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.

  10. Intelligibility in microbial complex systems: Wittgenstein and the score of life

    PubMed Central

    Baquero, Fernando; Moya, Andrés

    2012-01-01

    Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the “score of life” metaphor is more accurate to express the complexity of living systems than the classic “book of life.” Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life. PMID:22919679

  11. Limestone Corrosion and Sulfur Cycling by Biofilms in the Frasassi Caves, Italy

    NASA Astrophysics Data System (ADS)

    Jones, D. S.; Macalady, J. L.; Druschel, G. K.; Eastman, D. D.; Albertson, L. K.

    2006-12-01

    In the Frasassi cave system, central Italy, a microbial-based ecosystem thrives on chemolithoautotrophic energy derived from hydrogen sulfide oxidation. Microbial life is prolific near the watertable, and biofilms cover nearly all subaerial and subaqueous surfaces. Subaerial biofilms are dominated by acidophilic members of the archaeal lineage Thermoplasmales and bacterial genus Acidithiobacillus. Subaqueous biofilms are diverse and are dominated by sulfide oxidizing, sulfate reducing, and sulfur disproportionating Proteobacteria. The morphology, abundance, and distribution of biofilms is controlled by physical and chemical factors such as seasonal changes in the cave hydrologic regime. In situ microelectrode voltammetry has revealed that stream biofilms speciate sulfur in diverse ways, with implications for acid production and limestone dissolution rates. Hydrogen sulfide loss from the streams cannot be accounted for solely by volatilization. Based on degassing measurements and abiotic sulfide oxidation rate calculations, stream biofilms are responsible for the majority of sulfide disappearance in streams. Rates of limestone corrosion are comparable in subaerial and subaqueous cave regions, indicating that subaerial microbial communities also have an important role in speleogenesis. Metagenomic studies targeting subaerial biofilms have confirmed that they have extremely low diversity, and offer glimpses into the physiology and biogeochemistry of extreme acidophiles in sulfidic cave communities.

  12. Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef.

    PubMed

    Witt, Verena; Wild, Christian; Anthony, Kenneth R N; Diaz-Pulido, Guillermo; Uthicke, Sven

    2011-11-01

    Rising anthropogenic CO(2) emissions acidify the oceans, and cause changes to seawater carbon chemistry. Bacterial biofilm communities reflect environmental disturbances and may rapidly respond to ocean acidification. This study investigates community composition and activity responses to experimental ocean acidification in biofilms from the Australian Great Barrier Reef. Natural biofilms grown on glass slides were exposed for 11 d to four controlled pCO(2) concentrations representing the following scenarios: A) pre-industrial (∼300 ppm), B) present-day (∼400 ppm), C) mid century (∼560 ppm) and D) late century (∼1140 ppm). Terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes revealed CO(2) -correlated bacterial community shifts between treatments A, B and D. Observed bacterial community shifts were driven by decreases in the relative abundance of Alphaproteobacteria and increases of Flavobacteriales (Bacteroidetes) at increased CO(2) concentrations, indicating pH sensitivity of specific bacterial groups. Elevated pCO(2) (C + D) shifted biofilm algal communities and significantly increased C and N contents, yet O(2) fluxes, measured using in light and dark incubations, remained unchanged. Our findings suggest that bacterial biofilm communities rapidly adapt and reorganize in response to high pCO(2) to maintain activity such as oxygen production.

  13. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Deng, Feng; Hu, Yongyou; Sun, Jian; Yang, Yonggang

    2015-09-01

    To clearly illustrate the antibacterial activity of graphene on anodic exoelectrogen, the growth of a Shewanella oneidensis MR-1 biofilm on graphene-modified anodes (GMAs) and bare graphite anodes (BGs) were compared. The GMAs with different amounts of graphene were obtained by the cyclic voltammetric electrodeposition of 5, 20 and 40 potential cycles (5-G, 20-G and 40-G). Confocal scanning laser microscopy and cyclic voltammetry results demonstrated that graphene exhibited an obvious antibacterial effect for initial Shewanella MR biofilm growth. After 5 h of inoculation, 40-G, 20-G and 5-G had 6.3, 8.8 and 13.9% lower levels of biofilm viability, respectively, compared to BG, and all three exhibited approximately 70% lower electrochemical activity compared to BG. However, 18 h later, the biofilm on the GMAs exhibited much higher viability than that of the BG, and the electrochemical activity increased to a similar level. This study revealed the dual effect of graphene, including the antibacterial activity on biofilms and the enhancement of bacterial attachment and electron transfer.

  14. Microbial life in cold, hydrologically active oceanic crustal fluids

    NASA Astrophysics Data System (ADS)

    Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.

    2012-12-01

    It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day

  15. Abundance and diversity of microbial life in ocean crust.

    PubMed

    Santelli, Cara M; Orcutt, Beth N; Banning, Erin; Bach, Wolfgang; Moyer, Craig L; Sogin, Mitchell L; Staudigel, Hubert; Edwards, Katrina J

    2008-05-29

    Oceanic lithosphere exposed at the sea floor undergoes seawater-rock alteration reactions involving the oxidation and hydration of glassy basalt. Basalt alteration reactions are theoretically capable of supplying sufficient energy for chemolithoautotrophic growth. Such reactions have been shown to generate microbial biomass in the laboratory, but field-based support for the existence of microbes that are supported by basalt alteration is lacking. Here, using quantitative polymerase chain reaction, in situ hybridization and microscopy, we demonstrate that prokaryotic cell abundances on seafloor-exposed basalts are 3-4 orders of magnitude greater than in overlying deep sea water. Phylogenetic analyses of basaltic lavas from the East Pacific Rise (9 degrees N) and around Hawaii reveal that the basalt-hosted biosphere harbours high bacterial community richness and that community membership is shared between these sites. We hypothesize that alteration reactions fuel chemolithoautotrophic microorganisms, which constitute a trophic base of the basalt habitat, with important implications for deep-sea carbon cycling and chemical exchange between basalt and sea water.

  16. Fungal Biofilms, Drug Resistance, and Recurrent Infection

    PubMed Central

    Desai, Jigar V.; Mitchell, Aaron P.; Andes, David R.

    2014-01-01

    A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance. PMID:25274758

  17. The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes.

    PubMed

    Wang, Yuanpeng; Zhu, Kang; Zheng, Yanmei; Wang, Haitao; Dong, Guowen; He, Ning; Li, Qingbiao

    2011-11-25

    Synthetic dyes are extensively used and rarely degraded. Microbial decomposition is a cost-effective alternative to chemical and physical degradation processes. In this study, the decomposition of simulated anthraquinone reactive dye (Reactive Blue 19; RB19) at a concentration of 400-mg/L in wastewater by a biofilm hydrolytic-aerobic recycling system was investigated over a range of recycling fluxes. The 16S rDNA-based fingerprint technique was also used to investigate the microbial community composition. Results indicated that the recycling flux was a key factor that influenced RB19 degradation. The RB19 and COD removal efficiency could reach values as high as 82.1% and 95.4%, respectively, with a recycling flux of 10 mL/min. Molecular analysis indicated that some strains were similar to Aeromonadales, Tolumonas, and some uncultured clones were assumed to be potential decolorization bacteria. However, the microbial community composition in the reactors remained relatively stable at different recycling fluxes. This study provided insights on the decolorization capability and the population dynamics during the decolorization process of anthraquinone dye wastewater.

  18. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane

    PubMed Central

    Jeon, Byoung Seung; Choi, Okkyoung; Kim, Hyun Wook; Um, Youngsoon; Lee, Dong-Hoon; Sang, Byoung-In

    2015-01-01

    Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5–5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens. PMID:26694756

  19. Discriminative detection and enumeration of microbial life in marine subsurface sediments.

    PubMed

    Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio

    2009-05-01

    Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology.

  20. Epistemological issues in the study of microbial life: alternative terran biospheres?

    PubMed

    Cleland, Carol E

    2007-12-01

    The assumption that all life on Earth today shares the same basic molecular architecture and biochemistry is part of the paradigm of modern biology. This paper argues that there is little theoretical or empirical support for this widely held assumption. Scientists know that life could have been at least modestly different at the molecular level and it is clear that alternative molecular building blocks for life were available on the early Earth. If the emergence of life is, like other natural phenomena, highly probable given the right chemical and physical conditions then it seems likely that the early Earth hosted multiple origins of life, some of which produced chemical variations on life as we know it. While these points are often conceded, it is nevertheless maintained that any primitive alternatives to familiar life would have been eliminated long ago, either amalgamated into a single form of life through lateral gene transfer (LGT) or alternatively out-competed by our putatively more evolutionarily robust form of life. Besides, the argument continues, if such life forms still existed, we surely would have encountered telling signs of them by now. These arguments do not hold up well under close scrutiny. They reflect a host of assumptions that are grounded in our experience with large multicellular organisms and, most importantly, do not apply to microbial forms of life, which cannot be easily studied without the aid of sophisticated technologies. Significantly, the most powerful molecular biology techniques available-polymerase chain reaction (PCR) amplification of rRNA genes augmented by metagenomic analysis-could not detect such microbes if they existed. Given the profound philosophical and scientific importance that such a discovery would represent, a dedicated search for 'shadow microbes' (heretofore unrecognized 'alien' forms of terran microbial life) seems in order. The best place to start such a search is with puzzling (anomalous) phenomena, such as

  1. A 3.8 b.y. History of Bacterial Biofilms and Their Significance in the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Westall, Frances; Steele, Andrew; Toporski, Jan; Walsh, Maud; Allen, Carlton; Guidry, Sean; McKay, David; Gibson, Everett; Chafetz, Henry

    2000-01-01

    Bacterial biofilms are almost ubiquitous in terrestrial environments, many similar to past or present Martian environments. Together with ToF-SIMS analysis of the in situ organics, fossil biofilms constitute reliable biomarkers.

  2. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry

    PubMed Central

    Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility

  3. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry.

    PubMed

    Latorre, Juan D; Hernandez-Velasco, Xochitl; Wolfenden, Ross E; Vicente, Jose L; Wolfenden, Amanda D; Menconi, Anita; Bielke, Lisa R; Hargis, Billy M; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility

  4. Use of Predatory Prokaryotes to Control Drug-Resistant Bacteria and Microbial Biofilms Associated with Burn and Wound Infections

    DTIC Science & Technology

    2011-06-01

    protozoa , and viruses to their host cells during infection (3, 13, 20, 25, 32, 34). In 1984, Chemeris and colleagues demonstrated that the pre- dation of...renewed interest in the use of biological control agents against biofilms. Among these agents is the use of invertebrates, protozoa and

  5. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    PubMed

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment.

  6. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust

    PubMed Central

    Salas, Everett C.; Bhartia, Rohit; Anderson, Louise; Hug, William F.; Reid, Ray D.; Iturrino, Gerardo; Edwards, Katrina J.

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595

  7. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    PubMed

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  8. The microbial environment and its influence on asthma prevention in early life.

    PubMed

    von Mutius, Erika

    2016-03-01

    There is accumulating evidence to suggest that the environmental microbiome plays a significant role in asthma development. The very low prevalence of asthma in populations highly exposed to microbial environments (farm children and Amish populations) highlights its preventive potential. This microbial diversity might be necessary to instruct a well-adapted immune response and regulated inflammatory responses to other inhaled and ingested environmental elements, such as allergens, particles, and viruses. Like the internal gut microbiome, which is increasingly recognized as an important instructor of immune maturation, the external environmental microbiome might shape immune responses on the skin, airway mucosal surfaces, and potentially also the gut early in life. The diversity of the external microbial world will ensure that of the many maladapted pathways leading to asthma development, most, if not all, will be counterbalanced. Likewise, important contributors to asthma, such as allergen sensitization and allergic manifestations early in life, are being suppressed. Thus the facets of innate immunity targeted by microbes and their compounds and metabolites might be the master switch to asthma and allergy protection, which has been found in environments rich in microbial exposures.

  9. Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland.

    PubMed

    Schmidt, Verena S J; Kaufmann, Veronika; Kulozik, Ulrich; Scherer, Siegfried; Wenning, Mareike

    2012-03-01

    Information on factors limiting the shelf life of extended shelf life (ESL) milk produced by microfiltration and subsequent pasteurization is very limited. In this study, three different batches of ESL milk were analyzed at different stages of the production process and during storage at 4 °C, 8 °C and 10 °C in order to evaluate the changes in bacterial cell counts, microbial diversity and enzymatic quality. Additionally, detailed biodiversity analyses of 250 retail ESL milk packages produced by five manufacturers in Germany, Austria and Switzerland were performed at the end of shelf life. It was observed that microfiltration decreased the microbial loads by 5-6 log₁₀ units to lower than 1 CFU/mL. However, bacterial counts at the end of shelf life were extremely variable and ranged between <1 and 8 log₁₀ CFU/mL. 8% of all samples showed spoilage indicated by cell counts higher than 6 log₁₀ CFU/mL. The main spoilage groups of bacteria were Gram-negative post-process recontaminants (Acinetobacter, Chryseobacterium, Psychrobacter, Sphingomonas) and the spore formers Paenibacillus and Bacillus cereus, while other spore formers and Microbacterium spp. did not reach spoilage levels. Paenibacillus spp. and B. cereus apparently influenced enzymatic spoilage, as indicated by increased free fatty acid production, pH 4.6 soluble peptide fractions and off-flavors. In some cases, enzymatic spoilage was observed although microbial counts were well below 6 log₁₀ CFU/mL. Thirteen B. cereus isolates were characterized for their toxin profiles and psychrotolerance. Hbl, nhe, and cytK toxin genes were detected in ten, thirteen, and four isolates, respectively, whereas the ces gene was always absent. Interestingly, only three of the thirteen isolates could be allocated to psychrotolerant genotypes, as indicated by the major cold shock cspA gene signature. Generally, large discrepancies in microbial loads and biodiversity were observed at the end of shelf life, even

  10. Spatial Patterns of Carbonate Biomineralization in Biofilms

    PubMed Central

    Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.

    2015-01-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties. PMID:26276112

  11. "Primers" on Research Techniques Used in Geomicrobiology for Students and Novices from Microbial Life Educational Resources

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Rice, G.; Mogk, D. W.

    2007-12-01

    Microbial Life Educational Resources (MLER) provides web-based resources and services that support learning about the diversity, ecology and evolution of the (geo)microbial world for students, K-12 teachers, university faculty, as well as for the general public. One of the main goals of MLER is to facilitate integration of modern research techniques and results and effective instructional practices. Two new collections of on-line resources include 1) TechniqueSheets which are 'primers' on analytical techniques commonly used in field and laboratory studies, and 2) focused case studies that demonstrate the use of these techniques in research projects supported by NSF's Microbial Observatory program. TechniqueSheets provide educators and students with essential information about common field and laboratory techniques with image-rich contemporary examples of the employment of these methods in the biogeosciences and microbial life realms. A wide variety of techniques are described including environmental sampling, biogeochemical methods, genomic methods, and microscopy. Every technique includes a general description of what the technique is and how it works, background theory, instrumentation, typical applications and limitations, sampling and sample preparation protocols, data collection, reduction, and representation; interpretations, links to the scientific literature, and collections of related teaching activities. Web-based profiles of the Microbial Observatory projects provide students with case-based learning environments that a) define the "big scientific questions," b) introduce the research teams, c) demonstrate modern research strategies and methodologies, and d) present the key scientific findings. These case studies span a variety of locations from microbial life in the extreme environments of Yellowstone National Park to the diversity of marine sponges in Florida to microbial diversity in Antarctic lakes. The goal of these websites is to help students and

  12. Differentiation of microbial species and strains in coculture biofilms by multivariate analysis of laser desorption postionization mass spectra.

    PubMed

    Bhardwaj, Chhavi; Cui, Yang; Hofstetter, Theresa; Liu, Suet Yi; Bernstein, Hans C; Carlson, Ross P; Ahmed, Musahid; Hanley, Luke

    2013-11-21

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups, two "pure" groups, and a mixed region. Furthermore, the "pure" regions of the E. coli cocultures showed greater variance by PCA at 7.87 eV photon energies compared to 10.5 eV radiation. This is consistent with the expectation that the 7.87 eV photoionization selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.

  13. In situ biofilm coupon device

    DOEpatents

    Peyton, Brent M.; Truex, Michael J.

    1997-01-01

    An apparatus for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements.

  14. In situ biofilm coupon device

    DOEpatents

    Peyton, B.M.; Truex, M.J.

    1997-06-24

    An apparatus is disclosed for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements. 3 figs.

  15. Current and future trends for biofilm reactors for fermentation processes.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  16. Metagenomic and ecophysiological analysis of biofilms colonizing coral substrates: "Life after death of coral"

    NASA Astrophysics Data System (ADS)

    Sanchez, A., Sr.; Cerqueda-Garcia, D.; Falcón, L. I.; Iglesias-Prieto, R., Sr.

    2015-12-01

    Coral reefs are the most productive ecosystems on the planet and are the most important carbonated structures of biological origin. However, global warming is affecting the health and functionality of these ecosystems. Specifically, most of the Acropora sp. stony corals have declined their population all over the Mexican Caribbean in more than ~80% of their original coverage, resulting in vast extensions of dead coral rubble. When the coral dies, the skeleton begins to be colonized by algae, sponges, bacteria and others, forming a highly diverse biofilm. We analyzed the metagenomes of the dead A. palmata rubbles from Puerto Morelos, in the Mexican Caribbean. Also, we quantified the elemental composition of biomass and measured nitrogen fixation and emission of greenhouse gases over 24 hrs. This works provides information on how the community is composed and functions after the death of the coral, visualizing a possible picture for a world without coral reefs.

  17. Interactions of microbial biofilms with toxic trace metals; 2: Prediction and verification of an integrated computer model of lead (II) distribution in the presence of microbial activity

    SciTech Connect

    Hsieh, K.M.; Murgel, G.A.; Lion, L.W.; Shuler, M.L. )

    1994-06-20

    The interfacial interactions of a toxic trace metal, Pb, with a surface modified by a marine film-forming bacterium, Pseudomonas atlantica, were predicted by a structured biofilm model used in conjunction with a chemical speciation model. The validity of the integrated model was tested for batch and continuous operations. Dynamic responses of the biophase due to transient lead concentration increases were also simulated. The reasonable predictions achieved by the model demonstrate its utility in describing trace metal distributions in complex systems where the adsorption properties of inorganic surfaces are modified by adherent bacteria and bacterial production of extracellular polymers.

  18. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    ERIC Educational Resources Information Center

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  19. Effects of ultra-high pressure homogenization on microbial and physicochemical shelf life of milk.

    PubMed

    Pereda, J; Ferragut, V; Quevedo, J M; Guamis, B; Trujillo, A J

    2007-03-01

    The effect of ultra-high pressure homogenization (UHPH) on microbial and physicochemical shelf life of milk during storage at 4 degrees C was studied and compared with a conventional heat preservation technology used in industry. Milk was standardized at 3.5% fat and was processed using a Stansted high-pressure homogenizer. High-pressure treatments applied were 100, 200, and 300 MPa (single stage) with a milk inlet temperature of 40 degrees C, and 200 and 300 MPa (single stage) with a milk inlet temperature of 30 degrees C. The UHPH-treated milks were compared with high-pasteurized milk (PA; 90 degrees C for 15 s). The microbiological quality was studied by enumerating total counts, psychrotropic bacteria, lactococci, lactobacilli, enterococci, coliforms, spores, and Pseudomonas. Physicochemical parameters assessed in milks were viscosity, color, pH, acidity, rate of creaming, particle size, and residual peroxidase and phosphatase activities. Immediately after treatment, UHPH was as efficient (99.99%) in reducing psychrotrophic, lactococci, and total bacteria as was the PA treatment, reaching reductions of 3.5 log cfu/mL. Coliforms, lactobacilli, and enterococci were eliminated. Microbial results of treated milks during storage at 4 degrees C showed that UHPH treatment produced milk with a microbial shelf life between 14 and 18 d, similar to that achieved for PA milk. The UHPH treatments reduced the L* value of treated milks and induced a reduction in viscosity values of milks treated at 200 MPa compared with PA milks; however, these differences would not be appreciated by consumers. In spite of the fat aggregates detected in milks treated at 300 MPa, no creaming was observed in any UHPH-treated milk. Hence, alternative methods such as UHPH may give new opportunities to develop fluid milk with an equivalent shelf life to that of PA milk in terms of microbial and physicochemical characteristics.

  20. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa

    PubMed Central

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L.; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  1. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa.

    PubMed

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world's economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  2. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  3. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research.

    PubMed

    Grote, Mathias; O'Malley, Maureen A

    2011-11-01

    The history of research on microbial rhodopsins offers a novel perspective on the history of the molecular life sciences. Events in this history play important roles in the development of fields such as general microbiology, membrane research, bioenergetics, metagenomics and, very recently, neurobiology. New concepts, techniques, methods and fields have arisen as a result of microbial rhodopsin investigations. In addition, the history of microbial rhodopsins sheds light on the dynamic connections between basic and applied science, and hypothesis-driven and data-driven approaches. The story begins with the late nineteenth century discovery of microorganisms on salted fish and leads into ecological and taxonomical studies of halobacteria in hypersaline environments. These programmes were built on by the discovery of bacteriorhodopsin in organisms that are part of what is now known as the archaeal genus Halobacterium. The transfer of techniques from bacteriorhodopsin studies to the metagenomic discovery of proteorhodopsin in 2000 further extended the field. Microbial rhodopsins have also been used as model systems to understand membrane protein structure and function, and they have become the target of technological applications such as optogenetics and nanotechnology. Analysing the connections between these historical episodes provides a rich example of how science works over longer time periods, especially with regard to the transfer of materials, methods and concepts between different research fields.

  4. Ecoimmunology and microbial ecology: Contributions to avian behavior, physiology, and life history.

    PubMed

    Evans, Jessica K; Buchanan, Katherine L; Griffith, Simon C; Klasing, Kirk C; Addison, BriAnne

    2017-02-01

    Bacteria have had a fundamental impact on vertebrate evolution not only by affecting the evolution of the immune system, but also generating complex interactions with behavior and physiology. Advances in molecular techniques have started to reveal the intricate ways in which bacteria and vertebrates have coevolved. Here, we focus on birds as an example system for understanding the fundamental impact bacteria have had on the evolution of avian immune defenses, behavior, physiology, reproduction and life histories. The avian egg has multiple characteristics that have evolved to enable effective defense against pathogenic attack. Microbial risk of pathogenic infection is hypothesized to vary with life stage, with early life risk being maximal at either hatching or fledging. For adult birds, microbial infection risk is also proposed to vary with habitat and life stage, with molt inducing a period of increased vulnerability. Bacteria not only play an important role in shaping the immune system as well as trade-offs with other physiological systems, but also for determining digestive efficiency and nutrient uptake. The relevance of avian microbiomes for avian ecology, physiology and behavior is highly topical and will likely impact on our understanding of avian welfare, conservation, captive breeding as well as for our understanding of the nature of host-microbe coevolution.

  5. Differentiation of Microbial Species and Strains in Coculture Biofilms by Multivariate Analysis of Laser Desorption Postionization Mass Spectra

    SciTech Connect

    University of Illinois at Chicago; Montana State University; Bhardwaj, Chhavi; Cui, Yang; Hofstetter, Theresa; Liu, Suet Yi; Bernstein, Hans C.; Carlson, Ross P.; Ahmed, Musahid; Hanley, Luke

    2013-04-01

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups two ?pure? groups and a mixed region. Furthermore, the ?pure? regions of the E. coli cocultures showed greater variance by PCA when analyzed by 7.87 eV photon energies than by 10.5 eV radiation. Comparison of the 7.87 and 10.5 eV data is consistent with the expectation that the lower photon energy selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.

  6. Long-term evaluation of the antimicrobial susceptibility and microbial profile of subgingival biofilms in individuals with aggressive periodontitis

    PubMed Central

    Lourenço, Talita Gomes Baêta; Heller, Débora; do Souto, Renata Martins; Silva-Senem, Mayra Xavier e; Varela, Victor Macedo; Torres, Maria Cynesia Barros; Feres-Filho, Eduardo Jorge; Colombo, Ana Paula Vieira

    2015-01-01

    This study evaluates the antimicrobial susceptibility and composition of subgingival biofilms in generalized aggressive periodontitis (GAP) patients treated using mechanical/antimicrobial therapies, including chlorhexidine (CHX), amoxicillin (AMX) and metronidazole (MET). GAP patients allocated to the placebo (C, n = 15) or test group (T, n = 16) received full-mouth disinfection with CHX, scaling and root planning, and systemic AMX (500 mg)/MET (250 mg) or placebos. Subgingival plaque samples were obtained at baseline, 3, 6, 9 and 12 months post-therapy from 3–4 periodontal pockets, and the samples were pooled and cultivated under anaerobic conditions. The minimum inhibitory concentrations (MICs) of AMX, MET and CHX were assessed using the microdilution method. Bacterial species present in the cultivated biofilm were identified by checkerboard DNA-DNA hybridization. At baseline, no differences in the MICs between groups were observed for the 3 antimicrobials. In the T group, significant increases in the MICs of CHX (p < 0.05) and AMX (p < 0.01) were detected during the first 3 months; however, the MIC of MET decreased at 12 months (p < 0.05). For several species, the MICs significantly changed over time in both groups, i.e., Streptococci MICs tended to increase, while for several periodontal pathogens, the MICs diminished. A transitory increase in the MIC of the subgingival biofilm to AMX and CHX was observed in GAP patients treated using enhanced mechanical therapy with topical CHX and systemic AMX/MET. Both protocols presented limited effects on the cultivable subgingival microbiota. PMID:26273264

  7. Microbial trace fossils in Antarctica and the search for evidence of early life on Mars

    NASA Technical Reports Server (NTRS)

    Friedmann, E. Imre; Friedmann, Roseli O.

    1989-01-01

    It is possible to hypothesize that, if microbial life evolved on early Mars, fossil remnants of these organisms may be preserved on the surface. However, the cooling and drying of Mars probably resembled a cold desert and such an environment is not suitable for the process of fossilization. The frigid Ross Desert of Antarctica is probably the closest terrestrial analog to conditions that may have prevailed on the surface of the cooling and drying Mars. In this desert, cryptoendolithic microbial communities live in the airspaces of porous rocks, the last habitable niche in a hostile outside environment. The organisms produce characteristic chemical and physical changes in the rock substrate. Environmental changes (deterioration of conditions) may result in the death of the community. Although no cellular structures are fossilized, the conspicuous changes in the rock substrate are preserved as trace fossils. Likewise, microbial trace fossils (without cellular structures) may also be preserved on Mars: Discontinuities in structure or chemistry of the rock that are independent of physical or chemical gradients may be of biological origin. Ross Desert trace fossils can be used as a model for planning search strategies and for instrument design to find evidence of past Martian life.

  8. The Efficacy of Umbelliferone, Arbutin, and N-Acetylcysteine to Prevent Microbial Colonization and Biofilm Development on Urinary Catheter Surface: Results from a Preliminary Study

    PubMed Central

    Cai, Tommaso; Gallelli, Luca; Meacci, Francesca; Brugnolli, Anna; Prosperi, Letizia; Roberta, Stefani; Eccher, Cristina; Mazzoli, Sandra; Lanzafame, Paolo; Caciagli, Patrizio; Malossini, Gianni; Bartoletti, Riccardo

    2016-01-01

    We evaluated, in a preliminary study, the efficacy of umbelliferone, arbutin, and N-acetylcysteine to inhibit biofilm formation on urinary catheter. We used 20 urinary catheters: 5 catheters were incubated with Enterococcus faecalis (control group); 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg), arbutin (60 mg), and N-acetylcysteine (150 mg) (group 1); 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg), arbutin (60 mg), and N-acetylcysteine (400 mg) (group 2); and 5 catheters were incubated with E. faecalis in presence of umbelliferone (300 mg), arbutin (60 mg), and N-acetylcysteine (150 mg) (group 3). After 72 hours, planktonic microbial growth and microorganisms on catheter surface were assessed. In the control group, we found a planktonic load of ≥105 CFU/mL in the inoculation medium and retrieved 3.69 × 106 CFU/cm from the sessile cells adherent to the catheter surface. A significantly lower amount in planktonic (p < 0.001) and sessile (p = 0.004) bacterial load was found in group 3, showing <100 CFU/mL and 0.12 × 106 CFU/cm in the incubation medium and on the catheter surface, respectively. In groups 1 and 2, 1.67 × 106 CFU/cm and 1.77 × 106 CFU/cm were found on catheter surface. Our results document that umbelliferone, arbutin, and N-acetylcysteine are able to reduce E. faecalis biofilm development on the surface of urinary catheters. PMID:27127655

  9. Polymicrobial Biofilm Studies: From Basic Science to Biofilm Control

    PubMed Central

    Willems, Hubertine ME; Xu, Zhenbo; Peters, Brian M

    2016-01-01

    Microbes rarely exist as single species planktonic forms as they have been commonly studied in the laboratory. Instead, the vast majority exists as part of complex polymicrobial biofilm communities attached to host and environmental surfaces. The oral cavity represents one of the most diverse and well-studied polymicrobial consortia. Despite a burgeoning field of mechanistic biofilm research within the past decades, our understanding of interactions that occur between microbial members within oral biofilms is still limited. Thus, the primary objective of this review is to focus on polymicrobial biofilm formation, microbial interactions and signaling events that mediate oral biofilm development, consequences of oral hygiene on both local and systemic disease, and potential therapeutic strategies to limit oral dysbiosis. PMID:27134811

  10. Methodological approaches for studying the microbial ecology of drinking water distribution systems.

    PubMed

    Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A

    2014-11-15

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects.

  11. Microbial profiles of commercial, vacuum-packaged, fresh pork of normal or short storage life.

    PubMed

    Holley, Richard A; Peirson, Michael D; Lam, Jocelyn; Tan, Kit Bee

    2004-12-01

    The microbial ecology of fresh vacuum-packed pork cuts during storage at -1.5 degrees C for up to 45 days was examined to characterize rates of microbial growth and pH changes in commercially prepared products of normal storage quality. Pork loins in commercial distribution with odour defects were also studied to determine a possible cause of the defects and avoid future problems. In addition, microbial profiles of pork cuts from two plants were compared, after storage for 25 days at -1.5 degrees C, to identify possible reasons for differences in the storage life of product from the plants. The effects of a change in sanitation procedures on the microbial populations of products stored for 25 days were also studied. With normal product, microbial growth in different packages progressed at different rates, reflecting differences in initial levels of bacterial contamination. All samples in the study reached 8 weeks without apparent organoleptic change and samples carried 5.8+/-1.2 log bacteria cm(-2) (mean+/-S.D.). The flora of loins with the odour defect were predominately lactic acid bacteria (LAB) and carnobacteria, but they contained large fractions of Enterobacteriaceae <35 days after packaging. Aeromonas spp. and Shewanella spp. were likely responsible for the sulfide-putrid smell of these spoiled products, but species of Enterobacteriaceae and lactic acid bacteria could have contributed to spoilage. Comparison of microbial groups present in 16 other cuts, half from each of two commercial plants, which were stored for 25 days at -1.5 degrees C, showed that larger fractions of Enterobacteriaceae were present in samples from the plant having difficulty achieving the desired storage life. Additional bacterial samples from 12 cuts supplied by the latter plant obtained after adoption of an acid sanitizer step in the plant cleaning regimen, and also stored for 25 days at -1.5 degrees C, yielded few Enterobacteriaceae, Aeromonas or Shewanella. Use of an acid sanitizer

  12. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman

    PubMed Central

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M.; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S.

    2017-01-01

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3-, SO42-, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the

  13. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman.

    PubMed

    Rempfert, Kaitlin R; Miller, Hannah M; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S

    2017-01-01

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite ("gabbro," "alkaline peridotite," "hyperalkaline peridotite," and "gabbro/peridotite contact") that vary strongly in pH and the concentrations of H2, CH4, Ca(2+), Mg(2+), [Formula: see text], [Formula: see text], trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation

  14. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman

    DOE PAGES

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; ...

    2017-02-07

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and

  15. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  16. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.

  17. Metagenomic Analysis of Showerhead Biofilms from a Hospital in Ohio

    EPA Science Inventory

    Background: The National Institute of Health estimated that 80% of human microbial infections are associated with biofilms. Although water supplies and hospital equipments are constantly treated with disinfectants, the presence of biofilms in these areas has been frequently obser...

  18. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and legionella pneumophila colonization

    EPA Science Inventory

    Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...

  19. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters.

    PubMed

    Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark

    2014-11-01

    Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type.

  20. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2002-09-30

    light scattering and refractive index measurements, were conducted. Quantitative imaging of in-situ sediment, generated by nanoplast -embedded natural...natual microbial communities and their extracellular polymeric secretions using Nanoplast resin. BioTechniques 27: 1246-1252. Decho, A.W. 1999

  1. Long-Term Stability of Mercury-Reducing Microbial Biofilm Communities Analyzed by 16S-23S rDNA Interspacer Region Polymorphism.

    PubMed

    Canstein, H.F.; Li, Y.; Felske, A.; Wagner-Döbler, I.

    2001-12-01

    The composition of mercury-reducing communities in two bioreactors retaining Hg(II) from chloralkali electrolysis wastewater for 485 days was analyzed based on effluent community DNA. Packed bed bioreactors with lava chips as carrier of the biofilm were inoculated with nine Hg(II)-resistant isolates that belonged to the alpha and gamma subdivisions of the proteobacteria. A rapid DNA-fingerprinting method was applied, using the intergenic spacer region (ISR) of the 16S-23S rDNA for analysis of the community composition. This allowed discrimination of the inoculum strains down to subspecies level. A merA specific PCR permitted the discrimination of the community's merA genes. During the 485 days of operation, the bioreactors were exposed to various physical stresses (mixing, gas bubbles, temperature increase up to 41 degrees C, increased flow velocity) and repeated high mercury inflow concentrations, resulting in reduced bioreactor performance and decreased culturable cell numbers in the reactor effluent. Nevertheless, the composition of the microbial community remained rather stable throughout the investigated time period. Of the inoculum strains, two could be detected throughout, whereas three were sometimes present with varying periods of nondetection. Two inoculum strains were only detected within the first month. Two strains of gamma-proteobacteria that were able to reduce ionic mercury invaded the bioreactor community. They did not outcompete established strains and had no negative effect on the Hg(II)-retention activity of the bioreactors. The community comprised diverse merA genes. The abundance of merA genes matched the abundance of their respective strains as confirmed by ISR community analysis. The continuously high selection pressure for mercury resistance maintained a stable and highly active mercury-reducing microbial community within the bioreactors.

  2. Biofilm and dental unit waterlines.

    PubMed

    Szymanska, Jolanta

    2003-01-01

    Aquatic biofilms, which are well-organized communities of microorganisms, are widespread in nature. They constitute a major problem in many environmental, industrial and medical settings. The use of advanced techniques has revealed biofilm structure, formation and ecology. Special attention was given to the build-up of biofilm in dental unit waterlines (DUWLs), which are small-bore flexible plastic tubing to bring water to different handpieces. They are coated with well-established biofilms. Active biofilm is a source of microbial contamination of DUWLs water. The safety of dental treatment requires a good quality of the water used. The knowledge of nature, formation and the ways to eliminate the biofilm is the first step towards reducing health risk, both for patients and dental personnel. The article reviews these issues.

  3. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    PubMed

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms