Washington State Biofuels Industry Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, Richard
2017-04-09
The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.
Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan
2018-01-16
Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.
In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, April Lea
Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore » policies and programs.« less
In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development
Pope, April Lea
2015-05-01
Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore » policies and programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
DOE-EERE's Bioenergy Technologies Office (BETO) works to accelerate the development of a sustainable, cost-competitive, advanced biofuel industry that can strengthen U.S. energy security, environmental quality, and economic vitality, through research, development, and demonstration projects in partnership with industry, academia, and national laboratory partners. BETO’s Advanced Algal Systems Program (also called the Algae Program) has a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels. The team works with partners to develop new technologies, to integrate technologies at commercially relevant scales, and to conduct crosscutting analyses to better understand the potential andmore » challenges of the algal biofuels industry. Research has indicated that this industry is capable of producing billions of gallons of renewable diesel, gasoline, and jet fuels annually. R&D activities are integrated with BETO’s longstanding effort to accelerate the commercialization of lignocellulosic biofuels.« less
Exploring new strategies for cellulosic biofuels production
Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel
2011-01-01
A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...
Bio Diesel Cellulosic Ethanol Research Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanlon, Edward A.; Capece, John C.; McAvoy, Eugene
The objective of the project is to create the Hendry County Sustainable Biofuels Center and initiate its research, development, and education programs. The mission is to develop engineering and economic assessment methods to evaluate the natural resources impacts of biomass farming and fuel conversion systems; provide sustainability assessments of specific biofuels productions proposals; develop biomass farming and fuel conversion systems that are compatible with south Florida ecosystem restoration priorities; create ecosystem services opportunities and structures to diversify farm income; monitor the range of research and development activities necessary to the creation of sutstainable biofuels production systems in south Florida, identifymore » gaps in the regional research, and assist in the development and coordination of additional projects to fill out the required knowledge base; prepare the workforce of southwest Florida for employment in biofuels related professions; and assist businesses & governmental design and realize sustainable biofuels projects.« less
Biofuel Supply Chains: Impacts, Indicators and Sustainability Metrics
The U.S. EPA’s Office of Research and Development has introduced a program to study the environmental impacts and sustainability of biofuel supply chains. Analyses will provide indicators and metrics for valuating sustainability. In this context, indicators are supply chain rat...
Biofuel Production: Considerations for USACE Civil Works Business Lines
2014-12-01
observers to see the big picture by looking at a smaller part of it. Indicators are often quantitative measures such as physical or economic data...however, the end use of collected biomass as feedstock for biofuels is seldom considered. The USACE Aquatic Plant Control Research Program has a ...collection equipment, and proximity to transportation and biofuels processing plants , use of aquatic plant biomass as a feedstock may be warranted
Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, Richard
2014-02-04
The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process controlmore » Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.« less
76 FR 7935 - Advanced Biofuel Payment Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
...The Rural Business-Cooperative Service (Agency) is establishing the Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. Under this Program, the Agency will enter into contracts with advanced biofuel producers to pay such producers for the production of eligible advanced biofuels. To be eligible for payments, advanced biofuels must be produced from renewable biomass, excluding corn kernel starch, in a biofuel facility located in a State. In addition, this interim rule establishes new program requirements for applicants to submit applications for Fiscal Year 2010 payments for the Advanced Biofuel Payment Program. These new program requirements supersede the Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers in its entirety.
New membranes could speed the biofuels conversion process and reduce cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael
2014-07-23
ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.
New membranes could speed the biofuels conversion process and reduce cost
Hu, Michael
2018-01-26
ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.
7 CFR 4288.111 - Biofuel eligibility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must meet...
7 CFR 4288.111 - Biofuel eligibility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must meet...
76 FR 24343 - Advanced Biofuel Payment Program; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
...-AA75 Advanced Biofuel Payment Program; Correction AGENCY: Rural Business-Cooperative Service; Rural... Federal Register of February 11, 2011, establishing the Advanced Biofuel Payment Program authorized under... this Program, the Agency will enter into contracts with advanced biofuel producers to pay such...
7 CFR 4288.110 - Applicant eligibility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... requirements associated with advanced biofuel producer eligibility, biofuel eligibility, eligibility... not eligible for this Program. (a) Eligible producer. The applicant must be an advanced biofuel...
7 CFR 4288.110 - Applicant eligibility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... requirements associated with advanced biofuel producer eligibility, biofuel eligibility, eligibility... not eligible for this Program. (a) Eligible producer. The applicant must be an advanced biofuel...
7 CFR 4288.111 - Biofuel eligibility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Eligibility Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program...
75 FR 11836 - Bioenergy Program for Advanced Biofuels
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... (NOCP); additional payment for advanced biofuel produced from October 1, 2008 through September 30, 2009. SUMMARY: RBS is announcing additional payments to advanced biofuel producers determined eligible in Fiscal... biofuel produced in FY 2009, the request must include: Form RD 9005-3, ``Advanced Biofuel Program Payment...
75 FR 21191 - Subpart B-Advanced Biofuel Payment Program; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... Service 7 CFR Part 4288 RIN 0570-AA75 Subpart B--Advanced Biofuel Payment Program; Correction AGENCY... for producers of advanced biofuels to supporting existing advanced biofuel production and to encourage...
7 CFR 4288.110 - Applicant eligibility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program....119 present the requirements associated with advanced biofuel producer eligibility, biofuel... advanced biofuel producer, as defined in this subpart. (b) Eligibility determination. The Agency will...
ERIC Educational Resources Information Center
Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III
2015-01-01
This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research…
Code of Federal Regulations, 2013 CFR
2013-01-01
... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General... the Program is presented in this section. Advanced biofuel producers who expect to produce eligible.... (a) Enrollment. To enroll in the Program, an advanced biofuel producer must submit to the Agency a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General... the Program is presented in this section. Advanced biofuel producers who expect to produce eligible.... (a) Enrollment. To enroll in the Program, an advanced biofuel producer must submit to the Agency a...
Biofuels Research at EPA - slides
The U.S. Environmental Protection Agency’s Office of Research and Development supports the Agency’s mission to protect human health and the environment through its research programs. ORD scientists and engineers lead research efforts designed to be credible, relevant and timely ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General... enrolling in the Program is presented in this section. Advanced biofuel producers who expect to produce... section. (a) Enrollment. To enroll in the Program, an advanced biofuel producer must submit to the Agency...
Code of Federal Regulations, 2013 CFR
2013-01-01
... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.121 Contract. Advanced biofuel producers determined to be eligible to receive payments must... Agency will forward the contract to the advanced biofuel producer. The advanced biofuel producer must...
Code of Federal Regulations, 2012 CFR
2012-01-01
... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.121 Contract. Advanced biofuel producers determined to be eligible to receive payments must... Agency will forward the contract to the advanced biofuel producer. The advanced biofuel producer must...
Advanced Algal Systems Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential
7 CFR 4288.130 - Payment applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid contracts...
7 CFR 4288.130 - Payment applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid contracts...
7 CFR 4288.130 - Payment applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... identify the process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid...
Electrofuels: A New Paradigm for Renewable Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrado, Robert J.; Haynes, Chad A.; Haendler, Brenda E.
2013-01-01
Biofuels are by now a well-established component of the liquid fuels market and will continue to grow in importance for both economic and environmental reasons. To date, all commercial approaches to biofuels involve photosynthetic capture of solar radiation and conversion to reduced carbon; however, the low efficiency inherent to photosynthetic systems presents significant challenges to scaling. In 2009, the US Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) created the Electrofuels program to explore the potential of nonphotosynthetic autotrophic organisms for the conversion of durable forms of energy to energy-dense, infrastructure-compatible liquid fuels. The Electrofuels approach expands the boundariesmore » of traditional biofuels and could offer dramatically higher conversion efficiencies while providing significant reductions in requirements for both arable land and water relative to photosynthetic approaches. The projects funded under the Electrofuels program tap the enormous and largely unexplored diversity of the natural world, and may offer routes to advanced biofuels that are significantly more efficient, scalable and feedstock-flexible than routes based on photosynthesis. Here, we describe the rationale for the creation of the Electrofuels program, and outline the challenges and opportunities afforded by chemolithoautotrophic approaches to liquid fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.
In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genomemore » sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less
Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; ...
2016-06-21
In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.
In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less
Hawaii Integrated Biofuels Research Program: Final Subcontract Report, Phase III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
This report is a compilation of studies done to develop an integrated set of strategies for the production of energy from renewable resources in Hawaii. Because of the close coordination between this program and other ongoing DOE research, the work will have broad-based applicability to the entire United States.
7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...
7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who...
7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...
U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-01
Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs thatmore » can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.« less
7 CFR 4288.135 - Unauthorized payments and offsets.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... assistance has been made to an advanced biofuel producer under this Program, the Agency reserves the right to... determination that unauthorized assistance has been made to an advanced biofuel producer under this Program, the...
7 CFR 4288.135 - Unauthorized payments and offsets.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... assistance has been made to an advanced biofuel producer under this Program, the Agency reserves the right to... determination that unauthorized assistance has been made to an advanced biofuel producer under this Program, the...
78 FR 77418 - Notice of Request for Revision of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... to a currently approved information collection for the Advanced Biofuel Payment Program. DATES... INFORMATION: Title: Advanced Biofuel Payment Program. OMB Number: OMB No. 0570-0063. Expiration Date of... collection. Abstract: The Advanced Biofuel Payment Program was authorized under section 9005 of Title IX of...
U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-07-01
Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millionsmore » of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.« less
7 CFR 4288.131 - Payment provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.131 Payment provisions. Payments to advanced biofuel producers for eligible advanced biofuel production will be determined in accordance with the provisions of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Enrollment Provisions § 4288.121 Contract. Advanced biofuel producers determined to be eligible to.... (a) Contract. The Agency will forward the contract to the advanced biofuel producer. The advanced...
7 CFR 4288.134 - Refunds and interest payments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.134 Refunds and interest payments. An eligible advanced biofuel producer...) An eligible advanced biofuel producer receiving payments under this subpart shall become ineligible...
7 CFR 4288.134 - Refunds and interest payments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.134 Refunds and interest payments. An eligible advanced biofuel producer...) An eligible advanced biofuel producer receiving payments under this subpart shall become ineligible...
7 CFR 4288.131 - Payment provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.131 Payment provisions. Payments to advanced biofuel producers for eligible advanced biofuel production will be determined in accordance with the provisions of this section. (a) Types...
7 CFR 4288.131 - Payment provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.131 Payment provisions. Payments to advanced biofuel producers for eligible advanced biofuel production will be determined in accordance with the provisions of this section. (a) Types...
7 CFR 4288.105 - Oversight and monitoring.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... of biofuel produced and the type and amount of feedstocks used. (2) Blending verification. The Agency... advanced biofuel eligible for payment. (3) Certificate of Analysis. The Agency will review the producer...
7 CFR 4288.135 - Unauthorized payments and offsets.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... unauthorized assistance has been made to an advanced biofuel producer under this Program, the Agency reserves... the producer. Upon determination that unauthorized assistance has been made to an advanced biofuel...
7 CFR 4288.105 - Oversight and monitoring.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... of biofuel produced and the type and amount of feedstocks used. (2) Blending verification. The Agency... advanced biofuel eligible for payment. (3) Certificate of Analysis. The Agency will review the producer...
7 CFR 4288.105 - Oversight and monitoring.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... of biofuel produced and the type and amount of feedstocks used. (2) Blending verification. The Agency... advanced biofuel eligible for payment. (3) Certificate of Analysis. The Agency will review the producer...
7 CFR 4288.113 - Payment record requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... for Program payments, an advanced biofuel producer must maintain records for all relevant fiscal years and fiscal year quarters for each advanced biofuel facility indicating: (a) The type of eligible...
Perennial plants for biofuel production: bridging genomics and field research.
Alves, Alexandre Alonso; Laviola, Bruno G; Formighieri, Eduardo F; Carels, Nicolas
2015-04-01
Development of dedicated perennial crops has been indicated as a strategic action to meet the growing demand for biofuels. Breeding of perennial crops,however, is often time- and resource-consuming. As genomics offers a platform from which to learn more about the relationships of genes and phenotypes,its operational use in the context of breeding programs through strategies such as genomic selection promises to foster the development of perennial crops dedicated to biodiesel production by increasing the efficiency of breeding programs and by shortening the length of the breeding cycles. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
7 CFR 4288.112 - Eligibility notifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... applicant a contract number. (b) Ineligibility notifications. If an applicant or a biofuel is determined by... after receipt of the application, as to the reason(s) the applicant or biofuel was determined to be...
7 CFR 4288.112 - Eligibility notifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... number. (b) Ineligibility notifications. If an applicant or a biofuel is determined by the Agency to be... application, as to the reason(s) the applicant or biofuel was determined to be ineligible. Such applicant will...
7 CFR 4288.112 - Eligibility notifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... number. (b) Ineligibility notifications. If an applicant or a biofuel is determined by the Agency to be... application, as to the reason(s) the applicant or biofuel was determined to be ineligible. Such applicant will...
7 CFR 4288.101 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... biofuel producers. (b) Scope. This subpart sets forth, subject to the availability of funds as provided herein, or as may be limited by law, the terms and conditions an advanced biofuel producer must meet to...
7 CFR 4288.101 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... biofuel producers. (b) Scope. This subpart sets forth, subject to the availability of funds as provided herein, or as may be limited by law, the terms and conditions an advanced biofuel producer must meet to...
7 CFR 4288.101 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... biofuel producers. (b) Scope. This subpart sets forth, subject to the availability of funds as provided herein, or as may be limited by law, the terms and conditions an advanced biofuel producer must meet to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason
2015-06-22
The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general havemore » been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.« less
Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun
2015-01-01
The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biofuels from Microalgae and Seaweeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John
2010-03-01
8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehanmore » et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...« less
Overview of the Biomass Scenario Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.; Peck, C.; Stright, D.
2015-02-01
Biofuels are promoted in the United States through legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007). Meeting the volumetric targets has prompted an unprecedented increase in funding for biofuels research, much of it focused on producing ethanol and other fuel typesmore » from cellulosic feedstocks as well as additional biomass sources (such as oil seeds and algae feedstock). In order to help propel the biofuels industry, the U.S. government has enacted a variety of incentive programs (including subsidies, fixed capital investment grants, loan guarantees, vehicle choice credits, and corporate average fuel economy standards) -- the short-and long-term ramifications of which are not well understood. Efforts to better understand the impacts of incentive strategies can help policy makers to develop a policy suite which will foster industry development while reducing the financial risk associated with government support of the nascent biofuels industry.« less
40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...
40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...
40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...
40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...
40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...
Daniel.Carpenter@nrel.gov | 303-384-6709 Orcid ID http://orcid.org/0000-0001-7625-9308 Research Interests Impact of ), especially related to blending low-cost, sustainable feedstocks into the biofuels supply chain Design thermochemical and catalytic experimental reactor systems Affiliated Research Programs Feedstocks (PI) Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, J.; Werner, C.
2003-08-01
Final report on subcontract for holding two briefings for policymakers and the environmental community on environmental issues related to biofuels; one on one on the energy and environmental issues associated with biofuels production and use, and the other on implications of pending renewable fuels standard legislation.
Electrofuels: More Efficient Than Photosynthesis
Toone, Eric; Eggert, Chas; Lynch, Mike; Roberts, B
2018-06-06
The Advanced Research Projects Agency -- Energy (ARPA-E) has funded successful programs with OPXBIO, NC State and others to create hyper efficient processes for manufacturing biofuels and electrofuels, which can be used in the existing transportation infrastructure.
Electrofuels: More Efficient Than Photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toone, Eric; Eggert, Chas; Lynch, Mike
2011-01-01
The Advanced Research Projects Agency -- Energy (ARPA-E) has funded successful programs with OPXBIO, NC State and others to create hyper efficient processes for manufacturing biofuels and electrofuels, which can be used in the existing transportation infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.
A Modular Approach to Integrating Biofuels Education into ChE Curriculum Part I--Learning Materials
ERIC Educational Resources Information Center
He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali
2016-01-01
In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…
7 CFR 4288.132 - Payment adjustments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... otherwise payable to the advanced biofuel producer if there is a difference between the amount actually...
7 CFR 4288.132 - Payment adjustments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... to the advanced biofuel producer if there is a difference between the amount actually produced and...
7 CFR 4288.132 - Payment adjustments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... to the advanced biofuel producer if there is a difference between the amount actually produced and...
7 CFR 4288.133 - Payment liability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... lien against the advanced biofuel, or proceeds thereof, in favor of the owner or any other creditor...
7 CFR 4288.133 - Payment liability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... lien against the advanced biofuel, or proceeds thereof, in favor of the owner or any other creditor...
Biofuels, Biolubricants and the BioPreferred(SM) Program
USDA-ARS?s Scientific Manuscript database
The BioPreferred(SM) Program is a U.S. government initiative intended to encourage the development and widespread use of biofuels, biolubricants, and other biobased products in the U.S. The program consists of the preferred procurement and the voluntary labeling programs. Companies wishing to have t...
7 CFR 4288.133 - Payment liability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... to any claim or lien against the advanced biofuel, or proceeds thereof, in favor of the owner or any...
Catalytic Deoxygenation of Biomass Pyrolysis Vapors to Improve Bio-oil Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayton, David C.
2016-12-22
The President’s Advanced Energy Initiative called for a change in the way Americans fuel their vehicles to promote improved energy security. Increasing biofuels production from domestic lignocellulosic resources requires advanced technology development to achieve the aggressive targets set forth to reduce motor gasoline consumption by 20% in ten years (by 2017). The U.S. Department of Energy (USDOE) Office of the Biomass Program (currently Bioenergy Technologies Office) is actively funding research and development in both biochemical and thermochemical conversion technologies to accelerate the deployment of biofuels technologies in the near future to meet the goals of the Advanced Energy Initiative. Thermochemicalmore » conversion technology options include both gasification and pyrolysis to enable the developing lignocellulosic biorefineries and maximize biomass resource utilization for production of biofuels.« less
40 CFR 80.1451 - What are the reporting requirements under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for....1401, retired for compliance. (x) The total cellulosic biofuel waiver credits used to meet the party's cellulosic biofuel RVO. (xi) A list of all RINs generated prior to July 1, 2010 that were retired for...
40 CFR 80.1451 - What are the reporting requirements under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for....1401, retired for compliance. (x) The total cellulosic biofuel waiver credits used to meet the party's cellulosic biofuel RVO. (xi) A list of all RINs generated prior to July 1, 2010 that were retired for...
NASA Astrophysics Data System (ADS)
Benea, B. C.
2016-08-01
This study presents the influence of the diesel fuel blended with biodiesel fuel obtained from sunflower oil, corn oil and peanut oil on the energetic performances, combustion process and pollutant emissions. This research was done virtually and experimentally. In this study pure diesel fuel and two concentrations (6% and 10%) of blends with biofuels were used for experimentally tests on a Renault K9K diesel engine. Five parameters were observed during experimental tests: engine power, fuel consumption, cylinder pressure, and the amount of CO and NOx emissions. The same five parameters were simulated using AVL Boost program. The variations of effective power and maximal cylinder pressure are caused due to the lower calorific value of the tested fuels. Better oxidation of the biofuels induces a better combustion in cylinder and less CO and NOx emissions. The CO emissions are either influence by the lower carbon content of biofuels. The results of this study sustain that using 6% and 10% of blended biofuels with diesel fuel decrease the pollutant emissions of the diesel engine. Deviations between experimental and the simulation results confirm the validity of the mathematical model adopted for the simulation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE... Biomass Research and Development Initiative § 3430.701 Purpose. In carrying out the program, NIFA, in... biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the...
Westbrook, Charles K
2013-01-01
This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.
2012 Standards for the Renewable Fuel Standard Program: Final Rulemaking
EPA is establishing the volume requirements and associated percentage standards that will apply under the RFS2 program in calendar year 2012 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
2011 Standards for the Renewable Fuel Standard Program: Final Rulemaking
EPA is finalizing the volume requirements and associated percentage standards that will apply under the RFS2 program in calendar year 2011 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
2013 Renewable Fuel Standards for Renewable Fuel Standard Program (RFS2) Final Rulemaking
EPA is establishing the volume requirements and associated percentage standards that apply under the RFS2 program in calendar year 2013 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
2014 Renewable Fuel Standards under Renewable Fuel Standard Program: Notice of Proposed Rulemaking
EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS2 program in calendar year 2014 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
Modeling sustainability in renewable energy supply chain systems
NASA Astrophysics Data System (ADS)
Xie, Fei
This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.
Westbrook, Charles K.
2013-01-04
This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less
7 CFR 4288.134 - Refunds and interest payments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... advanced biofuel producer who receives payments under this subpart may be required to refund such payments... General for appropriate action. (a) An eligible advanced biofuel producer receiving payments under this...
7 CFR 4288.113 - Payment record requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... advanced biofuel producer must maintain records for all relevant fiscal years and fiscal year quarters for each advanced biofuel facility indicating: (a) The type of eligible renewable biomass used in the...
7 CFR 4288.113 - Payment record requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... advanced biofuel producer must maintain records for all relevant fiscal years and fiscal year quarters for each advanced biofuel facility indicating: (a) The type of eligible renewable biomass used in the...
DOT National Transportation Integrated Search
2011-10-25
This report describes how existing biofuel sustainability evaluation programs meet requirements that are under consideration or are in early phases of adoption and implementation in various US and international contexts. Biofuel sustainability evalua...
TERRA: Building New Communities for Advanced Biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch
ARPA-E’s Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines – agriculture, robotics and data analytics – to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-E’s model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projects—Donald Danforth Center and Purdue University—that are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capece, John
The survival of Florida’s biodiversity and economy is dependent on finding ways to balance farm economics with proper management of water and other natural resources. Taking on this challenge of maximizing the delivery of ecosystems services from agricultural production systems is the mandate of the Hendry County Sustainable Biofuels Center. Given that sea level rise is the overarching, long-term threat to the south Florida and its ecosystems, the most valuable ecosystems services for the state of Florida are those that mitigate climate change. Biofuels are put forward as one approach to forestalling climate change, but its value as an industrymore » in providing this and other ecosystem services is unproven. The Sustainable Biofuels Center has developed a set of programs to both document and enhance the ecosystems services values of the evolving Florida biofuels industry. The Center engages in agricultural systems evaluation, sustainability indexing and sustainability research. Methods employed for documenting ecosystems services and costs include Life Cycle Assessment, Emergy Analysis, and optimization of cost-benefit functions. Radically new farming and economic compensation systems must be created and implemented if we are to achieve a successful agricultural business model built upon balanced revenue streams from these varied services. Accordingly, the Center also supports field research and demonstration projects to document the capacity for innovative farming systems to deliver ecosystems services such as water storage. To help promote the inclusion of ecosystems services considerations in farm operations, the program includes curriculum development at both the K-12 and college level, as well as programs to bring diverse stakeholders in to collaborative visioning process. Lastly, since county governments are often the level where new industry seek entry to the landscape, the Center is also developing metrics and tools through which economic development officers can evaluate business developer requests for tax breaks, land use changes and various other permissions and incentives against the economic and ecological benefits as well as any natural resource costs. Solving the underlying problem requires that agricultural lands provide society with a more balanced set of values in the form of food, energy, and ecosystem services through proper water, nutrient, and soil management. County-level programs can help realize that vision.« less
Payments Through the Bioenergy Program for Advanced Biofuels (Section 9005), eligible producers of advanced biofuels, or fuels derived from renewable biomass other than corn kernel starch, may receive payments to support expanded production of advanced biofuels. Payment amounts will depend on the quantity
The Brazilian biofuels industry
Goldemberg, José
2008-01-01
Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion. PMID:18471272
Study Confirms Biofuels Reduce Jet Engine Pollution on This Week @NASA – March 17, 2017
2017-03-17
Findings published March 15 in the journal Nature from a series of flight tests in 2013 and 2014 near NASA’s Armstrong Flight Research Center in California indicate that using biofuels helps jet engines reduce particle emissions in exhaust by as much as 50 to 70 percent. That’s both an economic and an environmental benefit. The findings were based on data from the Alternative Fuel Effects on Contrails and Cruise Emissions Study, or ACCESS. The international research program led by NASA and involving agencies from Germany and Canada, studied the effects of alternative fuels on aircraft-generated contrails, engine performance and emissions. Also, NASA @SXSW Interactive Festival, Satellites See Winter Storm from Space, CST-100 Starliner Parachute Testing, and NASA’s Pi Day Challenge!
NREL Algal Biofuels Projects and Partnerships
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-10-01
This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.
producers for up to $2.1053 per million British Thermal Unit (MMbtu) for advanced biofuel produced from cellulosic biomass and $1.053 per MMbtu for advanced biofuel produced from sugar- or starch-based crops information, see the Advanced Biofuels Production Incentive Program website. (Reference Minnesota Statutes 41A
75 FR 20085 - Subpart B-Advanced Biofuel Payment Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... biofuels industry is very capital intensive, the Agency is proposing multi-year contracts to enable advanced biofuels producers the assurance of a multi-year revenue stream. This approach is consistent with the goal of creating a stable industry. Finally, the Agency is proposing a two- tiered payment...
Response of jatropha on a clay soil to different concentrations of micronutrients
USDA-ARS?s Scientific Manuscript database
In recent years Jatropha curcas L. has emerged as a biofuel crop with potential for its production in marginal land with application of treated sewage water. Since this is a new crop for its profitable cultivation, additional research is needed to develop optimal management programs, including macro...
TERRA: Building New Communities for Advanced Biofuels
Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch
2018-01-16
ARPA-Eâs Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines â agriculture, robotics and data analytics â to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-Eâs model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projectsâDonald Danforth Center and Purdue Universityâthat are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.
Bioenergy Feedstock Development Program Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.
2001-02-09
The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energymore » crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.« less
A strategic assessment of biofuels development in the Western States
Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle
2009-01-01
The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...
Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloiu, Valentin A.
2012-03-31
The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less
Overview of the DOE/SERI Biochemical Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J D
1986-09-01
The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less
Algae biodiesel - a feasibility report
2012-01-01
Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986
Childs, Kevin L; Konganti, Kranti; Buell, C Robin
2012-01-01
Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.
Cyanobacteria and microalgae: a positive prospect for biofuels.
Parmar, Asha; Singh, Niraj Kumar; Pandey, Ashok; Gnansounou, Edgard; Madamwar, Datta
2011-11-01
Biofuel-bioenergy production has generated intensive interest due to increased concern regarding limited petroleum-based fuel supplies and their contribution to atmospheric CO2 levels. Biofuel research is not just a matter of finding the right type of biomass and converting it to fuel, but it must also be economically sustainable on large-scale. Several aspects of cyanobacteria and microalgae such as oxygenic photosynthesis, high per-acre productivity, non-food based feedstock, growth on non-productive and non-arable land, utilization of wide variety of water sources (fresh, brackish, seawater and wastewater) and production of valuable co-products along with biofuels have combined to capture the interest of researchers and entrepreneurs. Currently, worldwide biofuels mainly in focus include biohydrogen, bioethanol, biodiesel and biogas. This review focuses on cultivation and harvesting of cyanobacteria and microalgae, possible biofuels and co-products, challenges for cyanobacterial and microalgal biofuels and the approaches of genetic engineering and modifications to increase biofuel production. Copyright © 2011 Elsevier Ltd. All rights reserved.
Energy Policy and Environmental Possibilities: Biofuels and Key Protagonists of Ecological Change
ERIC Educational Resources Information Center
Holleman, Hannah
2012-01-01
While a growing body of research indicates the severe ecological and social costs of biofuel production worldwide, the U.S. government continues to promote the expansion of this fuel sector. Recent congressional testimony regarding the promotion of biofuels via the renewable fuel standard (RFS) offers a strategic research site for sociological…
USDA-ARS?s Scientific Manuscript database
The United States Government is aggressively promoting ethanol and alternative biofuels as a substitute for gasoline. The Energy Independence and Security Act of 2007 enacted on December 19 targets production of 36 billion gallons of biofuels by 2022. Passage of this bill was motivated by recent s...
An outlook on microalgal biofuels.
Wijffels, René H; Barbosa, Maria J
2010-08-13
Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing for arable land. Worldwide, research and demonstration programs are being carried out to develop the technology needed to expand algal lipid production from a craft to a major industrial process. Although microalgae are not yet produced at large scale for bulk applications, recent advances-particularly in the methods of systems biology, genetic engineering, and biorefining-present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.
7 CFR 4288.104 - Compliance with other laws and regulations.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... biofuel producers must comply with other applicable Federal, State, and local laws, including, but not...
7 CFR 4288.104 - Compliance with other laws and regulations.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... biofuel producers must comply with other applicable Federal, State, and local laws, including, but not...
7 CFR 4288.104 - Compliance with other laws and regulations.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... biofuel producers must comply with other applicable Federal, State, and local laws, including, but not...
Biofuels: What Are They and How Can They Improve Practical Work and Discussions?
ERIC Educational Resources Information Center
MacLean, Tristan
2014-01-01
This article looks at the potential of bioenergy as a replacement for fossil fuels, the cutting-edge research being undertaken by scientists, and classroom resources available for teaching this topic. There is currently a large programme of scientific research aiming to develop advanced biofuels (replenishable liquid biofuels from non-food plants,…
Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.
Yang, Jia; Xu, Ming; Zhang, Xuezhi; Hu, Qiang; Sommerfeld, Milton; Chen, Yongsheng
2011-01-01
This research examines the life-cycle water and nutrients usage of microalgae-based biodiesel production. The influence of water types, operation with and without recycling, algal species, geographic distributions are analyzed. The results confirm the competitiveness of microalgae-based biofuels and highlight the necessity of recycling harvested water and using sea/wastewater as water source. To generate 1 kg biodiesel, 3726 kg water, 0.33 kg nitrogen, and 0.71 kg phosphate are required if freshwater used without recycling. Recycling harvest water reduces the water and nutrients usage by 84% and 55%. Using sea/wastewater decreases 90% water requirement and eliminates the need of all the nutrients except phosphate. The variation in microalgae species and geographic distribution are analyzed to reflect microalgae biofuel development in the US. The impacts of current federal and state renewable energy programs are also discussed to suggest suitable microalgae biofuel implementation pathways and identify potential bottlenecks. Copyright © 2010 Elsevier Ltd. All rights reserved.
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
Solomon, Barry D; Banerjee, Aparajita; Acevedo, Alberto; Halvorsen, Kathleen E; Eastmond, Amarella
2015-12-01
Rapid growth of biofuel production in the United States and Brazil over the past decade has increased interest in replicating this success in other nations of the Pan American region. However, the continued use of food-based feedstock such as maize is widely seen as unsustainable and is in some cases linked to deforestation and increased greenhouse gas emissions, raising further doubts about long-term sustainability. As a result, many nations are exploring the production and use of cellulosic feedstock, though progress has been extremely slow. In this paper, we will review the North-South axis of biofuel production in the Pan American region and its linkage with the agricultural sectors in five countries. Focus will be given to biofuel policy goals, their results to date, and consideration of sustainability criteria and certification of producers. Policy goals, results, and sustainability will be highlighted for the main biofuel policies that have been enacted at the national level. Geographic focus will be given to the two largest producers-the United States and Brazil; two smaller emerging producers-Argentina and Canada; and one stalled program-Mexico. However, several additional countries in the region are either producing or planning to produce biofuels. We will also review alternative international governance schemes for biofuel sustainability that have been recently developed, and whether the biofuel programs are being managed to achieve improved environmental quality and sustainable development.
NASA Astrophysics Data System (ADS)
Klise, G. T.; Roach, J. D.; Passell, H. D.; Moreland, B. D.; O'Leary, S. J.; Pienkos, P. T.; Whalen, J.
2010-12-01
Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the “production” footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada’s NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model. Joint activities in algal biofuel research involving Sandia National Labs, NREL, and Canada’s NRC are supported by the U.S. - Canada Clean Energy Dialogue Secretariat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Argonne model analyzes water footprint of biofuels | Argonne National
more information, please visit science.energy.gov. Different types of biofuels have different researchers analyze those differences. Different types of biofuels have different environmental and water
Student Travel to Pan-Am Congress of Plants & Biofuels in Merida, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimberly, Kimnach
The Pan American Congress on Plants and BioEnergy convened in Mérida, Mexico, June 22 to 25, 2008. The program was organized by Steve Long (University of Illinois) and Nick Carpita (Purdue University), along with co-organizers Marcos Buckeridge (University of São Paulo, Brazil) and Federico Sánchez (Universidad Nacional Autónoma de México). More than 200 scientists from over a dozen nations around the world gathered to discuss key issues surrounding the development of biofuel feedstocks and to report on their research in this area. This three day conference had invited speakers surrounding developing renewable and sustainable energy resources which are typically propelledmore » by three important drivers – security, cost and environmental impact.« less
The development of sustainable and clean biofuels is a national priority. To do so requires a life-cycle approach that includes consideration of feedstock production and logistics, and biofuel production, distribution, and end use. The US Environmental Protection Agency is suppor...
MSU-Northern Bio-Energy Center of Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kegel, Greg; Windy Boy, Jessica; Maglinao, Randy Latayan
The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additivesmore » considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally-grown oilseed crop was developed through a chemical process for converting the oil extracted into jet fuel. Promising methods of synthesizing heterogeneous metal complex catalyst that support the chemical conversion process were likewise developed. Breaking-down lignin to valuable chemicals using a metal complex catalyst was also investigated. Lignin is an organic polymer that binds around cellulose and hemicellulose fibers which strengthen cell walls in woody biomass. Test results showed promise and could lead to further exploration of using lignin for fuels and fuel additives. These findings could create another value-added product from lignin that can be sourced from beetle kill trees and product residues from cellulose ethanol plants. Coupled with these research discoveries was the provision of technical support to businesses in terms of product development and commercialization of bio-based products. This in turn opened new avenues for advancing the bio-energy industry in the region and helped support the regional agricultural-based economy through developing biofuels derived from feedstock that are grown locally. It assisted in developing biofuels that reduce exhaust emissions and improve engine performance.« less
Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production
NASA Astrophysics Data System (ADS)
Gillon, Sean Thomas
This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits. I describe how biofuel governance focuses on scientific practices that legitimize biofuel production for their capacity to marginally reduce greenhouse gas emissions, despite biofuels' agroecological consequences outside this regulatory purview. These consequences include pressure on conservation and agrienvironmental practice, which could be better supported through existing, highly effective, place-based, democratic institutions dedicated to stewarding the resources upon which agricultural livelihoods depend.
Biofuels incentives : a summary of federal programs
DOT National Transportation Integrated Search
2007-01-03
With recent high energy prices and the passage of major energy legislation in : 2005 (P.L. 109-58), there is ongoing congressional interest in promoting alternatives : to petroleum fuels. Biofuels transportation fuels produced from plants and oth...
National Algal Biofuels Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, John; Sarisky-Reed, Valerie
The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less
Proposed Volume Standards for 2018, and the Biomass-Based Diesel Volume for 2019
EPA proposed volume requirements under the Renewable Fuel Standard (RFS) program for 2018 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel, and biomass-based diesel for 2019 under the RFS.
[Model-based biofuels system analysis: a review].
Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin
2011-03-01
Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.
Sustainability Research: Biofuels, Processes and Supply Chains
Presentation will talk about sustainability at the EPA, summarily covering high level efforts and focusing in more detail on research in metrics for liquid biofuels and tools to evaluate sustainable processes. The presentation will also briefly touch on a new area of research, t...
Recent Inventions and Trends in Algal Biofuels Research.
Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna
2016-01-01
In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.
Experimental Results of an Electrostatic Injector
2014-10-01
is important especially in the realm of biofuels . In the long term, the United States Department of Defense (DOD) is interested in converting many...of their vehicles to biofuels . Both the U.S. Army and Navy have invested substantially into research pertaining to converting existing fleets to... biofuel compatibility. The recent work of Owkes and Desjardins has investigated the effects of electrostatic spray with biofuels [11]. They
NASA Astrophysics Data System (ADS)
Trueba, Isidoro
Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers significant potential to mitigate climate change by reducing life-cycle greenhouse gas emissions relative to fossil fuels. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. This thesis is motivated by the urgent need of advancing knowledge and understanding of the highly complex biofuel supply chain. While corn ethanol production has increased fast enough to keep up with the energy mandates, production of biofuels from different types of feedstocks has also been incremented. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, biorefinery establishment, and setting up transport, storage and distribution infrastructure. The literature also shows that the larger cost in the production of biomass to ethanol originates from the logistics operation therefore it is essential that an optimal logistics system is designed in order to keep low the costs of producing ethanol and make possible the shift from fossil fuels to biofuels. In many ways biomass is a unique renewable resource. It can be stored and transported relatively easily in contrast to renewable options such as wind and solar, which create intermittent electrical power that requires immediate consumption and a connection to the grid. This thesis presents two different models for the design optimization of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks. This work compares the performance and solutions obtained by two types of metaheuristic approaches; genetic algorithm and ant colony optimization. Compared to rigorous mathematical optimization methods or iterative algorithms, metaheuristics do not guarantee that a global optimal solution can be found on some class of problems. Problems with similar characteristics to the one presented in this thesis have been previously solved using linear programming, integer programming and mixed integer programming methods. However, depending on the type of problem, these mathematical or complete methods might need exponential computation time in the worst-case. This often leads to computation times too high for practical purposes. Therefore, this thesis develops two types of metaheuristic approaches for the design optimization of a biomass-to-biorefinery logistics system considering multiple types of feedstocks and shows that metaheuristics are highly suitable to solve hard combinatorial optimization problems such as the one addressed in this research work.
Proposed Renewable Fuel Standards for 2017, and the Biomass-Based Diesel Volume for 2018
EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS program in calendar years 2016, 2017 and 2018 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
Establishment of a Laboratory for Biofuels Research at the University of Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocker, Mark; Crofcheck, Czarena; Andrews, Rodney
2013-03-29
This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities andmore » contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO 2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.« less
Tapping the US sweet sorghum collection to identify biofuel germplasm
USDA-ARS?s Scientific Manuscript database
The narrow genetic base in sweet sorghum [Sorghum bicolor (L.) Moench] breeding programs is limiting the development of new varieties for biofuel production. Therefore, the identification of genetically diverse sweet sorghum germplasm in the U.S. National Plant Germplasm System (NPGS) collection is...
Final Renewable Fuel Standards for 2014, 2015 and 2016, and the Biomass-Based Diesel Volume for 2017
EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS program in calendar years 2014, 2015, and 2016 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.
A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Arpit; Zhang, Yimin; Davis, Ryan
Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel sellingmore » price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.« less
ERIC Educational Resources Information Center
Pedwell, Rhianna K.; Fraser, James A.; Wang, Jack T. H.; Clegg, Jack K.; Chartres, Jy D.; Rowland, Susan L.
2018-01-01
Course-integrated Undergraduate Research Experiences (CUREs) involve large numbers of students in real research. We describe a late-year microbiology CURE in which students use yeast to address a research question around beer brewing or synthesizing biofuel; the interdisciplinary student-designed project incorporates genetics, bioinformatics,…
Biofuels from food processing wastes.
Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo
2016-04-01
Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.
BioFuelDB: a database and prediction server of enzymes involved in biofuels production.
Chaudhary, Nikhil; Gupta, Ankit; Gupta, Sudheer; Sharma, Vineet K
2017-01-01
In light of the rapid decrease in fossils fuel reserves and an increasing demand for energy, novel methods are required to explore alternative biofuel production processes to alleviate these pressures. A wide variety of molecules which can either be used as biofuels or as biofuel precursors are produced using microbial enzymes. However, the common challenges in the industrial implementation of enzyme catalysis for biofuel production are the unavailability of a comprehensive biofuel enzyme resource, low efficiency of known enzymes, and limited availability of enzymes which can function under extreme conditions in the industrial processes. We have developed a comprehensive database of known enzymes with proven or potential applications in biofuel production through text mining of PubMed abstracts and other publicly available information. A total of 131 enzymes with a role in biofuel production were identified and classified into six enzyme classes and four broad application categories namely 'Alcohol production', 'Biodiesel production', 'Fuel Cell' and 'Alternate biofuels'. A prediction tool 'Benz' was developed to identify and classify novel homologues of the known biofuel enzyme sequences from sequenced genomes and metagenomes. 'Benz' employs a hybrid approach incorporating HMMER 3.0 and RAPSearch2 programs to provide high accuracy and high speed for prediction. Using the Benz tool, 153,754 novel homologues of biofuel enzymes were identified from 23 diverse metagenomic sources. The comprehensive data of curated biofuel enzymes, their novel homologs identified from diverse metagenomes, and the hybrid prediction tool Benz are presented as a web server which can be used for the prediction of biofuel enzymes from genomic and metagenomic datasets. The database and the Benz tool is publicly available at http://metabiosys.iiserb.ac.in/biofueldb& http://metagenomics.iiserb.ac.in/biofueldb.
Review of the cultivation program within the national alliance for advanced biofuels and bioproducts
USDA-ARS?s Scientific Manuscript database
The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new ...
Request for Correction 12001 Analyses Associated with the Impact of Biofuels
Request for Correction #11001 by the Competitive Enterprise Institute and ActionAid USA regarding the impacts of biofuel mandates on global hunger and mortality in the EPA's Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program, 40 CFR Part 80.
Novel biofuel formulations for enhanced vehicle performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Dennis; Narayan, Ramani; Berglund, Kris
2013-08-30
This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbonmore » sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable of producing such performance, thus providing direction for the implementation of renewable fuels for U.S. transportation. The testing and simulation studies have deepened our understanding of combustion 1) by advancing the rigor with which simulations can be carried out and 2) by illustrating that differences in biofuel and petroleum fuel properties can be used to predict differences in combustion behavior in engines. The future viability of biofuels for compression ignition (diesel) engines is now subject to economic (cost) uncertainty more so than to technical barriers, as the advanced biofuel blends developed here can improve cold-weather fuel properties, provide similar engine performance, and reduce emissions.« less
2016 National Algal Biofuels Technology Review Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.
Engineering biofuel tolerance in non-native producing microorganisms.
Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen
2014-01-01
Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria. Copyright © 2014 Elsevier Inc. All rights reserved.
Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification
Mark A. Dietenberger; Mark Anderson
2007-01-01
Researchers at the Forest Product Laboratory (FPL) and the University of Wisconsin-Madison (UW) envision a future for biofuels based on biomass gasification with hydrogen enrichment. Synergisms between hydrogen production and biomass gasification technologies will be necessary to avoid being marginalized in the biofuel marketplace. Five feasible engineering solutions...
Tapping the US historic sweet sorghum collection to identify biofuel germplasm
USDA-ARS?s Scientific Manuscript database
Sweet sorghum [Sorghum bicolor (L.) Moench] has gained an important role as a viable alternative to fossil fuels and a more profitable option than maize and sugarcane. Nevertheless, the actual narrow genetic base in sweet sorghum breeding programs is limiting the development of new biofuel varietie...
Scope of Algae as Third Generation Biofuels
Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin
2015-01-01
An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470
Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei
2014-05-07
Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.
Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?
Guo, Miao; Li, Changsheng; Facciotto, Gianni; Bergante, Sara; Bhatia, Rakesh; Comolli, Roberto; Ferré, Chiara; Murphy, Richard
2015-01-01
Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU's commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. Our results demonstrate that carbon and nitrogen cycling in perennial crop-soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global warming potential, ozone depletion and photochemical oxidation impact categories. Via comparative analyses for Imola-derived bioethanol across potential supply chains, we highlight priority issues for potential improvement in 2G biofuel profiling. Advanced clones of poplar such as Imola for 2G biofuel production in Italy as modelled here show potential to deliver an environmentally sustainable lignocellulosic biorefinery industry and accelerate advanced biofuel penetration in the transport sector.
Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)
Keasling, Jay; Bristow, Jim; Tringe, Susannah Green
2017-12-09
Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the field of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Officer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the field of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.
Ronald Sabo; J.Y. Zhu
2013-01-01
One key barrier to converting woody biomass to biofuel through the sugar platform is the low efficiency of enzymatic cellulose saccharification due to the strong recalcitrance of the crystalline cellulose. Significant past research efforts in cellulosic biofuels have focused on overcoming the recalcitrance of lignocelluloses to enhance the saccharification of...
PNNL Delivers Expertise, Technology to Biofuels Start-up, InEnTec
Surma, Jeff
2017-12-09
Initially through its Entrepreneurial Leave of Absence Program, PNNL gives biofuels innovators a start in opening up a new business based on technology developed for incinerating waste on the Hanford Site. Today, the companies Plasma Enhanced Melters are in operation around the world converting organic waste into valuable, clean fuels.
40 CFR 80.1451 - What are the reporting requirements under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for... renewable fuel produced or imported and assigned a unique batch-RIN per § 80.1426(d): (A) The RIN generator's name. (B) The RIN generator's EPA company registration number. (C) The renewable fuel producer EPA...
40 CFR 80.1451 - What are the reporting requirements under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for...) used for each batch meets the definition of renewable biomass as defined in § 80.1401. (P) Producers of... thinnings from forestlands or biomass obtained from areas at risk of wildfire must submit quarterly reports...
USDA-ARS?s Scientific Manuscript database
Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fei; Huang, Yongxi
Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.
Xie, Fei; Huang, Yongxi
2018-02-04
Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.
FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Bruce G; Bunce, Michael; Barone, Teresa L
2011-04-01
The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals. Addressing these barriers is necessary to allow the more widespread utilization and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed; including compatibility evaluation, changes to bio-fuels, regulatory changes, and changesmore » in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate. This project addresses recognized barriers to the wider use of bio-fuels in the areas of development of codes and standards, industrial and consumer awareness, and materials compatibility issues.« less
Fueling the Future with Fungal Genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.; Cullen, Daniel; Hibbett, David
Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale. Genomics is the foundation of the systems biology approach that is being used to accelerate the research and development efforts across the spectrum of topic areas that impact biofuels production. In this review, we discuss past, current and future advancesmore » made possible by genomic analyses of the fungi that impact plant/feedstock health, degradation of lignocellulosic biomass and fermentation of sugars to ethanol, hydrocarbon biofuels and renewable chemicals.« less
Solomon, Barry D
2010-01-01
Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.
Assessment of technologies to meet a low carbon fuel standard.
Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C
2009-09-15
California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.
2016-11-25
and education in bioenergy and environmental biotechnology at West Virginia State University (WVSU). Bioenergy and environmental biotechnology research...and education affected by the acquisition of this new equipment and instrumentations includes development of new technology to produce biofuels...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Biofuels, STEM education , environmental biotechnology
Utilization of Variable Consumption Biofuel in Diesel Engine
NASA Astrophysics Data System (ADS)
Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.
2018-01-01
The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. The advantages of vegetables origin fuels using as engine fuels are shown. Diesel engine operation on mixtures of petroleum diesel and rapeseed oil is researched. A fuel delivery system of mixture biofuel with a control system of the fuel compound is considered. The results of the system experimental researches of fuel delivery of mixture biofuel are led.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo
2013-02-11
The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments andmore » policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.« less
NASA Astrophysics Data System (ADS)
Cottes, Jeffrey Jacob
Between 1998 and 2008, the promise of biofuels to increase rural development, enhance energy security, and reduce greenhouse gas emissions stimulated their diffusion across international markets. This rapid expansion of ethanol and biodiesel encouraged many jurisdictions to implement biofuels expansion policies and programs. Global biofuels, characterised by mass production and international trade of ethanol and biodiesel, occurred despite their long history as marginal technologies on the fringe of the petroleum-based transportation energy regime. The first purpose of this dissertation is to examine the global expansion of ethanol and biodiesel to understand how these recurrent socio-technological failures co-evolved with petroleum transportation fuels. Drawing from the field of socio-technical transitions, this dissertation also assesses the global expansion of ethanol and biodiesel to determine whether or not these first generation biofuels are sustainable. Numerous studies have assessed the technical effects of ethanol and biodiesel, but effects-based technical assessments of transport biofuels are unable to explain the interaction of wider system elements. The configuration of multi-level factors (i.e., niche development, the technological regime, and the socio-technical landscape) informs the present and emerging social functions of biofuels, which become relevant when determining how biofuels might become a sustainable energy option. The biofuels regimes that evolved in Brazil, the United States, and the European Union provide case studies show how ethanol and biodiesel expanded from fringe fuels to global commodities. The production infrastructures within these dominant biofuels regimes contribute to a persistence of unsustainable first generation biofuels that can inhibit the technical development and sustainability of biofuels. However, new and emerging ethanol and biodiesel markets are relatively small in comparison to the dominant regimes, and can readily adapt to technical and regulatory change. This dissertation argues that dominant biofuels regimes have not produced a sustainable energy option. It explores the Canadian case to evaluate the opportunities for niche development, and suggests that small markets can develop niche innovations by regulating the insertion of sustainability criteria in order to de-align the dominant trajectory of global biofuels production regimes and encourage their re-alignment in a more sustainable configuration.
NASA Astrophysics Data System (ADS)
Wright, Mark Mba
There are significant technological and systemic challenges faced by today's advanced biofuel industry. These challenges stem from the current state-of-technology and from the system (consumer market, infrastructure, environment...) in which this emerging industry is being developed. The state-of-technology will improve with continued efforts in technology development, but novel approaches are required to investigate the systemic challenges that limit the adoption of advanced biofuels. The motivation of this dissertation is to address the question of how to find cost-effective, sustainable, and environmentally responsible pathways for the production of biofuels. Economic competitiveness, long-term viability, and benign environmental impact are key for biofuels to be embraced by industry, government, and consumers. Techno-economic, location, and carbon emission analysis are research methodologies that help address each of these issues. The research approach presented in this dissertation is to combine these three methodologies into a holistic study of advanced biofuel technologies. The value of techno-economic, location, and carbon emission analysis is limited when conducted in isolation because of current public perception towards energy technologies. Energy technologies are evaluated based on multiple criteria with a significant emphasis on the three areas investigated in this study. There are important aspects within each of these fields that could significantly limit the value of advances in other fields of study. Therefore, it is necessary that future research in advanced biofuels always consider the systemic challenges faced by novel developments.
Biofuels as an Alternative Energy Source for Aviation-A Survey
NASA Technical Reports Server (NTRS)
McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.
2009-01-01
The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.
Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz
2015-01-01
Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinen, H.
1993-12-31
Finland is one of the leading countries in the use of biofuels. The share of wood derived fuels of the total primary energy requirement was about 14% (ca. 4 million toe) and peat about 5% (1.4 million toe). The possibilities for increasing the use of biofuels in Finland are significant. There is theoretically about 10 million m{sup 3}/a (about 2 million toe/a) of harvestable wood. Areas suitable for fuel peat production (0.5 million ha) could produce ca. 420 million toe of peat. At present rates of use, the peat reserves are adequate for centuries. During the next few years 0.5--1more » million hectares of fields withdrawn from farming could be used for biofuel production. The production potential of this field area is estimated to be about 0.2--0.5 million toe. In addition, the use of wastes in energy production could be increased. The aim of the new Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. New economically competitive biofuels, new equipment and methods for production, handling and use of biofuels will also be developed. The main research areas are production of wood fuels, peat production, use of bioenergy and conversion of biomass.« less
Jinlan Cheng; S.-Y. Leu; Roland Gleisner; X.J. Pan; J.Y. Zhu
2014-01-01
Forest residue is the most affordable feedstock for biofuel production as stated in a recent US National Research Council Report. Softwood forest residue represents a significant amount of woody biomass that can be sustainably used to produce biofuel. It also has very low contents of acetyl groups and 5-carbon polysaccharides, favorable for biofuel production through...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-05-15
One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels. With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks. This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less
JEDI: Jobs and Economic Development Impacts Model Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Hendrickson; S.Tegen
2009-12-01
The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local(usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels,concentrating solar power, coal, and natural gas power plants.
Use of reclaimed water for power plant cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J. A.; Environmental Science Division
2007-10-16
Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of watermore » to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those plants that are using reclaimed water for cooling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceja-Navarro, Javier
2015-05-06
Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.
Ceja-Navarro, Javier
2018-01-16
Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.
Biofuel transportation analysis tool : description, methodology, and demonstration scenarios
DOT National Transportation Integrated Search
2014-01-01
This report describes a Biofuel Transportation Analysis Tool (BTAT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Department of Defense (DOD) Office of Naval Research ...
Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis
NASA Astrophysics Data System (ADS)
Levers, L. R.; Schwabe, K. A.
2017-04-01
Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.
Sherman, Louis A; Wangikar, Pramod P; Swarup, Renu; Kasture, Sangita
2013-11-01
An Indo-US workshop on "Cyanobacteria: molecular networks to biofuels" was held December 16-20, 2012 at Lagoona Resort, Lonavala, India. The workshop was jointly organized by two of the authors, PPW, a chemical engineer and LAS, a biologist, thereby ensuring a broad and cross-disciplinary participation. The main objective of the workshop was to bring researchers from academia and industry of the two countries together with common interests in cyanobacteria or microalgae and derived biofuels. An exchange of ideas resulted from a series of oral and poster presentations and, importantly, through one-on-one discussions during tea breaks and meals. Another key objective was to introduce young researchers of India to the exciting field of cyanobacterial physiology, modeling, and biofuels. PhD students and early stage researchers were especially encouraged to participate and about half of the 75 participants belonged to this category. The rest were comprised of senior researchers, including 13-15 invited speakers from each country. Overall, twenty-four institutes from 12 states of India were represented. The deliberations, which are being compiled in the present special issue, revolved mainly around molecular aspects of cyanobacterial biofuels including metabolic engineering, networks, genetic regulation, circadian rhythms, and stress responses. Representatives of some key funding agencies and industry provided a perspective and opportunities in the field and for bilateral collaboration. This article summarizes deliberations that took place at the meeting and provides a bird's eye view of the ongoing research in the field in the two countries.
2016-01-31
University. This facility is essential and has begun to be used for research on biofuel, microbiome and human health, and environmentally caused...is essential and has begun to be used for research on biofuel, microbiome and human health, and environmentally caused diseases that are being...cellulosic bioethanol production. A variety of bacteria have been identified from soil, termite guts , and sheep rumen samples. Manuscripts are being
Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.« less
Tempels, T H; Van den Belt, H
2016-01-01
Responsible Innovation (RI) is often heralded in EU policy circles as a means to achieve ethically acceptable, sustainable innovations. Yet, conceptual questions on the specific notion of 'responsibility' and to what extent an innovation can be 'responsible' are only partly addressed. In this chapter the question of responsibility for the indirect negative effects of biofuel innovations is explored. While initially hailed as one of the much needed solutions in the global struggle against climate change, the use of biofuels has become increasingly criticised. It is argued that the increased production of biofuels has put smallholder farmers out of business, has given rise to increased food prices, sparking food riots in several countries, while also contributing to further environmental degradation as the demand for new biofuels requires the development of new croplands at the cost of forests and peat lands. In the current market-based system it is customary to disburden researchers and business companies from any responsibility for the more remote consequences of their actions. When harmful consequences are brought about through the mediation of (perhaps a long series of) market transactions, they are often considered inevitable and excusable and not an appropriate occasion for invoking anybody's responsibility. But how broad is the scope of responsibility when it comes to the above mentioned social and ecological problems? By invoking the sacred duty to "innovate", the business company could perhaps be exculpated. In our age, innovation is often so much celebrated that many negative impacts are duly accepted as the inevitable price of progress. By approaching responsibility from a perspective that takes into account the economic and ecological interconnectedness of the world, we show how the debate on Responsible Innovation in biofuels becomes tied in with global debates on economic justice and bioscarcity. In conclusion we argue that if we-assuming this interconnectedness-take the current requirements of "Responsible" Innovation seriously, it would result in a demanding practice that calls for a substantial departure from business as usual, which prompts the question to what extent it is reasonable to incorporate what are actually demands for global justice in programs for innovation.
EPA Biofuels Research: Biofuel Vapor Generation and Monitoring Methods
The interest in renewable fuels and alternative energy sources has stimulated development of alternatives to traditional petroleum-based fuels. The EPA's Office of Transportation Air Quality (OTAQ) requires information regarding the potential health hazards ofthese fuels regardin...
The Navy Biofuel Initiative Under the Defense Production Act
2012-06-22
Market for Biomass -Based Diesel Fuel in the Renewable Fuel Standard (RFS), by Brent D. Yacobucci, The Market for Biomass -Based Diesel Fuel in the...defense.17 During the 1970s, DOE directed a synthetic fuels program toward commercializing coal liquefaction, coal gasification , and oil shale... Biomass : Background and Policy, by Anthony Andrews and Jeffrey Logan. The Navy Biofuel Initiative Under the Defense Production Act Congressional
Biofuels: An Alternative to U.S. Air Force Petroleum Fuel Dependency
2007-12-01
Ethanol Production 1999-2012 11 Figure 6. Reducing the Cost of Cellulosic Ethanol Production 12 Figure 7. Biodiesel Production Process ...14 Figure 8. Biodiesel Production Capacity, 1999 to 2005 15 Figure 9. Jet Fuel From Algae Process 17...the goal of this biofuels program is to develop an affordable biodiesel alternative production process that will achieve a 60 percent greater energy
75 FR 42745 - Production Incentives for Cellulosic Biofuels: Notice of Program Intent
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... gives notice that the Office of Biomass Program, in the Office of Energy Efficiency and Renewable Energy...: Questions may be directed to: Mr. Neil Rossmeissl, Office of the Biomass Program, U.S. Department of Energy...
cycle assessment in industrial by-product management, waste management, biofuels and manufacturing technologies Life cycle inventory database management Research Interests Life cycle assessment Life cycle inventory management Biofuels Advanced manufacturing Supply chain analysis Education Ph.D in environmental
Biofuel cells for biomedical applications: colonizing the animal kingdom.
Falk, Magnus; Narváez Villarrubia, Claudia W; Babanova, Sofia; Atanassov, Plamen; Shleev, Sergey
2013-07-22
Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789
A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.
MacVittie, Kevin; Conlon, Tyler; Katz, Evgeny
2015-12-01
A biofuel cell composed of catalytic electrodes made of "buckypaper" modified with PQQ-dependent glucose dehydrogenase and FAD-dependent fructose dehydrogenase on the anode and with laccase on the cathode was used to activate a wireless information transmission system. The cathode/anode pair was implanted in orange pulp extracting power from its content (glucose and fructose in the juice). The open circuit voltage, Voc, short circuit current density, jsc, and maximum power produced by the biofuel cell, Pmax, were found as ca. 0.6 V, ca. 0.33 mA·cm(-2) and 670 μW, respectively. The voltage produced by the biofuel cell was amplified with an energy harvesting circuit and applied to a wireless transmitter. The present study continues the research line where different implantable biofuel cells are used for the activation of electronic devices. The study emphasizes the biosensor and environmental monitoring applications of implantable biofuel cells harvesting power from natural sources, rather than their biomedical use. Copyright © 2014 Elsevier B.V. All rights reserved.
Biological research survey for the efficient conversion of biomass to biofuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Michael Stuart; Andrews, Katherine M.
2007-01-01
The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impactmore » in these technologies.« less
Biofuels and the Environment: the First Triennial Report to ...
EPA announced the release of the final report,Biofuels and the Environment: The First Triennial Report to Congress (EPA/600/R-10/183F), prepared by the National Center for Environmental Assessment (NCEA) within EPA’s Office of Research and Development, as the first EPA report published on this issue. The 2007 Energy Independence and Security Act (EISA) mandates increased production of biofuels (fuels derived from organic materials) from 9 billion gallons per year in 2008 to 36 billion gallons per year by 2022. Additionally, EISA (Section 204) also requires that the U.S. Environmental Protection Agency (EPA) assess and report to Congress every three years on the current and potential future environmental and resource conservation impacts associated with increased biofuel production and use. Produce report to Congress that addresses the environmental impact associated with current and future biofuel production and use.
Biofuels and the Environment: The First Triennial Report to ...
The Biofuels and the Environment: The First Triennial Report to Congress (External Review Draft) (EPA/600/R-10/183A) report, prepared by the National Center for Environmental Assessment (NCEA) within EPA’s Office of Research and Development, is the first report published on this issue. The 2007 Energy Independence and Security Act (EISA) mandates increased production of biofuels (fuels derived from organic materials) from 9 billion gallons per year in 2008 to 36 billion gallons per year by 2022. Additionally, EISA (Section 204) also requires that the U.S. Environmental Protection Agency (EPA) assess and report to Congress every three years on the current and potential future environmental and resource conservation impacts associated with increased biofuel production and use. Produce report to Congress that addresses the environmental impact associated with current and future biofuel production and use.
Metabolic engineering of biosynthetic pathway for production of renewable biofuels.
Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar
2014-02-01
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.
Laccase applications in biofuels production: current status and future prospects.
Kudanga, Tukayi; Le Roes-Hill, Marilize
2014-08-01
The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.
Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houghton, John; Weatherwax, Sharlene; Ferrell, John
2006-06-07
The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical rolesmore » in any deployment scheme.« less
Biofuels-Strengthening links between agriculture and military
USDA-ARS?s Scientific Manuscript database
U.S. agricultural producers and military planners share a strong commitment to the commercial-scale development of ready-to-use biofuels that can be sustainably produced using plant-based materials harvested from farms, forests, and other rural lands. Researchers in private business, government, and...
PBPK Models for Gasoline-Ethanol Biofuels in Adult and Pregnant Rats**
As utilization of biofuels (BF) in the commercial marketplace has increased in recent years, so has the need for evaluation of exposure-related health effects, such as developmental neurotoxicity. This research describes the development of inhalation life-stage physiologically-ba...
PBPK Models for Gasoline-Ethanol Biofuels in Adult and Pregnant Rats
As utilization of biofuels (BF) in the commercial marketplace has increased in recent years, so has the need for evaluation of exposure-related health effects, such as developmental neurotoxicity. This research describes the development of inhalation life-stage physiologically-ba...
PBPK Models for Gasoline-Ethanol Biofuels in Adult and Pregnant Rats####
As utilization of biofuels (BF) in the commercial marketplace has increased in recent years, so has the need for evaluation of exposure-related health effects, such as developmental neurotoxicity. This research describes the development of inhalation life-stage physiologically-ba...
PBPK Models for Gasoline-Ethanol Biofuels in Adult and Pregnant Rats###
As utilization of biofuels (BF) in the commercial marketplace has increased in recent years, so has the need for evaluation of exposure-related health effects, such as developmental neurotoxicity. This research describes the development of inhalation life-stage physiologically-ba...
PBPK Models for Gasoline-Ethanol Biofuels in Adult and Pregnant Rats@@@@
As utilization of biofuels (BF) in the commercial marketplace has increased in recent years, so has the need for evaluation of exposure-related health effects, such as developmental neurotoxicity. This research describes the development of inhalation life-stage physiologically-ba...
Biofuels Infrastructure Partnership (BIP) grant program. The BIP program works with retailers and state and eligible applicants in the following amounts: Infrastructure Grant Amount E15 Pumps 50% of the costs of
NASA Astrophysics Data System (ADS)
Križan, Peter; Matúš, Miloš; Beniak, Juraj; Šooš, Ľubomír
2018-01-01
During the biomass densification can be recognized various technological variables and also material parameters which significantly influences the final solid biofuels (pellets) quality. In this paper, we will present the research findings concerning relationships between technological and material variables during densification of sunflower hulls. Sunflower hulls as an unused source is a typical product of agricultural industry in Slovakia and belongs to the group of herbaceous biomass. The main goal of presented experimental research is to determine the impact of compression pressure, compression temperature and material particle size distribution on final biofuels quality. Experimental research described in this paper was realized by single-axis densification, which was represented by experimental pressing stand. The impact of mentioned investigated variables on the final briquettes density and briquettes dilatation was determined. Mutual interactions of these variables on final briquettes quality are showing the importance of mentioned variables during the densification process. Impact of raw material particle size distribution on final biofuels quality was also proven by experimental research on semi-production pelleting plant.
Evaluation of chosen fruit seeds oils as potential biofuel
NASA Astrophysics Data System (ADS)
Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.
2012-04-01
Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.
Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...
2017-08-07
Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.
Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less
NASA Astrophysics Data System (ADS)
Vaidya, Ashma; Mayer, Audrey
2015-04-01
Biofuel production has grown significantly in the past few decades as a result of global concern over energy security, climate change implications and unsustainable attributes of fossil fuels. Currently, biofuels produced from food crops (such as corn, sugarcane, soy, etc.) constitute the bulk of global biofuel production. However, purported adverse impacts of direct and indirect land-use changes (such as increased food prices, competition for agricultural land and water, and carbon emissions from land-use change) resulting from large-scale expansion of the crop-based biofuel industry have motivated many nations to further shift their attention to second-generation (non crop-based) biofuel production. Current R&D on second-generation biofuel production is largely focused on exploring prospects of using abandoned/fallow land for growing feedstock (such as Jatropha, short rotation woody coppice, Willow/Poplar species, Micanthus etc.), and on producing fuel that is cost-effective and compatible with existing infrastructures. The bulk of existing research on second-generation biofuel production concentrates on enhancing its technical feasibility and compatibility with existing infrastructure; very few have attempted to qualitatively determine and understand stakeholders' concerns and perception regarding this emergent industry. Stakeholders' decisions regarding land and resource use will play a crucial role in ensuring the social sustainability of any industry. Our research is focused on understanding stakeholders' concerns and perceptions regarding biofuel production in the upper Michigan region, where wood-based bioenergy development is being planned and researched by businesses, government agencies, and the local university. Over a century ago, the region's economy was dependent upon mining and clear-cut logging industries, which left the area once the resources were depleted. Since that time, the region has lost significant population due to the lack of economic opportunities, but the forests have recovered to volumes prior to the logging boom. Interest in a wood-based bioenergy production industry is growing, yet whether this industry can be developed sustainably is a concern. The main goal of our research is to incorporate stakeholders' concerns and knowledge into an expert-assisted sustainability assessment tool for a regional wood-based biofuel industry. Key stakeholders involved in the research include landowners, farmers, land management companies, bioenergy users, venture capitalists, interest groups, government organizations and NGOs. We used interviews, focus group meetings and a workshop to collect information from these stakeholders, which were then translated into social sustainability criteria. Multiple criteria analysis methods, Bayesian Belief Network and information collected from other studies were used to develop a final set of sustainability criteria and indicators. Our results provide a platform for experts and stakeholders to understand the local context relevant to sustainability, the state of the science, and will bridge the gap between scientific and non-scientific knowledge in the region. This sustainability assessment tool is intended to facilitate inclusive and sustainability-oriented decision-making for a wood-based bioenergy industry.
NASA Astrophysics Data System (ADS)
Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael
2016-09-01
The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.
implications for energy technologies Research Interests Environmental effects of energy technologies and . Warner, and Dana Stright. 2016. Effects of Deployment Investment on the Growth of the Biofuels Industry . W. Bush. 2013. Effects of Deployment Investment on the Growth of the Biofuels Industry. Golden, CO
Spatially Explicit Life Cycle Assessment of Biofuel Feedstock Production
Biofuels derived from renewable resources have gained increased research and development priority due to increasing energy demand and national security concerns. In the US, the Energy Independence and Security Act (EISA) of 2007 mandated the annual production of 56.8 billion L of...
Effects of Deployment Investment on the Growth of the Biofuels Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Bush, Brian W.
2013-12-01
In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scalemore » biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.« less
Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading
Cheng, Shouyun; Wei, Lin; Zhao, Xianhui; ...
2016-12-07
The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less
Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shouyun; Wei, Lin; Zhao, Xianhui
The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less
Extracellular electron transfer in yeast-based biofuel cells: A review.
Hubenova, Yolina; Mitov, Mario
2015-12-01
This paper reviews the state-of-the art of the yeast-based biofuel cell research and development. The established extracellular electron transfer (EET) mechanisms in the presence and absence of exogenous mediators are summarized and discussed. The approaches applied for improvement of mediator-less yeast-based biofuel cells performance are also presented. The overview of the literature shows that biofuel cells utilizing yeasts as biocatalysts generate power density in the range of 20 to 2440 mW/m(2), which values are comparable with the power achieved when bacteria are used instead. The electrons' origin and the contribution of the glycolysis, fermentation, aerobic respiration, and phosphorylation to the EET are commented. The reported enhanced current generation in aerobic conditions presumes reconsideration of some basic MFC principles. The challenges towards the practical application of the yeast-based biofuel cells are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, May M.; Chiu, Yi-Wen
Perennial grass has been proposed as a potential candidate for producing cellulosic biofuel because of its promising productivity and benefits to water quality, and because it is a non-food feedstock. While extensive research focuses on selecting and developing species and conversion technologies, the impact of grass-based biofuel production on water resources remains less clear. As feedstock growth requires water and the type of water consumed may vary considerably from region to region, water use must be characterized with spatial resolution and on a fuel production basis. This report summarizes a study that assesses the impact of biofuel production on watermore » resource use and water quality at county, state, and regional scales by developing a water footprint of biofuel produced from switchgrass and Miscanthus × giganteus via biochemical conversion.« less
The Role of Biofuels Coproducts in Feeding the World Sustainably.
Shurson, Gerald C
2017-02-08
One of the grand challenges facing our society today is finding solutions for feeding the world sustainably. The food-versus-fuel debate is a controversy embedded in this challenge, involving the trade-offs of using grains and oilseeds for biofuels production versus animal feed and human food. However, only 6% of total global grain produced is used to produce ethanol. Furthermore, biofuels coproducts contribute to sustainability of food production because only 1% to 2.5% of the overall energy efficiency is lost from converting crops into biofuels and animal feed, and approximately one-third of the corn used to produce ethanol is recovered as feed coproducts. Extensive research has been conducted over the past 15 years on biofuels coproducts to (a) optimize their use for improving caloric and nutritional efficiency in animal feeds, (b) identify benefits and limitations of use in various animal diets, (c) characterize their unique nutraceutical properties, and (d) evaluate their environmental impacts.
Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He
2012-01-01
Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. Copyright © 2012 Elsevier Inc. All rights reserved.
The potential of C4 grasses for cellulosic biofuel production
van der Weijde, Tim; Alvim Kamei, Claire L.; Torres, Andres F.; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.
2013-01-01
With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel. PMID:23653628
Acute embryo toxicity and teratogenicity of three potential biofuels also used as flavor or solvent.
Bluhm, Kerstin; Seiler, Thomas-Benjamin; Anders, Nico; Klankermayer, Jürgen; Schaeffer, Andreas; Hollert, Henner
2016-10-01
The demand for biofuels increases due to concerns regarding greenhouse gas emissions and depletion of fossil oil reserves. Many substances identified as potential biofuels are solvents or already used as flavors or fragrances. Although humans and the environment may be readily exposed little is known regarding their (eco)toxicological effects. In this study, the three potential biofuels ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated for their acute embryo toxicity and teratogenicity using the fish embryo toxicity (FET) test to identify unknown hazard potentials and to allow focusing further research on substances with low toxic potentials. In addition, two fossil fuels (diesel and gasoline) and an established biofuel (rapeseed oil methyl ester) were investigated as references. The FET test is widely accepted and used in (eco)toxicology. It was performed using the zebrafish Danio rerio, a model organism useful for the prediction of human teratogenicity. Testing revealed a higher acute toxicity for EL (LC50: 83mg/L) compared to 2-MTHF (LC50: 2980mg/L), 2-MF (LC50: 405mg/L) and water accommodated fractions of the reference fuels including gasoline (LC50: 244mg DOC/L). In addition, EL caused a statistically significant effect on head development resulting in elevated head lengths in zebrafish embryos. Results for EL reduce its likelihood of use as a biofuel since other substances with a lower toxic potential are available. The FET test applied at an early stage of development might be a useful tool to avoid further time and money requiring steps regarding research on unfavorable biofuels. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulating the hydrologic response of a semiarid watershed to switchgrass cultivation
USDA-ARS?s Scientific Manuscript database
The conversion of land for biofuel cultivation is expected to increase given concerns about the sustainability of current fossil-fuel supplies. Nonetheless, research into the environmental impacts of biofuel crops, primarily the hydrological impacts of their cultivation, is in its infancy. To inve...
Nutrient Use Efficiency in Bioenergy Cropping Systems: Critical Research Questions
USDA-ARS?s Scientific Manuscript database
Current U.S. plans for energy security rely on converting large areas of cropland from food to biofuel production. Additionally, lands currently considered too marginal for intensive food production may be considered suitable for biofuels production; predominant cropping systems may shift to more va...
Fueling the future with fungal genomics
Igor.V. Grigoriev; Daniel Cullen; Stephen B. Goodwin; David Hibbett; Thomas W. Jeffries; Christian P. Kubicek; Cheryl Kuske; Jon K. Magnuson; Francis Martin; Joseph W. Spatafora; Adrian Tsang; Scott E. Baker
2011-01-01
Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols, or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes...
An optimal staggered harvesting strategy for herbaceous biomass energy crops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, M.G.; English, B.C.
1993-12-31
Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-partymore » custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.« less
This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.
Life cycle environmental impacts of wastewater-based algal biofuels.
Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason
2014-10-07
Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.
Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.
Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H
2013-11-01
Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.
Biofuels and the Environment: The First Triennial Report to Congress (External Review Draft)
The Biofuels and the Environment: The First Triennial Report to Congress (External Review Draft) (EPA/600/R-10/183A) report, prepared by the National Center for Environmental Assessment (NCEA) within EPA’s Office of Research and Development, is the first report published ...
Historical Perspective of Biofuels: Learning from the Past to Rediscover the Future
USDA-ARS?s Scientific Manuscript database
This issue of in vitro plant is dedicated to various aspects of biofuel research and development. The editors have sought the experts in this field and solicited manuscripts for this special issue publication from various academic institutions, government (USDA, DOE), industry (Mendel, Alellyx, Can...
Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization
Meadows, Corey W.; Kang, Aram; Lee, Taek S.
2017-07-21
Research on renewable biofuels produced by microorganisms has enjoyed considerable advances in academic and industrial settings. As the renewable ethanol market approaches maturity, the demand is rising for the commercialization of more energy-dense fuel targets. Many strategies implemented in recent years have considerably increased the diversity and number of fuel targets that can be produced by microorganisms. Moreover, strain optimization for some of these fuel targets has ultimately led to their production at industrial scale. In this review, we discuss recent metabolic engineering approaches for augmenting biofuel production derived from alcohols, isoprenoids, and fatty acids in several microorganisms. In addition,more » we discuss successful commercialization ventures for each class of biofuel targets.« less
Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadows, Corey W.; Kang, Aram; Lee, Taek S.
Research on renewable biofuels produced by microorganisms has enjoyed considerable advances in academic and industrial settings. As the renewable ethanol market approaches maturity, the demand is rising for the commercialization of more energy-dense fuel targets. Many strategies implemented in recent years have considerably increased the diversity and number of fuel targets that can be produced by microorganisms. Moreover, strain optimization for some of these fuel targets has ultimately led to their production at industrial scale. In this review, we discuss recent metabolic engineering approaches for augmenting biofuel production derived from alcohols, isoprenoids, and fatty acids in several microorganisms. In addition,more » we discuss successful commercialization ventures for each class of biofuel targets.« less
Center for Advanced Biofuel Systems (CABS) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutchan, Toni M.
2015-12-02
One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and willmore » have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the production of hydrocarbons required to meet commercial fuel standards.« less
Sokan-Adeaga, Adewale Allen; Ana, Godson R E E
2015-01-01
The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the establishment of biofuel-processing plants in Nigeria.
NASA Astrophysics Data System (ADS)
Blanc-Betes, E.; Hudiburg, T. W.; Khanna, M.; DeLucia, E. H.
2017-12-01
Reducing dependence on fossil fuels by the 20% by 2022 mandated by the Energy Independence and Security Act would require 35 billion Ga of ethanol and the loss of 9 to 12 Mha of food producing land to biofuel production, challenging our ability to develop a sustainable bioenergy source while meeting the food demands of a growing population. There are currently 8.5 Mha of land enrolled in the Conservation Reserve Program (CRP), a US government funded program to incentivize the retirement of environmentally sensitive cropland out of conventional crop production. About 63% of CRP land area could potentially be converted to energy crops, contributing to biofuel targets without displacing food. With high yields and low fertilization and irrigation requirements, perennial cellulosic crops (e.g. switchgrass and Miscanthus) not only would reduce land requirements by up to 15% compared to prairies or corn-based biofuel, but also serve other conservation goals such as C sequestration in soils, and water and air quality improvement. Here, we use the DayCent biogeochemical model to assess the potential of CRP land conversion to switchgrass or Miscanthus to provide a sustainable source of biofuel, reduce GHG emissions and increase soil organic carbon (SOC) storage in the area of Illinois, which at present contributes to 10% of the biofuel production in the US. Model simulations indicate that the replacement of traditional corn-soy rotation with CRP reduces GHG emissions by 3.3 Mg CO2-eq ha-1 y-1 and increases SOC storage at a rate of 0.5 Mg C ha-1 y-1. Conversion of CRP land to cellulosic perennials would further reduce GHG emissions by 1.1 Mg CO2-eq ha-1 y-1 for switchgrass and 6.2 Mg CO2-eq ha-1 y-1 for Miscanthus, and increase C sequestration in soils (1.7 Tg C for switchgrass and 7.7 Tg C for Miscanthus in 30 years). Cellulosic energy crops would increase average annual yields by approximately 5.6 Mg ha-1 for switchgrass and 13.6 Mg ha-1 for Miscanthus, potentially producing 78 and 188 million Ga of bioethanol annually, respectively. This represents an increase of 5% and 12% in the Illinois annual biofuel production, displacing up to 4% of current fossil fuel consumption in the state of Illinois without detriment for food production.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.; Kinchin, C.; Markham, J.
2014-09-11
The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.
NASA Astrophysics Data System (ADS)
Marques, G.
2015-12-01
Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.
Environmental Sciences Division annual progress report for period ending September 30, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-01
The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3)more » hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Remedies. 4288.136 Section 4288.136 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Remedies. 4288.136 Section 4288.136 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Remedies. 4288.136 Section 4288.136 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General...
Approval Letter for an Alternative Renewable Biomass Tracking Program
This January 27, 2015 letter and decision document from EPA approves the Argentine Chamber of Biofuel's (CARBIO) Alternate Biomass Traking Program meeting all the requirements outlined in 40 CFR § 80.1454, including elements determined necessary to achieve
Environmental effect of constructed wetland as biofuel production system
NASA Astrophysics Data System (ADS)
Liu, Dong
2017-04-01
Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included. This approach is also suitable for use in other countries, and can help promote sustainable development for energy and environment.
Biofuels and the Environment: the First Triennial Report to Congress (2011 Final Report)
EPA announced the release of the final report,Biofuels and the Environment: The First Triennial Report to Congress (EPA/600/R-10/183F), prepared by the National Center for Environmental Assessment (NCEA) within EPA’s Office of Research and Development, as the first EPA rep...
Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal
2015-04-01
Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Chlamydomonas as a model for biofuels and bio-products production.
Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P
2015-05-01
Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Chlamydomonas as a model for biofuels and bio-products production
Scranton, Melissa A.; Ostrand, Joseph T.; Fields, Francis J.; Mayfield, Stephen P.
2017-01-01
SUMMARY Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii’s long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. PMID:25641390
Base catalytic transesterification of vegetable oil.
Mainali, Kalidas
2012-01-01
Sustainable economic and industrial growth requires safe, sustainable resources of energy. Biofuel is becoming increasingly important as an alternative fuel for the diesel engine. The use of non-edible vegetable oils for biofuel production is significant because of the increasing demand for edible oils as food. With the recent debate of food versus fuel, some non-edible oils like soapnut and Jatropha (Jatropha curcus. L) are being investigated as possible sources of biofuel. Recent research has focused on the application of heterogeneous catalysis. This review considers catalytic transesterification and the possibility of heterogeneous base catalysts. The process of transesterification, and the effect of parameters, mechanism and kinetics are reviewed. Although chromatography (GC and HPLC) are the analytical methods most often used for biofuel characterization, other techniques and some improvements to analytical methods are discussed.
Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; ...
2015-09-25
Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosicmore » bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.« less
7 CFR 4288.107 - Exception authority.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Exception authority. 4288.107 Section 4288.107 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program...
7 CFR 4288.107 - Exception authority.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Exception authority. 4288.107 Section 4288.107 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program...
7 CFR 4288.107 - Exception authority.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Exception authority. 4288.107 Section 4288.107 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program...
Synthetic and Biomass Alternate Fueling in Aviation
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Bushnell, D. M.
2009-01-01
While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to share both issues and potential ways for moving forward, and overall, trying to educate those concerned about the innate limitations of 'conventional' biofuels and the solutions provided by non-traditional feedstocks that used waste lands/water or saline/salt water have an immense capacity potential.
ARPA-E: Engineering Innovative New Biofuels
Burbaum, Jonathan; Peter, Gary; Kirby, Jim; Lemaux
2018-05-30
ARPA-E's PETRO program was created to supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and don't affect U.S. food supply. This video highlights the role that ARPA-E has played in connecting traditionally distinct research areas to inform the research and development efforts of PETRO project teams. Specifically, it highlights how the University of Florida leveraged lessons learned from the Joint BioEnergy Institute's work with E. coli to directly influence their work in harvesting fuel molecules from pine trees, as well as how the same genes tested in pine are now being tested in tobacco at Lawrence Berkeley National Laboratory. This transfer of knowledge facilitates new discovery.
NASA Astrophysics Data System (ADS)
Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.
The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.
NASA Astrophysics Data System (ADS)
Struś, M. S.; Poprawski, W.; Rewolte, M.
2016-09-01
This paper presents results of research of Diesel engines emission of toxic substances in exhaust gases fuelled with a second generation biofuel BIOXDIESEL, which is a blend of Fatty Acid Ethyl Esters obtained from waste resources such waste vegetable and animal fats, bioethanol and standard Diesel fuel. Presented results are very promising, showing that the emission of toxic substances in exhaust gases are significantly reduced when fuelling with BIOXDIESEL fuel in comparison with standard Diesel fuel.
Streamflow Impacts of Biofuel Policy-Driven Landscape Change
Khanal, Sami; Anex, Robert P.; Anderson, Christopher J.; Herzmann, Daryl E.
2014-01-01
Likely changes in precipitation (P) and potential evapotranspiration (PET) resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity. PMID:25289698
NASA Astrophysics Data System (ADS)
Zhang, Yizhen
Biofuels are often forecast to provide significant reductions in the greenhouse gas (GHG) emissions from the transportation sector globally. Many countries have regarded bioenergy development as a solution to both climate change mitigation and foreign energy dependence. It is projected that biofuel production may contribute up to a quarter of transportation fuel supply by 2050. But uncertainties and concerns still remain with respect to the environmental performance of biofuels, including their contribution to GHGs. Life cycle assessment (LCA) is a powerful tool for evaluating the environmental impacts of emerging technologies. However, existing LCAs are inconsistent in their selection of system boundaries, modeling assumptions, and treatment of co-products, which lead to wide variations in results, and make the comparisons of biofuel pathways challenging. Co-products usually play an essential role in biofuel production system, both economically and environmentally. Thus the treatment strategies of co-product are considered critical to LCA results. Studies presented in this dissertation assess several types of biofuels, including first generation, second generation and advanced biofuels, which are produced from terrestrial feedstocks (e.g., corn grain and corn stover) and algae. A variety of researchers have identified the importance of treating co-products in LCAs. This study focuses on the improvement of LCA methodology for assessing biofuel co-products. This dissertation contributes to current knowledge and methodology in following ways: 1) it develops a comprehensive life cycle energy, carbon and water model for microalgae biofuel production 2) it improves co-product allocation strategies in LCA; and 3) it explores the indirect impacts on ocean resources induced by algal oil production at large scale, which has not been examined previously.
Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
Fatma, Shabih; Hameed, Amir; Noman, Muhammad; Ahmed, Temoor; Shahid, Muhammad; Tariq, Mohsin; Sohail, Imran; Tabassum, Romana
2018-01-01
Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of lignocellulose mediated biofuels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Scott; Kahler, Ellen
2009-05-31
The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund's (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont's dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy's Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.)more » Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization-the Biofuels Center of North Carolina-in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm's proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC's proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a "Cow Power" biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont's pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passell, Howard David; Whalen, Jake; Pienkos, Philip P.
2010-12-01
Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less,more » resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyler, James R.
2015-12-21
The main objective of the NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. As a part of the consortium, Genifuel’s NAABB goals was to fabricate and demonstrate a pilot-scale system to convert algae into fuels. The purpose of this pilot system was to show that processes developed in the laboratory at bench-scale during the program could be successfully scaled up to a pre-commercial level, and thereby provide visibility into the ultimate viability and cost of algae biofuels. The pilot system has now been completedmore » and tested, and this report documents what has been achieved.« less
Enzyme's Worth to Biofuels Shown in Latest NREL Research | News | NREL
, and Yannick Bomble with the X-ray diffraction source used to determine the structure of the C. bescii whether their crystalline structure is simple or highly complex. No other enzyme has shown that ability cellulosic biofuels from becoming a commercial reality. The crystalline structure of cellulose fiber in plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In October 2011, the UN Committee on World Food Security (CFS) recommended a ''review of biofuels policies -- where applicable and if necessary -- according to balanced science-based assessments of the opportunities and challenges that they may represent for food security so that biofuels can be produced where it is socially, economically and environmentally feasible to do so''. In line with this, the CFS requested the HLPE (High Level Panel of Experts) to ''conduct a science-based comparative literature analysis taking into consideration the work produced by the FAO and Global Bioenergy Partnership (GBEP) of the positive and negative effects ofmore » biofuels on food security''. Recommendations from the report include the following. Food security policies and biofuel policies cannot be separated because they mutually interact. Food security and the right to food should be priority concerns in the design of any biofuel policy. Governments should adopt the principle: biofuels shall not compromise food security and therefore should be managed so that food access or the resources necessary for the production of food, principally land, biodiversity, water and labour are not put at risk. The CFS should undertake action to ensure that this principle is operable in the very varied contexts in which all countries find themselves. Given the trend to the emergence of a global biofuels market, and a context moving from policy-driven to market-driven biofuels, there is an urgent need for close and pro-active coordination of food security, biofuel/bioenergy policies and energy policies, at national and international levels, as well as rapid response mechanisms in case of crisis. There is also an urgent need to create an enabling, responsible climate for food and non-food investments compatible with food security. The HLPE recommends that governments adopt a coordinated food security and energy security strategy, which would require articulation around the following five axes/dimensions: Adapt to the change to global, market-driven dynamics; Address the land, water and resource implications of biofuel policies; Foster the transition from biofuels to comprehensive food-energy policies; Promote research and development; and, Develop methods and guidelines for coordinated food, Biofuels, and bio-energy policies at national and international levels.« less
Growing duckweed for biofuel production: a review.
Cui, W; Cheng, J J
2015-01-01
Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Effects of Deployment Investment on the Growth of the Biofuels Industry. 2016 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Warner, Ethan S.; Stright, Dana
This report updates the 2013 report of the same title. Some text originally published in that report is retained and indicated in gray. In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstrationmore » and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model--a system dynamics model of the biomass to biofuels system--that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial growth impact on the development of the biofuels industry. Results also show that other conditions, such as accompanying incentives, have major impacts on the effectiveness of such investments. Results from the 2013 report are compared to new results. This report does not advocate for or against investments, incentives, or policies, but analyzes simulations of their hypothetical effects.« less
Biofuels and the role of space in sustainable innovation journeys☆
Raman, Sujatha; Mohr, Alison
2014-01-01
This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the South. PMID:24748726
Biofuels and the role of space in sustainable innovation journeys.
Raman, Sujatha; Mohr, Alison
2014-02-15
This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the South.
Next generation biofuel engineering in prokaryotes
Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.
2014-01-01
Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045
Vimmerstedt, Laura J; Bush, Brian; Peterson, Steve
2012-01-01
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.
Vimmerstedt, Laura J.; Bush, Brian; Peterson, Steve
2012-01-01
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain–represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner’s decision whether to offer ethanol fuel and a consumer’s choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles. PMID:22606230
Grammelis, Panagiotis; Malliopoulou, Anastasia; Basinas, Panagiotis; Danalatos, Nicholas G.
2008-01-01
Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L.) is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop'sproduction potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600). A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality. PMID:19325802
7 CFR 4288.103 - Review or appeal rights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Review or appeal rights. 4288.103 Section 4288.103 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program...
7 CFR 4288.103 - Review or appeal rights.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Review or appeal rights. 4288.103 Section 4288.103 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program...
7 CFR 4288.103 - Review or appeal rights.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Review or appeal rights. 4288.103 Section 4288.103 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program...
Hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects
NASA Astrophysics Data System (ADS)
Vlaskin, M. S.; Chernova, N. I.; Kiseleva, S. V.; Popel', O. S.; Zhuk, A. Z.
2017-09-01
The article presents a review of the state of the art and lines of research on hydrothermal liquefaction (HTL) of microalgae (MA). The main advantages of this technology for production of biofuel are that it does not require predrying of the feedstock and ensures a relatively high product yield—the ratio of the end product weight to the feedstock weight—owing to the fact that all the microalgal components, viz., lipids, proteins, and carbohydrates, are converted into biofuel. MA hydrothermal liquefaction is considered to be a promising technology for conversion of biomass and is a subject of a series of research studies and, judging by the available publications, the scope of research in this field is expanding currently. However, many significant problems remain unsolved. In particular, an active searched is being conducted for suitable strains that will ensure not only a high lipid yield—necessary to convert microalgae into biodiesel—but also higher biomass productivity and a higher biofuel yield; the chemical reactions that occur during the hydrothermal treatment are being studied; and the effect of significant process variables, such as temperature, heating rate, holdup time at the maximum temperature, biomass concentration in the water suspension, biochemical and elemental compositions of the microalgae, use of catalysts, etc., on the liquefaction processes is being studied. One of the urgent tasks is also the reduction of the nitrogen content in the resulting biofuel. Studies aimed at the development of a continuous process and rational heat-processing plants for thermal microalgal conversion are being conducted to increase the energy efficiency of the HTL process, in particular, to provide the heat recovery and separation of the end product.
Systems Based Approaches for Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steve; McDonald, Timothy; Adhikari, Sushil
The research provided data on applicability of agricultural energy crops and forest biomass production and logistics models. While much of the overall research effort was focused on lignocellulosic feedstocks, the research also recognized that there are important opportunities for the production and use of starch-based agricultural crops to serve as alternative regionally-appropriate biofuel feedstocks. Also, the research identified fractionation techniques that can be used to separate biomass feedstocks into their basic chemical constituents and then streamline the biorefining industry by developing commodity products for cellulose, hemicellulose, and lignin. Finally, models and techniques were developed to determine economically feasible technologies formore » production of biomass-derived synthesis gases that can be used for clean, renewable power generation and for production of liquid transportation fuels through Fischer-Tropsch Synthesis. Moreover, this research program educated the next generation of engineers and scientists needed to implement these technologies.« less
Aviation Management Perception of Biofuel as an Alternative Fuel Source
NASA Astrophysics Data System (ADS)
Marticek, Michael
The purpose of this phenomenological study was to explore lived experiences and perceptions from a population of 75 aviation managers in various locations in Pennsylvania about the use of aviation biofuel and how it will impact the aviation industry. The primary research question for this study focused on the impact of biofuel on the airline industry and how management believes biofuel can contribute to the reduction of fossil fuel. Grounded in the conceptual framework of sustainability, interview data collected from 27 airline and fueling leaders were analyzed for like terms, coded, and reduced to 3 themes. Data were organized and prioritized based on frequency of mention. The findings represented themes of (a) flight planning tools, (b) production, and (c) costs that are associated with aviation fuel. The results confirmed findings addressed in the literature review, specifically that aviation biofuel will transform the airline industry through lower cost and production. These findings have broad applicability for all management personnel in the aviation industry. Implications for social change and improved business environments could be realized with a cleaner environment, reduced fuel emissions, and improved air quality.
Mohr, Alison; Raman, Sujatha
2013-12-01
The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic).
Review on the Extraction Methods of Crude oil from all Generation Biofuels in last few Decades
NASA Astrophysics Data System (ADS)
Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.
2018-03-01
The ever growing demand for the energy fuels, economy of oil, depletion of energy resources and environmental protection are the inevitable challenges required to be solved meticulously in future decades in order to sustain the life of humans and other creatures. Switching to alternate fuels that are renewable, biodegradable, economically and environmentally friendly can quench the minimum thirst of fuel demands, in addition to mitigation of climate changes. At this moment, production of biofuels has got prominence. The term biofuels broadly refer to the fuels derived from living matter either animals or plants. Among the competent biofuels, biodiesel is one of the promising alternates for diesel engines. Biodiesel is renewable, environmentally friendly, safe to use with wide applications and biodegradable. Due to which, it has become a major focus of intensive global research and development of alternate energy. The present review has been focused specifically on biodiesel. Concerning to the biodiesel production, the major steps includes lipid extraction followed by esterification/transesterification. For the extraction of lipids, several extraction techniques have been put forward irrespective of the generations and feed stocks used. This review provides theoretical background on the two major extraction methods, mechanical and chemical extraction methods. The practical issues of each extraction method such as efficiency of extraction, extraction time, oil sources and its pros and cons are discussed. It is conceived that congregating information on oil extraction methods may helpful in further research advancements to ease biofuel production.
Agave: a biofuel feedstock for arid and semi-arid environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Stephen; Martin, Jeffrey; Simpson, June
2011-05-31
Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part throughmore » a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.« less
Impacts of Climate Change on Biofuels Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melillo, Jerry M.
2014-04-30
The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and considerationmore » of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.« less
Green Peace: Can Biofuels Accelerate Energy Security
2013-02-14
http://www.navy.mil/features/Navy_EnergySecurity.pdf 6 James T. Bartis and Lawrence Van Bibber. Alternative Fuels for Military Applications, (Santa...2013) 28 James T. Bartis and Lawrence Van Bibber, Alternative Fuels for Military Applications, (Santa Monica, CA: RAND Corporation, 2011), http...research/algae-based-biofuels (accessed 18 November 2012). 55 John Laitner, Karen Ehrhardt-Martinez, and Vanessa McKinney, Examining the Scale of
75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
...Under the Clean Air Act Section 211(o), as amended by the Energy Independence and Security Act of 2007 (EISA), the Environmental Protection Agency is required to promulgate regulations implementing changes to the Renewable Fuel Standard program. The revised statutory requirements specify the volumes of cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel. This action finalizes the regulations that implement the requirements of EISA, including the cellulosic, biomass- based diesel, advanced biofuel, and renewable fuel standards that will apply to all gasoline and diesel produced or imported in 2010. The final regulations make a number of changes to the current Renewable Fuel Standard program while retaining many elements of the compliance and trading system already in place. This final rule also implements the revised statutory definitions and criteria, most notably the new greenhouse gas emission thresholds for renewable fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that greenhouse gas emission performance is being applied in a regulatory context for a nationwide program. As mandated by the statute, our greenhouse gas emission assessments consider the full lifecycle emission impacts of fuel production from both direct and indirect emissions, including significant emissions from land use changes. In carrying out our lifecycle analysis we have taken steps to ensure that the lifecycle estimates are based on the latest and most up-to-date science. The lifecycle greenhouse gas assessments reflected in this rulemaking represent significant improvements in analysis based on information and data received since the proposal. However, we also recognize that lifecycle GHG assessment of biofuels is an evolving discipline and will continue to revisit our lifecycle analyses in the future as new information becomes available. EPA plans to ask the National Academy of Sciences for assistance as we move forward. Based on current analyses we have determined that ethanol from corn starch will be able to comply with the required greenhouse gas (GHG) threshold for renewable fuel. Similarly, biodiesel can be produced to comply with the 50% threshold for biomass-based diesel, sugarcane with the 50% threshold for advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways have also been determined to comply with their thresholds. The assessment for this rulemaking also indicates the increased use of renewable fuels will have important environmental, energy and economic impacts for our Nation.
NASA Astrophysics Data System (ADS)
Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III
2015-02-01
This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research practices within working university chemistry and engineering laboratories. The experience was supplemented by discussions and activities intended to impact nature of science (NOS) and inquiry understandings and to allow for an exploration of STEM careers and issues of self-identity. Participants completed a NOS questionnaire before and after the experience, were interviewed multiple times, and were observed while working in the laboratories. Findings revealed that as a result of the program, participants (1) demonstrated positive changes in their understandings of certain NOS aspects many of which were informed by their laboratory experiences, (2) had an opportunity to explore and strengthen STEM-related future plans, and (3) examined their self-identities. A majority of participants also described a sense of belonging within the laboratory groups and believed that they were making significant contributions to the ongoing work of those laboratories even though their involvement was necessarily limited due to the short duration of the program. For students who were most influenced by the program, the belonging they felt was likely related to issues of identity and career aspirations.
PERSPECTIVE: Learning from the Brazilian biofuel experience
NASA Astrophysics Data System (ADS)
Wang, Michael
2006-11-01
In the article `The ethanol program in Brazil' [1] José Goldemberg summarizes the key features of Brazil's sugarcane ethanol program—the most successful biofuel program in the world so far. In fact, as of 2005, Brazil was the world's largest producer of fuel ethanol. In addition to providing 40% of its gasoline market with ethanol, Brazil exports a significant amount of ethanol to Europe, Japan, and the United States. The success of the program is attributed to a variety of factors, including supportive governmental policies and favorable natural conditions (such as a tropical climate with abundant rainfall and high temperatures). As the article points out, in the early stages of the Brazilian ethanol program, the Brazilian government provided loans to sugarcane growers and ethanol producers (in most cases, they are the same people) to encourage sugarcane and ethanol production. Thereafter, ethanol prices were regulated to ensure that producers can economically sustain production and consumers can benefit from using ethanol. Over time, Brazil was able to achieve a price for ethanol that is lower than that for gasoline, on the basis of energy content. This lower cost is largely driving the widespread use of ethanol instead of gasoline by consumers in Brazil. In the United States, if owners of E85 flexible-fuel vehicles (FFVs) are expected to use E85 instead of gasoline in their FFVs, E85 will have to be priced competitively against gasoline on an energy-content basis. Compared with corn-based or sugar beet-based ethanol, Brazil's sugarcane-based ethanol yields considerably more favorable results in terms of energy balance and reductions in greenhouse gas emissions. These results are primarily due to (i) the dramatic increase of sugarcane yield in Brazil in the past 25 years and (ii) the use of bagasse instead of fossil fuels in ethanol plants to provide the heat needed for ethanol plant operations and to generate electricity for export to electric grids. Advancements in technology associated with both sugarcane farming and ethanol production have definitely played an important role in yielding the significant benefits associated with sugarcane ethanol. The United States produced about 4 billion gallons of ethanol from corn in 2005. Production was expected to increase to about 5 billion gallons by 2006. Corn-based ethanol achieves moderate reductions in greenhouse gas emissions. In the long run, the great potential of fuel ethanol lies in its production from cellulosic biomass, which is abundant in many regions of the world and can yield much greater reductions in greenhouse gas emissions and energy benefits. Figure 1 presents reductions in greenhouse emissions of several ethanol production pathways that were evaluated at the Argonne National Laboratory. Bagasse, a cellulosic biomass type already available in sugarcane ethanol plants, will certainly offer an opportunity for economically co-producing cellulosic ethanol and sugarcane ethanol in existing sugarcane ethanol plants. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used Figure 1. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used. Despite the encouraging progress of Brazil's ethanol program some issues will still need to be addressed. Figure 4 of [1] shows a significant drop in ethanol production in the 2000/2001 season. A steady supply of ethanol will be a key factor for the success of a fuel ethanol program. Consumers are not going to tolerate fluctuations in ethanol production. Instead, they will turn to conventional fuels for fueling their FFVs as a result of supply fluctuations, which can be detrimental to the success of the ethanol program. In addition to this, other environmental effects of biofuels in general, and sugarcane ethanol in particular, need to be assessed. Some have debated and speculated that Brazil's sugarcane ethanol program has caused (i) soil erosion and biodiversity problems by converting rainforests into sugarcane plantations and (ii) local air pollution problems as a result of burning in plantations before harvest. Also, as interest in biofuels heightens worldwide, environment-conscious practices are needed to avoid adverse environmental effects of biofuel production and use. For instance, if feedstock production (sugarcane in Brazil, corn in the United States, and palm oil in Malaysia [for biodiesel production]) moves into virgin or marginal land, carbon in both soil and vegetation could be decreased and diminish the benefits associated with biofuels, and cause other environmental problems, such as soil erosion. Societies need to pay close attention to these potential detrimental environmental effects to ensure that biofuel production will, indeed, be on a sustainable path. © US Government References [1] Goldemberg J 2006 The ethanol program in Brazil Environ. Res Lett. 1 014008 (doi:10.1088/1748-9326/1/1/014008) Photo of Michael Wang Michael Wang has been working in the Center for Transportation Research of Argonne National Laboratory since 1991. He is the manager of the Systems Assessment Section in the center which evaluates energy and emission effects of advanced vehicle technologies and new transportation fuels. He developed the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, with which he has conducted several major studies for government agencies and industries. Since 1996, he has examined energy and emission benefits of bio-ethanol. His results for bio-ethanol have been cited by many. Michael Wang received his PhD in environmental science from University of California at Davis.
Enhancement of ethanol-oxygen biofuel cell output using a CNT based nano-composite as bioanode.
Gouranlou, Farideh; Ghourchian, Hedayatollah
2016-04-15
The present research, describes preparation and application of a novel bioanode for ethanol-oxygen biofuel cells. We applied an enzyme based nanocomposite consisting of polymethylene green as electron transfer mediator, carboxylated-multiwall carbon nanotubes as electron transfer accelerator, alcohol dehydrogenase as biocatalyst and polydiallyldimethylammonium chloride as supporting agent. In the presence of β-nicotinamide adenine dinucleotide as cofactor, and ethanol as fuel, the feasibility of the bioanode for increasing the power was evaluated under the ambient conditions. In the optimum conditions the biofuel cell produced the power density of 1.713 mW cm(-2) and open circuit voltage of 0.281 V. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae).
Ho, Chuan-Wen; Wu, Tai-Han; Hsu, Tsai-Wen; Huang, Jao-Ching; Huang, Chi-Chun; Chiang, Tzen-Yuh
2011-08-01
Miscanthus, a nonfood plant with high potential as a biofuel, has been used in Europe and the United States. The selection of a cultivar with high biomass, photosynthetic efficiency, and stress resistance from wild populations has become an important issue. New genic microsatellite markers will aid the assessment of genetic diversity for different strains. Twelve polymorphic microsatellite markers derived from the transcriptome of Miscanthus sinensis fo. glaber were identified and screened on 80 individuals of M. sinensis. The number of alleles per locus ranged from 6 to 12, and the mean expected heterozygosity was 0.75. Cross-taxa transferability revealed that all loci can be applied to all varieties of M. sinensis, as well as the closely related species M. floridulus. These new genic microsatellite markers are useful for characterizing different traits in breeding programs or to select genes useful for biofuel.
Xie, Fei; Huang, Yongxi; Eksioglu, Sandra
2014-01-01
A multistage, mixed integer programing model was developed that fully integrates multimodal transport into the cellulosic biofuel supply chain design under feedstock seasonality. Three transport modes are considered: truck, single railcar, and unit train. The goal is to minimize the total cost for infrastructure, feedstock harvesting, biofuel production, and transportation. Strategic decisions including the locations and capacities of transshipment hubs, biorefineries, and terminals and tactical decisions on system operations are optimized in an integrated manner. When the model was implemented to a case study of cellulosic ethanol production in California, it was found that trucks are convenient for short-haul deliveries while rails are more effective for long-haul transportation. Taking the advantage of these benefits, the multimodal transport provides more cost effective solutions than the single-mode transport (truck). Copyright © 2013 Elsevier Ltd. All rights reserved.
Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Dublan, Maria de los Angeles
2012-01-01
Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts. PMID:22267660
Biofuel blending reduces particle emissions from aircraft engines at cruise conditions
NASA Astrophysics Data System (ADS)
Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.
2017-03-01
Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.
Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.
Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E
2017-03-15
Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.
Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Dublan, Maria de Los Angeles; Curatti, Leonardo
2012-04-01
Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts.
The DOE Bioenergy Research Centers: History, Operations, and Scientific Output
Slater, Steven C.; Simmons, Blake A.; Rogers, Tamara S.; ...
2015-08-20
Over the past 7 years, the US Department of Energy's Office of Biological and Environmental Research has funded three Bioenergy Research Centers (BRCs). These centers have developed complementary and collaborative research portfolios that address the key technical and economic challenges in biofuel production from lignocellulosic biomass. All three centers have established a close, productive relationship with DOE's Joint Genome Institute (JGI). This special issue of Bioenergy Research samples the breadth of basic science and engineering work required to underpin a diverse, sustainable, and robust biofuel industry. In this report, which was collaboratively produced by all three BRCs, we discuss themore » BRC contributions over their first 7 years to the development of renewable transportation fuels. In additon, we also highlight the BRC research published in the current issue and discuss technical challenges in light of recent progress.« less
Genetic resources for advanced biofuel production described with the Gene Ontology.
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C; Mukhopadhyay, Biswarup; Tyler, Brett M
2014-01-01
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.
Genetic resources for advanced biofuel production described with the Gene Ontology
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C.; Mukhopadhyay, Biswarup; Tyler, Brett M.
2014-01-01
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727
Genetic resources for advanced biofuel production described with the Gene Ontology
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; ...
2014-10-10
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less
Genetic resources for advanced biofuel production described with the Gene Ontology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less
NASA Astrophysics Data System (ADS)
Li, Qi
As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be pivotal in this supply chain design and optimization problem. Also, farmers' participation has a significant effect on the decision making process.
ERIC Educational Resources Information Center
Townsend, Patricia A.; Haider, Nora M.; Asah, Stanley T.; Zobrist, Kevin W.
2016-01-01
The development of successful bioenergy programs will depend on informed and prepared Extension professionals who are willing and equipped to provide technical support. A survey of Extension professionals in the Pacific Northwest revealed barriers to program development, including limits on time and knowledge and concerns about economic returns…
On-Farm Biofuel Production Grants The Governor's Office of Agricultural Policy provides grants through the County Agricultural Investment Program for on-farm energy efficiency and renewable energy Agricultural Development Fund
The social inefficiency of regulating indirect land use change due to biofuels
NASA Astrophysics Data System (ADS)
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.; Delucia, Evan H.
2017-06-01
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. Here we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007-2027 by 1.3 to 2.6% (0.6-1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO2e-1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from $61 to $187 Mg CO2e-1 and was substantially greater than the social cost of carbon of $50 Mg CO2e-1.
Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-03-01
A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, nine national laboratories, and numerous industry and academic partners to more rapidly identify commercially viable solutions. This multi-year project will provide industry with the scientific underpinnings required tomore » move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions.« less
Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegallapati, Ambica Koushik; Dunn, Jennifer B.; Frank, Edward D.
2015-04-01
The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand,more » an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.« less
Genetic improvement of plants for enhanced bio-ethanol production.
Saha, Sanghamitra; Ramachandran, Srinivasan
2013-04-01
The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.
Meeting the challenge of food and energy security.
Karp, Angela; Richter, Goetz M
2011-06-01
Growing crops for bioenergy or biofuels is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. Focussing on the question of food or fuel is thus not helpful. The bigger, more pertinent, challenge is how the increasing demands for food and energy can be met in the future, particularly when water and land availability will be limited. Energy crop production systems differ greatly in environmental impact. The use of high-input food crops for liquid transport fuels (first-generation biofuels) needs to be phased out and replaced by the use of crop residues and low-input perennial crops (second/advanced-generation biofuels) with multiple environmental benefits. More research effort is needed to improve yields of biomass crops grown on lower grade land, and maximum value should be extracted through the exploitation of co-products and integrated biorefinery systems. Policy must continually emphasize the changes needed and tie incentives to improved greenhous gas reduction and environmental performance of biofuels.
Biofuels: balancing risks and rewards.
Thornley, Patricia; Gilbert, Paul
2013-02-06
This paper describes a framework that can be used to evaluate the environmental risks and benefits associated with biofuel production. It uses the example of biodiesel produced from Argentinean soy to show how such a framework can be used to conceptualize trade-offs between different environmental, social and economic impacts of biofuel production. Results showing the greenhouse-gas savings and overall life-cycle impact of different 'soy-biodiesel' production methods are presented. These impacts and the significance of uncertainty in overall assessments of key parameters, such as greenhouse-gas savings, are discussed. It is shown that, even where sufficient knowledge exists to be able to quantify these impacts, the sustainability of supply of a particular biofuel is inextricably linked to values and ethical judgements. However, tailoring certification efforts to the issues that are most likely to make a significant difference to the overall sustainability could improve the effectiveness of certification efforts. The potential for a framework to guide and focus certification efforts is discussed and future research and policy priorities suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.
2016-03-01
The Department of Energy’s (DOE) Bioenergy Technology Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels. These assessments evaluate feedstock production, logistics of transporting the feedstock, and conversion of the feedstock to biofuel. There are two general types of TEAs. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables identification of data gaps and research andmore » development needs, and provides goals and targets against which technology progress is assessed. On the other hand, a state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available.« less
Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.
Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less
Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review
Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; ...
2016-06-15
Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less
Final Rule to Identify Additional Fuel Pathways under the Renewable Fuel Standard Program
This final rule describes EPA’s evaluation of biofuels produced from camelina oil and energy cane, as well as renewable gasoline and renewable gasoline blendstock made from certain qualifying feedstocks.
Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phuyal, Khem P.
2014-01-01
This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-03-24
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less
78 FR 34975 - Notice of Contract Proposals (NOCP) for the Advanced Biofuels Payment Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
....usda.gov . Virgin Islands (see Florida) Washington Mary Traxler, USDA Rural Development, 1835 Black..., large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To...
matching payments are $1 for each $1 per dry ton paid by a qualified advanced biofuel production facility , up to $20 per dry ton. This program is funded through fiscal year 2018 (verified December 2017), but
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.
There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less
Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.
2017-04-15
There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less
Mohr, Alison; Raman, Sujatha
2013-01-01
Aims The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). PMID:24926117
Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, Julie G.; Manke, Kristin L.
When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities,more » particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.« less
Summary of Fast Pyrolysis and Upgrading GHG Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowden-Swan, Lesley J.; Male, Jonathan L.
2012-12-07
The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percentmore » Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.« less
Maghuly, Fatemeh; Laimer, Margit
2013-01-01
Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. PMID:24092674
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satlewal, Alok; Agrawal, Ruchi; Bhagia, Samarthya
The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed.more » This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.« less
Plant-Derived Terpenes: A Feedstock for Specialty Biofuels.
Mewalal, Ritesh; Rai, Durgesh K; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F; Tuskan, Gerald A
2017-03-01
Research toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit, including annotated genomes, high-throughput omics profiling, and genome editing, have begun to elucidate plant terpene metabolism, and such information is useful for bioengineering metabolic pathways for specific terpenes. We review here the status of terpenes as a specialty biofuel and discuss the potential of plants as a viable agronomic solution for future terpene-derived biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Swedish program for investigations concerning biofuels
DOT National Transportation Integrated Search
1999-01-31
As constituted today, the transport sector is not sustainable in the long term. It is based almost entirely on non-renewable natural resources which, when combusted, release emissions that can cause serious harm to human beings, animals and the natur...
This December 22, 2016 letter from EPA approves the petition from Gevo, Inc. for butanol produced from corn starch and/or grain sorghum as renewable fuel and in some cases advanced biofuel under the Clean Air Act and the Renewable Fuel Standard Program.
Overview of feedstock research in the United States, Canada, and Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, J.; Tardif, M.L.; Couto, L.
1993-12-31
This is an overview of the current biomass feedstock efforts in Brazil, Canada, and the United States. The report from Brazil provides an historical perspective of incentive programs, the charcoal and fuelwood energy programs, the alcohol program, and other biomass energy efforts. The efforts in Brazil, particularly with the sugar cane to ethanol and the charcoal and fuelwood programs, dwarfs other commercial biomass systems in the Americas. One of the bright spots in the future is the Biomass Integrated Gasification/Gas Turbine Electricity Project initially funded in 1992. The sugar cane-based ethanol industry continues to develop higher yielding cane varieties andmore » more efficient microorganisms to convert the sugar cane carbohydrates into alcohol. In Canada a number of important institutions and enterprises taking part in the economical development of the country are involved in biomass research and development including various aspects of the biomass such as forestry, agricultural, industrial, urban, food processing, fisheries and peat bogs. Biomass feedstock research in the United States is evolving to reflect Department of Energy priorities. Greater emphasis is placed on leveraging research with the private sector contributing a greater share of funds, for both research and demonstration projects. The feedstock program, managed by ORNL, is focused on limited model species centered at a regional level using a multidisciplinary approach. Activities include a stronger emphasis on emerging environmental issues such as biodiversity, sustainability and habitat management. DOE also is a supporter of the National Biofuels Roundtable, which is developing principles for producing biomass energy in an economically viable and ecologically sound manner. Geographical Information Systems are also being developed as tools to quantify and characterize the potential supply of energy crops in various regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson
The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program wasmore » to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality« less
Materials for Energy Conversion: Materials for Energy Conversion and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanassov, Plamen
2017-03-30
The main objective of this collaborative research project was to identify a formulation and develop a catalyst for electro-oxidation of ethanol. Ethanol is one of the most mass-produced biofuels, and such catalysts will enable the development of Direct Ethanol Fuel Cell technology and through it, will interconnect fuel cells with biofuels. Several catalysts for direct electrochemical oxidation of ethanol have been selected on the principles of rational desig from the knowledge build in studying aqueous oxidation of ethanol. The program involved fundamental study of ethanol oxidation in liquid media, and particularly in alakine solutions. The lessons learned from the heterogeneousmore » catalysis of ethanol thermal oxidation have been applied to the design of an electrocatalyst for direct ethanol fuel cells. The successful chemical compositions are based on PdZn and NiZn allows. The studies reveled the role of the transition metal oxide phase as a co-catalyst and the role of the active support material. To complete the set of materials for ethanol fuel cell, this program also invested n the development of ctalysts for oxygen reduction that are selective against alcohol oxidation. Non-platinum ctalysts based on pyrolyzed macrocycles or similar composites have been studied. This program included also the development of stuctured supports as an integral part of the catalyst development. A new family of materials has been designed based on mesoporous silica templating with synthetic carbon resulting in hierarchicaly porous structure. Structure-to-property relationship of catalysis and catalysts has been the center of this program. This have been engaged in both surface and bulk level and pursued with the tools avialble at the academic institutions and at LANSCE at LANL. The structural studies have been built in interaction with a computational effort on the basis of DFT approach to materials structure and reactivity.« less
Indicators of carbon storage in U.S. ecosystems: baseline for terrestrial carbon accounting.
Negra, Christine; Sweedo, Caroline Cremer; Cavender-Bares, Kent; O'Malley, Robin
2008-01-01
Policymakers, program managers, and landowners need information about net terrestrial carbon sequestration in forests, croplands, grasslands, and shrublands to understand the cumulative effects of carbon trading programs, expanding biofuels production, and changing environmental conditions in addition to agricultural and forestry uses. Objective information systems that establish credible baselines and track changes in carbon storage can provide the accountability needed for carbon trading programs to achieve durable carbon sequestration and for biofuels initiatives to reduce net greenhouse gas emissions. A multi-sector stakeholder design process was used to produce a new indicator for the 2008 State of the Nation's Ecosystems report that presents metrics of carbon storage for major ecosystem types, specifically change in the amount of carbon gained or lost over time and the amount of carbon stored per unit area (carbon density). These metrics have been developed for national scale use, but are suitable for adaptation to multiple scales such as individual farm and forest parcels, carbon offset markets and integrated national and international assessments. To acquire the data necessary for a complete understanding of how much, and where, carbon is gained or lost by U.S. ecosystems, expansion and integration of monitoring programs will be required.
Combustion of Biofuel as a Renewable Energy Source in Sandia Flame Geometry
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen
Energy security and climate change are two important key causes of wide spread employment of biofuel notwithstanding of problems associated with its usage. In this research, combustion of biofuel as a renewable energy source was numerically investigated in the well-known and practical Sandia flame geometry. Combustion performance of the flame has been simulated by burning biodiesel (methyl decanoate, methyl 9-decenoate, and n-heptane) oxidation with 118 species reduced/skeletal mechanism. The open-source code OpenFoam was used for simulating turbulent biodiesel-air combustion in the cylindrical chamber using the standard k-epsilon model. To check the accuracy of numerical results, the system was initially validated with methane-air Sandia national laboratories flame D experimental results. Excellent agreements between numerical and experimental results were observed at different cross sections. After ignition, temperature distributions at different distances of axial and radial directions as well as species mass fraction were investigated. It is concluded that biofuel has the capability of implementation in the turbulent jet flame that is a step forward in promotion of sustainable energy technologies and applications.
The social inefficiency of regulating indirect land use change due to biofuels
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.; ...
2017-06-26
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. In this article we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007–2027more » by 1.3 to 2.6% (0.6–1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO 2e -1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from 61 dollars to 187 dollars Mg CO 2e -1 and was substantially greater than the social cost of carbon of $50 Mg CO 2e -1.« less
The social inefficiency of regulating indirect land use change due to biofuels
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.; DeLucia, Evan H.
2017-01-01
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. Here we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007–2027 by 1.3 to 2.6% (0.6–1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO2e−1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from $61 to $187 Mg CO2e−1 and was substantially greater than the social cost of carbon of $50 Mg CO2e−1. PMID:28649991
The social inefficiency of regulating indirect land use change due to biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. In this article we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007–2027more » by 1.3 to 2.6% (0.6–1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO 2e -1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from 61 dollars to 187 dollars Mg CO 2e -1 and was substantially greater than the social cost of carbon of $50 Mg CO 2e -1.« less
Life Cycle Assessment for Biofuels
A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...
Populus Trichocarpa Genome-Wide Association Study (GWAS) Population SNP Dataset Released
Tuskan, Gerald; Muchero, Wellington; Chen, Jin-Gui; Jacobson, Daniel; Tschaplinski, Timothy; Rokhsar, Daniel S; Schackwitz, Wendy S; Schmutz, Jeremy; DiFazio, Stephen P
2016-01-01
This dataset includes genetic variations found in 882 poplar trees, and provides useful information to scientists studying plants as well as researchers more generally in the fields of biofuels, materials science, and secondary plant compounds. For nearly 10 years, researchers with DOE’s BioEnergy Science Center (BESC), a multi-institutional organization headquartered at ORNL, have studied the genome of Populus — a fast-growing perennial tree recognized for its economic potential in biofuels production. This Genome-Wide Association Study (GWAS) dataset includes more than 28 million single nucleotide polymorphisms, or SNPs that have been derived from 17 trillion bases of sequence data generated from 882 undomesticated Populus genotypes. Each SNP represents a variation in a single DNA nucleotide, or building block, that can act as a biological marker and/or causal allele within a protein sequence, helping scientists locate genes associated with certain characteristics, conditions or diseases. The results of this analysis have been used, among other things, to 1) seek genetic control of cell-wall recalcitrance — a natural characteristic of plant cell walls that prevent the release of sugars under microbial conversion and restricts biofuels production and 2) identify the molecular mechanisms controlling deposition of lignin in plant structures. Lignin is a polyphenolic polymer that strengthens plant cell walls and acts as a barrier to microbial access to cellulose during saccharfication — the process of breaking cellulose down into simple sugars for fermentation. Although the dataset’s most immediate applications are in fundamental plant sciences, ORNL researchers plan to use the GWAS data to inform applied work in areas such as cleaner, sustainable transportation biofuels, carbon fiber for lightweight vehicles and alternatives to conventional plastics and building insulation materials.
78 FR 69628 - Public Hearing for the 2014 Standards for the Renewable Fuel Standard Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
..., biomass-based diesel, advanced biofuel, and renewable fuels that would apply to all gasoline and diesel... biomass-based diesel applicable volume for 2015. DATES: The public hearing will be held on December 5...
Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels
NASA Astrophysics Data System (ADS)
Schultz, P. B.; Dodder, R. S.
2012-12-01
The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.
Bioenergy residues applied as soil amendments: N2O emissions and C sequestration potential
NASA Astrophysics Data System (ADS)
Cayuela, M.; Kuikman, P.; Oenema, O.; Bakker, R.; van Groenigen, J.
2009-12-01
Biofuels have been proposed as environmentally benign substitutes to fossil fuels. There is, however, substantial uncertainty in the scientific literature about how an expanding bioenergy sector would interact with other land uses and what could be the environmental consequences. In the particular case of greenhouse gas balance, the magnitude of discrepancy is tremendously high among different studies. Such controversy has been often attributed to the way the co-products generated were accounted for. It is likely that the intensification of bioenergy production will lead to an increased input of these co-products to the soil as alternative amendments or fertilizers. However, limited research has been done to determine how this will influence microbial transformation processes in soil and thereby the emissions of greenhouse gases. Neither have related issues such as the stabilization of soil organic matter, soil structure and soil fertility been adequately studied. Here, we report a laboratory study on the effects of the application of bioenergy residues on C and N mineralization and greenhouse gas emissions in an agricultural soil. Ten co-products were selected from different energy sectors: anaerobic digestion (digestates), first generation biofuel residues (rapeseed meal, distilled dried grains with solubles), second generation biofuel residues (non-fermentables from hydrolysis of different lignocellulosic materials) and pyrolysis (biochars). They were added at the same N rate (150 kg N ha-1) to a moist (80% water filled pore space) sandy soil and incubated at 20 C for 60 days. Most residues followed fast mineralization dynamics with a flush of CO2 respiration within the first week. The biochars were the exception: they showed very low respiration rates. After 60 days, first generation biofuel residues had emitted more than 80% of added C as CO2. Around 60% was emitted in the case of second generation biofuel residues and 40% with digestates. Biochars were the most stable residues with the lowest CO2 loss between 0.5 and 5.8 % of total added C. Regarding N2O emissions, first generation biofuel residues led to the highest total N2O emissions (between 2.5 - 6.0% of added N). Second generation biofuel residues emitted between 1.0-2.0% of added N, whereas anaerobic digestates led to emissions lower than 1% of added N. The two biochars used in this study led to negative N2O emissions, i.e. lower than the blank soil. We conclude that, at least in the short term, the effects of biofuel residues on the combined greenhouse gas balance of the soil ranges from beneficial (biochar) via mixed (digestates, second generation biofuels) to manifestly detrimental (first generation biofuels). These effects should be taken into account in life cycle analyses of biofuel production.
Biofuels, causes of land-use change, and the role of fire in greenhouse gas emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, Keith L; Dale, Virginia H
2008-07-01
IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE ('LAND CLEARING AND THE BIOFUEL CARBON debt,' J. Fargione et al., p. 1235, and 'Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,' T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture. However, field research, including a meta-analysis of 152 case studies, consistently finds that land-use change and associatedmore » carbon emissions are driven by interactions among cultural, technological, biophysical, political, economic, and demographic forces within a spatial and temporal context rather than by a single crop market. Searchinger et al. assert that soybean prices accelerate clearing of rainforest based on a single citation for a study not designed to identify the causal factors of land clearing. The study analyzed satellite imagery from a single state in Brazil over a 4-year period and focused on land classification after deforestation. Satellite imagery can measure what changed but does little to tell us why. Similarly, Fargione et al. do not rely on primary empirical studies of causes of land-use change. Furthermore, neither fire nor soil carbon sequestration was properly considered in the Reports. Fire's escalating contribution to global climate change is largely a result of burning in tropical savannas and forests. Searchinger et al. postulate that 10.8 million hectares could be needed for future biofuel, a fraction of the 250 to 400 million hectares burned each year between 2000 and 2005. By offering enhanced employment and incomes, biofuels can help establish economic stability and thus reduce the recurring use of fire on previously cleared land as well as pressures to clear more land. Neither Searchinger et al. nor Fargione et al. consider fire as an ongoing land-management tool. In addition, deep-rooted perennial biofuel feedstocks in the tropics could enhance soil carbon storage by 0.5 to 1 metric ton per hectare per year. An improved understanding of the forces behind land-use change leads to more favorable conclusions regarding the potential for biofuels to reduce greenhouse gas emissions.« less
Biofuels: Network Analysis of the Literature Reveals Key Environmental and Economic Unknowns
2012-01-01
Despite rapid growth in biofuel production worldwide, it is uncertain whether decision-makers possess sufficient information to fully evaluate the impacts of the industry and avoid unintended consequences. Doing so requires rigorous peer-reviewed data and analyses across the entire range of direct and indirect effects. To assess the coverage of scientific research, we analyzed over 1600 peer-reviewed articles published between 2000 and 2009 that addressed 23 biofuels-related topics within four thematic areas: environment and human well-being, economics, technology, and geography. Greenhouse gases, fuel production, and feedstock production were well-represented in the literature, while trade, biodiversity, and human health were not. Gaps were especially striking across topics in the Southern Hemisphere, where the greatest potential socio-economic benefits, as well as environmental damages, may co-occur. There was strong asymmetry in the connectedness of research topics; greenhouse gases articles were twice as often connected to other topics as biodiversity articles. This could undermine the ability of scientific and economic analyses to adequately evaluate impacts and avoid significant unintended consequences. At the least, our review suggests caution in this developing industry and the need to pursue more interdisciplinary research to assess complex trade-offs and feedbacks inherent to an industry with wide-reaching potential impacts. PMID:22229835
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-04-11
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less
Johnson, Tylor J; Gibbons, Jaimie L; Gu, Liping; Zhou, Ruanbao; Gibbons, William R
2016-11-01
The rapid increase in worldwide population coupled with the increasing demand for fossil fuels has led to an increased urgency to develop sustainable sources of energy and chemicals from renewable resources. Using microorganisms to produce high-value chemicals and next-generation biofuels is one sustainable option and is the focus of much current research. Cyanobacteria are ideal platform organisms for chemical and biofuel production because they can be genetically engineered to produce a broad range of products directly from CO 2 , H 2 O, and sunlight, and require minimal nutrient inputs. The purpose of this review is to provide an overview on advances that have been or could be made to improve strains of cyanobacteria for industrial purposes. First, the benefits of using cyanobacteria as a platform for chemical and biofuel production are discussed. Next, an overview of cyanobacterial strain improvements by genetic engineering is provided. Finally, mutagenesis techniques to improve the industrial potential of cyanobacteria are described. Along with providing an overview on various areas of research that are currently being investigated to improve the industrial potential of cyanobacteria, this review aims to elucidate potential targets for future research involving cyanobacteria as an industrial microorganism. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1357-1371, 2016. © 2016 American Institute of Chemical Engineers.
Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.
Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J
2015-01-01
In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.
Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels
Healey, Adam L.; Lee, David J.; Furtado, Agnelo; Simmons, Blake A.; Henry, Robert J.
2015-01-01
In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077
Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.
Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu
2017-04-01
Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.
Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayfield, Stephen P.
The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between sixmore » academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.« less
Environmental, economic and social impact of aviation biofuel production in Brazil.
Cremonez, Paulo André; Feroldi, Michael; de Jesus de Oliveira, Carlos; Teleken, Joel Gustavo; Alves, Helton José; Sampaio, Silvio Cézar
2015-03-25
The Brazilian aviation industry is currently developing biofuel technologies that can maintain the operational and energy demands of the sector, while reducing the dependence on fossil fuels (mainly kerosene) and greenhouse gas emissions. The aim of the current research was to identify the major environmental, economic and social impacts arising from the production of aviation biofuels in Brazil. Despite the great potential of these fuels, there is a significant need for improved routes of production and specifically for lower production costs of these materials. In addition, the productive chains of raw materials for obtaining these bioenergetics can be linked to environmental impacts by NOx emissions, extensive use of agricultural land, loss of wildlife and intensive water use, as well as economic, social and political impacts. Copyright © 2015 Elsevier B.V. All rights reserved.
Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.
Zhang, Ke; Pei, Zhijian; Wang, Donghai
2016-01-01
Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthetic and Biomass Alternate Fueling in Aviation
NASA Technical Reports Server (NTRS)
Hendricks, R.C.; Bushnell, D.M.
2009-01-01
Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.
Chan, Leo L; Lyettefi, Emily J; Pirani, Alnoor; Smith, Tim; Qiu, Jean; Lin, Bo
2011-08-01
Worldwide awareness of fossil-fuel depletion and global warming has been increasing over the last 30 years. Numerous countries, including the USA and Brazil, have introduced large-scale industrial fermentation facilities for bioethanol, biobutanol, or biodiesel production. Most of these biofuel facilities perform fermentation using standard baker's yeasts that ferment sugar present in corn mash, sugar cane, or other glucose media. In research and development in the biofuel industry, selection of yeast strains (for higher ethanol tolerance) and fermentation conditions (yeast concentration, temperature, pH, nutrients, etc.) can be studied to optimize fermentation performance. Yeast viability measurement is needed to identify higher ethanol-tolerant yeast strains, which may prolong the fermentation cycle and increase biofuel output. In addition, yeast concentration may be optimized to improve fermentation performance. Therefore, it is important to develop a simple method for concentration and viability measurement of fermenting yeast. In this work, we demonstrate an imaging cytometry method for concentration and viability measurements of yeast in corn mash directly from operating fermenters. It employs an automated cell counter, a dilution buffer, and staining solution from Nexcelom Bioscience to perform enumeration. The proposed method enables specific fluorescence detection of viable and nonviable yeasts, which can generate precise results for concentration and viability of yeast in corn mash. This method can provide an essential tool for research and development in the biofuel industry and may be incorporated into manufacturing to monitor yeast concentration and viability efficiently during the fermentation process.
Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach
Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.
2016-01-01
Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075
Rai, Vineeta; Karthikaichamy, Anbarasu; Das, Debasish; Noronha, Santosh; Wangikar, Pramod P; Srivastava, Sanjeeva
2016-07-01
Current momentum of microalgal research rests extensively in tapping the potential of multi-omics methodologies in regard to sustainable biofuels. Microalgal biomass is fermented to bioethanol; while lipids, particularly triacylglycerides (TAGs), are transesterified to biodiesels. Biodiesel has emerged as an ideal biofuel candidate; hence, its commercialization and use are increasingly being emphasized. Abiotic stresses exaggerate TAG accumulation, but the precise mechanisms are yet to be known. More recently, comprehensive multi-omics studies in microalgae have emerged from the biofuel perspective. Genomics and transcriptomics of microalgae have provided crucial leads and basic understanding toward lipid biosynthesis. Proteomics and metabolomics are now complementing "algal omics" and offer precise functional insights into the attendant static and dynamic physiological contexts. Indeed, the field has progressed from shotgun to targeted approaches. Notably, targeted proteomics studies in microalga are not yet reported. Several multi-omics tools and technologies that may be used to dig deeper into the microalgal physiology are examined and highlighted in this review. The article therefore aims to both introduce various available high-throughput biotechnologies and applications of "omics" in microalgae, and enlists a compendium of the emerging cutting edge literature. We suggest that a strategic and thoughtful combination of data streams from different omics platforms can provide a system-wide overview. The algal omics warrants closer attention in the future, with a view to technical, economic, and societal impacts that are anticipated in the current postgenomics era.
7 CFR 4288.122-4288.129 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false [Reserved] 4288.122-4288.129 Section 4288.122-4288.129 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.191-4288.200 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false [Reserved] 4288.191-4288.200 Section 4288.191-4288.200 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.122-4288.129 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false [Reserved] 4288.122-4288.129 Section 4288.122-4288.129 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.108-4288.109 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false [Reserved] 4288.108-4288.109 Section 4288.108-4288.109 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.138-4288.189 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false [Reserved] 4288.138-4288.189 Section 4288.138-4288.189 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.114-4288.119 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false [Reserved] 4288.114-4288.119 Section 4288.114-4288.119 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.108-4288.109 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false [Reserved] 4288.108-4288.109 Section 4288.108-4288.109 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.138-4288.189 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false [Reserved] 4288.138-4288.189 Section 4288.138-4288.189 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.106 - Forms, regulations, and instructions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Forms, regulations, and instructions. 4288.106 Section 4288.106 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel...
7 CFR 4288.106 - Forms, regulations, and instructions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Forms, regulations, and instructions. 4288.106 Section 4288.106 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel...
7 CFR 4288.114-4288.119 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false [Reserved] 4288.114-4288.119 Section 4288.114-4288.119 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.191-4288.200 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false [Reserved] 4288.191-4288.200 Section 4288.191-4288.200 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.122-4288.129 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false [Reserved] 4288.122-4288.129 Section 4288.122-4288.129 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.190 - Fiscal Year 2010 applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Fiscal Year 2010 applications. 4288.190 Section 4288.190 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.114-4288.119 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false [Reserved] 4288.114-4288.119 Section 4288.114-4288.119 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.190 - Fiscal Year 2010 applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Fiscal Year 2010 applications. 4288.190 Section 4288.190 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.106 - Forms, regulations, and instructions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Forms, regulations, and instructions. 4288.106 Section 4288.106 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel...
7 CFR 4288.191-4288.200 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false [Reserved] 4288.191-4288.200 Section 4288.191-4288.200 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.108-4288.109 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false [Reserved] 4288.108-4288.109 Section 4288.108-4288.109 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.190 - Fiscal Year 2010 applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Fiscal Year 2010 applications. 4288.190 Section 4288.190 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
7 CFR 4288.138-4288.189 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false [Reserved] 4288.138-4288.189 Section 4288.138-4288.189 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment...
JEDI Biofuels Models | Jobs and Economic Development Impact Models | NREL
Biofuels Models JEDI Biofuels Models The Jobs and Economic Development Impacts (JEDI) biofuel models allow users to estimate economic development impacts from biofuel projects and include default
Irrigation as a determinant of the land use impacts of biofuels
NASA Astrophysics Data System (ADS)
Liu, J.; Hertel, T. W.; Taheripour, F.
2011-12-01
Previous research into the global land use impacts of biofuels has assumed that cropland area could expand in most regions of the world. Indeed, such expansion into more carbon-rich land cover such as grassland or forest is the focus of research into the contributions of indirect land use to the GHG impacts of biofuels. Several studies have examined the global land use consequences of biofuel production. However, all of these studies have effectively treated all cropland as being rainfed. The role of irrigation in biofuel-induced cropland expansion has been wholly ignored. Irrigated croplands typically have much higher yields than their rainfed counterparts. As a consequence, irrigated lands that represent 20% global cropland cover account for 42% of global crop production. Thus, the question of whether expansion of biofuel involves irrigated or rainfed lands makes a significant difference in terms of how much new land will be required to provide the additional production called for in the presence of biofuels. If the new lands are irrigated, and therefore have higher yields than rainfed lands in the same Agro Ecological Zone (AEZs), then less land conversion will be required. However, this land conversion saving may be impossible because expansion of irrigated area is often constrained, either by insufficient water, or insufficient capacity. In this paper we explore the impact on iLUC estimates if irrigated area cannot be expanded. Since earlier studies have assumed the opposite (no constraint whatsoever on expansion), this paper offers an upper bound on the change in land use patterns once one accounts for irrigation. Results show that the change in global cropland area is 15% larger when the irrigation constraint is imposed. This is a direct consequence of the lower yields in rainfed areas. The figure is larger in the US, where the elimination of potential for expanding irrigated areas results in 23% more cropland cover change. The results also show that the presence of potential irrigation constraints significantly alters the geographic pattern of land use change in the wake of the US ethanol expansion. Since rainfed agriculture is more likely than irrigated agriculture to compete with forest, the irrigation-enhanced model shows greater conversion of forest to cropland (up from 23% to 27% of total cropland conversion globally). As a consequence, the GHG emissions from this indirect land use change are significantly higher than the previous estimates - this stems both from greater cropland expansion overall, as well as from the tendency to convert more forest per hectare of cropland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Edward; Pegallapati, Ambica; Davis, Ryan
2016-06-16
The Department of Energy (DOE) Bioenergy Technologies Office (BETO) Multi-year Program Plan (MYPP) describes the bioenergy objectives pursued by BETO, the strategies for achieving those objectives, the current state of technology (SOT), and a number of design cases that explore cost and operational performance required to advance the SOT towards middle and long term goals (MYPP, 2016). Two options for converting algae to biofuel intermediates were considered in the MYPP, namely algal biofuel production via lipid extraction and algal biofuel production by thermal processing. The first option, lipid extraction, is represented by the Combined Algae Processing (CAP) pathway in whichmore » algae are hydrolyzed in a weak acid pretreatment step. The treated slurry is fermented for ethanol production from sugars. The fermentation stillage contains most of the lipids from the original biomass, which are recovered through wet solvent extraction. The process residuals after lipid extraction, which contain much of the original mass of amino acids and proteins, are directed to anaerobic digestion (AD) for biogas production and recycle of N and P nutrients. The second option, thermal processing, comprises direct hydrothermal liquefaction (HTL) of the wet biomass, separation of aqueous, gas, and oil phases, and treatment of the aqueous phase with catalytic hydrothermal gasification (CHG) to produce biogas and to recover N and P nutrients.« less
Three generation production biotechnology of biomass into bio-fuel
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng
2017-08-01
The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.
Biofuel from "humified" biomass
NASA Astrophysics Data System (ADS)
Kpogbemabou, D.; Lemée, L.; Amblès, A.
2009-04-01
In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do not look forward to obtain a mature OM for which the carbon loss would be too important. The global analysis of the biomass OM during biodegradation using infrared spectroscopy (DRIFTS) confirms "humification". Indeed the relative intensity of bands associated to aromatics increase relatively to those associated to aliphatics[2] [3]. The molecular study of lipids and humic fractions was realised using mass spectrometry (GC/MS), pyrolysis (Py-GC/MS) and thermodesorption (Headspace-GC/MS). The decrease in lipids indicates a high biodegradation. Amongst volatile organic compounds (COVs), the isoprenoid C18 ketone which is probably produced from biodegradation of phytol is observed in all our samples. The organic matter obtained after biodegradation is stable (resistant to biodegradation) and humified but still rich in carbon. The characterisation of bacterial biomarkers will help us to specify and thus to optimize biotransformation mechanisms. [1] A. Dermirbas and Al, Progress in energy and combustion science, 33 (2007), 1 - 18. [2] P. Castaldi and Al, Waste Management, 25 (2005), 213 - 217. [3] Mr. Crube and Al, Geoderma, 130 2006, 1573 - 1586.
JEDI: Jobs and Economic Development Impact Model; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL’s researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels, coal, conventional hydro, concentrating solar power, geothermal, marine and hydrokinetic power, natural gas, photovoltaics, and transmission lines. This fact sheet focuses on JEDI for wind energy projects.
Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Timothy C; Gaston, Katherine R; Wilcox, Esther
2018-01-19
Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.
JEDI: Jobs and Economic Development Impact Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels, coal, conventional hydro, concentrating solar power, geothermal, marine and hydrokinetic power, natural gas, photovoltaics, and transmission lines. This fact sheet focuses on JEDI for wind energy projects and is revised with 2017 figures.
Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.
van der Weijde, Tim; Kamei, Claire L Alvim; Severing, Edouard I; Torres, Andres F; Gomez, Leonardo D; Dolstra, Oene; Maliepaard, Chris A; McQueen-Mason, Simon J; Visser, Richard G F; Trindade, Luisa M
2017-05-25
Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus to improve biomass quality and facilitate its use as feedstock for biofuel production.
Sun Grant Initiative : great strides toward a sustainable and more energy-independent future
DOT National Transportation Integrated Search
2014-09-01
The Sun Grant Initiative publication, developed by the U.S. Department of Transportation, offers a glimpse of how the Sun Grant Initiative Centers are advancing alternative fuels research. Transportation plays a significant role in biofuels research,...
Maghuly, Fatemeh; Laimer, Margit
2013-10-01
Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.
Phulara, Suresh Chandra; Chaturvedi, Preeti; Gupta, Pratima
2016-10-01
Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes
Phulara, Suresh Chandra; Chaturvedi, Preeti
2016-01-01
Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. PMID:27422837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milne, T.A.
1986-09-01
This glossary is a compendium of terms frequently encountered by those interested or involved in the use of biomass for energy purposes. As this is a newly developing technology crossing many disciplines, there is a special need for definitions, including the definition of biomass itself. The initial basis of the present glossary was a collection of terms prepared for the Bioenergy Program of the National Research Council of Canada. To this list were added many terms from existing published glossaries and lists of definitions in published government reports. This preliminary collection of terms was submitted to a number of reviewersmore » for initial screening and assessment. The reviewers' and the Solar Energy Research Institute's consensus was that many extant definitions needed to be reformulated or were actually technically incorrect. Furthermore, it became apparent that many different opinions exist as to the proper thrust of definitions. 32 refs.« less
Plant-Derived Terpenes: A Feedstock for Specialty Biofuels
Mewalal, Ritesh; Rai, Durgesh K.; Kainer, David; ...
2016-09-09
Research toward renewable and sustainable energy has identified candidate terpenes capable of blending/replacing petroleum-derived jet, diesel and tactical fuels. Additionally, despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants due to low yields. Plant terpene biosynthesis is regulated at multiple levels leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit including annotated genomes, high-throughput omics profiling and genome-editing provides an ideal platform for high-resolution analysis and in-depth understanding of plant terpene metabolism. Concomitantly, such information is useful for bioengineering strategies of metabolic pathwaysmore » for candidate terpenes. Within this paper, we review the status of terpenes as an advanced biofuel and discuss the potential of plants as a viable agronomic solution for future advanced terpene-derived biofuels.« less
NASA Astrophysics Data System (ADS)
Kou, Nannan
Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn grain) into a single primary product (ethanol). The traditional lower efficient (i.e. lower ethanol yield per bushel of corn and higher capital cost) wet-mill plant has a more diverse and adjustable product portfolio i.e. corn syrup, starch, and ethanol. The fact that only the dry-mill corn ethanol plants have bankrupted while the wet-mill corn ethanol plants have survived the late 2000s economy recession suggests that the higher conversion efficiency achieved by the dry-mill production mode has jeopardized operational flexibility, a design operational feature I agree that is indispensable for the biofuel plant's long term profit and viability. Based on the analysis of corn ethanol production, operational flexibility has been proposed as a key strategy for the next generation biofuel plants to improve its lifetime economic performance, as well as to enhance its survivability under external disturbances. This strategy requires the biofuel plant to adopt a flexible feedstock management, making it possible to utilize alternative types of biomass feedstock when the primary feedstock supply is disturbed. Biofuel plants also need to produce a wider range of final products that could meet the preference variation that either comes from the energy market or from the subsidy policy. Aspen Plus model based numerical simulations have been carried out for a thermochemical ethanol plant and a Fischer Tropsch plant (both are assumed to be located in southwest Indiana) to test this strategy under the external disturbances of extreme weather impact, different energy price projections and various subsidy policy combinations. For the thermochemical ethanol plant, effects of extreme weather conditions are mainly evaluated. It has been shown that this strategy could effectively increase the net present value of the biofuel plant and significantly decrease the GHG emission comparing with the traditional single-feedstock strategy, when the extreme weather conditions are considered. It has also been demonstrated that this strategy could significantly decrease the possibility for the biofuel plant to bankrupt. For the Fischer Tropsch diesel plant, all the three external disturbances have been examined. It has been learned that operational flexibility through full capacity power co-generation, flexible feedstock management and hydrogen production by natural gas autothermal reforming could maximize the net present value under the influence of the external disturbances. Thus it is suggested that the future biofuel plant should adopt operational flexibility to increase the lifetime economic performance and to enhance the survivability under the influence of external disturbance.
MSU-Northern Bio-Energy Center of Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kegel, Greg; Alcorn-Windy Boy, Jessica; Abedin, Md. Joynal
2014-09-30
MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy dutymore » diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.« less
Biofuel supply chain, market, and policy analysis
NASA Astrophysics Data System (ADS)
Zhang, Leilei
Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies that have complex ramifications and result in sophisticate interactions among multiple stakeholders. The third part of the dissertation investigates the impacts of flexible fuel vehicles (FFVs) market penetration levels on the market outcomes, including cellulosic biofuel production and price, blended fuel market price, and profitability of each stakeholder in the biofuel supply chain for imperfectly competitive biofuel markets. In this paper, I investigate the penetration levels of FFVs by incorporating the substitution among different fuels in blended fuel demand functions through "cross price elasticity" in a bottom-up equilibrium model framework. The complementarity based problem is solved by a Taylor expansion-based iterative procedure. At each step of the iteration, the highly nonlinear complementarity problems with constant elasticity of demand functions are linearized into linear complimentarity problems and solved until it converges. This model can be applied to investigate the interaction between the stakeholders in the biofuel market, and to assist decision making for both cellulosic biofuel investors and government.
New biofuel alternatives: integrating waste management and single cell oil production.
Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar
2015-04-24
Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.
New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production
Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar
2015-01-01
Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941
Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mago, Pedro; Newell, LeLe
2014-01-31
Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental,more » and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.« less
Microbial‐based motor fuels: science and technology
Wackett, Lawrence P.
2008-01-01
Summary The production of biofuels via microbial biotechnology is a very active field of research. A range of fuel molecule types are currently under consideration: alcohols, ethers, esters, isoprenes, alkenes and alkanes. At the present, the major alcohol biofuel is ethanol. The ethanol fermentation is an old technology. Ongoing efforts aim to increase yield and energy efficiency of ethanol production from biomass. n‐Butanol, another microbial fermentation product, is potentially superior to ethanol as a fuel but suffers from low yield and unwanted side‐products currently. In general, biodiesel fuels consist of fatty acid methyl esters in which the carbon derives from plants, not microbes. A new biodiesel product, called microdiesel, can be generated in engineered bacterial cells that condense ethanol with fatty acids. Perhaps the best fuel type to generate from biomass would be biohydrocarbons. Microbes are known to produce hydrocarbons such as isoprenes, long‐chain alkenes and alkanes. The biochemical mechanisms of microbial hydrocarbon biosynthesis are currently under study. Hydrocarbons and minimally oxygenated molecules may also be produced by hybrid chemical and biological processes. A broad interest in novel fuel molecules is also driving the development of new bioinformatics tools to facilitate biofuels research. PMID:21261841
Economics of lifecycle analysis and greenhouse gas regulations
NASA Astrophysics Data System (ADS)
Rajagopal, Deepak
2009-11-01
Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces the market power of OPEC (Oil Producing and Exporting Countries), a cartel of nations which is the single largest oil exporting entity in the world, and is an entity considered unreliable. On the other hand, it reduces the demand for domestic farm subsidies. At the same crops comprise a small share of the retail price of food. As a result, the expected negative impact of biofuel was at worst a small increase in the retail price of food. However, the food price inflation in the year 2008 suggests that the negative impact on food consumers was significantly higher than expected and also outweighed the impact fuel consumers. I estimate the effect on biofuels on food and oil prices and compare them to other estimates in the literature and also relate these to prices observed in the real world. The third topic is the economics of greenhouse gas regulations of transportation fuels. Climate change policies such as United Nations' Kyoto protocol, European Union Emission Trading Scheme, and the Regional Greenhouse Gas Initiative in the US north-east mandate an aggregate emission target, called a cap and allow regulated entities to trade responsibilities for abatement. Furthermore, these policies have generally and sometimes exclusively targeted the electricity and industrial sector for emission reduction. However, the Low carbon fuel standard and Renewable fuel standard are two policies about to be implemented by the State of California and the US federal government, which exclusively target the transportation sector for emission reduction. Furthermore, these regulations mandate emission intensity target for fuels rather than aggregate emission reduction. I compare the cost-effectiveness of these two types of regulations, namely, aggregate emission caps versus emission intensity standards and discuss how prices, output and emissions vary between these two types of policies.
The impact of first-generation biofuels on the depletion of the global phosphorus reserve.
Hein, Lars; Leemans, Rik
2012-06-01
The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.
Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States
Wylie, Bruce K.; Gu, Yingxin
2012-01-01
Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.
NASA Astrophysics Data System (ADS)
Heidari, A.; Mayer, A. S.; Watkins, D. W., Jr.
2017-12-01
Growing demand for biomass-derived fuels has resulted in an increase in bioenergy projects across the Americas in recent years, a trend that is expected to continue. However, the expansion of bioenergy feedstock production might cause unintended environmental consequences. Accordingly, the goal of this research is to investigate how forest-based bioenergy development across the Americas may affect hydrological systems on a watershed scale. This study focuses on biofuel feedstock production with hybrid poplar cultivation in a snow-dominated watershed in northern Wisconsin, USA, and eucalyptus cultivation in a warm and temperate watershed in Entre Rios, Argentina. The Soil and Water Assessment Tool (SWAT), calibrated and validated for the two watersheds, is used to evaluate the effects of land use change corresponding to a range of biofuel development scenarios. The land use change scenarios include rules for limiting the location of the biofuel feedstock, and rotation time. These variables in turn impact the magnitude and timing of runoff and evapotranspiration. In Wisconsin, long term daily streamflow simulations indicate that planting poplar will increase evapotranspiration and decrease water yield, primarily through reduced baseflow contributions to streamflow. Results are also presented in terms of changes in flow relative to biomass production, to understand the sensitivity of potential biofuel generation to hydrologic impacts, and vice versa. In the end, alternative management practices were evaluated to mitigate the impacts. Keywords: Biofuel; Soil and Water Assessment Tool; Poplar; Baseflow; Evapotranspiration
The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience
NASA Astrophysics Data System (ADS)
Jäger, Alexander; Ortner, Tina; Kahr, Heike
2015-04-01
The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.
360° Algae Lab Tour at NREL- Non-Narrated
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Take a self-guided, 360-degree tour of the National Renewable Energy Laboratory’s algae biofuels research facility. Learn how NREL researchers are growing algae to study how it can be used as a renewable source of food, fuels, and other products.
News Release: NREL Names Four Scientists Senior Research Fellows | News |
, initially as a postdoctoral researcher. Now a group manager in the Materials Science Center, Al-Jassim is a . A principal engineer and platform leader in the Fuels Performance and Combustion Science Group-a group he created, McCormick leads the research team for advanced biofuels R&D. His research has
Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies
NASA Astrophysics Data System (ADS)
Chen, Xiaoguang; Khanna, Madhu; Yeh, Sonia
2012-12-01
This letter examines the effectiveness of various biofuel and climate policies in reducing future processing costs of cellulosic biofuels due to learning-by-doing. These policies include a biofuel production mandate alone and supplementing the biofuel mandate with other policies, namely a national low carbon fuel standard, a cellulosic biofuel production tax credit or a carbon price policy. We find that the binding biofuel targets considered here can reduce the unit processing cost of cellulosic ethanol by about 30% to 70% between 2015 and 2035 depending on the assumptions about learning rates and initial costs of biofuel production. The cost in 2035 is more sensitive to the speed with which learning occurs and less sensitive to uncertainty in the initial production cost. With learning rates of 5-10%, cellulosic biofuels will still be at least 40% more expensive than liquid fossil fuels in 2035. The addition of supplementary low carbon/tax credit policies to the mandate that enhance incentives for cellulosic biofuels can achieve similar reductions in these costs several years earlier than the mandate alone; the extent of these incentives differs across policies and different kinds of cellulosic biofuels.
Data & Tools | Bioenergy | NREL
Procedures NREL develops lab procedures to help researchers perform analyses for biofuels and bio-oils . Biomass Compositional Analysis Bio-Oil Analysis Microalgae Compositional Analysis Biomass Feedstock and
Education Highlights: Forest Biomass
Barone, Rachel; Canter, Christina
2018-06-25
Argonne intern Rachel Barone from Ithaca College worked with Argonne mentor Christina Canter in studying forest biomass. This research will help scientists develop large scale use of biofuels from forest biomass.
Education Highlights: Forest Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, Rachel; Canter, Christina
2016-01-27
Argonne intern Rachel Barone from Ithaca College worked with Argonne mentor Christina Canter in studying forest biomass. This research will help scientists develop large scale use of biofuels from forest biomass.
Sustainable Biofuels Development Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reardon, Kenneth F.
2015-03-01
The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production andmore » utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Guangsheng; Chen, Lei; Wang, Jiangxin
2014-11-03
Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap inmore » the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.« less
NASA Astrophysics Data System (ADS)
Little, Christopher M.; Needham, Mark D.
2011-11-01
Many alpine ski areas have recently adopted voluntary environmental programs (VEPs) such as using recycling, renewable energy, and biofuels to help reduce their environmental impacts. Studies have addressed the performance of these VEPs in mitigating environmental impacts of this industry, but little is known about visitor awareness and perceptions of these programs. This article addresses this knowledge gap by exploring skier and snowboarder knowledge of VEPs at a ski area and the influence of these programs on their motivations to visit this area currently and behavioral intentions to visit again in the future. Data were obtained from an onsite survey at the Mt. Bachelor ski area in Oregon, USA ( n = 429, 89.7% response rate). Few skiers and snowboarders were knowledgeable of VEPs at this area and fewer than 20% were motivated to visit on their current trip because of these programs. Other attributes such as scenery, snow conditions, and access were more important for influencing visitation. Up to 38% of skiers and snowboarders, however, intend to visit this ski area more often if it adopts and promotes more VEPs. Managers can use these results to inform communication and marketing of their environmental programs and performance to visitors. Additional implications for management and future research are discussed.
Little, Christopher M; Needham, Mark D
2011-11-01
Many alpine ski areas have recently adopted voluntary environmental programs (VEPs) such as using recycling, renewable energy, and biofuels to help reduce their environmental impacts. Studies have addressed the performance of these VEPs in mitigating environmental impacts of this industry, but little is known about visitor awareness and perceptions of these programs. This article addresses this knowledge gap by exploring skier and snowboarder knowledge of VEPs at a ski area and the influence of these programs on their motivations to visit this area currently and behavioral intentions to visit again in the future. Data were obtained from an onsite survey at the Mt. Bachelor ski area in Oregon, USA (n = 429, 89.7% response rate). Few skiers and snowboarders were knowledgeable of VEPs at this area and fewer than 20% were motivated to visit on their current trip because of these programs. Other attributes such as scenery, snow conditions, and access were more important for influencing visitation. Up to 38% of skiers and snowboarders, however, intend to visit this ski area more often if it adopts and promotes more VEPs. Managers can use these results to inform communication and marketing of their environmental programs and performance to visitors. Additional implications for management and future research are discussed.
DOT National Transportation Integrated Search
2008-01-01
The goal of this report is to inform research recommendations to address the constraints surrounding availability of biomass feedstocks. To meet this goal, an economic assessment, which links to an analysis of the consequences for greenhouse gas emis...
Bioenergy Research | Bioenergy | NREL
range of research from exploring biomass at the molecular level through biorefinery process optimization Bioenergetics We work at the molecular and cellular level to understand and optimize microbial production of biofuels and bioproducts. fanciful illustration of fuel nozzle with molecular structures drawn in
Applications and advances in phytochemical compositional analysis
USDA-ARS?s Scientific Manuscript database
The search for new functional foods, environmentally friendly pest control, bio-fuels, and biodegradable consumer products and packaging is the ongoing challenge to 21st century agriculture research, which is being met by the scientists and staff of the USDA Agricultural Research Service. Interest i...
Better, Cheaper Biofuels through Computational Analysis - Continuum
than 30 years, NREL researchers have made significant experimental advances in understanding the polymers to fermentable sugars. But while experimental studies are critical, this research approach can increasingly use computational (or "in silico") studies to complement their experimental work
Pedwell, Rhianna K; Fraser, James A; Wang, Jack T H; Clegg, Jack K; Chartres, Jy D; Rowland, Susan L
2018-01-31
Course-integrated Undergraduate Research Experiences (CUREs) involve large numbers of students in real research. We describe a late-year microbiology CURE in which students use yeast to address a research question around beer brewing or synthesizing biofuel; the interdisciplinary student-designed project incorporates genetics, bioinformatics, biochemistry, analytical chemistry, and microbiology. Students perceived significant learning gains around multiple technical and "becoming a scientist" aspects of the project. The project is demanding for both the students and the academic implementers. We examine the rich landscape of support and interaction that this CURE both encourages and requires while also considering how we can support the exercise better and more sustainably. The findings from this study provide a picture of a CURE implementation that has begun to reach the limits of both the students' and the academics' capacities to complete it. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
Laboratory Analytical Procedures | Bioenergy | NREL
analytical procedures (LAPs) to provide validated methods for biofuels and pyrolysis bio-oils research . Biomass Compositional Analysis These lab procedures provide tested and accepted methods for performing
USDA-ARS?s Scientific Manuscript database
Intermediate wheatgrass (Thinopyrum intermedium) has been identified as a candidate for domestication and improvement as a perennial grain, forage, and biofuel crop by several active breeding programs. To accelerate this process using genomics-assisted breeding, efficient genotyping methods and gen...
de Jong, Bouke; Siewers, Verena; Nielsen, Jens
2012-08-01
Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopal, Anand Raja
Lifecycle Assessment (LCA) is undergoing a period of rapid change as it strives to become more policy-relevant. Attributional LCA, the traditional LCA category, is beginning to be seen as particularly ill-equipped to assess the consequences of a policy. This has given birth to a new category of LCA known as Consequential LCA that is designed for use in LCA-based policies but is still largely unknown, even to LCA experts, and suffers from a lack of well developed methods. As a result, many LCA-based policies, like the California Low Carbon Fuel Standard (LCFS), use poor LCA methods that are both scientifically suspect and unable to model many biofuels, especially ones manufactured from byproduct feedstocks. Biofuels made from byproduct feedstocks, primarily molasses ethanol from Asia and the Caribbean, can contribute significantly to LCFS' carbon intensity targets in the near-term at low costs, a desperate need for the policy ever since US corn ethanol was rated as having a worse global warming impact than gasoline. In this dissertation, I develop the first fully consequential lifecycle assessment of a byproduct-based biofuel using a partial equilibrium foundation. I find that the lifecycle carbon content of Indian molasses ethanol is just 5 gCO2/MJ using this method, making it one of the cleanest first generation biofuels in the LCFS. I also show that Indian molasses ethanol remains one of the cleanest first-generation biofuels even when using the flawed methodology ratified for the LCFS, with a lifecycle carbon content of 24 gCO2/MJ. My fully consequential LCA model also shows that India's Ethanol Blending program, which currently subsidizes blending of molasses ethanol and gasoline for domestic consumption, can meet its objective of supporting domestic agriculture more cost-effectively by helping producers export their molasses ethanol to fuel markets that value carbon. However, this objective will be achieved at a significant cost to the poor who will face a 39% increase in the price of sorghum because of the policy.
Antimicrobial and anti-inflammatory activity of switchgrass-derived extractives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labbe, Nicole; Ownley, Bonnie H.; Gwinn, Kimberly D.
Switchgrass is an increasingly important biofuel crop, but knowledge of switchgrass fungal pathogens is not extensive. The purpose of this research was to identify the fungal pathogens that decrease crop yield of switchgrass grown in Tennessee and to investigate a potential sustainable disease management strategy from a value-added by-product of the switchgrass biofuel conversion process. The specific objectives were 1) to identify and characterize prevalent fungal pathogens of switchgrass in Tennessee, 2) assess switchgrass seed produced in the United States for seedborne fungal pathogens, and 3) evaluate switchgrass extractives for antimicrobial activity against plant pathogens.
Development of feedstocks for cellulosic biofuels
Somerville, Chris
2012-01-01
The inclusion of cellulosic ethanol in the Energy Independence and Security Act (EISA) of 2007 and the revised Renewable Fuel Standard (RFS2) has spurred development of the first commercial scale cellulosic ethanol biorefineries. These efforts have also revived interest in the development of dedicated energy crops selected for biomass productivity and for properties that facilitate conversion of biomass to liquid fuels. While many aspects of developing these feedstocks are compatible with current agricultural activities, improving biomass productivity may provide opportunities to expand the potential for biofuel production beyond the classical research objectives associated with improving traditional food and feed crops. PMID:22615716
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidler, Michal; Capece, John; Hanlon, Edward
Objective of the presentation is to document land use and water use implications of biomass production to demonstrate the overall resources implications associated with bioethanol production for Florida’s transportation sector needs. Rationale for using biofuels (BF) is explained, so are advantages & challenges of BF production and use. Land use changes (LUC) in Florida are presented and consequences outlined. It is documented that Florida’s agricultural land is a very limited resource, with only 0.43 ac/person comparing to the global average of 1.71 ac/person. The direct relation of increased biofuels production causing increased water use is explained. Favorable climate, water resources,more » advanced research, traditional leading agricultural role, minor oil reserves, no refineries and increasing energy demands are the main reasons why Florida considers pursuing BF production in large scale. Eight various bioethanol crops produced in Florida were considered in this study (Miscanthus, Switchgrass, Sweet Sorghum, Corn, Elephantgrass, Sugarcane, Energycane, Eucalyptus). Biomass yield and bioethanol yield of these crops are documented. Bioethanol needs of Florida are estimated and related land requirements for the needed bioethanol production calculated. Projections for various bioethanol blends (E15 to E85) are then presented. Finally, water demand for biofuels production is quantified. It is concluded that land use requirement for production of all ethanol in E85 fuel blend in Florida is roughly the same as the total available ag land in Florida for the best yielding biofuels crops (energycane, eucalyptus). Water demand for production of all ethanol needed for E100 would increase current overall water consumption in Florida between 65% and 100% for the most common biofuels crops. Vehicular energy is only 33% of Floridians energy consumption, so even all Florida’s agricultural land was given up for biofuels, it would still produce only 33% of Florida’s total energy needs. Still, bioethanol (primarily cellulosic) produced in Florida has a potential to meet a significant portion of the State’s transportation needs. Assuming no change in food production and consumption habits in Florida, the likely result of biofuels sector expansion would be the conversion of natural lands or low-intensity agricultural lands into high-intensity biomass production and the associated increased water consumption and water quality implications.« less
NASA Astrophysics Data System (ADS)
Johansson, S.
2013-06-01
Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.
NASA Astrophysics Data System (ADS)
Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu
2017-04-01
We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel yields. Additionally, the effects of biomass raw material on ash characteristics and behavior as well as on the fine particle and gas emissions in biomass-fired combustion plants will be evaluated. Thus, the project goes an extra mile in addressing both technological and environmental effects of bioenergy production with combustion processes. Finally, with a voluntary participation of companies with excellent track record in biogas production and CHP technology in participating countries, the project aims to bridge the gap between science, technology and industries.
Heterologous Synthesis and Recovery of Advanced Biofuels from Bacterial Cell Factories.
Malik, Sana; Afzal, Ifrah; Mehmood, Muhammad Aamer; Al Doghaither, Huda; Rahimuddin, Sawsan Abdulaziz; Gull, Munazza; Nahid, Nazia
2018-01-01
Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Paratoo
2015-09-24
The Complex Carbohydrate Research Center (CCRC) of the University of Georgia holds a symposium yearly that highlights a broad range of carbohydrate research topics. The 8th Annual Georgia Glycoscience Symposium entitled “Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly” was held on April 7, 2014 at the CCRC. The focus of symposium was on the role of glycans in plant cell wall structure and synthesis. The goal was to have world leaders in conjunction with graduate students, postdoctoral fellows and research scientists to propose the newest plant cell wall models. The symposium program closely followed the DOE’s missionmore » and was specifically designed to highlight chemical and biochemical structures and processes important for the formation and modification of renewable plant cell walls which serve as the basis for biomaterial and biofuels. The symposium was attended by both senior investigators in the field as well as students including a total attendance of 103, which included 80 faculty/research scientists, 11 graduate students and 12 Postdoctoral students.« less
Wood products research in the USA
Theodore Wegner
2010-01-01
Forest biomass conversion to biofuels and other value-added co-products; hyper-performance advanced composites custom tailored to end use requirements; advanced high performance wood-based structures; and nanomaterials and nano-enable high performance products from wood represent important research and development investment areas for the successful transformation of...
Evaluating the Environmental Performance of Wood-Based Biofuels
Bruce Lippke; Richard Bergman; Adam Taylor; Maureen E. Puettmann
2012-01-01
The nonprofit Consortium for Research on Renewable Industrial Materials (CORRIM) has been developing comprehensive environmental performance information on wood building materials consistent with life-cycle standards (http://www.corrim.org/). The articles published in this Special Issue of the Forest Products Journal extend the research by the...
Ethanol yields and cell wall properties in divergently bred switchgrass genotypes
USDA-ARS?s Scientific Manuscript database
Genetic modification of herbaceous plant cell walls to increase biofuels yields from harvested biomass is a primary bioenergy research goal. The focus of much of this research has been on cell wall lignin concentration. Using switchgrass genotypes developed by divergent breeding for ruminant diges...
Reassessing Escherichia coli as a cell factory for biofuel production.
Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won
2017-06-01
Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biofuel-Food Market Interactions:A Review of Modeling Approaches and Findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oladosu, Gbadebo A; Msangi, Siwa
The interaction between biofuels and food markets remains a policy issue for a number of reasons. There is a continuing need to understand the role of biofuels in the recent spikes in global food prices. Also, there is an ongoing discussion of changes to biofuel policy as a means to cope with severe weather-induced crop losses. Lastly, there are potential interactions between food markets and advanced biofuels, although most of the latter are expected to be produced from non-food feedstocks. This study reviews the existing literature on the food market impacts of biofuels. Findings suggest that initial conclusions attributing mostmore » of the spike in global food prices between 2005 and 2008 to biofuels have been revised. Instead, a multitude of factors, in addition to biofuels, converged during the period. Quantitative estimates of the impacts of biofuels on food markets vary significantly due to differences in modeling approaches, geographical scope, and assumptions about a number of crucial factors. In addition, many studies do not adequately account for the effects of macroeconomic changes, adverse weather conditions and direct market interventions during the recent food price spikes when evaluating the role of biofuels.« less
Limitation of Biofuel Production in Europe from the Forest Market
NASA Astrophysics Data System (ADS)
Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg
2013-04-01
The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.
NASA Astrophysics Data System (ADS)
Strogen, Bret Michael
Production of fuel ethanol in the United States has increased ten-fold since 1993, largely as a result of government programs motivated by goals to improve domestic energy security, economic development, and environmental impacts. Over the next decade, the growth of and eventually the total production of second generation cellulosic biofuels is projected to exceed first generation (e.g., corn-based) biofuels, which will require continued expansion of infrastructure for producing and distributing ethanol and perhaps other biofuels. In addition to identifying potential differences in tailpipe emissions from vehicles operating with ethanol-blended or ethanol-free gasoline, environmental comparison of ethanol to petroleum fuels requires a comprehensive accounting of life-cycle environmental effects. Hundreds of published studies evaluate the life-cycle emissions from biofuels and petroleum, but the operation and maintenance of storage, handling, and distribution infrastructure and equipment for fuels and fuel feedstocks had not been adequately addressed. Little attention has been paid to estimating and minimizing emissions from these complex systems, presumably because they are believed to contribute a small fraction of total emissions for petroleum and first generation biofuels. This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. US-specific life-cycle GHG emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each component. In order to apply the new emission factors to policy-relevant scenarios, a projection is made for the fleet inventory of infrastructure components necessary to distribute 21 billion gallons of ethanol (the 2022 federal mandate for advanced biofuels under the Energy Independence and Security Act of 2007) derived entirely from Miscanthus grass, for comparison to the baseline petroleum system. Due to geographic, physical and chemical properties of biomass and alcohols, the distribution system for Miscanthus-based ethanol is more capital- and energy-intensive than petroleum per unit of fuel energy delivered. The transportation of biofuels away from producer regions poses environmental, health, and economic trade-offs that are herein evaluated using a simplified national distribution network model. In just the last ten years, ethanol transportation within the contiguous United States is estimated to have increased more than ten-fold in total t-km as ethanol has increasingly been transported away from Midwest producers due to air quality regulations pertaining to gasoline, renewable fuel mandates, and the 10% blending limit (i.e., the E10 blend wall). From 2004 to 2009, approximately 10 billion t-km of ethanol transportation are estimated to have taken place annually for reasons other than the E10 blend wall, leading to annual freight costs greater than $240 million and more than 300,000 tonnes of CO2-e emissions and significant emissions of criteria air pollutants from the combustion of more than 90 million liters of diesel. Although emissions from distribution activities are small when normalized to each unit of fuel, they are large in scale. Archetypal fuel distribution routes by rail and by truck are created to evaluate the significance of mode choice and route location on the severity of public health impacts from locomotive and truck emissions, by calculating the average PM2.5 pollution intake fraction along each route. Exposure to pollution resulting from trucking is found to be approximately twice as harmful as rail (while trucking is five times more energy intensive). Transporting fuel from the Midwest to California would result in slightly lower human health impacts than transportation to New Jersey, even though California is more than 50% farther from the Midwest than most coastal Northeast states. In summary, this dissertation integrated concepts from infrastructure management, climate and renewable fuel policy, fuel chemistry and combustion science, air pollution modeling, public health impact assessment, network optimization and geospatial analysis. In identifying and quantifying opportunities to minimize damage to the global climate and regional air quality from fuel distribution, results in this dissertation provide credence to the urgency of harmonizing policies and programs that address national and global energy and environmental goals. Under optimal future policy and economic conditions, infrastructure will be highly utilized and transportation minimized in order to reduce total economic, health, and environmental burdens associated with the entire supply and distribution chain for transportation fuels. (Abstract shortened by UMI.)
Kremer, Florian; Blank, Lars M; Jones, Patrik R; Akhtar, M Kalim
2015-01-01
Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability.
dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.
Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta
2016-01-01
Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.
Kremer, Florian; Blank, Lars M.; Jones, Patrik R.; Akhtar, M. Kalim
2015-01-01
Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability. PMID:26301219
Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.
Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua
2016-03-01
Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock
Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta
2016-01-01
Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf. PMID:26727469
Metal organic frameworks for enzyme immobilization in biofuel cells
NASA Astrophysics Data System (ADS)
Bodell, JaDee
Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following enzymes: nicotinamide adenine dinucleotide (NAD)-dependent alcohol and aldehyde dehydrogenases, and pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenases, as well as flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase. Tb-meso MOF was shown to immobilize PQQ-dependent enzymes through ? stacking interactions of the heme in the enzyme and the triazine molecules in the ligand of the MOF. However, the PQQ-dependent dehydrogenases did not have enough catalytic activity present to be measured electrochemically. Finally, ZIF-90 was synthesized under aqueous conditions in the presence of FAD-dependent glucose dehydrogenase (GDH) which led to size selective sheltering of FAD-GDH. FAD-GDH had activity an order of magnitude larger than any of the alcohol dehydrogenases, which provided sufficient catalytic activity to measure electrochemically. The FAD-GDH bound within ZIF-90 was used to build a full biofuel cell resulting in an open circuit voltage of 708 +/- 16 mV and a maximum power density of 2.75 +/- 0.40 microW/cm2.
Plant-Based, Shape-Memory Material Could Replace Today’s Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A novel approach that creates a renewable, leathery material—programmed to remember its shape—may offer a low-cost alternative to conventional conductors for applications in sensors and robotics. To make the bio-based, shape-memory material, Oak Ridge National Laboratory scientists streamlined a solvent-free process that mixes rubber with lignin—the by-product of woody plants used to make biofuels. They fashioned the leathery material into small strips and brushed on a thin layer of silver nanoparticles to activate electrical conductivity. The strips were stretched or curled and then frozen as part of the process to program the material to return to its intended shape, whichmore » occurs after the application of low heat. “The performance of this polymer can be tuned further,” said ORNL’s Amit Naskar. “Variant lignins can be used at different ratios, which determines the material’s pliability.” This research was sponsored by the Department of Energy’s Bioenergy Technologies Office.« less
NASA Astrophysics Data System (ADS)
Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.
2012-12-01
The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based strategies for maximizing GHG mitigation potential of biofuel feedstocks.
Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gbadebo Oladosu; Keith Kline; Paul Leiby
2012-01-01
This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels aremore » higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.« less
NASA Astrophysics Data System (ADS)
Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol
2013-09-01
Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.
ASSERT FY16 Analysis of Feedstock Companion Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.
2016-09-01
Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale.more » To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this task by experts in feedstock supply chain analysis, market economics, and System Dynamics from the Idaho National Laboratory and MindsEye Computing.« less
360° Algae Lab Tour at NREL - Narrated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, Nick
Explore the National Renewable Energy Laboratory’s algae lab as researcher Nick Sweeney takes you on a 360-degree tour of the algal biofuels research facility. Discover how NREL is growing algae to learn how it can be used as a renewable source of food, fuels, and other products.
Land clearing and the biofuel carbon debt.
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-29
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Land Clearing and the Biofuel Carbon Debt
NASA Astrophysics Data System (ADS)
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-01
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Transporter-mediated biofuel secretion.
Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey
2013-05-07
Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.
Transporter-mediated biofuel secretion
Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey
2013-01-01
Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as “plug-and-play” biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592
Biofuels in the long-run global energy supply mix for transportation.
Timilsina, Govinda R
2014-01-13
Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.
Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.
Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie
2010-12-01
Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels. Published by Elsevier Ltd.
Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen
2015-01-01
This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.
The Science of Photons to Fuel
NASA Astrophysics Data System (ADS)
Chu, Steven
2008-09-01
Transportation consumes 28% of US energy, and 60% of that is consumed by personal transportation. Because liquid fuels have high energy density, they will be the dominant fuel, until batteries have improved enough to support plug-in cars on an economic basis. Fifty million acres of energy crops plus agricultural wastes can produce roughly half of all of current US consumption of gasoline. Although ethanol from corn has received much attention as a possible substitute for gasoline, other biofuels feedstocks such as perennial grasses and agricultural wastes have greater potential for a much more environmentally friendly substitute for oil. The advantages of grasses over food crops such as corn include higher yield for given water and nutrient inputs; lower soil depletion and fertilizer run-off pollution. The major challenge in biofuels production from perennials is to improve the efficiency of conversion of the plant material to fuel. This paper describes some of the research that is being done to make biofuels from cellulose.
75 FR 33268 - Technology Innovation Program (TIP) Notice of Availability of Funds; Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... military/ weaponry applications (e.g. warhead manufacture, chemical/biological warfare materials production.... production of biofuels or small molecule drugs); Projects that primarily focus on drug discovery or design of... design that are not a part of the manufacturing of engineered tissues; and Projects that do not have a...
A significant increase in genetically modified corn planting driven by biofuel demand is expected for the 2007 growing season with future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with ma...
78 FR 71731 - 2014 Standards for the Renewable Fuel Standard Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... of E85 Consumption c. Proposed Projection of E85 Consumption in 2014 d. Estimating Total Ethanol Consumption in 2014 2. Estimating Availability of Non-Ethanol Renewable Fuel Volumes a. Non-Ethanol Cellulosic... Biofuel c. Option 3: Availability, Growth, and Limits on Ethanol Consumption D. Summary of Proposed Volume...
75 FR 50986 - Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... remaining available Fiscal Year 2009 program funds. This Notice opens an application window for certain... opening a new application window from August 18, 2010 through September 17, 2010 to accept applications... opening a new application window to accept additional applications for the remaining available Fiscal Year...
75 FR 20043 - Biorefinery Assistance Guaranteed Loans
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
...Rural Business-Cooperative Service, a mission area within the U.S. Department of Agriculture, is proposing a guaranteed loan program for biorefineries. The proposed rule will establish guaranteed loan regulations for the development and construction of commercial-scale biorefineries and for the retrofitting of existing facilities using eligible technology for the development of advanced biofuels.
Unintended Consequences: Potential Downsides of the Air Force’s Conversion to Biofuels
2011-01-01
Mark N. Goltz , PhD, USAF, Retired Dr. Charles A. Bleckmann Dr. Douglas M. Mackay Maj Khai Vuong, USAF Capt Jerrod P. McComb, USAF* *Lieutenant...Colonel Goltz and Dr. Bleckmann are faculty members in the environmental engineering and science program at the Air Force Institute of Technology (AFIT
Peris, David; Moriarty, Ryan V.; Alexander, William G.; ...
2017-03-27
Here, lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker’s yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In othermore » industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peris, David; Moriarty, Ryan V.; Alexander, William G.
Here, lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker’s yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In othermore » industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research.« less
A New Biofuels Technology Blooms in Iowa
Mathisen, Todd; Bruch, Don; Broin, Jeff
2018-02-13
Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.
Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability
Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...
Lignin Bioproducts to Enable Biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyman, Charles E.; Ragauskas, Arthur J
2015-09-15
Here we report that today's and tomorrow's biofuels production facilities could benefit tremendously from increasing the value from the large amount of lignin that results from biofuels operations. Certainly, the scientific community, and biofuels industry has begun to recognize the challenges and opportunities associated with lignin.
Biofuel co-product uses for pavement geo-materials stabilization : final report, April 2010.
DOT National Transportation Integrated Search
2010-04-01
The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant : biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin deriv...
Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review.
Wang, Shizeng; Sun, Xinxiao; Yuan, Qipeng
2018-06-01
Using lignocellulosic biomass for the production of renewable biofuel provides a sustainable and promising solution to the crisis of energy and environment. However, the processes of biomass pretreatment and biofuel fermentation bring a variety of inhibitors to microbial strains. These inhibitors repress microbial growth, decrease biofuel yields and increase fermentation costs. The production of biofuels from renewable lignocellulosic biomass relies on the development of tolerant and robust microbial strains. In recent years, the advancement of tolerance engineering and evolutionary engineering provides powerful platform for obtaining host strains with desired tolerance for further metabolic engineering of biofuel pathways. In this review, we summarized the inhibitors derived from biomass pretreatment and biofuel fermentation, the mechanisms of inhibitor toxicity, and the strategies for enhancing microbial tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Roundtable on Sustainable Biofuels: plant scientist input needed.
Haye, Sébastien; Hardtke, Christian S
2009-08-01
The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.
2016 National Algal Biofuels Technology Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry, Amanda; Wolfe, Alexis; English, Christine
The Bioenergy Technologies Office (BETO) of the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, is committed to advancing the vision of a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts, and biopower; enhances U.S. energy security; reduces our dependence on fossil fuels; provides environmental benefits; and creates economic opportunities across the nation. BETO’s goals are driven by various federal policies and laws, including the Energy Independence and Security Act of 2007 (EISA). To accomplish its goals, BETO has undertaken a diverse portfolio of research, development, and demonstration (RD&D) activities, in partnership with nationalmore » laboratories, academia, and industry.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
...In this Notice of Proposed Rulemaking, EPA is proposing amendments to three separate sets of regulations relating to fuels. First, EPA is proposing to amend certain of the renewable fuels standard (RFS2) program regulations. We believe these proposals will facilitate the introduction of new renewable fuels as well as improve implementation of the program. This proposal includes various changes related to biogas, including changes related to the revised compressed natural gas (CNG)/liquefied natural gas (LNG) pathway and amendments to various associated registration, recordkeeping, and reporting provisions. This proposed regulation includes the addition of new pathways for renewable diesel, renewable naphtha, and renewable electricity (used in electric vehicles) produced from landfill biogas. Adding these new pathways will enhance the ability of the biofuels industry to supply advanced biofuels, including cellulosic biofuels, which greatly reduce the greenhouse gas emissions (GHG) compared to the petroleum-based fuels they replace. It also addresses ``nameplate capacity'' issues for certain production facilities that do not claim exemption from the 20% greenhouse gas (GHG) reduction threshold. In this notice, EPA addresses issues related to crop residue and corn kernel fiber and proposes an approach to determining the volume of cellulosic RINs produced from various cellulosic feedstocks. We also include a lifecycle analysis of advanced butanol and discuss the potential to allow for commingling of compliant products at the retail facility level as long as the environmental performance of the fuels would not be detrimental. Several other amendments to the RFS2 program are included. Second, EPA is also proposing various changes to the E15 misfueling mitigation regulations (E15 MMR). Among the E15 changes proposed are technical corrections and amendments to sections dealing with labeling, E15 surveys, product transfer documents, and prohibited acts. We also propose to amend the definitions in order to address a concern about the rounding of test results for ethanol content violations. Lastly, EPA is proposing changes to the survey requirements associated with the ultra-low sulfur diesel (ULSD) program.
The role of biochemical engineering in the production of biofuels from microalgae.
Costa, Jorge Alberto Vieira; de Morais, Michele Greque
2011-01-01
Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sesmero, Juan P
2014-11-01
This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recent developments and key barriers to advanced biofuels: A short review.
Oh, You-Kwan; Hwang, Kyung-Ran; Kim, Changman; Kim, Jung Rae; Lee, Jin-Suk
2018-06-01
Biofuels are regarded as one of the most viable options for reduction of CO 2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO 2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reconciling food security and bioenergy: priorities for action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.
Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities formore » biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.« less
Reconciling food security and bioenergy: priorities for action
Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.; ...
2016-06-14
Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities formore » biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.« less
Longstaff, Holly; Secko, David M
2016-02-01
The importance of evaluating deliberative public engagement events is well recognized, but such activities are rarely conducted for a variety of theoretical, political and practical reasons. In this article, we provide an assessment of the criteria presented in the 2008 National Research Council report on Public Participation in Environmental Assessment and Decision Making (NRC report) as explicit indicators of quality for the 2012 'Advanced Biofuels' deliberative democracy event. The National Research Council's criteria were selected to evaluate this event because they are decision oriented, are the products of an exhaustive review of similar past events, are intended specifically for environmental processes and encompass many of the criteria presented in other evaluation frameworks. It is our hope that the results of our study may encourage others to employ and assess the National Research Council's criteria as a generalizable benchmark that may justifiably be used in forthcoming deliberative events exploring different topics with different audiences. © The Author(s) 2014.
System for determining biofuel concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Shean P.; Janke, Christopher James; Kass, Michael D.
2016-09-13
A measurement device or system configured to measure the content of biofuels within a fuel blend. By measuring a state of a responsive material within a fuel blend, a biofuel content of the fuel blend may be measured. For example, the solubility of a responsive material to biofuel content within a fuel blend, may affect a property of the responsive material, such as shape, dimensional size, or electrical impedance, which may be measured and used as a basis for determining biofuel content.
Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Ashutosh; Decker, Stephen R.
2013-02-19
Rising energy prices and depleting reserves of fossil fuels continue to renew interest in the conversion of biomass to biofuels production. Biofuels derived from renewable feedstocks are environmentally friendly fuels and have the potential to meet more than a quarter of world demand for transportation fuels by 2050. Moreover, biofuels are expected to reduce reliance on imported petroleum, reduce greenhouse gas emissions, and stimulate regional economies by creating jobs and increasing demand and prices for bioproducts.
Potential emissions reduction in road transport sector using biofuel in developing countries
NASA Astrophysics Data System (ADS)
Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.
2010-10-01
Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.
[Biofuels, food security and transgenic crops].
Acosta, Orlando; Chaparro-Giraldo, Alejandro
2009-01-01
Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.
Environmentally friendly use of non-coal ashes in Sweden.
Ribbing, C
2007-01-01
The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.
ERIC Educational Resources Information Center
Brainard, Jeffrey
2007-01-01
Plants that bear less familiar names such as switch grass, "Miscanthus," and kenaf, are not much to look at, having weathered Iowa's winter snows. But Iowa State researchers see these crops as seeds of change in alternative fuels. Rows of experimental crops line the test plots at Iowa State University's research farm. Although corn is…
Stop and Smell the Fries: Collaborative Bio-Fuel Research in the Community College
ERIC Educational Resources Information Center
Mojock, Charles; Keefer, Robert; Summer, David
2008-01-01
Our project was to provide a community college undergraduate an authentic research opportunity in a science discipline. To do this, students who have completed a two-semester sequence in chemistry or physics were recruited to investigate the technical aspects of producing economically viable bio-diesel fuel from donated discarded restaurant…
Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways
Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; ...
2015-01-16
Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimentalmore » and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO 2-eq (MJ renewable diesel) -1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.« less
Direct nitrous oxide emissions from rapeseed in Germany
NASA Astrophysics Data System (ADS)
Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Suarez, Teresa; Stichnothe, Heinz; Flessa, Heiner
2014-05-01
The production of first generation biofuels has increased over the last decade in Germany. However, there is a strong public and scientific debate concerning ecological impact and sustainability of biofuel production. The EU Renewables Directive requires biofuels to save 35 % of GHG emissions compared to fossil fuels. Starting in 2017, 50 % mitigation of GHG emissions must be achieved. This presents challenges for production of biofuels from rapeseed, which is one of the major renewable resources used for fuel production. Field emissions of nitrous oxide (N2O) and GHG emissions during production of fertilizers contribute strongest to the GHG balance of rapeseed biofuel. Thus, the most promising GHG mitigation option is the optimization of nitrogen fertilization. Since 2012, field trials are conducted on five German research farms to quantify direct GHG emissions. The sites were selected to represent the main rapeseed production regions in Germany as well as climatic regions and soil types. Randomized plot designs were established, which allow monitoring (using manual chambers) impact of fertilization intensity on direct emissions and yield of the typical crop sequence (winter rape - winter wheat - winter barley). The effect of substituting mineral fertilizer with biogas digestate with and without addition of a nitrification inhibitor is also studied. Here we present results from the first cropping season. In 2013, annual direct N2O emissions as well as yield normalized N2O emissions from rape were low. This can be explained with the weather conditions as 2013 was characterized by a cold and long winter with snow until mid spring. As a result, emissions were smaller than predicted by the IPCC emission factors or by the Global Nitrous Oxide Calculator (GNOC). However, emissions still depend on nitrogen input.
NASA Astrophysics Data System (ADS)
Bennion, Edward P.
Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.
Improving Sugarcane for Biofuel: Engineering for an even better feedstock
USDA-ARS?s Scientific Manuscript database
Sugarcane is a proven biofuel feedstock and accounts for about half the biofuel production worldwide. It has a more favorable energy input/output ratio than that of corn, the other major biofuel feedstock. The rich resource of genetic diversity and the plasticity of autopolyploid genomes offer a wea...
The current potential of algae biofuels in the United Arab Emirates
USDA-ARS?s Scientific Manuscript database
In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...
USDA-ARS?s Scientific Manuscript database
A growing biofuels industry requires the development of effective methods to educate farmers, government, and agribusiness about biofuel feedstock production if the market is going to significantly expand beyond first generation biofuels. Extension and outreach education provides a conduit for impor...