Science.gov

Sample records for biogenic mn oxides

  1. Biogenic Mn-Oxides in Subseafloor Basalts

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G.

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  2. Biogenic Mn-Oxides in Subseafloor Basalts.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  3. Characterization of the Biogenic Mn-Oxide Produced by Pseudomonas putida Strain MnB1

    NASA Astrophysics Data System (ADS)

    Villalobos, M.; Bargar, J.; Sposito, G.

    2001-12-01

    Mn-oxide nanoparticles are common and highly reactive materials in the environment. They occur as dispersed colloids, in nodules, and as coatings having high specific surface areas and, thus, high surface reactivity. Hence, they are believed to play a major role in the fate and transport of contaminant and nutrient species in the environment. Most of these oxides are believed to be microbial in origin, and a wide array of Mn(II) oxidizing bacteria exists in almost all natural aqueous environments. However, little is known about the structures, characteristics and reactivities of these biogenic oxides. The goal of this research was to identify the Mn oxide product from a strain of the fresh water bacterial species Pseudomonas putida, and to characterize it along with analogous synthetic Mn oxides: two different MnIII/MnIV oxides identified as birnessites, and the MnIV oxide, δ -MnO2. These synthetic phases were defined as potential models based on comparison to X-ray absorption and diffraction spectra from a large number of Mn(II/III/IV) references. Characterization of biotic and abiotic Mn oxides was performed with respect to: morphology, surface area, Mn composition, structure, and surface reactivity. In this fashion, randomly-stacked hexagonal birnessite of low crystallinity was identified as a close synthetic analog to the biogenic oxide, making it suitable for reference and comparison purposes, as well as for reactivity prediction studies. This synthetic product is distinct from monoclinic birnessite, but showed some similarities to Mn oxide minerals of very low crystallinity previously identified as vernadite (δ -MnO2). This latter mineral has been identified in the past as comparable to the biogenic oxide produced by the marine Bacillus sp. strain SG-1, which suggests similarities in the biological Mn(II) oxidation processes across natural environments and bacterial species.

  4. Ni(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure.

    PubMed

    Zhu, Mengqiang; Ginder-Vogel, Matthew; Sparks, Donald L

    2010-06-15

    Biogenic Mn-oxides (BioMnO(x)), produced by microorganisms, possess an extraordinary ability to sequester metals. BioMnO(x) are generally layered structures containing varying amounts of Mn(III) and vacant sites in the Mn layers. However the relationship between the varying structure of BioMnO(x) and metal sorption properties remains unclear. In this study, BioMnO(x) produced by Pseudomonas putida strain GB-1 was synthesized at either pH 6, 7, or 8 in CaCl(2) solution, and Ni(II) sorption mechanisms were determined at pH 7 and at different Ni(II) loadings, using isotherm and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses. Our data demonstrate that Ni(II) sorbs at vacant sites in the interlayer of the BioMnO(x) and the maximum Ni(II) sorption capacity increases as the formation pH of BioMnO(x) decreases. This relation indicates that the quantity of BioMnO(x) vacant sites increases as formation conditions become more acidic, which is in good agreement with our companion study. Contents of the vacant sites were quantitatively estimated based on maximum Ni(II) sorption capacity. Additionally, this study reveals that imidazole groups are involved in Ni(II) binding to biomaterials, and have a higher Ni(II) sorption affinity, but a lower site density compared to carboxyl groups. PMID:20469849

  5. Ni(II) Sorption on Biogenic Mn-Oxides with Varying Mn Octahedral Layer Structure

    SciTech Connect

    Zhu, M.; Ginder-Vogel, M; Sparks, D

    2010-01-01

    Biogenic Mn-oxides (BioMnO{sub x}), produced by microorganisms, possess an extraordinary ability to sequester metals. BioMnO{sub x} are generally layered structures containing varying amounts of Mn(III) and vacant sites in the Mn layers. However the relationship between the varying structure of BioMnO{sub x} and metal sorption properties remains unclear. In this study, BioMnO{sub x} produced by Pseudomonas putida strain GB-1 was synthesized at either pH 6, 7, or 8 in CaCl{sub 2} solution, and Ni(II) sorption mechanisms were determined at pH 7 and at different Ni(II) loadings, using isotherm and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses. Our data demonstrate that Ni(II) sorbs at vacant sites in the interlayer of the BioMnO{sub x} and the maximum Ni(II) sorption capacity increases as the formation pH of BioMnO{sub x} decreases. This relation indicates that the quantity of BioMnO{sub x} vacant sites increases as formation conditions become more acidic, which is in good agreement with our companion study. Contents of the vacant sites were quantitatively estimated based on maximum Ni(II) sorption capacity. Additionally, this study reveals that imidazole groups are involved in Ni(II) binding to biomaterials, and have a higher Ni(II) sorption affinity, but a lower site density compared to carboxyl groups.

  6. Cation Effects on the Layer Structure of Biogenic Mn-Oxides

    SciTech Connect

    Zhu, M.; Ginder-Vogel, M; Parikh, S; Feng, X; Sparks, D

    2010-01-01

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO{sub x}) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H{sup +}, Ni(II), Na{sup +}, and Ca{sup 2+}) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO{sub x} using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO{sub x} formation. Specifically, H{sup +} and Ni(II) enhance vacant site formation, whereas Na{sup +} and Ca{sup 2+} favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO{sub x} and dependence of the crystal structure of BioMnO{sub x} on solution chemistry.

  7. Cation effects on the layer structure of biogenic Mn-oxides.

    PubMed

    Zhu, Mengqiang; Ginder-Vogel, Matthew; Parikh, Sanjai J; Feng, Xiong-Han; Sparks, Donald L

    2010-06-15

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO(x)) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H(+), Ni(II), Na(+), and Ca(2+)) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO(x) using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO(x) formation. Specifically, H(+) and Ni(II) enhance vacant site formation, whereas Na(+) and Ca(2+) favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO(x) and dependence of the crystal structure of BioMnO(x) on solution chemistry. PMID:20469850

  8. Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Bargar, J. R.; Sposito, G.

    2005-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.

  9. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems.

    PubMed

    Bai, Yaohui; Yang, Tingting; Liang, Jinsong; Qu, Jiuhui

    2016-07-01

    As(III&V), Mn(II), and Fe(II) may occur simultaneously in some groundwater and surface water. Studying their redox reactions and interactions is essential to unravel the biogeochemical cycles of these metal ions in aquatic ecosystems and to find effective methods to remove them simultaneously in drinking water treatment. Here, the formation of biogenic Fe-Mn oxides (BFMO, defined as a mixture of biogenic Mn oxide (BMO) and Fe oxide) as well as its oxidation and adsorption of As in a Fe(II)-Mn(II)-As(III&V)-Mn-oxidizing microbe (Pseudomonas sp. QJX-1) system were investigated. Batch experiments and structure characterization revealed that the BFMO was formed via a sequential precipitation of Fe oxide and BMO. The first formed Fe oxide was identified as FeOOH (lepidocrocite) and the latter formed BMO was identified as MnO2 (similar to hexagonal birnessite). In the BFMO mixture, the BMO part was mainly responsible for As(III) oxidation, and the Fe oxide part dominated As adsorption. Remarkably, the BMO could oxidize Fe(II) to form FeOOH, which may improve As adsorption. The optimum Mn(II)/Fe(II) ratio for As removal was approximately 1:3 (mol/mol). Taken together, in Fe(II)-Mn(II)-As(III&V)-Mn-oxidizing microbe ecosystems, the in situ formation of BFMO could eliminate or decrease Fe(II), Mn(II), and As(III&V) species simultaneously. Therefore, based on this study, new approaches may be developed for As removal from water containing high concentrations of Fe(II) and Mn(II). PMID:27088246

  10. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems.

    PubMed

    Bai, Yaohui; Yang, Tingting; Liang, Jinsong; Qu, Jiuhui

    2016-07-01

    As(III&V), Mn(II), and Fe(II) may occur simultaneously in some groundwater and surface water. Studying their redox reactions and interactions is essential to unravel the biogeochemical cycles of these metal ions in aquatic ecosystems and to find effective methods to remove them simultaneously in drinking water treatment. Here, the formation of biogenic Fe-Mn oxides (BFMO, defined as a mixture of biogenic Mn oxide (BMO) and Fe oxide) as well as its oxidation and adsorption of As in a Fe(II)-Mn(II)-As(III&V)-Mn-oxidizing microbe (Pseudomonas sp. QJX-1) system were investigated. Batch experiments and structure characterization revealed that the BFMO was formed via a sequential precipitation of Fe oxide and BMO. The first formed Fe oxide was identified as FeOOH (lepidocrocite) and the latter formed BMO was identified as MnO2 (similar to hexagonal birnessite). In the BFMO mixture, the BMO part was mainly responsible for As(III) oxidation, and the Fe oxide part dominated As adsorption. Remarkably, the BMO could oxidize Fe(II) to form FeOOH, which may improve As adsorption. The optimum Mn(II)/Fe(II) ratio for As removal was approximately 1:3 (mol/mol). Taken together, in Fe(II)-Mn(II)-As(III&V)-Mn-oxidizing microbe ecosystems, the in situ formation of BFMO could eliminate or decrease Fe(II), Mn(II), and As(III&V) species simultaneously. Therefore, based on this study, new approaches may be developed for As removal from water containing high concentrations of Fe(II) and Mn(II).

  11. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide.

    PubMed

    Su, Jianmei; Deng, Lin; Huang, Liangbo; Guo, Shujin; Liu, Fan; He, Jin

    2014-06-01

    Manganese(II) contamination is naturally occurring in many groundwater and surface water sources. Moreover, industrial wastewater is also responsible for much of the Mn(II) contamination. Nowadays, Mn(II) contamination has become a serious environmental problem in some regions of the world. To explore a biological approach for removing excessive amounts of aqueous Mn(II) from water, we found a new biocatalyst multicopper oxidase CueO, which was firstly proved to catalyze the oxidation of Mn(II) both in vitro and in vivo. Subsequently, we established a CueO-mediated catalysis system to prepare biogenic Mn oxide (BioMnOx), which was confirmed to be γ-Mn3O4 by X-ray diffraction. This newly prepared BioMnOx consisted of 53.6% Mn(II), 18.4% Mn(III) and 28.0% Mn(IV) characterized by X-ray photoelectron spectroscopy. It exhibited distinct polyhedral structure with nanoparticles of 150-350 nm diameters observed by transmission electron microscopy. Importantly, CueO could remove 35.7% of Mn(II) after a seven-day reaction, and on the other hand, the cueO-overexpressing Escherichia coli strain (ECueO) could also oxidize 58.1% dissolved Mn(II), and simultaneously remove 97.7% Mn(II). Based on these results, we suggest that ECueO strain and CueO enzyme have potential applications on Mn(II) decontamination in water treatment.

  12. Production of biogenic Mn oxides by leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics

    PubMed

    Nelson; Lion; Ghiorse; Shuler

    1999-01-01

    Biogenic Mn oxides were produced by the bacterium Leptothrix discophora SS-1 (= ATCC 3182) in a chemically defined mineral salts medium, and the Pb binding and specific surface area of these oxides were characterized. Growth of SS-1 in the defined medium with pyruvate as a carbon and energy source required the addition of vitamin B12. Complete oxidation of Mn(II) within 60 h required the addition of >/=0.1 &mgr;M FeSO4. Pb adsorption isotherms were determined for the biogenic Mn oxides (and associated cells with their extracellular polymer) and compared to the Pb adsorption isotherms of cells and exopolymer alone, as well as to abiotic Mn oxides. The Pb adsorption to cells and exopolymer with biogenic Mn oxides (0.8 mmol of Mn per g) at pH 6.0 and 25 degreesC was 2 orders of magnitude greater than the Pb adsorption to cells and exopolymer alone (on a dry weight basis). The Pb adsorption to the biogenic Mn oxide was two to five times greater than the Pb adsorption to a chemically precipitated abiotic Mn oxide and several orders of magnitude greater than the Pb adsorption to two commercially available crystalline MnO2 minerals. The N2 Brunauer-Emmet-Teller specific surface areas of the biogenic Mn oxide and fresh Mn oxide precipitate (224 and 58 m2/g, respectively) were significantly greater than those of the commercial Mn oxide minerals (0.048 and 4. 7 m2/g). The Pb adsorption capacity of the biogenic Mn oxide also exceeded that of a chemically precipitated colloidal hydrous Fe oxide under similar solution conditions. These results show that amorphous biogenic Mn oxides similar to those produced by SS-1 may play a significant role in the control of trace metal phase distribution in aquatic systems. PMID:9872777

  13. Production of Biogenic Mn Oxides by Leptothrix discophora SS-1 in a Chemically Defined Growth Medium and Evaluation of Their Pb Adsorption Characteristics

    PubMed Central

    Nelson, Yarrow M.; Lion, Leonard W.; Ghiorse, William C.; Shuler, Michael L.

    1999-01-01

    Biogenic Mn oxides were produced by the bacterium Leptothrix discophora SS-1 (= ATCC 3182) in a chemically defined mineral salts medium, and the Pb binding and specific surface area of these oxides were characterized. Growth of SS-1 in the defined medium with pyruvate as a carbon and energy source required the addition of vitamin B12. Complete oxidation of Mn(II) within 60 h required the addition of ≥0.1 μM FeSO4. Pb adsorption isotherms were determined for the biogenic Mn oxides (and associated cells with their extracellular polymer) and compared to the Pb adsorption isotherms of cells and exopolymer alone, as well as to abiotic Mn oxides. The Pb adsorption to cells and exopolymer with biogenic Mn oxides (0.8 mmol of Mn per g) at pH 6.0 and 25°C was 2 orders of magnitude greater than the Pb adsorption to cells and exopolymer alone (on a dry weight basis). The Pb adsorption to the biogenic Mn oxide was two to five times greater than the Pb adsorption to a chemically precipitated abiotic Mn oxide and several orders of magnitude greater than the Pb adsorption to two commercially available crystalline MnO2 minerals. The N2 Brunauer-Emmet-Teller specific surface areas of the biogenic Mn oxide and fresh Mn oxide precipitate (224 and 58 m2/g, respectively) were significantly greater than those of the commercial Mn oxide minerals (0.048 and 4.7 m2/g). The Pb adsorption capacity of the biogenic Mn oxide also exceeded that of a chemically precipitated colloidal hydrous Fe oxide under similar solution conditions. These results show that amorphous biogenic Mn oxides similar to those produced by SS-1 may play a significant role in the control of trace metal phase distribution in aquatic systems. PMID:9872777

  14. Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics

    SciTech Connect

    Nelson, Y.M.; Lion, L.W.; Ghiorse, W.C.; Shuler, M.L.

    1999-01-01

    Biogenic Mn oxides were produced by the bacterium Leptothrix discophora SS-1 (= ATCC 3182) in a chemically defined mineral salts medium, and the Pb binding and specific surface area of these oxides were characterized. Growth of SS-1 in the defined medium with pyruvate as a carbon and energy source required the addition of vitamin B{sub 12}. Complete oxidation of Mn(II) within 60 h required the addition of {ge}0.1 {micro}M FeSO{sub 4}. Pb adsorption isotherms were determined for the biogenic Mn oxides (and associated cells with their extracellular polymer) and compared to the Pb adsorption isotherms of cells and exopolymer alone, as well as to abiotic Mn oxides. The Pb adsorption to cells and exopolymer with biogenic Mn oxides at pH 6.0 and 25 C was 2 orders of magnitude greater than the Pb adsorption to cells and exopolymer alone. The Pb adsorption to the biogenic Mn oxide was two to five times greater than the Pb adsorption to a chemically precipitated abiotic Mn oxide and several orders of magnitude greater than the Pb adsorption to two commercially available crystalline MnO{sub 2} minerals. The N{sub 2} Brunauer-Emmet-Teller specific surface areas of the biogenic Mn oxide and fresh Mn oxide precipitate were significantly greater than those of the commercial Mn oxide minerals. The Pb adsorption capacity of the biogenic Mn oxide also exceeded that of a chemically precipitated colloidal hydrous Fe oxide under similar solution conditions. These results show that amorphous biogenic Mn oxides similar to those produced by SS-1 may play a significant rule in the control of trace metal phase distribution in aquatic systems.

  15. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  16. Zn Sorption Mechanisms onto Sheathed Leptothrix Discophora and the Impact of the Nanoparticulate Biogenic Mn Oxide Coating

    SciTech Connect

    Boonfueng, T.; Axe, L; Yee, N; Hahn, D; Ndiba, P

    2009-01-01

    Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10{sup -19} cm{sup 2} s{sup -1} is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants.

  17. Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating.

    PubMed

    Boonfueng, Thipnakarin; Axe, Lisa; Yee, Nathan; Hahn, Dittmar; Ndiba, Peter K

    2009-05-15

    Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10(-19) cm(2) s(-1) is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants. PMID:19268965

  18. Effect of Mn(II) on the structure and reactivity of biogenic uraninite.

    PubMed

    Veeramani, Harish; Schofield, Eleanor J; Sharp, Jonathan O; Suvorova, Elena I; Ulrich, Kai-Uwe; Mehta, Apurva; Giammar, Daniel E; Bargar, John R; Bernier-Latmanit, Rizlan

    2009-09-01

    The efficacy of a site remediation strategy involving the stimulaton of microbial U(VI) reduction hinges in part upon the long-term stability of the product, biogenic uraninite, toward environmental oxidants. Geological sedimentary uraninites (nominal formula UO2) reportedly contain abundant cation impurities that enhance their resistance to oxidation. By analogy, incorporation of common groundwater solutes into biogenic uraninite could also impart stability-enhancing properties. Mn(II) is a common groundwater cation, which has a favorable ionic radiusfor substitution reactions. The structure and reactivity of Mn(II)-reacted biogenic uraninite are investigated in this study. Up to 4.4 weight percent Mn(II) was found to be structurally bound in biogenic uraninite. This Mn(II) incorporation was associated with decreasing uraninite particle size and structural order. Importantly, the equilibrium solubility of Mn-reacted uraninite was halved relative to unreacted uraninite, demonstrating changes in thermodynamic properties, while the dissolution rate was up to 38-fold lower than that of unreacted biogenic uraninite. We conclude that structuralincorporation of Mn(II) into uraninite has an important stabilizing effect leading to the prediction that other groundwater solutes may similarly stabilize biogenic uraninite.

  19. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  20. Oxygen Isotope Signatures of Biogenic Manganese(III/IV) Oxides

    NASA Astrophysics Data System (ADS)

    Sutherland, K. M.; Hansel, C. M.; Wankel, S. D.

    2015-12-01

    Manganese (Mn) oxide minerals are pervasive throughout a number of surface earth environments as rock varnishes, ferromanganese nodules, crusts around deep-sea vents, and cave deposits among many other marine, freshwater, and terrestrial deposits. Mn(III,IV) oxides are also among the strongest sorbents and oxidants in surface earth environments and are crucial to understanding the fate of organic matter in sedimentary environments. The precipitation of Mn oxide minerals proceeds via both abiotic and biotic oxidation pathways, the latter due to the indirect or direct activity of Mn(II)- oxidizing microorganisms, including bacteria and fungi. Although the precipitation of Mn oxides is believed to be primarily controlled by Mn(II)-oxidizing organisms in most surface earth environments, confirmation of this generally held notion has remained illusive and limits our understanding of their formation on Earth and beyond (e.g., Mars). Previous work provided evidence that O atom incorporation by specific Mn oxidation pathways may exhibit unique and predictable isotopic fractionation. In this study, we expand upon this evidence by measuring the oxygen isotope signature of several biogenic and abiogenic Mn oxide minerals synthesized under a range of oxygen-18 labeled water. These results allow us to determine the relative amount oxygen atoms derived from water and molecular oxygen that are incorporated in the oxide and shed light on corresponding isotope fractionation factors. Additionally, we show that, once precipitated, Mn oxide isotope signatures are robust with respect to aqueous oxygen isotope exchange. The study provides a foundation on which to study and interpret Mn oxides in natural environments and determine which environmental controls may govern Mn(II) oxidation.

  1. Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver.

    PubMed

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-05-01

    The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio-MnOx), biogenic silver nanoparticles (Bio-Ag(0)) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2-anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio-MnOx, Bio-Ag(0) and Ag(+) separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio-MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese-free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co-metabolic removal during active Mn(2+) oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio-MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  2. Diclofenac and 2‐anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver

    PubMed Central

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio‐MnOx), biogenic silver nanoparticles (Bio‐Ag0) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2‐anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio‐MnOx, Bio‐Ag0 and Ag+ separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio‐MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese‐free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co‐metabolic removal during active Mn2+ oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio‐MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  3. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  4. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    USGS Publications Warehouse

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  5. Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, Owen W.; Bargar, John R.; Sposito, Garrison

    2008-07-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB +, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB + at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.

  6. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    PubMed Central

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using micro-focused Extended X-ray Absorption Fine Structure (EXAFS) and X-ray fluorescence (μSXRF) mapping , bulk EXAFS, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and micro-focused EXAFS spectra of Zn in the biogenic Mn oxides coating are indicative of Zn forming triple corner sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to decreasing in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in solid to solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating desorption is not controlled by dissolution of secondary Zn phases. In sum, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process in Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present. PMID:24460038

  7. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona.

    PubMed

    Fuller, Christopher C; Bargar, John R

    2014-02-18

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.

  8. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    USGS Publications Warehouse

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.

  9. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures.

    PubMed

    Nelson, Yarrow M; Lion, Leonard W; Shuler, Michael L; Ghiorse, William C

    2002-02-01

    The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures. PMID:11871557

  10. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures.

    PubMed

    Nelson, Yarrow M; Lion, Leonard W; Shuler, Michael L; Ghiorse, William C

    2002-02-01

    The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures.

  11. Oxidative Dissolution Potential of Biogenic and Abiogenic TcO2 in Subsurface Sediments

    SciTech Connect

    Fredrickson, Jim K.; Zachara, John M.; Plymale, Andrew E.; Heald, Steve M.; McKinley, James P.; Kennedy, David W.; Liu, Chongxuan; Nachimuthu, Ponnusamy

    2009-04-15

    Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Exhibiting an intermediate redox potential, Tc is highly mobile in its anionic, oxidized state [Tc(VII)O4-]; and less mobile as a poorly soluble oxyhydroxide precipitate [Tc(IV)O2•nH2O] in its reduced state. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state (FRC, RG). Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Biogenic Tc(IV)O2•nH2O was oxidized in anoxic, but unreduced RG and FRC sediments through redox interaction with Mn(III/IV) oxides. Bioreduction by Shewanella putrefaciens CN32 dissolved Mn(III/IV) oxides and generated biogenic Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. Biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO2-like phase in both sediments. Redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular speciation to RG. X-ray microprobe, electron microprobe, x-ray absorption spectroscopy, and micro x-ray diffraction were applied to the whole sediment and isolated Tc-contained particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 µm-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were attributed to mass-transfer-limited migration of O2 into

  12. Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides

    PubMed Central

    Couture, Raoul-Marie; Van Cappellen, Philippe; Corkhill, Claire L.; Charnock, John M.; Polya, David A.; Vaughan, David; Vanbroekhoven, Karolien; Lloyd, Jonathan R.

    2013-01-01

    Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 μM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 μM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 μM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit. PMID:23666325

  13. Arsenic bioremediation by biogenic iron oxides and sulfides.

    PubMed

    Omoregie, Enoma O; Couture, Raoul-Marie; Van Cappellen, Philippe; Corkhill, Claire L; Charnock, John M; Polya, David A; Vaughan, David; Vanbroekhoven, Karolien; Lloyd, Jonathan R

    2013-07-01

    Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 μM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 μM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 μM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit.

  14. Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1

    NASA Astrophysics Data System (ADS)

    Adams, Lee F.; Ghiorse, William C.

    1988-08-01

    Leptothrix discophora SS-1 excretes at least one Mn 2+-oxidizing protein that, in association with acidic exopolymers, catalyzes a rapid oxidation of Mn 2+. Iodometric titration of Mn oxide product showed that the oxidation state of Mn increased with age of the oxide from 3.32 in samples 11 hours old to 3.62 in samples formed over a period of 30 days. Electron diffraction of 90-day old samples showed evidence of poorly crystalline Mn(IV) oxides. Simultaneous measurement of oxygen consumption and Mn oxide formation during 15 min reaction periods indicated that the initial Mn product possessed an average oxidation state no greater than 3.6. Results suggest that the Mn 2+-oxidizing system of Leptothrix discophora SS-1 first generates Mn oxide with an average oxidation state close to Mn(III). Aging increases this oxidation state to give the mixed Mn(III, IV) oxide product observed in older samples.

  15. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    NASA Astrophysics Data System (ADS)

    Bargar, John R.; Fuller, Christopher C.; Marcus, Matthew A.; Brearley, Adrian J.; Perez De la Rosa, M.; Webb, Samuel M.; Caldwell, Wendel A.

    2009-02-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick × 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-Å basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments.

  16. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    USGS Publications Warehouse

    Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.

    2009-01-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.

  17. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    SciTech Connect

    Bargar, John; Fuller, Christopher; Marcus, Matthew A.; Brearley, Adrian J.; Perez De la Rosa, M.; Webb, Samuel M.; Caldwell, Wendel A.

    2008-03-19

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick x 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-A basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mnoxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments.

  18. BIOGENIC NITRIC OXIDE EMISSIONS FROM CROPLAND SOILS

    EPA Science Inventory

    Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates ...

  19. Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine

    PubMed Central

    Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873

  20. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine

    USGS Publications Warehouse

    Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.

  1. Effects of Cobalt on Manganese Oxidation by Pseudomonas putida MnB1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Bargar, J.; Sposito, G.

    2005-12-01

    The oxidation of Mn(II) in the environment is thought to occur predominantly through biologically mediated pathways. During the stationary phase of growth, the well-characterized freshwater and soil bacterium Pseudomonas putida MnB1 oxidizes soluble Mn(II) to a poorly crystalline layer type Mn(IV) oxide. These Mn oxide particles (2 - 5 nm thickness) are deposited in a matrix of extracellular polymeric substances (EPS) surrounding the cell, creating a multi-component system distinct from commonly studied synthetic Mn oxides. Accurate characterization of the reactivity of these biomineral assemblages is essential to understanding trace metal biogeochemistry in natural waters and sediments. Moreover, these biogenic oxides may potentially be used for the remediation of surface and ground waters impacted by mining, industrial pollution, and other anthropogenic activities. In this study, we consider the interactions between Co, P. putida MnB1, and its biogenic Mn oxide. Cobalt is a redox-active transition metal which exists in the environment as Co(II) and Co(III). While Co is not generally found in the environment at toxic concentrations, it may be released as a byproduct of mining activities (e.g. levels of up to 20 μM are found in Pinal Creek, AZ, a stream affected by copper mining). In addition, the radionuclide 60Co, formed by neutron activation in nuclear reactors, is of concern at Department of Energy sites, such as that at Hanford, and has several industrial applications, including radiotherapy. We address the following questions: Do high levels of Co inhibit enzymatic processes such as Mn(II) oxidation? Can the multicopper oxidase enzyme involved in Mn(II) oxidation facilitate Co(II) oxidation? Lastly, does the organic matter surrounding the oxides affect Co or Mn oxide reactivity? These issues were approached via wet chemical analysis, synchrotron radiation X-ray diffraction (SR-XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy. In the

  2. Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1.

    PubMed

    El Gheriany, Iman A; Bocioaga, Daniela; Hay, Anthony G; Ghiorse, William C; Shuler, Michael L; Lion, Leonard W

    2009-03-01

    A common form of biocatalysis of Mn(II) oxidation results in the formation of biogenic Mn(III, IV) oxides and is a key reaction in the geochemical cycling of Mn. In this study, we grew the model Mn(II)-oxidizing bacterium Leptothrix discophora SS-1 in media with limited iron (0.1 microM iron/5.8 mM pyruvate) and sufficient iron (0.2 microM iron/5.8 mM pyruvate). The influence of iron on the rate of extracellular Mn(II) oxidation was evaluated. Cultures in which cell growth was limited by iron exhibited reduced abilities to oxidize Mn(II) compared to cultures in medium with sufficient iron. While the extracellular Mn(II)-oxidizing factor (MOF) is thought to be a putative multicopper oxidase, Mn(II) oxidation in the presence of zero added Cu(II) was detected and the decrease in the observed Mn(II) oxidation rate in iron-limited cultures was not relieved when the medium was supplemented with Cu(II). The decline of Mn(II) oxidation under iron-limited conditions was not accompanied by siderophore production and is unlikely to be an artifact of siderophore complex formation with Mn(III). The temporal variations in mofA gene transcript levels under conditions of limited and abundant iron were similar, indicating that iron limitation did not interfere with the transcription of the mofA gene. Our quantitative PCR results provide a step forward in understanding the regulation of Mn(II) oxidation. The mechanistic role of iron in Mn(II) oxidation is uncertain; the data are consistent with a direct requirement for iron as a component of the MOF or an indirect effect of iron resulting from the limitation of one of many cellular functions requiring iron. PMID:19114505

  3. Iron Requirement for Mn(II) Oxidation by Leptothrix discophora SS-1▿

    PubMed Central

    El Gheriany, Iman A.; Bocioaga, Daniela; Hay, Anthony G.; Ghiorse, William C.; Shuler, Michael L.; Lion, Leonard W.

    2009-01-01

    A common form of biocatalysis of Mn(II) oxidation results in the formation of biogenic Mn(III, IV) oxides and is a key reaction in the geochemical cycling of Mn. In this study, we grew the model Mn(II)-oxidizing bacterium Leptothrix discophora SS-1 in media with limited iron (0.1 μM iron/5.8 mM pyruvate) and sufficient iron (0.2 μM iron/5.8 mM pyruvate). The influence of iron on the rate of extracellular Mn(II) oxidation was evaluated. Cultures in which cell growth was limited by iron exhibited reduced abilities to oxidize Mn(II) compared to cultures in medium with sufficient iron. While the extracellular Mn(II)-oxidizing factor (MOF) is thought to be a putative multicopper oxidase, Mn(II) oxidation in the presence of zero added Cu(II) was detected and the decrease in the observed Mn(II) oxidation rate in iron-limited cultures was not relieved when the medium was supplemented with Cu(II). The decline of Mn(II) oxidation under iron-limited conditions was not accompanied by siderophore production and is unlikely to be an artifact of siderophore complex formation with Mn(III). The temporal variations in mofA gene transcript levels under conditions of limited and abundant iron were similar, indicating that iron limitation did not interfere with the transcription of the mofA gene. Our quantitative PCR results provide a step forward in understanding the regulation of Mn(II) oxidation. The mechanistic role of iron in Mn(II) oxidation is uncertain; the data are consistent with a direct requirement for iron as a component of the MOF or an indirect effect of iron resulting from the limitation of one of many cellular functions requiring iron. PMID:19114505

  4. Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1

    SciTech Connect

    Adams, L.F.; Ghiorse, W.C. )

    1988-08-01

    Leptothrix discophora SS-1 excretes at least one Mn{sup 2+}-oxidizing protein that, in association with acidic exopolymers, catalyzes a rapid oxidation of Mn{sup 2+}. Iodometric titration of Mn oxide product showed that the oxidation state of Mn increased with age of the oxide from 3.32 in samples 11 hours old to 3.62 in samples formed over a period of 30 days. Electron diffraction of 90-day old samples showed evidence of poorly crystalline Mn(IV) oxides. Simultaneous measurement of oxygen consumption and Mn oxide formation during 15 min reaction periods indicated that the initial Mn product possessed an average oxidation state no greater than 3.6. Results suggest that the Mn{sup 2+}-oxidizing system of Leptothrix discophora SS-1 first generates Mn oxide with an average oxidation state close to Mn(III). Aging increases this oxidation state to give the mixed Mn(III, IV) oxide product observed in older samples.

  5. XPS determination of Mn oxidation states in Mn (hydr)oxides

    NASA Astrophysics Data System (ADS)

    Ilton, Eugene S.; Post, Jeffrey E.; Heaney, Peter J.; Ling, Florence T.; Kerisit, Sebastien N.

    2016-03-01

    Hydrous manganese oxides are an important class of minerals that help regulate the geochemical redox cycle in near-surface environments and are also considered to be promising catalysts for energy applications such as the oxidation of water. A complete characterization of these minerals is required to better understand their catalytic and redox activity. In this contribution an empirical methodology using X-ray photoelectron spectroscopy (XPS) is developed to quantify the oxidation state of hydrous multivalent manganese oxides with an emphasis on birnessite, a layered structure that occurs commonly in soils but is also the oxidized endmember in biomimetic water-oxidation catalysts. The Mn2p3/2, Mn3p, and Mn3s lines of near monovalent Mn(II), Mn(III), and Mn(IV) oxides were fit with component peaks; after the best fit was obtained the relative widths, heights and binding energies of the components were fixed. Unknown multivalent samples were fit such that binding energies, intensities, and peak-widths of each oxidation state, composed of a packet of correlated component peaks, were allowed to vary. Peak-widths were constrained to maintain the difference between the standards. Both average and individual mole fraction oxidation states for all three energy levels were strongly correlated, with close agreement between Mn3s and Mn3p analyses, whereas calculations based on the Mn2p3/2 spectra gave systematically more reduced results. Limited stoichiometric analyses were consistent with Mn3p and Mn3s. Further, evidence indicates the shape of the Mn3p line was less sensitive to the bonding environment than that for Mn2p. Consequently, fitting the Mn3p and Mn3s lines yielded robust quantification of oxidation states over a range of Mn (hydr)oxide phases. In contrast, a common method for determining oxidation states that utilizes the multiplet splitting of the Mn3s line was found to be not appropriate for birnessites.

  6. Mn-oxidizing Bacteria in Oak Ridge, TN and the Potential for Mercury Remediation

    NASA Astrophysics Data System (ADS)

    Wright, K. L.; McNeal, K. S.; Han, F. X.

    2012-12-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, TN was highly contaminated with elemental mercury in the 1950 and 1960. The area is still experiencing the effects of mercury contamination, and researchers are searching for ways to remediate the EFPC. One possible mechanism for bioremediation is the use of biogenic Mn oxides to remove heavy metals from water systems. Six native Pseudomonas bacteria species were isolated from the EFPC in order to examine biogenic Mn oxides production and bioremediation of Oak Ridge slurries. To investigate the biochemical interactions of Pseudomonas and the native microbial communities with Hg, Mn, Fe, S, six different slurry treatment groups were compared using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and cold vapor atomic absorption spectrometry (CVAAS). Oak Ridge slurries were autoclaved to inhibit microbial growth (group 1), autoclaved and amended with HgS (group 2), autoclaved and amended with Pseudomonas isolates and additional HgS (group 3), untreated slurry (group 4), normal slurry amended with HgS (group 5), and normal slurry amended with Pseudomonas isolates and additional HgS (group 6). The comparison of the autoclaved groups with the counterpart untreated and normal Oak Ridge slurries highlighted important microbial interactions. Also, the Pseudomonas isolates were grown separately in a MnSO4 media, and the individual bacteria were monitored for Mn-oxidization using ICP-AES and transmission electron microscopy (TEM). In the slurry sediments, the Pseudomonas isolates did produce Mn oxides which bound to mercury, and mercury bound to organic matter significantly decreased. However, after a significant decrease of dissolved mercury in the water, dissolved mercury was cycled back into the water system on day 10 of the study. Additionally, two individual native Oak Ridge Pseudomonas isolates demonstrated Mn-oxidization. Biogenic Mn oxides have the potential to decrease mercury cycling, however there is

  7. Biogenic nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Hashizume, Ko; Orberger, Beate; Gallien, Jean-Paul; Cloquet, Christophe; Massault, Marc

    2007-02-01

    To quantify and localize nitrogen (N) and carbon (C) in Archean rocks from the Marble Bar formation, Western Australia, and to gain insights on their origin and potential biogenicity, we conducted nuclear reaction analyses (NRA) and carbon and nitrogen isotope ratio measurements on various samples from the 3460-Myr-old Fe-rich Marble Bar chert. The Marble Bar chert formed during the alteration of basaltic volcanoclastic rocks with Fe- and Si-rich hydrothermal fluids, and the subsequent precipitation of magnetite, carbonates, massive silica, and, locally, sulfides. At a later stage, the magnetite, sulfides, and carbonates were replaced by Fe-Mn-oxyhydroxides. Nuclear reaction analyses indicate that most of the N and C resides within these Fe-Mn-oxyhydroxides, but a minor fraction is found in K-feldspars and Ba-mica dispersed in the silica matrix. The N and C isotopic composition of Fe-oxides suggests the presence of a unique biogenic source with δ 15NAIR values from +6.0 +/- 0.5‰ to 7.3 +/- 1.1‰ and a δ 13CPDB value of -19.9 +/- 0.1‰. The C and N isotope ratios are similar to those observed in Proterozoic and Phanerozoic organic matter. Diffusion-controlled fractionation of N and C released during high combustion temperatures indicates that these two elements are firmly embedded within the iron oxides, with activation energies of 18.7 +/- 3.7 kJ/mol for N and 13.0 +/- 3.8 kJ/mol for C. We propose that N and C were chemisorbed on iron and were subsequently embedded in the crystals during iron oxidation and crystal growth. The Fe-isotopic composition of the Marble Bar chert (δ 56Fe = -0.38 +/- 0.02‰) is similar to that measured in iron oxides formed by direct precipitation of iron from hydrothermal plumes in contact with oxygenated waters. To explain the N and C isotopic composition of Marble Bar chert, we propose either (1) a later addition of N and C at the end of Archean when oxygen started to rise or (2) an earlier development of localized oxygenated

  8. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    NASA Technical Reports Server (NTRS)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  9. Mn4+ emission in pyrochlore oxides

    DOE PAGES

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to thatmore » of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.« less

  10. Removal and Recovery of Toxic Silver Ion Using Deep-Sea Bacterial Generated Biogenic Manganese Oxides

    PubMed Central

    Pei, Yuanjun; Chen, Xiao; Xiong, Dandan; Liao, Shuijiao; Wang, Gejiao

    2013-01-01

    Products containing silver ion (Ag+) are widely used, leading to a large amount of Ag+-containing waste. The deep-sea manganese-oxidizing bacterium Marinobacter sp. MnI7-9 efficiently oxidizes Mn2+ to generate biogenic Mn oxide (BMO). The potential of BMO for recovering metal ions by adsorption has been investigated for some ions but not for Ag+. The main aim of this study was to develop effective methods for adsorbing and recovering Ag using BMO produced by Marinobacter sp. MnI7-9. In addition, the adsorption mechanism was determined using X-ray photoelectron spectroscopy analysis, specific surface area analysis, adsorption kinetics and thermodynamics. The results showed that BMO had a higher adsorption capacity for Ag+ compared to the chemical synthesized MnO2 (CMO). The isothermal absorption curves of BMO and CMO both fit the Langmuir model well and the maximum adsorption capacities at 28°C were 8.097 mmol/g and 0.787 mmol/g, for BMO and CMO, respectively. The change in enthalpy (ΔHθ) for BMO was 59.69 kJ/mol indicating that it acts primarily by chemical adsorption. The change in free energy (ΔGθ) for BMO was negative, which suggests that the adsorption occurs spontaneously. Ag+ adsorption by BMO was driven by entropy based on the positive ΔSθ values. The Ag+ adsorption kinetics by BMO fit the pseudo-second order model and the apparent activation energy of Ea is 21.72 kJ/mol. X-ray photoelectron spectroscopy analysis showed that 15.29% Ag+ adsorbed by BMO was transferred to Ag(0) and meant that redox reaction had happened during the adsorption. Desorption using nitric acid and Na2S completely recovered the Ag. The results show that BMO produced by strain MnI7-9 has potential for bioremediation and reutilization of Ag+-containing waste. PMID:24312566

  11. Removal and recovery of toxic silver ion using deep-sea bacterial generated biogenic manganese oxides.

    PubMed

    Pei, Yuanjun; Chen, Xiao; Xiong, Dandan; Liao, Shuijiao; Wang, Gejiao

    2013-01-01

    Products containing silver ion (Ag(+)) are widely used, leading to a large amount of Ag(+)-containing waste. The deep-sea manganese-oxidizing bacterium Marinobacter sp. MnI7-9 efficiently oxidizes Mn(2+) to generate biogenic Mn oxide (BMO). The potential of BMO for recovering metal ions by adsorption has been investigated for some ions but not for Ag(+). The main aim of this study was to develop effective methods for adsorbing and recovering Ag using BMO produced by Marinobacter sp. MnI7-9. In addition, the adsorption mechanism was determined using X-ray photoelectron spectroscopy analysis, specific surface area analysis, adsorption kinetics and thermodynamics. The results showed that BMO had a higher adsorption capacity for Ag(+) compared to the chemical synthesized MnO2 (CMO). The isothermal absorption curves of BMO and CMO both fit the Langmuir model well and the maximum adsorption capacities at 28°C were 8.097 mmol/g and 0.787 mmol/g, for BMO and CMO, respectively. The change in enthalpy (ΔH(θ)) for BMO was 59.69 kJ/mol indicating that it acts primarily by chemical adsorption. The change in free energy (ΔG(θ)) for BMO was negative, which suggests that the adsorption occurs spontaneously. Ag(+) adsorption by BMO was driven by entropy based on the positive ΔS(θ) values. The Ag(+) adsorption kinetics by BMO fit the pseudo-second order model and the apparent activation energy of Ea is 21.72 kJ/mol. X-ray photoelectron spectroscopy analysis showed that 15.29% Ag(+) adsorbed by BMO was transferred to Ag(0) and meant that redox reaction had happened during the adsorption. Desorption using nitric acid and Na2S completely recovered the Ag. The results show that BMO produced by strain MnI7-9 has potential for bioremediation and reutilization of Ag(+)-containing waste. PMID:24312566

  12. Manganese (Mn) Oxidation Increases Intracellular Mn in Pseudomonas putida GB-1

    PubMed Central

    Banh, Andy; Chavez, Valarie; Doi, Julia; Nguyen, Allison; Hernandez, Sophia; Ha, Vu; Jimenez, Peter; Espinoza, Fernanda; Johnson, Hope A.

    2013-01-01

    Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection. PMID:24147089

  13. Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation.

    PubMed

    Isaacman-VanWertz, Gabriel; Yee, Lindsay D; Kreisberg, Nathan M; Wernis, Rebecca; Moss, Joshua A; Hering, Susanne V; de Sá, Suzane S; Martin, Scot T; Alexander, M Lizabeth; Palm, Brett B; Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Riva, Matthieu; Surratt, Jason D; Viegas, Juarez; Manzi, Antonio; Edgerton, Eric; Baumann, Karsten; Souza, Rodrigo; Artaxo, Paulo; Goldstein, Allen H

    2016-09-20

    Exchange of atmospheric organic compounds between gas and particle phases is important in the production and chemistry of particle-phase mass but is poorly understood due to a lack of simultaneous measurements in both phases of individual compounds. Measurements of particle- and gas-phase organic compounds are reported here for the southeastern United States and central Amazonia. Polyols formed from isoprene oxidation contribute 8% and 15% on average to particle-phase organic mass at these sites but are also observed to have substantial gas-phase concentrations contrary to many models that treat these compounds as nonvolatile. The results of the present study show that the gas-particle partitioning of approximately 100 known and newly observed oxidation products is not well explained by environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle fractions than expected from absorptive equilibrium partitioning models. These observations support the conclusion that many commonly measured biogenic oxidation products may be bound in low-volatility mass (e.g., accretion products, inorganic-organic adducts) that decomposes to individual compounds on analysis. However, the nature and extent of any such bonding remains uncertain. Similar conclusions are reach for both study locations, and average particle fractions for a given compound are consistent within ∼25% across measurement sites. PMID:27552285

  14. Diversity of Mn oxides produced by Mn(II)-oxidizing fungi

    SciTech Connect

    Santelli, Cara M.; Webb, Samuel M.; Dohnalkova, Alice; Hansel, Colleen M.

    2011-02-21

    Manganese (Mn) oxides are environmentally abundant, highly reactive mineral phases that mediate the biogeochemical cycling of nutrients, contaminants, carbon, and numerous other elements. Despite the belief that microorganisms (specifically bacteria and fungi) are responsible for the majority of Mn oxide formation in the environment, the impact of microbial species, physiology, and growth stage on Mn oxide formation is largely unresolved. Here, we couple microscopic and spectroscopic techniques to characterize the Mn oxides produced by four different species of Mn(II)-oxidizing Ascomycete fungi (Plectosphaerella cucumerina strain DS2psM2a2, Pyrenochaeta sp. DS3sAY3a, Stagonospora sp. SRC1lsM3a, and Acremonium strictum strain DS1bioAY4a) isolated from acid mine drainage treatment systems in central Pennsylvania. The site of Mn oxide formation varies greatly among the fungi, including deposition on hyphal surfaces, at the base of reproductive structures (e.g., fruiting bodies), and on envisaged extracellular polymers adjacent to the cell. The primary product of Mn(II) oxidation for all species growing under the same chemical and physical conditions is a nanoparticulate, poorly-crystalline hexagonal birnessite-like phase resembling synthetic d-MnO2. The phylogeny and growth conditions (planktonic versus surface-attached) of the fungi, however, impact the conversion of the initial phyllomanganate to more ordered phases, such as todorokite (A. strictum strain DS1bioAY4a) and triclinic birnessite (Stagonospora sp. SRC1lsM3a). Our findings reveal that the species of Mn(II)-oxidizing fungi impacts the size, morphology, and structure of Mn biooxides, which will likely translate to large differences in the reactivity of the Mn oxide phases.

  15. Oxidation of biogenic compounds in the atmosphere: novel pathways and their impact on oxidants and aerosol

    NASA Astrophysics Data System (ADS)

    Wennberg, P. O.

    2013-12-01

    Our understanding of the oxidative chemistry of biogenically-produced compounds has been substantially altered in the last five years. New pathways including odd intramolecular rearrangements produce an abundance of oxidized compounds -- many of which were previously unknown to exist in the atmosphere. These include epoxides and numerous other highly-oxidized compounds that increase the amount of aerosol. Many of these new pathways recycle HOx radicals thereby altering the large-scale photochemistry of the atmosphere. I will describe both field and laboratory experiments that have revealed this novel chemistry point to the large number of remaining questions.

  16. Study of novel nanostructured Pd-Mn oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Gromek, Jack; Augustine, Matthew; Fernando, Gayanath; Samuel Boorse, R.; Marcus, Harris L.

    2004-02-01

    Novel Pd-Mn oxides have been synthesized using chemical processing. The study indicated that the Pd-Mn oxide powders have nanometer structure. The alloying of Mn improves the thermal stability and modifies re-oxidation characteristic of the palladium oxide during the thermal cycling.

  17. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production.

    PubMed

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-03-01

    Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g(-1) adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na3MnPO4CO3. Results suggested the complexity of natural microbe-mediated Mn transformation.

  18. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production.

    PubMed

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-03-01

    Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g(-1) adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na3MnPO4CO3. Results suggested the complexity of natural microbe-mediated Mn transformation. PMID:26606462

  19. The biogenic emission potential of nitric oxide from sandy soils

    NASA Astrophysics Data System (ADS)

    Yu, J. B.; Meixner, F. X.; Sun, Z. G.; Chen, X. B.; Mamtimin, B.

    2009-04-01

    There are about 160.9 Mha of sandy land in China, about 17.6% of total Chinese area, which mainly distributed in 35°-50° N. The western Songnen Plain, which located in the semi-arid region of Northeastern China, is one of the main sandy soil distribution regions. The changes of land use in sandy soil are accompanied by changes in biogeochemical cycles of nutrients, particularly of the air-surface exchange of trace gases like nitric oxide. Our study, based on results obtained by a laboratory incubation technique, focuses on (a) NO production and consumption in sandy soils from two types of land use as function of soil temperature and soil moisture, and (b) The biogenic emission potential of nitric oxide from sandy soils in semi-arid region. At 25˚C, average NO production (in terms of mass of N) was 0.016,and 0.013 ng kg-1s-1 in sandy soils from soybean land (SL) and man-made forest (MF), re¬spectively. NO consumption rate constant ranged from 0.26×10-6 to 7.28×10-6 m3 kg-1s-1. At 25˚C and under optimum soil moisture conditions for NO production, the NO compensation point mixing ratio was about 266 and 161 ug m-3 (465,and 281 ppb) for soils of SL and MF, respectively. Statistically sound relationships have been observed between NO fluxes and soil moisture (optimum curves). NO fluxes also increased exponentially with soil temperature at any given soil moisture. The optimum soil moisture for which maximum NO flux was observed was independent of soil temperature. The maximum of NO flux potentials for SL and MF soils (at 25°C) were 59.6 and 36.5 ng m-2s-1 at water-filled pore space (%WFPS) of 26 and 24, respectively. The NO flux potential was about 2 times larger for cropland soil than for man-made forest soils, most likely due to fertilizer application to the cropland soils.

  20. Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments.

    PubMed

    Palermo, Christine; Dittrich, Maria

    2016-04-01

    Manganese (Mn) and iron (Fe)-enriched sediment layers were discovered in Lake Superior within, above and below the oxic-anoxic interface. While the role of bacteria in redox reactions with Mn is known to be significant, little information exists about indigenous microbial communities in many freshwater environments. This study examined the bacterial communities of Mn-enriched layers in Lake Superior to identify the potential Mn(II) oxidizers responsible for the formation of Mn oxides. Anaerobic Mn(II) oxidation occurring in the Mn-enriched layers at the oxic-anoxic interface was investigated using Mn(II)-enriched cultures. High-resolution microscopic and spectroscopic investigations provided evidence of the biogenic formation of Mn oxides on cell surfaces. Spectroscopic mapping confirmed high levels of Mn in structures resembling biogenic Mn oxides. These structures were observed in enrichment cultures and in Mn-enriched layer sediment samples, indicating the significance of biogenic Mn oxidation occurring in situ. 16S ribosomal DNA pyrosequencing was used to identify the bacteria potentially responsible for Mnoxide formation in the enrichment cultures and Mn-enriched layers, revealing that the Mn-enriched layer contains classes with known Mn(II)-oxidizing members. Pyrosequencing of bacterial cultures suggested that these bacteria may be Bacillus strains, and that anaerobic microbial-mediated Mn(II) oxidation contributes to the formation of the layers.

  1. Biological oxidation of Mn(II) coupled with nitrification for removal and recovery of minor metals by downflow hanging sponge reactor.

    PubMed

    Cao, Linh Thi Thuy; Kodera, Hiroya; Abe, Kenichi; Imachi, Hiroyuki; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Tomonori; Ohashi, Akiyoshi

    2015-01-01

    Biogenic manganese oxides (bio-MnO₂) have been shown to absorb minor metals. Bioreactor cultivation of heterotrophic manganese oxidizing bacteria (MnOB), which produce bio-MnO₂ via oxidation of Mn (II), can be expected to be involved in a promising system for removal and recovery of minor metals from wastewater. However, MnOB enrichment in wastewater treatment is difficult. This study investigated whether MnOB can be cultivated when coupled with nitrification in a system in which soluble microbial products (SMP) from nitrifiers are provided to MnOB as a substrate. A downflow hanging sponge (DHS) reactor was applied for MnOB cultivation with ammonium (NH₄⁺) and Mn (II) continuously supplied. During long-term operation, Mn (II) oxidation was successfully established at a rate of 48 g Mn m⁻³ d⁻¹ and bio-MnO₂ that formed on the sponges were recovered from the bottom of the reactor. The results also revealed that Ni and Co added to the influent were simultaneously removed. Microbial 16S rRNA gene clone analysis identified nitrifiers supporting MnOB growth and showed that only one clone of Bacillus subtilis, which was affiliated with a known MnOB cluster, was present, suggesting the existence of other novel bacteria with the ability to oxidize Mn (II).

  2. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    NASA Astrophysics Data System (ADS)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  3. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol.

    PubMed

    Tu, Peijun; Hall, Wiley A; Johnston, Murray V

    2016-04-19

    In this work, highly oxidized multifunctional molecules (HOMs) in fresh and aged secondary organic aerosol (SOA) derived from biogenic precursors are characterized with high-resolution mass spectrometry. Fresh SOA was generated by mixing ozone with a biogenic precursor (β-pinene, limonene, α-pinene) in a flow tube reactor. Aging was performed by passing the fresh SOA through a photochemical reactor where it reacted with hydroxyl radicals. Although these aerosols were as a whole not highly oxidized, molecular analysis identified a significant number of HOMs embedded within it. HOMs in fresh SOA consisted mostly of monomers and dimers, which is consistent with condensation of extremely low-volatility organic compounds (ELVOCs) that have been detected in the gas phase in previous studies and linked to SOA particle formation. Aging caused an increase in the average number of carbon atoms per molecule of the HOMs, which is consistent with particle phase oxidation of (less oxidized) oligomers already existing in fresh SOA. HOMs having different combinations of oxygen-to-carbon ratio, hydrogen-to-carbon ratio and average carbon oxidation state are discussed and compared to low volatility oxygenated organic aerosol (LVOOA), which has been identified in ambient aerosol based on average elemental composition but not fully understood at a molecular level. For the biogenic precursors and experimental conditions studied, HOMs in fresh biogenic SOA have molecular formulas more closely resembling LVOOA than HOMs in aged SOA, suggesting that aging of biogenic SOA is not a good surrogate for ambient LVOOA. PMID:27000653

  4. Spatially Resolved Characterization of Biogenic Manganese Oxide Production within a Bacterial Biofilm

    PubMed Central

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2005-01-01

    Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2(aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2(aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained. PMID:15746332

  5. Exceptional preservation of Mn-oxidizing microbes in cave stromatolites (El Soplao, Spain)

    NASA Astrophysics Data System (ADS)

    Lozano, Rafael P.; Rossi, Carlos

    2012-05-01

    generally low degree of diagenesis is likely because the stromatolites have remained relatively stable and at a rather low temperature since they were formed at least 1 Ma ago. Still, some stromatolites have suffered diagenetic alteration (partial dissolution and replacement by calcium carbonates and Fe-rich oxides), obscuring or even obliterating their bioforms. The El Soplao case represents an example of how easily biogenic Mn oxides can be altered, and their bioforms blurred, in a relatively short geological time span in spite of being in a relatively stable, alkaline, and low-temperature setting. A geological implication is that the absence of bioforms in other ferromanganese deposits, including rock varnish and Precambrian iron formations, does not disprove their possible biogenic origin, since the high chemical reactivity of biogenic manganese oxides makes them highly vulnerable to diagenesis.

  6. Atomic-scale structure of biogenic materials by total X-ray diffraction: a study of bacterial and fungal MnOx.

    PubMed

    Petkov, V; Ren, Y; Saratovsky, I; Pastén, P; Gurr, S J; Hayward, M A; Poeppelmeier, K R; Gaillard, J-F

    2009-02-24

    Biogenic materials are produced by microorganisms and are typically found in a nanophase state. As such, they are difficult to characterize structurally. In this report, we demonstrate how high-energy X-ray diffraction and atomic pair distribution function analysis can be used to determine the atomic-scale structures of MnO(x) produced by bacteria and fungi. These structures are well-defined, periodic, and species-specific, built of Mn-O(6) octahedra forming birnessite-type layers and todorokite-type tunnels, respectively. The inherent structural diversity of biogenic material may offer opportunities for practical applications.

  7. Immobilization of Mn(II) via Homogeneous and Heterogeneous Oxidation

    NASA Astrophysics Data System (ADS)

    Kang, N.; Jeong, H. Y.; Park, M.; Kim, K. H.; Lee, S.; Choi, H. J.

    2015-12-01

    This study investigated the immobilization of Mn(II) via homogeneous and heterogeneous oxidation by air. A series of kinetic experiments were performed with stirred batch reactors equipped with air spargers. The reactions were initiated by adding Mn(II) stock solutions to pH-buffered solutions amended with dissolved Fe(II), Fe oxyhydroxides, or Mn oxides. Under experimental conditions, the homogeneous oxidation of Mn(II) itself was minimal over pH 6.5-8.5. However, when dissolved Fe(II) was present, the immobilization of Mn occurred, with the extent becoming greater at higher pH. By Mn-K edge XAS analysis, the Mn removal at pH 6.5 was due to the oxidation of labile Mn(II) into insoluble Mn(III) solids, which was catalyzed by the homogeneous oxidation of Fe(II). On the other hand, Mn(II) at pH 7.0-8.5 remained largely unoxidized; instead, it was immobilized by forming co-precipitates with Fe(III) oxyhydroxides. Goethite, HFO, Mn2O3, and MnO2 were added to mediate the heterogeneous oxidation of Mn(II). In the presence of goethite and HFO, dissolved Mn was initially quickly decreased, and later gradually decreased. In both batches, the initial removal was due to the surface complexation of Mn(II) with Fe oxyhydroxides. On the other hand, the later removal in goethite-amend batches resulted from the formation of co-precipitates with Fe(III) oxyhydroxides, whereas the later removal in HFO-amended batches was due to the heterogeneous oxidation of Mn(II) into Mn(III) solids. When Mn2O3 and MnO2 were used as heterogeneous catalysts, XAS analysis did not provide mechanistic insight into Mn removal. Nonetheless, Mn2O3 was found to immobilize Mn(II) under oxic conditions. Notably, MnO2 was far more effectively immobilize Mn(II) under both oxic and anoxic conditions, pointing to its superior oxidative capability. Acknowledgement: Financial support was provided by "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  8. Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-11-01

    The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biogeochemical mechanisms involved to the precipitation of Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Mid-Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data show that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic microorganisms, which constitute a trophic base that might support the activities of heterogenic Mn(II)-oxidizing bacteria. The biological origin of umber deposits shed light on the importance of geomicrobiological interaction in triggering the formation of metalliferous deposits, with important implications for the generation of submarine Mn deposits and crusts.

  9. Trace Metal Sequestration by and Structure of Mn Oxide Produced by Pseudomonas Putida

    NASA Astrophysics Data System (ADS)

    Manceau, A.; Toner, B.; Lanson, B.; Marcus, M. A.; Villalobos, M.; Sposito, G.

    2002-12-01

    The structure of the manganese oxide produced by Pseudomonas putida strain MnB1, and the sorption mechanism of zinc at the surface of the biogenic manganese oxide, were studied by X-ray diffraction and Mn- and Zn-K edge EXAFS spectroscopy. The X-ray diffraction pattern exhibits a broad basal reflection and asymmetrical hk0 bands characteristic of turbostratic birnessite. The average number of layers in birnessite particles and the lateral dimension of the MnO2 layers were estimated from the size of coherent scattering domains in the c* direction and in the ab plane. XRD simulations showed that the relative intensity and shape of the 200 and 020 reflections are sensitive to the amount of interlayer Mn and, therefore, can be used to constrain the composition and structure of the interlayer space. Both XRD and Mn K-edge EXAFS data are consistent with a structural model in which the interlayer space is devoid of manganese, all Mn atoms being located within the birnessite layer. Mn-Mn distances obtained by the two techniques are identical (2.84 \\x8F), and typical of pure Mn4+ manganese layers. The lack of Mn3+ within the manganese layer suggests that the deficit of structural charge from the biogenic birnessite arises from vacant octahedral sites (V). Zn-O and Zn-Mn EXAFS distances are consistent with the formation of tetrahedrally coordinated Zn complex on the face of vacant layer octahedral sites, i.e., with the formation of a tridentate corner-sharing interlayer complexes ([H2O]-IVZn-3Olayer-V-3Mnlayer). This [IV]TC complex was observed at low and high surface coverage, and this result contrasts with that obtained for abiotic hexagonal birnessite (HBi), in which Zn formed a [IV]TC complex at low surface coverage and a [VI]TC complex at higher coverage (Manceau et al., 2002). The structural reasons for this difference will be discussed, and it will be shown that the [IV]TC complex is the main binding form of Zn in natural phyllomanganates. Manceau, A., Lanson, B

  10. Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn(II) thiol scavenging.

    PubMed

    Dittman, Elizabeth K; Buchwalter, David B

    2010-12-01

    Streams below mountaintop removal-valley fill coal mining operations often have elevated Mn concentrations, but it remains unclear if Mn plays a role in biodiversity reduction. We examined various aspects of aqueous Mn interactions with aquatic insects exposed to environmentally relevant Mn concentrations, revealing complex behavior. First, Mn accumulation rates varied widely among 9 species. A significant percentage of total Mn accrued (mean 74%, range 24-95%) was associated with the cuticle, predominantly in the form of Mn-oxides, and to a lesser degree Mn(II). Mn II is also absorbed into tissues, possibly through calcium transporters. Increased ambient calcium concentrations decreased both adsorbed and absorbed Mn accumulation from solution. Though species showed similar Mn efflux rate constants (0.032-0.072 d(-1)), the primary mode of Mn loss was through molting. Both adsorbed and absorbed Mn is lost during the molt. Subcellular compartmentalization studies revealed an overwhelming tendency for internalized Mn to associate with the heat stable cytosolic protein fraction. After short dissolved Mn exposures, intracellular glutathione and cysteine levels were markedly reduced relative to controls. These findings suggest that Mn exposure results in transient physiological stress in aquatic insects which is likely relieved, in part, during the molting process.

  11. Methyl Chavicol: Characterization of its Biogenic Emission Rate, Abundance, and Oxidation Products in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J.; Kuster, W.; Degouw, J.; Cahill, T. M.; Holzinger, R.

    2008-12-01

    We report quantitative measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments: gas chromatograph with mass spectrometer detector (GC-MS), proton transfer reaction mass spectrometer (PTR-MS), and thermal desorption aerosol GC-MS (TAG). Previously identified as a potential bark beetle disruptant, methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light and temperature dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68 % of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μ gCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many species. We propose this newly- characterized biogenic compound should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  12. Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm

    NASA Astrophysics Data System (ADS)

    Toner, Brandy; Manceau, Alain; Webb, Samuel M.; Sposito, Garrison

    2006-01-01

    Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater Mn II-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg -1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the Mn IV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg -1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg -1 biosorbent, the proportion

  13. Impact of environmental chemistry on mycogenic Mn oxide minerals

    NASA Astrophysics Data System (ADS)

    Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.

    2012-12-01

    Manganese (Mn) oxide minerals are ubiquitous in aquatic and terrestrial environments and their presence can have broad environmental consequences. In particular, Mn oxides scavenge nutrients and metals, degrade complex organics, and oxidize a variety of inorganic contaminants. The "reactivity" of Mn oxides, however, is highly dependent upon crystallite size, composition, and structure, which are largely determined by environmental factors such as solution chemistry. It is has been suggested that most Mn oxides in terrestrial and aquatic environments are formed by microbial activity; indeed, a diversity of Mn(II)-oxidizing bacteria and fungi have been isolated and their mineral byproducts are consistent with those observed in natural systems. Previous studies showed that Mn(II)-oxidizing Ascomycete fungi produce highly-disordered, nanocrystalline Mn oxides that are structurally similar to synthetic δ-MnO2 or natural vernadite. Unlike related studies with Mn-oxidizing bacteria, Mn oxides produced by these fungi did not "age" or transform to more crystalline mineral phases with time. We hypothesize that fungal growth conditions, in particular the low concentration of cations, are inhibiting secondary mineral formation. The overall goal of this research is to examine the structure and speciation of fungally-precipitated Mn oxides with respect to fungal species, time, and concentration of soluble Mn(II), Na, and Ca - three environmentally relevant cations that promote the transformation of δ-MnO2 to more crystalline mineral phases such as feitknechtite, birnessite, or ranciéite. For this study, we examined the Mn oxides formed by different species of Mn(II)-oxidizing fungi (Pyrenochaeta sp., Stagonospora sp., Plectosphaerella cucumerina., and Acremonium strictum). Isolates were grown for 8 or 16 days in a nutrient lean media consisting of yeast extract, trace elements and 0.2 mM MnCl2 supplemented with varying concentrations of Na, Ca, or Mn(II) compounds. The

  14. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Boston, Penelope J.; Winstead, Edward L.; Sebacher, Shirley

    1988-01-01

    Measurements of biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) before and after a controlled burn conducted in a chaparral ecosystem on June 22, 1987, showed significantly enhanced emissions of both gases after the burn. Mean NO emissions from heavily burned and wetted (to simulate rainfall) sites exceeded 40 ng N/sq m s, and increase of 2 to 3 compared to preburn wetted site measurements. N2O emissions from burned and wetted sites ranged from 9 to 22 ng N/sq m s. Preburn N2O emissions from these wetted sites were all below the detection level of the instrumentation, indicating a flux below 2 ng N/sq m s. The flux of NO exceeded the N2O flux from burned wetted sites by factors ranging from 2.7 to 3.4. These measurements, coupled with preburn and postburn measurements of ammonium and nitrate in the soil of this chaparral ecosystem and measurements of NO and N2O emissions obtained under controlled laboratory conditions, suggest that the postfire enhancement of NO and N2O emissions is due to production of these gases by nitrifying bacteria.

  15. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2009-03-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments - a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) - and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μgCg-1 h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  16. Siderophore-mediated oxidation of Ce and fractionation of HREE by Mn (hydr)oxide-coprecipitation and sorption on MnO2: Experimental evidence for negative Ce-anomalies in abiogenic manganese precipitates

    NASA Astrophysics Data System (ADS)

    Krämer, Dennis; Tepe, Nathalie; Bau, Michael

    2014-05-01

    We conducted experiments with Rare Earths and Yttrium (REY), where the REY were sorbed on synthetic manganese dioxide as well as on coprecipitating manganese (hydr)oxide in the presence and absence of the siderophore desferrioxamine-B (DFOB). Siderophores are a group of globally abundant biogenic complexing agents which are excreted by plants and bacteria to enhance the bioavailability of Fe in oxic environments. The model siderophore used in this study, DFOB, is a hydroxamate siderophore occurring in almost all environmental settings with concentrations in the nanomolar to millimolar range and is one of the most thoroughly studied siderophores. In the absence of siderophores and other organic ligands, trivalent Ce is usually surface-oxidized to tetravalent Ce during sorption onto manganese (hydr)oxides. Such Mn precipitates, therefore, often show positive Ce anomalies, whereas the ambient solutions exhibit negative Ce anomalies (Ohta and Kawabe, 2001). In marked contrast, however, REY sorption in the presence of DFOB produces negative Ce anomalies in the Mn precipitates and a distinct and characteristic positive Ce anomaly in the residual siderophore-bearing solution. Furthermore, the heavy REY with ionic radii larger than the radius of Sm are also almost completely prevented from sorption onto the Mn solid phases. Sorption of REY onto Mn (hydr)oxides in the presence of DFOB creates a distinct and pronounced fractionation of Ce and the heavy REY from the light and middle REY. Apart from Ce, which is oxidized in solution by the siderophore, the distribution of the other REY mimics the stability constants for multi-dentate complexes of REY with DFOB, as determined by Christenson & Schijf (2011). Heavier REY are forming stronger complexes (and are hence better "protected" from sorption) than light REY, excluding Ce. Preferential partitioning of Ce into the liquid phase during the precipitation of Mn (hydr)oxides has only rarely been described for natural Mn (hydr)oxides

  17. Rapid deposition of oxidized biogenic compounds to a temperate forest

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-02-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m-2ṡs-1). GEOS-Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  18. Rapid deposition of oxidized biogenic compounds to a temperate forest.

    PubMed

    Nguyen, Tran B; Crounse, John D; Teng, Alex P; St Clair, Jason M; Paulot, Fabien; Wolfe, Glenn M; Wennberg, Paul O

    2015-02-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m(-2)⋅s(-1)). GEOS-Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases. PMID:25605913

  19. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma.

    PubMed

    Iram, Sana; Khan, Salman; Ansary, Abu Ayoobul; Arshad, Mohd; Siddiqui, Sahabjada; Ahmad, Ejaz; Khan, Rizwan H; Khan, Mohd Sajid

    2016-11-01

    The synthesis of inner transition metal nanoparticles via an ecofriendly route is quite difficult. This study, for the first time, reports synthesis of terbium oxide nanoparticles using fungus, Fusarium oxysporum. The biocompatible terbium oxide nanoparticles (Tb2O3 NPs) were synthesized by incubating Tb4O7 with the biomass of fungus F. oxysporum. Multiple physical characterization techniques, such as UV-visible and photoluminescence spectroscopy, TEM, SAED, and zeta-potential were used to confirm the synthesis, purity, optical and surface characteristics, crystallinity, size, shape, distribution, and stability of the nanoemulsion of Tb2O3 NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and Saos-2 cell-lines (IC50 value of 0.102μg/mL) and remained non-toxic up to a concentration of 0.373μg/mL toward primary osteoblasts. Cell viability decreased in a concentration-dependent manner upon exposure to 10nm Tb2O3 NPs in the concentration range 0.023-0.373μg/mL. Cell toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, and FACS analysis. Morphological examinations of cells revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The level of ROS within the cells-an indicator of oxidative stress was significantly increased. The induction of apoptosis at concentrations ≤IC50 was corroborated by 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Flow-cytometric studies indicated that the response was dose dependent with a threshold effect.

  20. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Iram, Sana; Khan, Salman; Ansary, Abu Ayoobul; Arshad, Mohd; Siddiqui, Sahabjada; Ahmad, Ejaz; Khan, Rizwan H.; Khan, Mohd Sajid

    2016-11-01

    The synthesis of inner transition metal nanoparticles via an ecofriendly route is quite difficult. This study, for the first time, reports synthesis of terbium oxide nanoparticles using fungus, Fusarium oxysporum. The biocompatible terbium oxide nanoparticles (Tb2O3 NPs) were synthesized by incubating Tb4O7 with the biomass of fungus F. oxysporum. Multiple physical characterization techniques, such as UV-visible and photoluminescence spectroscopy, TEM, SAED, and zeta-potential were used to confirm the synthesis, purity, optical and surface characteristics, crystallinity, size, shape, distribution, and stability of the nanoemulsion of Tb2O3 NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and Saos-2 cell-lines (IC50 value of 0.102 μg/mL) and remained non-toxic up to a concentration of 0.373 μg/mL toward primary osteoblasts. Cell viability decreased in a concentration-dependent manner upon exposure to 10 nm Tb2O3 NPs in the concentration range 0.023-0.373 μg/mL. Cell toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, and FACS analysis. Morphological examinations of cells revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The level of ROS within the cells-an indicator of oxidative stress was significantly increased. The induction of apoptosis at concentrations ≤ IC50 was corroborated by 4‧,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Flow-cytometric studies indicated that the response was dose dependent with a threshold effect.

  1. Rapid deposition of oxidized biogenic compounds to a temperate forest

    PubMed Central

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m−2⋅s−1). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases. PMID:25605913

  2. Rapid deposition of oxidized biogenic compounds to a temperate forest.

    PubMed

    Nguyen, Tran B; Crounse, John D; Teng, Alex P; St Clair, Jason M; Paulot, Fabien; Wolfe, Glenn M; Wennberg, Paul O

    2015-02-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m(-2)⋅s(-1)). GEOS-Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  3. Rapid Deposition of Oxidized Biogenic Compounds to a Temperate Forest

    NASA Technical Reports Server (NTRS)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (approx. 1 nmol m(exp.-2)·s(exp.-1)). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  4. Environmental estrogen Bisphenol A adsorption/oxidation on Graphene oxide/MnO2 (GO/MnO2) nanocomposite

    NASA Astrophysics Data System (ADS)

    Bele, Sotiria I.; Deliyanni, Eleni A.

    2015-04-01

    The environmental fate and decontamination of Bisphenol A (BPA), an environmental estrogen that is used as a monomer in plastic industry, are of emerging concern. This study focused on the kinetics, influencing factors and pathways of its adsorption and oxidative decomposition by MnO2. Additionally, Graphene oxide/MnO2 (GO/MnO2) nanocomposite was prepared and tested as a kind of adsorbent and/or catalysts for oxidative decomposition of Bisphenol A (BPA). A suspension of graphene oxide/manganese sulfate (GO/MnSO4) produced by the modified Hummers method was in situ transformed into GO/MnO2 nanocomposite in combination with KMnO4. It is found that MnO2 nanoparticles are uniformly distributed in the structure of GO. The surface chemistry and the porous texture of the prepared nanocomposite were characterized by thermal analysis (DTA), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and Nitrogen adsorption (BET). The nanocomposite presented superior catalytic activities, much higher than that of the bare MnO2 for the decomposition of BPA in the presence of H2O2. The high activity of GO/MnO2 nanocomposite for the decomposition of BPA could be related to the synergistic effect of GO and MnO2 with the assistance of H2O2 according to the adsorption-oxidation-desorption mechanism.

  5. Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chung; Shao, Min; Chou, Charles C. K.; Liu, Shaw-Chen; Zhu, Tong; Lee, Kun-Zhang; Lai, Cheng-Hsun; Lin, Po-Hsiung; Wang*, Jia-Lin

    2014-05-01

    As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs) and nitrogen oxides (NOx) of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP), biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40-50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz) and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, the presence of sufficient biogenic isoprene

  6. Cr(III) Oxidation Coupled With Microbially-Mediated Mn(II) Oxidation

    SciTech Connect

    Youxian Wu; Baolin Deng

    2006-04-05

    Cr(VI) can be reduced to less toxic and mobile Cr(III) species through abiotic and biological processes. Reductive immobilization of Cr(VI) has been widely explored as a cost effective technology for site remediation; Mn oxides are regarded as primary oxidants for Cr(III) oxidation in the environment; and Generation of Mn oxides from Mn(II) in natural environments is believed to be biologically catalyzed.

  7. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase.

    PubMed

    Butterfield, Cristina N; Soldatova, Alexandra V; Lee, Sung-Woo; Spiro, Thomas G; Tebo, Bradley M

    2013-07-16

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  8. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    PubMed Central

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-01-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  9. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    DOE PAGES

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung -Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-07-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of themore » enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. Lastly, with the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.« less

  10. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    SciTech Connect

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung -Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-07-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. Lastly, with the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.

  11. The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean

    PubMed Central

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  12. The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean.

    PubMed

    Emerson, David

    2015-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity.

  13. The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean.

    PubMed

    Emerson, David

    2015-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  14. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2008-11-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4 68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72 10.2 μgCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  15. The effect of coal bed dewatering and partial oxidation on biogenic methane potential

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.

    2013-01-01

    Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.

  16. cumA Multicopper Oxidase Genes from Diverse Mn(II)-Oxidizing and Non-Mn(II)-Oxidizing Pseudomonas Strains

    PubMed Central

    Francis, Chris A.; Tebo, Bradley M.

    2001-01-01

    A multicopper oxidase gene, cumA, required for Mn(II) oxidation was recently identified in Pseudomonas putida strain GB-1. In the present study, degenerate primers based on the putative copper-binding regions of the cumA gene product were used to PCR amplify cumA gene sequences from a variety of Pseudomonas strains, including both Mn(II)-oxidizing and non-Mn(II)-oxidizing strains. The presence of highly conserved cumA gene sequences in several apparently non-Mn(II)-oxidizing Pseudomonas strains suggests that this gene may not be expressed, may not be sufficient alone to confer the ability to oxidize Mn(II), or may have an alternative function in these organisms. Phylogenetic analysis of both CumA and 16S rRNA sequences revealed similar topologies between the respective trees, including the presence of several distinct phylogenetic clusters. Overall, our results indicate that both the cumA gene and the capacity to oxidize Mn(II) occur in phylogenetically diverse Pseudomonas strains. PMID:11526033

  17. Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1.

    PubMed

    Adams, L F; Ghiorse, W C

    1987-03-01

    Supernatant fluid from Leptothrix discophora SS-1 cultures possessed high Mn2+-ozidizing activity. Studies of temperature and pH optima, chemical inhibition, and protease sensitivity suggested that the activity may be enzymatic. Kinetic studies of unconcentrated supernatant fluid indicated an apparent Km of 7 microM Mn2+ in the 1 to 200 microM Mn2+ range. The greatest Vmax value observed was 1.4 nmol of Mn2+ oxidized min-1 micrograms of protein-1 in unconcentrated samples. When the supernatant fluid was concentrated on DEAE-cellulose and the activity was eluted with MgSO4, an Mn2+-oxidizing protein was detected in the concentrate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mn2+-oxidizing protein appeared to have a molecular weight of 110,000 in 10% polyacrylamide gels and of 100,000 in 8% gels. Periodic acid-Schiff base staining of overloaded polyacrylamide gels showed that the DEAE-cellulose concentrate contained abundant high-molecular-weight polysaccharides; concurrent staining of the Mn2+-oxidizing band suggested that it too contained carbohydrate components. Isolation of the protein was achieved by subjecting the DEAE-cellulose concentrate to Sephacryl gel filtration in the presence of 1% sodium dodecyl sulfate, followed by preparative electrophoresis and reverse-polarity elution. However, these procedures resulted in loss of a large proportion of the activity, which precluded recovery of the protein in significant quality. PMID:3818545

  18. Cr(OH)₃(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  19. Inter-relationships of MnO 2 precipitation, siderophore-Mn (III) complex formation, siderophore degradation, and iron limitation in Mn (II)-oxidizing bacterial cultures

    NASA Astrophysics Data System (ADS)

    Parker, Dorothy L.; Morita, Takami; Mozafarzadeh, Mylene L.; Verity, Rebecca; McCarthy, James K.; Tebo, Bradley M.

    2007-12-01

    To examine the pathways that form Mn (III) and Mn (IV) in the Mn (II)-oxidizing bacterial strains Pseudomonas putida GB-1 and MnB1, and to test whether the siderophore pyoverdine (PVD) inhibits Mn (IV)O 2 formation, cultures were subjected to various protocols at known concentrations of iron and PVD. Depending on growth conditions, P. putida produced one of two oxidized Mn species - either soluble PVD-Mn (III) complex or insoluble Mn (IV)O 2 minerals - but not both simultaneously. PVD-Mn (III) was present, and MnO 2 precipitation was inhibited, both in iron-limited cultures that had synthesized 26-50 μM PVD and in iron-replete (non-PVD-producing) cultures that were supplemented with 10-550 μM purified PVD. PVD-Mn (III) arose by predominantly ligand-mediated air oxidation of Mn (II) in the presence of PVD, based on the following evidence: (a) yields and rates of this reaction were similar in sterile media and in cultures, and (b) GB-1 mutants deficient in enzymatic Mn oxidation produced PVD-Mn (III) as efficiently as wild type. Only wild type, however, could degrade PVD-Mn (III), a process linked to the production of both MnO 2 and an altered PVD with absorbance and fluorescence spectra markedly different from those of either PVD or PVD-Mn (III). Two conditions, the presence of bioavailable iron and the absence of PVD at concentrations exceeding those of Mn, both had to be satisfied for MnO 2 to appear. These results suggest that P. putida cultures produce soluble Mn (III) or MnO 2 by different and mutually inhibitory pathways: enzymatic catalysis yielding MnO 2 under iron sufficiency or PVD-promoted oxidation yielding PVD-Mn (III) under iron limitation. Since PVD-producing Pseudomonas species are environmentally prevalent Mn oxidizers, these data predict influences of iron (via PVD-Mn (III) versus MnO 2) on the global oxidation/reduction cycling of various pollutants, recalcitrant organic matter, and elements such as C, S, N, Cr, U, and Mn.

  20. Multicopper Oxidase Involvement in Both Mn(II) and Mn(III) Oxidation during Bacterial Formation of MnO2

    PubMed Central

    Soldatova, Alexandra V.; Butterfield, Cristina; Oyerinde, Oyeyemi F.; Tebo, Bradley M.; Spiro, Thomas G.

    2013-01-01

    Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria implicates multicopper oxidases (MCOs) as being required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation. PMID:22892957

  1. Multicopper oxidase involvement in both Mn(II) and Mn(III) oxidation during bacterial formation of MnO(2).

    PubMed

    Soldatova, Alexandra V; Butterfield, Cristina; Oyerinde, Oyeyemi F; Tebo, Bradley M; Spiro, Thomas G

    2012-12-01

    Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO(2) formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO(2) formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO(2) is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O(2) and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO(2) also depends on O(2) and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO(2) formation. PMID:22892957

  2. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.

    PubMed

    Liu, Ruiping; Xu, Wei; He, Zan; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui; Prasai, Tista

    2015-11-01

    Manganese(IV) oxide [Mn(IV)] potentially oxidizes antimony(III) [Sb(III)] to antimony(V) [Sb(V)] and improves Sb removal by FeMn binary oxide (FMBO) through an oxidation-adsorption mechanism. This study focused on the effect of Mn(IV) reductive dissolution by potassium sulfite (K2SO3) on Sb(V) adsorption onto manganese oxide (Mn-oxide) and FMBO. The maximum Sb(V) adsorption (Qmax,Sb(V)) increased from 1.0 to 1.1 mmol g(-1) for FMBO and from 0.4 to 0.6 mmol g(-1) for Mn-oxide after pretreatment with 10 mmol L(-1) K2SO3. The addition of 2.5 mmol L(-1) Mn(2+) also significantly improved Sb(V) adsorption, and the observed Qmax,Sb(V) increased to 1.4 and 1.0 mmol g(-1) for FMBO and Mn-oxide, respectively, with pre-adsorbed Mn(2+). Neither K2SO3 nor Mn(2+) addition had any effect on Sb(V) adsorption onto iron oxide (Fe-oxide). Mn(2+) introduced by either Mn(IV) dissolution or addition tended to form outer-sphere surface complexes with hydroxyl groups on Mn-oxide surfaces (MnOOH). Mn(2+) at 2.5 mmol L(-1) shifted the isoelectric point (pHiep) from 7.5 to 10.2 for FMBO and from 4.8 to 9.2 for Mn-oxide and hence benefited Sb(V) adsorption. The adsorption of Sb(V) onto Mn(2+)-enriched surfaces contributed to the release of Mn(2+), and the X-ray photoelectron spectra also indicated increased binding energy of Mn 2p3/2 after the adsorption of Sb(V) onto K2SO3-pretreated FMBO and Mn-oxide. Sb(V) adsorption involved the formation of inner-sphere complexes and contributed to the release of Mn(2+). In the removal of Sb(III) by Mn-based oxides, the oxidation of Sb(III) to Sb(V) by Mn(IV) oxides had an effect; however, Mn(IV) dissolution and Mn(2+)-enrichment also played an important role.

  3. Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate

    USGS Publications Warehouse

    Wang, Bronwen; Burau, Richard G.

    1995-01-01

    Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.

  4. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    PubMed Central

    Wrede, Christoph; Dreier, Anne; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2013-01-01

    The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates. PMID:23843725

  5. Synthesis and Electrochemistry of Li3MnO4: Mn in the +5 OxidationState

    SciTech Connect

    Saint, Juliette.A.; Doeff, Marca M.; Reed, John

    2007-06-19

    Computational and experimental work directed at exploringthe electrochemical properties of tetrahedrally coordinated Mn in the +5oxidation state is presented. Specific capacities of nearly 700 mAh/g arepredicted for the redox processes of LixMnO4 complexes based on twotwo-phase reactions. One is topotactic extractionof Li from Li3MnO4 toform LiMnO4 and the second is topotactic insertion of Li into Li3MnO4 toform Li5MnO4. In experiments, it is found that the redox behavior ofLi3MnO4 is complicated by disproportionation of Mn5+ in solution to formMn4+ and Mn7+ and byother irreversible processes; although an initialcapacity of about 275 mAh/g in lithiumcells was achieved. Strategiesbased on structural considerations to improve the electrochemicalproperties of MnO4n- complexes are given.

  6. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  7. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines. PMID:25263417

  8. Soil biogenic emissions of nitric oxide from a semi-arid savanna in South Africa

    NASA Astrophysics Data System (ADS)

    Feig, G. T.; Mamtimin, B.; Meixner, F. X.

    2008-12-01

    Soils of arid and semi-arid ecosystems are important biogenic sources of atmospheric nitric oxide (NO), however, there is still a shortage of measurements from these systems. Here we present the results of a laboratory study of the biogenic emission of NO from four different landscape positions of the Kruger National Park (KNP), a large conservation area in a semi-arid region of South Africa. Results show that the highest net potential NO fluxes come from the low lying (footslope) landscape regions, which have the largest nitrogen stocks and highest rates of nitrogen input into the soil. Net potential NO fluxes from midslope and crest regions were considerably lower. The maximum release of NO occurred at fairly low soil moisture contents of 10%-20% water filled pore space. Using soil moisture and temperature data obtained in situ at the Kruger National Park flux tower site, net potential NO fluxes obtained in the laboratory were converted to field fluxes for each of the four landscape positions for the period 2003 to 2005. The highest field NO flux is from footslope positions, during each of these years and emissions ranged from 1.5-8.5 kg ha a (in terms of mass of nitrogen). Remote sensing and Geographic Information Systems techniques were used to up-scale field NO fluxes on a regional basis indicating that the highest emissions occurred from the midslope positions, due to their large geographical extent in the considered research area. Emissions for the KNP Skukuza land type (56 000 ha) ranged from 20×103 kg in 2004 to 34×103 kg in 2003. The importance of landscape characteristics in the determination of regional biogenic NO soil emission is emphasized.

  9. Soil biogenic emissions of nitric oxide from a semi-arid savanna in South Africa

    NASA Astrophysics Data System (ADS)

    Feig, G. T.; Mamtimin, B.; Meixner, F. X.

    2008-07-01

    Soils of arid and semi-arid ecosystems are important biogenic sources of atmospheric nitric oxide (NO), however, there is still a shortage of measurements from these systems. Here we present the results of a laboratory study of the biogenic emission of NO from four different landscape positions of the Kruger National Park (KNP), a large conservation area in a semi-arid region of South Africa. Results show that the highest net potential NO fluxes come from the low lying (footslope) landscape regions, which have the largest nitrogen stocks and highest rates of nitrogen input into the soil. Net potential NO fluxes from midslope and crest regions were considerably lower. The maximum release of NO occurred at fairly low soil moisture contents of 10% 20% water filled pore space. Using soil moisture and temperature data obtained in situ at the Kruger National Park flux tower site, net potential NO fluxes obtained in the laboratory were converted to field fluxes for each of the four landscape positions for the period 2003 to 2005. The highest field NO flux is from footslope positions, during each of these years and emissions ranged from 1.5 8.5 kg ha-1 yr-1 (in terms of mass of nitrogen). Remote sensing and Geographic Information Systems techniques were used to up-scale field NO fluxes on a regional basis indicating that the highest emissions occurred from the midslope positions, due to their large geographical extent in the considered research area. Emissions for the KNP Skukuza land type (56 000 ha) ranged from 20×103 kg in 2004 to 34×103 kg in 2003. The importance of landscape characteristics in the determination of regional biogenic NO soil emissions is emphasized.

  10. Mn4+ emission in pyrochlore oxides

    SciTech Connect

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to that of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.

  11. Microbially mediated formation of a new REE enriched Mn-oxide, Ytterby mine, Sweden

    NASA Astrophysics Data System (ADS)

    Sjöberg, Susanne; Allard, Bert; Rattray, Jayne E.; Callac, Nolwenn; Skelton, Alasdair; Ivarsson, Magnus; Karlsson, Stefan; Sjöberg, Viktor; Dupraz, Christophe

    2016-04-01

    Characterization of a black substance seeping from fractured bedrock in a subterranean tunnel revealed a new, microbially mediated, secondary manganese oxide mineralisation, highly enriched in rare earth elements (REEs). This tunnel is dry and at shallow depth and was built to convert the former Ytterby mine, known for the discovery of yttrium (Y), scandium (Sc) and five rare earth elements, into a fuel deposit for the Swedish Armed Forces. As the type locality of these rare earth elements, the Ytterby mine gave its name to yttrium, ytterbium, erbium and terbium. Geochemical analysis shows that the substance is enriched in REEs with concentrations one to two orders of magnitude higher than the surrounding rocks. Elemental analysis and X-ray diffraction establish that the main component is a manganese oxide of the birnessite type (general formula: [Na,Ca]0.5[Mn(III),Mn(IV)]2O4xAq). There are also minor fractions of calcite, some other manganese oxides, feldspars, quartz and about 1% organic matter, but no iron oxides. Leaching studies (sequential and selective) were performed in order to establish how the minor components are associated with the matrix (in the lattice or merely adsorbed on the outer surface). It shows that the Ytterby birnessite contains about 1% REEs in the lattice, as well as calcium but no sodium. Formation of birnessite by manganese oxidizing bacteria is well-known (e.g. Tebo et al, 2004). Quantitative PCR shows that the total number of bacteria in the Ytterby substance is in the order 1010 cells per g substance while the water feeding the fracture has in the order of 106 cells per ml groundwater. qPCR data further confirm that manganese oxidizing microorganisms are present and that the abundance varies with the seasons. Analysis of the precipitated manganese using electron paramagnetic resonance spectroscopy shows that the substance is composed of two or more components, with one part having a biogenic signature. The occurrence of C31 to C35

  12. Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO

    USGS Publications Warehouse

    Campbell, Kate M.; Veeramani, Harish; Ulrich, Kai-Uwe; Blue, Lisa Y.; Giammar, Dianiel E.; Bernier-Latmani, Rizlan; Stubbs, Joanne E.; Suvorova, Elena; Yabusaki, Steve; Lezama-Pacheco, Juan S.; Mehta, Apurva; Long, Philip E.; Bargar, John R.

    2011-01-01

    Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO2), a desirable U(VI) bioreduction product, in the Old Rifle, CO, aquifer under different variable oxygen conditions. Overall uranium loss rates were 50–100 times slower than laboratory rates. After accounting for molecular diffusion through the sample holders, a reactive transport model using laboratory dissolution rates was able to predict overall uranium loss. The presence of biomass further retarded diffusion and oxidation rates. These results confirm the importance of diffusion in controlling in-aquifer U(IV) oxidation rates. Upon retrieval, uraninite was found to be free of U(VI), indicating dissolution occurred via oxidation and removal of surface atoms. Interaction of groundwater solutes such as Ca2+ or silicate with uraninite surfaces also may retard in-aquifer U loss rates. These results indicate that the prolonged stability of U(IV) species in aquifers is strongly influenced by permeability, the presence of bacterial cells and cell exudates, and groundwater geochemistry.

  13. Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle, CO

    SciTech Connect

    Campbell, Kate M.; Veeramani, Harish; Ulrich, Kai-Uwe; Blue, Lisa; Giammar, Daniel E.; Bernier-Latmani, Rizlan; Stubbs, Joanne E.; Suvorova, Elena; Yabusaki, Steven B.; Lezama Pacheco, Juan S.; Mehta, Apurva; Long, Philip E.; Bargar, John R.

    2011-09-12

    Reductive bioremediation is currently being explored as a possible strategy for uranium contaminated aquifers such as the Old Rifle site (Colorado, USA). The stability of U(IV) phases under oxidizing conditions is a key to the performance of this procedure. Biogenic uraninite, a bioreduction product for which kinetic and thermodynamic parameters are known, was deployed into wells using a novel membrane-walled cell to observe the rates and mechanisms of oxidative dissolution in situ in aquifers with different dissolved oxygen conditions. Observed in-aquifer dissolution rates were at least 50 to 100 times lower than measured in laboratory continuous flow reactors with artificial ground water. Upon retrieval, uraninite was found to have similar structure and stoichiometry as the parent material and to be free of U(VI), indicating dissolution occurs via oxidation and removal of surface atoms. Reactive transport modeling suggests that molecular diffusion is likely to be an important factor in limiting the rates of in-aquifer oxidation, and the presence of biomass enhances this effect. Interaction of ground water solutes such as Ca2+ or silicate with uraninite surfaces also may retard in-aquifer U loss rates. These results constrain in-aquifer oxidation rates and indicate U(VI) is more stable in oxic ground water than previously expected.

  14. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation.

    PubMed

    Namgung, Seonyi; Kwon, Man Jae; Qafoku, Nikolla P; Lee, Giehyeon

    2014-09-16

    We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.

  15. Biogenic VOC Oxidation is Modulated by Anthropogenic Pollution in the South East US

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Romer, P.; Duffey, K.; Cohen, R. C.; Kaser, L.; Seco, R.; Park, J.; Kim, S.; Guenther, A. B.; Goldstein, A. H.

    2013-12-01

    Biogenic volatile organic compounds (VOC) are known to play important roles for atmospheric chemistry, formation of secondary organic aerosol (SOA), and thus climate. However, the impacts of anthropogenic emissions on the BVOC oxidation mechanisms and SOA formation processes are not yet well understood. The SOAS summer 2013 campaign goals include looking holistically at physicochemical processes of BVOC emission, oxidation, and subsequent SOA formation and the role of anthropogenic emissions in those processes. Gas-phase composition changes of the broad range of VOCs were measured by PTR-ToF-MS at the Centreville SEARCH site located in a mixed deciduous forest near Brent, Alabama. The instrument sampled from the top of the tower at a high acquisition rate (10 Hz) using an inlet collocated with other measurements (wind, radicals, nitrogen oxides, etc.). Isoprene concentrations were extremely high, peaking at up to approximately 10 ppb during the hottest and sunniest days. Isoprene oxidation chemistry was clearly affected by anthropogenic influences. The rate of isoprene oxidation and the abundance of the first (MVK, MAC, etc.) and second (hydroxyacetone, etc.) order products were significantly different under cleaner conditions than under more polluted conditions. Isoprene oxidation likely is more dominated by the hydroperoxyl pathway under clean conditions while the NO pathway is more important under pollution conditions. Observations of the full range of detected isoprene oxidation products will be discussed and examined under relatively clean and polluted conditions. Both daytime and nighttime oxidation pathways will be examined, and comparison with airborne measurements will be shown to relate our ground based observations to more regional photochemical VOC processing.

  16. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    PubMed

    Jung, Haesung; Jun, Young-Shin

    2016-01-01

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  17. Extreme (13)C depletion of carbonates formed during oxidation of biogenic methane in fractured granite.

    PubMed

    Drake, Henrik; Åström, Mats E; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-01-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane. PMID:25948095

  18. Extreme (13)C depletion of carbonates formed during oxidation of biogenic methane in fractured granite.

    PubMed

    Drake, Henrik; Åström, Mats E; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-07

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  19. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    PubMed Central

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-01-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as −69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to −125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane. PMID:25948095

  20. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    PubMed Central

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-01-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm−2 under near neutral conditions. PMID:25998696

  1. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts.

  2. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. PMID:25461976

  3. Oxidative remobilization of biogenic uranium(IV) precipitates: effects of iron(II) and pH.

    PubMed

    Zhong, Lirong; Liu, Chongxuan; Zachara, John M; Kennedy, Dave W; Szecsody, James E; Wood, Brian

    2005-01-01

    The oxidative remobilization of uranium from biogenic U(IV) precipitates was investigated in bioreduced sediment suspensions in contact with atmospheric O2 with an emphasis on the influence of Fe(II) and pH on the rate and extent of U release from the solid to the aqueous phase. The sediment was collected from the U.S. Department of Energy Field Research Center (FRC) site at Oak Ridge, Tennessee. Biogenic U(IV) precipitates and bioreduced sediment were generated through anaerobic incubation with a dissimilatory metal reducing bacterium Shewanella putrefaciens strain CN32. The oxidative remobilization of freshly prepared and 1-yr aged biogenic U(IV) was conducted in 0.1 mol/L NaNO3 electrolyte with variable pH and Fe(II) concentrations. Biogenic U(IV)O2(s) was released into the aqueous phase with the highest rate and extent at pH 4 and 9, while the U remobilization was the lowest at circumneutral pH. Increasing Fe(II) significantly decreased U remobilization to the aqueous phase. From 70 to 100% of the U in the sediments used in all the tests was extractable at the experiment termination (41 d) with a bicarbonate solution (0.2 mol/L), indicating that biogenic U(IV) was oxidized regardless of Fe(II) concentration and pH. Sorption experiments and modeling calculations indicated that the inhibitive effect of Fe(II) on U(IV) oxidative remobilization was consistent with the Fe(III) oxide precipitation and U(VI) sorption to this secondary phase. PMID:16151228

  4. Water independent SO2 oxidation by Stabilised Criegee Intermediates from Biogenic Alkenes

    NASA Astrophysics Data System (ADS)

    Newland, Mike; Rickard, Andrew; Vereecken, Luc; Evans, Mat; Muñoz, Amalia; Ródenas, Milagros; Bloss, William

    2015-04-01

    Biogenic VOCs account for about 90% of global VOC emissions and these are dominated by the unsaturated hydrocarbons: isoprene (600 Tg yr-1) and monoterpenes (100 Tg yr-1). Stabilized Criegee Intermediates (SCI) are thought to be formed in the atmosphere mainly from reactions of unsaturated hydrocarbons with ozone. SCI have been shown in laboratory experiments to rapidly oxidise SO2 (k > 2x10-11 cm3 s-1) and NO2 (k = 7x10-12 cm3 s-1), providing a potentially important gas phase oxidation route for these species in the atmosphere. The importance of the SCI reaction with traces gases has been shown in modelling work to be critically dependent on the ratio of the rate constants for the reaction of the SCI with these trace gases and with H2O. Such modelling work has suggested that the SCI + SO2 reaction is only likely to be important in regions with high alkene emissions, e.g. forests, and that elsewhere SCI are likely to be almost entirely quenched by reaction with water, thus negating their importance as trace gas oxidants. However, it has been shown in laboratory experiments with small SCI that the reaction rate of SCI with water is structure dependent, with anti-CH3CHOO reacting fast with H2O (k > 1x10-14 cm3 s-1), and syn-CH3CHOO reacting orders of magnitude slower (k < 2x10-16 cm3 s-1). Here we present results from a series of ozonolysis experiments performed at the EUPHORE atmospheric simulation chamber in Valencia. These experiments measure the loss of SO2, in the presence of various biogenic alkenes (isoprene and three monoterpenes: α-pinene, β-pinene and limonene), as a function of water vapour. The SO2 loss shows a dependence on relative humidity for all systems studied, decreasing with increasing relative humidity. However, for all species, there also appears to be a fraction of the SO2 loss that shows a much lower sensitivity to relative humidity. We quantify the relative rates of reaction of the SCI produced in the ozonolysis of these biogenics with

  5. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid.

    PubMed

    Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William

    2012-01-15

    Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater.

  6. HOMOGENEOUS AIR OXIDATION OF HYDROCARBONS UTILIZING MN AND CO CATALYSTS

    EPA Science Inventory

    Homogeneous Air Oxidation of Hydrocarbons Utilizing Mn and Co Catalysts

    Thomas M. Becker and Michael A. Gonzalez*, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, Mail Sto...

  7. Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts

    NASA Astrophysics Data System (ADS)

    Li, Jiamin; Qu, Zhenping; Qin, Yuan; Wang, Hui

    2016-11-01

    The Ag/MnO2 catalysts with different morphologies (wire-like, rod-like and tube-like) are used as toluene oxidation catalysts in an attempt to investigate how the structures of support affect the interaction of Ag and MnO2, and thus the toluene catalytic activity. Analysis by TEM, H2-TPR and XPS measurements reveals that the structures of MnO2 influence the particle size and dispersion of silver particles and the combination of silver particles with MnO2. Meanwhile, the addition of Ag regulates the performance of MnO2. The small particle size and hemispherically shaped Ag particles are easily to form and homogeneously dispersed on the surface of wire-like MnO2. And this specific form of Ag shows the strongest interaction with MnO2, which promotes the low-temperature reducibility of support and generated more lattice oxygen in metal oxides. The Ag/MnO2 nanowires sample exhibits the highest reactivity for toluene oxidation with a complete conversion at 220 °C. Therefore, the excellent catalytic performance of Ag/MnO2 nanowires catalyst for toluene oxidation is clearly connected with the interaction between the Ag and MnO2, which is determined by the morphology of MnO2 support.

  8. Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems.

    PubMed

    Najafpour, Mohammad Mahdi; Heidari, Sima; Amini, Emad; Khatamian, Masoumeh; Carpentier, Robert; Allakhverdiev, Suleyman I

    2014-04-01

    One challenge in artificial photosynthetic systems is the development of artificial model compounds to oxidize water. The water-oxidizing complex of Photosystem II which is responsible for biological water oxidation contains a cluster of four Mn ions bridged by five oxygen atoms. Layered Mn oxides as efficient, stable, low cost, environmentally friendly and easy to use, synthesize, and manufacture compounds could be considered as functional and structural models for the site. Because of the related structure of these Mn oxides and the catalytic centre of the active site of the water oxidizing complex of Photosystem II, the study of layered Mn oxides may also help to understand more about the mechanism of water oxidation by the natural site. This review provides an overview of the current status of layered Mn oxides in artificial photosynthesis and discuss the sophisticated design strategies for Mn oxides as water oxidizing catalysts.

  9. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  10. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  11. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  12. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  13. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  14. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  15. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  16. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  17. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  18. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  19. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  20. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  1. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  2. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  3. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  4. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  5. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  6. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  7. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  8. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  9. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    NASA Astrophysics Data System (ADS)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  10. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.

    PubMed

    Krepski, S T; Emerson, D; Hredzak-Showalter, P L; Luther, G W; Chan, C S

    2013-09-01

    Despite the abundance of Fe and its significance in Earth history, there are no established robust biosignatures for Fe(II)-oxidizing micro-organisms. This limits our ability to piece together the history of Fe biogeochemical cycling and, in particular, to determine whether Fe(II)-oxidizers played a role in depositing ancient iron formations. A promising candidate for Fe(II)-oxidizer biosignatures is the distinctive morphology and texture of extracellular Fe(III)-oxyhydroxide stalks produced by mat-forming microaerophilic Fe(II)-oxidizing micro-organisms. To establish the stalk morphology as a biosignature, morphologic parameters must be quantified and linked to the microaerophilic Fe(II)-oxidizing metabolism and environmental conditions. Toward this end, we studied an extant model organism, the marine stalk-forming Fe(II)-oxidizing bacterium, Mariprofundus ferrooxydans PV-1. We grew cultures in flat glass microslide chambers, with FeS substrate, creating opposing oxygen/Fe(II) concentration gradients. We used solid-state voltammetric microelectrodes to measure chemical gradients in situ while using light microscopy to image microbial growth, motility, and mineral formation. In low-oxygen (2.7-28 μm) zones of redox gradients, the bacteria converge into a narrow (100 μm-1 mm) growth band. As cells oxidize Fe(II), they deposit Fe(III)-oxyhydroxide stalks in this band; the stalks orient directionally, elongating toward higher oxygen concentrations. M. ferrooxydans stalks display a narrow range of widths and uniquely biogenic branching patterns, which result from cell division. Together with filament composition, these features (width, branching, and directional orientation) form a physical record unique to microaerophilic Fe(II)-oxidizer physiology; therefore, stalk morphology is a biosignature, as well as an indicator of local oxygen concentration at the time of formation. Observations of filamentous Fe(III)-oxyhydroxide microfossils from a ~170 Ma marine Fe

  11. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.

    PubMed

    Krepski, S T; Emerson, D; Hredzak-Showalter, P L; Luther, G W; Chan, C S

    2013-09-01

    Despite the abundance of Fe and its significance in Earth history, there are no established robust biosignatures for Fe(II)-oxidizing micro-organisms. This limits our ability to piece together the history of Fe biogeochemical cycling and, in particular, to determine whether Fe(II)-oxidizers played a role in depositing ancient iron formations. A promising candidate for Fe(II)-oxidizer biosignatures is the distinctive morphology and texture of extracellular Fe(III)-oxyhydroxide stalks produced by mat-forming microaerophilic Fe(II)-oxidizing micro-organisms. To establish the stalk morphology as a biosignature, morphologic parameters must be quantified and linked to the microaerophilic Fe(II)-oxidizing metabolism and environmental conditions. Toward this end, we studied an extant model organism, the marine stalk-forming Fe(II)-oxidizing bacterium, Mariprofundus ferrooxydans PV-1. We grew cultures in flat glass microslide chambers, with FeS substrate, creating opposing oxygen/Fe(II) concentration gradients. We used solid-state voltammetric microelectrodes to measure chemical gradients in situ while using light microscopy to image microbial growth, motility, and mineral formation. In low-oxygen (2.7-28 μm) zones of redox gradients, the bacteria converge into a narrow (100 μm-1 mm) growth band. As cells oxidize Fe(II), they deposit Fe(III)-oxyhydroxide stalks in this band; the stalks orient directionally, elongating toward higher oxygen concentrations. M. ferrooxydans stalks display a narrow range of widths and uniquely biogenic branching patterns, which result from cell division. Together with filament composition, these features (width, branching, and directional orientation) form a physical record unique to microaerophilic Fe(II)-oxidizer physiology; therefore, stalk morphology is a biosignature, as well as an indicator of local oxygen concentration at the time of formation. Observations of filamentous Fe(III)-oxyhydroxide microfossils from a ~170 Ma marine Fe

  12. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    PubMed

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task. PMID:23748571

  13. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen

    NASA Astrophysics Data System (ADS)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.

    2014-12-01

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  14. Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II)

    PubMed Central

    Webb, Samuel M.; Dick, Gregory J.; Bargar, John R.; Tebo, Bradley M.

    2005-01-01

    Bacterial oxidation of Mn(II) to Mn(IV) is believed to drive the oxidative segment of the global biogeochemical Mn cycle and regulates the concentration of dissolved Mn(II) in the oceanic water column, where it is a critical nutrient for planktonic primary productivity. Mn(II) oxidizing activity is expressed by numerous phylogenetically diverse bacteria and fungi, suggesting that it plays a fundamental and ubiquitous role in the environment. This important redox system is believed to be driven by an enzyme or enzyme complex involving a multicopper oxidase, although the biochemical mechanism has never been conclusively demonstrated. Here, we show that Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 is a result of two sequential one-step electron transfer processes, both requiring the putative multicopper oxidase, MnxG, in which Mn(III) is a transient intermediate. A kinetic model of the oxidation pathway is presented, which shows that the Mn(II) to Mn(III) step is the rate-limiting step. Thus, oxidation of Mn(II) appears to involve a unique multicopper oxidase system capable of the overall two-electron oxidation of its substrate. This enzyme system may serve as a source for environmental Mn(III), a strong oxidant and competitor for siderophore-bound Fe(III) in nutrient-limited environments. That metabolically dormant spores catalyze an important biogeochemical process intimately linked to the C, N, Fe, and S cycles requires us to rethink the role of spores in the environment. PMID:15800042

  15. Composition and arsenic-attenuating capacity of biogenic iron (hydr)oxide flocs at the Lava Cap Mine Superfund Site, Nevada County, CA.

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Ona-Nguema, G.; Tufano, K.; Brown, G. E.

    2008-12-01

    The Lava Cap Mine Site (LCMS) is on the National Priority List due to the elevated human health risk presented by the catastrophic release of several thousand cubic meters of arsenic (As) enriched tailings (average: 500 ppm As ) from the site. These tailings were released into a creek and lake (former tailings retention pond) in a low-density residential area where ground water is the primary source of drinking water. Although oxidation of iron (Fe) sulfides (pyrite and arsenopyrite) from tailings are the main sources of As and Fe, buffering by carbonate minerals prevents formation of acidic waters. Macroscopic accumulations of fluffy Fe (hydr)oxide are observed suspended in the water column or at the sediment-water interface in creeks, ponds, and seeps of the LCMS. Microscopic analysis indicates that the Fe (hydr)oxide is predominantly associated with the sheaths of bacteria identified as members of the genus Leptothrix, which are known to enzymatically oxidize Fe and manganese (Mn) under oligotrophic, near-neutral, sub oxic conditions. Both Fe- encrusted Leptothrix sheaths (which are largely devoid of cells) and free aggolmerations of Fe hydr(oxide) support morphologically distinct Eubacteria whose identity is currently under investigation. Dried biogenic Fe (hydr)oxide averages 4.4 % organic carbon, 20.2 % Fe, and 0.91% As (9100 ppm), making it attractive as a potential natural biosorbent for As and Fe. Water flow rate is a very important control on the amount of As retained in biogenic Fe (hydr)oxide flocs, based on monitoring of a natural passive bioreactor system. In addition, a pond with nearly stagnant water accumulated approximately one order of magnitude more As (dried) than a seep site with faster-running water, even though there was only a 5-fold difference in their median filtered (0.45 micron) arsenic concentrations. Most Probable Number estimates and analysis of PCR amplicons of Eubacterial DNA indicate that populations of Fe-, As-, and sulfate

  16. In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation

    PubMed Central

    Johnson, Hope A.; Tebo, Bradley M.

    2009-01-01

    Manganese(II)-oxidizing bacteria play an integral role in the cycling of Mn as well as other metals and organics. Prior work with Mn(II)-oxidizing bacteria suggested that Mn(II) oxidation involves a multicopper oxidase, but whether this enzyme directly catalyzes Mn(II) oxidation is unknown. For a clearer understanding of Mn(II) oxidation, we have undertaken biochemical studies in the model marine α-proteobacterium, Erythrobacter sp. strain SD21. The optimum pH for Mn(II)-oxidizing activity was 8.0 with a specific activity of 2.5 nmol × min−1 × mg−1 and a Km = 204 µM. The activity was soluble suggesting a cytoplasmic or periplasmic protein. Mn(III) was an intermediate in the oxidation of Mn(II) and likely the primary product of enzymatic oxidation. The activity was stimulated by pyrroloquinoline quinone (PQQ), NAD+, and calcium but not by copper. In addition, PQQ rescued Pseudomonas putida MnB1 non Mn(II)-oxidizing mutants with insertions in the anthranilate synthase gene. The substrate and product of anthranilate synthase are intermediates in various quinone biosyntheses. Partially purified Mn(II) oxidase was enriched in quinones and had a UV/VIS absorption spectrum similar to a known quinone requiring enzyme but not to multicopper oxidases. These studies suggest that quinones may play an integral role in bacterial Mn(II) oxidation. PMID:17673976

  17. Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand.

    PubMed

    Kan, Chi-Chuan; Aganon, Mannie C; Futalan, Cybelle Morales; Dalida, Maria Lourdes P

    2013-07-01

    The adsorption of Mn2+ onto immobilized Mn-oxide and Fe-oxide adsorbent such as manganese oxide-coated sandl (MOCS1), manganese oxide-coated sand2 (MOCS2), iron oxide-coated sand2 (IOCS2), and manganese and iron oxide-coated sand (MIOCS) was investigated. The effects of pH (5.5 to 8.0) and temperature (25 to 45 degrees C) on the equilibrium capacity were examined. Equilibrium studies showed that there is a good fit with both Freundlich and Langmuir isotherm, which indicates surface heterogeneity and monolayer adsorption of the adsorbents. Kinetic data showed high correlation with the pseudo second-order model, which signifies a chemisorption-controlled mechanism. The activation energies, activation parameters (deltaG, deltaH, deltaS), and thermodynamic parameters (deltaG0, deltaH0, deltaS0) confirmed that adsorption with MIOCS was endothermic and more spontaneous at higher temperature while an opposite trend was observed for the other adsorbents. Thermodynamic studies showed that adsorption involved formation of activated complex, where MOCS 1 and MIOCS follow a physical-chemical mechanism, while MOCS2 and IOCS2 follows purely chemical mechanism. PMID:24218863

  18. Catalytic ozone oxidation of benzene at low temperature over MnOx/Al-SBA-16 catalyst

    PubMed Central

    2012-01-01

    The low-temperature catalytic ozone oxidation of benzene was investigated. In this study, Al-SBA-16 (Si/Al = 20) that has a three-dimensional cubic Im3m structure and a high specific surface area was used for catalytic ozone oxidation for the first time. Two different Mn precursors, i.e., Mn acetate and Mn nitrate, were used to synthesize Mn-impregnated Al-SBA-16 catalysts. The characteristics of these two catalysts were investigated by instrumental analyses using the Brunauer-Emmett-Teller method, X-ray diffraction, X-ray photoelectron spectroscopy, and temperature-programmed reduction. A higher catalytic activity was exhibited when Mn acetate was used as the Mn precursor, which is attributed to high Mn dispersion and a high degree of reduction of Mn oxides formed by Mn acetate than those formed by Mn nitrate. PMID:22221406

  19. Chemical and biological reduction of Mn (III)-pyrophosphate complexes: Potential importance of dissolved Mn (III) as an environmental oxidant

    NASA Astrophysics Data System (ADS)

    Kostka, Joel E.; Luther, George W., III; Nealson, Kenneth H.

    1995-03-01

    Dissolved Mn (III) is a strong oxidant which could play an important role in the biogeochemistry of aquatic environments, but little is known about this form of Mn. Mn(III) was shown to form a stable complex with pyrophosphate which is easily measured by uv-vis spectrophotometry. The Mn(III)-pyrophosphate complex was produced at concentrations of 5 μM to 10 mM Mn at neutral pH. Inorganic electron donors, Fe(II) and sulfide, abiotically reduced Mn(III)-pyrophosphate in seconds with a stoichiometry of 1:1 and near 1:2 reductant:Mn (III), respectively. Shewanella putrefaciens strain MR-1 catalyzed the reduction of Mn(III)-pyrophosphate with formate or lactate as electron donors. Reduction of Mn(III) catalyzed by MR-1 was inhibited under aerobic conditions but only slightly under anaerobic conditions upon addition of the alternate electron acceptor, nitrate. MR-1 catalyzed reduction was also inhibited by metabolic inhibitors including formaldehyde, tetrachlorosalicylanilide (TCS), carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2- n-heptyl-4-hydroxyquinoline N-oxide (HQNO), but not antimycin A. When formate or lactate served as electron donor for Mn(III) reduction, carbon oxidation to CO 2 was coupled to the respiration of Mn (III). Using the incorporation of 3H-leucine into the TCA-insoluble fraction of culture extracts, it was shown that Mn (III) reduction was coupled to protein synthesis in MR-1. These data indicate that Mn (III) complexes may be produced under conditions found in aquatic environments and that the reduction of Mn(III) can be coupled to the cycling of Fe, S, and C.

  20. The effects of fire on biogenic emissions of methane and nitric oxide from wetlands

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Rhinehart, Robert P.; Winstead, Edward L.; Sebacher, Shirley; Hinkle, C. Ross; Schmalzer, Paul A.; Koller, Albert M., Jr.

    1990-01-01

    Enhanced emissions of methane (CH4) and nitric oxide (NO) were measured following three controlled burns in a Florida wetlands in 1987 and 1988. Wetlands are the major global source of methane resulting from metabolic activity of methanogenic bacteria. Methanogens require carbon dioxide, acetate, or formate for their growth and the metabolic production of methane. All three water-soluble compounds are produced in large concentrations during biomass burning. Postfire methane emissions exceeded 0.15 g CH 4/sq m per day. Preburn and postburn measurements of soil nutrients indicate significant postburn increases in soil ammonium, from 8.35 to 13.49 parts per million (ppm) in the upper 5 cm of the Juncus marsh and from 8.83 to 23.75 ppm in the upper 5 cm of the Spartina marsh. Soil nitrate concentrations were found to decrease in both marshes after the fire. These measurements indicate that the combustion products of biomass burning exert an important 'fertilizing' effect on the biosphere and on the biogenic production of environmentally significant atmospheric gases.

  1. Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons.

    PubMed

    Fry, Juliane L; Draper, Danielle C; Barsanti, Kelley C; Smith, James N; Ortega, John; Winkler, Paul M; Lawler, Michael J; Brown, Steven S; Edwards, Peter M; Cohen, Ronald C; Lee, Lance

    2014-10-21

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m(3) indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38-65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m(-3), suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location's mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.

  2. Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons

    PubMed Central

    2014-01-01

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed. PMID:25229208

  3. Oxidation resistance and electrical properties of anodically electrodeposited Mn-Co oxide coatings for solid oxide fuel cell interconnect applications

    NASA Astrophysics Data System (ADS)

    Wei, Weifeng; Chen, Weixing; Ivey, Douglas G.

    Co-rich and crack-free Mn-Co oxide coatings were deposited on AISI 430 substrates by anodic electrodeposition from aqueous solutions. The as-deposited Mn-Co oxide coatings, with nano-scale fibrous morphology and a metastable rock salt-type structure, evolved into a (Cr,Mn,Co) 3O 4 spinel layer due to the outward diffusion of Cr from the AISI 430 substrates when pretreated in air. The Mn-Co oxide coatings were reduced into metallic Co and Mn 3O 4 phases when annealed in a reducing atmosphere of 5% H 2-95% N 2. In contrast to the degraded oxidation resistance and electrical properties observed for the air-pretreated Mn-Co oxide coated samples, the H 2-pretreated Mn-Co oxide coatings not only acted as a protective barrier to reduce the Cr outward diffusion, but also improved the electrical performance of the steel interconnects. The improvement in electronic conductivity can be ascribed to the higher electronic conductivity of the Co-rich spinel layer and better adhesion of the scale to the steel substrate, thereby eliminating scale spallation.

  4. Formation and conversion mechanisms between single-crystal gamma-MnOOH and manganese oxides

    SciTech Connect

    Wei, Chunguang; Xu, Chengjun; Li, Baohua; Nan, Ding; Ma, Jun; Kang, Feiyu

    2012-07-15

    Highlights: ► Single-crystal γ-MnOOH was obtained via hydrothermal method. ► α-MnO{sub 2} was transformed to γ-MnOOH by a dissolution-growth-recrystallization process. ► α-MnO{sub 2} preferred growth on (111{sup ¯}) crystal plane of γ-MnOOH. ► γ-MnOOH was a useful precursor to prepare manganese oxide via calcination. -- Abstract: Formation and conversion mechanisms between single-crystal gamma-MnOOH and manganese oxides had investigated systematically. Without extra surfactant or template, α-MnO{sub 2} nanorods and prismatic single crystalline γ-MnOOH rods had been synthesized under hydrothermal treatment in this study. The formation and conversion mechanisms of prismatic γ-MnOOH rod were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that the formation process includes three evolution stages: (1) formation of α-MnO{sub 2} nanorods whiskers; (2) transformation from α-MnO{sub 2} nanorods to prismatic γ-MnOOH rods by a dissolution-growth-recrystallization process; and (3) preferred growth on (111{sup ¯}) crystal plane. In addition, β-MnO{sub 2}, Mn{sub 2}O{sub 3} or Mn{sub 3}O{sub 4} rods could be obtained by calcination of the γ-MnOOH rods at different temperatures, which indicated that γ-MnOOH is an important precursor for preparing manganese oxides. The morphology and dimension of γ-MnOOH rods remained unchanged after converted to β-MnO{sub 2}, Mn{sub 2}O{sub 3} and Mn{sub 3}O{sub 4}.

  5. Correlation between Mn oxidation state and magnetic behavior in Mn/ZnO multilayers prepared by sputtering

    SciTech Connect

    Cespedes, E.; Garcia-Lopez, J.; Garcia-Hernandez, M.; Andres, A. de; Prieto, C.

    2007-08-01

    Compositional, microstructural, and magnetic characterization of [ZnO(30 A )/Mn(x)]{sub n} multilayers prepared by sputtering is presented to study the observed ferromagnetism in the Mn-ZnO system. The nominal Mn layer thickness, x, is varied from 3 to 60 A , while the number of bilayers, n, is increased to maintain the total amount of Mn constant. Microstructure information was deduced from x-ray reflectivity, Mn oxidation state was determined by x-ray absorption spectroscopy, and magnetic properties were measured over a temperature range of 5-400 K. Magnetic behavior of these samples is found to be related to the Mn layer thickness (x). Multilayers with x{>=}30 A exhibit ferromagnetism with a Curie temperature above 400 K, while mostly paramagnetic behavior is obtained for x<15 A . Magnetic behavior is discussed in terms of electronic and structural parameters of samples. Mn-ZnO interface effect is related to the ferromagnetic order of the samples, but it is not a sufficient condition. The essential role of the Mn oxidation state in the magnetic behavior of this system is pointed out. It is shown a correlation between the obtained ferromagnetism and a Mn oxidation state close to 2+.

  6. Quantum chemical study of arsenic (III, V) adsorption on Mn-oxides: implications for arsenic(III) oxidation.

    PubMed

    Zhu, Mengqiang; Paul, Kristian W; Kubicki, James D; Sparks, Donald L

    2009-09-01

    Density functional theory (DFT) calculations were used to investigate As(V) and As(III) surface complex structures and reaction energies on both Mn(III) and Mn(IV) sites in an attempt to better understand As(III) oxidation bybirnessite, a layered Mn-dioxide mineral. Edge-sharing dioctahedral Mn(III) and Mn(IV) clusters with different combinations of surface functional groups (>MnOH and >MnOH2) were employed to mimic pH variability. Results show that As(V) adsorption was more thermodynamically favorable than As(III) adsorption on both Mn(III) and Mn(IV) surface sites under simulated acidic pH conditions. Therefore, we propose that As(V) adsorption inhibits As(III) oxidation by blocking adsorption sites. Under simulated acidic pH conditions, Mn(IV) sites exhibited stronger adsorption affinity than Mn(III) sites for both As(III) and As(V). Overall, we hypothesize that Mn(III) sites are less reactive in terms of As(III) oxidation due to their lower affinity for As(III) adsorption, higher potential to be blocked by As(V) complexes, and slower electron transfer rates with adsorbed As(III). Results from this study offer an explanation regarding the experimental observations of Mn(III) accumulation on birnessite and the long residence time of As(III) adsorption complexes on manganite (r-MnOOH) during As(III) oxidation. PMID:19764231

  7. Constraints on superoxide mediated formation of manganese oxides

    PubMed Central

    Learman, Deric R.; Voelker, Bettina M.; Madden, Andrew S.; Hansel, Colleen M.

    2013-01-01

    Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2−) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O2− with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation. PMID:24027565

  8. Stability of beta MnOOH and manganese oxide deposition from springwater.

    USGS Publications Warehouse

    Hem, J.D.; Roberson, C.E.; Fournier, R.B.

    1982-01-01

    beta MnOOH is precipitated preferentially (with respect to Mn3O4) at T near 0oC when Mn2+ is oxidized in aerated aqueous solutions. Upon aging in solutions open to the atmosphere, a slurry of beta MnOOH tends to disproportionate to form MnO2 and Mn2+. In such aged solutions, Mn2+ and H+ activities can be constant, and both the oxidation reaction Mn2+ + 1/4O2(aq) + 3/2H2O rt arrow beta MnOOH(c) + 2H+ and the disproportionation reaction 2beta MnOOH(c) + 2H+ rt arrow MnO2(c) + Mn2+ + 2H2O can have positive reaction affinities. It is not possible for both reactions to be in thermodynamic equilibrium in the same system unless oxygen is almost completely absent. A value for 028DELTA Gof of -129.8 + or - 0.6 kcal/mol was obtained for beta MnOOH from experimental data by assuming that the reaction affinity for the oxidation reaction is equal to that for the disproportionation, and a value of -129.8 + or - 0.5 kcal/mol was determined by measuring the redox potentials for the postulated half-reaction MnO2(c) + H+ + e- rt arrow beta MnOOH(c) at 0o, 5o, and 15oC and extrapolating to 25oC. Both these values are consistent with laboratory observations that beta MnOOH is less stable than gamma MnOOH or Mn3O4 at 25oC. Analytical data for Mn-depositing springwater samples are consistent with a non-equilibrium model involving disproportionation of either beta MnOOH or Mn3O4. (Authors' abstract)-T.R.

  9. Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides.

    PubMed

    Kim, Soon Sam; Bargar, John R; Nealson, Kenneth H; Flood, Beverly E; Kirschvink, Joseph L; Raub, Timothy D; Tebo, Bradley M; Villalobos, Mario

    2011-10-01

    Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (∼500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer.

  10. Trace Metal Sequestration by the Manganese Oxidizing Bacterium Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Toner, B.; Manceau, A.; Marcus, M. A.; Sposito, G.

    2002-12-01

    Bacterial cells are an important source of chemically reactive surfaces in freshwater and soil environments. Pseudomonas putida strain MnB1 cells, like many gram negative bacteria, present an outer membrane studded with phosphate groups and carbohydrates as well as a billowing biofilm of extracellular polysaccharides to the surrounding microenvironment. The cell outer membrane and the biofilm possess functional groups that complex trace metals. During certain growth phases P. putida is also a manganese oxidizing bacterium, causing the cells to coat themselves in Mn(IV) oxide. Therefore, in addition to the cell outer membrane and associated biofilm, trace metals may sorb to the biogenic Mn oxide. To explore the relative contributions to trace metal sorption by the bacterial cells and biogenic Mn oxide, zinc and nickel were added to suspensions of bacterial cells with three different conditions: cells in the absence of Mn, cells in the process of Mn oxidation and cells with preformed biogenic Mn oxide. Adsorption isotherms were measured to quantify Zn and Ni sorption to P. putida in the presence and absence of biogenic Mn oxide. Zinc and Ni K-edge EXAFS spectra were measured to determine how and where the metals were binding to the bacterial cells and biogenic Mn oxide. The Zn and Ni adsorption isotherms exhibited two plateaus. The metal complexation was dependent on concentration with Zn having a higher affinity for phosphate and Ni for carboxyl functional groups. The preformed biogenic Mn oxide has high affinity for Zn and Ni and the bacterial surface contributed little to metal removal from solution under these conditions. However, if the metal is present in solution while Mn oxidation is occurring the bacterial cell surface influences greatly the overall removal of metal. Manganese oxidizing bacteria such as P. putida contribute to environmental metal sequestration by catalyzing the production of Mn oxide minerals, and the bacterial cells are themselves reactive

  11. Enhanced Removal of Biogenic Hydrocarbons in Power Plant Plumes Constrains the Dependence of Atmospheric Hydroxyl Concentrations on Nitrogen Oxides

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; Trainer, M.; Parrish, D. D.; Brown, S. S.; Edwards, P.; Gilman, J.; Graus, M.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Kim, S. W.; Lerner, B. M.; Neuman, J. A.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Veres, P. R.; Warneke, C.; Wolfe, G.

    2015-12-01

    Hydroxyl (OH) radicals in the atmosphere provide one of the main chemical mechanisms for the removal of trace gases. OH plays a central role in determining the atmospheric lifetime and radiative forcing of greenhouse gases like methane. OH also plays a major role in the oxidation of organic trace gases, which can lead to formation of secondary pollutants such as ozone and PM2.5. Due to its very short atmospheric lifetime of seconds or less, OH concentrations are extremely variable in space and time, which makes measurements and their interpretation very challenging. Several recent measurements have yielded higher than expected OH concentrations. To explain these would require the existence of unidentified, radical recycling processes, but issues with the measurements themselves are also still being discussed. During the NOAA airborne SENEX study in the Southeast U.S., the biogenic hydrocarbons isoprene and monoterpenes were consistently found to have lower mixing ratios in air masses with enhanced nitrogen oxides from power plants. We attribute this to faster oxidation rates of biogenic hydrocarbons due to increased concentrations of OH in the power plant plumes. Measurements at different downwind distances from the Scherer and Harllee Branch coal-fired power plants near Atlanta are used to constrain the dependence of OH on nitrogen oxides. It is found that OH concentrations were highest at nitrogen dioxide concentrations of 1-2 ppbv and decreased at higher and at lower concentrations. These findings agree with the expected dependence of OH on nitrogen oxide concentrations, but do not appear to be consistent with the reports in the literature that have shown high OH concentrations in regions of the atmosphere with high biogenic emissions and low NOx concentrations that would require unidentified radical recycling processes to be explained.

  12. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium

    NASA Astrophysics Data System (ADS)

    Fredrickson, James K.; Zachara, John M.; Kennedy, David W.; Dong, Hailang; Onstott, Tullis C.; Hinman, Nancy W.; Li, Shu-mei

    1998-10-01

    Dissimilatory iron-reducing bacteria (DIRB) couple the oxidation of organic matter or H 2 to the reduction of iron oxides. The factors controlling the rate and extent of these reduction reactions and the resulting solid phases are complex and poorly understood. Batch experiments were conducted with amorphous hydrous ferric oxide (HFO) and the DIRB Shewanella putrefaciens, strain CN32, in well-defined aqueous solutions to investigate the reduction of HFO and formation of biogenic Fe(II) minerals. Lactate-HFO solutions buffered with either bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) containing various combinations of phosphate and anthraquinone-2,6-disulfonate (AQDS), were inoculated with S. putrefaciens CN32. AQDS, a humic acid analog that can be reduced to dihydroanthraquinone by CN32, was included because of its ability to function as an electron shuttle during microbial iron reduction and as an indicator of pe. Iron reduction was measured with time, and the resulting solids were analyzed by X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED). In HCO 3- buffered medium with AQDS, HFO was rapidly and extensively reduced, and the resulting solids were dominated by ferrous carbonate (siderite). Ferrous phosphate (vivianite) was also present in HCO 3- medium containing P, and fine-grained magnetite was present as a minor phase in HCO 3- medium with or without P. In the PIPES-buffered medium, the rate and extent of reduction was strongly influenced by AQDS and P. With AQDS, HFO was rapidly converted to highly crystalline magnetite whereas in its absence, magnetite mineralization was slower and the final material less crystalline. In PIPES with both P and AQDS, a green rust type compound [Fe (6-x)IIFe xIII(OH) 12] x+[(A 2-) x/2 · yH 2O] x- was the dominant solid phase formed; in the absence of AQDS a poorly

  13. Fertilizer impact on biogenic nitric oxide emissions from agricultural soils of the Taklimakan desert (Xinjiang, China)

    NASA Astrophysics Data System (ADS)

    Fechner, A. D.; Behrendt, T.; Bruse, M.; Mamtimin, B.; Andreae, M. O.; Meixner, F. X.

    2012-04-01

    It is known that soil microbial processes play a crucial role in the production and consumption of atmospheric trace gases worldwide. Soils are mostly a major source of biogenic nitric oxide (NO). The main influencing factors controlling soil NO emissions are soil moisture, soil temperature, as well as nutrient availability. Adding fertilizer to agricultural soils changes the pool of nutrients and impacts the net NO emission from these soils. Irrigated and fertilized oases around the great Central Asian Taklamakan desert form the backbone of the agricultural output (80% of the Chinese cotton production) of the Xinjiang Uygur Autonomous Region (NW-China). While nowadays 90% of the agricultural output is produced on just 4.3% of Xinjiang's total area, recent and future enlargement of farmland and intensification of agriculture will definitely impact the regional soil NO emission and consequently the budget of nitrogen oxides and ozone. We present a systematic laboratory study of the influence of urea (CH4N2O) and diammonium hydrogen phosphate ((NH4)2HPO4, DAP) fertilizer on NO emissions from Xinjiang soil samples. Urea is the most widely and excessively applied fertilizer in Xinjiang. Typically, about 600 kg ha-1 yr-1(in terms of mass of nitrogen) were applied to a cotton field in four separate events. In the laboratory, the fertilizer was applied accordingly, ranging from one quarter of the field amount within one of the four events (i.e. 37.5 kg ha-1 yr-1) to quadruple of that (150 kg ha-1 yr-1). Two different measurement series have been performed on six sub- samples (each out of a total of three soil samples taken in Xinjiang): the first series was conducted solely with urea fertilizer, the second one with a mixture of urea and DAP (2:1). All sub-samples were prepared in a standardized way: a fixed mass of soil (~0.06 kg, dried in field) was sieved (2 mm) and stored at 4° C. Then it was wetted up to a soil moisture tension of 1.8 pF. Subsequently, fertilizer was

  14. Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.

    PubMed

    Andeer, Peter F; Learman, Deric R; McIlvin, Matt; Dunn, James A; Hansel, Colleen M

    2015-10-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants in environmental systems. A number of biotic and abiotic pathways induce the oxidation of Mn(II) to Mn oxides. Here, we use a combination of proteomic analyses and activity assays, to identify the enzyme(s) responsible for extracellular superoxide-mediated Mn oxide formation by a bacterium within the ubiquitous Roseobacter clade. We show that animal haem peroxidases (AHPs) located on the outer membrane and within the secretome are responsible for Mn(II) oxidation. These novel peroxidases have previously been implicated in direct Mn(II) oxidation by phylogenetically diverse bacteria. Yet, we show that in this Roseobacter species, AHPs mediate Mn(II) oxidation not through a direct reaction but by producing superoxide and likely also by degrading hydrogen peroxide. These findings point to a eukaryotic-like oscillatory oxidative-peroxidative enzymatic cycle by these AHPs that leads to Mn oxide formation by this organism. AHP expression appears unaffected by Mn(II), yet the large energetic investment required to produce and secrete these enzymes points to an as yet unknown physiological function. These findings are further evidence that bacterial peroxidases and secreted enzymes, in general, are unappreciated controls on the cycling of metals and reactive oxygen species (ROS), and by extension carbon, in natural systems.

  15. Time-Resolved Investigation of Cobalt Oxidation by Mn(III)-Rich δ-MnO2 Using Quick X-ray Absorption Spectroscopy.

    PubMed

    Simanova, Anna A; Peña, Jasquelin

    2015-09-15

    Manganese oxides are important environmental oxidants that control the fate of many organic and inorganic species including cobalt. We applied ex situ quick X-ray absorption spectroscopy (QXAS) to determine the time evolution of Co(II) and Co(III) surface loadings and their respective average surface speciation in Mn(III)-rich δ-MnO2 samples at pH 6.5 and loadings of 0.01-0.20 mol Co mol(-1) Mn. In this Mn oxide, which contained few unoccupied vacancies but abundant Mn(III) at edge and interlayer sites, Co(II) sorption and oxidation started at the particle edges. We found no evidence for Co(II) oxidation by interlayer Mn(III) or Mn(III, IV) adjacent to vacancy sites at <10 min. After 10 min, basal surface sites were implicated due to slow Co oxidation by interlayer Mn(III) and reactive sites formed upon removal of interlayer Mn(III), such that 50-60% of the sorbed Co was incorporated into the MnO2 sheets or adsorbed at vacancy sites by 12 h. Our findings indicate that the redox reactivity of surface sites depends on Mn valence and crystallographic location, with Mn(III) at the edges being the most effective oxidant at short reaction times and Mn(III,IV) in the MnO2 sheet contributing at longer reaction times.

  16. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals

    PubMed Central

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-01-01

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV). PMID:26039669

  17. Significant role of Mn(III) sites in e(g)(1) configuration in manganese oxide catalysts for efficient artificial water oxidation.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias

    2015-11-01

    Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation.

  18. c-Type Cytochromes and Manganese Oxidation in Pseudomonas putida MnB1

    PubMed Central

    Caspi, Ron; Tebo, Bradley M.; Haygood, M. G.

    1998-01-01

    Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides. We used transposon mutagenesis to construct mutants of strain MnB1 that are unable to oxidize manganese, and we characterized some of these mutants. The mutants were divided into three groups: mutants defective in the biogenesis of c-type cytochromes, mutants defective in genes that encode key enzymes of the tricarboxylic acid cycle, and mutants defective in the biosynthesis of tryptophan. The mutants in the first two groups were cytochrome c oxidase negative and did not contain c-type cytochromes. Mn(II) oxidation capability could be recovered in a c-type cytochrome biogenesis-defective mutant by complementation of the mutation. PMID:9758766

  19. c-Type cytochromes and manganese oxidation in Pseudomonas putida MnB1

    SciTech Connect

    Caspi, R.; Tebo, B.M.; Haygood, M.G.

    1998-10-01

    Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides. The authors used transposon mutagenesis to construct mutants of strain MnB1 that are unable to oxidize manganese, and they characterized some of these mutants. The mutants were divided into three groups: mutants defective in the biogenesis of c-type cytochromes, mutants defective in genes that encode key enzymes of the tricarboxylic acid cycle, and mutants defective in the biosynthesis of tryptophan. The mutants in the first two groups were cytochrome c oxidase negative and did not contain c-type cytochromes. Mn(II) oxidation capability could be recovered in a c-type cytochrome biogenesis-defective mutant by complementation of the mutation.

  20. Origin of concretionary Mn-Fe-oxides in stream sediments of Maine, U.S.A.

    USGS Publications Warehouse

    Nowlan, G.A.; McHugh, J.B.; Hessin, T.D.

    1983-01-01

    Studies of stream and sediment-pore waters largely explain the genesis of concretionary Mn-Fe-oxides in Maine. Waters of two small streams near Jackman, Maine, were studied in terms of pH, Eh, dissolved oxygen, dissolved organic carbon, dissolved Mn, total dissolved Fe, and ferrous and ferric Fe. Pyrite Creek has profuse concretions and coatings of Mn-Fe-oxides, whereas West Pyrite Creek has only sparse Mn-Fe-oxide stains. Pyrite Creek drains boggy terrain and West Pyrite Creek drains well-drained terrain. In West Pyrite Creek, stream and subjacent pore waters have chemical characteristics that do not differ greatly. However, dissolved Mn, ferrous Fe, dissolved oxygen, and in situ Eh measurements show that a steep Eh gradient exists between stream and subjacent pore waters of Pyrite Creek. The steep Eh gradient is manifested by the common zonation of coatings and stains on rocks in stream sediment. The bottom zone has no deposition of oxides, the middle zone is red and consists mostly of Fe-oxides, and the upper zone is black or dark-brown and consists of Mn-oxides with varying amounts of Fe-oxides. The zonation agrees with theoretical predictions of oxide stability as one moves from a reducing to an oxidizing environment. At locations where concretionary Mn-Fe-oxides form, pore waters are depleted of oxygen because of abundant decaying organic material in the stream sediment. The pore waters are charged with dissolved Mn and Fe because mechanically deposited Mn-Fe-oxides are remobilized due to the low-Eh conditions. Groundwaters also contribute dissolved Mn and Fe. Stream waters, on the other hand, are oxygenated and the high-Eh conditions result in low concentrations of dissolved Mn and Fe in stream waters because of the insolubility of Mn-Fe-oxides in high-Eh environments. Therefore, concretionary Mn-Fe-oxides form at the interface between pore and stream waters because Mn- and Fe-rich pore waters, which are undersaturated with respect to Mn-Fe-oxides, mix with

  1. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias

    DOE PAGES

    Liu, Zhiqi; Biegalski, Michael D.; Hsu, Shang-Lin; Shang, Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha S.; Meyer, Tricia L.; Wong, Anthony T.; et al

    2015-11-05

    High-quality epitaxial growth of intermetallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Thus, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

  2. Anthropogenic Sulfur Perturbations on Biogenic Oxidation: SO2 Additions Impact Gas-Phase OH Oxidation Products of α- and β-Pinene.

    PubMed

    Friedman, Beth; Brophy, Patrick; Brune, William H; Farmer, Delphine K

    2016-02-01

    In order to probe how anthropogenic pollutants can impact the atmospheric oxidation of biogenic emissions, we investigated how sulfur dioxide (SO2) perturbations impact the oxidation of two monoterpenes, α-and β-pinene. We used chemical ionization mass spectrometry to examine changes in both individual molecules and gas-phase bulk properties of oxidation products as a function of SO2 addition. SO2 perturbations impacted the oxidation systems of α-and β-pinene, leading to an ensemble of products with a lesser degree of oxygenation than unperturbed systems. These changes may be due to shifts in the OH:HO2 ratio from SO2 oxidation and/or to SO3 reacting directly with organic molecules. Van Krevelen diagrams suggest a shift from gas-phase functionalization by alcohol/peroxide groups to functionalization by carboxylic acid or carbonyl groups, consistent with a decreased OH:HO2 ratio. Increasing relative humidity dampens the impact of the perturbation. This decrease in oxygenation may impact secondary organic aerosol formation in regions dominated by biogenic emissions with nearby SO2 sources. We observed sulfur-containing organic compounds following SO2 perturbations of monoterpene oxidation; whether these are the result of photochemistry or an instrumental artifact from ion-molecule clustering remains uncertain. However, our results demonstrate that the two monoterpene isomers produce unique suites of oxidation products.

  3. Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by Pseudogulbenkiania Sp. Strain 2002.

    PubMed

    Xiu, Wei; Guo, Huaming; Shen, Jiaxing; Liu, Shuai; Ding, Susu; Hou, Weiguo; Ma, Jie; Dong, Hailiang

    2016-06-21

    An anaerobic nitrate-reducing Fe(II)-oxidizing bacterium, Pseudogulbenkiania sp. strain 2002, was used to investigate As immobilization by biogenic Fe oxyhydroxides under different initial molar ratios of Fe/As in solutions. Results showed that Fe(II) was effectively oxidized, mainly forming lepidocrocite, which immobilized more As(III) than As(V) without changing the redox state of As. When the initial Fe/As ratios were kept constant, higher initial Fe(II) concentrations immobilized more As with higher Asimmobilized/Feprecipitated in biogenic lepidocrocite. EXAFS analysis showed that variations of initial Fe(II) concentrations did not change the As-Fe complexes (bidentate binuclear complexes ((2)C)) with a fixed As(III) or As(V) initial concentration of 13.3 μM. On the other hand, variations in initial As concentrations but fixed Fe(II) initial concentration induced the co-occurrence of bidentate binuclear and bidentate mononuclear complexes ((2)E) and bidentate binuclear and monodentate mononuclear complexes ((1)V) for As(III) and As(V)-treated series, respectively. The coexistence of (2)C and (2)E complexes (or (2)C and (1)V complexes) could contribute to higher As removal in experimental series with higher initial Fe(II) concentrations at the same initial Fe/As ratio. Simultaneous removal of soluble As and nitrate by anaerobic nitrate-reducing Fe(II)-oxidizing bacteria provides a feasible approach for in situ remediation of As-nitrate cocontaminated groundwater.

  4. Coupled Mn(II) Oxidation Pathways by a Planktonic Roseobacter-like Bacterium

    NASA Astrophysics Data System (ADS)

    Hansel, C. M.; Francis, C. A.

    2005-12-01

    Bacteria belonging to the Roseobacter clade of the alpha-Proteobacteria are numerically abundant in coastal waters, ecologically significant in the cycling of (in)organic sulfur, and occupy a wide range of environmental niches. Here we reveal that Roseobacter-like bacteria may play a previously unrecognized role in the oxidation and cycling of manganese (Mn) in coastal waters. A diverse array of Mn(II)-oxidizing Roseobacter-like species were isolated from Elkhorn Slough, a coastal estuary adjacent to Monterey Bay, California. One isolate (designated AzwK-3b), in particular, rapidly oxidizes Mn(II) to insoluble Mn(III, IV) oxides. Interestingly, AzwK-3b is 100% identical (at the 16S rRNA level) to a previously reported Pfiesteria-associated Roseobacter-like bacterium, which does not posses the ability to oxidize Mn(II). Manganese(II) oxidation rates by live cultures and cell-free filtrates are substantially higher when incubated in the presence of light. Rates of oxidation by washed cell extracts, however, are light independent, which are actually identical to rates by cell-free filtrates incubated in the dark. Thus, AwwK-3b induces two Mn(II) oxidation mechanisms when incubated in the presence of light as opposed to predominantly direct enzymatic oxidation in the dark. Within the light, production of photochemically-active metabolites is coupled with initial direct enzymatic Mn(II) oxidation, resulting in substantially accelerated Mn(II) oxidation rates. Thus, Roseobacter-like bacteria may not only greatly influence Mn(II) oxidation and cycling within coastal surface waters, but may also induce a novel photo-oxidation pathway providing an alternative means of Mn(II) oxidation within the photic zone.

  5. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction

    PubMed Central

    Hansel, Colleen M.; Zeiner, Carolyn A.; Santelli, Cara M.; Webb, Samuel M.

    2012-01-01

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems. PMID:22802654

  6. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    PubMed

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  7. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction

    SciTech Connect

    Hansel, C. M.; Zeiner, C. A.; Santelli, C. M.; Webb, S. M.

    2012-07-16

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Finally, given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  8. Coupled Photochemical and Enzymatic Mn(II) Oxidation Pathways of a Planktonic Roseobacter-Like Bacterium

    PubMed Central

    Hansel, Colleen M.; Francis, Chris A.

    2006-01-01

    Bacteria belonging to the Roseobacter clade of the α-Proteobacteria occupy a wide range of environmental niches and are numerically abundant in coastal waters. Here we reveal that Roseobacter-like bacteria may play a previously unrecognized role in the oxidation and cycling of manganese (Mn) in coastal waters. A diverse array of Mn(II)-oxidizing Roseobacter-like species were isolated from Elkhorn Slough, a coastal estuary adjacent to Monterey Bay in California. One isolate (designated AzwK-3b), in particular, rapidly oxidizes Mn(II) to insoluble Mn(III, IV) oxides. Interestingly, AzwK-3b is 100% identical (at the 16S rRNA gene level) to a previously described Pfiesteria-associated Roseobacter-like bacterium, which is not able to oxidize Mn(II). The rates of manganese(II) oxidation by live cultures and cell-free filtrates are substantially higher when the preparations are incubated in the presence of light. The rates of oxidation by washed cell extracts, however, are light independent. Thus, AzwK-3b invokes two Mn(II) oxidation mechanisms when it is incubated in the presence of light, in contrast to the predominantly direct enzymatic oxidation in the dark. In the presence of light, production of photochemically active metabolites is coupled with initial direct enzymatic Mn(II) oxidation, resulting in higher Mn(II) oxidation rates. Thus, Roseobacter-like bacteria may not only play a previously unrecognized role in Mn(II) oxidation and cycling in coastal surface waters but also induce a novel photooxidation pathway that provides an alternative means of Mn(II) oxidation in the photic zone. PMID:16672501

  9. Anthropogenic Sulfur Perturbations on Biogenic Oxidation: Impacts of Sulfur Dioxide Additions on Bulk Gas Phase OH Oxidation Products of Alpha and Beta Pinene.

    NASA Astrophysics Data System (ADS)

    Friedman, B.; Brophy, P.; Brune, W. H.; Farmer, D.

    2015-12-01

    The evolution of biogenic volatile organic compounds (BVOCs) in the atmosphere is impacted by concurrent emissions of anthropogenic pollutants, such as sulfur dioxide (SO2) and nitrogen oxides (NOx), which can impact air quality and SOA formation in regions of biogenic and anthropogenic influence. We present the impacts of anthropogenic perturbations in the form of sulfur dioxide on the oxidation systems of α- and β-pinene. An oxidative flow reactor simulated atmospheric aging by OH oxidation on the order of days, and high-resolution time-of-flight mass spectrometry (HR-TOF-CIMS) was utilized to identify gas-phase oxidation products and changes to the ensemble system as a function of the SO2 perturbation. Results show that the SO2 perturbation impacted the oxidation systems of α- and β-pinene, and that these perturbations affected the oxidation systems of α- and β-pinene differently. Bulk analysis comparing the perturbed system to the unperturbed system indicated a change in oxidation pathway or mechanism leading to an ensemble of products with a lesser degree of oxygenation, on the order of a 30% decrease in the bulk oxidation state and a 10% decrease in the bulk O:C ratio for both BVOC systems. Increasing the relative humidity in the oxidative flow reactor was found to dampen the impact of the perturbation. Experiments involving other anthropogenic emissions, such as NOx, as well as other pairs of BVOC structural isomers, were conducted to investigate if changes in the oxidation system were due to the BVOC structure or the specific anthropogenic pollutant.

  10. p-type ZnO and ZnMnO by oxidation of Zn(Mn)Te films

    NASA Astrophysics Data System (ADS)

    Przedziecka, E.; Kamiska, E.; Dynowska, E.; Dobrowolski, W.; Jakiea, R.; Kopotowski, .; Sawicki, M.; Kiecana, M.; Kossut, J.

    2006-03-01

    ZnO and ZnMnO doped with N and/or As layers were fabricated by thermal oxidation of ZnTe and ZnMnTe grown by MBE on different substrates. The Hall measurements demonstrated p -type conductivity with the hole concentration of 5 . 1019 cm-3 for ZnO:As and ZnO:As:N on GaAs substrates and 6 . 1017 cm-3 for ZnTe:N on ZnTe substrates. Optical study showed meaningful differences between samples with different acceptor, grown on different substrates. Magnetoptical experiment demonstration Zeeman splitting in ZnMnO samples.

  11. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach

    NASA Astrophysics Data System (ADS)

    Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.

    2011-08-01

    One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.

  12. Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium.

    PubMed

    Lezama-Pacheco, Juan S; Cerrato, José M; Veeramani, Harish; Alessi, Daniel S; Suvorova, Elena; Bernier-Latmani, Rizlan; Giammar, Daniel E; Long, Philip E; Williams, Kenneth H; Bargar, John R

    2015-06-16

    Oxidative dissolution controls uranium release to (sub)oxic pore waters from biogenic uraninite produced by natural or engineered processes, such as bioremediation. Laboratory studies show that uraninite dissolution is profoundly influenced by dissolved oxygen (DO), carbonate, and solutes such as Ca(2+). In complex and heterogeneous subsurface environments, the concentrations of these solutes vary in time and space. Knowledge of dissolution processes and kinetics occurring over the long-term under such conditions is needed to predict subsurface uranium behavior and optimize the selection and performance of uraninite-based remediation technologies over multiyear periods. We have assessed dissolution of biogenic uraninite deployed in wells at the Rifle, CO, DOE research site over a 22 month period. Uraninite loss rates were highly sensitive to DO, with near-complete loss at >0.6 mg/L over this period but no measurable loss at lower DO. We conclude that uraninite can be stable over decadal time scales in aquifers under low DO conditions. U(VI) solid products were absent over a wide range of DO values, suggesting that dissolution proceeded through complexation and removal of oxidized surface uranium atoms by carbonate. Moreover, under the groundwater conditions present, Ca(2+) binds strongly to uraninite surfaces at structural uranium sites, impacting uranium fate. PMID:26001126

  13. Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium.

    PubMed

    Lezama-Pacheco, Juan S; Cerrato, José M; Veeramani, Harish; Alessi, Daniel S; Suvorova, Elena; Bernier-Latmani, Rizlan; Giammar, Daniel E; Long, Philip E; Williams, Kenneth H; Bargar, John R

    2015-06-16

    Oxidative dissolution controls uranium release to (sub)oxic pore waters from biogenic uraninite produced by natural or engineered processes, such as bioremediation. Laboratory studies show that uraninite dissolution is profoundly influenced by dissolved oxygen (DO), carbonate, and solutes such as Ca(2+). In complex and heterogeneous subsurface environments, the concentrations of these solutes vary in time and space. Knowledge of dissolution processes and kinetics occurring over the long-term under such conditions is needed to predict subsurface uranium behavior and optimize the selection and performance of uraninite-based remediation technologies over multiyear periods. We have assessed dissolution of biogenic uraninite deployed in wells at the Rifle, CO, DOE research site over a 22 month period. Uraninite loss rates were highly sensitive to DO, with near-complete loss at >0.6 mg/L over this period but no measurable loss at lower DO. We conclude that uraninite can be stable over decadal time scales in aquifers under low DO conditions. U(VI) solid products were absent over a wide range of DO values, suggesting that dissolution proceeded through complexation and removal of oxidized surface uranium atoms by carbonate. Moreover, under the groundwater conditions present, Ca(2+) binds strongly to uraninite surfaces at structural uranium sites, impacting uranium fate.

  14. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and... (MnSrO3) (PMN P-00-1121; CAS No. 12163-45-0) is subject to reporting under this section for...

  15. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and... (MnSrO3) (PMN P-00-1121; CAS No. 12163-45-0) is subject to reporting under this section for...

  16. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and... (MnSrO3) (PMN P-00-1121; CAS No. 12163-45-0) is subject to reporting under this section for...

  17. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and... (MnSrO3) (PMN P-00-1121; CAS No. 12163-45-0) is subject to reporting under this section for...

  18. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and... (MnSrO3) (PMN P-00-1121; CAS No. 12163-45-0) is subject to reporting under this section for...

  19. Anaerobic oxidation of [1,2-14C]dichloroethene under Mn(IV)-reducing conditions

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Dinicola, R.S.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]dichloroethene to14CO2 under Mn(IV)-reducing conditions was demonstrated. The results indicate that oxidative degradation of partially chlorinated solvents like dichloroethene can be significant even under anoxic conditions and demonstrate the potential importance of Mn(IV) reduction for remediation of chlorinated groundwater contaminants.

  20. Anaerobic Oxidation of [1,2-C]Dichloroethene under Mn(IV)-Reducing Conditions.

    PubMed

    Bradley, P M; Landmeyer, J E; Dinicola, R S

    1998-04-01

    Anaerobic oxidation of [1,2-C]dichloroethene to CO(2) under Mn(IV)-reducing conditions was demonstrated. The results indicate that oxidative degradation of partially chlorinated solvents like dichloroethene can be significant even under anoxic conditions and demonstrate the potential importance of Mn(IV) reduction for remediation of chlorinated groundwater contaminants.

  1. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    NASA Astrophysics Data System (ADS)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2016-09-01

    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  2. Quantitative analyses of oxidation states for cubic SrMnO3 and orthorhombic SrMnO2.5 with electron energy loss spectroscopy

    PubMed Central

    Kobayashi, S.; Tokuda, Y.; Mizoguchi, T.; Shibata, N.; Sato, Y.; Ikuhara, Y.; Yamamoto, T.

    2010-01-01

    The oxidation state of Mn in cubic SrMnO3 and orthorhombic SrMnO2.5 was investigated by electron energy loss (EEL) spectroscopy. Change in the oxidation state of Mn produced some spectral changes in the O-K edge as well as in the Mn-L2,3 edge EEL spectra. This study demonstrated that the oxidation state of Mn and the amount of oxygen vacancies in cubic SrMnO3 and orthorhombic SrMnO2.5 could be quantified by analyzing the features of the O-K edge spectrum and the Mn L3∕L2 ratio in the Mn-L2,3 edge spectrum. Our quantitative analysis showed that the spectral changes in the Mn-L2,3 edge were mainly caused by the oxidation state of Mn, whereas those in the O-K edge could be sensitive to both the oxidation state of Mn and to lattice distortions. PMID:21245943

  3. Nanostructured Mn-based oxides for electrochemical energy storage and conversion.

    PubMed

    Zhang, Kai; Han, Xiaopeng; Hu, Zhe; Zhang, Xiaolong; Tao, Zhanliang; Chen, Jun

    2015-02-01

    Batteries and supercapacitors as electrochemical energy storage and conversion devices are continuously serving for human life. The electrochemical performance of batteries and supercapacitors depends in large part on the active materials in electrodes. As an important family, Mn-based oxides have shown versatile applications in primary batteries, secondary batteries, metal-air batteries, and pseudocapacitors due to their high activity, high abundance, low price, and environmental friendliness. In order to meet future market demand, it is essential and urgent to make further improvements in energy and power densities of Mn-based electrode materials with the consideration of multiple electron reaction and low molecular weight of the active materials. Meanwhile, nanomaterials are favourable to achieve high performance by means of shortening the ionic diffusion length and providing large surface areas for electrode reactions. This article reviews the recent efforts made to apply nanostructured Mn-based oxides for batteries and pseudocapacitors. The influence of structure, morphology, and composition on electrochemical performance has been systematically summarized. Compared to bulk materials and notable metal catalysts, nanostructured Mn-based oxides can promote the thermodynamics and kinetics of the electrochemical reactions occurring at the solid-liquid or the solid-liquid-gas interface. In particular, nanostructured Mn-based oxides such as one-dimensional MnO2 nanostructures, MnO2-conductive matrix nanocomposites, concentration-gradient structured layered Li-rich Mn-based oxides, porous LiNi0.5Mn1.5O4 nanorods, core-shell structured LiMnSiO4@C nanocomposites, spinel-type Co-Mn-O nanoparticles, and perovskite-type CaMnO3 with micro-nano structures all display superior electrochemical performance. This review should shed light on the sustainable development of advanced batteries and pseudocapacitors with nanostructured Mn-based oxides.

  4. Kinetics of Mn(II) oxidation by Leptothrix discophora SS1

    NASA Astrophysics Data System (ADS)

    Zhang, Jinghao; Lion, Leonard W.; Nelson, Yarrow M.; Shuler, Michael L.; Ghiorse, William C.

    2002-03-01

    The kinetics of Mn(II) oxidation by the bacterium Leptothrix discophora SS1 was investigated in this research. Cells were grown in a minimal mineral salts medium in which chemical speciation was well defined. Mn(II) oxidation was observed in a bioreactor under controlled conditions with pH, O 2, and temperature regulation. Mn(II) oxidation experiments were performed at cell concentrations between 24 mg/L and 35 mg/L, over a pH range from 6 to 8.5, between temperatures of 10°C and 40°C, over a dissolved oxygen range of 0 to 8.05 mg/L, and with L. discophora SS1 cells that were grown in the presence of Cu concentrations ranging from zero to 0.1 μM. Mn(II) oxidation rates were determined when the cultures grew to stationary phase and were found to be directly proportional to O 2 and cell concentrations over the ranges investigated. The optimum pH for Mn(II) oxidation was approximately 7.5, and the optimum temperature was 30°C. A Cu level as low as 0.02 μM was found to inhibit the growth rate and yield of L. discophora SS1 observed in shake flasks, while Cu levels between 0.02 and 0.1 μM stimulated the Mn(II) oxidation rate observed in bioreactors. An overall rate law for Mn(II) oxidation by L. discophora as a function of pH, temperature, dissolved oxygen concentration (D.O.), and Cu concentration is proposed. At circumneutral pH, the rate of biologically mediated Mn(II) oxidation is likely to exceed homogeneous abiotic Mn(II) oxidation at relatively low (≈μg/L) concentrations of Mn oxidizing bacteria.

  5. Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO42- reduction

    SciTech Connect

    Moon, H. S.; Komlos, J.; Jaffé, P. R.

    2009-02-01

    Sediment column experiments were performed to quantify the effect of biogenic iron sulfide precipitates on the stability of bioreduced uranium during and after a simulated bioremediation scenario. In particular, this study examined the effect of different oxidants (dissolved oxygen and nitrate) on biogenic U(IV) oxidation in sediment that experienced significant sulfate reduction in addition to Fe(III) and U(VI) reduction. The experimental set-up included five replicate columns (each 5 cm in diameter, 15 cm long and packed with background sediment from a site contaminated with uranium) that were bioreduced for 70 days by injecting a nutrient media containing 3 mM acetate and 6 mM sulfate prior to oxidation. Upon oxidation, iron sulfide precipitates formed during bioreduction acted as a buffer to partially prevent biogenic U(IV) oxidation. The iron sulfides were more effective at protecting biogenic U(IV) from oxidation when dissolved oxygen was the oxidant compared to nitrate. A constant supply of 0.25 mM and 1.6 mM nitrate over a 50 day period resulted in uranium resolubilization of 11% and 60%, respectively, while less than 1% of the uranium was resolubilized in the column supplied 0.27 mM dissolved oxygen during the same time period. Over time, oxidation increased pore water channeling, which was more pronounced during oxidation with nitrate. Finally, increased channeling with time of oxidation could affect the transport of an oxidant through the previously reduced zone, and hence the oxidation dynamics of the reduced species.

  6. The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III).

    PubMed

    Duan, Lin; Wang, Zhongyuan; Hou, Yan; Wang, Zepeng; Gao, Guandao; Chen, Wei; Alvarez, Pedro J J

    2016-10-15

    Metal oxides are often anchored to graphene materials to achieve greater contaminant removal efficiency. To date, the enhanced performance has mainly been attributed to the role of graphene materials as a conductor for electron transfer. Herein, we report a new mechanism via which graphene materials enhance oxidation of organic contaminants by metal oxides. Specifically, Mn3O4-rGO nanocomposites (Mn3O4 nanoparticles anchored to reduced graphene oxide (rGO) nanosheets) enhanced oxidation of 1-naphthylamine (used here as a reaction probe) compared to bare Mn3O4. Spectroscopic analyses (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) show that the rGO component of Mn3O4-rGO was further reduced during the oxidation of 1-naphthylamine, although rGO reduction was not the result of direct interaction with 1-naphthylamine. We postulate that rGO improved the oxidation efficiency of anchored Mn3O4 by re-oxidizing Mn(II) formed from the reaction between Mn3O4 and 1-naphthylamine, thereby regenerating the surface-associated oxidant Mn(III). The proposed role of rGO was verified by separate experiments demonstrating its ability to oxidize dissolved Mn(II) to Mn(III), which subsequently can oxidize 1-naphthylamine. The role of dissolved oxygen in re-oxidizing Mn(II) was ruled out by anoxic (N2-purged) control experiments showing similar results as O2-sparged tests. Opposite pH effects on the oxidation efficiency of Mn3O4-rGO versus bare Mn3O4 were also observed, corroborating the proposed mechanism because higher pH facilitates oxidation of surface-associated Mn(II) even though it lowers the oxidation potential of Mn3O4. Overall, these findings may guide the development of novel metal oxide-graphene nanocomposites for contaminant removal. PMID:27448035

  7. The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III).

    PubMed

    Duan, Lin; Wang, Zhongyuan; Hou, Yan; Wang, Zepeng; Gao, Guandao; Chen, Wei; Alvarez, Pedro J J

    2016-10-15

    Metal oxides are often anchored to graphene materials to achieve greater contaminant removal efficiency. To date, the enhanced performance has mainly been attributed to the role of graphene materials as a conductor for electron transfer. Herein, we report a new mechanism via which graphene materials enhance oxidation of organic contaminants by metal oxides. Specifically, Mn3O4-rGO nanocomposites (Mn3O4 nanoparticles anchored to reduced graphene oxide (rGO) nanosheets) enhanced oxidation of 1-naphthylamine (used here as a reaction probe) compared to bare Mn3O4. Spectroscopic analyses (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) show that the rGO component of Mn3O4-rGO was further reduced during the oxidation of 1-naphthylamine, although rGO reduction was not the result of direct interaction with 1-naphthylamine. We postulate that rGO improved the oxidation efficiency of anchored Mn3O4 by re-oxidizing Mn(II) formed from the reaction between Mn3O4 and 1-naphthylamine, thereby regenerating the surface-associated oxidant Mn(III). The proposed role of rGO was verified by separate experiments demonstrating its ability to oxidize dissolved Mn(II) to Mn(III), which subsequently can oxidize 1-naphthylamine. The role of dissolved oxygen in re-oxidizing Mn(II) was ruled out by anoxic (N2-purged) control experiments showing similar results as O2-sparged tests. Opposite pH effects on the oxidation efficiency of Mn3O4-rGO versus bare Mn3O4 were also observed, corroborating the proposed mechanism because higher pH facilitates oxidation of surface-associated Mn(II) even though it lowers the oxidation potential of Mn3O4. Overall, these findings may guide the development of novel metal oxide-graphene nanocomposites for contaminant removal.

  8. Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas M.; Seaman, Vincent Y.; Charles, M. Judith; Holzinger, Rupert; Goldstein, Allen H.

    2006-08-01

    Biogenic volatile organic compound (BVOC) emissions, such as isoprene and terpenes, can be oxidized to form less volatile carbonyls, acids, and multifunctional oxygenated products that may condense to form secondary organic aerosols (SOA). This research was designed to assess the contribution of oxidized BVOC emissions to SOA in coniferous forests by collecting high-volume particulate samples for 6 days and 5 nights in the summer of 2003. The samples were analyzed for acids, carbonyls, polyols and alkanes to quantify oxidized BVOCs. Terpene and isoprene oxidation products were among the most abundant chemical species detected with the exception of hexadecanoic acid, octadecanoic acid and two butyl esters of unknown origin. The terpene oxidation products of pinonic acid, pinic acid, nopinone and pinonaldehyde showed clear diurnal cycles with concentrations two- to eight-fold higher at night. These cycles resulted from the diurnal cycles in gaseous terpene concentrations and lower temperatures that enhanced condensation of semivolatile chemicals onto aerosols. The terpene-derived compounds averaged 157 ± 118 ng/m3 of particulate organic matter while the isoprene oxidation compounds, namely the 2-methyltetrols and 2-methylglyceric acid, accounted for 53 ± 19 ng/m3. Together, the terpene and isoprene oxidation products represented 36.9% of the identified organic mass of 490 ± 95 ng/m3. PM10 organic matter loadings in the region were approximately 2.1 ± 1.2 μg/m3, so about 23% of the organic matter was identified and at least 8.6% was oxidized BVOCs. The BVOC oxidation products we measured were significant, but not dominant, contributors to the regional SOA only 75 km downwind of the Sacramento urban area.

  9. Mn-Oxide Minerals from a Terrestrial Cave Environment: Biomarkers for the Search for Life on Mars?

    NASA Technical Reports Server (NTRS)

    Spilde, M. N.; Brearley, A. J.; Papike, J. J.

    2001-01-01

    Mn-oxides are promising biomarkers because microbes greatly accelerate Mn-oxide formation rates and produce distinctive oxidation states. Mn minerals in terrestrial caves form subaerially and could conceivably be present in the subsurface of Mars. Additional information is contained in the original extended abstract.

  10. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System.

    PubMed

    Sujith, P P; Mourya, B S; Krishnamurthi, S; Meena, R M; Loka Bharathi, P A

    2014-01-01

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral deposition. We also hypothesized that, the Mn-oxidizing microbes may respond reversibly to pulses of fresh organic carbon introduced into the water column by mobilizing the Mn in Mn-oxides. To test these two hypotheses, we enumerated the number of Mn-oxidizers and -reducers and carried out studies on the mobilization of Mn by microbial communities associated with basalt. In medium containing 100 μM Mn(2+), 10(3) colony forming units (CFU) were recovered with undetectable number of reducers on Mn-oxide amended medium, suggesting that the community was more oxidative. Experiments were then conducted with basalt fragments at 4±2 °C in the presence 'G(+)' and absence 'G(-)' of glucose (0.1%). Controls included set-ups, some of which were poisoned with 15 mM azide and the others of which were heat-killed. The mobilization of Mn in the presence of glucose was 1.76 μg g(-1) d(-1) and in the absence, it was 0.17 μg g(-1) d(-1) after 150 d. Mn mobilization with and without added glucose was 13 and 4 times greater than the corresponding azide treated controls. However, rates in 'G(+)' were 16 times and 'G(-)' 24 times more than the respective heat killed controls. The corresponding total counts in the presence of added glucose increased from 1.63×10(6) to 6.71×10(7) cells g(-1) and from 1.41×10(7) to 3.52×10(7) cells g(-1) in its absence. Thus, the addition of glucose as a proxy for organic carbon changed the community's response from Mn(II)-oxidizing to Mn(IV)-reducing activity. The results confirm the participation of Mn oxidizing bacteria in the mobilization of Mn. Identification of culturable bacteria by 16S rRNA gene analysis showed taxonomic affiliations to Bacillus, Exiguobacterium, Staphylococcus, Brevibacterium and

  11. Interactions of proteins with biogenic iron oxyhydroxides and a new culturing technique to increase biomass yields of neutrophilic, iron-oxidizing bacteria

    PubMed Central

    Barco, Roman A.; Edwards, Katrina J.

    2014-01-01

    Neutrophilic, bacterial iron-oxidation remains one of the least understood energy-generating biological reactions to date. One of the reasons it remains under-studied is because there are inherent problems with working with iron-oxidizing bacteria (FeOB), including low biomass yields and interference from the iron oxides in the samples. In an effort to circumvent the problem of low biomass, a new large batch culturing technique was developed. Protein interactions with biogenic iron oxides were investigated confirming that such interactions are strong. Therefore, a protein extraction method is described to minimize binding of proteins to biogenic iron oxides. The combination of these two methods results in protein yields that are appropriate for activity assays in gels and for proteomic profiling. PMID:24910632

  12. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  13. Aqueous ultracapacitors using amorphous MnO2 and reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Mery, Adrien; Ghamouss, Fouad; Autret, Cécile; Farhat, Douaa; Tran-Van, François

    2016-02-01

    Herein, synthesis and characterization of amorphous MnO2 and application in asymmetric aqueous ultracapacitors are reported. Different amorphous manganese oxide (MnO2) materials were synthesized from the reduction of KMnO4 in different media such as ethanol (EtOH) or dimethylformamide (DMF). The electrochemical behavior of amorphous MnO2, labeled MnO2-Et and MnO2-DMF, were studied by using cyclic voltammetry, impedance spectroscopy, and galvanostatic cycling in aqueous electrolyte. XRD, BET, TEM, and SEM characterizations highlighted the amorphous nature and the nanostructuration of these MnO2 materials. BET measurement established that these amorphous MnO2 are mesoporous. In addition, MnO2-Et exhibits a larger specific surface area (168 m2 g-1), a narrower pore diameters distribution with lower diameters compared to MnO2-DMF. These results are in agreement with the electrochemical results. Indeed, MnO2-Et shows a higher specific capacitance and lower impedance in aqueous K2SO4 electrolyte. Furthermore, aqueous asymmetric ultracapacitors were assembled and studied using amorphous MnO2 as positive electrode and reduced graphene oxide (rGO) as negative electrode. These asymmetric systems exhibit an electrochemical stability for more than 20,000 galvanostatic cycles at current density of 1 A g-1 with an operating voltage of 2 V.

  14. Interfacial strain and defects in asymmetric Fe-Mn oxide hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Mayence, Arnaud; Wéry, Madeleine; Tran, Dung Trung; Wetterskog, Erik; Svedlindh, Peter; Tai, Cheuk-Wai; Bergström, Lennart

    2016-07-01

    Asymmetric Fe-Mn oxide hybrid nanoparticles have been obtained by a seed-mediated thermal decomposition-based synthesis route. The use of benzyl ether as the solvent was found to promote the orientational growth of Mn1-xO onto the iron oxide nanocube seeds yielding mainly dimers and trimers whereas 1-octadecene yields large nanoparticles. HRTEM imaging and HAADF-STEM tomography performed on dimers show that the growth of Mn1-xO occurs preferentially along the edges of iron oxide nanocubes where both oxides share a common crystallographic orientation. Fourier filtering and geometric phase analysis of dimers reveal a lattice mismatch of 5% and a large interfacial strain together with a significant concentration of defects. The saturation magnetization is lower and the coercivity is higher for the Fe-Mn oxide hybrid nanoparticles compared to the iron oxide nanocube seeds.Asymmetric Fe-Mn oxide hybrid nanoparticles have been obtained by a seed-mediated thermal decomposition-based synthesis route. The use of benzyl ether as the solvent was found to promote the orientational growth of Mn1-xO onto the iron oxide nanocube seeds yielding mainly dimers and trimers whereas 1-octadecene yields large nanoparticles. HRTEM imaging and HAADF-STEM tomography performed on dimers show that the growth of Mn1-xO occurs preferentially along the edges of iron oxide nanocubes where both oxides share a common crystallographic orientation. Fourier filtering and geometric phase analysis of dimers reveal a lattice mismatch of 5% and a large interfacial strain together with a significant concentration of defects. The saturation magnetization is lower and the coercivity is higher for the Fe-Mn oxide hybrid nanoparticles compared to the iron oxide nanocube seeds. Electronic supplementary information (ESI) available: Materials characterization, powder X-ray diffraction, EFTEM images, EELS spectra, HAADF-STEM. See DOI: 10.1039/c6nr01373b

  15. Selective Alkane Oxidation by Manganese Oxide: Site Isolation of MnOx Chains at the Surface of MnWO4 Nanorods.

    PubMed

    Li, Xuan; Lunkenbein, Thomas; Pfeifer, Verena; Jastak, Mateusz; Nielsen, Pia Kjaer; Girgsdies, Frank; Knop-Gericke, Axel; Rosowski, Frank; Schlögl, Robert; Trunschke, Annette

    2016-03-14

    The electronic and structural properties of vanadium-containing phases govern the formation of isolated active sites at the surface of these catalysts for selective alkane oxidation. This concept is not restricted to vanadium oxide. The deliberate use of hydrothermal techniques can turn the typical combustion catalyst manganese oxide into a selective catalyst for oxidative propane dehydrogenation. Nanostructured, crystalline MnWO4 serves as the support that stabilizes a defect-rich MnOx surface phase. Oxygen defects can be reversibly replenished and depleted at the reaction temperature. Terminating MnOx zigzag chains on the (010) crystal planes are suspected to bear structurally site-isolated oxygen defects that account for the unexpectedly good performance of the catalyst in propane activation. PMID:26913704

  16. Nitrogen Oxides from Biogenic Alkyl Nitrates: A Natural Source of Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Lawler, M. J.; Saltzman, E. S.; Prather, M. J.

    2007-12-01

    Observations indicate that the tropical and southern oceans are source regions for biogenic emissions of alkyl nitrates. These compounds have lifetimes of several days to a month and are a significant source of reactive odd nitrogen (NOx) in remote regions of the atmosphere. These biogenically produced NOx precursors represent a natural control on atmospheric composition, including the important greenhouse gases methane (CH4) and tropospheric ozone (O3). We present simulations from the UCI global chemical transport model (CTM) using measurement-based fluxes of methyl and ethyl nitrate from their oceanic source regions and examine the contribution of these gases to global atmospheric composition. We also discuss the sensitivity of our results to our representation of two sub-gridscale processes: wet scavenging and photolysis in the presence of broken cloud fields. Quantification of the transport and chemistry of these compounds improves our understanding of natural tropospheric ozone production as well as hydroxyl radical (OH) chemistry in both the remote regions of the modern atmosphere and the pre-industrial atmosphere.

  17. Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn(2+) photo-oxidation by anoxygenic bacterial reaction centers.

    PubMed

    Khorobrykh, Andrei; Dasgupta, Jyotishman; Kolling, Derrick R J; Terentyev, Vasily; Klimov, Vyacheslav V; Dismukes, G Charles

    2013-09-23

    The enzyme that catalyzes water oxidation in oxygenic photosynthesis contains an inorganic cluster (Mn4 CaO5 ) that is universally conserved in all photosystem II (PSII) protein complexes. Its hypothesized precursor is an anoxygenic photobacterium containing a type 2 reaction center as photo-oxidant (bRC2, iron-quinone type). Here we provide the first experimental evidence that a native bRC2 complex can catalyze the photo-oxidation of Mn(2+) to Mn(3+) , but only in the presence of bicarbonate concentrations that allows the formation of (bRC2)Mn(2+) (bicarbonate)1-2 complexes. Parallel-mode EPR spectroscopy was used to characterize the photoproduct, (bRC2)Mn(3+) (CO3 (2-) ), based on the g tensor and (55) Mn hyperfine splitting. (Bi)carbonate coordination extends the lifetime of the Mn(3+) photoproduct by slowing charge recombination. Prior electrochemical measurements show that carbonate complexation thermodynamically stabilizes the Mn(3+) product by 0.9-1 V relative to water ligands. A model for the origin of the water oxidation catalyst is presented that proposes chemically feasible steps in the evolution of oxygenic PSIIs, and is supported by literature results on the photoassembly of contemporary PSIIs.

  18. Removal of tetracycline from water by Fe-Mn binary oxide.

    PubMed

    Liu, Huijuan; Yang, Yang; Kang, Jin; Fan, Maohong; Qu, Jiuhui

    2012-01-01

    Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments. A series of Fe-Mn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal. Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide, and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios. The tetracycline removal was highly pH dependent. The removal of tetracycline decreased with the increase of initial concentration, but the absolute removal quantity was more at high concentration. The presence of cations and anions such as Ca2+, Mg2+, CO3(2-) and SO4(2-) had no significant effect on the tetracycline removal in our experimental conditions, while SiO3(2-) and PO4(3-) had hindered the adsorption of tetracycline. The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface. This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions. PMID:22655383

  19. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.

    PubMed

    Langley, S; Igric, P; Takahashi, Y; Sakai, Y; Fortin, D; Hannington, M D; Schwarz-Schampera, U

    2009-01-01

    Sediment samples were obtained from areas of diffuse hydrothermal venting along the seabed in the Tonga sector of the Tonga-Kermadec Arc, southwest Pacific Ocean. Sediments from Volcano 1 and Volcano 19 were analyzed by X-ray diffraction (XRD) and found to be composed primarily of the iron oxyhydroxide mineral, two-line ferrihydrite. XRD also suggested the possible presence of minor amounts of more ordered iron (hydr)oxides (including six-line ferrihydrite, goethite/lepidocrocite and magnetite) in the biogenic iron oxides (BIOS) from Volcano 1; however, Mössbauer spectroscopy failed to detect any mineral phases more crystalline than two-line ferrihydrite. The minerals were precipitated on the surfaces of abundant filamentous microbial structures. Morphologically, some of these structures were similar in appearance to the known iron-oxidizing genus Mariprofundus spp., suggesting that the sediments are composed of biogenic iron oxides. At Volcano 19, an areally extensive, active vent field, the microbial cells appeared to be responsible for the formation of cohesive chimney-like structures of iron oxyhydroxide, 2-3 m in height, whereas at Volcano 1, an older vent field, no chimney-like structures were apparent. Iron reduction of the sediment material (i.e. BIOS) by Shewanella putrefaciens CN32 was measured, in vitro, as the ratio of [total Fe(II)]:[total Fe]. From this parameter, reduction rates were calculated for Volcano 1 BIOS (0.0521 day(-1)), Volcano 19 BIOS (0.0473 day(-1)), and hydrous ferric oxide, a synthetic two-line ferrihydrite (0.0224 day(-1)). Sediments from both BIOS sites were more easily reduced than synthetic ferrihydrite, which suggests that the decrease in effective surface area of the minerals within the sediments (due to the presence of the organic component) does not inhibit subsequent microbial reduction. These results indicate that natural, marine BIOS are easily reduced in the presence of dissimilatory iron-reducing bacteria, and that the

  20. Peroxycarboxylic Nitric Anhydrides as Markers of Anthropogenic and Biogenic VOC Photo-oxidation in the Alberta Oil Sands

    NASA Astrophysics Data System (ADS)

    Osthoff, H. D.; Huo, J. A.; Tokarek, T. W.; Odame-Ankrah, C. A.; Saowapon, M. T.; Chen, X.

    2014-12-01

    The peroxycarboxylic nitric anhydrides (molecular formula RC(O)O2NO2) are well-known byproducts of the photo-oxidation chemistry between NOx and volatile organic compounds (VOCs) that produces ozone (O3) and photochemical smog. More than 43 different PAN species are known; their relative abundances are chemical markers of the types and quantities of the VOCs involved in the O3-formation process. For example, MPAN (R: CH2=C(CH3)-) is primarily derived from isoprene and thus a marker of biogenic VOC oxidation, whereas PPN (R: C2H5-) is a photo-oxidation byproduct of anthropogenic VOCs. In the summer of 2013 an intensive air quality measurement campaign was conducted to investigate the impacts of emissions from the Alberta oil sands mining operations on the chemical composition of ambient air. As part of this effort, several peroxycarboxylic nitric anhydrides, specifically PAN (R: CH3-), PPN, MPAN, APAN (R: CH2=CH-), and PiBN (R: iC3H7-), were quantified by gas chromatography with electron capture detection at the AMS13 ground site near Fort McKay, Alberta. Furthermore, total peroxyacyl nitrates (ΣPAN) were quantified by thermal dissociation cavity ring-down spectroscopy (TD-CRDS). PAN mixing ratios typically peaked in the mid-afternoon (maximum PAN mixing ratio of 0.85 ppbv), constituting up to 25% of total odd nitrogen (NOy), and were usually below detection limits at night. ΣPAN was generally greater than the amount calculated by summation of individually measured PANs (SPANi) suggesting the presence of PAN species not measured by GC. During times of active photo-oxidation chemistry, the PPN:PAN and MPAN:PAN ratios varied considerably between days, depending on air mass origin and VOC composition. A linear combination model (LCM) was used to assess regional O3 production from the oxidation of biogenic hydrocarbons (via MPAN) relative to that of anthropogenic hydrocarbons (via PPN). The relative contribution of anthropogenic VOCs to regional O3 production varied

  1. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I; Khashab, Niveen M

    2015-07-28

    A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. A Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, a spin glass-like state is observed with the decrease in magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs are prepared by seeded growth. The structure of the core is cubic spinel (Fd3¯m), and the shell is composed of iron-manganese oxide (Mn(x)Fe(1-x)O) with a rock salt structure (Fm3¯m). Moiré fringes appear perpendicular to the 〈110〉 directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in the lattice spacings between MnFe2O4 and Mn(x)Fe(1-x)O. Exchange bias is observed in these MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs with an enhanced coercivity, as well as the shift of hysteresis along the field direction.

  2. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates.

    PubMed

    Li, X David; Schwartz, Franklin W

    2004-02-01

    In situ chemical oxidation (ISCO) schemes using MnO4- have been effective in destroying chlorinated organic solvents dissolved in ground water. Laboratory experiments and field pilot tests reveal that the precipitation of Mn oxide, one of the reaction products, causes a reduction of permeability, which can lead to flow bypassing and inefficiency of the scheme. Without a solution to this problem of plugging, it is difficult to remove DNAPL from the subsurface completely. In a companion paper, we showed with batch experiments that Mn oxide can be dissolved rapidly with certain organic acids. This study utilizes 2-D flow-tank experiments to examine the possibility of nearly complete DNAPL removal by ISCO with MnO4-, when organic acids are used to remove Mn oxide. The experiments were conducted in a small 2-D glass flow tank containing a lenticular silica-sand medium. Blue-dyed trichloroethylene (TCE) provided residual, the perched and pooled DNAPL. KMnO4 at 200 mg/l was flushed through the DNAPL horizontally. Once plugging reduced permeability and prevented further delivery of the oxidant, citric or oxalic acids were pumped into the flow tank to dissolve the Mn oxide precipitates. Organic ligands removed the Mn oxide precipitates relatively quickly, and permitted another cycle of MnO4- flooding. Cycles of MnO4-/acid flooding continued until all of the visible DNAPL was removed. The experiments were monitored with chemical analysis and visualization. A mass-balance calculation indicated that by the end of the experiments, all the DNAPL was removed. The results show also how heterogeneity adds complexity to initial redistribution of DNAPL, and to the efficiency of the chemical flooding. PMID:14734249

  3. DNAPL remediation with in situ chemical oxidation using potassium permanganate - II. Increasing removal efficiency by dissolving Mn oxide precipitates

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-02-01

    In situ chemical oxidation (ISCO) schemes using MnO 4- have been effective in destroying chlorinated organic solvents dissolved in ground water. Laboratory experiments and field pilot tests reveal that the precipitation of Mn oxide, one of the reaction products, causes a reduction of permeability, which can lead to flow bypassing and inefficiency of the scheme. Without a solution to this problem of plugging, it is difficult to remove DNAPL from the subsurface completely. In a companion paper, we showed with batch experiments that Mn oxide can be dissolved rapidly with certain organic acids. This study utilizes 2-D flow-tank experiments to examine the possibility of nearly complete DNAPL removal by ISCO with MnO 4-, when organic acids are used to remove Mn oxide. The experiments were conducted in a small 2-D glass flow tank containing a lenticular silica-sand medium. Blue-dyed trichloroethylene (TCE) provided residual, the perched and pooled DNAPL. KMnO 4 at 200 mg/l was flushed through the DNAPL horizontally. Once plugging reduced permeability and prevented further delivery of the oxidant, citric or oxalic acids were pumped into the flow tank to dissolve the Mn oxide precipitates. Organic ligands removed the Mn oxide precipitates relatively quickly, and permitted another cycle of MnO 4- flooding. Cycles of MnO 4-/acid flooding continued until all of the visible DNAPL was removed. The experiments were monitored with chemical analysis and visualization. A mass-balance calculation indicated that by the end of the experiments, all the DNAPL was removed. The results show also how heterogeneity adds complexity to initial redistribution of DNAPL, and to the efficiency of the chemical flooding.

  4. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    PubMed

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species. PMID:26040736

  5. Site Determination and Magnetism of Mn Doping in Protein Encapsulated Iron Oxide Nanoparticles

    SciTech Connect

    Pool, V.; Klem, M.; Jolley, J.; Arenholz, E.A.; Douglas, T.; Young, M.; Idzerda, Y.U.

    2010-01-11

    Soft-X-ray absorption spectroscopy, soft-X-ray magnetic circular dichroism, and alternating current magnetic susceptibility were performed on 6.7 nm iron oxide nanoparticles doped with (5-33%) Mn grown inside the horse-spleen ferritin protein cages and compared to similarly protein encapsulated pure Fe-oxide and Mn-oxide nanoparticles to determine the site of the Mn dopant and to quantify the magnetic behavior with varying Mn concentration. The Mn dopant is shown to substitute preferentially as Mn{sup +2} and prefers the octahedral site in the defected spinel structure. The Mn multiplet structure for the nanoparticles is simpler than for the bulk standards, suggesting that the nanoparticle lattices are relaxed from the distortions present in the bulk. Addition of Mn is found to alter the host Fe-oxide lattice from a defected ferrimagnetic spinel structure similar to {gamma}-Fe{sub 2}O{sub 3} to an non-ferromagnetic spinel structure with a local Fe environment similar to Fe{sub 3}O{sub 4}.

  6. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    PubMed

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.

  7. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  8. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  9. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    PubMed

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth. PMID:27027418

  10. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    PubMed

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  11. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust.

    PubMed

    Wang, Weichao; McCool, Geoffrey; Kapur, Neeti; Yuan, Guang; Shan, Bin; Nguyen, Matt; Graham, Uschi M; Davis, Burtron H; Jacobs, Gary; Cho, Kyeongjae; Hao, Xianghong

    2012-08-17

    Oxidation of nitric oxide (NO) for subsequent efficient reduction in selective catalytic reduction or lean NO(x) trap devices continues to be a challenge in diesel engines because of the low efficiency and high cost of the currently used platinum (Pt)-based catalysts. We show that mixed-phase oxide materials based on Mn-mullite (Sm, Gd)Mn(2)O(5) are an efficient substitute for the current commercial Pt-based catalysts. Under laboratory-simulated diesel exhaust conditions, this mixed-phase oxide material was superior to Pt in terms of cost, thermal durability, and catalytic activity for NO oxidation. This oxide material is active at temperatures as low as 120°C with conversion maxima of ~45% higher than that achieved with Pt. Density functional theory and diffuse reflectance infrared Fourier transform spectroscopy provide insights into the NO-to-NO(2) reaction mechanism on catalytically active Mn-Mn sites via the intermediate nitrate species.

  12. Isolation and Characterization of a Mn(II)-Oxidizing Bacillus Strain from the Demosponge Suberites domuncula

    PubMed Central

    Wang, Xiaohong; Wiens, Matthias; Divekar, Mugdha; Grebenjuk, Vladislav A.; Schröder, Heinz C.; Batel, Renato; Müller, Werner E. G.

    2011-01-01

    In this study we demonstrate that the demosponge Suberites domuncula harbors a Mn(II)-oxidizing bacterium, a Bacillus strain, termed BAC-SubDo-03. Our studies showed that Mn(II) stimulates bacterial growth and induces sporulation. Moreover, we show that these bacteria immobilize manganese on their cell surface. Comparison of the 16S rDNA sequence allowed the grouping of BAC-SubDo-03 to the Mn-precipitating bacteria. Analysis of the spore cell wall revealed that it contains an Mn(II)-oxidizing enzyme. Co-incubation studies of BAC-SubDo-03 with 100 μM MnCl2 and >1 μM of CuCl2 showed an increase in their Mn(II)-oxidizing capacity. In order to prove that a multicopper oxidase-like enzyme(s) (MCO) exists in the cell wall of the S. domuncula-associated BAC-SubDo-03 Bacillus strain, the gene encoding this enzyme was cloned (mnxG-SubDo-03). Sequence alignment of the deduced MCO protein (MnxG-SubDo-03) revealed that the sponge bacterium clusters together with known Mn(II)-oxidizing bacteria. The expression of the mnxG-SubDo-03 gene is under strong control of extracellular Mn(II). Based on these findings, we assume that BAC-SubDo-03 might serve as a Mn reserve in the sponge providing the animal with the capacity to detoxify Mn in the environment. Applying the in vitro primmorph cell culture system we could demonstrate that sponge cells, that were co-incubated with BAC-SubDo-03 in the presence of Mn(II), show an increased proliferation potential. PMID:21339943

  13. Mycogenic Mn(II) oxidation promotes remediation of acid mine drainage and other anthropogenically impacted environments

    NASA Astrophysics Data System (ADS)

    Santelli, C. M.; Chaput, D.; Hansel, C. M.; Burgos, W. D.

    2014-12-01

    Manganese is a pollutant in worldwide environments contaminated with metals and organics, such as acid mine drainage (AMD), freshwater ponds, and agricultural waste storage sites. Microorganisms contribute to the removal of dissolved Mn compounds in the environment by promoting Mn(II) oxidation reactions. The oxidation of Mn(II) results in the precipitation of sparingly soluble Mn(IV) oxide minerals, effectively removing the metal from the aqueous milieu (e.g., groundwater or wastewater streams). In recent years, our research has identified a diversity of Mn(II)-oxidizing fungi inhabiting these polluted environments, however their overall contribution to the remediation process in situ remains poorly understood. Here we present results of culture-based and Next Generation Sequencing (NGS) studies in AMD treatment systems actively remediating Mn and other metals where we profile the bacterial, fungal, algal and archaeal communities to determine the overall community diversity and to establish the relative abundance of known Mn(II) oxidizers. A variety of treatment systems with varying Mn-removal efficiencies were sampled to understand the relationship between remediation efficiency and microbial community composition and activity. Targeted-amplicon sequencing of DNA and RNA of the 16S rRNA genes (bacteria and archaea), 23S rRNA genes (algae) and ITS region (fungi) was performed using both 454 pyrosequencing and Illumina platforms. Results showed that only the fungal taxonomic profiles significantly differed between sites that removed the majority of influent Mn and those that did not. Specifically, Ascomycota (which include known Mn(II) oxidizers isolated from these treatment systems) dominated greater efficiency systems whereas less efficient systems were dominated by Basidiomycota. Furthermore, known Mn(II) oxidizers accounted for only a minor proportion of bacterial sequences but a far greater proportion of fungal sequences. These culture-independent studies lend

  14. Manganese(IV) Oxide Production by Acremonium sp. Strain KR21-2 and Extracellular Mn(II) Oxidase Activity

    PubMed Central

    Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke

    2006-01-01

    Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194

  15. Indirect Oxidation of Co(II) in the Presence of the Marine Mn(II)-Oxidizing Bacterium Bacillus Sp. Strain SG-1

    SciTech Connect

    Murray, K.J.; Webb, S.M.; Bargar, J.R.; Tebo, B.M.; /Scripps Inst. Oceanography /SLAC, SSRL /Oregon Health Sci. U.

    2009-04-29

    Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.

  16. Cooperative Mn(II) oxidation between two bacterial strains in an aquatic environment.

    PubMed

    Liang, Jinsong; Bai, Yaohui; Hu, Chengzhi; Qu, Jiuhui

    2016-02-01

    In natural or engineered environments, diverse interspecific interactions among two or more microbial taxa may profoundly affect the transformation of organic compounds in the media. Little is known, however, about how these organisms and interactions affect the transformation of heavy metals. Recently, we found an interaction between two non-Mn(II)-oxidizing (when in monoculture) strains, Arthrobacter sp. QXT-31 and Sphingopyxis sp. QXT-31, which, when cultured in combination, resulted in Mn(II)-oxidizing activity in synthetic media. In order to study the occurrence likelihood of cooperative Mn(II) oxidation in natural water and discharged effluent, we initially identified an optimal ratio of the two strains in a combined culture, as well as the impacts of external factors on the cooperative oxidation. Once preferred initial conditions were established, we assessed the degree and rate of Mn(II) oxidation mediated by the combined QXT-31 strains (henceforth referred to as simply 'QXT-31') in three different water types: groundwater, domestic sewage and coking wastewater. Results showed that Mn(II) oxidation only occurred when the two strains were within a specific ratios range. When introduced to the test waters at the preferred ratio, QXT-31 demonstrated high Mn(II)-oxidizing activities, even when relative abundance of QXT-31 was very low (roughly 1.6%, calculated by 454 pyrosequencing events on 16S rcDNA). Interestingly, even under low relative abundance of QXT-31, removal of total organic carbon and total nitrogen in the test waters was significantly higher than the control treatments that were not inoculated with QXT-31. Data from our study indicate that cooperative Mn(II) oxidation is most likely to occur in natural aquatic ecosystems, and also suggests an alternative method to treat wastewater containing high concentrations of Mn(II).

  17. Ligand redox non-innocence in the stoichiometric oxidation of Mn2(2,5-dioxidoterephthalate) (Mn-MOF-74).

    PubMed

    Cozzolino, Anthony F; Brozek, Carl K; Palmer, Ryan D; Yano, Junko; Li, Minyuan; Dincă, Mircea

    2014-03-01

    Unsaturated metal sites within the nodes of metal-organic frameworks (MOFs) can be interrogated by redox reagents common to small molecule chemistry. We show, for the first time, that an analogue of the iconic M2(2,5-dioxidoterephthalate) (M2DOBDC, MOF-74) class of materials can be stoichiometrically oxidized by one electron per metal center. The reaction of Mn2DOBDC with C6H5ICl2 produces the oxidized material Cl2Mn2DOBDC, which retains crystallinity and porosity. Surprisingly, magnetic measurements, X-ray absorption, and infrared spectroscopic data indicate that the Mn ions maintain a formal oxidation state of +2, suggesting instead the oxidation of the DOBDC(4-) ligand to the quinone DOBDC(2-). These results describe the first example of ligand redox non-innocence in a MOF and a rare instance of stoichiometric electron transfer involving the metal nodes. The methods described herein offer a synthetic toolkit that will be of general use for further explorations of the redox reactivity of MOF nodes.

  18. Catalytic oxidation of benzene with ozone over Mn/KIT-6.

    PubMed

    Park, Jong Hwa; Kim, Ji Man; Jurng, Jongsoo; Bae, Gwi-Nam; Park, Sung Hoon; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon

    2013-01-01

    Benzene is one of the target compounds to be removed from air owing to its carcinogenicity. In this study, benzene oxidation with ozone over a MnOx/KIT-6 catalyst was carried out for the first time. MnOx/KIT-6 was synthesized using two different Mn precursors: Mn acetate and Mn nitrate. The characteristics of the synthesized catalysts were examined by X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction, Brunauer-Emmett-Teller (BET) surface area, and N2 adsorption-desorption. The catalytic activity was found to be dependent on the amount of ozone consumed and the dispersion and reducibility of MnOx on the catalyst surface. PMID:23646749

  19. Mixed-Valent Mn16-Containing Heteropolyanions: Tuning of Oxidation State and Associated Physicochemical Properties.

    PubMed

    Haider, Ali; Ibrahim, Masooma; Bassil, Bassem S; Carey, Akina M; Viet, Anh Nguyen; Xing, Xiaolin; Ayass, Wassim W; Miñambres, Juan F; Liu, Rongji; Zhang, Guangjin; Keita, Bineta; Mereacre, Valeriu; Powell, Annie K; Balinski, Kamil; N'Diaye, Alpha T; Küpper, Karsten; Chen, Han-Yi; Stimming, Ulrich; Kortz, Ulrich

    2016-03-21

    The two 16-manganese-containing, Keggin-based 36-tungsto-4-silicates [Mn(III)10Mn(II)6O6(OH)6(PO4)4(A-α-SiW9O34)4](28-) (1) and [Mn(III)4Mn(II)12(OH)12(PO4)4(A-α-SiW9O34)4](28-) (2) have been prepared by reaction of the trilacunary Keggin precursor [A-α-SiW9O34](10-) with either Mn(OOCCH3)3·2H2O (for 1) or MnCl2·4H2O (for 2), in aqueous phosphate solution at pH 9. Polyanions 1 and 2 comprise mixed-valent, cationic {Mn(III)10Mn(II)6O6(OH)6}(24+) and {Mn(III)4Mn(II)12(OH)12}(24+) cores, respectively, encapsulated by four phosphate groups and four {SiW9} units in a tetrahedral fashion. Both polyanions were structurally and compositionally characterized by single-crystal XRD, IR, thermogravimetric analysis, and X-ray absorption spectroscopy. Furthermore, studies were performed probing the magnetic, electrochemical, oxidation catalytic, and Li-ion battery performance of 1 and 2. PMID:26931312

  20. Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants.

    PubMed

    Cerrato, José M; Hochella, Michael F; Knocke, William R; Dietrich, Andrea M; Cromer, Thomas F

    2010-08-01

    X-ray photoelectron spectroscopy (XPS) was used to identify Mn(II), Mn(III), and Mn(IV) in the surfaces of pure oxide standards and filtration media samples from drinking water treatment plants through the determination of the magnitude of the Mn 3s multiplet splitting and the position and shape of the Mn 3p photo-line. The Mn 3p region has been widely studied by applied physicists and surface scientists, but its application to identify the oxidation state of Mn in heterogeneous oxide samples has been limited. This study shows that the use of both the Mn 3s multiplet splitting and the position and shape of the Mn 3p photo-line provides a feasible means of determining the oxidation state of manganese in complex heterogeneous, environmentally important samples. Surface analysis of filtration media samples from several drinking water treatment plants was conducted. While Mn(IV) was predominant in most samples, a mixture of Mn(III) and Mn(IV) was also identified in some of the filtration media samples studied. The predominance of Mn(IV) in the media samples was felt to be related to the maintenance of free chlorine (HOCl) at substantial concentrations (2-5 mg*L(-1) as Cl2) across these filters. XPS could be a useful tool to further understand the specific mechanisms affecting soluble Mn removal using MnOx-coated filtration media.

  1. Inverse relationship between the degree of oxidation of OOA (oxygenated organic aerosol) and the oxidant OX (O3 +NO2) due to biogenic emissions

    NASA Astrophysics Data System (ADS)

    Canonaco, F.; Slowik, J. G.; Baltensperger, U.; Prévôt, A. S. H.

    2014-11-01

    Aerosol chemical speciation monitor (ACSM) measurements were performed in Zurich, Switzerland for 13 months (February 2011 through February 2012). Many previous studies using this or related instruments have utilized the fraction of organic mass measured at m/z 44 (f44), which is typically dominated by the CO2+ ion and related to oxygenation, as an indicator of atmospheric aging. The current study demonstrates that during summer afternoons, when photochemical processes are most vigorous as indicated by high oxidant OX (O3+NO2), f44 for ambient SOA is not higher but is rather similar or lower than on days with low OX. This is likely due to the formation of semi-volatile oxygenated aerosol produced from biogenic precursor gases, whose emissions increase with ambient temperature. An additional observation is that in winter often higher f44 values in SOA are reached compared to summer. A possible cause could be aqueous processes associated with enhanced relative humidities and cloud cover in winter. The main changes in f44 for the summer case are discussed in the f44f43 space frequently used to interpret ACSM and aerosol mass spectrometer (AMS) data. In addition, source apportionment analyses conducted on winter and summer data using positive matrix factorization (PMF) yield semi-volatile oxygenated organic aerosol (SV-OOA) factors that retain source-related chemical information. Winter SV-OOA is highly influenced by biomass burning, whereas summer SV-OOA is to a high degree produced from biogenic precursor gases.

  2. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.

    PubMed

    Shan, Chao; Tong, Meiping

    2013-06-15

    Magnetic nanoparticles (MNPs) modified simultaneously with amorphous Fe and Mn oxides (Mag-Fe-Mn) were synthesized to remove arsenite [As(III)] from water. Mag-Fe-Mn particles were fabricated through heterogeneous nucleation technique by employing the maghemite as the magnetic core and Fe-Mn binary oxide (FMBO) as the coating materials. Powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy were utilized to characterize the hybrid material. With a saturation magnetization of 23.2 emu/g, Mag-Fe-Mn particles with size of 20-50 nm could be easily separated from solutions with a simple magnetic process in short time (within 5 min). At pH 7.0, 200 μg/L of As(III) could be easily decreased to below 10 μg/L by Mag-Fe-Mn particles (0.1 g/L) within 20 min. As(III) could be effectively removed by Mag-Fe-Mn particles at initial pH range from 4 to 8 and the residual As was completely oxidized to less toxic arsenate [As(V)]. The co-occurring redox reactions between Mn oxide and As(III) was confirmed by XPS analysis. Chloride, sulfate, bicarbonate, and nitrate at common concentration range had negligible influence on As(III) removal, whereas, silicate and phosphate reduced the As(III) removal by competing with arsenic species for adsorption sites. As(III) removal was not obviously affected by natural organic matter (up to 8 mg/L as TOC). Mag-Fe-Mn could be regenerated with ternary solution of NaOH, NaCl, and NaClO. Throughout five consecutive cycles, the adsorption and desorption efficiencies maintained above 98% and 87%, respectively. Mag-Fe-Mn had a larger adsorption capacity for As(III) (47.76 mg/g) and could remove trace As(III) more thoroughly than MNPs modified solely with either Fe or Mn oxide due to the synergistic effect of the coating Fe and Mn oxides. This research extended the potential applicability of FMBO to a great extent and provided a convenient approach to efficiently remove trace As

  3. Novel Solar Energy Conversion Materials by Design of Mn(II) Oxides

    SciTech Connect

    Lany, S.; Peng, H.; Ndione, P.; Zakutayev, A.; Ginley, D. S.

    2013-01-01

    Solar energy conversion materials need to fulfill simultaneously a number of requirements in regard of their band-structure, optical properties, carrier transport, and doping. Despite their desirable chemical properties, e.g., for photo-electrocatalysis, transition-metal oxides usually do not have desirable semiconducting properties. Instead, oxides with open cation d-shells are typically Mott or charge-transfer insulators with notoriously poor transport properties, resulting from large effective electron/hole masses or from carrier self-trapping. Based on the notion that the electronic structure features (p-d interaction) supporting the p-type conductivity in d10 oxides like Cu2O and CuAlO2 occurs in a similar fashion also in the d5 (high-spin) oxides, we recently studied theoretically the band-structure and transport properties of the prototypical binary d5 oxides MnO and Fe2O3 [PRB 85, 201202(R)]. We found that MnO tends to self-trap holes by forming Mn+III, whereas Fe2O3 self-traps electrons by forming Fe+II. However, the self-trapping of holes is suppressed by when Mn is tetrahedrally coordinated, which suggests specific routes to design novel solar conversion materials by considering ternary Mn(II) oxides or oxide alloys. We are presenting theory, synthesis, and initial characterization for these novel energy materials.

  4. Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002

    NASA Astrophysics Data System (ADS)

    Warneke, C.; de Gouw, J. A.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Jakoubek, R.; Brown, S. S.; Stark, H.; Aldener, M.; Ravishankara, A. R.; Roberts, J. M.; Marchewka, M.; Bertman, S.; Sueper, D. T.; McKeen, S. A.; Meagher, J. F.; Fehsenfeld, F. C.

    2004-05-01

    Volatile organic compounds (VOCs) and some of their oxidants (O3, NO3) were measured on board the National Oceanic and Atmospheric Administration research ship R/V Ronald H. Brown along the coast of New England, downwind of New York, Boston, and Portsmouth and large forested areas in New Hampshire, Maine, and Massachusetts in July and August 2002. The diurnal variations of isoprene, monoterpenes, and aromatics were mainly dependent on their emissions and the abundance of the oxidants OH and NO3. Elevated mixing ratios of short-lived VOCs were only encountered at the ship, which was about 1-6 hours downwind of the sources, when the concentrations of the oxidants were low. For the biogenic compounds this was generally the case during morning and evening hours, when the lifetime of the biogenics was long because of low OH and NO3 concentrations. Most anthropogenic VOCs do not react with NO3, and therefore their mixing ratios remained elevated during the night. The products of isoprene oxidation, methyl vinyl ketone, methacrolein, and peroxymethacrylic nitric anhydride (MPAN) were, on average, more abundant than isoprene itself. Only during the transition periods from day to night, when oxidation rates were at a minimum, could isoprene exceed its products. The loss of the biogenic VOCs was dominated by reactions with NO3, whereas the loss of anthropogenics came mostly from reactions with OH. The oxygenated VOCs are the major contributor to the OH loss, except in close vicinity of emission sources. The total loss of biogenic compounds during the night was so effective that after one night of transport they were in most cases completely reacted away, whereas the mixing ratios of the anthropogenic compounds remained high during the night. The pool of reactive hydrocarbons at sunrise was thus typically dominated by anthropogenic VOCs.

  5. In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5 and Mn-Ag/HZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Li, Jiao; Na, Hongbo; Zeng, Xiaolan; Zhu, Tianle; Liu, Zhiming

    2014-08-01

    The mechanism of toluene oxidation at room temperature over Mn/HZSM-5, Ag/HZSM-5 and Mn-Ag/HZSM-5 catalysts was investigated by in situ DRIFTS. The results show that only a little toluene can be partially oxidized into benzyl alcohol in the absence of O3, while it can be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO2 in the presence of O3. The lattice oxygen is the oxygen species of oxidizing toluene into benzyl alcohol, and the active oxygen species generated from ozone decomposition on the oxygen vacancy over the catalysts are responsible for its complete oxidation. Compared with Mn/HZSM-5 and Ag/HZSM-5 catalysts, the Mn-Ag/HZSM-5 catalyst shows higher catalytic activity for toluene oxidation by ozone, which is attributed to more oxygen vacancy in this catalyst, based on the XPS characterization results.

  6. Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi; Griffin, Robert J.

    2006-07-01

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal and industrialized areas. The purpose of this paper is to test this hypothesis and to quantify the SOA formation potentials of the common monoterpenes α-pinene, β-pinene, and d-limonene when oxidized by Cl in laboratory chamber experiments. Results indicate that the oxidation of these monoterpenes generates significant amounts of aerosol. The SOA yields of α-pinene, β-pinene, and d-limonene in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 μg m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. For d-limonene, data indicate two yield curves that depend on the initial concentration ratio of Cl precursor to d-limonene. It is argued theoretically that multiple SOA yield curves may be common for VOCs, depending on the initial concentration ratio of oxidant to VOC. SOA formation from the three typical monoterpenes when oxidized by Cl in the marine boundary layer, coastal areas, and inland industrialized areas could be a source of organic aerosol in the early morning.

  7. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Qian, Zhaoxia; Hua, Qing; Jiang, Zhiquan; Huang, Weixin

    2013-05-01

    A series of CuO/MnO2 catalysts with different CuO loadings were synthesized by the incipient wetness impregnation method. The catalysts were characterized by N2 adsorption-desorption isotherms, powder X-ray diffraction, X-ray photoelectron spectroscopy, H2-temperature programmed reduction, CO-temperature programmed reduction and scanning electron microscope. The CuO/MnO2 catalysts with CuO loading of 1-40% exhibit almost the same catalytic performance toward CO oxidation while those with higher CuO loadings exhibit a much poorer catalytic activity. The structural characterization results demonstrate that the CuO-MnO2 interface is the active site for CO oxidation in CuO/MnO2 catalysts and CO oxidation over CuO/MnO2 probably follows the interfacial reaction mechanism in which CO chemisorbed on CuO reacts with oxygen species on MnO2 at the CuO-MnO2 interface.

  8. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  9. Cyclic oxidation of Mn-Co spinel coated SUS 430 alloy in the cathodic atmosphere of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hua, Bin; Pu, Jian; Gong, Wei; Zhang, Jianfu; Lu, Fengshuang; Jian, Li

    In order to improve oxidation resistance and long-term stability of the metallic interconnects and prevent the cathode of solid oxide fuel cells (SOFCs) from Cr-poisoning, an effective, relatively dense and well adherent Mn-Co spinel protection coating with a nominal composition of MnCo 2O 4 is applied onto the surfaces of the SUS 430 ferritic stainless steel by a cost-effective sol-gel process. The long-term thermally cyclic oxidation kinetics and oxide scale structures as well as the composition of the coated SUS 430 alloy are investigated. The Mn-Co spinel protection layer demonstrates an excellent structural and thermomechanical stability, and effectively acts as a mass barrier to the outward diffusion of cations, especially Cr, and a lowered parabolic rate constant of k p = 1.951 × 10 -15 g 2 cm -4 s -1 is obtained.

  10. Mn oxide-silver composite nanowires for improved thermal stability, SERS and electrical conductivity.

    PubMed

    Pradhan, Mukul; Sinha, Arun Kumar; Pal, Tarasankar

    2014-07-14

    Redox transformation reaction between aqueous AgNO3 and Mn(CH3COO)2 at low temperature (∼80 °C) has been adopted for industrial-scale production of uniform Ag-MnOOH composite nanowires for the first time. Varying amounts of incorporated Ag in the composite retain the 1D morphology of the composite. Nanowires upon annealing evolve Ag-MnO2 nanocomposites, once again with the retention of the parental morphology. Just 4 % of silver incorporation in the composite demonstrates metal-like conducting performance from the corresponding semiconducting material. Transition of MnO2 to Mn2O3 to Mn3O4 takes place upon heat treatment in relation to successive increase in Ag concentrations in the nanowires. The composites offer resistance to the observed oxide transformation. This is evidenced from the progressive increase in transition temperature. In situ Raman, ex situ thermal and XRD analysis corroborate the fact. The composite with 12 % Ag offers resistance to the transformation of MnO2, which is also verified from laser heating. Importantly, Ag nanoparticle incorporation is proved to offer a thermally stable and better surface enhanced Raman scattering (SERS) platform than the individual components. Both the Ag-MnOOH and Ag-MnO2 nanocomposites with 8 atomic % Ag show the best SERS enhancement (enhancement factor ∼10(10)). The observed enhancement relates to charge transfer as well as electromagnetic effects. PMID:24891154

  11. Microbial Communities Associated with Biogenic Iron Oxide Mineralization in Circumneutral pH Environments

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Banfield, J. F.

    2002-12-01

    Lithotrophic growth on iron is a metabolism that has been found in a variety of neutral pH environments and is likely important in sustaining life in microaerophilic solutions, especially those low in organics. The composition of the microbial communities, especially the organisms that are responsible for iron oxidation, and carbon and nitrogen fixation, are not known, yet the ability to recognize these contributions is vital to our understanding of iron cycling in natural environments. Our approach has been to study the microbial community structure, mineralogy, and geochemistry of ~20 cm thick, 100's meters long, fluffy iron oxide-encrusted biological mats growing in the Piquette Mine tunnel, and to compare the results to those from geochemically similar environments. In situ measurements (Hydrolab) and geochemical characterization of bulk water samples and peepers (dialysis sampling vials) indicate that the environment is microaerobic, with micromolar levels of iron, high carbonate and sulfate, and typical groundwater nitrate and nitrite concentrations. 16S rDNA clone libraries show that the microbial mat and water contain communities with considerable diversity within the Bacterial domain, a large proportion of Nitrospira and Betaproteobacteria, and no Archaea. Because clone library data are not necessarily indicative of actual abundance, fluorescence in-situ hybridization (FISH) was performed on water, mat, and sediment samples from the Piquette mine and two circumneutral iron- and carbonate-rich springs in the Oregon Cascade Range. Domain- and phylum-level probes were chosen based on the clone library results (Nitrospira, Beta- and Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Planctomyces). FISH data reveal spatial associations between specific microbial groups and mineralized structures. The organisms responsible for making the mineralized sheaths that compose the bulk of the iron oxide mat are Betaproteobacteria (probably Leptothrix

  12. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    PubMed

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion. PMID:25353947

  13. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    PubMed

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

  14. Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of methane (CH4) and nitrous oxide (N2O) in determining global climate change has been increasingly recognized, but terrestrial CH4 and N2O budgets and the underlying mechanisms remain far from certain. Accurate estimation of terrestrial CH4 and N2O budgets would be a critical step fo...

  15. Surface analysis reveals biogenic oxidation of sub-bituminous coal by Pseudomonas fluorescens.

    PubMed

    Hazrin-Chong, Nur Hazlin; Marjo, Christopher E; Das, Theerthankar; Rich, Anne M; Manefield, Mike

    2014-01-01

    Direct analysis of the colonised surface on coal using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) revealed the nature of bacteria-mediated oxidation at the coal surface. Unique oxidation peaks generated by the presence of Pseudomonas fluorescens on coal was shown through ATR-FTIR measurements, and ATR-FTIR imaging illustrated that this peak was only observed within the region of coal colonised by bacteria. Contact angle measurements and surface free energy of adhesion calculations showed that the adhesion between P. fluorescens and coal was thermodynamically favourable, and scanning electron microscopy (SEM) exhibited individual cell or monolayer cluster attachment on coal. Furthermore, Gaussian peak fitting of peroxidase-treated coal ATR-FTIR spectra revealed that peroxidase or related enzymes produced by P. fluorescens may be responsible for coal oxidation. This study demonstrated the usefulness and practicality of ATR-FTIR for analysing coal oxidation by P. fluorescens and may well be applied to other microbe-driven modifications of coal for its rapidity and reliability.

  16. Amorphous carbon nanotube/MnO2/graphene oxide ternary composite electrodes for electrochemical capacitors.

    PubMed

    Im, Changbin; Yun, Young Soo; Kim, Bona; Park, Hyun Ho; Jin, Hyoung-Joon

    2013-03-01

    Ternary composites of amorphous carbon nanotube/MnO2/graphene oxide (a-CNT/MnO2/GO) were synthesized by a facile direct redox reaction between potassium permanganate and a-CNT, which was prepared by anodic aluminum oxide template method following co-filtration with GO. Needle-like, 100-nm-thick, MnO2 crystals were homogeneously coated on the a-CNT surface, which was then covered with GO. The electrochemical performance of the resulting MnO2-coated a-CNTs exhibited a specific capacitance of 473 F/g at a scan rate of 5 mV/s, and excellent charge/discharge stability after 500 cycles.

  17. Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites

    PubMed Central

    2011-01-01

    MnO2 supported on graphene oxide (GO) made from different graphite materials has been synthesized and further investigated as electrode materials for supercapacitors. The structure and morphology of MnO2-GO nanocomposites are characterized by X-ray diffraction, X-ray photoemission spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Nitrogen adsorption-desorption. As demonstrated, the GO fabricated from commercial expanded graphite (denoted as GO(1)) possesses more functional groups and larger interplane gap compared to the GO from commercial graphite powder (denoted as GO(2)). The surface area and functionalities of GO have significant effects on the morphology and electrochemical activity of MnO2, which lead to the fact that the loading amount of MnO2 on GO(1) is much higher than that on GO(2). Elemental analysis performed via inductively coupled plasma optical emission spectroscopy confirmed higher amounts of MnO2 loading on GO(1). As the electrode of supercapacitor, MnO2-GO(1) nanocomposites show larger capacitance (307.7 F g-1) and better electrochemical activity than MnO2-GO(2) possibly due to the high loading, good uniformity, and homogeneous distribution of MnO2 on GO(1) support. PMID:21951643

  18. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    USGS Publications Warehouse

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  19. Area integrated emission of biogenic nitric oxide by Lagrangian dispersion modeling (LASAT): Milan oasis, Taklimakan desert (Xinjiang, PR China)

    NASA Astrophysics Data System (ADS)

    Badawy, M.; Wu, Z.; Behrendt, T.; Fechner, A. D.; Meixner, F. X.; Andreae, M. O.; Mamtimin, B.

    2012-04-01

    Today's knowledge of soil biogenic NO emission rates from arid and hyper-arid land is based on a total of about 20 experimental studies. Nevertheless, biogenic NO emissions even from non-managed arid and hyper-arid soils are significant and may range between 1-10 ng m-2 s-1 (in terms of nitrogen, if conditions for soil NO production are favourable (optimum soil moisture, high soil temperatures). Irrigated and fertilized oases, ranging about 3000 km long around the great Central Asian Taklimakan desert form the backbone of the agricultural output (80% of the Chinese cotton production) of the Xinjiang Uygur Autonomous Region (NW-China). Recent and future development of farmland and intensification of agriculture will definitely impact the regional soil NO emission and consequently the budget of nitrogen oxides and ozone. Up to today, only a few studies have preliminarily addressed soil biogenic NO emissions from the Taklimakan desert. In our contribution, we will focus on the quantification of the area integrated NO emission from the Milan oasis located on the most southern fringe of the Takalimkan desert (39.26° N, 88.91° E). At a first step, the 3D distribution of ambient NO concentration is calculated using a state-of-the-art commercially available dispersion model (LASAT 3.2, Lagrange Simulation of Aerosol-Transport). Performing the dispersion simulation, transport and turbulent diffusion are simulated for a group of representative "simulation particles" by means of a stochastic process (Lagrange simulation). Surface sources (individual cotton fields, Jujube orchards) are known: their geographical location as well as their areal extent, their stage of vegetation growth as well as irrigation and fertilization events and amounts, soil temperatures and soil water contents. This information is used to up-scale our results of field specific potential net NO emission, which has been parameterized in terms of soil temperature, soil water content, and soil nutrient

  20. Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity.

    PubMed

    Taujale, Saru; Baratta, Laura R; Huang, Jianzhi; Zhang, Huichun

    2016-03-01

    Our previous work reported that Al2O3 inhibited the oxidative reactivity of MnO2 through heteroaggregation between oxide particles and surface complexation of the dissolved Al ions with MnO2 (S. Taujale and H. Zhang, "Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide" Environ. Sci. Technol. 2012, 46, 2764-2771). The aim of the current work was to investigate interactions in ternary mixtures of MnO2, Al2O3, and NOM and how the interactions affect MnO2 oxidative reactivity. For the effect of Al ions, we examined ternary mixtures of MnO2, Al ions, and NOM. Our results indicated that an increase in the amount of humic acids (HAs) increasingly inhibited Al adsorption by forming soluble Al-HA complexes. As a consequence, there was less inhibition on MnO2 reactivity than by the sum of two binary mixtures (MnO2+Al ions and MnO2+HA). Alginate or pyromellitic acid (PA)-two model NOM compounds-did not affect Al adsorption, but Al ions increased alginate/PA adsorption by MnO2. The latter effect led to more inhibition on MnO2 reactivity than the sum of the two binary mixtures. In ternary mixtures of MnO2, Al2O3, and NOM, NOM inhibited dissolution of Al2O3. Zeta potential measurements, sedimentation experiments, TEM images, and modified DLVO calculations all indicated that HAs of up to 4 mg-C/L increased heteroaggregation between Al2O3 and MnO2, whereas higher amounts of HAs completely inhibited heteroaggregation. The effect of alginate is similar to that of HAs, although not as significant, while PA had negligible effects on heteroaggregation. Different from the effects of Al ions and NOMs on MnO2 reactivity, the MnO2 reactivity in ternary mixtures of Al2O3, MnO2, and NOM was mostly enhanced. This suggests MnO2 reactivity was mainly affected through heteroaggregation in the ternary mixtures because of the limited availability of Al ions.

  1. Virus removal by biogenic cerium.

    PubMed

    De Gusseme, Bart; Du Laing, Gijs; Hennebel, Tom; Renard, Piet; Chidambaram, Dev; Fitts, Jeffrey P; Bruneel, Els; Van Driessche, Isabel; Verbeken, Kim; Boon, Nico; Verstraete, Willy

    2010-08-15

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal. PMID:20704235

  2. Virus Removal by Biogenic Cerium

    SciTech Connect

    De Gusseme, B.; Du Laing, G; Hennebel, T; Renard, P; Chidambaram, D; Fitts, J; Bruneel, E; Van Driessche, I; Verbeken, K; et. al.

    2010-01-01

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.

  3. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

    PubMed

    Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E; Dommen, Josef; Ortega, Ismael K; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipilä, Mikko; Spracklen, Dominick V; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S; Curtius, Joachim; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R; Baltensperger, Urs

    2014-05-16

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

  4. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

    PubMed

    Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E; Dommen, Josef; Ortega, Ismael K; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipilä, Mikko; Spracklen, Dominick V; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S; Curtius, Joachim; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R; Baltensperger, Urs

    2014-05-16

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations. PMID:24833386

  5. Layered Li-Mn-M-oxides as cathodes for Li-ion batteries:. Recent trends

    NASA Astrophysics Data System (ADS)

    Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R.

    2002-12-01

    There is an increasing demand for manganese (Mn) based mixed oxides which can effectively replace the presently used LiCoO2 as cathode in Li-ion batteries (LIB). The well-studied spinel, LiMn2O4 and its doped derivatives give a capacity of 100-120 mAh/g, but show capacity-fading on cycling especially above 55°C. The layered LiMnO2, isostructural to LiCoO2 (so called O3-structure) can be a viable cathode. However, studies have shown that it undergoes conversion to spinel structure on cycling and thus gives capacity-fading. Other alternative systems recently studied are: O2-structured layered Li-M-Mn-oxides with the general formula Li(2/3)+x(MyMn1-y)O2, M = Li, Ni, Co; x ≤ 0.33 and y = 0.1-0.67, O3-Li(Ni1/2Mn1/2)O2, Li(NixCo1-2xMnx)O2, and M'-substituted Li2MnO3 (M' = Ni, Co, Cr). Some of them are shown to have stable cycling performance, good rate-capability and structural stability over charge-discharge cycling in the 2.5-4.6 V region. Further, the electrochemical processes in the above mixed oxides have been shown to involve Ni2+/4+ or Cr3+/6+ redox couple, thus invoking novel ideas to develop new cathode materials. A brief review of the work done on the above O2- and O3-layered Li-Mn-M-oxides (M = metal) as cathodes for LIB is presented.

  6. Thermodynamic Modeling of Oxide Phases in the Mn-O System

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Jung, In-Ho

    2016-09-01

    A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Mn-O system are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25 °C) to above the liquidus temperature at compositions covering from MnO to MnO2, and oxygen partial pressure from 10-15 to 102 (bar). The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Two spinel phases (α - and β -Mn3O4) were modeled using Compound Energy Formalism (CEF) with the use of physically meaningful parameters. Valence states of the spinels are interpreted based on the available thermopower measurement, for which Mn4+ was considered in the cubic spinel (β -Mn3O4). The present Mn3O4 spinel solutions can be integrated into a larger spinel solution database, which has been already developed. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram sections and thermodynamic properties.

  7. Thermodynamic Modeling of Oxide Phases in the Mn-O System

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Jung, In-Ho

    2016-06-01

    A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Mn-O system are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25 °C) to above the liquidus temperature at compositions covering from MnO to MnO2, and oxygen partial pressure from 10-15 to 102 (bar). The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Two spinel phases (α - and β -Mn3O4) were modeled using Compound Energy Formalism (CEF) with the use of physically meaningful parameters. Valence states of the spinels are interpreted based on the available thermopower measurement, for which Mn4+ was considered in the cubic spinel (β -Mn3O4). The present Mn3O4 spinel solutions can be integrated into a larger spinel solution database, which has been already developed. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram sections and thermodynamic properties.

  8. Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation.

    PubMed

    Mahdi Najafpour, Mohammad; Jafarian Sedigh, Davood; Maedeh Hosseini, Seyedeh; Zaharieva, Ivelina

    2016-09-01

    Herein, we investigate the effect of post-treatment of nanolayered manganese oxide by different inorganic and organic compounds. We use the fact that nanolayered manganese oxides are among the strongest naturally occurring oxidants, capable of oxidizing a wide range of organic molecules. Post-treatment of the synthetic Mn oxides with oxidizable compounds increases the cerium(IV)-driven water oxidation catalyzed by treated layered manganese oxides more than 25 times. On the basis of X-ray absorption investigations, we attribute this effect to the increased amount of manganese(III) ions. This finding can explain some puzzles in water oxidation by manganese oxides and may help to advance toward an efficient design strategy of water-oxidizing catalyst in artificial photosynthetic systems. PMID:27537432

  9. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Glasius, Marianne

    2011-09-01

    Organosulfates of monoterpenes and isoprene, as well as their oxidation products have been identified in biogenic secondary organic aerosols (BSOA) from both laboratory and field studies. Organosulfates provide an interesting coupling between air pollution and formation of low-volatility BSOA. HPLC quadrupole time-of-flight mass spectrometry was used to study polar acidic monoterpene and isoprene oxidation products including pinic acid, pinonic and terpenylic acid along with organosulfates and nitrooxy organosulfates in aerosols from ambient air. The method was first validated by analysis of spiked quartz filters, which showed acceptable recoveries >74% for pinic acid, pinonic acid, camphor sulphonic acid and adipic acid. Acetonitrile was identified as a better solvent than methanol for extraction and analysis of pinonic acid and adipic acid, due to improved analytical sensitivity and prevention of methyl ester formation during sample extraction. PM 1 (i.e, aerosols with an aerodynamic diameter ≤1 μm) were collected during spring 2008 in a forest in Denmark with mixed deciduous and coniferous trees. Average concentrations of the most abundant compounds were: pinic acid: 1.5 ng m -3, pinonic acid: 3.0 ng m -3, terpenylic acid: 0.8 ng m -3 and 3-methyl-1,2,3-butanetricarboxylic acid: 3.0 ng m -3. Organosulfates and nitrooxy organosulfates were identified in a majority of the daily samples and the highest levels were observed during a warm period in late spring. As a first approach, due to the lack of authentic standards, organosulfates and nitrooxy organosulfates were tentatively quantified based on the analytical response of camphor sulphonic acid. Generally the concentrations of organosulfates and nitrooxy organosulfates were lower than first generation oxidation products. The maximum concentration of a total of 10 organosulfates and nitrooxy organosulfates were found to be about three times lower than pinonic acid with a maximum concentration of 8 ng m -3. A

  10. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  11. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis.

    PubMed

    Dismukes, G Charles; Brimblecombe, Robin; Felton, Greg A N; Pryadun, Ruslan S; Sheats, John E; Spiccia, Leone; Swiegers, Gerhard F

    2009-12-21

    Hydrogen is the most promising fuel of the future owing to its carbon-free, high-energy content and potential to be efficiently converted into either electrical or thermal energy. The greatest technical barrier to accessing this renewable resource remains the inability to create inexpensive catalysts for the solar-driven oxidation of water. To date, the most efficient system that uses solar energy to oxidize water is the photosystem II water-oxidizing complex (PSII-WOC), which is found within naturally occurring photosynthetic organisms. The catalytic core of this enzyme is a CaMn(4)O(x) cluster, which is present in all known species of oxygenic phototrophs and has been conserved since the emergence of this type of photosynthesis about 2.5 billion years ago. The key features that facilitate the catalytic success of the PSII-WOC offer important lessons for the design of abiological water oxidation catalysts. In this Account, we examine the chemical principles that may govern the PSII-WOC by comparing the water oxidation capabilities of structurally related synthetic manganese-oxo complexes, particularly those with a cubical Mn(4)O(4) core ("cubanes"). We summarize this research, from the self-assembly of the first such clusters, through the elucidation of their mechanism of photoinduced rearrangement to release O(2), to recent advances highlighting their capability to catalyze sustained light-activated electrolysis of water. The [Mn(4)O(4)](6+) cubane core assembles spontaneously in solution from monomeric precursors or from [Mn(2)O(2)](3+) core complexes in the presence of metrically appropriate bidentate chelates, for example, diarylphosphinates (ligands of Ph(2)PO(2)(-) and 4-phenyl-substituted derivatives), which bridge pairs of Mn atoms on each cube face (Mn(4)O(4)L(6)). The [Mn(4)O(4)](6+) core is enlarged relative to the [Mn(2)O(2)](3+) core, resulting in considerably weaker Mn-O bonds. Cubanes are ferocious oxidizing agents, stronger than analogous complexes

  12. As³⁺ removal by Ca-Mn-Fe₃O₄ with and without H₂O₂: effects of calcium oxide in Ca-Mn-Fe₃O₄.

    PubMed

    Do, Si-Hyun; Jo, Young-Hoon; Park, Joo-Yang; Hong, Seong-Ho

    2014-09-15

    As(3+) removal by Ca-Mn-Fe3O4 composites, which contained various wt% of Ca, are investigated. Immobilization of Ca (i.e. as crystalline forms including CaO2) and Mn (i.e. as an amorphous hydrous manganese oxide) on Fe3O4 were identified, and it was revealed that the co-immobilization of Ca and Mn (i.e. especially the wt% ratio of Ca:Mn:Fe=2:3:1) provided higher Ca wt% with greater surface area. The increasing Ca wt% (i.e. 6, 14, 17, and 19%) gradually increased the reactivity of H2O2 to oxidize As(3+) to As(5+). Moreover, it is suggested that superoxide anion produced from the catalytic decomposition of H2O2 reduces Mn(4+) to Mn(2+), which is further released into solution. On the other hand, As(3+) adsorption was decreased with the highest Ca wt% in Ca-Mn-Fe3O4. It was concluded that the increasing Ca wt% positively affected As(3+) oxidation but an excess Ca wt% negatively affected As(3+) adsorption. The higher As(3+) adsorption was observed when Ca wt% was 17 (i.e. the wt% ratios of Ca:Mn:Fe=2:3:1). Without H2O2, As(3+) was adsorbed and oxidized by Ca-Mn-Fe3O4 itself. It is suspected that As(3+) oxidation is due to H2O2 produced from CaO2. Mechanisms for As(3+) removal by Ca-Mn-Fe3O4 with and without H2O2 are proposed. PMID:25179104

  13. Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol

    NASA Astrophysics Data System (ADS)

    Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila

    2013-04-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.

  14. Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities

    NASA Astrophysics Data System (ADS)

    Lingaraju, K.; Raja Naika, H.; Manjunath, K.; Basavaraj, R. B.; Nagabhushana, H.; Nagaraju, G.; Suresh, D.

    2016-06-01

    In the present investigation, green synthesis of zinc oxide nanoparticles were successfully synthesized by biological method using aqueous stem extract of Ruta graveolens act as reducing agent. Formation of ZnO nanoparticles were characterized by powder X-ray diffraction (PXRD), UV-visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Zinc oxide nanoparticles were subjected to biological properties such as antibacterial and antioxidant studies. The PXRD pattern reveals that ZnO sample belongs to hexagonal phase with Wurtzite structure. The UV-vis absorption spectrum shows an absorption band at 355 nm due to ZnO nanoparticles. SEM images show that the particles have spherical like structure with large surface area and the average crystallite sizes were found to be in the range ~28 nm. These observations were confirmed by TEM analysis. The ZnO nanoparticles are found to inhibit the antioxidant activity of 1,1-diphenyl-2-picrylhydrazyl free radicals effectively. ZnO Nps exhibit significant bactericidal activity against Gram -ve bacterial strains such as Klebsiella aerogenes, Pseudomonas aeruginosa, Escherichia coli and Gram +ve Staphylococcus aureus by agar well diffusion method.

  15. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia.

    PubMed

    Fandeur, Dik; Juillot, Farid; Morin, Guillaume; Olivi, Luca; Cognigni, Andrea; Webb, Samuel M; Ambrosi, Jean-Paul; Fritsch, Emmanuel; Guyot, François; Brown, Gordon E

    2009-10-01

    Although several laboratory studies showed that Mn-oxides are capable of oxidizing Cr(II) to Cr(VI), very few have reported evidence for such a reaction in natural systems. This study presents new evidence for this redox reaction between Cr(III) and Mn-oxides in a lateritic regolith developed on ultramafic rocks in New Caledonia. The studied lateritic regolith presents several units with contrasting amounts of major (Fe, Al, Si, and Mg) and trace (Mn, Cr, Ni, Co) elements, which are related to varying mineralogical compositions. Bulk XANES analyses show the occurrence of Cr(VI) (up to 20 wt % of total chromium) in the unit of the regolith which is also enriched in Mn (up to 21.7 wt % MnO), whereas almost no Cr(VI) is detected elsewhere. X-ray powder diffraction indicates that the large amounts of Mn in this unit of the regolith are due to the occurrence of Mn-oxides (identified as a mixture of asbolane, lithiophorite and birnessite) and Mn K-edge XANES data indicate that Mn occurs mainly as Mn(IV) in this unit, although small amounts of Mn(III) could also be detected. These results strongly suggest a direct role of the Mn-oxides on the occurrence of Cr(VI) through a redox reaction between Cr(III) and Mn(IV) and/or Mn(III). Owing to the much larger toxicity and solubility of Cr(VI), such a co-occurrence of Cr and Mn-oxides in these soils could then represent an important risk for the environment. However, the significant amounts of Cr(VI) released after reacting the samples from the studied sequence with a 0.1 M (NH)4H2PO4 solution, designed to remove tightly sorbed chromate species, suggest that Cr(VI) mainly occurs as sorption complexes. This hypothesis is reinforced by spatially resolved XANES analyses, which show that Cr(VI) is associated with both Mn- and Fe-oxides, and especially at the boundary between these two mineral species. Such a distribution of Cr(VI) suggests a possible readsorption of Cr(VI) onto surrounding Fe-oxyhydroxides (mainly goethite) after

  16. Structural rearrangements and reaction intermediates in a di-Mn water oxidation catalyst.

    PubMed

    Vallés-Pardo, J L; de Groot, H J M; Buda, F

    2012-11-28

    By using first-principles molecular dynamics simulations combined with metadynamics to simulate rare events we analyse competing reaction coordinates for a di-Mn water oxidation catalyst ([(bis(imino)pyridine)(H(2)O)Mn(IV)(μ-O)(2)Mn(V)(O)(bis(imino)pyridine)](3+)). The catalytic water oxidation cycle of the complex is examined by addressing the thermodynamic accessibility of the hydroperoxo species that is considered a critical and rate-limiting intermediate. To achieve this, hybrid quantum-mechanics/molecular-mechanics (QM/MM) and full QM simulations have been performed for an explicit treatment of the water environment that plays an active role in the reaction processes. Starting from a likely active species for the O-O bond formation, we observe that during the water approach to the oxo ligand a facile structural rearrangement of the complex takes place, leading to the opening of one μ-O bridge and the release of a water ligand, and resulting in two pentacoordinated Mn centers. This complex appears weakly active in the water oxidation process, since a concerted reaction is required to establish a Mn-OOH hydroperoxo intermediate. The slow kinetics of a concerted reaction can allow other processes, including linear degradation of the catalyst, to take precedence over catalytic water oxidation.

  17. Seasonal variation of nitrogen oxides, ozone and biogenic volatile organic compound concentrations and fluxes at Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Juran, Stanislav; Vecerova, Kristyna; Holisova, Petra; Zapletal, Milos; Pallozzi, Emanuele; Guidolotti, Gabriele; Calfapietra, Carlo; Vecera, Zbynek; Cudlin, Pavel; Urban, Otmar

    2015-04-01

    Dynamics of nitrogen oxides (NOx) and ozone concentration and their depositions were investigated on the Norway spruce forest at Bily Kriz experimental station at the Silesian Beskydy Mountains (north-eastern part of the Czech Republic). Both NOx and ozone concentration and fluxes were modelled for the whole season and covering thus different climate conditions. Data were recorded for three consecutive years and therefore deeper analyses were performed. During the summer 2014 BVOC field campaign was carried out using proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-TOF, Ionicon Analytik GmbH, Innsbruck, Austria) and volatile organic compound of biogenic origin (BVOC) were measured at the different levels of tree canopies. By the same time BVOC were trapped into the Tenax tubes (Markes International Ltd., UK) and put afterwards for thermal desorption (Markes Unity System 2, Markes International Ltd., UK) to GS-MS analysis (TSQ Quntum XLS triple Quadrupole, Thermo Scientific, USA). Thus data of different levels of canopies together with different spectra of monoterpenes were obtained. Interesting comparison of both methods will be shown. It was the first BVOC field campaign using PTR technique at any of the forest in the Czech Republic. Highest fluxes and concentrations were recorded around the noon hours, represented particularly by monoterpenes, especially α-pinen and limonene. Other BVOCs than monoterpenes were negligible. Variation of fluxes between different canopies levels was observed, highlighting difference in shaded and sun exposed leaves. Sun leaves emitted up to 2.4 nmol m-2 s-1 of monoterpenes, while shaded leaves emitted only up to 0.6 nmol m-2 s-1 when measured under standard conditions (irradiance 1000 µmol m-2 s-1; temperature 30°C). We discuss here the importance of the most common Norway spruce tree forests in the Czech Republic in bi-directional exchanges of important secondary pollutant such as ozone and nitrogen oxides, their

  18. Thallium Isotopes Tracking Mn-Oxide Burial - A Proxy for Deoxygenation During Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Ostrander, C.; Owens, J. D.; Nielsen, S.

    2015-12-01

    Thallium (Tl) is proving to be a useful paleoredox proxy given that the Tl isotope composition of seawater is highly dependent on the magnitude of manganese (Mn) oxide burial in the ocean. In turn, Mn oxides require oxygen at the sediment-water interface to precipitate, linking the Tl isotope cycle to ocean oxygenation. Currently, the marine residence time of Tl is ~20kyrs and the Tl isotope composition of seawater is invariant, which suggests Tl isotopes could be a global tracer of marine Mn-oxide burial. Importantly, recent research suggests sediments deposited under a euxinic water column faithfully record the Tl isotope value of the overlying oxic water column (e.g. Black Sea and Cariaco Basin). Therefore, analysis of organic-rich black shales may prove useful in evaluating the seawater Tl isotope composition of past oceans and, hence, large-scale burial of Mn-oxides and the extent of bottom water ocean oxygenation. A logical test for this proxy is during the well-studied Cenomanian-Turonian boundary event termed Oceanic Anoxic Event 2 (OAE-2) at ~94 Ma. It is known that the global extent of anoxia and euxinia increased during this event, however, to what extent global bottom water deoxygenation occured is unconstrained. If deep water deoxygenation occurred, it would be hypothesized that Mn-oxide precipitation would decrease, resulting in a positive Tl isotope excursion during OAE-2. We have analyzed the Tl isotope composition of organic-rich black shales from Site 1258 of the Ocean Drilling Program (ODP) spanning the period before, during, and after OAE-2. Based on Fe redox proxies, the entire section is euxinic and thus no Mn-oxides are present (i.e. no local redox changes). Before the event, Tl isotope compositions are similar or slightly heavier than modern seawater values. Just prior to the onset of OAE-2, a positive shift occurs and is maintained until recovery, slightly before the termination of the event. The shift to heavier values and subsequent

  19. Promotion of Mn(II) Oxidation and Remediation of Coal Mine Drainage in Passive Treatment Systems by Diverse Fungal and Bacterial Communities ▿ †

    PubMed Central

    Santelli, Cara M.; Pfister, Donald H.; Lazarus, Dana; Sun, Lu; Burgos, William D.; Hansel, Colleen M.

    2010-01-01

    Biologically active, passive treatment systems are commonly employed for removing high concentrations of dissolved Mn(II) from coal mine drainage (CMD). Studies of microbial communities contributing to Mn attenuation through the oxidation of Mn(II) to sparingly soluble Mn(III/IV) oxide minerals, however, have been sparse to date. This study reveals a diverse community of Mn(II)-oxidizing fungi and bacteria existing in several CMD treatment systems. PMID:20495049

  20. Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP.

    PubMed

    Ganendra, Giovanni; Wang, Jianyun; Ramos, Jose A; Derluyn, Hannelore; Rahier, Hubert; Cnudde, Veerle; Ho, Adrian; Boon, Nico

    2015-01-01

    The effectiveness of Microbiologically Induced Carbonate Precipitation (MICP) from the formate oxidation by Methylocystis parvus OBBP as an alternative process for concrete protection was investigated. MICP was induced on Autoclaved Aerated Concrete (AAC), the model material, by immersing the material in 10(9) M. parvus cells mL(-1) containing 5 g L(-1) of calcium formate. A 2 days immersion of the material gave the maximum weight increase of the specimens (38 ± 19 mg) and this was likely due to the deposition of calcium carbonate, biomass, and unconverted calcium formate. The solid deposition mainly occurred in the micropores of the specimen, close to the outer surface. A significantly lower water absorption was observed in the bacterially treated specimens compared to the non-treated ones (up to 2.92 ± 0.91 kg m(-2)) and this could be attributed to the solid deposition. However, the sonication test demonstrated that the bacterial treatment did not give a consolidating effect to the material. Overall, compared to the currently employed urea hydrolysis process, the formate-based MICP by M. parvus offers a more environmentally friendly approach for the biotechnological application to protect concrete. PMID:26284061

  1. Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP.

    PubMed

    Ganendra, Giovanni; Wang, Jianyun; Ramos, Jose A; Derluyn, Hannelore; Rahier, Hubert; Cnudde, Veerle; Ho, Adrian; Boon, Nico

    2015-01-01

    The effectiveness of Microbiologically Induced Carbonate Precipitation (MICP) from the formate oxidation by Methylocystis parvus OBBP as an alternative process for concrete protection was investigated. MICP was induced on Autoclaved Aerated Concrete (AAC), the model material, by immersing the material in 10(9) M. parvus cells mL(-1) containing 5 g L(-1) of calcium formate. A 2 days immersion of the material gave the maximum weight increase of the specimens (38 ± 19 mg) and this was likely due to the deposition of calcium carbonate, biomass, and unconverted calcium formate. The solid deposition mainly occurred in the micropores of the specimen, close to the outer surface. A significantly lower water absorption was observed in the bacterially treated specimens compared to the non-treated ones (up to 2.92 ± 0.91 kg m(-2)) and this could be attributed to the solid deposition. However, the sonication test demonstrated that the bacterial treatment did not give a consolidating effect to the material. Overall, compared to the currently employed urea hydrolysis process, the formate-based MICP by M. parvus offers a more environmentally friendly approach for the biotechnological application to protect concrete.

  2. Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP

    PubMed Central

    Ganendra, Giovanni; Wang, Jianyun; Ramos, Jose A.; Derluyn, Hannelore; Rahier, Hubert; Cnudde, Veerle; Ho, Adrian; Boon, Nico

    2015-01-01

    The effectiveness of Microbiologically Induced Carbonate Precipitation (MICP) from the formate oxidation by Methylocystis parvus OBBP as an alternative process for concrete protection was investigated. MICP was induced on Autoclaved Aerated Concrete (AAC), the model material, by immersing the material in 109 M. parvus cells mL−1 containing 5 g L−1 of calcium formate. A 2 days immersion of the material gave the maximum weight increase of the specimens (38 ± 19 mg) and this was likely due to the deposition of calcium carbonate, biomass, and unconverted calcium formate. The solid deposition mainly occurred in the micropores of the specimen, close to the outer surface. A significantly lower water absorption was observed in the bacterially treated specimens compared to the non-treated ones (up to 2.92 ± 0.91 kg m−2) and this could be attributed to the solid deposition. However, the sonication test demonstrated that the bacterial treatment did not give a consolidating effect to the material. Overall, compared to the currently employed urea hydrolysis process, the formate-based MICP by M. parvus offers a more environmentally friendly approach for the biotechnological application to protect concrete. PMID:26284061

  3. Continuous Operation of Fluidized Bed Bioreactor for Biogenic Sulfide Oxidation Using Immobilized Cells of Thiobacillus sp.

    NASA Astrophysics Data System (ADS)

    Ravichandra, P.; Mugeraya, Gopal; Gangagni Rao, A.; Ramakrishna, M.; Jetty, Annapurna

    In the present study, obligate autotrophic Thiobacillus sp. was isolated from aerobic sludge distillery effluent treatment plant and the experiments were conducted in a fluidized bed bioreactor for the biological oxidation of sulfide using Ca-alginate immobilized Thiobacillus sp. All the experiments were conducted in continuous mode at different sulfide loading rates 0.018, 0.02475, 0.03375, 0.03825 and 0.054 and different hydraulic retention times 5, 3.67, 2.67, 2.35 and 1.67 h by varying flow rates 2.4x10-4, 3.3x10-4, 4.5x10-4, 5.1x10-4 and 7.2x10-4. Sulfide conversions higher than 90% were obtained at almost all sulfide loading rates and hydraulic retention times. All the experiments were conducted at constant pH of around 6 and temperature of 30±5°C.

  4. Microwave synthesis and electrochemical characterization of Mn/Ni mixed oxide for supercapacitor application

    SciTech Connect

    Prasankumar, T.; Jose, Sujin P.; Ilangovan, R.; Venkatesh, K. S.

    2015-06-24

    Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni in the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.

  5. Design and Preparation of MnO2/CeO2-MnO2 Double-Shelled Binary Oxide Hollow Spheres and Their Application in CO Oxidation.

    PubMed

    Zhang, Jian; Cao, Yidan; Wang, Chang-An; Ran, Rui

    2016-04-01

    Herein, we designed an extremely facile method to prepare well-defined MnO2@CeO2-MnO2 ball-in-ball binary oxide hollow spheres by employing carbon spheres (CSs) as sacrificial templates. The synthesis process involves a novel self-assembled approach to prepare core-shell CSs@CeO2 precursor, which would directly react with KMnO4 aqueous solution to form yolk-shell CSs@MnO2/CeO2-MnO2 precursor in the following step. Well-dispersed Ce-Mn binary oxide with double-shelled hollow sphere structure could be achieved after annealing the precursor in air. The evolution process and formation mechanism of this novel structure were thoroughly studied in this paper. Especially the as-prepared double-shell MnO2/CeO2-MnO2 hollow spheres exhibited enhanced catalytic activity for CO oxidation compared with the pure MnO2 hollow spheres and pure CeO2 hollow spheres. We believe the high surface area, hierarchical porous structures, and strong synergistic interaction between CeO2 and MnO2 contribute to the excellent catalytic activity. Most importantly, this method could be extended to prepare other transition metal oxides. As an example, triple-shelled Co-Mn composite hollow spheres assembled by ultrathin nanoplates were successfully prepared.

  6. Identification of a Two-Component Regulatory Pathway Essential for Mn(II) Oxidation in Pseudomonas putida GB-1▿

    PubMed Central

    Geszvain, Kati; Tebo, Bradley M.

    2010-01-01

    Bacterial manganese(II) oxidation has a profound impact on the biogeochemical cycling of Mn and the availability of the trace metals adsorbed to the surfaces of solid Mn(III, IV) oxides. The Mn(II) oxidase enzyme was tentatively identified in Pseudomonas putida GB-1 via transposon mutagenesis: the mutant strain GB-1-007, which fails to oxidize Mn(II), harbors a transposon insertion in the gene cumA. cumA encodes a putative multicopper oxidase (MCO), a class of enzymes implicated in Mn(II) oxidation in other bacterial species. However, we show here that an in-frame deletion of cumA did not affect Mn(II) oxidation. Through complementation analysis of the oxidation defect in GB-1-007 with a cosmid library and subsequent sequencing of candidate genes we show the causative mutation to be a frameshift within the mnxS1 gene that encodes a putative sensor histidine kinase. The frameshift mutation results in a truncated protein lacking the kinase domain. Multicopy expression of mnxS1 restored Mn(II) oxidation to GB-1-007 and in-frame deletion of mnxS1 resulted in a loss of oxidation in the wild-type strain. These results clearly demonstrated that the oxidation defect of GB-1-007 is due to disruption of mnxS1, not cumA::Tn5, and that CumA is not the Mn(II) oxidase. mnxS1 is located upstream of a second sensor histidine kinase gene, mnxS2, and a response regulator gene, mnxR. In-frame deletions of each of these genes also led to the loss of Mn(II) oxidation. Therefore, we conclude that the MnxS1/MnxS2/MnxR two-component regulatory pathway is essential for Mn(II) oxidation in P. putida GB-1. PMID:20038702

  7. Oxidation Characteristics of Fe–18Cr–18Mn-Stainless Steel Alloys

    SciTech Connect

    Rawers, James

    2010-10-01

    Air oxidation studies of Fe-18Cr-18Mn stainless steels were conducted at 525°C, 625°C, and 725°C. Alloys were evaluated with respect to changes in oxidation properties as a result of interstitial additions of nitrogen and carbon and of minor solute additions of silicon, molybdenum, and nickel. Interstitial concentrations possibly had a small, positive effect on oxidation resistance. Minor solute additions significantly improved oxidation resistance but could also reduce interstitial solubility resulting in formation of chromium carbides. Loss of solute chromium resulted in a slight reduction in oxidation protection. Oxidation lasting over 500 hours produced a manganese rich, duplex oxide structure: an outer sesquioxide and an inner spinel oxide.

  8. Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate.

    PubMed

    Ku, Bum Seung; Mamuad, Lovelia L; Kim, Seon-Ho; Jeong, Chang Dae; Soriano, Alvin P; Lee, Ho-Il; Nam, Ki-Chang; Ha, Jong K; Lee, Sang Suk

    2013-06-01

    The effects and significance of γ-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen (NH3-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.

  9. Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

    PubMed Central

    Ku, Bum Seung; Mamuad, Lovelia L.; Kim, Seon-Ho; Jeong, Chang Dae; Soriano, Alvin P.; Lee, Ho-Il; Nam, Ki-Chang; Ha, Jong K.; Lee, Sang Suk

    2013-01-01

    The effects and significance of γ-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen (NH3-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation. PMID:25049853

  10. A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean

    PubMed Central

    Sauer, Kenneth; Yachandra, Vittal K.

    2002-01-01

    The photosynthetic water oxidation complex consists of a cluster of four Mn atoms bridged by O atoms, associated with Ca2+ and Cl−, and incorporated into protein. The structure is similar in higher plants and algae, as well as in cyanobacteria of more ancient lineage, dating back more than 2.5 billion years ago on Earth. It has been proposed that the proto-enzyme derived from a component of a natural early marine manganese precipitate that contained a CaMn4O9 cluster. A variety of MnO2 minerals are found in nature. Three major classes are spinels, sheet-like layered structures, and three-dimensional networks that contain parallel tunnels. These relatively open structures readily incorporate cations (Na+, Li+, Mg2+, Ca2+, Ba2+, H+, and even Mn2+) and water. The minerals have different ratios of Mn(III) and Mn(IV) octahedrally coordinated to oxygens. Using x-ray spectroscopy we compare the chemical structures of Mn in the minerals with what is known about the arrangement in the water oxidation complex to define the parameters of a structural model for the photosynthetic catalytic site. This comparison provides for the structural model a set of candidate Mn4 clusters—some previously proposed and considered and others entirely novel. PMID:12077302

  11. A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean

    SciTech Connect

    Sauer, Kenneth; Yachandra, Vittal K.

    2002-04-30

    The photosynthetic water oxidation complex consists of a cluster of 4 Mn atoms bridged by O atoms, associated with Ca2+ and Cl- and incorporated into protein. The structure is similar in higher plants and algae, as well as in cyanobacteria of more ancient lineage, dating back more than 2.5 Ga on Earth. It has been proposed that the proto-enzyme derived from a component of a natural early marine manganese precipitate that contained a CaMn4O9 cluster. A variety of MnO2 minerals is found in nature. Three major classes are spinels, sheet-like layered structures and 3-dimensional networks that contain parallel tunnels. These relatively open structures readily incorporate cations (Na+, Li+, Mg2+, Ca2+, Ba2+, H+ and even Mn2+) and water. The minerals have different ratios of Mn(III) and Mn(IV) octahedrally coordinated to oxygens. Using X-ray spectroscopy we compare the chemical structures of Mn in the minerals with what is known about the arrangement in the water-oxidation complex to define the parameters of a structural model for the photosynthetic catalytic site. This comparison provides for the structural model a set of candidate Mn4 clusters -- some previously proposed and considered and others entirely novel.

  12. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal.

    PubMed

    Tang, Jingchun; Huang, Yao; Gong, Yanyan; Lyu, Honghong; Wang, Qilin; Ma, Jianli

    2016-10-01

    A novel graphene oxide/Fe-Mn (GO/Fe-Mn) composite was synthesized (molar ratio of Fe/Mn=3/1 and mass ratio of Fe/GO=1/7.5) and investigated for the sorption characteristics and mechanisms of aqueous mercury (Hg(2+)) as well as the biological effects to wheat and rice. Characterization tests showed that Fe-Mn oxides were impregnated onto GO sheets in an amorphous form through oxygen-containing functional groups (i.e., CO, epoxy COC, carboxyl OCO, and CO) and π-π interactions. GO/Fe-Mn possessed large surface area, surface enhanced Raman scattering with more sp(3) defects, and greater thermal stability than GO. XPS analysis revealed that Fe2O3, FeOOH, MnO2, MnOOH, and MnO were the dominant metal oxides in GO/Fe-Mn. Pseudo-second-order kinetic model and Sips isotherm model fitted well with the sorption kinetic and isotherm data. The maximum sorption capacity for mercury was 32.9mg/g. Ligand exchange and surface complexation were the dominant mechanisms for mercury removal. GO/Fe-Mn greatly reduced the bioavailability of mercury to wheat and rice, even promoted the seedling growth. This work suggests that GO/Fe-Mn can be used as an effective and environmental-friendly adsorbent in heavy metal remediation. PMID:27232726

  13. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal.

    PubMed

    Tang, Jingchun; Huang, Yao; Gong, Yanyan; Lyu, Honghong; Wang, Qilin; Ma, Jianli

    2016-10-01

    A novel graphene oxide/Fe-Mn (GO/Fe-Mn) composite was synthesized (molar ratio of Fe/Mn=3/1 and mass ratio of Fe/GO=1/7.5) and investigated for the sorption characteristics and mechanisms of aqueous mercury (Hg(2+)) as well as the biological effects to wheat and rice. Characterization tests showed that Fe-Mn oxides were impregnated onto GO sheets in an amorphous form through oxygen-containing functional groups (i.e., CO, epoxy COC, carboxyl OCO, and CO) and π-π interactions. GO/Fe-Mn possessed large surface area, surface enhanced Raman scattering with more sp(3) defects, and greater thermal stability than GO. XPS analysis revealed that Fe2O3, FeOOH, MnO2, MnOOH, and MnO were the dominant metal oxides in GO/Fe-Mn. Pseudo-second-order kinetic model and Sips isotherm model fitted well with the sorption kinetic and isotherm data. The maximum sorption capacity for mercury was 32.9mg/g. Ligand exchange and surface complexation were the dominant mechanisms for mercury removal. GO/Fe-Mn greatly reduced the bioavailability of mercury to wheat and rice, even promoted the seedling growth. This work suggests that GO/Fe-Mn can be used as an effective and environmental-friendly adsorbent in heavy metal remediation.

  14. An uncertain role for Cu(II) in stimulating Mn(II) oxidation by Leptothrix discophora SS-1.

    PubMed

    El Gheriany, Iman A; Bocioaga, Daniela; Hay, Anthony G; Ghiorse, William C; Shuler, Michael L; Lion, Leonard W

    2011-02-01

    In an effort to improve understanding of the role of Cu(II) in bacterial Mn(II) oxidation, a model Mn(II)-oxidizing bacterium, Leptothrix discophora SS-1, was grown in presence of toxic and non-toxic concentrations of Cu(II), Cd(II) and Mn(II). Mn(II)-oxidizing activity increased by 40% when cells were grown in the presence of 0.05 microM of Cu(II) and increased twofold at 0.18 microM Cu(II). Toxic levels of Cd(II) did not stimulate Mn(II) oxidizing activity, indicating that Mn(II) oxidation is not a response to metal toxicity. Stimulation by Cu(II) confirms the specific role of Cu(II) in Mn(II) oxidation. Comparison of transcript levels of the multicopper oxidase mofA gene in the presence and absence of added Cu(II) do not indicate a statistically significant change in mofA transcript levels in cultures supplemented with Cu(II). Thus, the exact role of Cu(II) in Mn(II) oxidation and its affect on mofA gene expression remain uncertain. PMID:21063867

  15. Effect of the Preparation Method on the Oxidation-Reduction Mechanism and the Cation Distribution of Mn-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Gillot, B.; El Guendouzi, M.

    1993-10-01

    The cation distribution of manganese-zinc ferrite Mn 0.50Zn 0.15Fe 2.05O 4 prepared by a ceramic route and wet method was investigated by derivative thermogravimetry (DTG) and X-ray diffraction analyses. Below about 500°C, these ferrites which are oxidized in cation deficient spinels show an incomplete oxidation of tetrahedral Mn 2+ ions leading to a cation distribution (Zn 2+0.43 Mn 2+0.15Fe 3+0.42) A (Fe 3+1.54Mn 3+0.32 □ 0.14) BO 2-4. With increasing temperature further oxidation of Mn 2+ ions results in the appearance of a rhombohedral phase α-(Fe 2- zMn z)O 3 rich in iron accompanied by a spinel phase containing the totality of zinc.

  16. Intense turquoise and green colors in brownmillerite-type oxides based on Mn5+ in Ba2In(2-x)Mn(x)O(5+x).

    PubMed

    Jiang, Peng; Li, Jun; Ozarowski, A; Sleight, Arthur W; Subramanian, M A

    2013-02-01

    Brownmillerite-type oxides Ba(2)In(2-x)Mn(x)O(5+x) (x = 0.1-0.7) have been prepared and characterized. Magnetic measurements indicate that manganese in as-prepared samples is substituting predominantly as Mn(5+) for all values of x with observed paramagnetic spin-only moments close to values expected for two unpaired electrons. Electron paramagnetic resonance measurements indicate that this Mn(5+) is present in a highly distorted tetrahedral environment. Neutron diffraction structure refinements show that Mn(5+) occupies tetrahedral sites for orthorhombic (x = 0.1) and tetragonal (x = 0.2) phases. For Mn ≥ 0.3 samples, neutron refinements show that the phases are cubic with disordered cations and oxygen vacancies. The colors of the phases change from light yellow (x = 0) to intense turquoise (x = 0.1) to green (x = 0.2, 0.3) or to dark green (x ≥ 0.4). Under reducing conditions, Mn(5+) is reduced to Mn(3+), and Ba(2)In(2-x)Mn(x)O(5+x) phases become black Ba(2)In(2-x)Mn(x)O(5) phases still with the brownmillerite structure. PMID:23331190

  17. Intense turquoise and green colors in brownmillerite-type oxides based on Mn5+ in Ba2In(2-x)Mn(x)O(5+x).

    PubMed

    Jiang, Peng; Li, Jun; Ozarowski, A; Sleight, Arthur W; Subramanian, M A

    2013-02-01

    Brownmillerite-type oxides Ba(2)In(2-x)Mn(x)O(5+x) (x = 0.1-0.7) have been prepared and characterized. Magnetic measurements indicate that manganese in as-prepared samples is substituting predominantly as Mn(5+) for all values of x with observed paramagnetic spin-only moments close to values expected for two unpaired electrons. Electron paramagnetic resonance measurements indicate that this Mn(5+) is present in a highly distorted tetrahedral environment. Neutron diffraction structure refinements show that Mn(5+) occupies tetrahedral sites for orthorhombic (x = 0.1) and tetragonal (x = 0.2) phases. For Mn ≥ 0.3 samples, neutron refinements show that the phases are cubic with disordered cations and oxygen vacancies. The colors of the phases change from light yellow (x = 0) to intense turquoise (x = 0.1) to green (x = 0.2, 0.3) or to dark green (x ≥ 0.4). Under reducing conditions, Mn(5+) is reduced to Mn(3+), and Ba(2)In(2-x)Mn(x)O(5+x) phases become black Ba(2)In(2-x)Mn(x)O(5) phases still with the brownmillerite structure.

  18. Manganese carbonates as possible biogenic relics in Archean settings

    NASA Astrophysics Data System (ADS)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim

    2016-07-01

    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  19. Manganese Oxides: Parallels between Abiotic and Biotic Structures

    SciTech Connect

    Saratovksy, Ian; Wightman, Peter G.; Pasten, Pablo A.; Gaillard, Jean-Francois; Poeppelmeier, Kenneth R.

    2008-10-06

    A large number of microorganisms are responsible for the oxidation of Mn{sub (aq)}{sup 2+} to insoluble Mn{sup 3+/4+} oxides (MnO{sub x}) in natural aquatic systems. This paper reports the structure of the biogenic MnO{sub x}, including a quantitative analysis of cation vacancies, formed by the freshwater bacterium Leptothrix discophora SP6 (SP6-MnO{sub x}). The structure and the morphology of SP6-MnO{sub x} were characterized by transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), including full multiple-scattering analysis, and powder X-ray diffraction (XRD). The biogenic precipitate consists of nanoparticles that are approximately 10 nm by 100 nm in dimension with a fibrillar morphology that resembles twisted sheets. The results demonstrate that this biogenic MnO{sub x} is composed of sheets of edge-sharing of Mn{sup 4+}O{sub 6} octahedra that form layers. The detailed analysis of the EXAFS spectra indicate that 12 {+-} 4% of the Mn{sup 4+} layer cation sites in SP6-MnO{sub x} are vacant, whereas the analysis of the XANES suggests that the average oxidation state of Mn is 3.8 {+-} 0.3. Therefore, the average chemical formula of SP6-MnO{sub x} is Mn{sub y}{sup n+}Mn{sub 0.12}{sup 3+}[{open_square}{sub 0.12}Mn{sub 0.88}{sup 4+}]O{sub 2} {center_dot} zH{sub 2}O, where M{sub y}{sup n+} represents hydrated interlayer cations, {open_square}{sub 0.12} represents Mn{sup 4+} cation vacancies within the layer, and Mn{sub 0.12}{sup 3+} represents hydrated cations that occupy sites above/below these cation vacancies.

  20. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.

    PubMed

    Muehe, E Marie; Morin, Guillaume; Scheer, Lukas; Pape, Pierre Le; Esteve, Imène; Daus, Birgit; Kappler, Andreas

    2016-03-01

    The dissolution of arsenic-bearing iron(III) (oxyhydr)oxides during combined microbial iron(III) and arsenate(V) reduction is thought to be the main mechanism responsible for arsenic mobilization in reducing environments. Besides its mobilization during bioreduction, arsenic is often resequestered by newly forming secondary iron(II)-bearing mineral phases. In phosphate-bearing environments, iron(II) inputs generally lead to vivianite precipitation. In fact, in a previous study we observed that during bioreduction of arsenate(V)-bearing biogenic iron(III) (oxyhydr)oxides in phosphate-containing growth media, arsenate(V) was immobilized by the newly forming secondary iron(II) and iron(II)/iron(III)mineral phases, including vivianite. In the present study, changes in arsenic redox state and binding environment in these experiments were analyzed. We found that arsenate(V) partly replaced phosphate in vivianite, thus forming a vivianite-symplesite solid solution identified as Fe3(PO4)1.7(AsO4)0.3·8H2O. Our data suggests that in order to predict the fate of arsenic during the bioreduction of abiogenic and biogenic iron(III) (oxyhydr)oxides in arsenic-contaminated environments, the formation of symplesite-vivianite minerals needs to be considered. Indeed, such mineral phases could contribute to a delayed and slow release of arsenic in phosphate-bearing surface and groundwater environments.

  1. A DFT study of phenol adsorption on a low doping Mn-Ce composite oxide model

    NASA Astrophysics Data System (ADS)

    D´Alessandro, Oriana; Pintos, Delfina García; Juan, Alfredo; Irigoyen, Beatriz; Sambeth, Jorge

    2015-12-01

    Density functional theory calculations (DFT + U) were performed on a low doping Mn-Ce composite oxide prepared from experimental data, including X-ray diffraction (XRD) and temperature-programmed reduction (TPR). We considered a 12.5% Mn-doped CeO2 solid solution with fluorite-type structure, where Mn replaces Ce4+ leading to an oxygen-deficient bulk structure. Then, we modeled the adsorption of phenol on the bare Ce0.875Mn0.125O1.9375(1 1 1) surface. We also studied the effect of water adsorption and dissociation on phenol adsorption on this surface, and compared the predictions of DFT + U calculations with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements. The experimental results allowed us to both build a realistic model of the low doping Mn-Ce composite oxide and support the prediction that phenol is adsorbed as a phenoxy group with a tilt angle of about 70° with respect to the surface.

  2. Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal

    NASA Astrophysics Data System (ADS)

    Manceau, Alain; Kersten, Michael; Marcus, Matthew A.; Geoffroy, Nicolas; Granina, Liba

    2007-04-01

    The partitioning and incorporation mechanism of Ni and Ba in a ferromanganese nodule from Lake Baikal were characterized by X-ray microfluorescence, microdiffraction, and absorption spectroscopy. Fe is speciated as goethite, and Mn as romanechite (psilomelane) and 10 Å-vernadite (turbostratic buserite) with minor 7 Å-vernadite (turbostratic birnessite). Barium is associated with romanechite and Ni with vernadite in distinct and irregularly distributed layers, and each type of Mn oxide is separated from the other type by goethite. The binary Mn oxide banding pattern is interpreted by a two-mode accretionary model, in which the variation in Ba flux induced by hydrothermal water pulses determines whether a tectomanganate (romanechite) or phyllomanganate (vernadite) is formed during the ferromanganese nodule accretion. Consistent with the dependence of Ni sorption on pH and the circumneutral pH of the lake water, nickel is mainly substituted isomorphically for Mn in the manganese layer, and is not sorbed at vacant Mn layer sites in the interlayer.

  3. PbMn(IV)TeO6: A New Noncentrosymmetric Layered Honeycomb Magnetic Oxide.

    PubMed

    Kim, Sun Woo; Deng, Zheng; Li, Man-Rong; Sen Gupta, Arnab; Akamatsu, Hirofumi; Gopalan, Venkatraman; Greenblatt, Martha

    2016-02-01

    PbMnTeO6, a new noncentrosymmetric layered magnetic oxide was synthesized and characterized. The crystal structure is hexagonal, with space group P6̅2m (No. 189), and consists of edge-sharing (Mn(4+)/Te(6+))O6 trigonal prisms that form honeycomb-like two-dimensional layers with Pb(2+) ions between the layers. The structural difference between PbMnTeO6, with disordered/trigonal prisms of Mn(4+)/Te(6+), versus the similar chiral SrGeTeO6 (space group P312), with long-range order of Ge(4+) and Te(6+) in octahedral coordination, is attributed to a difference in the electronic effects of Ge(4+) and Mn(4+). Temperature-dependent second harmonic generation by PbMnTeO6 confirmed the noncentrosymmetric character between 12 and 873 K. Magnetic measurements indicated antiferromagnetic order at T(N) ≈ 20 K and a frustration parameter (|θ|/T(N)) of ∼2.16. PMID:26756703

  4. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants: The Involvement of Mn(III).

    PubMed

    Sun, Bo; Guan, Xiaohong; Fang, Jingyun; Tratnyek, Paul G

    2015-10-20

    MnO4(-) was activated by HSO3(-), resulting in a process that oxidizes organic contaminants at extraordinarily high rates. The permanganate/bisulfite (PM/BS) process oxidized phenol, ciprofloxacin, and methyl blue at pHini 5.0 with rates (kobs ≈ 60-150 s(-1)) that were 5-6 orders of magnitude faster than those measured for permanganate alone, and ∼5 to 7 orders of magnitude faster than conventional advanced oxidation processes for water treatment. Oxidation of phenol was fastest at pH 4.0, but still effective at pH 7.0, and only slightly slower when performed in tap water. A smaller, but still considerable (∼3 orders of magnitude) increase in oxidation rates of methyl blue was observed with MnO2 activated by HSO3(-) (MO/BS). The above results, time-resolved spectroscopy of manganese species under various conditions, stoichiometric analysis of pH changes, and the effect of pyrophosphate on UV absorbance spectra suggest that the reactive intermediate(s) responsible for the extremely rapid oxidation of organic contaminants in the PM/BS process involve manganese(III) species with minimal stabilization by complexation. The PM/BS process may lead to a new category of advanced oxidation technologies based on contaminant oxidation by reactive manganese(III) species, rather than hydroxyl and sulfate radicals.

  5. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.

    PubMed

    Semin, Boris K; Seibert, Michael

    2016-06-01

    We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.

  6. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  7. Oxidation behavior of Mn and Mo alloyed Fe-16Ni-(5-8)Cr-3. 2Si-1. 0Al

    SciTech Connect

    Rawers, J.C.; Oh, J.M.; Dunning, J. )

    1990-02-01

    Oxidation tests were conducted on a master alloy, Fe-16Ni-(5-8)Cr-3Si-1Al, to which (0-4) wt/o pct Mn and/or Mo were added. Tests were conducted at temperatures ranging from 1,073-1,273 K for times up to 1,000 hr. Additions of Mn resulted in formation of a dual oxide structure and decreased oxidation protection. Addition of Mo significantly improved oxidation protection by formation of an intermetallic Fe(Mo)Si precipitate that eventually formed a protective SiO{sub 2} oxide sublayer. The oxidation protection was related to the alloy components and concentration.

  8. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    PubMed

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  9. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    PubMed

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused. PMID:23945878

  10. Manganese oxides: parallels between abiotic and biotic structures.

    PubMed

    Saratovsky, Ian; Wightman, Peter G; Pastén, Pablo A; Gaillard, Jean-François; Poeppelmeier, Kenneth R

    2006-08-30

    A large number of microorganisms are responsible for the oxidation of Mn(2+)((aq)) to insoluble Mn(3+/4+) oxides (MnO(x)()) in natural aquatic systems. This paper reports the structure of the biogenic MnO(x)(), including a quantitative analysis of cation vacancies, formed by the freshwater bacterium Leptothrix discophora SP6 (SP6-MnO(x)()). The structure and the morphology of SP6-MnO(x)() were characterized by transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), including full multiple-scattering analysis, and powder X-ray diffraction (XRD). The biogenic precipitate consists of nanoparticles that are approximately 10 nm by 100 nm in dimension with a fibrillar morphology that resembles twisted sheets. The results dem-onstrate that this biogenic MnO(x)() is composed of sheets of edge-sharing of Mn(4+)O(6) octahedra that form layers. The detailed analysis of the EXAFS spectra indicate that 12 +/- 4% of the Mn(4+) layer cation sites in SP6-MnO(x)() are vacant, whereas the analysis of the XANES suggests that the average oxidation state of Mn is 3.8 +/- 0.3. Therefore, the average chemical formula of SP6-MnO(x)() is M(n)()(+)(y)()Mn(3+)(0.12)[ square(0.12)Mn(4+)(0.88)]O(2).zH(2)O, where M(n)()(+)(y)() represents hydrated interlayer cations, square(0.12) represents Mn(4+) cation vacancies within the layer, and Mn(3+)(0.12) represents hydrated cations that occupy sites above/below these cation vacancies. PMID:16925437

  11. Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning - comparison between process models of varying complexity

    NASA Astrophysics Data System (ADS)

    Hermansson, E.; Roldin, P.; Rusanen, A.; Mogensen, D.; Kivekäs, N.; Boy, M.; Swietlicki, E.

    2014-05-01

    Biogenic volatile organic compounds (BVOCs) emitted by the vegetation play an important role for the aerosol mass loadings since the oxidation products of these compounds can take part in the formation and growth of secondary organic aerosols (SOA). The concentrations and properties of BVOCs and their oxidation products in the atmosphere are poorly characterized, which leads to high uncertainties in modeled SOA mass and properties. In this study the formation of SOA has been modeled along an air mass trajectory over the northern European boreal forest using two aerosol dynamics box models where the prediction of the condensable organics from the gas-phase oxidation of BVOC is handled with schemes of varying complexity. The use of box model simulations along an air mass trajectory allows us to, under atmospheric relevant conditions, compare different model parameterizations and their effect on SOA formation. The result of the study shows that the modeled mass concentration of SOA is highly dependent on the organic oxidation scheme used to predict the oxidation products. A near-explicit treatment of organic gas-phase oxidation (Master Chemical Mechanism version 3.2) was compared to oxidation schemes that use the volatility basis set (VBS) approach. The resulting SOA mass modeled with different VBS-schemes varies by a factor of about 7 depending on how the first generation oxidation products are parameterized and how they subsequently age (e.g. how fast the gas-phase oxidation products react with the OH-radical, how they respond to temperature changes and if they are allowed to fragment during the aging process). Since the VBS approach is frequently used in regional and global climate models due to its relatively simple treatment of the oxidation products compared to near-explicit oxidation schemes; better understanding of the abovementioned processes are needed. Compared to the most commonly used VBS-schemes, the near-explicit method produces less - but more oxidized

  12. Room temperature ferromagnetism in Mn- and Fe-doped indium tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Venkatesan, M.; Gunning, R. D.; Stamenov, P.; Coey, J. M. D.

    2008-04-01

    Undoped and transition-metal doped indium tin oxide films have been grown by pulsed laser deposition technique, on single crystalline c-plane (0001) and r-plane (1102) sapphire substrates maintained at 500-850°C. Magnetization measurements of films deposited at different temperatures indicate that ferromagnetism appears for deposition temperatures, Tdep>600°C, with the highest moment for films deposited around 750°C. Qualitative different ferromagnetic behavior has been observed at room temperature in Fe- and Mn-doped thin films. The stable, hysteretic ferromagnetism of the Fe-doped films is due to the presence of magnetite, as seen in transmission Mössbauer spectra. The Mn-doped films show anhysteretic ferromagnetism which decays over time. It is somehow intrinsic, but not due to the Mn ions, which remains paramagnetic down to 4K. No anomalous Hall effect is observed.

  13. Sputtering and native oxide formation on (110) surfaces of Cd(1-x)Mn(x)Te

    NASA Technical Reports Server (NTRS)

    Neff, H.; Lay, K. Y.; Abid, B.; Lange, P.; Lucovsky, G.

    1986-01-01

    Native oxides on the surface of Cd(1-x)Mn(x)Te (X between 0 and 0.7) have been analyzed on the basis of X-ray photoemission spectroscopy measurements. Depth profile analysis revealed a significant increase in the thickness at higher Mn concentrations and a strong Mn segregation to the surface, respectively. Sputter-induced damage on cleaved (110)-oriented surfaces was analyzed by photoreflectance and photoluminescence measurements. The damage was found to be larger on CdTe than on the alloy. Thermal annealing showed nearly complete restoration for the surface of the alloy, while CdTe revealed irreversible modifications in the near-surface regime upon sputtering and post annealing.

  14. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH₃.

    PubMed

    Liu, Zhiming; Zhu, Junzhi; Li, Junhua; Ma, Lingling; Woo, Seong Ihl

    2014-08-27

    Mn-Ce-Ti mixed-oxide catalyst prepared by the hydrothermal method was investigated for the selective catalytic reduction (SCR) of NOx with NH3 in the presence of oxygen. It was found that the environmentally benign Mn-Ce-Ti catalyst exhibited excellent NH3-SCR activity and strong resistance against H2O and SO2 with a broad operation temperature window, which is very competitive for the practical application in controlling the NOx emission from diesel engines. On the basis of the catalyst characterization, the dual redox cycles (Mn(4+) + Ce(3+) ↔ Mn(3+) + Ce(4+), Mn(4+) + Ti(3+) ↔ Mn(3+) + Ti(4+)) and the amorphous structure play key roles for the high catalytic deNOx performance. Diffuse reflectance infrared Fourier transform spectroscopy studies showed that the synergetic effect between Mn and Ce contributes to the formation of reactive intermediate species, thus promoting the NH3-SCR to proceed.

  15. The effect of tropical islands on the chemical mixing of biogenics and their oxidation products from the surface layer to the upper troposphere

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Monks, P. S.; Warwick, N. J.; Carver, G. D.; Pyle, J. A.

    2011-12-01

    In recent years much interest has been shown in the composition of the tropical atmosphere from the surface to the tropopause. During June 2008 an extensive measurement campaign (OP3) was conducted from the ground level in the canopy of the tropical rainforest of Borneo concurrently with aircraft flights over coastal areas, a mixture of rainforest and palm plantations on the island. The aim of this campaign was to gain a better understanding of the chemical processes governing the tropical boundary layer and emissions from changing vegetation types. Tropical islands present a set of meteorological conditions that have the potential to loft surface emissions into the upper troposphere which can later have an impact on the upper troposphere/lower stratosphere. The experimental data in conjunction with models has been used to assess the impact of introducing surface biogenic emissions to the upper troposphere on the chemical processing throughout the entire air column. The data show the lifting lifetimes are in the order of 1 to 2 hours and that the islands act in effect as a tropical chimney lifting a significant range of biogenics and NOx. The oxidative impact of the tropical region on global oxidative capacity will be explored.

  16. Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed Mn/Ti Oxides

    SciTech Connect

    Kerisit, Sebastien N.; Chaka, Anne M.; Droubay, Timothy C.; Ilton, Eugene S.

    2014-10-23

    Mixed Mn/Ti oxides present attractive physicochemical properties such as their ability to accommodate Li for application in Li-ion batteries. In this work, atomic parameters for Mn were developed to extend an existing shell model of the Li-Ti-O system and allow simulations of pure and lithiated Mn and mixed Mn/Ti oxide polymorphs. The shell model yielded good agreement with experimentally-derived structures (i.e. lattice parameters and inter-atomic distances) and represented an improvement over existing potential models. The shell model was employed in molecular dynamics (MD) simulations of Li diffusion in the 1×1 c direction channels of LixMn1 yTiyO2 with the rutile structure, where 0 ≤ x ≤ 0.25 and 0 ≤ y ≤ 1. In the infinite dilution limit, the arrangement of Mn and Ti ions in the lattice was found to have a significant effect on the activation energy for Li diffusion in the c channels due to the destabilization of half of the interstitial octahedral sites. Anomalous diffusion was demonstrated for Li concentrations as low as x = 0.125, with a single Li ion positioned in every other c channel. Further increase in Li concentration showed not only the substantial effect of Li-Li repulsive interactions on Li mobility but also their influence on the time dependence of Li diffusion. The results of the MD simulations can inform intrinsic structure-property relationships for the rational design of improved electrode materials for Li-ion batteries.

  17. Adsorption of ribose nucleotides on manganese oxides with varied mn/o ratio: implications for chemical evolution.

    PubMed

    Bhushan, Brij; Shanker, Uma; Kamaluddin

    2011-10-01

    Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn(2)O(3)), Hausmannite (Mn(3)O(4)) and Pyrolusite (MnO(2)) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X( m ) and K( L ) values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.

  18. Adsorption of Ribose Nucleotides on Manganese Oxides with Varied Mn/O Ratio: Implications for Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Shanker, Uma; Kamaluddin

    2011-10-01

    Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn2O3), Hausmannite (Mn3O4) and Pyrolusite (MnO2) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X m and K L values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.

  19. Hollow spiny shell of porous Ni-Mn oxides: A facile synthesis route and their application as electrode in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Lv, Lin; Peng, Lu; Ruan, Yunjun; Liu, Jia; Ji, Xiao; Miao, Ling; Jiang, Jianjun

    2015-07-01

    Hollow spiny shell Ni-Mn precursors composed of one-dimensional nanoneedles were synthesized via a simple hydrothermal method without any template. The hollow Spiny shell Ni-Mn oxides are obtained under thermal treatment at different temperatures. The BET surface areas of Ni-Mn oxides reach up to 112 and 133 m2 g-1 when calcination temperatures occur at 300 and 400 °C, respectively. The electrochemical performances of as-synthesized hollow spiny shell Ni-Mn oxides gradually die down with annealing temperatures increasing. The porous hollow spiny shell Ni-Mn oxide obtained at 300 °C delivers a maximum capacitance of 1140 F g-1 at a high current density of 1 A g-1 after 1000th cycles and the specific capacitance of Ni-Mn oxide will increase with cycling times increasing. So, porous hollow spiny shell Ni-Mn oxide obtained at low annealing temperature can form a competitive electrode material for supercapacitors.

  20. Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst.

    PubMed

    Vu, Van Hinh; Belkouch, Jamal; Ould-Dris, Aïssa; Taouk, Bechara

    2009-09-30

    MnCuO(x)/TiO(2) supported catalyst was synthesized by the incipient wetness impregnation method. The catalyst was then tested for the oxidation of chlorobenzene (CB) used as a Cl-VOC model. The results showed that MnCuO(x)/TiO(2) is very active for CB oxidation since a total conversion (exclusively into H(2)O, CO(2) and Cl(2)) was reached at 350 degrees C without formation of any other harmful organic compounds and no catalyst deactivation was observed. This performance was attributed to the formation Mn(1.6)Cu(1.4)O(4) spinel phase. However, at lower temperatures, some deactivation occurred before a steady-state is reached. At 300 degrees C, the CB conversion decreased and stabilised at 75% after 5h and a small amount of HCl and traces of CO were detected. The reason why HCl was not detected at temperatures higher than 350 degrees C was explained by Deacon reaction. SEM/EDS analysis revealed the presence of chlorine uniformly dispersed on the catalyst surface. The formation of chlorinated compound (MnCuO(x-a)Cl(2a)/TiO(2)), which is presumed to be responsible of the catalyst partial deactivation, was confirmed by other analysis experiments (TG/DTA, TPR). The catalyst regeneration under air at 350 degrees C allowed the system to recover the initial activity in spite of the fact that the chlorine was not completely removed from the catalyst. PMID:19411136

  1. Amorphous Manganese-Calcium Oxides as a Possible Evolutionary Origin for the CaMn4 Cluster in Photosystem II

    NASA Astrophysics Data System (ADS)

    Najafpour, Mohammad Mahdi

    2011-06-01

    In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn3+ in a distorted octahedral environment and eight-coordinate Ca2+ centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn2O4), pyrolusite (MnO2) and compared with hollandite (Ba0.2Ca0.15K0.3Mn6.9Al0.2Si0.3O16), hausmannite (Mn3O4), Mn2O3.H2O, CaMn3O6.H2O, CaMn4O8.H2O, CaMn2O4.H2O and synthetic marokite (CaMn2O4). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.

  2. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying

    2012-12-01

    MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. PMID:23131500

  3. Oscillatory oxidation of Mn(II) ions by hexacyanoferrates(III) and bistability in the reductions of MnO 2 by hexacyanoferrates(II) in a CSTR

    NASA Astrophysics Data System (ADS)

    Olexová, Anna; Melicherčík, Milan; Treindl, L'udovít

    1997-04-01

    A new transition metal oscillator based on the oxidation of Mn 2+ ions by Fe(CN) 3-6 ions in a CSTR has been found. As well as the oscillations of the absorbance of the Mn(IV) species, pH-oscillations have been observed. In the reduction of manganese dioxide by Fe(CN) 4-6 ions a kinetic bistability has been described. A skeleton mechanism described recently for Mn(II)H 2O 2 and Mn(II)Br 2 oscillators has been applied here and further developed by the idea of the catalytic activity of colloidal particles and of the assistance of the pH-value change of both main processes, i.e. of the Mn(II) oxidation by Fe(CN) 3-6 ions and of the Mn(IV) reduction by Fe(CN) 4-6 ions. This appears to be the first case where both sides of a reversible reaction are autocatalytic.

  4. Plutonium oxidation and subsequent reduction by Mn(IV) minerals in Yucca Mountain tuff.

    PubMed

    Powell, Brian A; Duff, Martine C; Kaplan, Daniel I; Fjeld, Robert A; Newville, Matthew; Hunter, Douglas B; Bertsch, Paul M; Coates, John T; Eng, Peter; Rivers, Mark L; Serkiz, Steven M; Sutton, Stephen R; Triay, Ines R; Vaniman, David T

    2006-06-01

    Plutonium oxidation state distribution on Yucca Mountain tuff and synthetic pyrolusite (beta-MnO2) suspensions was measured using synchrotron X-ray micro-spectroscopy and microimaging techniques as well as ultrafiltration/solventextraction techniques. Plutonium sorbed to the tuff was preferentially associated with manganese oxides. For both Yucca Mountain tuff and synthetic pyrolusite, Pu(IV) or Pu(V) was initially oxidized to more mobile Pu(V/VI), but over time, the less mobile Pu(IV) became the predominant oxidation state of the sorbed Pu. The observed stability of Pu(IV) on oxidizing surfaces (e.g., pyrolusite), is proposed to be due to the formation of a stable hydrolyzed Pu(IV) surface species. These findings have important implications in estimating the risk associated with the geological burial of radiological waste in areas containing Mn-bearing minerals, such as at the Yucca Mountain or the Hanford Sites, because plutonium will be predominantly in a much less mobile oxidation state (i.e., Pu(IV)) than previously suggested (i.e., Pu(V/VI). PMID:16786687

  5. Gold on Different Manganese Oxides: Ultra-Low-Temperature CO Oxidation over Colloidal Gold Supported on Bulk-MnO2 Nanomaterials.

    PubMed

    Gu, Dong; Tseng, Jo-Chi; Weidenthaler, Claudia; Bongard, Hans-Josef; Spliethoff, Bernd; Schmidt, Wolfgang; Soulimani, Fouad; Weckhuysen, Bert M; Schüth, Ferdi

    2016-08-01

    Nanoscopic gold particles have gained very high interest because of their promising catalytic activity for various chemicals reactions. Among these reactions, low-temperature CO oxidation is the most extensively studied one due to its practical relevance in environmental applications and the fundamental problems associated with its very high activity at low temperatures. Gold nanoparticles supported on manganese oxide belong to the most active gold catalysts for CO oxidation. Among a variety of manganese oxides, Mn2O3 is considered to be the most favorable support for gold nanoparticles with respect to catalytic activity. Gold on MnO2 has been shown to be significantly less active than gold on Mn2O3 in previous work. In contrast to these previous studies, in a comprehensive study of gold nanoparticles on different manganese oxides, we developed a gold catalyst on MnO2 nanostructures with extremely high activity. Nanosized gold particles (2-3 nm) were supported on α-MnO2 nanowires and mesoporous β-MnO2 nanowire arrays. The materials were extremely active at very low temperature (-80 °C) and also highly stable at 25 °C (70 h) under normal conditions for CO oxidation. The specific reaction rate of 2.8 molCO·h(-1)·gAu(-1) at a temperature as low as -85 °C is almost 30 times higher than that of the most active Au/Mn2O3 catalyst. PMID:27392203

  6. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice.

    PubMed

    Martins, Eduarda N; Pessano, Naira T C; Leal, Luiza; Roos, Daniel H; Folmer, Vanderlei; Puntel, Gustavo O; Rocha, João Batista Teixeira; Aschner, Michael; Ávila, Daiana Silva; Puntel, Robson Luiz

    2012-01-01

    Manganese (Mn) is an essential element for biological systems; however occupational exposure to high levels of this metal may lead to neurodegenerative disorders, resembling Parkinson's disease (PD). While its mechanisms of neurotoxicity have yet to be fully understood, oxidative stress plays a critical role. Thus, the main goal of this study was to investigate the efficacy of aqueous extract of Melissa officinalis in attenuating Mn-induced brain oxidative stress in mice. Sixteen male mice were randomly divided into two groups and treated for 3 months: the first group consumed tap water (control group) and the second group was treated with Mn (50 mg/kg/day for habituation during the first 15 days followed by 100 mg/kg/day for additional 75 days) in the drinking water. After 3 months both groups were sub divided (n=4 per group) and treated for additional 3 months with Mn and/or M. officinalis in the drinking water. The first group (control) was treated with water and served as control; the second group (M. officinalis) was treated with M. officinalis (100 mg/kg/day); the third group was treated with Mn (100 mg/kg/day); the fourth group (Mn+M. officinalis) was treated with both Mn and M. officinalis (100 mg/kg/day each). Mn-treated mice showed a significant increase in thiobarbituric acid reactive species (TBARS) levels (a marker of oxidative stress) in both the hippocampus and striatum. These changes were accompanied by a decrease in total thiol content in the hippocampus and a significant increase in antioxidant enzyme activity (superoxide dismutase and catalase) in the hippocampus, striatum, cortex and cerebellum. Co-treatment with M. officinalis aqueous extract in Mn-treated mice significantly inhibited the antioxidant enzyme activities and attenuated the oxidative damage (TBARS and decreased total thiol levels). These results establish that M. officinalis aqueous extract possesses potent antioxidative properties, validating its efficacy in attenuating Mn

  7. Secondary Fe- and Mn-Oxides Associated with Faults Near Moab, Utah: Records of Past Fluid Flow

    NASA Astrophysics Data System (ADS)

    Garcia, V. H.; Reiners, P. W.

    2015-12-01

    Secondary Fe- and Mn-oxides are locally common near faults and fractures, and as cements within sandstones of the Colorado Plateau, and provide evidence of past fluid-flow. Here we describe textural, mineralogic, and geochronologic observations from fault-zone Fe- and Mn-oxide mineralization in Flat Iron Mesa, near Moab, Utah. Several hypotheses have been proposed for their origin, including reactions associated with the mixing of deep reduced and near-surface oxygenated waters. We integrate field observations, detailed SEM and petrographic observations, geochemical models, (U-Th)/He and Ar/Ar dating, and other data to develop interpretations of the formation of these deposits. SEM imaging shows that sandstone matrix cement adjacent to the faults follows two precipitation sequences: Fe-oxide followed by barite and Fe-oxide followed by Mn-oxide. Dense oxide layers also accumulated in cm-scale fractures near faults, and show the following precipitation sequence: Fe-oxide, barite, Ba rich Mn-oxide, and pure Mn-oxide. The latter sequence is observed at larger scale across faults in one site in Flat Iron Mesa. Our new He dates for Mn-oxides are 1.7-2.9 Ma while Fe-oxide dates are 2.7-3.0 Ma. If these dates represent formation ages, they are consistent with the interpreted precipitation sequence but would require protracted mineralization over Ma-timescales. Alternatively, they may represent varying degrees of He retentivity in earlier formed deposits. Previous Ar/Ar dates have been interpreted as a 20-25 Ma formation age. Ongoing Ar/Ar and He diffusion studies will resolve this discordance. Assuming the previous Ar dates do not reflect contamination by detrital K-bearing phases and do reflect oxide formation, potential interpretations for the younger He ages include recent U-Th addition, recrystallization, later oxide growth, or large diffusive He loss at low temperatures.

  8. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng

    2015-10-01

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C-H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100-120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140-160 °C, conversion: 3-5%). The high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C-H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.

  9. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons

    PubMed Central

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng

    2015-01-01

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). The high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface. PMID:26469151

  10. Microwave absorption properties of Mn- and Ni-doped zinc oxides

    SciTech Connect

    Wu Qibai; Zhao Wei; Zeng Guoxun; Zhang Haiyan; Wei Aixiang; Wang Jia

    2011-05-15

    Microwave absorption properties of Mn- and Ni-doped zinc oxides were assessed in this study. Samples were prepared by the decomposition of acetate solid solutions. By changing the concentration of dopant ions in the reaction solutions, zinc oxides with different amounts of dopant were obtained. The morphologies, chemical compositions, and structures of the samples were investigated by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray powder diffraction. Electromagnetic characteristics of the doped samples were assessed by vector network analysis at a frequency range of 2-16 GHz. Both the real and imaginary parts of the complex permittivity decreased as Mn or Ni concentration increased. Results indicate that, compared with pure ZnO, Mn- and Ni-doped zinc oxides exhibit excellent microwave absorption properties. The highest level of microwave absorption observed was 80.7 dB at a frequency of 9.8 GHz, and the best frequency bandwidth was 8.6 GHz at reflection loss values below -10 dB.

  11. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons

    DOE PAGES

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng

    2015-10-15

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). Finally, the high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganesemore » doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.« less

  12. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1

    PubMed Central

    Parker, Dorothy L.; Lee, Sung-Woo; Geszvain, Kati; Davis, Richard E.; Gruffaz, Christelle; Meyer, Jean-Marie; Torpey, Justin W.; Tebo, Bradley M.

    2014-01-01

    When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides of PVDGB-1 and PVDMnB1 as being (for both PVDs): chromophore-Asp-Lys-OHAsp-Ser-Gly-aThr-Lys-cOHOrn, resembling a structure previously reported for P. putida CFML 90-51, which does not oxidize Mn. All three strains also produced an azotobactin and a sulfonated PVD, each with the peptide sequence above, but with unknown regulatory or metabolic effects. Bioinformatic analysis of the sequenced genome of P. putida GB-1 suggested that a particular non-ribosomal peptide synthetase (NRPS), coded by the operon PputGB1_4083-4086, could produce the peptide backbone of PVDGB-1. To verify this prediction, plasmid integration disruption of PputGB1_4083 was performed and the resulting mutant failed to produce detectable PVD. In silico analysis of the modules in PputGB1_4083-4086 predicted a peptide sequence of Asp-Lys-Asp-Ser-Ala-Thr-Lsy-Orn, which closely matches the peptide determined by MS/MS. To extend these studies to other organisms, various Mn(II)-oxidizing and non-oxidizing isolates of P. putida, P. fluorescens, P. marincola, P. fluorescens-syringae group, P. mendocina-resinovorans group, and P. stutzerii group were screened for PVD synthesis. The PVD producers (12 out of 16 tested strains) were siderotyped and placed into four sets of differing PVD structures, some corresponding to previously characterized PVDs and some to novel PVDs. These results combined with previous studies suggested that the presence of OHAsp or the flexibility of the pyoverdine polypeptide may enable efficient binding of Mn(III). PMID:24847318

  13. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1.

    PubMed

    Parker, Dorothy L; Lee, Sung-Woo; Geszvain, Kati; Davis, Richard E; Gruffaz, Christelle; Meyer, Jean-Marie; Torpey, Justin W; Tebo, Bradley M

    2014-01-01

    When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides of PVDGB-1 and PVDMnB1 as being (for both PVDs): chromophore-Asp-Lys-OHAsp-Ser-Gly-aThr-Lys-cOHOrn, resembling a structure previously reported for P. putida CFML 90-51, which does not oxidize Mn. All three strains also produced an azotobactin and a sulfonated PVD, each with the peptide sequence above, but with unknown regulatory or metabolic effects. Bioinformatic analysis of the sequenced genome of P. putida GB-1 suggested that a particular non-ribosomal peptide synthetase (NRPS), coded by the operon PputGB1_4083-4086, could produce the peptide backbone of PVDGB-1. To verify this prediction, plasmid integration disruption of PputGB1_4083 was performed and the resulting mutant failed to produce detectable PVD. In silico analysis of the modules in PputGB1_4083-4086 predicted a peptide sequence of Asp-Lys-Asp-Ser-Ala-Thr-Lsy-Orn, which closely matches the peptide determined by MS/MS. To extend these studies to other organisms, various Mn(II)-oxidizing and non-oxidizing isolates of P. putida, P. fluorescens, P. marincola, P. fluorescens-syringae group, P. mendocina-resinovorans group, and P. stutzerii group were screened for PVD synthesis. The PVD producers (12 out of 16 tested strains) were siderotyped and placed into four sets of differing PVD structures, some corresponding to previously characterized PVDs and some to novel PVDs. These results combined with previous studies suggested that the presence of OHAsp or the flexibility of the pyoverdine polypeptide may enable efficient binding of Mn(III). PMID:24847318

  14. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation.

    PubMed

    Zhang, Gaosheng; Liu, Fudong; Liu, Huijuan; Qu, Jiuhui; Liu, Ruiping

    2014-09-01

    In our previous studies, a synthesized Fe-Mn binary oxide was found to be very effective for both As(V) and As(III) removal in aqueous phase, because As(III) could be easily oxidized to As(V). As(III) oxidation and As(V) sorption by the Fe-Mn binary oxide may also play an important role in the natural cycling of As, because of its common occurrence in the environment. In the present study, the respective role of Fe and Mn contents present in the Fe-Mn binary oxide on As(III) removal was investigated via a direct in situ determination of arsenic speciation using X-ray absorption spectroscopy. X-ray absorption near edge structure results indicate that Mn atoms exist in a mixed valence state of +3 and +4 and further confirm that MnOx (1.5 < x < 2) content is mainly responsible for oxidizing As(III) to As(V) through a two-step pathway [reduction of Mn(IV) to Mn(III) and subsequent Mn(III) to Mn(II)] and FeOOH content is dominant for adsorbing the formed As(V). No significant As(III) oxidation by pure FeOOH had been observed during its sorption, when the system was exposed to air. The extended X-ray absorption fine structure results reveal that the As surface complex on both the As(V)- and As(III)-treated sample surfaces is an inner-sphere bidentate binuclear corner-sharing complex with an As-M (M = Fe or Mn) interatomic distance of 3.22-3.24 Å. In addition, the MnOx and FeOOH contents exist only as a mixture, and no solid solution is formed. Because of its high effectiveness, low cost, and environmental friendliness, the Fe-Mn binary oxide would play a beneficial role as both an efficient oxidant of As(III) and a sorbent for As(V) in drinking water treatment and environmental remediation.

  15. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite

    SciTech Connect

    Kwon, K.D.; Refson, K.; Sposito, G.

    2009-06-01

    Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO{sub 2} and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II).

  16. Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts.

    PubMed

    Li, Yong; Yu, Chen; Shen, Guangsi; Li, Guangfei; Shen, Junkang; Xu, Youjia; Gong, Jianping

    2015-04-01

    Increasing evidence has suggested an important role played by reactive oxygen species in the pathogenesis of osteoporosis. Tobacco smoking is an important risk factor for the development of osteoporosis, and nicotine is one of the major components in tobacco. However, the mechanism by which nicotine promotes osteoporosis is not fully understood. Here, in this study, we found that nicotine-induced mitochondrial oxidative stress and mitochondrial DNA (mtDNA) damage in osteoblasts differentiated from mouse mesenchymal stem cell. The activity of MnSOD, one of the mitochondrial anti-oxidative enzymes, was significantly reduced by nicotine due to the reduced level of Sirt3. Moreover, it was also found that Sirt3 could promote MnSOD activity by deacetylating MnSOD. Finally, Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP, a MnSOD mimetic) was found to markedly reduce the effect of nicotine on osteoblasts. In summary, Sirt3-MnSOD axis was identified as a negative component in nicotine-induced mitochondrial oxidative stress and mtDNA damage, and MnTBAP may serve as a potential therapeutic drug for osteoporosis. PMID:25757953

  17. Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    PubMed Central

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-01-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li–Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g−1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li–Mn spinel oxides obtained by conventional solid-state methods. PMID:26456216

  18. Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties.

    PubMed

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-10-12

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li-Mn spinel oxides by tuning the hydration of Li(+) ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m(2) g(-1). They exhibited unique properties such as unusual topotactic Li(+)/H(+) ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li-Mn spinel oxides obtained by conventional solid-state methods.

  19. Mn (III) Tetrakis (4-Benzoic Acid) Porphyrin Protects Against Neuronal and Glial Oxidative Stress and Death after Spinal Cord Injury

    PubMed Central

    Valluru, Lokanatha; Diao, Yao; Hachmeister, Jorge E.; Liu, Danxia

    2014-01-01

    This study explores the ability of a catalytic antioxidant, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), to protect against neuronal and glial oxidative stress and death after spinal cord injury (SCI). Nine different doses of MnTBAP were administered into the intrathecal space of the rat spinal cord immediately following moderate SCI to establish dose - response curves for prevention of lipid peroxidation and neuron death. An optimal dose was determined by comparing the effectiveness of MnTBAP protection among doses. The optimal dose was then administered and the cords were removed 24 h post-administration and processed for staining. The cells in the cord sections at different distances from the epicenter were counted to obtain the spatial profiles of MnTBAP protection. Comparison of the counts between MnTBAP- and vehicle-treated groups in the sections double immuno-fluorescence-stained with oxidative and cellular markers demonstrated that MnTBAP significantly reduced numbers of nitrotyrosine- and DNP-positive (stained with an antibody against 2,4-dinitrophenyl hydrazine (DNPH)-labeled protein carbonyls) neurons, astrocytes, and oligodendrocytes. Comparison of the counts between the two treatments in the sections immuno-stained with cellular markers revealed that MnTBAP significantly increased numbers of neurons, motoneurons, astrocytes, and oligodendrocytes. MnTBAP more effectively reduced neuronal than glial cell death. Post-injury treatment with the optimal dose of MnTBAP at 6, 12, 24, 48, and 72 h post-SCI demonstrated that the effective time window for reducing protein nitration and neuron death was at least 12 h. Our results demonstrated that MnTBAP combats oxidative stress, thereby attenuating all types of cell death after SCI. PMID:22483303

  20. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  1. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    SciTech Connect

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface. The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.

  2. Chemistry of arsenic removal during coagulation and Fe-Mn oxidation

    SciTech Connect

    Edwards, M. . Dept. of Civil Engineering)

    1994-09-01

    Arsenic removal during coagulation or Fe-Mn oxidation is examined to aid utilities that desire to improve arsenic removal. Fundamental mechanisms of arsenic removal are discussed, optimization strategies are forwarded, and some new insights are provided to guide future research. Specifically, As(III) removals by coagulation are primarily controlled by coagulant dose and relatively unaffected by solution pH, whereas the converse is true for As(V). When compared on the basis of moles iron or aluminum hydroxide solid formed during coagulation, iron and aluminum coagulants are of demonstrably equal effectiveness in removing As(V) at pH < 7.5. However, iron-based coagulants are advantageous if soluble metal residuals are problematic, if pH is > 7.5, or if the raw water contains As(III). Arsenic removal during Fe-Mn oxidation is controlled by the quantity of iron removed [Fe(OH)[sub 3] formed] and is relatively independent of the quantity of manganese removed (MnOOH formed). 63 refs.

  3. Nanocrystalline Zn2SiO4:Mn2+ grown in oxidized porous silicon

    NASA Astrophysics Data System (ADS)

    Taghavinia, N.; Lerondel, G.; Makino, H.; Yamamoto, A.; Yao, T.; Kawazoe, Y.; Goto, T.

    2001-12-01

    Zn2SiO4:Mn2+ nanocrystals were grown in an oxidized porous silicon layer using a chemical impregnation method. Apparently two classes of samples have been obtained. One is characterized by the formation of α-phase zinc silicate crystalline particles, which show green luminescence, and the other one is characterized by β-phase particles, showing yellow luminescence. It was found that in general prolonged annealing, as well as a high degree of impregnation leads to the formation of green-luminescent samples. The decay time of both yellow and green luminescence decreases with the concentration of Mn activator, while generally the decay time of yellow luminescence is considerably larger than that of green luminescence.

  4. Frenkel-Defect-Mediated Chemical Ordering Transition in a Li-Mn-Ni Spinel Oxide.

    PubMed

    Ryoo, Hyewon; Bae, Hyung Bin; Kim, Young-Min; Kim, Jin-Gyu; Lee, Seongsu; Chung, Sung-Yoon

    2015-06-26

    Using spinel-type Li(Mn(1.5)Ni(0.5) )O4 with two different cations, Mn and Ni, in the oxygen octahedra as a model system, we show that a cation ordering transition takes place through the formation of Frenkel-type point defects. A series of experimental results based on atomic-scale observations and in situ powder diffractions along with ab initio calculations consistently support such defect-mediated transition behavior. In addition to providing a precise suggestion of the intermediate transient states and the resulting kinetic pathway during the transition between two phases, our findings emphasize the significant role of point defects in ordering transformation of complex oxides.

  5. Where Water is Oxidized to Dioxygen: Structure of thePhotosynthetic Mn4Ca Cluster

    SciTech Connect

    Yano, Junko; Kern, Jan; Sauer, Kenneth; Latimer, Matthew J.; Pushkar, Yulia; Biesiadka, Jacek; Loll, Bernhard; Saenger, Wolfram; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2006-05-31

    Oxidation of water to dioxygen is catalyzed withinphotosystem II (PSII) by a Mn4Ca cluster, the structure of which remainselusive. Polarized extended X-ray absorption fine structure (EXAFS)measurements on PSII single crystals constrain the Mn4Ca cluster geometryto a set of three similar high-resolution structures. Combining polarizedEXAFS and X-ray diffraction data, the cluster was placed within PSIItaking into account the overall trend of the electron density of themetal site and the putative ligands. The structure of the cluster fromthe present study is unlike either the 3.0 or 3.5 Angstrom resolutionX-ray structures, and other previously proposed models.

  6. Mn-SOD Upregulation by Electroacupuncture Attenuates Ischemic Oxidative Damage via CB1R-Mediated STAT3 Phosphorylation.

    PubMed

    Sun, Sisi; Chen, Xiyao; Gao, Yang; Liu, Zhaoyu; Zhai, Qian; Xiong, Lize; Cai, Min; Wang, Qiang

    2016-01-01

    Electroacupuncture (EA) pretreatment elicits the neuroprotective effect against cerebral ischemic injury through cannabinoid receptor type 1 receptor (CB1R). In current study, we aimed to investigate whether the signal transducer and activator of transcription 3 (STAT3) and manganese superoxide dismutase (Mn-SOD) were involved in the antioxidant effect of EA pretreatment through CB1R. At 2 h after EA pretreatment, focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 60 min in C57BL/6 mice. The expression of Mn-SOD in the penumbra was assessed by Western blot and immunoflourescent staining at 2 h after reperfusion. In the presence or absence of Mn-SOD small interfering RNA (siRNA), the neurological deficit score, the infarct volume, the terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end labeling (TUNEL) staining, and oxidative stress were evaluated. Furthermore, the Mn-SOD protein expression and phosphorylation of STAT3 at Y705 were also determined in the presence and absence of CB1R antagonists (AM251, SR141716) and CB1R agonists (arachidonyl-2-chloroethylamide (ACEA), WIN 55,212-2). EA pretreatment upregulated the Mn-SOD protein expression and Mn-SOD-positive neuronal cells at 2 h after reperfusion. EA pretreatment also attenuated oxidative stress, inhibited cellular apoptosis, and induced neuroprotection against ischemic damage, whereas these beneficial effects of EA pretreatment were reversed by knockdown of Mn-SOD. Mn-SOD upregulation and STAT3 phosphorylation by EA pretreatment were abolished by two CB1R antagonists, while pretreatment with two CB1R agonists increased the expression of Mn-SOD and phosphorylation level of STAT3. Mn-SOD upregulation by EA attenuates ischemic oxidative damage through CB1R-mediated STAT3 phosphorylation in stroke mice, which may represent one new mechanism of EA pretreatment-induced neuroprotection against cerebral ischemia.

  7. Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning - a comparison between process models of varying complexity

    NASA Astrophysics Data System (ADS)

    Hermansson, E.; Roldin, P.; Rusanen, A.; Mogensen, D.; Kivekäs, N.; Väänänen, R.; Boy, M.; Swietlicki, E.

    2014-11-01

    Biogenic volatile organic compounds (BVOCs) emitted by vegetation play an important role for aerosol mass loadings since the oxidation products of these compounds can take part in the formation and growth of secondary organic aerosols (SOA). The concentrations and properties of BVOCs and their oxidation products in the atmosphere are poorly characterized, which leads to high uncertainties in modeled SOA mass and properties. In this study, the formation of SOA has been modeled along an air-mass trajectory over northern European boreal forest using two aerosol dynamics box models where the prediction of the condensable organics from the gas-phase oxidation of BVOC is handled with schemes of varying complexity. The use of box model simulations along an air-mass trajectory allows us to compare, under atmospheric relevant conditions, different model parameterizations and their effect on SOA formation. The result of the study shows that the modeled mass concentration of SOA is highly dependent on the organic oxidation scheme used to predict oxidation products. A near-explicit treatment of organic gas-phase oxidation (Master Chemical Mechanism version 3.2) was compared to oxidation schemes that use the volatility basis set (VBS) approach. The resulting SOA mass modeled with different VBS schemes varies by a factor of about 7 depending on how the first-generation oxidation products are parameterized and how they subsequently age (e.g., how fast the gas-phase oxidation products react with the OH radical, how they respond to temperature changes, and if they are allowed to fragment during the aging process). Since the VBS approach is frequently used in regional and global climate models due to its relatively simple treatment of the oxidation products compared to near-explicit oxidation schemes, a better understanding of the above-mentioned processes is needed. Based on the results of this study, fragmentation should be included in order to obtain a realistic SOA formation

  8. X-ray Reflectivity Study of AlPdMn Quasicrystal Fivefold Surface Oxidation

    NASA Astrophysics Data System (ADS)

    Gu, Tianqu; Goldman, Alan I.; Pinhero, P. J.

    1997-03-01

    By means of X-ray reflectivity measurement, a fivefold surface of AlPdMn single quasicrystal is studied after being treated in different environments: normal air, humid air and water. An electron density profile of the surface is acquired after each treatment. The difference of the density profile obtained with different treatment indicates that water molecule plays an important role in the oxidation of quasicrystal surface. The surface exposed to normal air has a sharper electron density profile and less surface oxidation thickness than that exposed to humid air and immersed in water. The thickness of the oxidation layer is about 30Åand 58Åfor normal air treatment and humid air and water treatment, respectively.

  9. Preparation and application of Mn-substituted δ-FeOOH for oxidative adsorption of As(III)

    NASA Astrophysics Data System (ADS)

    Chon, C.; Yang, H.; Cho, D.; Kim, Y.; Schwartz, F.; Lee, E.; Jeon, B.; Song, H.

    2013-12-01

    Iron oxides are one of the commonly used media for arsenic treatment, but they have significantly low adsorption capacity for As(III) than As(V), rendering limited applicability to treat groundwater possessing relatively high level of As(III). In this study, we prepared a Mn-substituted iron oxyhydroxide and demonstrated its applicability for enhancing As(III) removal. Four synthetic samples of Mn-substituted δ-FeOOH (MSF) with different ratios of Mn:Fe (0, 10, 30, and 50%) were prepared by oxidative hydrolysis of Fe(II) and Mn(II) salts with very rapid oxidation using H2O2. X-ray diffraction and Rietveld refinement analysis revealed that the crystal structures of MSFs resembles those of feroxyhyte (δ'-FeOOH), with the c unit cell parameter proportionally decreasing with increasing Mn-substitution, resulting in formation of δ-(Fe1-x, Mnx)OOH like structure. Adsorption batch experiments with MSF revealed that As(III) was oxidized into As(V) by surface oxidation of MSF, suggesting Mn-mediated oxidative adsorption of As(III). This oxidative removal of As(III) is consistent with previous studies that reported removal of As(III) by iron minerals containing MnOOH or reduced species of Mn. However, the adsorption capacities decreased from 20.0 to 10.8 mg/g with increasing Mn ratio from 0 to 50%. This indicates the loss of available adsorption sites by increased occupancy of Mn on the surface sites. Arsenic removal by iron oxides has been reported to occur via co-precipitation of As(III) and an inner-sphere complexation of As(V) that involves Fe atoms on the surface. Therefore, it appears Mn-substitution on Fe is for the decrease of arsenic sorption.. The adsorption of arsenic on MSF containing 10% Mn exhibited 93.8 % removal within the first 70 min and reaching sorption equilibrium after 530 min for initial As(III) concentration of 19.5 mg/L. Adsorption capacities of MSF were 18.3, 44.5, and 55.3 mg/g for the initial concentrations of 19.5, 52.7 and 96.7 mg

  10. Mineralogy and 40Ar/39Ar geochronology of supergene Mn-oxides in the Dongxiangqiao deposit, Hunan Province, South China

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Dong; Li, Jian-Wei

    2016-09-01

    The Dongxiangqiao Mn deposit in Hunan Province is one of numerous supergene Mn-oxide deposits in central South China. This deposit is derived from chemical weathering of Permian Mn-rich shales and limestones. Mn-oxide samples from the Dongxiangqiao deposit consist mainly of pyrolusite, lithiophorite, and cryptomelane, with minor amounts of hollandite and nsutite. Cobalt and Ni are enriched in lithiophorite and cryptomelane-hollandite. Our studies suggest that Co occurs mainly in the structural and adsorption sites of lithiophorite. Cobalt in lithiophorite accounts for ~80 % of the bulk Mn-oxide ores, thus it can be comprehensively utilized when lithiophorite has been separated by a suitable physical beneficiation process. Four cryptomelane-dominated grains from the saprolite zone yield 40Ar/39Ar plateau ages ranging from 10.3 ± 0.3 to 4.19 ± 0.08 Ma (2σ). This indicates that intense enrichment of supergene Mn-oxides has prevailed at least in the late Miocene and persisted into the Pliocene at Dongxiangqiao. When combined sedimentalogical and thermochronoloical data, our dating results suggest that central South China has a relatively rapid surface uplift rate.

  11. Overview of the Focused Isoprene eXperiments at California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds

    DOE PAGES

    Nguyen, T. B.; Crounse, J. D.; Schwantes, R. H.; Teng, A. P.; Bates, K. H.; Zhang, X.; St. Clair, J. M.; Brune, W. H.; Tyndall, G. S.; Keutsch, F. N.; et al

    2014-08-25

    The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT was the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the Southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech.more » During the four-week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly-controlled and atmospherically-relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. Insights from FIXCIT are anticipated to significantly aid in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models.« less

  12. Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds

    DOE PAGES

    Nguyen, T. B.; Crounse, J. D.; Schwantes, R. H.; Teng, A. P.; Bates, K. H.; Zhang, X.; St. Clair, J. M.; Brune, W. H.; Tyndall, G. S.; Keutsch, F. N.; et al

    2014-12-19

    The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT is the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech.more » During the 4 week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly controlled and atmospherically relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. This work provides context for forthcoming publications affiliated with the FIXCIT campaign. Insights from FIXCIT are anticipated to aid significantly in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models.« less

  13. Thermodynamic modeling of oxide phases in the Fe-Mn-O system

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Jung, In-Ho

    2016-11-01

    A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-O system are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Two spinel phases (cubic and tetragonal) were modeled using Compound Energy Formalism (CEF) with the use of physically meaningful parameters. The present Fe-Mn spinel solutions can be integrated into a larger spinel solution database, which has been already developed. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.

  14. Stable Isotope Fractionation during Chromium(III) Oxidation by δ-MnO2

    NASA Astrophysics Data System (ADS)

    Wang, D. T.; Fregoso, D. C.; Ellis, A. S.; Johnson, T. M.; Bullen, T. D.

    2010-12-01

    Hexavalent chromium is a highly mobile anthropogenic pollutant, and reduction of Cr(VI) to the less-soluble Cr(III) is the most important natural process involved in contamination attenuation. Earlier work has shown a preferential reduction of lighter Cr stable isotopes attributed to a kinetically-controlled mechanism, and isotope ratio measurements may be used as indicators of Cr(VI) reduction [1]. Recent work has detected no significant isotope exchange between dissolved Cr(III) and Cr(VI) over a period of days to weeks, and has suggested that complex bidirectional reactions control fractionation during Cr(III) oxidation by H2O2 [2]. Previous studies on oxidation by pyrolusite (β-MnO2) have reported δ53/52Cr up to approximately +1.1‰ in the Cr(VI) product [3]. However, laboratory investigations of fractionation during Cr(III) oxidation by birnessite (δ-MnO2) have been inconclusive, and oxidation mechanisms remain unclear [4]. In order to fully exploit stable isotope fractionation during redox reactions of Cr in groundwater as an indicator of Cr attenuation, the effect of Cr(III) oxidation on isotope ratios must be better understood. We will report the latest measurements of isotope fractionation during oxidation on birnessite under varying pH and MnO2 and Cr(III) concentrations. Our preliminary findings (at initial Cr(III) and δ-MnO2 concentrations of 10 mg/L and 100 mg/L, respectively) show the Cr(VI) product shifted by -0.5‰ to +0.0‰ relative to the reactant at pH ≈ 4.5. The reaction is incomplete and plateaus within 60 min. Unlike that observed with pyrolusite, fractionation during Cr oxidation on birnessite is much smaller or absent. These initial results suggest that kinetic effects are either very small or are negated by back reaction or equilibration in the multi-step oxidation mechanism. Alternatively, in our experiments, a step involving little isotope fractionation may be rate-limiting; thus, the final magnitude of isotope fractionation

  15. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films

    SciTech Connect

    Glaser, Mathias; Peisert, Heiko Adler, Hilmar; Aygül, Umut; Ivanovic, Milutin; Chassé, Thomas; Nagel, Peter; Merz, Michael; Schuppler, Stefan

    2015-03-14

    The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.

  16. MnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors

    PubMed Central

    Han, Guangqiang; Liu, Yun; Zhang, Lingling; Kan, Erjun; Zhang, Shaopeng; Tang, Jian; Tang, Weihua

    2014-01-01

    New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in supercapacitors. The ternary composite with 70% MnO2 exhibits a highest specific capacitance reaching 512 F/g and outstanding cycling performance, with ~97% capacitance retained over 5000 cycles. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. PMID:24769835

  17. Photocatalytic water oxidation by a mixed-valent Mn(III)₃Mn(IV)O₃ manganese oxo core that mimics the natural oxygen-evolving center.

    PubMed

    Al-Oweini, Rami; Sartorel, Andrea; Bassil, Bassem S; Natali, Mirco; Berardi, Serena; Scandola, Franco; Kortz, Ulrich; Bonchio, Marcella

    2014-10-13

    The functional core of oxygenic photosynthesis is in charge of catalytic water oxidation by a multi-redox Mn(III)/Mn(IV) manifold that evolves through five electronic states (S(i), where i=0-4). The synthetic model system of this catalytic cycle and of its S0→S4 intermediates is the expected turning point for artificial photosynthesis. The tetramanganese-substituted tungstosilicate [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-)(Mn4POM) offers an unprecedented mimicry of the natural system in its reduced S0 state; it features a hybrid organic-inorganic coordination sphere and is anchored on a polyoxotungstate. Evidence for its photosynthetic properties when combined with [Ru(bpy)3](2+) and S2O8(2-) is obtained by nanosecond laser flash photolysis; its S0→S1 transition within milliseconds and multiple-hole-accumulating properties were studied. Photocatalytic oxygen evolution is achieved in a buffered medium (pH 5) with a quantum efficiency of 1.7%.

  18. Structural, morphological and infrared detection properties of Mn-Co-Ni-O spinel oxide films

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Cheng, Ouyang; Wu, Jing; Gao, Yanqing; Huang, Zhiming

    2013-12-01

    Mn-Co-Ni-O spinel oxide materials, with the prototype of AB2O4, are excelled in uncooled thermal sensing and infrared detection due to its high absolute NTC value and moderate resistivity at room temperature. In this work, Mn1.56Co0.96Ni0.48O4 film (MCN-CSD) and Mn1.40Co1.00Ni0.60O4 (MCN-RF) film are fabricated on amorphous sapphire substrate with chemical solution method (CSD) and radio frequency deposition method (RF), respectively. Morphological characteristics are revealed by SEM graphs. And the result shows that MCN films acquire better crystalline properties and compactness than MCN bulk materials. To verify the excellent features for infrared detection, detectors sized 1mm2 × 0.17 μm and 1 mm2 × 0.33 μm are fabricated based on MCN-RF and MCN-CSD films, respectively. The excess noise at 11 Hz for each detector has been tested and the Hooge's parameters have been calculated. The MCN films obtained by RF deposition and CSD method both show γ/n value of about 2×10-21 cm3, an order lower than bulk MCN and amorphous silicon, which indicates great potentials in integrated infrared detection.

  19. Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azam, Ameer; Ahmed, Arham S.; Chaman, M.; Naqvi, A. H.

    2010-11-01

    Manganese doped tin oxide nanoparticles with manganese content varying from 0 to 15 mol % were synthesized using sol-gel method. The structural and compositional analysis was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive x-ray analysis (EDAX). Dielectric and impedance spectroscopy was carried out at room temperature to explore the electrical properties of Mn doped SnO2. XRD analysis indicated the formation of single phase rutile type tetragonal structure of all the samples. The crystallite size was observed to vary from 16.2 to 7.1 nm as the Mn content was increased. The XRD, SEM, and EDAX results corroborated the successful doping of Mn in the SnO2 matrix. Complex impedance analysis was used to distinguish the grain and grain boundary contributions to the system, suggesting the dominance of grain boundary resistance in the doped samples. The dielectric constant ɛ', dielectric loss tan δ and ac conductivity σac were studied as a function of frequency and composition and the behavior has been explained on the basis of Maxwell-Wagner interfacial model. All the dielectric parameters were found to decrease with the increase in doping concentration. Moreover, it has been observed that the dielectric loss approaches to zero in case of high dopant concentration (9%, 15%) at high frequencies.

  20. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  1. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal. PMID:27316651

  2. Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600-1000 °C

    NASA Astrophysics Data System (ADS)

    Kök, Mediha; Pirge, Gürsev; Aydoğdu, Yıldırım

    2013-03-01

    Oxidation behavior of NiMnGa alloy has been investigated under isothermal temperature by thermo gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy equipped with an energy dispersive X-ray (SEM-EDX) spectroscope systems. The Ni-28.5Mn-20.5Ga alloy (composition in atomic percent) was exposed to oxygen atmosphere isothermally, i.e., between 600 °C and 1000 °C, for 1 h. A gravimetric method was used to determine the oxidation kinetics; weight gain per unit area as a function of time. It was determined that the oxidation constant increases significantly with isothermal temperature. Activation energy of the oxidation was found to be 152 kJ/mol. X-ray diffraction patterns of the heat-treated samples contain oxide peaks, mainly belonging to Mn3O4. X-ray analyses demonstrate that the amount of the oxide increases with isothermal temperature while that of martensite phase decreases. The scanning electron microscopy equipped with an energy dispersive X-ray (SEM-EDX) spectroscope analysis also gives the same result. According to magnetic measurements, the saturation of NiMnGa alloys decreases with rising isothermal oxidation temperature.

  3. The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    NASA Astrophysics Data System (ADS)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2013-01-01

    Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3- ions had no effect. The rate of Mn(II) oxidation at 10 mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0-2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) → Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment

  4. Self-trapping of holes in p-type oxides: Theory for small polarons in MnO

    NASA Astrophysics Data System (ADS)

    Peng, Haowei; Lany, Stephan

    2012-02-01

    Employing the p-d repulsion to increase the valence band dispersion and the energy of the VBM is an important design principle for p-type oxides, as manifested in prototypical p-type oxides like Cu2O or CuAlO2 which show a strong Cu-d/O-p interaction. An alternative opportunity to realize this design principle occurs for Mn(+II) compounds, where the p-d orbital interaction occurs dominantly in the fully occupied d^5 majority spin direction of Mn. However, the ability of Mn to change the oxidation state from +II to +III can lead to a small polaron mechanism for hole transport which hinders p-type conductivity. This work addresses the trends of hole self-trapping for MnO between octahedral (rock-salt structure) and tetrahedral coordination (zinc-blende structure). We employ an on-site hole-state potential so to satisfy the generalized Koopmans condition. This approach avoids the well-known difficulty of density-functional calculations to describe correctly the localization of polaronic states, and allows to quantitatively predict the self-trapping energies. We find that the tetrahedrally coordinated Mn is less susceptible to hole self-trapping than the octahedrally coordinated Mn.

  5. Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).

    PubMed

    Laha, S; Natarajan, S; Gopalakrishnan, J; Morán, E; Sáez-Puche, R; Alario-Franco, M Á; Dos Santos-Garcia, A J; Pérez-Flores, J C; Kuhn, A; García-Alvarado, F

    2015-02-01

    We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to

  6. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus.

    PubMed

    Samadi, Nasrin; Abadian, Neda; Ahmadkhaniha, Reza; Amini, Farzaneh; Dalili, Dina; Rastkari, Noushin; Safaripour, Eliyeh; Mohseni, Farzaneh Aziz

    2012-11-01

    The aim of present work was to study chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa MN1 isolated from oil-contaminated soil. The results of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that total rhamnolipids (RLs) contained 16 rhamnolipid homologues. Di-lipid RLs containing C(10)-C(10) moieties were by far the most predominant congeners among mono-rhamnose (53.29 %) and di-rhamnose (23.52 %) homologues. Mono-rhamnolipids form 68.35 % of the total congeners in the RLs. Two major fractions were revealed in the thin layer chromatogram of produced RLs which were then purified by column chromatography. The retardation factors (R (f)) of the two rhamnolipid purple spots were 0.71 for RL1 and 0.46 for RL2. LC-MS/MS analysis proved that RL1 was composed of mono-RLs and RL2 consisted of di-RLs. RL1 was more surface-active with the critical micelle concentration (CMC) value of 15 mg/L and the surface tension of 25 mN/m at CMC. The results of biological assay showed that RL1 is a more potent antibacterial agent than RL2. All methicillin-resistant Staphylococcus aureus (MRSA) strains were inhibited by RLs that were independent of their antibiotic susceptibility patterns. RLs remarkably enhanced the activity of oxacillin against MRSA strains and lowered the minimum inhibitory concentrations of oxacillin to the range of 3.12-6.25 μg/mL. PMID:22644668

  7. A chromatographic method to analyze products from photo-oxidation of anthropogenic and biogenic mixtures of volatile organic compounds in smog chambers.

    PubMed

    Pindado Jiménez, Oscar; Pérez Pastor, Rosa M; Vivanco, Marta G; Santiago Aladro, Manuel

    2013-03-15

    A method for quantifying secondary organic aerosol compounds (SOA) and water soluble secondary organic aerosol compounds (WSOA) produced from photo-oxidation of complex mixtures of volatile organic compounds (VOCs) in smog chambers by gas chromatography/mass spectrometry (GC/MS) has been developed. This method employs a double extraction with water and methanol jointly to a double derivatization with N,O-bis (trimethylsilil) trifluoroacetamide (BSTFA) and O-(2,3,4,5,6)-pentafluorobenzyl-hydroxylamine hydrochloride (PFBHA) followed by an analysis performed by GC/MS. The analytical procedure complements other methodologies because it can analyze SOA and WSOA compounds simultaneously at trace levels. As application, the methodology was employed to quantify the organic composition of aerosols formed in a smog chamber as a result of photo-oxidation of two different mixtures of volatile organic compounds: an anthropogenic mixture and a biogenic mixture. The analytical method allowed us to quantify up to 17 SOA compounds at levels higher than 20 ng m(-3) with reasonable recovery and a precision below 11%. Values found for applicability, selectivity, linearity, precision, recovery, detection limit, quantification limit and sensitivity demonstrated that the methodology can be satisfactorily applied to quantify SOA and WSOA.

  8. Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury.

    PubMed

    Xu, Haomiao; Qu, Zan; Zhao, Songjian; Mei, Jian; Quan, Fuquan; Yan, Naiqiang

    2015-12-15

    MnO2 has been found to be a promising material to capture elemental mercury (Hg(0)) from waste gases. To investigate the structure effect on Hg(0) uptake, three types of one-dimensional (1D) MnO2 nano-particles, α-, β- and γ-MnO2, were successfully prepared and tested. The structures of α-, β- and γ-MnO2 were characterized by XRD, BET, TEM and SEM. The results indicate that α-, β- and γ-MnO2 were present in the morphologies of belt-, rod- and spindle-like 1D materials, respectively. These findings demonstrated noticeably different activities in capturing Hg(0), depending on the surface area and crystalline structure. The performance enhancement is in the order of: β-MnO2<γ-MnO2<α-MnO2 at 150°C. The mechanism for Hg(0) removal using MnO2 was discussed with the help of results from H2-TPR, XPS and Hg(0) removal experiments in the absence of O2. It was determined that the oxidizability of three forms of MnO2 increased as follows: β-MnO2<γ-MnO2<α-MnO2. The mechanism for Hg(0) capture was ascribed to the Hg(0) catalytic oxidation with the reduction of Mn(4+)→Mn(3+)→Mn(2+). Furthermore, the interaction forces between mercury and manganese oxide sites are demonstrated to increase in the following order: β-MnO2<γ-MnO2<α-MnO2 based on the desorption tests. PMID:26093358

  9. Sustained water oxidation by [Mn4O4]7+ core complexes inspired by oxygenic photosynthesis.

    PubMed

    Brimblecombe, Robin; Kolling, Derrick R J; Bond, Alan M; Dismukes, G Charles; Swiegers, Gerhard F; Spiccia, Leone

    2009-08-01

    The bioinspired Mn-oxo cubane complex, [Mn(4)O(4)L(6)](+) 1b(+) (L = (p-MeO-Ph)(2)PO(2)), is a model of the photosynthetic O(2)-evolving complex. It is able to electro-oxidize water at 1.00 V (vs Ag/AgCl) under illumination by UV-visible light when suspended in a proton-conducting membrane (Nafion) coated onto a conducting electrode. Electrochemical measurements, and UV-visible, NMR, and EPR spectroscopies are interpreted to indicate that 1b(+) is the dominant electro-active species in the Nafion, both before and after catalytic cycling, and thus correlates closely with activity. The observation of a possible intermediate and free phosphinate ligand within the Nafion suggests a catalytic mechanism involving photolytic disruption of a phosphinate ligand, followed by O(2) formation, and subsequent reassembly of the cubane structure. Several factors that influence catalytic turnover such as the applied potential, illumination wavelength, and energy have been examined in respect of attaining optimum catalytic activity. Catalytic turnover frequencies of 20-270 molecules O(2) h(-1) catalyst(-1) at an overpotential of 0.38 V plus light (275-750 nm) and turnovers numbers >1000 molecules O(2) catalyst(-1) are observed. The 1b(+)-Nafion system is among the most active and durable molecular water oxidation catalysts known.

  10. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    PubMed

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2.

  11. Effects of synthesis conditions on structure and surface properties of SmMn2O5 mullite-type oxide

    NASA Astrophysics Data System (ADS)

    Thampy, Sampreetha; Ibarra, Venessa; Lee, Yun-Ju; McCool, Geoffrey; Cho, Kyeongjae; Hsu, Julia W. P.

    2016-11-01

    A mixed-phase compound that contains SmMn2O5 mullite-type oxides has been reported to display excellent catalytic activity for nitric oxide (NO) oxidation. Here we investigate the effects of calcination temperature and precipitation pH on structural, physical, chemical, and surface properties of SmMn2O5. As the calcination temperature increases from 750 °C to 1000 °C, mullite phase purity increases from 74% to 100%, while specific surface area (SSA) decreases from 23.6 m2/g to 5.1 m2/g with particle size increases correspondingly. Mullite phase purity (87%) is independent of pH between 8.5-10.4, whereas SSA monotonically increases from 12.5 m2/g at pH 8.1 to 27.4 m2/g at pH 13. X-ray photoelectron spectroscopy (XPS) studies reveal that the surface Mn/Sm ratio is similar to the bulk value and is unaffected by calcination temperature and pH values up to 10.4, whereas sample precipitated at pH 13 is surface-rich in Sm. NO chemisorption studies show that the SSA and surface Mn/Sm ratio determine NO uptake by SmMn2O5 mullite oxides.

  12. Magnetically retrievable nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) spinel nanocatalyst for alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Bhat, Pooja B.; Bhat, Badekai Ramachandra

    2016-03-01

    Ultrasmall nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) nanocatalyst was synthesized by traditional co-precipitation method and was examined for oxidation of aromatic alcohols to carbonyls using hydrogen peroxide as terminal oxidant. A very high surface area of 104.55 m2 g-1 was achieved for ferromagnetic MnFe2O4 and 100.50 m2 g-1 for superparamagnetic NiFe2O4, respectively. Efficient oxidation was observed due to the synergized effect of nickel hydroxide (bronsted base) on Lewis center (Fe) of the nanocatalyst. Catalyst recycling experiments revealed that the ultrasmall nanocatalyst can be easily recovered by external magnet and applied for nearly complete oxidation of alcohols for at least five successive cycles. Furthermore, the nickel hydroxide functionalised ultrasmall nanocatalyst exhibited higher efficiency for benzyl alcohol oxidation compared to Ni(OH)2, bare MnFe2O4 and NiFe2O4. Higher conversion rate was observed for nickel hydroxide functionalised NiFe2O4 compared to MnFe2O4. Ultrasmall magnetic nickel hydroxide functionalised nanocatalyst showed environmental friendly, greener route for the oxidation of alcohols without significant loss in activity and selectivity within successive runs.

  13. Ca cofactor of the water-oxidation complex: Evidence for a Mn/Ca heteronuclear cluster

    SciTech Connect

    Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; McFarlane, Karen L.; Pizarro, Shelly A.; Sauer, Ken; Yachandra, Vittal K.

    2001-07-25

    Calcium and chloride are necessary cofactors for the proper function of the oxygen-evolving complex (OEC) of Photosystem II (PS II). Located in the thylakoid membranes of green plants, cyanobacteria and algae, PS II and the OEC catalyze the light-driven oxidation of water into dioxygen (released into the biosphere), protons and electrons for carbon fixation. The actual chemistry of water oxidation is performed by a cluster of four manganese atoms, along with the requisite cofactors Ca{sup 2+} and Cl{sup -}. While the Mn complex has been extensively studied by X-ray absorption techniques, comparatively less is known about the Ca{sup 2+} cofactor. The fewer number of studies on the Ca{sup 2+} cofactor have sometimes relied on substituting the native cofactor with strontium or other metals, and have stirred some debate about the structure of the binding site. past efforts using Mn EXAFS on Sr-substituted PSII are suggestive of a close link between the Mn cluster and Sr, within 3.5 {angstrom}. The most recent published study using Sr EXAFS on similar samples confirms this finding of a 3.5 {angstrom} distance between Mn and Sr. This finding was base3d on a second Fourier peak (R {approx} 3 {angstrom}) in the Sr EXAFS from functional samples, but is absent from inactive, hydroxylamine-treated PS II. This Fourier peak II was found to fit best to two Mn at 3.5 {angstrom} rather than lighter atoms (carbon). Nevertheless, other experiments have given contrary results. They wanted to extend the technique by using polarized Sr EXAFS on layered Sr-substituted samples, to provide important angle information. Polarized EXAFS involves collecting spectra for different incident angles ({theta}) between the membrane normal of the layered sample and the X-ray electric field vector. Dichroism in the EXAFS can occur, depending on how the particular absorber-backscatterer (A-B) vector is aligned with the electric field. Through analysis of the dichroism, they extract the average number

  14. An analysis of the effects of Mn{sup 2+} on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays

    SciTech Connect

    Gunter, Thomas E.; Gerstner, Brent; Lester, Tobias; Wojtovich, Andrew P.; Malecki, Jon; Swarts, Steven G.; Brookes, Paul S.; Gavin, Claire E. Gunter, Karlene K.

    2010-11-15

    Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays-a measure of ATP production-under rapid phosphorylation conditions to explore sites of Mn{sup 2+} inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which do not affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of the components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn{sup 2+} inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn{sup 2+} inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F{sub 1}F{sub 0} ATP synthase. In mitochondria fueled by either succinate or glutamate + malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn{sup 2+} inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase.

  15. An Analysis of the Effects of Mn2+ on Oxidative Phosphorylation in Liver, Brain, and Heart Mitochondria Using State 3 Oxidation Rate Assays

    PubMed Central

    Gunter, Thomas E.; Gerstner, Brent; Lester, Tobias; Wojtovich, Andrew P.; Malecki, Jon; Swarts, Steven G.; Brookes, Paul S.; Gavin, Claire E.; Gunter, Karlene K.

    2010-01-01

    Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays - a measure of ATP production - under rapid phosphorylation conditions to explore sites of Mn2+ inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which don’t affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of the components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn2+ inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn2+ inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F1F0 ATP synthase. In mitochondria fueled by either succinate or glutamate + malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn2+ inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase. PMID:20800605

  16. Tuning the Mn valence state in new Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) oxides: impact on magnetic and redox properties.

    PubMed

    Lesturgez, Stéphanie; Goglio, Graziella; Weill, François; N'Guyen, Olivier; Toulemonde, Olivier; Durand, Etienne; Hernandez, Julien; Demourgues, Alain

    2016-03-21

    New Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) solid solutions crystallizing with the CaFe2O4-type structure (SG: Pnma) were synthesized for the first time by the glycine-nitrate process. The structures were determined on the basis of XRD Rietveld analysis and electron diffraction investigation. While the CaMn3O6 ('Ca(0.66)Mn2O4') oxide adopts a monoclinic unit cell, the Al substitution for Mn (x = 0.2, 0.4) leads to an orthorhombic cell with only two Mn atomic positions, with different valence states, and 33% of Ca sites empty. The Ca molar concentration decreases down to 0.6 in order to increase the Mn valence leading to a phase mixture, whereas a slight Ca content increase up to 0.7 leads to a decrease of Mn valence in the pure phase. The Al(3+) ions are located at a specific Mn site because their ionic radii are close to that of Mn(4+) and a more isotropic environment. The unit cell parameters and volume strongly decrease for a low Al content and tend to an asymptotic value of x = 0.33-0.4, around the limit of solubility. As the Al content increases, the Mn valence state in the same slightly distorted octahedral site increases up to 4+ whereas the other octahedral site is highly elongated and corresponds mainly to Jahn-Teller Mn(3+). At x = 0.33, these two Mn sites correspond to Mn(4+) and Mn(3+) respectively. Moreover, the aluminium content increase induces a weakening of the global antiferromagnetic long range interactions between the ferromagnetic chains. The Al substitution leads to the change of the Mn valence distribution as well as the unit cell symmetry of the CaMn3O6 phase. These 1D tunnel networks stabilizing the Mn(3+)/Mn(4+) valence states can be reduced under Ar/5%H2 between T = 300 °C and T = 600 °C (heating rate = 2 °C min(-1)) into pure Mn(2+) rocksalt solid solution despite the large difference in ionic radii. The re-oxidation leads to the same CaFe2O4-type structure and several redox cycles can be operated. The relationship between the two double

  17. Tuning the Mn valence state in new Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) oxides: impact on magnetic and redox properties.

    PubMed

    Lesturgez, Stéphanie; Goglio, Graziella; Weill, François; N'Guyen, Olivier; Toulemonde, Olivier; Durand, Etienne; Hernandez, Julien; Demourgues, Alain

    2016-03-21

    New Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) solid solutions crystallizing with the CaFe2O4-type structure (SG: Pnma) were synthesized for the first time by the glycine-nitrate process. The structures were determined on the basis of XRD Rietveld analysis and electron diffraction investigation. While the CaMn3O6 ('Ca(0.66)Mn2O4') oxide adopts a monoclinic unit cell, the Al substitution for Mn (x = 0.2, 0.4) leads to an orthorhombic cell with only two Mn atomic positions, with different valence states, and 33% of Ca sites empty. The Ca molar concentration decreases down to 0.6 in order to increase the Mn valence leading to a phase mixture, whereas a slight Ca content increase up to 0.7 leads to a decrease of Mn valence in the pure phase. The Al(3+) ions are located at a specific Mn site because their ionic radii are close to that of Mn(4+) and a more isotropic environment. The unit cell parameters and volume strongly decrease for a low Al content and tend to an asymptotic value of x = 0.33-0.4, around the limit of solubility. As the Al content increases, the Mn valence state in the same slightly distorted octahedral site increases up to 4+ whereas the other octahedral site is highly elongated and corresponds mainly to Jahn-Teller Mn(3+). At x = 0.33, these two Mn sites correspond to Mn(4+) and Mn(3+) respectively. Moreover, the aluminium content increase induces a weakening of the global antiferromagnetic long range interactions between the ferromagnetic chains. The Al substitution leads to the change of the Mn valence distribution as well as the unit cell symmetry of the CaMn3O6 phase. These 1D tunnel networks stabilizing the Mn(3+)/Mn(4+) valence states can be reduced under Ar/5%H2 between T = 300 °C and T = 600 °C (heating rate = 2 °C min(-1)) into pure Mn(2+) rocksalt solid solution despite the large difference in ionic radii. The re-oxidation leads to the same CaFe2O4-type structure and several redox cycles can be operated. The relationship between the two double

  18. Determination of sorbed metals, amorphic Fe, oxidic Mn, and reactive particulate organic carbon in sediments and soils

    SciTech Connect

    Jenne, E.A.; Crecelius, E.A.

    1988-10-01

    A current approach to evaluating the potential toxicity of metal pollutants (MP) in sediments requires using methods for estimating sorbed metals, amorphic Fe oxide, Mn oxides, and reactive particulate organic carbon (RPOC). Methods for estimating these variables are reevaluated and extraction conditions optimized. The hydroxylamine hydrochloride method, used to estimate the quantities of sorbed metals and amorphic Fe oxide and oxidic Mn adsorbents, was found to yield excellent recovery of MP spikes added at the beginning of the extraction, and adequate precision and selectivity for amorphic over crystalline Fe oxides. Hot KOH was tentatively selected over NH/sub 4/OH for estimating RPOC because of its greater convenience; correlations with laboratory sorption experiments will be required to provide an adequate basis for selection. Determination of both sorbed metals and RPOC are relatively insensitive to solid-to-extractant ratio. Metal pollutants and RPOC extraction are also relatively insensitive to normality of HCl and KOH, respectively. 10 refs., 2 figs.

  19. Chemical Composition of Gas-Phase Oxidation Products from Biogenic Sources in the Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Stark, H.; Massoli, P.; Thompson, S.; Yatavelli, L. R.; Mohr, C.; Brophy, P.; Murschell, T.; Hu, W.; Canagaratna, M.; Krechmer, J.; Junninen, H.; Hakala, J. P.; Day, D. A.; Campuzano Jost, P.; Palm, B. B.; Ortega, A. M.; Kimmel, J.; Cubison, M.; Lopez-Hilfiker, F.; Thornton, J. A.; Baumann, K.; Edgerton, E.; Farmer, D.; Jimenez, J. L.; Jayne, J. T.; Worsnop, D. R.

    2013-12-01

    Reduced species emitted to the atmosphere are chemically transformed by atmospheric oxidants. The measurement of the large number of resulting oxidized compounds is crucial to understand and quantify these transformation processes. We analyzed datasets from four high-resolution time-of-flight chemical ionization mass spectrometers (HRToF-CIMS) during the Southern Oxidant and Aerosol Study (SOAS) in June and July 2013 at the Alabama Supersite in the Southeast U.S. These datasets allow specification and quantification of the multiple gas-phase compounds produced by chemical oxidation. The mass spectrometers used different reagent ions, nitrate (NO3-), acetate (CH3COO-), and iodide (I-). In this study, we will present the chemical composition of isoprene and terpene oxidation products as measured by the different techniques. When comparing the concentration and composition at different conditions (e.g., time of day, NOx levels, aerosol loading, RH), differences in gas-phase composition provide indications of both the changes in chemical processing arising from the different conditions as well as different sensitivities of the reagent ions. We will discuss these differences in terms of bulk chemical parameters such as carbon oxidation state, carbon number and oxygen-to-carbon ratio.

  20. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.

    PubMed

    Zhang, Gaosheng; Liu, Huijuan; Liu, Ruiping; Qu, Jiuhui

    2009-07-15

    Phosphate removal is important in the control of eutrophication of water bodies and adsorption is one of the promising approaches for this purpose. A Fe-Mn binary oxide adsorbent with a Fe/Mn molar ratio of 6:1 for phosphate removal was synthesized by a simultaneous oxidation and coprecipitation process. Laboratory experiments were carried out to investigate adsorption kinetics and equilibrium, in batch mode. The effects of different experimental parameters, namely contact time, initial phosphate concentration, solution pH, and ionic strength on the phosphate adsorption were investigated. The adsorption data were analyzed by both Freundlich and Langmuir isotherm models and the data were well fit by the Freundlich isotherm model. Kinetic data correlated well with the pseudo-second-order kinetic model, suggesting that the adsorption process might be chemical sorption. The maximal adsorption capacity was 36 mg/g at pH 5.6. The phosphate adsorption was highly pH dependent. The effects of anions such as Cl(-),SO42-, and CO32- on phosphate removal were also investigated. The results suggest that the presence of these ions had no significant effect on phosphate removal. The phosphate removal was mainly achieved by the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. In addition, the adsorbed phosphate ions can be effectively desorbed by dilute NaOH solutions. This adsorbent, with large adsorption capacity and high selectivity, is therefore a very promising adsorbent for the removal of phosphate ions from aqueous solutions.

  1. Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2

    SciTech Connect

    Doeff, Marca M.; Richardson, Thomas J.; Hwang, Kwang-Taek

    2004-03-01

    A series of titanium-substituted manganese oxides, Li{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (y = 0.11, 0.22, 0.33, 0.44, and 0.55) with the Na{sub 0.44}MnO{sub 2} structure were prepared from Na{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (x {approx} 0.44) precursors. The electrochemical characteristics of these compounds, which retain the unique double-tunnel structure during ion exchange, were examined in lithium/polymer electrolyte cells operating at 85 C. All of the substituted cathode materials intercalated lithium reversibly, with Li{sub x}Ti{sub 0.22}Mn{sub 0.78}O{sub 2} exhibiting the highest capacity in polymer cells, about 10-20% greater than that of unsubstituted Li{sub x}MnO{sub 2} made from Na{sub 0.44}MnO{sub 2}. In common with Li{sub x}MnO{sub 2}, the Ti-substituted materials exhibited good capacity retention over one hundred or more cycles, with some compositions exhibiting a fade rate of less than 0.03% per cycle.

  2. Mn-catalase (Alr0998) protects the photosynthetic, nitrogen-fixing cyanobacterium Anabaena PCC7120 from oxidative stress.

    PubMed

    Banerjee, Manisha; Ballal, Anand; Apte, Shree Kumar

    2012-11-01

    Role of the non-haem, manganese catalase (Mn-catalase) in oxidative stress tolerance is unknown in cyanobacteria. The ORF alr0998 from the Anabaena PCC7120, which encodes a putative Mn-catalase, was constitutively overexpressed in Anabaena PCC7120 to generate a recombinant strain, AnKat(+). The Alr0998 protein could be immunodetected in AnKat(+) cells and zymographic analysis showed a distinct thermostable catalase activity in the cytosol of AnKat(+) cells but not in the wild-type Anabaena PCC7120. The observed catalase activity was insensitive to inhibition by azide indicating that Alr0998 protein is indeed a Mn-catalase. In response to oxidative stress, the AnKat(+) showed reduced levels of intracellular ROS which was also corroborated by decreased production of an oxidative stress-inducible 2-Cys-Prx protein. Treatment of wild-type Anabaena PCC7120 with H(2)O(2) caused (i) RNA degradation in vivo, (ii) severe reduction of photosynthetic pigments and CO(2) fixation, (iii) fragmentation and lysis of filaments and (iv) loss of viability. In contrast, the AnKat(+) strain was protected from all the aforesaid deleterious effect under oxidative stress. This is the first report on protection of an organism from oxidative stress by overexpression of a Mn-catalase.

  3. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.

    PubMed

    Frierdich, Andrew J; Catalano, Jeffrey G

    2012-10-16

    The reduction of trace elements and contaminants by Fe(II) at Fe(III) oxide surfaces is well documented. However, the effect of aqueous Fe(II) on the fate of redox-active trace elements structurally incorporated into iron oxides is unknown. Here, we investigate the fate of redox-active elements during Fe(II)-activated recrystallization of Cu-, Co-, and Mn-substituted goethite and hematite. Enhanced release of Cu, Co, and Mn to solution occurs upon exposure of all materials to aqueous Fe(II) relative to reactions in Fe(II)-free fluids. The quantity of trace element release increases with pH when Fe(II) is present but decreases with increasing pH in the absence of Fe(II). Co and Mn release from goethite is predicted well using a second-order kinetic model, consistent with the release of redox-inactive elements such as Ni and Zn. However, Cu release and Co and Mn release from hematite require the sum of two rates to adequately model the kinetic data. Greater uptake of Fe(II) by Cu-, Co-, and Mn-substituted iron oxides relative to analogues containing only redox-inactive elements suggests that net Fe(II) oxidation occurs. Reduction of Cu, Co, and Mn in all materials following reaction with Fe(II) at pHs 7.0-7.5 is confirmed by X-ray absorption near-edge structure spectroscopy. This work shows that redox-sensitive elements structurally incorporated within iron oxides are reduced and repartitioned into fluids during Fe(II)-mediated recrystallization. Such abiotic reactions likely operate in tandem with partial microbial and abiotic iron reduction or during the migration of Fe(II)-containing fluids, mobilizing structurally bound contaminants and micronutrients in aquatic systems.

  4. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  5. Mn-oxides and sequestration of heavy metals in a suburban catchment basin of the Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Adams, James P.; Kirst, Robert; Kearns, Lance E.; Krekeler, Mark P. S.

    2009-09-01

    The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N 78°19.204°W) were investigated using X-ray diffraction (XRD), Scanning electron microcopy (SEM) and energy dispersive spectroscopy (EDS) to determine the nature of Mn-oxide coatings and relationship to bound heavy metals. Mn-oxides are poorly crystalline and occur as subhedral to anhedral platy particles and more rarely as euhedral plates. Micronodules are a commonly observed texture. Chemical compositions of coatings are variable with average major constituent concentrations being Mn (33.38 wt%), Fe (11.88 wt%), Si (7.33 wt%), Al (5.03 wt%), and Ba (0.90 wt%). Heavy metals are found in the coatings with Zn being most prevalent, occurring in approximately 58% of analyses with an average concentration of (0.66 wt%). Minor amounts of Co, Ni, Pb, and Cl are observed. Heavy metals and Cl are interpreted as being derived from road pollution. Mn-oxides can serve as a sequestration mechanism for pollution but may also release heavy metals. Field and laboratory observations indicate Mn-oxides occurring on the surface of the clasts can be mechanically mobilized. This is a mechanism for transporting heavy metals into the Chesapeake Bay watershed. Deicing agents may serve as a mechanism to release heavy metals through cation exchange and increased ionic strength. This is the first detailed mineralogical investigation of Mn-oxides and the roles they may play in pollution in the Chesapeake Bay.

  6. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation.

    PubMed

    Liang, Xiaoliang; Liu, Peng; He, Hongping; Wei, Gaoling; Chen, Tianhu; Tan, Wei; Tan, Fuding; Zhu, Jianxi; Zhu, Runliang

    2016-04-01

    In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H2 temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200-600°C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300-600°C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400°C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn(4+) species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  7. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    PubMed Central

    Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307

  8. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1.

    PubMed

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  9. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    USGS Publications Warehouse

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  10. Conductive reduced graphene oxide/MnO2 carbonized cotton fabrics with enhanced electro -chemical, -heating, and -mechanical properties

    NASA Astrophysics Data System (ADS)

    Tian, Mingwei; Du, Minzhi; Qu, Lijun; Zhang, Kun; Li, Hongliang; Zhu, Shifeng; Liu, Dongdong

    2016-09-01

    Versatile and ductile conductive carbonized cotton fabrics decorated with reduced graphene oxide (rGO)/manganese dioxide (MnO2) are prepared in this paper. In order to endow multifunction to cotton fabric, graphene oxide (GO) is deposited on cotton fibers by simple dip-coating route. MnO2 nanoparticles are assembled on the surface of cotton fabric through in-situ chemical solution deposition. MnO2/GO@cotton fabrics are carbonized to achieve conductive fabric (MnO2/rGO@C). The morphologies and structures of obtained fabrics are characterized by SEM, XRD, ICP and element analysis, and their electro-properties including electro-chemical, electro-heating and electro-mechanical properties are evaluated. The MnO2/rGO@C yields remarkable specific capacitance of 329.4 mA h/g at the current density of 100 mA/g, which is more than 40% higher than that of the control carbonized cotton fabric (231 mA h/g). Regarding electro-heating properties, the temperature of MnO2/rGO@C fabric could be monotonically increased to the steady-state maximum temperatures (ΔTmax) of 36 °C within 5 min under the applied voltage 15 V while the ΔTmax = 17 °C of the control case. In addition, MnO2/rGO@C exhibits repeatable electro-mechanical properties and its normalized resistance (R-R0)/R0 could reach 0.78 at a constant strain (curvature = 0.6 cm-1). The MnO2/rGO@C fabric is versatile, scalable, and adaptable to a wide variety of smart textiles applications.

  11. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-11-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding these transformation processes has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a Southeast Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high-resolution aerosol mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyl tetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  12. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-07-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding the process of these transformations has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a South East Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high resolution aerosol mass spectrometry and fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyltetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  13. [CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].

    PubMed

    Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai

    2016-05-15

    Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components. PMID:27506018

  14. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.

    PubMed

    Xie, Wenbo; Liang, Qiqi; Qian, Tianwei; Zhao, Dongye

    2015-03-01

    Stabilized Fe-Mn binary oxide nanoparticles were synthesized and tested for removal and in-situ immobilization of Se(IV) in groundwater and soil. A water-soluble starch or food-grade carboxymethyl cellulose (CMC) was used as a stabilizer to facilitate in-situ delivery of the particles into contaminated soil. While bare and stabilized nanoparticles showed rapid sorption kinetics, starch-stabilized Fe-Mn offered the greatest capacity for Se(IV). The Langmuir maximum capacity was determined to be 109 and 95 mg-Se/g-Fe for starch- and CMC-stabilized nanoparticles, respectively, and the high Se(IV) uptake was observed over the typical groundwater pH range of 5-8. Column breakthrough tests indicated that the stabilized nanoparticles were deliverable in a model sandy soil while non-stabilized particles were not. When a Se(IV)-spiked soil was treated in situ with the nanoparticles, >90% water leachable Se(IV) was transferred to the nanoparticle phase, and thereby immobilized as the particles were retained in the downstream soil matrix. The nanoparticle amendment reduced the TCLP (toxicity characteristic leaching procedure) leachability and the California WET (waste extraction test) leachability of Se(IV) by 76% and 71%, respectively. The technology holds the potential to fill a major technology gap in remediation of metals-contaminated soil and groundwater.

  15. MnSODtg Mice Control Myocardial Inflammatory and Oxidative Stress and Remodeling Responses Elicited in Chronic Chagas Disease

    PubMed Central

    Dhiman, Monisha; Wan, Xianxiu; Popov, Vsevolod L.; Vargas, Gracie; Garg, Nisha Jain

    2013-01-01

    Background We utilized genetically modified mice equipped with a variable capacity to scavenge mitochondrial and cellular reactive oxygen species to investigate the pathological significance of oxidative stress in Chagas disease. Methods and Results C57BL/6 mice (wild type, MnSODtg, MnSOD+/−, GPx1−/−) were infected with Trypanosoma cruzi and harvested during the chronic disease phase. Chronically infected mice exhibited a substantial increase in plasma levels of inflammatory markers (nitric oxide, myeloperoxidase), lactate dehydrogenase, and myocardial levels of inflammatory infiltrate and oxidative adducts (malondialdehyde, carbonyls, 3‐nitrotyrosine) in the order of wild type=MnSOD+/−>GPx1−/−>MnSODtg. Myocardial mitochondrial damage was pronounced and associated with a >50% decline in mitochondrial DNA content in chronically infected wild‐type and GPx1−/− mice. Imaging of intact heart for cardiomyocytes and collagen by the nonlinear optical microscopy techniques of multiphoton fluorescence/second harmonic generation showed a significant increase in collagen (>10‐fold) in chronically infected wild‐type mice, whereas GPx1−/− mice exhibited a basal increase in collagen that did not change during the chronic phase. Chronically infected MnSODtg mice exhibited a marginal decline in mitochondrial DNA content and no changes in collagen signal in the myocardium. P47phox−/− mice lacking phagocyte‐generated reactive oxygen species sustained a low level of myocardial oxidative stress and mitochondrial DNA damage in response to Trypanosoma cruzi infection. Yet chronically infected p47phox−/− mice exhibited increase in myocardial inflammatory and remodeling responses, similar to that noted in chronically infected wild‐type mice. Conclusions Inhibition of oxidative burst of phagocytes was not sufficient to prevent pathological cardiac remodeling in Chagas disease. Instead, enhancing the mitochondrial reactive oxygen species scavenging

  16. Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Christensen, M. K.; Cozzi, F.; Zare, A.; Hansen, A. M. K.; Kristensen, K.; Tulinius, T. E.; Madsen, H. H.; Christensen, J. H.; Brandt, J.; Massling, A.; Nøjgaard, J. K.; Glasius, M.

    2014-09-01

    Anthropogenic emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA) through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May to 22 June, 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale, with the compounds being long-range transported to the sites on the days with the highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in addition to modeled emissions of related precursors, including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) and SO2 emissions using the European Monitoring and Evaluation Program (EMEP) database. The local impacts were also studied by examining the correlation between selected species, which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases, including SO2, ozone (O3), NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, SO2, relative humidity (RH), temperature and global radiation seemed to affect the concentration level of those species, suggesting

  17. Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates

    NASA Astrophysics Data System (ADS)

    Ying, Samantha C.; Masue-Slowey, Yoko; Kocar, Benjamin D.; Griffis, Sarah D.; Webb, Samuel; Marcus, Matthew A.; Francis, Christopher A.; Fendorf, Scott

    2013-03-01

    The aggregate-based structure of soils imparts physical heterogeneity that gives rise to variation in microbial and chemical processes which influence the speciation and retention of trace elements such as As. To examine the impact of distributed redox conditions on the fate of As in soils, we imposed various redox treatments upon constructed soil aggregates composed of ferrihydrite- and birnessite-coated sands presorbed with As(V) and inoculation with the dissimilatory metal reducing bacterium Shewanella sp. ANA-3. Aeration of the advecting solution surrounding the aggregates was varied to simulate environmental conditions. We find that diffusion-limited transport within high dissolved organic carbon environments allows reducing conditions to persist in the interior of aggregates despite aerated advecting external solutes, causing As, Mn, and Fe to migrate from the reduced aggregate interiors to the aerated exterior region. Upon transitioning to anoxic conditions in the external solutes, pulses of As, Mn and Fe are released into the advecting solution, while, conversely, a transition to aerated conditions in the exterior resulted in a cessation of As, Mn, and Fe release. Importantly, we find that As(III) oxidation by birnessite is appreciable only in the presence of O2; oxidation of As(III) to As(V) by Mn-oxides ceases under anaerobic conditions apparently as a result of microbially mediated Mn(IV/III) reduction. Our results demonstrate the importance of considering redox conditions and the physical complexity of soils in determining As dynamics, where redox transitions can either enhance or inhibit As release due to speciation shifts in both sorbents (solubilization versus precipitation of Fe and Mn oxides) and sorbates (As).

  18. cumA, a Gene Encoding a Multicopper Oxidase, Is Involved in Mn2+ Oxidation in Pseudomonas putida GB-1

    PubMed Central

    Brouwers, Geert-Jan; de Vrind, Johannes P. M.; Corstjens, Paul L. A. M.; Cornelis, Pierre; Baysse, Christine; de Vrind-de Jong, Elisabeth W.

    1999-01-01

    Pseudomonas putida GB-1-002 catalyzes the oxidation of Mn2+. Nucleotide sequence analysis of the transposon insertion site of a nonoxidizing mutant revealed a gene (designated cumA) encoding a protein homologous to multicopper oxidases. Addition of Cu2+ increased the Mn2+-oxidizing activity of the P. putida wild type by a factor of approximately 5. The growth rates of the wild type and the mutant were not affected by added Cu2+. A second open reading frame (designated cumB) is located downstream from cumA. Both cumA and cumB probably are part of a single operon. The translation product of cumB was homologous (level of identity, 45%) to that of orf74 of Bradyrhizobium japonicum. A mutation in orf74 resulted in an extended lag phase and lower cell densities. Similar growth-related observations were made for the cumA mutant, suggesting that the cumA mutation may have a polar effect on cumB. This was confirmed by site-specific gene replacement in cumB. The cumB mutation did not affect the Mn2+-oxidizing ability of the organism but resulted in decreased growth. In summary, our data indicate that the multicopper oxidase CumA is involved in the oxidation of Mn2+ and that CumB is required for optimal growth of P. putida GB-1-002. PMID:10103278

  19. Effect of the Mn Oxidation State on Single-Molecule-Magnet Properties: Mn(III) vs Mn(IV) in Biologically Inspired DyMn3O4 Cubanes.

    PubMed

    Lin, Po-Heng; Tsui, Emily Y; Habib, Fatemah; Murugesu, Muralee; Agapie, Theodor

    2016-06-20

    Inspired by the ferromagnetic coupling in the cubane model CaMn(IV)3O4 of the oxygen-evolving complex of photosystem II, 3d-4f mixed-metal DyMn3O4 clusters were prepared for investigation of the magnetic properties. For comparison, YMn(IV)3O4 and YMn(IV)2Mn(III)O4 clusters were investigated as well and showed ferromagnetic interactions, like the calcium analogue. DyMn(IV)3O4 displays single-molecule-magnet properties, while the one-electron-reduced species (DyMn(IV)2Mn(III)O4) does not, despite the presence of a Mn(III) center with higher spin and single-ion anisotropy. PMID:27281290

  20. High-frequency electron paramagnetic resonance analysis of the oxidation state and local structure of Ni and Mn ions in Ni,Mn-codoped LiCoO(2).

    PubMed

    Stoyanova, R; Barra, A-L; Yoncheva, M; Zhecheva, E; Shinova, E; Tzvetkova, P; Simova, S

    2010-02-15

    High-frequency electron paramagnetic resonance (HF-EPR) spectroscopy was employed to examine the oxidation state and local structure of Ni and Mn ions in Ni,Mn-codoped LiCoO(2). The assignment of EPR signals was based on Mg,Mn-codoped LiCoO(2) and Ni-doped LiCoO(2) used as Mn(4+) and low-spin Ni(3+) EPR references. Complementary information on the oxidation state of transition-metal ions was obtained by solid-state (6,7)Li NMR spectroscopy. For slightly doped oxides (LiCo(1-x)Ni(x)Mn(x)O(2) with x < 0.05), nickel and manganese substitute for cobalt in the CoO(2) layers and are stabilized as Ni(3+) and Mn(4+) ions. The local structure of Mn(4+) ions was determined by modeling of the axial zero-field-splitting parameter in the framework of the Newman superposition model. It has been found that the local trigonal distortion around Mn(4+) is smaller in comparison with that of the host site. To achieve a local compensation of Mn(4+) charge, several defect models are discussed. With an increase in the total dopant content (LiCo(1-x)Ni(x)Mn(x)O(2) and 0.05 Mn(4+) content increases gradually. Ni(3+) ions are surrounded by Co(3+) ions only in the whole concentration range (0 < x Mn(4+) ions undergoes a transformation with an increase in the total Ni and Mn contents due to a progressive replacement of Co(3+) by Mn(4+) and Ni(2+) ions. For highly doped oxides (LiCo(1-x)Ni(x)Mn(x)O(2) with x = 0.10), nickel and manganese achieve, with respect to the local charge compensation, their usual oxidation states of 2+ and 4+. PMID:20078096

  1. Why MnIn{sub 2}O{sub 4} spinel is not a transparent conducting oxide?

    SciTech Connect

    Martinez-Lope, M.J.; Retuerto, M.; Calle, C. de la; Porcher, Florence

    2012-03-15

    The title compound has been synthesized by a citrate technique. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3-bar m, Z=8, with a=9.0008(1) A at 295 K. It exhibits a crystallographic formula (Mn{sub 0.924(2)}In{sub 0.076(2)}){sub 8a}(In{sub 1.804(2)}Mn{sub 0.196(2)}){sub 16d}O{sub 4}, where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively, with a slight degree of inversion, {lambda}=0.08. MnIn{sub 2}O{sub 4} shows antiferromagnetic interactions below T{sub N} Almost-Equal-To 40 K, due to the statistical distribution of Mn ions over the two available sites. Unlike the related MgIn{sub 2}O{sub 4} and CdIn{sub 2}O{sub 4} spinels, well known as transparent conducting oxides, MnIn{sub 2}O{sub 4} is not transparent and shows a poor conductivity ({sigma}=0.38 S cm{sup -1} at 1123 K): the presence of Mn ions, able to adopt mixed valence states, localizes the charges that, otherwise, would be delocalized in the spinel conduction band. - Graphical Abstract: From NPD data the crystallographic formula (Mn{sub 0.924(2)}In{sub 0.076(2)}){sub 8a}(In{sub 1.804(2)}Mn{sub 0.196(2)}){sub 16d}O{sub 4}, shows a slight degree of inversion, {lambda}=0.08 and a certain In deficiency. The presence of Mn ions, able to adopt mixed oxidation states, localize the charges that, otherwise, would be delocalized in the spinel conduction band; the presence of localized Mn{sup 2+} and Mn{sup 3+} ions provides the characteristic brown color. Highlights: Black-Right-Pointing-Pointer Accurate structural determination from NPD data: inversion degree (8%), and In deficiency. Black-Right-Pointing-Pointer Bond-valence indicates Mn{sup 2+}-Mn{sup 3+} ions; edge-sharing octahedra contain 90% In{sup 3+}+10% Mn{sup 3+} cations. Black-Right-Pointing-Pointer Conductivity several orders of magnitude lower than those of MgIn{sub 2}O

  2. Role of extracellular polymeric substances (EPS) from Pseudomonas putida strain MnB1 in dissolution of natural rhodochrosite

    NASA Astrophysics Data System (ADS)

    Wang, H.; Pan, X.

    2014-05-01

    Microbially mediated oxidation of Mn(II) to Mn oxides have been demonstrated in previous studies, however, the mechanisms of bacteria how to dissolve and oxidize using a solid Mn(II) origin are poorly understood. In this study, we examined the role of extracellular polymeric substances (EPS) from P. putida strain MnB1 in enhancing dissolution of natural rhodochrosite. The results showed that P. putida strain MnB1 cell can effectively dissolve and oxidize natural rhodochrosite to generate Mn oxides, and EPS were found to play an important role in increasing dissolution of natural rhodochrosite. Compared with EPS-free treatment, dissolution rate of natural rhodochrosite in the presence of bacterial EPS was significantly increased with decreasing initial pH and increasing EPS concentration, ionic strength and rhodochrosite dosage (p < 0.05). The fourier-transform infrared spectroscopy (FTIR) analysis implies that the functional groups like N-H, C=O and C-H in EPS contributed to the dissolution of natural rhodochrosite. This study is helpful for understanding the mechanisms of the formation of biogenic Mn oxides using a solid Mn(II) origin.

  3. The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: adsorption behaviors and mechanisms.

    PubMed

    Wu, Kun; Liu, Ting; Ma, Chao; Chang, Bing; Chen, Rong; Wang, Xiaochang

    2014-01-01

    This study investigated the behaviors and mechanisms of phosphate adsorbed onto manganese (Mn) oxide-doped aluminum (Al) oxide (MODAO). The isotherm results demonstrated that the maximum amount of phosphorus (P) adsorbed onto MODAO was 59.8 mg/g at T = 298 K (pH 6.0). This value was nearly twice the amount of singular AlOOH and could increase with rising temperatures. The kinetic results illustrated that most of the P was adsorbed onto MODAO within 5 h, which was shorter than the equilibrium time of phosphate adsorption onto AlOOH. The Elovich model effectively described the adsorption kinetic data of MODAO because of its heterogeneous surface. The optimal solution pH for phosphate removal was approximately 5.0 because of electrostatic interaction effects. Meanwhile, the decrease in P uptake with increasing ion strength suggested that phosphate adsorption occurred through an outer-sphere complex. Phosphates would compete for adsorption sites on the surface of MODAO in the presence of fluoride ion or sulfate. In addition, the spectroscopic analysis results of Fourier transform infrared spectroscopy and X-ray photoemission spectroscopy indicated that removal mechanisms of phosphate primarily include adhesion to surface hydroxyl groups and ligand exchange.

  4. High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Zhen, Shuying; Sun, Wang; Li, Peiqian; Tang, Guangze; Rooney, David; Sun, Kening; Ma, Xinxin

    2016-05-01

    In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm-1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm-2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

  5. The protective role of MnTBAP in Oxidant-mediated injury and inflammation following Lung Contusion

    PubMed Central

    Suresh, Madathilparambil V; Yu, Bi; Lakshminrusimha, Satyan; Machado-Aranda, D; Talarico, Nicholas; Zeng, Lixia; Davidson, Bruce A.; Pennathur, Subramaniam; Raghavendran, Krishnan

    2013-01-01

    Background Lung contusion (LC) is a unique direct and focal insult that is considered a major risk factor for initiation of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We have recently shown that consumption of Nitric oxide (NO)(due to excess superoxide) resulting in peroxynitrite formation leads to diminished vascular reactivity after LC. Here, we set to determine if superoxide scavenger Mn (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) plays a protective role in alleviating acute inflammatory response and injury in LC. Methods Non-lethal closed-chest bilateral lung contusion was induced in a rodent model. Administration of superoxide dismutase (SOD) mimetic-MnTBAP, concurrently with LC in rats was performed and bronchoalveolar lavage (BAL) and lung samples were analyzed for degree of injury and inflammation at 5 and 24 h following the insult. The extent of injury was assessed by the measurement of cells and albumin with cytokine levels in the BAL and lungs. Lung samples were subjected to H&E and superoxide staining with dihydro-ethidium (DHE). Protein-bound dityrosine and nitrotyrosine levels were quantified in lung tissue by tandem mass spectrometry. Results The degree of lung injury after LC as determined by BAL albumin levels were significantly reduced in the MnTBAP administered rats at all the time points, when compared to the corresponding controls. The release of pro-inflammatory cytokines and BAL neutrophils were significantly lower in the MnTBAP administered rats after LC. Pathological examination revealed that administration of MnTBAP reduced tissue damage with decreased necrosis and neutrophil-rich exudate at the 24 h time point. Staining for superoxide anions showed significantly higher intensity in the lung samples from LC group compared to LC+ MnTBAP. Liquid chromatography/tandem mass spectrometry [HPLC/MS/MS] revealed that MnTBAP treatment significantly attenuated dityrosine and nitrotyrosine levels

  6. Bio-inspired design of electrocatalysts for oxalate oxidation: a combined experimental and computational study of Mn-N-C catalysts.

    PubMed

    Matanovic, Ivana; Babanova, Sofia; Perry, Albert; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2015-05-28

    We report a novel non-platinum group metal (non-PGM) catalyst derived from Mn and amino- antipyrine (MnAAPyr) that shows electrochemical activity towards the oxidation of oxalic acid comparable to Pt with an onset potential for oxalate oxidation measured to be 0.714 ± 0.002 V vs. SHE at pH = 4. The material has been synthesized using a templating Sacrificial Support Method with manganese nitrate and 4-aminoantipyrine as precursors. This catalyst is a nano-structured material in which Mn is atomically dispersed on a nitrogen-doped graphene matrix. XPS studies reveal high abundance of pyridinic, Mn-Nx, and pyrrolic nitrogen pointing towards the conclusion that pyridinic nitrogen atoms coordinated to manganese constitute the active centers. Thus, the main features of the MnAAPyr catalyst are it exhibits similarity to the active sites of naturally occurring enzymes that are capable of efficient and selective oxidation of oxalic acid. Density functional theory in plane wave formalism with Perdew, Burke and Ernzerhof functional was further used to study the stability and activity of different one-metal active centers that could exist in the catalyst. The results show that the stability of the Mn-Nx sites changes in the following order: MnN4 > MnN3C > MnN2C2 > MnN3. Based on the overpotentials of 0.64 V and 0.71 V vs. SHE, calculated using the free energy diagrams for the oxalate oxidation mechanism, we could conclude that the MnN3C and MnN2C2 sites are most probable Mn-Nx sites responsible for the reported catalytic activity of the new catalyst. PMID:25785903

  7. Underlying mechanisms of the synergistic role of Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 in high-Mn, Li-rich oxides.

    PubMed

    Lim, Jin-Myoung; Kim, Duho; Park, Min-Sik; Cho, Maenghyo; Cho, Kyeongjae

    2016-04-28

    For large-scale energy storage applications requiring high energy density, the development of Li-rich oxides with enhanced cyclic stabilities during high-voltage operations and large specific capacities is required. In this regard, high-Mn, Li-rich oxides (HMLOs; xLi2MnO3 (1 - x)LiNi1/3Co1/3Mn1/3O2 at x > 0.5) warrant an in-depth study because of their good cyclic performance at high operating voltages and potentially large specific capacities. Here, to understand the synergistic effects and enhanced cyclic stability of HMLOs, mechanically blended HMLO (m-HMLO) and chemically bonded HMLO (c-HMLO) were prepared and investigated. c-HMLO exhibits relatively high reaction voltages, large specific capacities, and enhanced cyclic stabilities (∼99%) at a high operating voltage (∼4.8 V vs. Li/Li(+)) compared with m-HMLO. First-principles calculations with electronic structure analysis were performed using an atomic model developed by Rietveld refinement using as-synthesised c-HMLO. The redox mechanisms of Ni, Co, and Mn ions were determined via the partial density of states of the ground states predicted using the cluster expansion method, which elucidates that LiNi1/3Co1/3Mn1/3O2 stabilises the transition metal (TM) layer of Li2MnO3 and separates Li delithiation potentials in Li2MnO3 in the HMLO. Kinetic analyses including electronic structures revealed that the interlayer migration of TMs from the TM layer to the Li layer depends on the crystal field stabilisation. Thus, TMs with reduced character in the tetrahedral sites than the octahedral sites owing to the effects of crystal field stabilisation, such as Ni ions, in HMLOs would face a higher interlayer migration barrier, impeding phase transformation into spinel phases. Furthermore, Cu ions could constitute a doping source for HMLOs to improve the material's cyclic stability through this mechanism. These characteristics may be widely applied to explain experimental phenomena and improve the properties of cathode

  8. Synthesis and characterization of R{sub 2}MnTiO{sub 7} (R = Y and Er) pyrochlores oxides

    SciTech Connect

    Martínez-Coronado, R.; Alonso, J.A.; Fernández, M.T.

    2013-09-01

    Graphical abstract: - Abstract: New pyrochlore-like phases of composition R{sub 2}MnTiO{sub 7} (R = Er and Y) have been synthesized by a soft-chemistry procedure involving citrates of the different metal ions followed by thermal treatments at moderate temperatures (850 °C for 12 h in air). A characterization by X-ray diffraction and neutron powder diffraction (NPD) has been carried out in order to determine the crystal structure features: these phyrochlores are cubic, space group Fd-3m, defining an intrinsically frustrated three-dimensional system. The Rietveld-refinement from NPD data at room temperature evidences an antisite cation disorder (distribution of Mn between A and B positions) that is accompanied by an increment of the oxygen-vacancy concentration due to the reduction of Mn{sup 4+} at the B position to Mn{sup 2+} at the A position. Thermogravimetric analysis (TGA) was useful to evaluate the stability of these oxides in reducing conditions up to 500 °C. Magnetic susceptibility measurements indicate a ferromagnetic behavior, due to the random distribution of Mn{sup 4+} ions in the octahedral sublattice. At lower temperatures there is a polarization of the R{sup +3} magnetic moments, which also participate in the magnetic structure. Aiming to evaluate these materials as possible electrodes for solid oxide fuel cells (SOFC) we determined that the thermal expansion coefficients between 100 and 900 °C perfectly match with those of the usual electrolytes; however, these pyrochlore oxides display a semiconductor-like behavior with poor conductivity values, e.g. 6 × 10{sup −3} cm{sup −1} at 850 °C for Er, which would prevent its use as MIEC (mixed ionic-electronic conductors) oxides in SOFC devices.

  9. Controlling phosphate releasing from poultry litter using stabilized Fe-Mn binary oxide nanoparticles.

    PubMed

    Xie, Wenbo; Zhao, Dongye

    2016-01-15

    Animal wastes contain high concentrations of phosphorus (P), most of which is lost into the environment due to uncontrolled release rates. Polysaccharide stabilized Fe-Mn binary oxide nanoparticles were prepared and tested for phosphate adsorption from water and for controlling leachability of P from poultry litter. A water soluble starch and carboxymethyl cellulose (CMC) were used as a stabilizer. Both the Freundlich and Langmuir models were able to adequately interpret the isotherm data. The Langmuir maximum capacity was determined at 252, 298 and 313 mg-P/g for bare, CMC- and starch-stabilized nanoparticles, respectively. The presence of the stabilizers not only enhanced the sorption capacity, but facilitated delivery and dispersion of the nanoparticles in poultry litter (PL) and in soil. High phosphate sorption capacity was observed over a broad pH range of 4-9. FTIR analyses indicated that inner sphere surface complexation (Fe-O-P) was the key mechanism for the enhanced uptake of P. When applied to poultry litter, the stabilized nanoparticles reduced water leachable phosphate by >86% at a dose of 0.2 g/L as Fe, and simultaneously, water leachable arsenic by >87-95%. Under conditions of simulated land application of PL, the nanoparticle amendment of PL reduced the water soluble P from 66% (for untreated PL) to 4.4%, and lowered the peak soluble P concentration from 300 to <20 mg/L. By transferring the peak soluble P to the nanoparticle-bound P, the nanoparticles not only greatly reduce the potential runoff loss of P from PL, but also provide a long-term slow-releasing nutrient source. Fortuitously, the nanoparticle treatment was able to immobilize arsenic from PL. With excellent adsorption capacity, easy deliverability, low cost and environmental innocuousness, the stabilized Fe-Mn nanoparticles appear promising for controlling P releases from poultry litter or other animal wastes and for phosphate recovery from water. PMID:26442720

  10. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.

  11. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone. PMID:25510614

  12. Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection.

    PubMed

    Bakhirkin, Yury A; Kosterev, Anatoliy A; Roller, Chad; Curl, Robert F; Tittel, Frank K

    2004-04-10

    Tunable-laser absorption spectroscopy in the mid-IR spectral region is a sensitive analytical technique for trace-gas quantification. The detection of nitric oxide (NO) in exhaled breath is of particular interest in the diagnosis of lower-airway inflammation associated with a number of lung diseases and illnesses. A gas analyzer based on a continuous-wave mid-IR quantum cascade laser operating at approximately 5.2 microm and on off-axis integrated cavity output spectroscopy (ICOS) has been developed to measure NO concentrations in human breath. A compact sample cell, 5.3 cm in length and with a volume of < 80 cm3, that is suitable for on-line and off-line measurements during a single breath cycle, has been designed and tested. A noise-equivalent (signal-to-noise ratio of 1) sensitivity of 10 parts in 10(9) by volume (ppbv) of NO was achieved. The combination of ICOS with wavelength modulation resulted in a 2-ppbv noise-equivalent sensitivity. The total data acquisition and averaging time was 15 s in both cases. The feasibility of detecting NO in expired human breath as a potential noninvasive medical diagnostic tool is discussed.

  13. Influence of FeO and sulfur on solid state reaction between MnO-SiO2-FeO oxides and an Fe-Mn-Si solid alloy during heat treatment at 1473 K

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-song; Yang, Shu-feng; Kim, Kyung-ho; Li, Jing-she; Shibata, Hiroyuki; Kitamura, Shin-ya

    2015-08-01

    To clarify the influence of FeO and sulfur on solid state reaction between an Fe-Mn-Si alloy and MnO-SiO2-FeO oxides under the restricted oxygen diffusion flux, two diffusion couples with different sulfur contents in the oxides were produced and investigated after heat treatment at 1473 K. The experimental results were also compared with previous work in which the oxides contained higher FeO. It was found that although the FeO content in the oxides decreased from 3wt% to 1wt% which was lower than the content corresponding to the equilibrium with molten steel at 1873 K, excess oxygen still diffused from the oxides to solid steel during heat treatment at 1473 K and formed oxide particles. In addition, increasing the sulfur content in the oxides was observed to suppress the diffusion of oxygen between the alloy and the oxides.

  14. Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol.

    PubMed

    Hu, Zonggao; Zhao, Yafei; Liu, Jindun; Wang, Jingtao; Zhang, Bing; Xiang, Xu

    2016-12-01

    The highly active and selective aerobic oxidation of aromatic alcohols over earth-abundant, inexpensive and recyclable catalysts is highly desirable. We fabricated herein MnO2/graphene oxide (GO) composites by a facile in-situ growth approach at room temperature and used them in selective aerobic oxidation of benzyl alcohol to benzaldehyde. TEM, XRD, FTIR, XPS and N2 adsorption/desorption analysis were employed to systematically investigate the morphology, particle size, structure and surface properties of the catalysts. The 96.8% benzyl alcohol conversion and 100% benzaldehyde selectivity over the MnO2/GO (10/100) catalyst with well dispersive ultrafine MnO2 nanoparticles (ca. 3nm) can be obtained within 3h under 383K. Simultaneously, no appreciable loss of activity and selectivity occurred after recycling use up to six times. Due to their significant low cost, excellent catalytic performance, the MnO2/GO composites have huge application prospect in organic synthesis. PMID:27544446

  15. Biogenic metals in advanced water treatment.

    PubMed

    Hennebel, Tom; De Gusseme, Bart; Boon, Nico; Verstraete, Willy

    2009-02-01

    Microorganisms can change the oxidation state of metals and concomitantly deposit metal oxides and zerovalent metals on or into their cells. The microbial mechanisms involved in these processes have been extensively studied in natural environments, and researchers have recently gained interest in the applications of microbe-metal interactions in biotechnology. Because of their specific characteristics, such as high specific surface areas and high catalytic reactivity, biogenic metals offer promising perspectives for the sorption and (bio)degradation of contaminants. In this review, the precipitation of biogenic manganese and iron species and the microbial reduction of precious metals, such as palladium, platinum, silver and gold, are discussed with specific attention to the application of these biogenic metals in innovative remediation technologies in advanced water treatment.

  16. Mn(II) Oxidation Is Catalyzed by Heme Peroxidases in “Aurantimonas manganoxydans” Strain SI85-9A1 and Erythrobacter sp. Strain SD-21▿

    PubMed Central

    Anderson, C. R.; Johnson, H. A.; Caputo, N.; Davis, R. E.; Torpey, J. W.; Tebo, B. M.

    2009-01-01

    A new type of manganese-oxidizing enzyme has been identified in two alphaproteobacteria, “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. These proteins were identified by tandem mass spectrometry of manganese-oxidizing bands visualized by native polyacrylamide gel electrophoresis in-gel activity assays and fast protein liquid chromatography-purified proteins. Proteins of both alphaproteobacteria contain animal heme peroxidase and hemolysin-type calcium binding domains, with the 350-kDa active Mn-oxidizing protein of A. manganoxydans containing stainable heme. The addition of both Ca2+ ions and H2O2 to the enriched protein from Aurantimonas increased manganese oxidation activity 5.9-fold, and the highest activity recorded was 700 μM min−1 mg−1. Mn(II) is oxidized to Mn(IV) via an Mn(III) intermediate, which is consistent with known manganese peroxidase activity in fungi. The Mn-oxidizing protein in Erythrobacter sp. strain SD-21 is 225 kDa and contains only one peroxidase domain with strong homology to the first 2,000 amino acids of the peroxidase protein from A. manganoxydans. The heme peroxidase has tentatively been named MopA (manganese-oxidizing peroxidase) and sheds new light on the molecular mechanism of Mn oxidation in prokaryotes. PMID:19411418

  17. Significance of the Henri-Michaelis-Menten theory in abiotic catalysis: catechol oxidation by δ-MnO 2

    NASA Astrophysics Data System (ADS)

    Naidja, A.; Huang, P. M.

    2002-05-01

    The Henri-Michaelis-Menten theory, for more than eight decades, was only restricted to homogeneous enzymatic catalysis. A mimic of an enzymatic kinetics based on the Henri-Michaelis-Menten concept was experimentally observed in heterogeneous catalysis in the present study with δ-MnO 2 as an abiotic catalyst in the oxidation of catechol (1,2-dihydroxybenzene). Using the derived linear forms of Lineweaver-Burk or Hofstee, the data show that similar to the enzyme tyrosinase, the kinetics of the catechol oxidation catalyzed by δ-MnO 2 can be described by the Henri-Michaelis-Menten equation, V0= VmaxS/( Km+ S), where Vmax is the maximum velocity and Km the concentration of the substrate ( S) corresponding to an initial velocity ( V0) half of Vmax. By analogy to the enzymatic kinetics, the parameters Vmax and Km for an heterogeneous abiotic catalysis were derived for the first time. Further, based on the concentration of the active centers of the mineral oxide, the kinetic constants kcat and kcat/ Km, respectively, representing the turnover frequency and the efficiency of the mineral catalyst, were also determined from the derived general rate equation of Briggs and Haldane. As an abiotic catalyst, δ-MnO 2 has a paramount role in the oxidation of phenolic compounds in soil, sediment and water environments. Therefore, the present observation is of fundamental and practical significance in elucidating the affinity between an abiotic catalyst and a substrate based on the Henri-Michaelis-Menten theory.

  18. Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2.

    PubMed

    Tsukihara, Takahisa; Honda, Yoichi; Sakai, Ryota; Watanabe, Takahito; Watanabe, Takashi

    2008-05-01

    Unlike general peroxidases, Pleurotus ostreatus MnP2 was reported to have a unique property of direct oxidization of high-molecular-weight compounds, such as Poly R-478 and RNase A. To elucidate the mechanism for oxidation of polymeric substrates by MnP2, a series of mutant enzymes were produced by using a homologous gene expression system, and their reactivities were characterized. A mutant enzyme with an Ala substituting for an exposing Trp (W170A) drastically lost oxidation activity for veratryl alcohol (VA), Poly R-478, and RNase A, whereas the kinetic properties for Mn(2+) and H(2)O(2) were substantially unchanged. These results demonstrated that, in addition to VA, the high-molecular-weight substrates are directly oxidized by MnP2 at W170. Moreover, in the mutants Q266F and V166/168L, amino acid substitution(s) around W170 resulted in a decreased activity only for the high-molecular-weight substrates. These results, along with the three-dimensional modeling of the mutants, suggested that the mutations caused a steric hindrance to access of the polymeric substrates to W170. Another mutant, R263N, contained a newly generated N glycosylation site and showed a higher molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Interestingly, the R263N mutant exhibited an increased reactivity with VA and high-molecular-weight substrates. The existence of an additional carbohydrate modification and the catalytic properties in this mutant are discussed. This is the first study of a direct mechanism for oxidation of high-molecular-weight substrates by a fungal peroxidase using a homologous gene expression system.

  19. Facile preparation of three-dimensional multilayer porous MnO2/reduced graphene oxide composite and its supercapacitive performance

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Wang, Guiling; Ye, Ke; Cheng, Kui; Pan, Yue; Yan, Peng; Yin, Jinling; Cao, Dianxue

    2014-12-01

    Three-dimensional (3D) multilayer porous MnO2/reduced graphene oxide composites are coated on a nickel foam substrate (denoted as MnO2/R-GO@Ni-foam) by a facile and scalable spray method following by low temperature annealing. The composite electrodes are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The content of MnO2 in the MnO2/R-GO@Ni-foam composites is determined by thermal gravimetric analysis. The supercapacitive performance of the composite electroides is investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The results show that the MnO2/R-GO@Ni-foam composite displays a high specific capacitance of 267 F g-1 at 0.25 A g-1 and excellent capacitance retention of 89.5% after 1000 cycles. This study provides a facile way for the preparation of composite electrodes for high-performance supercapacitor.

  20. Enhanced arsenic removal by in situ formed Fe-Mn binary oxide in the aeration-direct filtration process.

    PubMed

    Wu, Kun; Liu, Rui-Ping; Liu, Hui-Juan; Lan, Hua-Chun; Qu, Jiu-Hui

    2012-11-15

    Field studies were conducted to evaluate the feasibility of an in situ formed Fe-Mn binary oxide (in situ FMBO) for improving arsenic (As) removal in the aeration-direct filtration process. The transformation and transportation of As, Fe, and Mn in the filter bed were also investigated. The in situ FMBO increased the As removal efficiency by 20-50% to keep the residual As below 10 μg/L. The optimum FMBO dosage was determined to be 0.55 mg/L with the Fe/Mn ratio as 10:1. The removal of Fe, Mn, turbidity, and particles was also improved to a large extent. The in situ FMBO favored the transformation of soluble As, Fe, and Mn into the solid phases, benefiting the removal of these pollutants by the subsequent filtration. Moreover, the deposited precipitates onto the filter media were characterized, as indicated by the analyses of SEM/EDS and particle size distribution. The long-term experiments exhibited decreased head loss growth and prolonged run length, suggesting an enhanced pollutant catching capacity of the filter media. The full-scale field study with a flow of 10,000 m3/d confirmed positive effects of in situ FMBO on As removal, with the average effluent As concentration reduced from 20 μg/L to 6 μg/L (reagent cost=0.006 ¥/m3). PMID:23017236

  1. Enhanced arsenic removal by in situ formed Fe-Mn binary oxide in the aeration-direct filtration process.

    PubMed

    Wu, Kun; Liu, Rui-Ping; Liu, Hui-Juan; Lan, Hua-Chun; Qu, Jiu-Hui

    2012-11-15

    Field studies were conducted to evaluate the feasibility of an in situ formed Fe-Mn binary oxide (in situ FMBO) for improving arsenic (As) removal in the aeration-direct filtration process. The transformation and transportation of As, Fe, and Mn in the filter bed were also investigated. The in situ FMBO increased the As removal efficiency by 20-50% to keep the residual As below 10 μg/L. The optimum FMBO dosage was determined to be 0.55 mg/L with the Fe/Mn ratio as 10:1. The removal of Fe, Mn, turbidity, and particles was also improved to a large extent. The in situ FMBO favored the transformation of soluble As, Fe, and Mn into the solid phases, benefiting the removal of these pollutants by the subsequent filtration. Moreover, the deposited precipitates onto the filter media were characterized, as indicated by the analyses of SEM/EDS and particle size distribution. The long-term experiments exhibited decreased head loss growth and prolonged run length, suggesting an enhanced pollutant catching capacity of the filter media. The full-scale field study with a flow of 10,000 m3/d confirmed positive effects of in situ FMBO on As removal, with the average effluent As concentration reduced from 20 μg/L to 6 μg/L (reagent cost=0.006 ¥/m3).

  2. Anaerobic nitrification-denitrification mediated by Mn-oxides in meso-tidal sediments: Implications for N2 and N2O production

    NASA Astrophysics Data System (ADS)

    Fernandes, Sheryl Oliveira; Javanaud, Cedric; Aigle, Axel; Michotey, Valérie D.; Guasco, Sophie; Deborde, Jonathan; Deflandre, Bruno; Anschutz, Pierre; Bonin, Patricia C.

    2015-04-01

    Field measurements in the Arcachon Bay (southwest France) indicated anaerobic production of NOx via nitrification, which was coupled to the reduction of Mn-oxides. To prove the occurrence of this process, laboratory microcosm experiments were set up. A 15N tracer-based approach was used to track if NOx produced through Mn-oxide-mediated anaerobic nitrification would be reduced to N2 via denitrification or anammox. We also hypothesized the generation of the potent greenhouse gas nitrous oxide (N2O) during nitrification-denitrification in the presence of Mn-oxides. The microcosms were prepared using sediment sectioned at varying depths (0-2.5, 2.5-4.5, 4.5-8.5, 8.5-12 and 12-17 cm) during two sampling campaigns in October (fall) and January (winter). Labeling with 15NO3- revealed low N2 production originating from NO3- in the water column (Pw), which did not increase significantly on amendment with Mn-oxides during both sampling periods. However, for both seasons, a significant increase of N2 produced via nitrification (Pn) was observed upon addition of Mn-oxides reaching 76-fold enhancement at ≤ 2.5 cm. To support these results, sediment slurries of October were subjected to amendment of 15NH4+, 14NO3- with or without addition of Mn-oxides. A substantial production of P15 (N2 production from 15NH4+) within 0-17 cm provided further evidence on nitrification-denitrification mediated by Mn-oxides probably with minimal intervention of anammox. In organically rich sediments, anaerobic nitrification-denitrification mediated by Mn-oxides could play an important role in lowering re-mineralized NH4+ levels in the benthic system. As hypothesized, significant production of N2O through the pathway was observed revealing newer mechanisms leading to the generation of the radiative gas.

  3. FTIR Spectroscopic Study of Mn(II) Oxidizing Pseudomonas putida GB1 Biofilms on ZnSe, Ge, and CdTe Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Parikh, S. J.; Gilbert, H. L.; Conklin, M. H.; Chorover, J.

    2003-12-01

    Pseudomonas putida strain GB1 is an aerobic, gram-negative bacterium capable of gaining energy from the biological oxidation of Mn(II). The increased kinetics of Mn(II) oxidation resulting from this microbial catalysis is known to contribute to the formation of Mn(IV) oxides in natural waters. Environmental conditions, including aqueous and surface chemistry, greatly affect the macromolecular composition and surface adhesion behavior of bacteria. For example, the chemistry of GB1 biofilms forming on crystal surfaces is expected to vary with Mn(II) concentration in solution. We used Fourier transform infrared (FTIR) spectroscopy to probe the formation of GB1 biofilms on the surfaces of negatively-charged IR transparent ZnSe, Ge, and CdTe crystal windows. Bacterial adhesion experiments were carried out both in the presence and absence of Mn(II)(aq) with FTIR windows suspended in a bioreactor comprising GB1 cells in a mineral growth medium at pH 7.6 and 30° C. After 85 h, windows were removed from the reactor and IR spectra were collected. Oxidation of Mn(II) was confirmed via leucoberbelin blue (LBB) indicator and the appearance of Mn-O stretches in biofilm IR spectra. Transmission FTIR spectra do not reveal detectable effects of crystal type on biofilm composition, but do indicate changes in chemistry resulting from introduction of Mn(II). In the presence of Mn(II), spectra of biofilms show higher relative intensity in the carbohydrate region (specifically 1160, 1052 cm-1). A down frequency shift in the P=O absorbance was also observed (1240 to 1222 cm-1). These results indicate a modification of bacterial cell/biofilm composition resulting during biological oxidation of Mn(II). The CdTe transmission window permits measurements to low wavenumbers (<600 cm-1) and a peak at 588 cm-1 was observed when bacteria were surface-adhered in the presence of Mn(II). This peak, which has been attributed to Mn-O stretching vibrations, may provide an index of Mn oxide crystal

  4. General route to synthesize of metal (Ni, Co, Mn, Fe) oxide nanostructure and their optical and magnetic behaviour.

    PubMed

    Chakrabarty, S; De, K; Das, S; Amaral, V S; Chatterjee, K

    2014-06-01

    Here we report a generalised way to prepare transitional metal (Ni, Co, Mn, Fe) oxide nanostructures via solvothermal route followed by controlled heat treatment. The method has been successfully involved to produce structurally uniform and well crystalline phase of the different metal (Ni, Co, Mn) oxide faceted nanoparticles and porous nanorods (Fe2O3) with highly anisotropic surfaces. The product materials were characterized by the X-ray powder diffraction and electron microscope (SEM, TEM) to investigate the structural and morphological details. Optical absorption study was carried out by UV-VIS spectrophotometer and the results are analysed on the basis of their electronic transitions of 3d shell and band energies. The details magnetic investigation was carried out by the measurement of magnetization with varying magnetic field and temperature. The observed magnetic behaviour is explained on the basis of uncompensated spins lying on the surface which is extremely anisotropic in the present systems of the synthesized materials. PMID:24738377

  5. Synthesis and study of the crystallographic and magnetic structure of DyFeMnO{sub 5}: A new ferrimagnetic oxide

    SciTech Connect

    Martinez-Lope, M.J.; Retuerto, M.; Alonso, J.A. Pomjakushin, V.

    2008-09-15

    The title oxide has been obtained by replacing Mn{sup 3+} by Fe{sup 3+} in the parent oxide DyMn{sub 2}O{sub 5}. The crystallographic and magnetic structures have been analysed from neutron powder diffraction (NPD) data, in complement with susceptibility and magnetic measurements. DyFeMnO{sub 5} is orthorhombic, belonging to the Pbam space group as the parent compound. The crystal structure contains infinite chains of edge-sharing Mn{sup 4+}O{sub 6} octahedra, interconnected by dimer units of Fe{sup 3+}O{sub 5} square pyramids. There is a certain antisite disorder in the crystal structure, with 8.0% of the Mn{sup 4+} sites occupied by Fe cations, and 8.2% of the Fe{sup 3+} positions occupied by Mn{sup 3+} cations. The magnetization measurements show that DyFeMnO{sub 5} presents magnetic order below T{sub C}{approx}178 K; a study of the magnetic structure from the low-temperature NPD patterns indicates an antiferromagnetic coupling of the Mn{sup 4+} and Fe{sup 3+} spins, with the polarization of the Dy{sup 3+} magnetic moments parallel to the those of the Fe sublattice. - Graphical abstract: DyFeMnO{sub 5} is orthorhombic (Pbam) as the parent DyMn{sub 2}O{sub 5} oxide. The crystal structure contains infinite chains of edge-sharing Mn{sup 4+}O{sub 6} octahedra, interconnected by dimer units of Fe{sup 3+}O{sub 5} square pyramids. It is ferrimagnetic below T{sub C}{approx}178 K; a NPD study indicated an antiferromagnetic coupling of the Mn{sup 4+} and Fe{sup 3+} spins, with Dy{sup 3+} magnetic moments parallel to those of Fe.

  6. Membrane targeting of MnSOD is essential for oxidative stress tolerance of nitrogen-fixing cultures of Anabaena sp. strain PCC7120.

    PubMed

    Raghavan, Prashanth S; Rajaram, Hema; Apte, Shree Kumar

    2015-07-01

    The nitrogen-fixing cyanobacterium, Anabaena PCC7120 encodes for a membrane-targeted 30 kDa Mn-superoxide dismutase (MnSOD) and a cytosolic FeSOD. The MnSOD is post-translationally processed to 27 and 24 kDa forms in the cytosol and periplasm/thylakoid lumen. The extent of cleavage of signal and linker peptides at the N-terminus is dependent on the availability of combined nitrogen during growth. While the 24 and 27 kDa forms are present in near equal proportions under nitrogen-fixing conditions, the 24 kDa form is predominant under nitrogen-supplemented conditions. Individual contribution of these forms of MnSOD to total oxidative stress tolerance was analysed using recombinant Anabaena strains overexpressing either different molecular forms of MnSOD or MnSOD defective in the cleavage of signal/linker peptide. Targeting of MnSOD to the membrane and subsequent cleavage to release both the 24 and 27 kDa forms was essential for oxidative stress tolerance under nitrogen-fixing conditions. On the other hand, the cleavage of linker peptide was absolutely essential and the release of cytosolic 24 kDa form of MnSOD was obligatory for developing oxidative stress tolerance under nitrogen-supplemented conditions. Thus, a single MnSOD caters to the reduction of superoxide radical in both cytosol and thylakoid lumen/periplasm irrespective of the N-status of growth by regulating its cleavage. This is the first report on the physiological advantage of membrane-targeting and processing of MnSOD in either bacteria or plants. The higher oxidative stress tolerance offered by the cytosolic form of MnSOD has possibly resulted in retention of only the cytosolic form in bacterial non-nitrogen-fixers during evolution.

  7. Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster from X-ray Spectroscopy

    PubMed Central

    Yano, Junko; Yachandra, Vittal K.

    2014-01-01

    Light-driven oxidation of water to dioxygen in plants, algae, and cyanobacteria is catalyzed within photosystem II (PS II) by a Mn4Ca cluster. Although the cluster has been studied by many different methods, its structure and mechanism have remained elusive. X-ray absorption and emission spectroscopy and extended X-ray absorption fine structure studies have been particularly useful in probing the electronic and geometric structures and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn4Ca cluster geometry to a set of three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0- or 3.5-Å-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-ray spectroscopy and crystallography are predominantly because of damage to the Mn4Ca cluster by X-rays under conditions used for the structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn4Ca catalytic center as it cycles through the five intermediate states known as the Si states (i = 0–4). The electronic structure of the Mn4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formal oxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms, which includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structures of the Mn4Ca cluster in the S states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of O–O bond formation

  8. Morphological and magnetic study of CaMnO{sub 3-x} oxides obtained from different routes

    SciTech Connect

    Gil de Muro, Izaskun; Insausti, Maite; Lezama, Luis; Rojo, Teofilo . E-mail: qiproapt@lg.ehu.es

    2005-03-15

    The CaMnO{sub 3-x} (x=0 and 0.02) mixed oxide was synthesised from both thermal treatment of a metallo-organic precursor and ceramic method. The morphology of the different products is clearly different. The samples exhibit antiferromagnetic ordering with T{sub N} near to 120K and a weak ferromagnetic component above T{sub N}. This is slightly stronger in the phase prepared by the ceramic route.

  9. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.

    PubMed

    Qi, Jianying; Zhang, Gaosheng; Li, Haining

    2015-10-01

    A novel sorbent of Fe-Mn binary oxide impregnated chitosan bead (FMCB) was fabricated through impregnating Fe-Mn binary oxide into chitosan matrix. The FMCB is sphere-like with a diameter of 1.6-1.8 mm, which is effective for both As(V) and As(III) sorption. The maximal sorption capacities are 39.1 and 54.2 mg/g, respectively, outperforming most of reported granular sorbents. The arsenic was mainly removed by adsorbing onto the Fe-Mn oxide component. The coexisting SO4(2-), HCO3(-) and SiO3(2-) have no great influence on arsenic sorption, whereas, the HPO4(2-) shows negative effects. The arsenic-loaded FMCB could be effectively regenerated using NaOH solution and repeatedly used. In column tests, about 1500 and 3200 bed volumes of simulated groundwater containing 233 μg/L As(V) and As(III) were respectively treated before breakthrough. These results demonstrate the superiority of the FMCB in removing As(V) and As(III), indicating that it is a promising candidate for arsenic removal from real drinking water.

  10. Arsenic release from Fe/Mn oxide-rich (model) soils/sediments - A comparison of single extraction procedures

    NASA Astrophysics Data System (ADS)

    Vanek, A.; Komarek, M.; Galuskova, I.

    2012-04-01

    Arsenic extractability in As-modified Fe(III) and Mn(III,IV) oxide-coated sands was tested using five widely used 2-h single extraction procedures: deionised water, 0.01 M CaCl2, 1 M NH4NO3, 0.1 M Na2HPO4 and 0.005 DTPA. In general, the highest As recoveries reaching 39-50% of total As concentration were observed for all extracting media in the birnessite (delta-MnO2) system, indicating relatively weak adsorption of As onto the Mn oxides. The Na2HPO4 extracts from the Fe oxide systems (i.e., associated with ferrihydrite and goethite) were highest in As, accounting for up to 34% of total As amount. Surprisingly, comparable recoveries of As (14-20%) yielded deionised water, CaCl2, NH4NO3, DTPA as extracting media for both ferrihydrite and goethite coatings. Deionised water and Na2HPO4 extractions are suggested for quick estimation of easily soluble, exchangeable and/or specifically adsorbed As in real soil/sediment samples.

  11. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons

    SciTech Connect

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng

    2015-10-15

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). Finally, the high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.

  12. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.

    PubMed

    Aklujkar, M; Coppi, M V; Leang, C; Kim, B C; Chavan, M A; Perpetua, L A; Giloteaux, L; Liu, A; Holmes, D E

    2013-03-01

    Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens. PMID:23306674

  13. An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.

    PubMed

    Ereath Beeran, Ansar; Nazeer, Shaiju S; Fernandez, Francis Boniface; Muvvala, Krishna Surendra; Wunderlich, Wilfried; Anil, Sukumaran; Vellappally, Sajith; Ramachandra Rao, M S; John, Annie; Jayasree, Ramapurath S; Varma, P R Harikrishna

    2015-02-14

    Despite the success in the use of superparamagnetic iron oxide nanoparticles (SPION) for various scientific applications, its potential in biomedical fields has not been exploited to its full potential. In this context, an in situ substitution of Mn(2+) was performed in SPION and a series of ferrite particles, MnxFe1-xFe2O4 with a varying molar ratio of Mn(2+) : Fe(2+) where 'x' varies from 0-0.75. The ferrite particles obtained were further studied in MRI contrast applications and showed appreciable enhancement in their MRI contrast properties. Manganese substituted ferrite nanocrystals (MnIOs) were synthesized using a novel, one-step aqueous co-precipitation method based on the use of a combination of sodium hydroxide and trisodium citrate (TSC). This approach yielded the formation of highly crystalline, superparamagnetic MnIOs with good control over their size and bivalent Mn ion crystal substitution. The presence of a TSC hydrophilic layer on the surface facilitated easy dispersion of the materials in an aqueous media. Primary characterizations such as structural, chemical and magnetic properties demonstrated the successful formation of manganese substituted ferrite. More significantly, the MRI relaxivity of the MnIOs improved fourfold when compared to SPION crystals imparting high potential for use as an MRI contrast agent. Further, the cytocompatibility and blood compatibility evaluations demonstrated excellent cell morphological integrity even at high concentrations of nanoparticles supporting the non-toxic nature of nanoparticles. These results open new horizons for the design of biocompatible water dispersible ferrite nanoparticles with good relaxivity properties via a versatile and easily scalable co-precipitation route. PMID:25586703

  14. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  15. Graphene oxide electrocatalyst on MnO₂ air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution.

    PubMed

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-13

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  16. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  17. Effects of plant polyphenols and a-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of plant polyphenols (tea polyphenol, grape seed extract, and gingerol) and a-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and a-tocopherol significantly...

  18. Mn-Promoted Co3O4/TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2).

    PubMed

    Mei, Jian; Zhao, Songjian; Huang, Wenjun; Qu, Zan; Yan, Naiqiang

    2016-11-15

    Brominated hydrocarbon is the typical pollutant in the exhaust gas from the synthesis process of Purified Terephthalic Acid (PTA), which may cause various environmental problems once emitted into atmosphere. Dibromomethane (DBM) was employed as the model compound in this study, and a series of TiO2-supported manganese and cobalt oxide catalysts with different Mn/Co molar ratio were prepared by the impregnation method and used for catalytic oxidation of DBM. It was found that the addition of Mn significantly enhanced the catalytic performance of Co/TiO2 catalyst. Among all the prepared catalysts, Mn(1)-Co/TiO2 (Mn/Co molar ratio was 1) catalyst exhibited the highest activity with T90 at about 325°C and good stability maintained for at least 30h at 500ppm DBM and 10% O2 at GHSV=60,000h(-1), and the final products in the reaction were COx, HBr and Br2, without the formation of Br-containing organics. The high activity and high stability might be attributed to the redox cycle (Co(2+)+Mn(4+)↔Co(3+)+Mn(3+)) over Mn-promoted Co3O4/TiO2 catalyst. Based on the results of in situ DRIFT studies and analysis of products, a plausible reaction mechanism for catalytic oxidation of DBM over Mn-Co/TiO2 catalysts was also proposed. PMID:27388418

  19. Mn-Promoted Co3O4/TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2).

    PubMed

    Mei, Jian; Zhao, Songjian; Huang, Wenjun; Qu, Zan; Yan, Naiqiang

    2016-11-15

    Brominated hydrocarbon is the typical pollutant in the exhaust gas from the synthesis process of Purified Terephthalic Acid (PTA), which may cause various environmental problems once emitted into atmosphere. Dibromomethane (DBM) was employed as the model compound in this study, and a series of TiO2-supported manganese and cobalt oxide catalysts with different Mn/Co molar ratio were prepared by the impregnation method and used for catalytic oxidation of DBM. It was found that the addition of Mn significantly enhanced the catalytic performance of Co/TiO2 catalyst. Among all the prepared catalysts, Mn(1)-Co/TiO2 (Mn/Co molar ratio was 1) catalyst exhibited the highest activity with T90 at about 325°C and good stability maintained for at least 30h at 500ppm DBM and 10% O2 at GHSV=60,000h(-1), and the final products in the reaction were COx, HBr and Br2, without the formation of Br-containing organics. The high activity and high stability might be attributed to the redox cycle (Co(2+)+Mn(4+)↔Co(3+)+Mn(3+)) over Mn-promoted Co3O4/TiO2 catalyst. Based on the results of in situ DRIFT studies and analysis of products, a plausible reaction mechanism for catalytic oxidation of DBM over Mn-Co/TiO2 catalysts was also proposed.

  20. BIOGENIC HYDROCARBONS IN THE ATMOSPHERIC BOUNDARY LAYER: A REVIEW

    EPA Science Inventory

    Nonmethane hydrocarbons are ubiquitous trace atmospheric constituents yet they control the oxidation capacity of the atmosphere. Both anthropogenic and biogenic processes contribute to the release of hydrocarbons to the atmosphere. In this manuscript, the state of the science ...

  1. Ag{sub 2}CuMnO{sub 4}: A new silver copper oxide with delafossite structure

    SciTech Connect

    Munoz-Rojas, David; Subias, Gloria; Fraxedas, Jordi; Martinez, Benjamin; Casas-Cabanas, Montse; Canales-Vazquez, Jesus; Gonzalez-Calbet, Jose; Garcia-Gonzalez, Ester; Walton, Richard I.; Casan-Pastor, Nieves . E-mail: nieves@icmab.es

    2006-12-15

    The use of hydrothermal methods has allowed the synthesis of a new silver copper mixed