Science.gov

Sample records for biogeochemical subsurface processes

  1. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  2. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  3. Multi-scale Characterization and Prediction of Coupled Subsurface Biogeochemical-Hydrological Processes

    SciTech Connect

    Hubbard, Susan; Williams, Ken; Steefel, Carl; Banfield, Jill; Long, Phil; Slater, Lee; Pride, Steve; Jinsong Chen

    2006-06-01

    To advance solutions needed for remediation of DOE contaminated sites, approaches are needed that can elucidate and predict reactions associated with coupled biological, geochemical, and hydrological processes over a variety of spatial scales and in heterogeneous environments. Our previous laboratory experimental experiments, which were conducted under controlled and homogeneous conditions, suggest that geophysical methods have the potential for elucidating system transformations that often occur during remediation. Examples include tracking the onset and aggregation of precipitates associated with sulfate reduction using seismic and complex resistivity methods (Williams et al., 2005; Ntarlagiannis et al., 2005) as well as estimating the volume of evolved gas associated with denitrification using radar velocity. These exciting studies illustrated that geophysical responses correlated with biogeochemical changes, but also that multiple factors could impact the geophysical signature and thus a better understanding as well as integration tools were needed to advance the techniques to the point where they can be used to provide quantitative estimates of system transformations.

  4. Kinetic Modeling of Biogeochemical Processes in Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2002-12-01

    Microbial reactions play an important role in regulating pore water chemistry (e.g., pH and Eh) as well as secondary mineral distribution in many subsurface systems and therefore directly control trace metal migration and recycling in those systems. In this paper, we present a multicomponent kinetic model that explicitly accounts for the coupling of microbial metabolism, microbial population dynamics, advective/dispersive transport of chemical species, aqueous speciation, and mineral precipitation/dissolution in porous geologic media. A modification to the traditional microbial growth kinetic equation is proposed, to account for the likely achievement of quasi-steady state biomass accumulations in natural environments. A scale dependence of microbial reaction rates is derived based on both field observations and the scaling analysis of reactive transport equations. As an example, we use the model to simulate a subsurface contaminant migration scenario, in which a water flow containing both uranium and a complexing organic ligand is recharged into an oxic carbonate aquifer. The model simulation shows that Mn and Fe oxyhydroxides may vary significantly along a flow path. The simulation also shows that uranium (VI) can be reduced and therefore immobilized in the anoxic zone created by microbial degradation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (US DOE) under Contract DE-AC04-94AL85000.

  5. Contributions of physical and biogeochemical processes to phytoplankton biomass enhancement in the surface and subsurface layers during the passage of Typhoon Damrey

    NASA Astrophysics Data System (ADS)

    Pan, Shanshan; Shi, Jie; Gao, Huiwang; Guo, Xinyu; Yao, Xiaohong; Gong, Xiang

    2017-01-01

    In this study, a one-dimensional physical-biogeochemical coupled model was established to investigate the responses of the upper ocean to Typhoon Damrey in the basin area of the South China Sea. The surface chlorophyll a concentration (Chl a) increased rapidly from 0.07 to 0.17 mg m-3 when the typhoon arrived and then gradually reached a peak of 0.61 mg m-3 after the typhoon's passage. The subsurface Chl a decreased from 0.34 to 0.17 mg m-3 as the typhoon arrived and then increased gradually to 0.71 mg m-3. Analyses of model results indicated that the initial rapid increase in the surface Chl a and the decrease in the subsurface Chl a were caused mainly by physical process (vertical mixing), whereas the subsequent gradual increases in the Chl a in both the surface and subsurface layers were due mainly to biogeochemical processes (net growth of phytoplankton). The gradual increase in the Chl a lasted for longer in the subsurface layer than in the surface layer. Typhoon Damrey yielded an integrated primary production (IPP) of 6.5 × 103 mg C m-2 ( 14% of the annual IPP in this region).

  6. Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure

    SciTech Connect

    Scheibe, Timothy D.

    2011-03-31

    The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).

  7. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  8. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  9. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  10. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial population, and their metabolic properties. Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time, their Biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self-sustaining, complete ecosystems in which light energy absorbed over a diel (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen. sulfur, and a host of other elements.

  11. Subsurface coherent eddies: Hypoxic stewpots and biogeochemical highways

    NASA Astrophysics Data System (ADS)

    Frenger, Ivy; Bianchi, Daniele; Oschlies, Andreas; Waschkowitz, Carolin

    2017-04-01

    Extreme low-oxygen anomalies associated with subsurface (sub)mesoscale eddies have been the focus of recent observational studies. These anticyclonic eddies shed from the poleward flowing coastal undercurrents of the eastern boundary upwelling systems (EBUS) and subsequently propagate westward into the subtropical gyres. They are hypothesized to (i) trap and transport waters over long distances, and (ii) facilitate anaerobic processes outside the climatological boundary of oxygen minimum zones due to their low oxygen levels. Existing observations provide a glimpse of individual eddies, yet they do not allow a comprehensive census, nor a quantification of their effects. In this study, we use a high-resolution coupled model simulation to detect and track the subsurface eddies and estimate their large-scale effects on ocean biogeochemistry. Our results suggest that at the depth range they reside the eddies' effects are between O(1) and O(10)%, for instance the eddy-induced decrease of climatological oxygen. This is a systematic though not a first order effect. However, it may require parameterizations for non eddy-resolving models that aim is to capture the details of exchanges between EBUS and subtropical gyres, and the sub-surface oxygen and nutrient distributions of the low- to mid-latitudes.

  12. Direct access to the serpentinite subsurface: a biogeochemical investigation to characterize a unique habitat

    NASA Astrophysics Data System (ADS)

    Lang, S. Q.; Lilley, M. D.; Frueh-Green, G. L.; Orcutt, B.

    2016-12-01

    The circulation of ocean water through ultramafic rocks generates hydrogen and methane that can sustain microbial communities. The ultramafic subsurface was the target of the International Ocean Discovery Program (IODP)'s first hard rock expedition specifically devoted to identifying subsurface life. Expedition 357 successfully recovered 17 cores along an east-west profile across the top of the Atlantis Massif, the ocean core complex that hosts the serpentinite-dominated Lost City hydrothermal field. In addition to the recovery of 57 m of core, multiple types of fluid samples were collected before, after, and during drilling to characterize the biogeochemical signatures of water that passes through the rocky subsurface. Here we present results focused on using organic molecules in the recovered rocks and fluids to identify subsurface life and metabolism. The concentrations of these molecules can reveal the spatial distribution of microbial communities while the isotopes can provide constraints on the metabolisms and carbon sources that these communities employ. These signatures are compared to elevated concentrations of hydrogen and methane in co-registered samples that demonstrate active serpentinization is widespread across the Atlantis Massif. Helium isotopes indicate the presence of an additional mantle-influenced fluid input that is distinct from the zones of highest hydrogen and methane concentrations. Biomarker concentrations in the rocks demonstrate a high degree of heterogeneity that reflects, in part, the local exposure to water circulation. Ultimately, the goal of this work is to relate physical and geochemical processes, such as detachment faulting, hydrothermal circulation, and water-rock reactions, to zones of microbial activity.

  13. Subsurface Samples: Collection and Processing

    SciTech Connect

    Long, Philip E.; Griffin, W. Timothy; Phelps, Tommy J.

    2002-12-01

    Microbiological data, interpretation, and conclusions from subsurface samples ultimately depend on the quality and representative character of the samples. Subsurface samples for environmental microbiology ideally contain only the microbial community and geochemical properties that are representative of the subsurface environment from which the sample was taken. To that end, sample contamination by exogenous microorganisms or chemical constituents must be eliminated or minimized, and sample analyses need to begin before changes in the microbial community or geochemical characteristics occur. This article presents sampling methods and sample processing techniques for collecting representative samples from a range of subsurface environments. Factors that should be considered when developing a subsurface sampling program are discussed, including potential benefits, costs, and limitations enabling researchers to evaluate the techniques that are presented and match them to their project requirements. Methods and protocols to address coring, sampling, processing and quality assessment issues are presented.

  14. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water

  15. Biogeochemical processes in model estuaries

    NASA Astrophysics Data System (ADS)

    Church, Thomas M.

    Sixty researchers met to evaluate the effects of global change on estuaries and to improve estuarine modeling at the Second International Symposium on the Biogeochemistry of Model Estuaries, held April 15-19, 1991, at Jekyll Island, Ga. The importance of successful sampling in evaluating chemical fluxes and establishing records of estuarine change was articulated, as was the need for tracer tools for improved modeling. The symposium was sponsored by the National Science Foundation, National Oceanic and Atmospheric Administration, and the Department of Energy.Participants discussed particles and sedimentology, trace elements and metals, organic chemistry, and nutrient cycling of estuarine processes. Four days of presentations were followed by a half-day of discussion on advances in these topics and the overall goal of assessing estuarine processes in global change. What follows is a synopsis of this discussion.

  16. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    SciTech Connect

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; Molins, Sergi; Bill, Markus; Conrad, Mark E.; Dong, Wenming; Faybishenko, Boris; Tokunaga, Tetsu K.; Wan, Jiamin; Williams, Kenneth H.; Yabusaki, Steven B.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.

  17. Using NMR, SIP, and MS measurements for monitoring subsurface biogeochemical reactions at the Rifle IFRC site

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Keating, K.; Williams, K. H.; Robbins, M.; Ntarlagiannis, D.; Grunewald, E.; Walsh, D. O.

    2013-12-01

    The Rifle Integrated Field Research Challenge (IFRC) site is located on a former uranium ore-processing facility in Rifle, Colorado (USA). Although removal of tailings and contaminated surface materials was completed in 1996, residual uranium contamination of groundwater and subsurface sediments remains. Since 2002, research at the site has primarily focused on quantifying uranium mobility associated with stimulated and natural biogeochemical processes. Uranium mobility at the Rifle IFRC site is typically quantified through direct sampling of groundwater; however, direct sampling does not provide information about the solid phase material outside of the borehole and continuous measurements are not always possible due to multiple constraints. Geophysical methods have been suggested as a minimally invasive alternative approach for long term monitoring of biogeochemical reactions associated with uranium remediation. In this study, nuclear magnetic resonance (NMR), spectral induced polarization (SIP), and magnetic susceptibility (MS) are considered as potential geophysical methods for monitoring the biogeochemical reactions occurring at the Rifle IFRC site. Additionally, a pilot field study using an NMR borehole-logging tool was carried out at the Rifle IFRC site. These methods are sensitive to changes in the chemical and physical subsurface properties that occur as a result of bioremediation efforts; specifically, changes in the redox state and chemical form of iron, production of iron sulfide minerals, production of the magnetic mineral magnetite, and associated changes in the pore geometry. Laboratory experiments consisted of monitoring changes in the NMR, SIP and MS response of an acetate-amended columns packed with sediments from the Rifle IFRC site over the course of two months. The MS values remained relatively stable throughout the course of the experiment suggesting negligible production of magnetic phases (e.g. magnetite, pyrrhotite) as a result of enhanced

  18. Biogeochemical Coupling of Fe and Tc Speciation in Subsurface Sediments: Implications to Long-Term Tc Immobilization

    SciTech Connect

    Jim K. Fredrickson; C. I. Steefel; R. K. Kukkadapu; S. M. Heald

    2006-06-01

    The project has been focused on biochemical processes in subsurface sediments involving Fe that control the valence state, solubility, and effective mobility of 99Tc. Our goal has been to understand the Tc biogeochemistry as it may occur in suboxic and biostimulated subsurface environments. Two objectives have been pursued: (1) To determine the relative reaction rates of 99Tc(VII)O2(aq) with metal reducing bacteria and biogenic Fe(II); and to characterize the identity, structure, and molecular speciation of Tc(IV) products formed through reaction with both biotic and abiotic reductants. (2) To quantify the biogeochemical factors controlling the reaction rate of O2 with Tc(IV)O2?nH2O in sediment resulting from the direct enzymatic reduction of Tc(VII) by DIRB and/or the reaction of Tc(VII) with the various types of biogenic Fe(II) produced by DIRB.

  19. Diel biogeochemical processes in terrestrial waters

    USGS Publications Warehouse

    Compiled and Edited by Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day-night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered. This special issue is composed primarily of papers presented at the topical session "Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater" held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  20. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  1. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  2. A biogeochemical framework for bioremediation of plutonium(V) in the subsurface environment.

    PubMed

    Deo, Randhir P; Rittmann, Bruce E

    2012-07-01

    Accidental release of plutonium (Pu) from storage facilities in the subsurface environment is a concern for the safety of human beings and the environment. Given the complexity of the subsurface environment and multivalent state of Pu, we developed a quantitative biogeochemical framework for bioremediation of Pu(V)O(2) (+) in the subsurface environment. We implemented the framework in the biogeochemical model CCBATCH by expanding its chemical equilibrium for aqueous complexation of Pu and its biological sub-models for including Pu's toxicity and reduction reactions. The quantified framework reveals that most of the Pu(V) is speciated as free Pu(V)O(2) (+) ((aq)), which is a problem if the concentration of free Pu(V)O(2) (+) is ≥28 μM (the half-maximum toxicity value for bacteria able to reduce Pu(V) to Pu(III)PO(4(am))) or ≥250 μM (the full-toxicity value that takes the bioreduction rate to zero). The framework includes bioreduction of Fe(3+) to Fe(2+), which abiotically reduces Pu(V)O(2) (+) to Pu(IV) and then to Pu(III). Biotic (enzymatic) reduction of Pu(V)O(2) (+) directly to Pu(III) by Shewanella alga (S. alga) is also included in the framework. Modeling results also reveal that for formation of Pu(III)PO(4(am)), the desired immobile product, the concentration of coexisting model strong ligand-nitrilotriacetic acid (NTA)-should be less than or equal to the concentration of total Pu(III).

  3. Subsurface low pH and carbonate saturation state of aragonite on China side of the North Yellow Sea: combined effects of global atmospheric CO2 increase, regional environmental changes, and local biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Zhai, W.-D.; Zheng, N.; Huo, C.; Xu, Y.; Zhao, H.-D.; Li, Y.-W.; Zang, K.-P.; Wang, J.-Y.; Xu, X.-M.

    2013-02-01

    Based upon seven field surveys conducted between May 2011 and January 2012, we investigated pH, carbonate saturation state of aragonite (Ωarag), and ancillary parameters on the Chinese side of the North Yellow Sea, a western North Pacific continental margin of major economic importance. Subsurface waters were nearly in equilibrium with air in May and June. From July to October, the fugacity of CO2 (fCO2) of bottom water gradually increased to 697 ± 103 μatm and pH decreased to 7.83 ± 0.07 due to respiration/remineralization processes of primary production induced biogenic particles. In November and January, bottom water fCO2 decreased and pH gradually returned to an air-equilibrated level due to cooling enhanced vertical mixing. The corresponding bottom water Ωarag was 1.74 ± 0.17 (May), 1.77 ± 0.26 (June), 1.70 ± 0.26 (July), 1.72 ± 0.33 (August), 1.32 ± 0.31 (October), 1.50 ± 0.28 (November), and 1.41 ± 0.12 (January). Critically low Ωarag values of 1.0 to 1.2 were mainly observed in subsurface waters in a salinity range of 31.5-32.5 psu in October and November, accounting for ~ 10% of the North Yellow Sea area. Water mass derived from the adjacent Bohai Sea had a typical water salinity of 30.5-31.5 psu, and bottom water Ωarag values ranged mostly between 1.6 and 2.4. This study showed that the carbonate system in the North Yellow Sea was substantially influenced by global atmospheric CO2 increase. The community respiration/remineralization rates in typical North Yellow Sea bottom water mass were estimated at 0.55-1.0 μmol O2 kg-1 d-1 in warm seasons, leading to seasonal drops in subsurface pH and Ωarag. Outflow of the Bohai Sea water mass counteracted the subsurface Ωarag reduction in the North Yellow Sea.

  4. Global Biology Research Program: Biogeochemical Processes in Wetlands

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S. (Editor)

    1984-01-01

    The results of a workshop examining potential NASA contributions to research on wetland processes as they relate to global biogeochemical cycles are summarized. A wetlands data base utilizing remotely sensed inventories, studies of wetland/atmosphere exchange processes, and the extrapolation of local measurements to global biogeochemical cycling processes were identified as possible areas for NASA support.

  5. Microbial processes and subsurface contaminants

    NASA Astrophysics Data System (ADS)

    Molz, Fred J.

    A Chapman Conference entitled “Microbial Processes in the Transport, Fate, and In Situ Treatment of Subsurface Contaminants” was held in Snowbird, Utah, October 1-3, 1986. Members of the program committee and session chairmen were Lenore Clesceri (Rensselaer Polytechnic Institute, Troy, N.Y.), David Gibson (University of Texas, Austin), James Mercer (GeoTrans, Inc., Herndon , Va.), Donald Michelsen (Virginia Polytechnic Institute and State University, Blacksburg), Fred Molz (Auburn University, Auburn, Ala.), Bruce Rittman (University of Illinois, Urbana), Gary Sayler (University of Tennessee, Knoxville), and John T. Wilson (U.S. Environmental Protection Agency, Ada, Okla.). The following report attempts to highlight the six sessions that constituted the conference. For additional information, including a bound summary and abstracts, contact Fred J. Molz, Civil Engineering Department, Auburn University, AL 36849 (telephone: 205-826-4321).

  6. Modeling the Impact of Biogeochemical Hotspots and Hot Moments on Subsurface Carbon Fluxes from a Flood Plain Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Spycher, N.; Steefel, C. I.; King, E.; Conrad, M. E.

    2015-12-01

    Biogeochemical hotspots and hot moments are known to account for a high percentage of carbon and nutrient cycling within flood plain environments. To quantify the impact of these hotspots and hot moments on the carbon cycle, a 2D reactive transport model was developed for the saturated-unsaturated zone of a flood plain site in Rifle, CO. Previous studies have identified naturally reduced zones (NRZs) in the saturated zone of the Rifle site to be hotspots and important regions for subsurface biogeochemical cycling. Wavelet analysis of geochemical concentrations at the site suggested that hydrologic and temperature variations are hot moments and exert an important control on biogeochemical conditions in the Rifle aquifer. Here, we describe the development of a reactive transport model that couples hydrologic and biogeochemical processes to microbial functional distributions inferred from site-specific 'omic' data. The model includes microbial contributions from heterotrophic and chemolithoautotrophic processes. We use Monod based formulations to represent biomass formation and consider energy partitioning between catabolic and anabolic processes. We use this model to explore community emergence at the Rifle site and further constrain the extent and rates of nutrient uptake as well as abiotic and biotic reactions using stable carbon isotopes. Results from 2D model simulations with only abiotic reactions predict lower CO2 partial pressures in the unsaturated zone and severely underpredict (~200%) carbon fluxes to the river compared to simulations with chemolithoautotrophic pathways. δ13C-CO2 profiles also point to biotic sources for the locally observed high CO2 concentrations above NRZs. Results further indicate that groundwater carbon fluxes from the Rifle site to the river are underestimated by almost 180% (to 3.3 g m-2 d-1) when temperature fluctuations are ignored in the simulations. Preliminary results demonstrate the emergence of denitrifiers at specific depths

  7. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  8. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  9. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    SciTech Connect

    Belli, Keaton M.; Taillefert, Martial

    2016-07-01

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  10. 2500 high-quality genomes reveal that the biogeochemical cycles of C, N, S and H are cross-linked by metabolic handoffs in the terrestrial subsurface

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Brown, C. T.; Hug, L. A.; Sharon, I.; Castelle, C. J.; Shelton, A.; Bonet, B.; Probst, A. J.; Thomas, B. C.; Singh, A.; Wilkins, M.; Williams, K. H.; Tringe, S. G.; Beller, H. R.; Brodie, E.; Hubbard, S. S.; Banfield, J. F.

    2015-12-01

    Microorganisms drive the transformations of carbon compounds in the terrestrial subsurface, a key reservoir of carbon on earth, and impact other linked biogeochemical cycles. Our current knowledge of the microbial ecology in this environment is primarily based on 16S rRNA gene sequences that paint a biased picture of microbial community composition and provide no reliable information on microbial metabolism. Consequently, little is known about the identity and metabolic roles of the uncultivated microbial majority in the subsurface. In turn, this lack of understanding of the microbial processes that impact the turnover of carbon in the subsurface has restricted the scope and ability of biogeochemical models to capture key aspects of the carbon cycle. In this study, we used a culture-independent, genome-resolved metagenomic approach to decipher the metabolic capabilities of microorganisms in an aquifer adjacent to the Colorado River, near Rifle, CO, USA. We sequenced groundwater and sediment samples collected across fifteen different geochemical regimes. Sequence assembly, binning and manual curation resulted in the recovery of 2,542 high-quality genomes, 27 of which are complete. These genomes represent 1,300 non-redundant organisms comprising both abundant and rare community members. Phylogenetic analyses involving ribosomal proteins and 16S rRNA genes revealed the presence of up to 34 new phyla that were hitherto unknown. Less than 11% of all genomes belonged to the 4 most commonly represented phyla that constitute 93% of all currently available genomes. Genome-specific analyses of metabolic potential revealed the co-occurrence of important functional traits such as carbon fixation, nitrogen fixation and use of electron donors and electron acceptors. Finally, we predict that multiple organisms are often required to complete redox pathways through a complex network of metabolic handoffs that extensively cross-link subsurface biogeochemical cycles.

  11. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  12. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  13. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin.

    PubMed

    O'Reilly, Andrew M; Chang, Ni-Bin; Wanielista, Martin P

    2012-05-15

    A stormwater infiltration basin in north-central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O(2) and NO(3)(-) showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O(2) and NO(3)(-) reduction concluded, Mn, Fe and SO(4)(2-) reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO(3)(-)-N less than 0.016 mg L(-1), excess N(2) up to 3 mg L(-1) progressively enriched in δ(15)N during prolonged basin flooding, and isotopically heavy δ(15)N and δ(18)O of NO(3)(-) (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO(3)(-) leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO(3)(-) leaching to groundwater by replicating the biogeochemical

  14. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  15. Quantifying the surface subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Gall, Mark P.; Silver, Mary W.; Coale, Susan L.; Bidigare, Robert R.; Bishop, James L. K. B.

    2008-07-01

    A central question addressed by the VERtical Transport In the Global Ocean (VERTIGO) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size partitioning of net primary production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, Fv/ Fm (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m -2 d -1 at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2×export flux at 150 m ( E150). At K2, export was 111 mg C m -2 d -1 (21% NPP (0-50 m); 1.8× E150) and 33 mg POC m -2 d -1 (11% NPP, 0-55 m); 1.4× E150) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E150. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 and 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence to what extent sinking particles are further broken down in the

  16. Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    SciTech Connect

    Boyd, P.W.; Gall, M.P.; Silver, M.W.; Bishop, J.K.B.; Coale, Susan L.; Bidigare, Robert R.

    2008-02-25

    A central question addressed by the VERTIGO (VERtical Transport In the Global Ocean) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, F{sub v}/F{sub m} (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m{sup -2} d{sup -1} at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2 x export flux at 150 m (E{sub 150}). At K2, export was 111 mg C m{sup -2} d{sup -1} (21% NPP (0-50 m); 1.8 x E{sub 150}) and 33 mg POC m{sup -2} d{sup -1} (11% NPP, 0-55 m); 1.4 x E{sub 150}) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E{sub 150}. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 to 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence

  17. A General Simulator for Reaction-Based Biogeochemical Processes

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Yeh, George

    2006-02-01

    As more complex biogeochemical situations are being investigated (e.g., evolving reactivity, passivation of reactive surfaces, dissolution of sorbates), there is a growing need for biogeochemical simulators to flexibly and facilely address new reaction forms and rate laws. This paper presents an approach that accommodates this need to efficiently simulate general biogeochemical processes, while insulating the user from additional code development. The approach allows for the automatic extraction of fundamental reaction stoichiometry and thermodynamics from a standard chemistry database, and the symbolic entry of arbitrarily complex user-specified reaction forms, rate laws, and equilibria. The user-specified equilibrium and kinetic reactions (i.e., reactions not defined in the format of the standardized database) are interpreted by the Maple symbolic mathematical software package. FORTRAN 90 code is then generated by Maple for (1) the analytical Jacobian matrix (if preferred over the numerical Jacobian matrix) used in the Newton-Raphson solution procedure, and (2) the residual functions for user-specified equilibrium expressions and rate laws. Matrix diagonalization eliminates the need to conceptualize the system of reactions as a tableau, while identifying a minimum rank set of basis species with enhanced numerical convergence properties. The newly generated code, which is designed to operate in the BIOGEOCHEM biogeochemical simulator, is then compiled and linked into the BIOGEOCHEM executable. With these features, users can avoid recoding the simulator to accept new equilibrium expressions or kinetic rate laws, while still taking full advantage of the stoichiometry and thermodynamics provided by an existing chemical database. Thus, the approach introduces efficiencies in the specification of biogeochemical reaction networks and eliminates opportunities for mistakes in preparing input files and coding errors. Test problems are used to demonstrate the features of

  18. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems

    NASA Astrophysics Data System (ADS)

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both

  19. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    USGS Publications Warehouse

    Wildman, R.A.; Domagalski, J.L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Biogeochemical Stability of Contaminants in the Subsurface Following In Situ Treatment

    EPA Science Inventory

    In recent years, innovative treatment technologies have emerged to meet groundwater cleanup goals. In many cases these methods take advantage of the redox behavior of contaminant species. For example, remedial technologies that strategically manipulate subsurface redox conditio...

  1. Biogeochemical Stability of Contaminants in the Subsurface Following In Situ Treatment

    EPA Science Inventory

    In recent years, innovative treatment technologies have emerged to meet groundwater cleanup goals. In many cases these methods take advantage of the redox behavior of contaminant species. For example, remedial technologies that strategically manipulate subsurface redox conditio...

  2. Polychlorinated Biphenyls as Probes of Biogeochemical Processes in Rivers

    USGS Publications Warehouse

    Fitzgerald, S.A.; Steuer, J.J.

    1997-01-01

    A field study was conducted to investigate the use of PCB (polychlorinated biphenyl) congener and homolog assemblages as tracers of biogeochemical processes in the Milwaukee and Manitowoc Rivers in southeastern Wisconsin from 1993 to 1995. PCB congeners in the dissolved and suspended particle phases, along with various algal indicators (algal carbon and pigments), were quantitated in the water seasonally. In addition, PCB congener assemblages were determined seasonally in surficial bed sediments. Biogeochemical processes investigated included: determination of the source of suspended particles and bottom sediments by comparison with known Aroclor mixtures, water-solid partitioning, and algal uptake of PCBs. Seasonal differences among the PCB assemblages were observed mainly in the dissolved phase, somewhat less in the suspended particulate phase, and not at all in the bed sediments.

  3. Biogeochemical evidence for subsurface hydrocarbon occurrence, Recluse oil field, Wyoming; preliminary results

    USGS Publications Warehouse

    Dalziel, Mary C.; Donovan, Terrence J.

    1980-01-01

    Anomalously high manganese-to-iron ratios occurring in pine needles and sage leaves over the Recluse oil field, Wyoming, suggest effects of petroleum microseepage on the plants. This conclusion is supported by iron and manganese concentrations in soils and carbon and oxygen isotope ratios in rock samples. Seeping hydrocarbons provided reducing conditions sufficient to enable divalent iron and manganese to be organically complexed or adsorbed on solids in the soils. These bound or adsorped elements in the divalent state are essential to plants, and the plants readily assimilate them. The magnitude of the plant anomalies, combined with the supportive isotopic and chemical evidence confirming petroleum leakage, makes a strong case for the use of plants as a biogeochemical prospecting tool.

  4. Biogeochemical redox processes and their impact on contaminant dynamics.

    PubMed

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Cappellen, Philippe Van; Ginder-Vogel, Matthew; Voegelin, Andreas; Campbell, Kate

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  5. Biogeochemical redox processes and their impact on contaminant dynamics

    USGS Publications Warehouse

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  6. Experimental investigation of the link between geophysical signatures and biogeochemical properties and processes: experimental design, data collection and interpretation

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Blackwelder, B.; Radtke, C.; Silverman, H.

    2004-12-01

    Recent research indicates a correlation between geophysical data from a number of electrical methods (resistivity, induced polarization and self potential) and subsurface biogeochemical properties and processes. Thus, the hope is that electrical measurements will provide proxy indicators of the macroscopic changes in hydraulic and biogeochemical subsurface properties resulting from microbial activity at contaminated sites. A significant problem in making the link is the limited availability of well controlled three dimensional datasets: while field data is three dimensional, it provides little control, whereas most laboratory results are obtained from column experiments. We will report on out approach to highly controlled and automated experiments. In these experiments electrical geophysical data (SP and IP data) is being collected simultaneously and automatically with point measurement of aqueous geochemistry for both 2D and 3D environments. Integrated experimental control and data management for such experiment is critical as it allows transparent and reproducible acquisition and analysis, both of which are essential to build up baseline data for quantitative and qualitative correlation of geophysical data to biogeochemical properties and processes.

  7. Biogeochemical controls on the corrosion of depleted uranium alloy in subsurface soils.

    PubMed

    Handley-Sidhu, Stephanie; Worsfold, Paul J; Livens, Francis R; Vaughan, David J; Lloyd, Jonathan R; Boothman, Christopher; Sajih, Mustafa; Alvarez, Rebeca; Keith-Roach, Miranda J

    2009-08-15

    Military activities have left a legacy of depleted uranium (DU) penetrator waste in the near-surface terrestrial environment. To understand the fate of this DU alloy, the mechanisms and controlling factors of corrosion need to be determined. In this study, field-moist and waterlogged microcosms were used to investigate the effect of redox conditions and soil water content on the corrosion and fate of DU in subsurface soil, and the impact of corroding DU on the soil microbial population. The mechanism of corrosion and the corrosion products formed were highly dependent on the water status of the soil. Under field-moist conditions, DU corroded at a rate of 0.49 +/- 0.06 g cm(-2) y(-1) and the main U input to surrounding soil was large metaschoepite [(UO2)8O2(OH)12 x (H2O)10] particles. However, underwaterlogged conditions the rate of corrosion was significantly slower at 0.01-0.02 g cm(-2) y(-1) and occurred with the release of dissolved species to the surrounding environment. Corrosion ceases under reducing conditions, thus redox conditions are important in determining the persistence of penetrators in the environment. Corroding DU alters the redox conditions in the surrounding environment and both mechanisms of corrosion impact the microbial community.

  8. Hydrological Perturbations Drive Biogeochemical Processes in Experimental Soil Columns from the Norman Landfill Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2010-12-01

    Fate and transport of contaminants in saturated and unsaturated zones is governed by biogeochemical processes that are complex and non-linearly coupled to each other. A fundamental understanding of the interactions between transport and reaction processes is essential to better characterize contaminant movement in the subsurface. The objectives of this study are to: i) develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes, and ii) characterize the effect of hydrologic perturbations on coupled processes occurring at the column scale. The perturbations correspond to rainfall intensity, duration of wet and dry conditions, and water chemistry (pH). Soils collected from two locations with significantly different geochemistry at the Norman landfill site are used in this study. Controlled flow experiments were conducted on: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. Experimental observations showed enhanced biogeochemical activity at the interface of the layered and lensed columns over the texturally homogeneous soil columns. Multivariate statistical analysis showed that the most important processes were microbial reduction of Fe(III) and SO42-, and oxidation of reduced products in the columns. Modeling results from HP1 indicate least redox activity in the homogeneous sand column while the structurally heterogeneous columns utilize oxygen and nitrate from recharge as well as iron sulfide minerals already present in the columns as electron acceptors. Furthermore, the interface of the layered and lensed soil columns acts as a hotspot of biogeochemical activity due to increased transport timescale as a

  9. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages

    SciTech Connect

    Hug, Laura A.; Thomas, Brian C.; Sharon, Itai; Brown, Christopher T.; Sharma, Ritin; Hettich, Robert L.; Wilkins, Michael J.; Williams, Kenneth H.; Singh, Andrea; Banfield, Jillian F.

    2015-07-22

    Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. Here, we applied these methods to evaluate the interlinked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla with no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin Benson Bassham, Wood Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. Finally, this organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.

  10. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages

    DOE PAGES

    Hug, Laura A.; Thomas, Brian C.; Sharon, Itai; ...

    2015-07-22

    Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. Here, we applied these methods to evaluate the interlinked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla withmore » no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin Benson Bassham, Wood Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. Finally, this organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.« less

  11. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages.

    PubMed

    Hug, Laura A; Thomas, Brian C; Sharon, Itai; Brown, Christopher T; Sharma, Ritin; Hettich, Robert L; Wilkins, Michael J; Williams, Kenneth H; Singh, Andrea; Banfield, Jillian F

    2016-01-01

    Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. We applied these methods to evaluate the interlinked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla with no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin-Benson-Bassham, Wood-Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. This organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.

  12. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

    SciTech Connect

    Binley, Andrew; Hubbard, Susan S.; Huisman, Johan A.; Revil, André; Robinson, David A.; Singha, Kamini; Slater, Lee D.

    2015-06-15

    Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field-based investigative techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time-lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot-scale” experiments. More recently, however, the translation to larger-scale characterization has been the focus of a number of studies. In conclusion, geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services.

  13. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

    DOE PAGES

    Binley, Andrew; Hubbard, Susan S.; Huisman, Johan A.; ...

    2015-06-15

    Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field-based investigativemore » techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time-lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot-scale” experiments. More recently, however, the translation to larger-scale characterization has been the focus of a number of studies. In conclusion, geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services.« less

  14. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

    PubMed Central

    Hubbard, Susan S.; Huisman, Johan A.; Revil, André; Robinson, David A.; Singha, Kamini; Slater, Lee D.

    2015-01-01

    Abstract Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field‐based investigative techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time‐lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot‐scale” experiments. More recently, however, the translation to larger‐scale characterization has been the focus of a number of studies. Geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services. PMID:26900183

  15. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  16. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    NASA Astrophysics Data System (ADS)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-10-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  17. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  18. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  19. Subsurface drainage processes and management impacts

    Treesearch

    Elizabeth T. Keppeler; David Brown

    1998-01-01

    Storm-induced streamflow in forested upland watersheds is linked to rainfall by transient, variably saturated flow through several different flow paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream as subsurface flow. Subsurface runoff can occur within...

  20. Impacts of Hydrological and Biogeochemical Process Synchrony Transcend Scale

    NASA Astrophysics Data System (ADS)

    Spence, C.; Kokelj, S.; McCluskie, M.; Hedstrom, N.

    2015-12-01

    In portions of the circumpolar north, there are documented cases of increases in annual inorganic nitrogen loading. Confounding the explanation of this phenomenon is a lack of accompanying annual trends in streamflow, precipitation or atmospheric nitrogen deposition. Evidence from Canada's subarctic suggests this dichotomy could be due to three key non-linearities in the predominant biogeochemical and hydrological processes. Because snowfall changes to rainfall near the zero degree air temperature isotherm, there has been an increase in late autumn rainfall across the region due to earlier passage of precipitation generating cold fronts. Runoff generation in cold regions is often a storage threshold-mediated process, and the enhanced rainfall results in more common exceedance of these thresholds and higher winter streamflow. Finally, net mineralization rates in regional lakes peak in winter following the onset of ice cover. Subtle increases in monthly rainfall at specific times of the year can permit hydro-chemical process synchrony within watersheds that enhances annual inorganic nitrogen loading, implying that the impacts of process synchrony transcend scale. The presence of shifts in nitrogen export suggests that sustained regular process synchrony can modify system states. Sound understanding of system processes and interactions across scales will be needed to properly predict impacts and make sound decisions when managing watersheds and competing resource demands.

  1. Linking Inundation Patterns and Dynamics in a Permafrost Landscape to Hydrologic, Thermal, Biogeochemical and Ecosystem Processes

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Hinzman, L. D.; Iwahana, G.; Lara, M. J.; Liljedahl, A.; Painter, S. L.; Romanovsky, V. E.; Wullschleger, S. D.

    2014-12-01

    The Arctic coastal plain is characterized by multi-scale geomorphic features including thaw lakes, drained thaw lake basins, and clusters of ice wedge polygons composed of troughs, centers, and rims. The topographic and subsurface properties of these features control the lateral and vertical drainage pathways of snow melt and precipitation as well as the spatial and temporal dynamics of standing water in the landscape. The Next Generation Ecosystem Experiment, NGEE-Arctic, project combines multi-scale in-situ and remote surface and subsurface observations that quantify the interactions between landscape structure, hydrology, the carbon cycle and energy balance of Arctic permafrost environments, with the aim of improving representation of Arctic ecosystem processes in global climate models. Data and models from the project show distinct relationships exist between the hydro-geomorphic features mapped on the ground and observed in remote sensing imagery, and the measured in-situ thermal, biogeochemical and ecosystem responses coincident with those features. The relationships between micro-topographic setting, snow distribution, inundation, subsurface temperature and thaw depth observed at the NGEE Barrow field sites are now well reproduced in process resolving models such as Pflotran and the Arctic Terrestrial Simulator. Current modeling efforts are investigating how topographically controlled thermal-hydrologic dynamics impact the carbon cycle. The next challenge is to scale these relationships for application in a global climate model grid cell to enable pan-Arctic predictions of future change, including the change in topography and inundation resulting from thawing permafrost and melting ground ice. NGEE-Arctic is funded by the DOE Office of Science, Biological and Environmental Research program.

  2. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    SciTech Connect

    Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.; Slater, Lee D.

    2015-03-15

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  3. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water

  4. Spectral induced polarization as a tool to map subsurface biogeochemical hot spots: a first laboratory evaluation in the Fe-S system

    NASA Astrophysics Data System (ADS)

    Nordsiek, Sven; Gilfedder, Ben; Frei, Sven

    2017-04-01

    Zones of intense biogeochemical reactivity (hot spots) arise in the saturated subsurface at the interface between regions with oxidizing and reducing conditions. Hot spots are both sinks and sources of different chemical compounds, thus they are of particular importance for element cycling in the subsurface. However, the investigation of hot spot structures is difficult, because they are not directly identifiable from the surface and can only be investigated by invasive methods in the subsurface. Additionally, they often form in sensitive wetland ecosystems where only non-destructive measurements are applicable to avoid significant degradation of these sensitive environments. Under these circumstances, geophysical methods may provide useful tools to identify biogeochemically active regions. One of the most important biogeochemical reactions in wetlands is the reduction of sulphate and formation and accumulation of FexSy minerals (where x and y delineate mineral stoichiometry). These reactions only occur in specific hot spots where specific chemical and microbial conditions are met. Within a research project concerning biogeochemical transformations and turnover in wetlands, we investigate the applicability of the geoelectrical method of spectral induced polarization (SIP) to locate and monitor regions containing polarizing FexSy particles as indicator for biogeochemical hot spots. After developing and testing a sample holder and a set of non-polarizing electrodes for laboratory SIP measurements, we performed experiments on natural soil samples taken from the hyporheic zone of a local river channel. The collected material originates from a location known for biogeochemical activity. The sample contains a high percentage of dark grayish/black sediment interpreted as FexSy, and possibly pyrite (FeS2). The material was homogenized and split into four samples. The FexSy concentration was adjusted to three different levels by oxidation using H2O2. For all samples we

  5. Electric currents couple spatially separated biogeochemical processes in marine sediment.

    PubMed

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo; Sayama, Mikio

    2010-02-25

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water overlying the sediment resulted in a rapid (<1-h) change in the hydrogen sulphide concentration within the sediment more than 12 mm below the oxic zone, a change explicable by transmission of electrons but not by diffusion of molecules. Mass balances indicated that more than 40% of total oxygen consumption in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology.

  6. A Spatially Explicit Modeling Approach to Capture the Hydrological Effects on Biogeochemical Processes in a Boreal Watershed

    NASA Astrophysics Data System (ADS)

    Govind, A.; Chen, J.

    2009-05-01

    Current estimates of terrestrial carbon (C) fluxes overlook hydrological controls. A modeling study was conducted to explore the hydrological, ecophysiological and biogeochemical interactions in a humid boreal ecosystem. Several hydro-ecological processes were simulated and validated using field measurements for two years. After gaining confidence in the model's ability and having understood that topographically driven sub-surface baseflow is the main process determining the soil moisture regime in humid boreal ecosystem, its influence on ecophysiological and biogeochemical processes were investigated. Three modeling scenarios were designed that represent strategies that are commonly used in ecological models to represent hydrological controls. These scenarios were: 1) Explicit, where realistic lateral water routing was considered; 2) Implicit, where calculations were based on a bucket-modeling approach; and 3) NoFlow, where the lateral sub-surface flow was turned off in the model. In general, the Implicit scenario overestimated GPP, ET and NEP, as opposed to the Explicit scenario. The NoFlow scenario underestimated GPP and ET but overestimated NEP. The key processes controlling the differences were due to the combined effects of variations in plant physiology, photosynthesis, heterotrophic respiration, autotrophic respiration and nitrogen mineralization; all of which occurred simultaneously in different directions, at different rates, affecting the spatio-temporal distribution of terrestrial C-sources or sinks (NEP). The scientific implication of this work is that regional or global scale terrestrial C estimates could have significant errors if proper hydrological constraints are not considered for modeling ecological and biogeochemical processes due to large topographic variations of the Earth's surface and also because of the non-linear interactions between these processes.

  7. Monsoon-Driven Biogeochemical Processes in the Arabian Sea

    DTIC Science & Technology

    2005-08-03

    ton-detritus ( NPZD ) ecosystem formulation, Ryabchenko et al. (1998) utilized a more complex ecosystem model that specifically included the microbial...of these observations and the first large- scale physical-biogeochemical modeling attempts, a pre-JGOFS understanding of the Arabian Sea emerged...viewing Wide Field-of-View Sensor ocean color measurements. Analyses of these new data and coupled physical-biogeochemical models have already

  8. Relating hydraulic conductivity and hyporheic zone biogeochemical processing to conserve and restore river ecosystem services.

    PubMed

    Mendoza-Lera, Clara; Datry, Thibault

    2017-02-01

    River management practices commonly attempt to improve habitat and ecological functioning (e.g. biogeochemical processing or retention of pollutants) by restoring hydrological exchange with the hyporheic zone (i.e. hyporheic flow) in an effort to increase mass transfer of solutes (nutrients, carbon and electron acceptors such as oxygen or nitrate). However, even when hyporheic flow is increased, often no significant changes in biogeochemical processing are detected. Some of these apparent paradox result from the simplistic assumption that there is a direct relationship between hyporheic flow and biogeochemical processing. We propose an alternative conceptual model that hyporheic flow is non-linearly related with biogeochemical processing. Based on the different solute mass transfer and area available for colonization among hydraulic conductivities, we hypothesize that biogeochemical processing in the hyporheic zone follows a Gaussian function depending on hyporheic hydraulic conductivity. After presenting the conceptual model and its domain of application, we discuss the potential implications, notably for river restoration and further hyporheic research.

  9. Quantifying Linkages between Biogeochemical Processes in a Contaminated Aquifer-Wetland System Using Multivariate Statistics and HP1

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2009-12-01

    Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water

  10. Evaluation of Boundless Biogeochemical Cycle through Development of Process-Based Eco-Hydrological and Biogeochemical Cycle Model to Incorporate Terrestrial-Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2014-12-01

    Inland water might act as important transport pathway for continental biogeochemical cycle although its contribution has remained uncertain yet due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local-regional-global scales, and can simulate iteratively nonlinear feedback between hydrologic-geomorphic-ecological processes. Because NICE incorporates 3-D groundwater sub-model and expands from previous 1- or 2-D or steady state, the model can simulate the lateral transport pronounced at steeper-slope or riparian/floodplain with surface-groundwater connectivity. River discharge and groundwater level simulated by NICE agreed reasonably with those in previous researches (Niu et al., 2007; Fan et al., 2013) and extended to clarify lateral subsurface also has important role on global hydrologic cycle (Nakayama, 2011b; Nakayama and Shankman, 2013b) though the resolution was coarser. NICE was further developed to incorporate biogeochemical cycle including reaction between inorganic and organic carbons in terrestrial and aquatic ecosystems. The missing role of carbon cycle simulated by NICE, for example, CO2 evasion from inland water (global total flux was estimated as about 1.0 PgC/yr), was relatively in good agreement in that estimated by empirical relation using previous pCO2 data (Aufdenkampe et al., 2011; Laruelle et al., 2013). The model would play important role in identification of greenhouse gas balance of the biosphere and spatio-temporal hot spots, and bridging gap between top-down and bottom-up approaches (Cole et al. 2007; Frei et al. 2012).

  11. South Florida wetlands ecosystem; biogeochemical processes in peat

    USGS Publications Warehouse

    Orem, William; ,

    1996-01-01

    The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the

  12. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  13. Silicon biogeochemical processes in a large river (Cauvery, India)

    NASA Astrophysics Data System (ADS)

    Kameswari Rajasekaran, Mangalaa; Arnaud, Dapoigny; Jean, Riotte; Sarma Vedula, V. S. S.; Nittala, S. Sarma; Sankaran, Subramanian; Gundiga Puttojirao, Gurumurthy; Keshava, Balakrishna; Cardinal, Damien

    2016-04-01

    Silicon (Si), one of the key nutrients for diatom growth in ocean, is principally released during silicate weathering on continents and then exported by rivers. Phytoplankton composition is determined by the availability of Si relative to other nutrients, mainly N and P, which fluxes in estuarine and coastal systems are affected by eutrophication due to land use and industrialization. In order to understand the biogeochemical cycle of Si and its supply to the coastal ocean, we studied a tropical monsoonal river from Southern India (Cauvery) and compare it with other large and small rivers. Cauvery is the 7th largest river in India with a basin covering 85626 sq.km. The major part of the basin (˜66%) is covered by agriculture and inhabited by more than 30 million inhabitants. There are 96 dams built across the basin. As a consequence, 80% of the historical discharge is diverted, mainly for irrigation (Meunier et al. 2015). This makes the Cauvery River a good example of current anthropogenic pressure on silicon biogeochemical cycle. We measured amorphous silica contents (ASi) and isotopic composition of dissolved silicon (δ30Si-DSi) in the Cauvery estuary, including freshwater end-member and groundwater as well as along a 670 km transect along the river course. Other Indian rivers and estuaries have also been measured, including some less impacted by anthropogenic pressure. The average Cauvery δ30Si signature just upstream the estuary is 2.21±0.15 ‰ (n=3) which is almost 1‰ heavier than the groundwater isotopic composition (1.38±0.03). The δ30Si-DSi of Cauvery water is also almost 1‰ heavier than the world river supply to the ocean estimated so far and 0.4‰ heavier than other large Indian rivers like Ganges (Frings et al 2015) and Krishna. On the other hand, the smaller watersheds (Ponnaiyar, Vellar, and Penna) adjacent to Cauvery also display heavy δ30Si-DSi. Unlike the effect of silicate weathering, the heavy isotopic compositions in the river

  14. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].

    PubMed

    Pimenov, N V; Ul'ianova, M O; Kanapatski, T A; Sivkov, V V; Ivanov, M V

    2008-01-01

    Comprehensive microbiological and biogeochemical investigation of a pockmark within one of the sites of gas-saturated sediments in the Gdansk depression, Baltic Sea was carried out during the 87th voyage of the Professor Shtokman research vessel. Methane content in the near-bottom water and in the underlying sediments indicates stable methane flow from the sediment into the water. In the 10-m water layer above the pockmark, apart from methane anomalies, elevated numbers of microorganisms and enhanced rates of dark CO2 fixation (up to 1.15 micromol C/(1 day)) and methane oxidation (up to 2.14 nmol CH4/(1 day)) were revealed. Lightened isotopic composition of suspended organic matter also indicates high activity of the near-bottom microbial community. Compared to the background stations, methane content in pockmark sediments increased sharply from the surface to 40-60 ml/dm3 in the 20-30cm horizon. High rates of bacterial sulfate reduction (SR) were detected throughout the core (0-40 cm); the maximum of 74 micromol/(dm3 day) was located in subsurface horizons (15-20 cm). The highest rates of anaerobic methane oxidation (AMO), up to 80 micromol/(dm3 day), were detected in the same horizon. Good coincidence of the AMO and SR profiles with stoichiometry close to 1:1 is evidence in favor of a close relation between these processes performed by a consortium of methanotrophic archaea and sulfate-reducing bacteria. Methane isotopic composition in subsurface sediments of the pockmark (from -53.0 to -56.5% per hundred) does not rule out the presence of methane other than the biogenic methane from the deep horizons of the sedimentary cover.

  15. Biogeochemical dynamics of amino acids in deep-subsurface marine sediments: Constraints from compound-specific nitrogen isotopic composition and enantiomer ratio

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y. T.; Chikaraishi, Y.; Takano, Y.; Ogawa, N. O.; Suga, H.; Yokoyama, Y.; Ohkouchi, N.

    2013-12-01

    Vast microbial populations exist in deep-subsurface marine sediments. Although amino acids in sediment pore waters are key compounds in metabolic activities of sedimentary microbes and in remineralization of carbon and nitrogen, to date little is known about their biogeochemical dynamics (e.g., sources and transformation processes) in deep-subsurface sediments. As a new approach to constrain the sources of dissolved amino acids in sediment pore waters, we analyzed compound-specific nitrogen isotopic composition (d15N) and enantiomer ratio (%D) of total hydrolysable amino acids (THAA) in sediment solid phase and dissolved hydrolysable amino acids (DHAA) in sediment pore waters from the same sediment samples. Enantiomer ratio can be an indicator of source organisms of amino acids, because specific D-amino acids (such as alanine, aspartic acid, glutamic acid, and serine) are commonly found in the cell wall complex of bacteria. Compound-specific d15N can be an indicator of microbial metabolism of amino acids, because biosynthesis and degradation of amino acids cause nitrogen isotopic fractionation. Samples were collected from deep-subsurface sediments (up to 172.9 m below seafloor) at the Sagami Trough (Northwestern Pacific) during D/V Chikyu cruise CK09-03. In the sediments deeper than 9 mbsf, %D values of DHAA were 25.9×2.8% in alanine, 24.8×2.1% in aspartic acid, 11.3×2.8% in serine, and 16.3×2.7% in glutamic acid, and %D changes from THAA were +15.3×2.1% in alanine, -0.4×2.4% in aspartic acid, -8.1×6.2% in serine, and 4.6×3.3% in glutamic acid. Compound-specific d15N analysis showed that d15N values of alanine are higher in DHAA than THAA and that d15N values of glycine and glutamic acid are similar between the two fractions (d15N of DHAA - d15N of THAA = +5.8×2.3 permill, +1.9×0.6 permill, -0.3×1.1 permill, respectively). The differences of d15N and %D signatures between DHAA and THAA suggest that the depolymerization of THAA is not the sole source of

  16. Three-dimensional approach using two coupled models for description of hydrological and biogeochemical processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Plesca, Ina; Kraft, Philipp; Haas, Edwin; Klatt, Steffen; Butterbach-Bahl, Klaus; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Hydrological and biogeochemical transport through changing landscapes has been well described during the past years in literature. However, the uncertainties of combined water quality and water quantity models are still challenging, both due to a lack in process understanding as well to spatiotemporal heterogeneity of environmental conditions driving the processes. In order to reduce the uncertainty in water quality and runoff predictions at the catchment scale, a variety of different model approaches from empirical-conceptual to fully physical and process based models have been developed. In this study we present a new modelling approach for the investigation of hydrological processes and nutrient cycles, with a focus on nitrogen in a small catchment from Hessen, Germany. A hydrological model based on the model toolbox Catchment Modelling Framework (CMF) has been coupled with the process based biogeochemical model LandscapeDNDC. States, fluxes and parameters are exchanged between the models at high temporal and spatial resolution using the Python scripting language in order to obtain a 3-dimensional model application. The transport of water and nutrients through the catchment is modelled using a 3D Richards/Darcy approach for subsurface fluxes, a kinematic wave approach for surface runoff and a Penman-Monteith based calculation of evapotranspiration. Biogeochemical processes are modelled by Landscape-DNDC, including plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification and associated nitrous oxide emissions. The interactions and module connectivity between the two coupled models, as well as the model application on a 3.7 km² catchment with the runoff results and nitrogen quantification will be presented in this study.

  17. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review

    USGS Publications Warehouse

    Nimick, David A.; Gammons, Christopher H.; Parker, Stephen R.

    2011-01-01

    This review summarizes biogeochemical processes that operate on diel, or 24-h, time scales in streams and the changes in aqueous chemistry that are associated with these processes. Some biogeochemical processes, such as those producing diel cycles of dissolved O2 and pH, were the first to be studied, whereas processes producing diel concentration cycles of a broader spectrum of chemical species including dissolved gases, dissolved inorganic and organic carbon, trace elements, nutrients, stable isotopes, and suspended particles have received attention only more recently. Diel biogeochemical cycles are interrelated because the cyclical variations produced by one biogeochemical process commonly affect another. Thus, understanding biogeochemical cycling is essential not only for guiding collection and interpretation of water-quality data but also for geochemical and ecological studies of streams. Expanded knowledge of diel biogeochemical cycling will improve understanding of how natural aquatic environments function and thus lead to better predictions of how stream ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other factors.

  18. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  19. Nitrogen and Sulfur Deposition Effects on Forest Biogeochemical Processes.

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2014-12-01

    Chronic atmospheric deposition of nitrogen and sulfur have widely ranging biogeochemical consequences in terrestrial ecosystems. Both N and S deposition can affect plant growth, decomposition, and nitrous oxide production, with sometimes synergistic and sometimes contradictory responses; yet their separate effects are rarely isolated and their interactive biogeochemical impacts are often overlooked. For example, S deposition and consequent acidification and mortality may negate stimulation of plant growth induced by N deposition; decomposition can be slowed by both N and S deposition, though through different mechanisms; and N2O production may be stimulated directly by N and indirectly by S amendments. Recent advances in conceptual models and whole-ecosystem experiments provide novel means for disentangling the impacts of N and S in terrestrial ecosystems. Results from a new whole-ecosystem N x S- addition experiment will be presented in detail, examining differential response of tree and soil carbon storage to N and S additions. These results combine with observations from a broad array of long-term N addition studies, atmospheric deposition gradients, stable isotope tracer studies, and model analyses to inform the magnitude, controls, and stability of ecosystem C storage in response to N and S addition.

  20. Geomicrobial Processes and Biodiversity in the Deep Terrestrial Subsurface

    SciTech Connect

    Fredrickson, Jim K.; Balkwill, David L.

    2005-09-01

    The concept of a deep microbial biosphere has advanced over the past several decades from a hypothesis viewed with considerable skepticism to being widely accepted. Phylogenetically diverse prokaryotes have been cultured from or detected via characterization of directly-extracted nucleic acids from a wide range of deep terrestrial environments. Recent advances have linked the metabolic potential of these microorganisms, determined directly or inferred from phylogeny, to biogeochemical reactions determined via geochemical measurements and modeling. Buried organic matter or kerogen is an important source of energy for sustaining anaerobic heterotrophic microbial communities in deep sediments and sedimentary rock although rates of respiration are among the slowest rates measured on the planet. In contrast, Subsurface Lithoautotrophic Microbial Ecosystems based on H2 as the primary energy source appear to dominate in many crystalline rock environments. These photosynthesis-independent ecosystems remain an enigma due to the difficulty in accessing and characterizing appropriate samples. Deep mines and dedicated rock laboratories, however, may offer unprecedented opportunities for investigating subsurface microbial communities and their interactions with the geosphere.

  1. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  2. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  3. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts.

  4. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  5. Estimating Hydrologic Processes from Subsurface Soil Displacements

    NASA Astrophysics Data System (ADS)

    Freeman, C. E.; Murdoch, L. C.; Germanovich, L.; MIller, S.

    2012-12-01

    Soil moisture and the processes that control it are important components of the hydrologic cycle, but measuring these processes remains challenging. We have developed a new measurement method that offers flexibility compared to existing technology. The approach is to measure small vertical displacements in the soil which responds proportionally to distributed surface load changes such as variation in the near-surface water content. The instrument may be installed at a depth of several meters to hundreds of meters below the surface. Because the measurement averaging region scales with the depth of the displacement measurements, this approach provides the means for estimating the soil moisture time series over tens of square meters to tens of thousands of square meters. The instrument developed for this application is called a Sand-X, which is short for Sand Extensometer. It is designed for applications in unconsolidated material, ranging from clay to sand. The instrument is simple and relatively inexpensive, and it can be installed in a boring made with a hand auger or with a small drill rig. Studies at the field scale are ongoing at a field site near Clemson, SC. The site is underlain by saprolite weathered primarily from biotite gneiss. Several Sand-X devices are installed at a field site that is instrumented for validating soil moisture, precipitation, and evapotranspiration estimates. These instruments are emplaced at a depth of 6 m and respond to the weight of a vehicle out to 18 m from the well. Calibration is performed by comparing precipitation measurements to the soil displacement response. For example, the coefficient for one installation is roughly 185 nm soil displacement/mm water content change. The resolution of the instrument is approximately 10 nm, so the Sand-X is capable of detecting changes of soil moisture on the order of tenths of one mm in compliant soils like saprolite. A typical soil displacement time series shows alternating periods of

  6. Understanding Biogeochemical Transformations Of Trace Elements In Multi Metal-Rich Geomaterials Under Stimulated Redox Conditions

    EPA Science Inventory

    Natural and anthropogenic influences on hydrological conditions can induce periodic or long-term reduced conditions in geologic materials. Such conditions can cause significant impacts on biogeochemical processes of trace elements in subsurface or near surface environments. The...

  7. Understanding Biogeochemical Transformations Of Trace Elements In Multi Metal-Rich Geomaterials Under Stimulated Redox Conditions

    EPA Science Inventory

    Natural and anthropogenic influences on hydrological conditions can induce periodic or long-term reduced conditions in geologic materials. Such conditions can cause significant impacts on biogeochemical processes of trace elements in subsurface or near surface environments. The...

  8. A Virtual Soil System to Study Macroscopic Manifestation of Pore-Scale Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fang, Y.; Shang, J.; Bailey, V. L.

    2012-12-01

    Mechanistic soil biogeochemical processes occur at the pore-scale that fundamentally control the moisture and CO2 fluxes at the soil and atmosphere interface. This presentation will present an on-going research to investigate pore-scale moisture migration and biogeochemical processes of organic carbon degradation, and their macroscopic manifestation in soils. Soil cores collected from Rattlesnake Mountain in southeastern Washington, USA, where a field experiment was conducted to investigate dynamic response of soil biogeochemistry to changing climate conditions, were used as an example for this study. The cores were examined using computerized x-ray tomography (XCT) to determine soil pore structures. The XCT imaging, together with various measurements of soil properties such as porosity, moisture content, organic carbon, biochemistry, etc are used to establish a virtual soil core with a high spatial resolution (~20um). The virtual soil system is then used to simulate soil moisture migration and organic carbon degradation, to identify important physical and biogeochemical factors controlling macroscopic moisture and CO2 fluxes in response to changing climate conditions, and to develop and evaluate pragmatic biogeochemical process models for larger scale applications. Core-scale measurements of CO2 flux and moisture change are used for development and validation of the process models.

  9. Switchgrass influences soil biogeochemical processes in dryland region of the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    Switchgrass and other perennial grasses have been promoted as biomass crops for production of renewable fuels. The objective of this study was to evaluate the effect of biomass removal on soil biogeochemical processes. A three year field study consisting of three levels of net primary productivity (...

  10. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Treesearch

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  11. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes.

    PubMed

    Roose-Amsaleg, Céline; Laverman, Anniet M

    2016-03-01

    Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning.

  12. Dynamic interactions of ecohydrological and biogeochemical processes in water-stressed environments

    NASA Astrophysics Data System (ADS)

    Wang, L.; Manzoni, S.; Ravi, S.; Riveros-Iregui, D. A.; Caylor, K. K.

    2015-12-01

    Water is the essential reactant, catalyst, or medium for many biogeochemical reactions and flows. The coupling between hydrological and biogeochemical processes is particularly evident in drylands, but also in areas with strong seasonal precipitation patterns or in mesic systems during droughts. Moreover, this coupling is apparent at all levels in the ecosystems - from soil microbial cells to whole plants to landscapes. A holistic approach is essential to fully understand function and processes in water-limited ecosystems and to predict their responses to environmental change. We examine some of the mechanisms responsible for microbial and vegetation responses to moisture inputs in water-limited ecosystems through a synthesis of existing literature and we also summarize the modeling advances in addressing these interactions. This paper focuses on three opportunities to advance coupled hydrological and biogeochemical research: (1) improved quantitative understanding of mechanisms linking hydrological and biogeochemical variations in drylands, (2) experimental and theoretical approaches that describe linkages between hydrology and biogeochemistry (particularly across scales), and (3) the use of these tools and insights to address critical dryland issues of societal relevance.

  13. Identifying microorganisms responsible for ecologically significant biogeochemical processes.

    PubMed

    Madsen, Eugene L

    2005-05-01

    Throughout evolutionary time, and each day in every habitat throughout the globe, microorganisms have been responsible for maintaining the biosphere. Despite the crucial part that they play in the cycling of nutrients in habitats such as soils, sediments and waters, only rarely have the microorganisms actually responsible for key processes been identified. Obstacles that have traditionally impeded fundamental microbial ecology inquiries are now yielding to technical advancements that have important parallels in medical microbiology. The pace of new discoveries that document ecological processes and their causative agents will no doubt accelerate in the near future, and might assist in ecosystem management.

  14. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    SciTech Connect

    Peyton, Brent M.; Timothy, Ginn R.; Sani, Rajesh K.

    2013-08-14

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO2. We have shown that SRB reduce U(VI) to nanometer-sized UO2 particles (1-5 nm) which are both intra- and extracellular, with UO2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phase when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO2 reoxidation with an initial rate of 9.5 M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO2 reoxidation with ferrihydrite. The highest rate of UO2 reoxidation occurred when the chelator promoted UO2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO2 dissolution did not occur, UO2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and

  15. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems.

    PubMed

    Nogaro, Geraldine; Mermillod-Blondin, Florian

    2009-05-15

    Stormwater sediments that accumulate at the surface of infiltration basins reduce infiltration efficiencies by physical clogging and produce anoxification in the subsurface. The present study aimed to quantify the influence of stormwater sediment origin (urban vs industrial catchments) and the occurrence of bioturbators (tubificid worms) on the hydraulic functioning, aerobic/anaerobic processes, and pollutant dynamics in stormwater infiltration systems. In laboratory sediment columns, effects of stormwater sediments and tubificids were examined on hydraulic conductivity, microbial processes, and pollutant releases. Significant differences in physical (particle size distribution) and chemical characteristics betoveen the two stormwater sediments led to distinct effects of these sediments on hydraulic and biogeochemical processes. Bioturbation by tubificid worms could increase the hydraulic conductivity in stormwater infiltration columns, but this effect depended on the characteristics of the stormwater sediments. Bioturbation-driven increases in hydraulic conductivity stimulated aerobic microbial processes and enhanced vertical fluxes of pollutants in the sediment layer. Our results showed that control of hydraulic functioning by stormwater sediment characteristics and/ or biological activities (such as bioturbation) determined the dynamics of organic matter and pollutants in stormwater infiltration devices.

  16. Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development

    NASA Astrophysics Data System (ADS)

    Brun, Adam; Engesgaard, Peter

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors. A second paper [J. Hydrol. 256 (2002) 230-249], reports the application of the model to a field study of biogeochemical transport processes in a landfill plume in Denmark (Vejen).

  17. Impact of Large-Scale Climate Variability on Biogeochemical Processes in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gomez, F. A.; Lee, S. K.; Liu, Y.; Lamkin, J. T.; Hernandez, F., Jr.

    2016-12-01

    Regional high-resolution modeling studies in the Gulf of Mexico (GoM) suggest that significant changes may occur in the ocean circulations and hydrography due to anthropogenic greenhouse climate changes within this century. Particularly, surface temperatures in the northern GoM shelf are expected to increase more than 3°C at the end of the 21st century in a high CO2 emission scenario. Those changes most likely will have a strong impact on nutrient cycles, primary production, and dissolved oxygen concentration over the shelf, and cross-shelf exchanges of biological and chemical properties. However, we currently have a very limited understanding of how ocean biogeochemical processes in the northern GoM are influenced by large-scale climate variability in the region. In order to shed some light into this problem, we carried out a historical ocean-biogeochemical simulation for the period 1979 - 2015 using a high-resolution ( 8 km horizontally) ocean-biogeochemical model. This model is built on the Regional Ocean Model System (ROMS), nested to a 25 km resolution global ocean-sea ice model, and forced with realistic surface fluxes from the ERA-interim reanalysis. River discharge is explicitly represented based on historical records. Nitrogen and oxygen cycles are simulated with the Fennel biogeochemical model. Here, we describe dominant plankton responses to interannual changes in wind-driven ocean circulations and river run-off over the northern GoM shelf, linking the main patterns of variability to relevant modes of climate variability, particularly El Nino-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) and Atlantic Multi-decadal Oscillation (AMO). This study attempts to advance our understanding of the interplay between physical and biogeochemical processes that determine ecosystem variability in the GoM, and thus will help us better project the GoM ecosystem responses to anthropogenic climate changes.

  18. Effects of plant root on hydraulic performance of clogging process in subsurface flow constructed wetland

    NASA Astrophysics Data System (ADS)

    Hua, Guofen; Zhao, Zhongwei; Zeng, Yitao

    2013-04-01

    Subsurface flow constructed wetlands (SFCWs) have proven to be an efficient ecological technology for the treatment of various kinds of wastewaters. The clogging issue is the main operational problem, which limits its wide application. Clogging is a complicated process with physical (such as physical filtration), biogeochemical and plant-related processes. It was generally stated that suspended solids accumulation and biofilm play dominant roles response for clogging. However, the role of plants in SFCWs clogging remains unclear and debatable. In this paper, the performance of plants in the whole clogging process was addressed based on the lab-experiments between planted and unplanted system by measuring effective porosity, coefficient of permeability of the substrate within different operation periods. Furthermore, flow pattern and transport properties of the clogging process in the planted and unplanted wetland systems were evaluated by hydraulic performance (e.g. mean residence time, short-circuiting, volumetric efficiency, number of continuously stirred tank reactors, hydraulic efficiency factor, etc.) with salt tracer experiments. Plants played different roles in different clogging stage. In the earlier clogging stage, there were no obvious different effects on clogging process between planted and unplanted system. The effective porosity and coefficient of permeability slightly decreased within the planted system, which indicated that plant root restricted the flow of water when the pore spaces were lager. In the middle and later clogging stage, especially, in the later stage, the effective porosity and the coefficient of permeability increased considerably in the plant root zone. Furthermore, the longer retention times and higher hydraulic efficiency factors were gained in the planted system compared to that of unplanted, which implied that growing roots might open the new pore spaces in the substrate. The results are expected to be useful in the design of

  19. Early Earth rock analogues for Martian subsurface processes

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Grosch, E. G.; Maturilli, A.; Helbert, J.

    2015-12-01

    Sub-surface mafic-ultramafic crustal and hydrothermal environments on early Earth and Mars may have been very similar [1]. Hydrogen production from low-temperature alteration of ultramafic and basaltic rocks has been proposed to support early microbial life in Earth's earliest subsurface environments [1]. Similarly, evidence for microbial sulphate reduction has been reported from early Archean metabasaltic pillow lavas [2]. As such, Archean terrestrial rock environments preserved in greenstone belts may play an important role in understanding early Martian subsurface environments, which in turn may have led to preservation of early traces of life. In this context, the rock sequences of the Paleoarchean Barberton greenstone belt of South Africa provide unique Martian analogues as these rocks are exceptionally well preserved and record early Earth (and perhaps Martian-type) subsurface processes. In-situ exploration by rovers, remote sensing studies, and meteorite evidence has indicated the presence of altered gabbros, olivine-/pyroxene-bearing basalts and possible felsic porphyries on Mars. In this study we present a range of relevant 3.5 billion year old Archean greenstone belt analogue samples that include altered tholeiitic basalts, basaltic komatiites, serpentinized ultramafic komatiites and a felsic tonalite. The petrography and mineralogy of the samples are presented in terms of relic igneous phases and clay mineral alteration. We are acquiring visible/near-infrared reflectance and mid-IR emission spectra on these early Archean samples with the aim of using the hyperspectral data for ground truthing remote sensing data and mineral identification/environments on Mars.[1]. Grosch et al. (2014). Microscale mapping of alteration conditions and potential biosignatures in basaltic-ultramafic rocks on early Earth and beyond, Astrobiology 14 (3), 216-228. [2]. McLoughlin et al. (2012) Sulfur isotope evidence for a Paleoarchean subseafloor biosphere, Barberton, South

  20. Biogeochemical processes driving mercury cycling in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.

    2015-12-01

    Mercury (Hg) is a naturally occurring element that has been enriched in the environment through human activities, particularly in the coastal zone. Bioaccumulation of methylmercury (MeHg) in marine fishposes health risks for fish-consuming populations and is a worldwide health concern. A broader understanding of major environmental processes controlling Hg cycling and MeHg production and bioaccumulation in estuaries is therefore needed. Recent fieldwork and modeling show diverse sources of MeHg production in estuaries. We present geochemical modeling results for Hg and MeHg acrossmultiple estuaries with contrasting physical, chemical and biological characteristics. We report new measurements of water column and sediment mercury speciation and methylation data from the subarctic (Lake Melville, Labrador Canada) and temperate latitudes (Long Island Sound, Delaware Bay, Chesapeake Bay). We find that benthic sediment is a relatively small source of MeHg to the water column in all systems. Water column methylation drives MeHg levels in Lake Melville, whereas in more impacted shallow systems such as Chesapeake Bay and Long Island Sound, external inputs and sediment resuspension are more dominant. All systems are a net source of MeHg to the ocean through tidal exchange. In light of these inter-system differences, we will evaluate timescales of coastal ecosystem responses to changes in Hg loading that can help predict potential responses to future perturbations.

  1. Evidence of biogeochemical processes in iron duricrust formation

    NASA Astrophysics Data System (ADS)

    Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon

    2016-11-01

    Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga

  2. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that

  3. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    precipitation in the mixolimnion and metalimnion, but the absence of calcareous sediments at depth suggests dissolution and recycling during winter months. Dissolved carbon concentrations [dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)] increased with depth, reaching ∼0.04 mol/L at the metalimnion-monimolimnion boundary. DIC concentrations were seasonally variable in the mixolimnion and metalimnion, and were influenced by calcium carbonate precipitation. DOC concentrations mimicked those of conservative salts (e.g., Na+-Cl-) in the mixolimnion and metalimnion, but decreased in the monimolimnion where mass loss by anaerobic microbial processes is implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) were biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. With its extreme geochemical and thermal regime, Hot Lake functions as analog of early earth and extraterrestrial life environments.

  4. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    SciTech Connect

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    exchange, and lower winter lake temperatures. Solubility calculations indicated seasonal biogenic and thermogenic aragonite precipitation in the upper and lower mixolimnion, but the absence of calcareous sediments at depth suggested dissolution and recycling during winter months. Carbon concentrations were high in Hot Lake (e.g., 0 to 450 mg/L for both DOC and DIC) and increased with depth. DIC concentrations were variable and influenced by calcium carbonate precipitation, but DOC concentrations remained constant except in the monimolimnion where mass loss by anaerobic microbial processes was implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) appeared to be biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. Hot Lake with its extreme geochemical and thermal regime functions as analogue of early earth and extraterrestrial life environments.

  5. Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities

    SciTech Connect

    Stegen, James C.; Lin, Xueju; Konopka, Allan; Fredrickson, Jim K.

    2012-03-29

    A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work towards such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. While phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.

  6. High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles

    2016-04-01

    A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was

  7. 239,240Pu/137Cs ratios in the water column of the North Pacific: a proxy of biogeochemical processes.

    PubMed

    Hirose, Katsumi; Aoyama, Michio; Povinec, Pavel P

    2009-03-01

    Anthropogenic radionuclides in seawater have been used as transient tracers of processes in the marine environment. Especially, plutonium in seawater is considered to be a valuable tracer of biogeochemical processes due to its particle-reactive properties. However, its behavior in the ocean is also affected by physical processes such as advection, mixing and diffusion. Here we introduce Pu/(137)Cs ratio as a proxy of biogeochemical processes and discuss its trends in the water column of the North Pacific Ocean. We observed that the (239,240)Pu/(137)Cs ratio in seawater exponentially increased with increasing depth (depth range: 100-1000 m). This finding suggests that the profiles of the (239,240)Pu/(137)Cs ratios in shallower waters directly reflect biogeochemical processes in the water column. A half-regeneration depth deduced from the curve fitting the observed data, showed latitudinal and longitudinal distributions, also related to biogeochemical processes in the water column.

  8. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    NASA Astrophysics Data System (ADS)

    Brun, Adam; Engesgaard, Peter; Christensen, Thomas H.; Rosbjerg, Dan

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation, biogeochemical processes, and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution in the plume of a number of species, such as dissolved organic carbon (DOC), Fe 2+, NO 3-, HCO 3-, SO 42-, CH 4, and pH. The simulated redox zones agree with observations confirming that the Fe-reducing zone played an important role in the attenuation of the DOC plume. Effective first-order rate constants for every redox zone were determined giving DOC half-lives ranging from 100 to 1-2 days going from the methanogenic to the aerobic zone. The order of decrease in DOC half-lives from the anaerobic to the aerobic zone corresponds to findings at other landfills.

  9. Hybrid Multiscale Simulation of Hydrologic and Biogeochemical Processes in the River-Groundwater Interaction Zone

    NASA Astrophysics Data System (ADS)

    Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.

    2015-12-01

    The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.

  10. Characterization of eco-hydraulic habitats for examining biogeochemical processes in rivers

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; O'Connor, B. L.; Harvey, J. W.

    2009-12-01

    Spatial variability in biogeochemical reaction rates in streams is often attributed to sediment characteristics such as particle size, organic material content, and biota attached to or embedded within the sediments. Also important in controlling biogeochemical reaction rates are hydraulic conditions, which influence mass transfer of reactants from the stream to the bed, as well as hyporheic exchange within near-surface sediments. This combination of physical and ecological variables has the potential to create habitats that are unique not only in sediment texture but also in their biogeochemical processes and metabolism rates. In this study, we examine the two-dimensional (2D) variability of these habitats in an agricultural river in central Iowa. The streambed substratum was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae, benthic organic material, and coarse woody debris. Hydraulic conditions were quantified using a calibrated 2D model, and hyporheic exchange was assessed using a scaling relationship based on sediment and hydraulic characteristics. Point-metabolism rates were inferred from measured sediment dissolved oxygen profiles using an effective diffusion model and compared to traditional whole-stream measurements of metabolism. The 185 m study reach had contrasting geomorphologic and hydraulic characteristics in the upstream and downstream portions of an otherwise relatively straight run of a meandering river. The upstream portion contained a large central gravel bar (50 m in length) flanked by riffle-run segments and the downstream portion contained a deeper, fairly uniform channel cross-section. While relatively high flow velocities and gravel sediments were characteristic of the study river, the upstream island bar separated channels that differed with sandy gravels on one side and cobbley gravels on the other. Additionally, green algae was almost exclusively found in riffle

  11. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  12. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  13. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-08-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  14. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-04-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  15. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    USGS Publications Warehouse

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  16. Technical note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, Tim; Bach, Lennart T.; Czerny, Jan; Riebesell, Ulf

    2016-05-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial and temporal decoupling between particle formation in the surface ocean and particle collection in sediment traps at depth often handicaps reconciliation of production and sedimentation even within the euphotic zone. Pelagic mesocosms are restricted to the surface ocean, but have the advantage of being closed systems and are therefore ideally suited to studying how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples for biogeochemical analysis. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently separated from bulk seawater by passive settling, centrifugation or flocculation with ferric chloride, and we discuss the advantages and efficiencies of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranged from fine to coarse silt (2-63 µm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements, and even at very low particle fluxes we were able to get a detailed insight into various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate the processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  17. Technical Note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, T.; Bach, L. T.; Czerny, J.; Riebesell, U.

    2015-11-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial decoupling between particle formation and collection often handicaps reconciliation of these two processes even within the euphotic zone. Pelagic mesocosms have the advantage of being closed systems and are therefore ideally suited to study how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently concentrated by passive settling, centrifugation or flocculation with ferric chloride and we discuss the advantages of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranges from fine to coarse silt (2-63 μm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements and even at very low particle fluxes we were able to get a detailed insight on various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  18. Spatio-temporal evolution of biogeochemical processes at a landfill site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2011-12-01

    Predictions of fate and transport of contaminants are strongly dependent on spatio-temporal variability of soil hydraulic and geochemical properties. This study focuses on time-series signatures of hydrological and geochemical properties at different locations within the Norman landfill site. Norman Landfill is a closed municipal landfill site with prevalent organic contamination. Monthly data at the site include specific conductance, δ18O, δ2H, dissolved organic carbon (DOC) and anions (chloride, sulfate, nitrate) from 1998-2006. Column scale data on chemical concentrations, redox gradients, and flow parameters are also available on daily and hydrological event (infiltration, drainage, etc.) scales. Since high-resolution datasets of contaminant concentrations are usually unavailable, Wavelet and Fourier analyses were used to infer the dominance of different biogeochemical processes at different spatio-temporal scales and to extract linkages between transport and reaction processes. Results indicate that time variability controls the progression of reactions affecting biodegradation of contaminants. Wavelet analysis suggests that iron-sulfide reduction reactions had high seasonal variability at the site, while fermentation processes dominated at the annual time scale. Findings also suggest the dominance of small spatial features such as layered interfaces and clay lenses in driving biogeochemical reactions at both column and landfill scales. A conceptual model that caters to increased understanding and remediating structurally heterogeneous variably-saturated media is developed from the study.

  19. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  20. Aggregate-scale spatial heterogeneity in reductive transformation of ferrihydrite resulting from coupled biogeochemical and physical processes

    NASA Astrophysics Data System (ADS)

    Pallud, C.; Masue-Slowey, Y.; Fendorf, S.

    2010-05-01

    Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid

  1. Characterizing biogeochemical processes in the hyporheic zone using flume experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Reeder, W. J.; Farrell, T. B.; Feris, K. P.; Tonina, D.; Benner, S. G.

    2015-12-01

    The hyporheic zones of streams are hotspots of biogeochemical cycling, where reactants from surface water and groundwater are continually brought into contact with microbial populations on the surfaces of stream sediments and reaction products are removed by hyporheic flow and degassing. Using large flume experiments we have documented the complex redox dynamics associated with dune-scale hyporheic flow. Observations, coupled with reactive transport modeling, provide insight into how flow dictates spatio-temporal distribution of redox reactions and the associated consumption and production of reactants and products. Dune hyporheic flow was experimentally produced by maintaining control over flow rates, slopes, sediment grain size, bedform geomorphology, and organic carbon content. An extensive in-situ monitoring array combined with sampling events over time elucidated redox-sensitive processes including constraints on the spatial distribution and magnitude of aerobic respiration, organic carbon consumption, sulfide deposition, and denitrification. Reactive transport modeling reveals further insight into the influence of system geometry and reaction rate. As an example application of the model, the relationship between residence times and reaction rates may be used to generate Damköhler numbers that are related to biogeochemical processes, such as the potential of streambed morphology and nitrate loading to influence production of the greenhouse gas nitrous oxide via incomplete denitrification.

  2. Integrating turbulent flow, biogeochemical, and poromechanical processes in rippled coastal sediment (Invited)

    NASA Astrophysics Data System (ADS)

    Cardenas, M. B.; Cook, P. L.; Jiang, H.; Traykovski, P.

    2010-12-01

    Coastal sediments are the locus of multiple coupled processes. Turbulent flow associated with waves and currents induces porewater flow through sediment leading to fluid exchange with the water column. This porewater flow is determined by the hydraulic and elastic properties of the sediment. Porewater flow also ultimately controls biogeochemical reactions in the sediment whose rates depend on delivery of reactants and export of products. We present results from numerical modeling studies directed at integrating these processes with the goal of shedding light on these complex environments. We show how denitrification rates inside ripples are largest at intermediate permeability which represents the optimal balance of reactant delivery and anoxic conditions. It is clear that nutrient cycling and distribution within the sediment is strongly dependent on the character of the multidimensional flow field inside of sediment. More recent studies illustrate the importance of the elastic properties of the saturated sediment on modulating fluid exchange between the water column and the sediment when pressure fluctuations along the sediment-water interface occur at the millisecond scale. Pressure fluctuations occur at this temporal scale due to turbulence and associated shedding of vortices due to the ripple geometry. This suggests that biogeochemical cycling may also be affected by these high-frequency elastic effects. Future studies should be directed towards this and should take advantage of modeling tools such as those we present.

  3. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    PubMed

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

  4. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  5. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake)

    NASA Astrophysics Data System (ADS)

    Schouten, S.; Rijpstra, W. I. C.; Kok, M.; Hopmans, E. C.; Summons, R. E.; Volkman, J. K.; Sinninghe Damsté, J. S.

    2001-05-01

    The chemical structures, distribution and stable carbon isotopic compositions of lipids in a sediment core taken in meromictic Ace Lake (Antarctica) were analyzed to trace past biogeochemical cycling. Biomarkers from methanogenic archaea, methanotrophic bacteria and photosynthetic green sulfur bacteria were unambiguously assigned using organic geochemical understanding and by reference to what is known about the lake's present-day ecosystem. For instance, saturated and unsaturated 2,6,10,15,19-pentamethylicosane, archaeol and sn2-hydroxyarchaeol were derived from methanogenic archaea. Carotenoid analysis revealed chlorobactene and isorenieratene derived from the green-colored and brown-colored strains of the green sulfur bacteria (Chlorobiaceae); isotopic analyses showed that they were 13C-enriched. Phytenes appear to be derived from photoautotrophs that use the Calvin-Benson cycle, while phytane has a different source, possibly within the archaea. The most 13C-depleted compounds (ca. -55‰) identified were 4-methyl-5α-cholest-8(14)-en-3β-ol, identified using an authentic standard, and co-occurring 4-methylsteradienes: these originate from the aerobic methanotrophic bacterium Methylosphaera hansonii. Lipids of photoautotrophic origin, steranes and alkenones, are relatively depleted (ca. -28 to -36‰) whilst archaeal biomarkers are relatively enriched in 13C (ca. -17 to -25‰). The structural and carbon isotope details of sedimentary lipids thus revealed aspects of in situ biogeochemical processes such as methane generation and oxidation and phototrophic sulfide oxidation.

  6. Signal Processing Techniques for a Planetary Subsurface Radar Onboard Satellite

    NASA Astrophysics Data System (ADS)

    Yagitani, S.; Ishikawa, T.; Nagano, I.; Kojima, H.; Matsumoto, H.

    2001-12-01

    We are developing a satellite-borne HF ( ~ 10 MHz) radar system to be used to investigate planetary subsurface layered structures. Before deciding the design of a high-performance subsurface radar system, in this study we calculate the propagation and reflection characteristics of various HF radar pulses through subsurface layer models, in order to examine the wave forms and frequencies of the radar pulses suitable to discriminate and pick up weak subsurface echoes buried in stronger surface reflection and scattering echoes. In the numerical calculations the wave form of a transmitted radar pulse is first Fourier-transformed into a number of elementary plane waves having different frequencies, for each of which the propagation and reflection characteristics through subsurface layer models are calculated by a full wave analysis. Then the wave form of the reflected radar echo is constructed by synthesizing all of the elementary plane waves. As the transmitted pulses, we use several different types of wave form modulation to realize the radar pulse compression to improve the signal-to-noise (S/N) ratio and time resolution of the subsurface echoes: the linear FM chirp (conventional), the M (maximal-length) sequence and the complementary sequences. We will discuss the characteristics of these pulse compression techniques, such as the improvement in the S/N ratio and the time resolution to identify the subsurface echoes. We will also present the possibility of applying the Multiple Signal Classification (MUSIC) method to further improve both the S/N ratio and time resolution to extract the weaker subsurface echoes.

  7. Modeling of biologically mediated redox processes in the subsurface

    NASA Astrophysics Data System (ADS)

    Lensing, H. J.; Vogt, M.; Herrling, B.

    1994-07-01

    To model bacterially catalyzed redox processes a multicomponent transport reaction model is presented. The transport part of the model solves the transient convection dispersion differential equations. The pure chemical submodel is conceptually similar to conventional thermodynamic equilibrium models. The kinetic submodel describes the heterotrophic metabolisms of several groups of microorganisms. To model a complete redox sequence (aerobic carbonaceous oxidation, denitrification, Fe(III)-reduction, Mn(IV)-reduction, and sulfate reduction) four functional bacterial groups are defined. Their growth and metabolisms are formulated in terms of Monod equations. As in other biofilm models, diffusion-limited exchange between the different phases (mobile pore water, biophase, and aquifer material) is also considered in this approach. The submodels are coupled by the equations of the microbially mediated redox reactions. This numerical technique permits direct mechanistic modeling of the influence of microbially catalyzed redox reactions on the chemical milieu of an aquifer. A two-step method is applied to solve the coupled transport and biochemical reaction equations. The numerical model was applied to field data of a natural subsurface flow path.

  8. Biogeochemical Hotspots: Role of Small Wetlands in Nutrient Processing at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Cheng, F. Y.; Basu, N. B.

    2016-12-01

    Increased loading of nutrients (nitrogen N and phosphorus P) from agricultural and urban intensification in the Anthropocene has led to severe degradation of inland and coastal waters. Amongst aquatic ecosystems, wetlands receive and retain significant quantities of nutrients and thus are important regulators of nutrient transport in watersheds. While the factors controlling N and P retention in wetlands is relatively well known, there is a lack of quantitative understanding on the relative contributions of the different factors on nutrient retention. There is also a deficiency in knowledge of how these processes behave across system size and type. In our study, we synthesized nutrient retention data from wetlands, lakes, and reservoirs to gain insight on the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicated that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ, across six orders of magnitude in residence time for total nitrogen, total phosphorus, nitrate and phosphate. We hypothesized that the consistency of the relationship across constituent and system types points to the strong hydrologic control on biogeochemical processing. The hypothesis was tested using a two-compartment mechanistic model that links the nutrient removal processes (denitrification for N and sedimentation for P) with the system size. Finally, the k-τ relationships were upscaled with a regional size-frequency distribution to demonstrate the disproportionately large role of small wetlands in watershed-scale nutrient processing. Our results highlight the importance of hydrological controls as the dominant modifiers of nutrient removal mechanisms and the need for a stronger focus on small lentic ecosystems like wetlands as major nutrient sinks in the landscape.

  9. Modeling the Oxygen Cycle in the Equatorial Pacific: Regulation of Physical and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Wang, X.; Murtugudde, R. G.; Zhang, D.

    2016-12-01

    Photosynthesis and respiration are important processes in all ecosystems on the Earth, in which carbon and oxygen are the two main elements. However, the oxygen cycle has received much less attention (relative to the carbon cycle) despite its big role in the earth system. Oxygen is a sensitive indicator of physical and biogeochemical processes in the ocean thus a key parameter for understanding the ocean's ecosystem and biogeochemistry. The Oxygen-Minimum-Zone (OMZ), often seen below 200 m, is a profound feature in the world oceans. There has been evidence of OMZ expansion over the past few decades in the tropical oceans. Climate models project that there would be a continued decline in dissolved oxygen (DO) and an expansion of the tropical OMZs under future warming conditions, which is of great concern because of the implications for marine organisms. We employ a validated three-dimensional model that simulates physical transport (circulation and vertical mixing), biological processes (O2 production and consumption) and ocean-atmosphere O2 exchange to quantify various sources and sinks of DO over 1980-2015. We show how we use observational data to improve our model simulation. Then we assess the spatial and temporal variability in simulated DO in the tropical Pacific Ocean, and explore the impacts of physical and biogeochemical processes on the DO dynamics, with a focus on the MOZ. Our analyses indicate that DO in the OMZ has a positive relationship with the 13ºC isotherm depth and a negative relationship with the concentration of dissolved organic material.

  10. Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing

    NASA Astrophysics Data System (ADS)

    Cheng, Frederick Y.; Basu, Nandita B.

    2017-06-01

    Increased loading of nitrogen (N) and phosphorus (P) from agricultural and urban intensification has led to severe degradation of inland and coastal waters. Lakes, reservoirs, and wetlands (lentic systems) retain these nutrients, thus regulating their delivery to downstream waters. While the processes controlling N and P retention are relatively well-known, there is a lack of quantitative understanding of how these processes manifest across spatial scales. We synthesized data from 600 lentic systems around the world to gain insight into the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicate that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ [T], across 6 orders of magnitude in residence time for total N, total P, nitrate, and phosphate. We hypothesized that the consistency of the relationship points to a strong hydrologic control on biogeochemical processing, and validated our hypothesis using a sediment-water model that links major nutrient removal processes with system size. Finally, the k-τ relationships were upscaled to the landscape scale using a wetland size-frequency distribution. Results suggest that small wetlands play a disproportionately large role in landscape-scale nutrient processing—50% of nitrogen removal occurs in wetlands smaller than 102.5 m2 in our example. Thus, given the same loss in wetland area, the nutrient retention potential lost is greater when smaller wetlands are preferentially lost from the landscape. Our study highlights the need for a stronger focus on small lentic systems as major nutrient sinks in the landscape.

  11. The significance of GW-SW interactions for biogeochemical processes in sandy streambeds

    NASA Astrophysics Data System (ADS)

    Arnon, Shai; De Falco, Natalie; Fox, Aryeh; Laube, Gerrit; Schmidt, Christian; Fleckenstein, Jan; Boano, Fulvio

    2015-04-01

    Stream-groundwater interactions have a major impact on hyporheic exchange fluxes in sandy streambeds. However, the physical complexity of natural streams has limited our ability to study these types of interactions systematically, and to evaluate their importance to biogeochemical processes and nutrient cycling. In this work we were able to quantify the effect of losing and gaining fluxes on hyporheic exchange and nutrient cycling in homogeneous and heterogeneous streambeds by combining experiments in laboratory flumes and modeling. Tracer experiments for measuring hyporheic exchange were done using dyes and NaCl under various combinations of overlying water velocity and losing or gaining fluxes. Nutrient cycling experiments were conducted after growing a benthic biofilm by spiking with Sodium Benzoate (as a source of labile dissolved organic carbon, DOC) and measuring DOC and oxygen dynamics. The combination of experimental observations and modeling revealed that interfacial transport increases with the streambed hydraulic conductivity and proportional to the square of the overlying water velocity. Hyporheic exchange fluxes under losing and gaining flow conditions were similar, and became smaller when the losing or gaining flux increases. Increasing in streambed hydraulic conductivity led to higher hyporheic fluxes and reduction in the effects of losing and gaining flow conditions to constrain exchange. Despite the evident effect of flow conditions on hyporheic exchange, labile DOC uptake was positively linked to increasing overlying water velocity but was not affected by losing and gaining fluxes. This is because microbial aerobic activity was taking place at the upper few millimeters of the streambed as shown by local oxygen consumption rates, which was measured using microelectrodes. Based on modeling work, it is expected that GW-SW interaction will be more significant for less labile DOC and anaerobic processes. Our results enable us to study systematically

  12. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  13. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  14. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  15. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  16. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  17. Isotope biogeochemical assessment of natural biodegradation processes in open cast pit mining landscapes

    NASA Astrophysics Data System (ADS)

    Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils

    2014-05-01

    In Germany, a major share of the energy production is based on the burning of lignite from open cast pit mines. The remediation and re-cultivation of the former mining areas in the Lusatian and Central German lignite mining district is an enormous technical and economical challenge. After mine closures, the surrounding landscapes are threatened by acid mine drainage (AMD), i.e. the acidification and mineralization of rising groundwater with metals and inorganic contaminants. The high content of sulfur (sulfuric acid, sulfate), nitrogen (ammonium) and iron compounds (iron-hydroxides) deteriorates the groundwater quality and decelerates sustainable development of tourism in (former) mining landscapes. Natural biodegradation or attenuation (NA) processes of inorganic contaminants are considered to be a technically low impact and an economically beneficial solution. The investigations of the stable isotope compositions of compounds involved in NA processes helps clarify the dynamics of natural degradation and provides specific informations on retention processes of sulfate and nitrogen-compounds in mine dump water, mine dump sediment, and residual pit lakes. In an active mine dump we investigated zones where the process of bacterial sulfate reduction, as one very important NA process, takes place and how NA can be enhanced by injecting reactive substrates. Stable isotopes signatures of sulfur and nitrogen components were examined and evaluated in concert with hydrogeochemical data. In addition, we delineated the sources of ammonium pollution in mine dump sediments and investigated nitrification by 15N-labeling techniques to calculate the limit of the conversion of harmful ammonium to nitrate in residual mining lakes. Ultimately, we provided an isotope biogeochemical assessment of natural attenuation of sulfate and ammonium at mine dump sites and mining lakes. Also, we estimated the risk potential for water in different compartments of the hydrological system. In

  18. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  19. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  20. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s-1, subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high stress status. The dislocation nucleation and motion induced plastic deformation during grinding process can better reveal subsurface damage mechanism considering to stress and temperature acting on the dislocations.

  1. Ozone and Nitrogen Deposition as Modifiers of Biogeochemical Fluxes and Processes in California Forests

    NASA Astrophysics Data System (ADS)

    Fenn, M. E.

    2011-12-01

    The combined effects of ozone and N deposition results in major perturbations of C and N cycling in forests of southern and central California. Increased shoot:root ratios of the major trees species, N-stimulation of aboveground growth, and premature foliar abscission result in greater aboveground C and N pools. Fire suppression exacerbates these perturbations and provides the opportunity for chronic N deposition to further increase the stand densification problem. Long-term litter decomposition rates are retarded by N enrichment which contributes further to litter accumulation in the forest floor. Stage 3 of N saturation in California mixed conifer forests occurs as chronic N deposition, in conjunction with co-occurring ozone effects, decreases fine root biomass, interferes with stomatal control, and increases the susceptibility of ponderosa pine trees to drought stress and bark beetle attack, leading to increased stand mortality. Hot moments of N transfers from canopy to the forest floor occur during precipitation events that follow long dry periods, but particularly during fog events. During initial soil wet up, pulses of NO and N2O emissions from the forest floor occur. Streamwater losses of nitrate are highest following storms preceded by dry periods, but also during peak runoff, typically in February and March. However, major losses of accumulated N occur during and after fire events. However, ecosystem N budgets, biogeochemical modeling studies and experimental burns in N-saturated chaparral catchments in southern California demonstrate that symptoms of N excess are not easily reversed by N release in and following fire. Even with decreased N deposition, momentum for elevated N losses from California forests would likely continue, driven by actively nitrifying soils and increased N content of litter and soil organic matter. Initial studies show that during peak runoff, as much as 20-40% of runoff nitrate in some catchments is throughput of unassimilated

  2. Coupled modeling of transport and biogeochemical processes in aquifers - Model requirements, strength and limitations

    NASA Astrophysics Data System (ADS)

    Mayer, K.

    2003-12-01

    Microbially mediated geochemical changes in aquifers may trigger a series of secondary reactions that include aqueous and surface complexation, ion exchange, and mineral dissolution-precipitation. Due to the coupled nature and the multitude of processes involved it is often difficult to identify the reactions controlling the system's overall evolution. Numerical models can be a useful component for identifying gaps and inconsistencies in conceptual models and for performing a more quantitative investigation of these systems. Suitable computer codes must allow for a general description of transport and reaction processes to facilitate the investigation of site-specific conditions. In recent years significant advances have been made in terms of model generality and applicability. Major advances include the consideration of mass balance equations for reactants and reaction products, the integration of biodegradation and thermodynamic models, and the development of novel approaches for simulating biogeochemical processes and reactive transport under variably saturated conditions. MIN3P is one of the codes capable of simulating coupled biogeochemical and hydrological processes on an increasingly mechanistic level. The simulation of column experiments and a hypothetical case study at the field scale illustrate how reactive transport modeling can be used. Modeling column experiments can be particularly fruitful, because detailed data can be collected to support the mechanistic approach. However, analysis of conceptual models is also beneficial on the field scale. The case study considered here describes natural attenuation of a petroleum hydrocarbon spill in an unconfined aquifer by multiple electron acceptors. The simulations also consider geochemical reactions triggered by contaminant degradation including the re-oxidation of reaction products during transport away from the source area. Comparing the results to contaminant plumes described in the literature suggests

  3. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    PubMed

    van Breukelen, Boris M; Griffioen, Jasper; Röling, Wilfred F M; van Verseveld, Henk W

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH4, Fe(II), SO4, Cl, CH4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  4. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume

    NASA Astrophysics Data System (ADS)

    van Breukelen, Boris M.; Griffioen, Jasper; Röling, Wilfred F. M.; van Verseveld, Henk W.

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH 4, Fe(II), SO 4, Cl, CH 4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO 2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  5. The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments

    PubMed Central

    Taillefert, Martial; Neuhuber, Stephanie; Bristow, Gwendolyn

    2007-01-01

    Background Early diagenetic processes involved in natural organic matter (NOM) oxidation in marine sediments have been for the most part characterized after collecting sediment cores and extracting porewaters. These techniques have proven useful for deep-sea sediments where biogeochemical processes are limited to aerobic respiration, denitrification, and manganese reduction and span over several centimeters. In coastal marine sediments, however, the concentration of NOM is so high that the spatial resolution needed to characterize these processes cannot be achieved with conventional sampling techniques. In addition, coastal sediments are influenced by tidal forcing that likely affects the processes involved in carbon oxidation. Results In this study, we used in situ voltammetry to determine the role of tidal forcing on early diagenetic processes in intertidal salt marsh sediments. We compare ex situ measurements collected seasonally, in situ profiling measurements, and in situ time series collected at several depths in the sediment during tidal cycles at two distinct stations, a small perennial creek and a mud flat. Our results indicate that the tides coupled to the salt marsh topography drastically influence the distribution of redox geochemical species and may be responsible for local differences noted year-round in the same sediments. Monitoring wells deployed to observe the effects of the tides on the vertical component of porewater transport reveal that creek sediments, because of their confinements, are exposed to much higher hydrostatic pressure gradients than mud flats. Conclusion Our study indicates that iron reduction can be sustained in intertidal creek sediments by a combination of physical forcing and chemical oxidation, while intertidal mud flat sediments are mainly subject to sulfate reduction. These processes likely allow microbial iron reduction to be an important terminal electron accepting process in intertidal coastal sediments. PMID:17567893

  6. A flexible numerical component to simulate surface runoff transport and biogeochemical processes through dense vegetation

    NASA Astrophysics Data System (ADS)

    Munoz-Carpena, R.; Perez-Ovilla, O.

    2012-12-01

    Methods to estimate surface runoff pollutant removal using dense vegetation buffers (i.e. vegetative filter strips) usually consider a limited number of factors (i.e. filter length, slope) and are in general based on empirical relationships. When an empirical approach is used, the application of the model is limited to those conditions of the data used for the regression equations. The objective of this work is to provide a flexible numerical mechanistic tool to simulate dynamics of a wide range of surface runoff pollutants through dense vegetation and their physical, chemical and biological interactions based on equations defined by the user as part of the model inputs. A flexible water quality model based on the Reaction Simulation Engine (RSE) modeling component is coupled to a transport module based on the traditional Bubnov -Galerkin finite element method to solve the advection-dispersion-reaction equation using the alternating split-operator technique. This coupled transport-reaction model is linked to the VFSMOD-W (http://abe.ufl.edu/carpena/vfsmod) program to mechanistically simulate mobile and stabile pollutants through dense vegetation based on user-defined conceptual models (differential equations written in XML language as input files). The key factors to consider in the creation of a conceptual model are the components in the buffer (i.e. vegetation, soil, sediments) and how the pollutant interacts with them. The biogeochemical reaction component was tested successfully with laboratory and field scale experiments. One of the major advantages when using this tool is that the pollutant transport and removal thought dense vegetation is related to physical and biogeochemical process occurring within the filter. This mechanistic approach increases the range of use of the model to a wide range of pollutants and conditions without modification of the core model. The strength of the model relies on the mechanistic approach used for simulating the removal of

  7. The effect of gold mining and processing on biogeochemical cycles in Muteh area, Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Moore, F.

    2009-04-01

    The environmental impacts of gold mining and processing on geochemical and biogeochemical cycles in Muteh region located northwest of Esfahan province and northeast of Golpaygan city is investigated. For this purpose systematic sampling was carried out in, rock, soil, water, and sediment environments along with plant, livestocks and human hair samples. Mineralogical and Petrological studies show that ore mineral such as pyrite and arsenopyrite along with fluorine-bearing minerals like tremolite, actinolite, biotite and muscovite occur in green schist, amphibolite and lucogranitic rocks in the area. The hydrochemistry of the analysed water samples indicate that As and F display the highest concentrations among the analysed elements. Indeed arsenic has the highest concentration in both topsoil and subsoil samples when compared with other potentially toxic elements. Anthropogenic activity also have it s greatest effect on increasing arsenic concentration among the analysed samples. The concentration of the majority of the analysed elements in the shoots and leaves of two local plants of the region i.e Artemesia and Penagum is higher than their concentration in the roots. Generally speaking, Artemesia has a greater tendency for bioaccumulating heavy metals. The results of cyanide analysis in soil samples show that cyanide concentration in the soils near the newly built tailing dam is much higher than that in the vicinity of the old tailing dam. The high concentration of fluorine in the drinking water of the Muteh village is the main reason of the observed dental fluorosis symptoms seen in the inhabitants. One of the two drinking water wells which is located near the metamorphic complex and supplies part of the tap water in the village, probably has the greatest impact in this regard. A decreasing trend in fluorine concentration is illustrated with increasing distance from the metamorphic complex. Measurements of As concentration in human hair specimens indicate that As

  8. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    NASA Astrophysics Data System (ADS)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  9. Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Biogeochemical Cycles: Data & Models

    NASA Astrophysics Data System (ADS)

    Finzi, A.

    2016-12-01

    The rhizosphere is a hot spot and hot moment for biogeochemical cycles. Microbial activity, extracellular enzyme activity and element cycles are greatly enhanced by root derived carbon inputs. As such the rhizosphere may be an important driver of ecosystem responses to global changes such as rising temperatures and atmospheric CO2 concentrations. Empirical research on the rhizosphere is extensive but extrapolation of rhizosphere processes to large spatial and temporal scales is largely uninterrogated. Using a combination of field studies, meta-analysis and numerical models we have found good reason to think that scaling is possible. In this talk I discuss the results of this research and focus on the results of a new modeling effort that explicitly links root distribution and architecture with a model of microbial physiology to assess the extent to which rhizosphere processes may affect ecosystem responses to global change. Results to date suggest that root inputs of C and possibly nutrients (ie, nitrogen) impact the fate of new C inputs to the soil (ie, accumulation or loss) in response to warming and enhanced productivity at elevated CO2. The model also provides qualitative guidance on incorporating the known effects of ectomycorrhizal fungi on decomposition and rates of soil C and N cycling.

  10. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗<-U{U}/{U}-{(1-r_b)}/{RB}, then

  11. Subsurface Biogeochemistry of Actinides

    SciTech Connect

    Kersting, Annie B.; Zavarin, Mavrik

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  12. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.

    2016-02-01

    Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.

  14. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    NASA Astrophysics Data System (ADS)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  15. Seasonal Variation in Floodplain Biogeochemical Processing in a Restored Headwater Stream.

    PubMed

    Jones, C Nathan; Scott, Durelle T; Guth, Christopher; Hester, Erich T; Hession, W Cully

    2015-11-17

    Stream and river restoration activities have recently begun to emphasize the enhancement of biogeochemical processing within river networks through the restoration of river-floodplain connectivity. It is generally accepted that this practice removes pollutants such as nitrogen and phosphorus because the increased contact time of nutrient-rich floodwaters with reactive floodplain sediments. Our study examines this assumption in the floodplain of a recently restored, low-order stream through five seasonal experiments. During each experiment, a floodplain slough was artificially inundated for 3 h. Both the net flux of dissolved nutrients and nitrogen uptake rate were measured during each experiment. The slough was typically a source of dissolved phosphorus and dissolved organic matter, a sink of NO3(-), and variable source/sink of ammonium. NO3(-) uptake rates were relatively high when compared to riverine uptake, especially during the spring and summer experiments. However, when scaled up to the entire 1 km restoration reach with a simple inundation model, less than 0.5-1.5% of the annual NO3(-) load would be removed because of the short duration of river-floodplain connectivity. These results suggest that restoring river-floodplain connectivity is not necessarily an appropriate best management practice for nutrient removal in low-order streams with legacy soil nutrients from past agricultural landuse.

  16. Linking Food Webs and Biogeochemical Processes in Wetlands: Insights From Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Stricker, C. A.; Guntenspergen, G. R.; Rye, R. O.

    2005-05-01

    To better understand the transfer of nutrients into prairie wetland food webs we have investigated the cycling of S (via S isotope systematics and geochemistry) in a prairie wetland landscape by characterizing sources (ground water, interstitial water, surface water) and processes in a small catchment comprised of four wetlands in eastern South Dakota. We focused on S to derive process information that is not generally available from carbon isotopes alone. The wetlands chosen for study spanned a considerable range in SO4 concentration (0.1-13.6 mM), which corresponded with landscape position. Ground water δ34SSO4 values remained relatively constant (mean = -13.2 per mil) through time. However, δ34SSO4 values of wetland surface waters ranged from -2.9 to -30.0 per mil (CDT) and were negatively correlated with SO4 concentrations (p<0.05). The isotopic variability of surface water SO4 resulted from mixing with re-oxidized sulfides associated with recently flushed wetland soils. The δ34S signatures of wetland primary (Gastropoda: Stagnicola elodes) and secondary (Odonata: Anax sp.) consumers were significantly related to surface water δ34SSO4 values (p<0.05) suggesting that food web components were responding to changes in the isotopic composition of the S source. Both primary and secondary consumer δ34S signatures differed between wetlands (ANOVA, p<0.05). These data illustrate the complexity of S cycling in prairie wetlands and the influence of wetland hydrologic and biogeochemical processes on prairie wetland food webs. Additionally, this work has demonstrated that sulfur isotopes can provide unique source and process information that cannot be derived from traditional carbon and nitrogen isotope studies.

  17. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  18. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2014-11-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity of the hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting dataset was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  19. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2015-03-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  20. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  1. Bacterial Communities Associated with Subsurface Geochemical Processes in Continental Serpentinite Springs

    PubMed Central

    Morrill, Penny L.; Szponar, Natalie; Schrenk, Matthew O.

    2013-01-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats. PMID:23584766

  2. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs.

    PubMed

    Brazelton, William J; Morrill, Penny L; Szponar, Natalie; Schrenk, Matthew O

    2013-07-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.

  3. The value of automated high-frequency nutrient monitoring in inference of biogeochemical processes, temporal variability and trends

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2013-04-01

    Stream water quality signals integrate catchment-scale processes responsible for delivery and biogeochemical transformation of the key biotic macronutrients (N, C, P). This spatial and temporal integration is particularly pronounced in the groundwater-dominated streams, as in-stream nutrient dynamics are mediated by the processes occurring within riparian and hyporheic ecotones. In this paper we show long-term high-frequency in-stream macronutrient dynamics from a small agricultural catchment located in the North West England. Hourly in-situ measurements of total and reactive phosphorus (Systea, IT), nitrate (Hach Lange, DE) and physical water quality parameters (turbidity, specific conductivity, dissolved oxygen, temperature, pH; WaterWatch, UK) were carried out on the lowland, gaining reach of the River Leith. High-frequency data show complex non-linear nutrient concentration-discharge relationships. The dominance of hysteresis effects suggests the presence of a temporally varying apportionment of allochthonous and autochthonous nutrient sources. Varying direction, magnitude and dynamics of the hysteretic responses between storm events is driven by the variation in the contributing source areas and shows the importance of the coupling of catchment-scale, in-stream, riparian and hyporheic biogeochemical cycles. The synergistic effect of physical (temperature-driven, the hyporheic exchange controlled by diffusion) and biogeochemical drivers (stream and hyporheic metabolism) on in-stream nutrient concentrations manifests itself in observed diurnal patterns. As inferred from the high-frequency nutrient monitoring, the diurnal dynamics are of the greatest importance under baseflow conditions. Understanding the role and relative importance of these processes can be difficult due to spatial and temporal heterogeneity of the key mechanisms involved. This study shows the importance of in-situ, fine temporal resolution, automated monitoring approaches in providing evidence

  4. A general paradigm to model reaction-based biogeochemical processes in batch systems

    NASA Astrophysics Data System (ADS)

    Fang, Yilin; Yeh, Gour-Tsyh; Burgos, William D.

    2003-04-01

    This paper presents the development and illustration of a numerical model of reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions. The objective is to provide a general paradigm for modeling reactive chemicals in batch systems, with expectations that it is applicable to reactive chemical transport problems. The unique aspects of the paradigm are to simultaneously (1) facilitate the segregation (isolation) of linearly independent kinetic reactions and thus enable the formulation and parameterization of individual rates one reaction by one reaction when linearly dependent kinetic reactions are absent, (2) enable the inclusion of virtually any type of equilibrium expressions and kinetic rates users want to specify, (3) reduce problem stiffness by eliminating all fast reactions from the set of ordinary differential equations governing the evolution of kinetic variables, (4) perform systematic operations to remove redundant fast reactions and irrelevant kinetic reactions, (5) systematically define chemical components and explicitly enforce mass conservation, (6) accomplish automation in decoupling fast reactions from slow reactions, and (7) increase the robustness of numerical integration of the governing equations with species switching schemes. None of the existing models to our knowledge has included these scopes simultaneously. This model (BIOGEOCHEM) is a general computer code to simulate biogeochemical processes in batch systems from a reaction-based mechanistic standpoint, and is designed to be easily coupled with transport models. To make the model applicable to a wide range of problems, programmed reaction types include aqueous complexation, adsorption-desorption, ion-exchange, oxidation-reduction, precipitation-dissolution, acid-base reactions, and microbial mediated reactions. In addition, user-specified reaction types can be programmed into the model. Any reaction can be treated as fast/equilibrium or slow

  5. A field evaluation of subsurface and surface runoff. II. Runoff processes

    USGS Publications Warehouse

    Pilgrim, D.H.; Huff, D.D.; Steele, T.D.

    1978-01-01

    Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.

  6. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  7. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  8. Influence of harvesting on biogeochemical exchange in sheetflow and soil processes in a eutrophic floodplain forest

    Treesearch

    B.G. Lockaby; R.G. Clawson; K. Flynn; Robert Rummer; S. Meadows; B Stokes; John A. Stanturf

    1997-01-01

    Floodplain forests contribute to the maintenance of water quality as a result of various biogeochemical transformations which occur within them. In particular, they can serve as sinks for nutrient run-off from adjacent uplands or as nutrient transformers as water moves downstream. However, little is known about the potential that land management activities may have for...

  9. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Treesearch

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  10. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller

  11. Thermodynamics at work - on the limits and potentials of biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Peiffer, Stefan

    2017-04-01

    The preferential use of high potential electron acceptors by microorganisms has lead to the classical concept of a redox sequence with a sequential use of O2 nitrate, Fe(III), sulfate, and finally CO2 as electron acceptors for respiration (Stumm & Morgan, 1996). Christian Blodau has rigourously applied this concept to constrain the thermodynamical limits at which specific aquatic systems operate. In sediments from acidic mining lakes his analysis revealed that sulfate reducers are not competitive as long as low-crystallinity ferric oxides are available for organic matter decomposition (Blodau et al, 1998). This analysis opened up the possibility to generalize the linkage between the iron and sulphur cycle in such systems and to constrain the biogeochemical limits for remediation (e. g. Peine et al, 2000). In a similar approach, Beer & Blodau (2007) were able to demonstrate that constraints on the removal of products from acetoclastic methanogenesis in deeper peat layers are inhibiting organic matter decomposition and provide a thermodynamic argument for peat accumulation. In this contribution I will review such ideas and further refine the limits and potentials of biogeochemical reactions in terms of redox-active metastable phases (RAMPS) that are typically mixed-valent carbon-, iron-, and sulfur-containing compounds and which allow for the occurrence of a number of enigmatic reactions, e. g. limited greenhouse gas emission (CH4) under dynamic redox conditions. It is proposed that redox equivalents are generated, stored and recycled during oxidation and reduction cycles thus suppressing methanogenesis (Blodau, 2002). Such RAMPS will preferentially occur at dynamic interfaces being exposed to frequent redox cycles. The concept of RAMPS will be illustrated along the interaction between ferric (hydr)oxides and dissolved sulphide. Recent studies using modern analytical tools revealed the formation of a number of amorphous products within a short time scale (days) both

  12. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material

    NASA Astrophysics Data System (ADS)

    Amirbahman, Aria; Schönenberger, René; Furrer, Gerhard; Zobrist, Jürg

    2003-07-01

    Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO 4 reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO 4-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO 4 in the influent to render the reduction of this species unimportant to the geochemical processes in the column. The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO 3(S)). In the column where significant SO 4 reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO 4 reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO 3(S)). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction. The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO 4 was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column

  13. Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay)

    NASA Astrophysics Data System (ADS)

    Burt, William J.; Thomas, Helmuth; Miller, Lisa A.; Granskog, Mats A.; Papakyriakou, Tim N.; Pengelly, Leah

    2016-08-01

    The distributions of carbonate system parameters in Hudson Bay, which not only receives nearly one-third of Canada's river discharge but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18O and δ13CDIC), to provide a detailed assessment of carbon cycling processes within the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Based on TA, we surmise that the deep waters in the Hudson Bay are largely of Pacific origin. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 µmol kg-1 DIC during deep water circulation around the bay.

  14. The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis.

    PubMed

    Bowman, Jeff S; Berthiaume, Chris T; Armbrust, E Virginia; Deming, Jody W

    2014-08-01

    Newly formed sea ice is a vast and biogeochemically active environment. Recently, we reported an unusual microbial community dominated by members of the Rhizobiales in frost flowers at the surface of Arctic young sea ice based on the presence of 16S gene sequences related to these strains. Here, we use metagenomic analysis of two samples, from a field of frost flowers and the underlying young sea ice, to explore the metabolic potential of this surface ice community. The analysis links genes for key biogeochemical processes to the Rhizobiales, including dimethylsulfide uptake, betaine glycine turnover, and halocarbon production. Nodulation and nitrogen fixation genes characteristic of terrestrial root-nodulating Rhizobiales were generally lacking from these metagenomes. Non-Rhizobiales clades at the ice surface had genes that would enable additional biogeochemical processes, including mercury reduction and dimethylsulfoniopropionate catabolism. Although the ultimate source of the observed microbial community is not known, considerations of the possible role of eolian deposition or transport with particles entrained during ice formation favor a suspended particle source for this microbial community. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Introduction: SIPEX-2: A study of sea-ice physical, biogeochemical and ecosystem processes off East Antarctica during spring 2012

    NASA Astrophysics Data System (ADS)

    Meiners, Klaus M.; Golden, Ken M.; Heil, Petra; Lieser, Jan L.; Massom, Rob; Meyer, Bettina; Williams, Guy D.

    2016-09-01

    This editorial introduces a suite of articles resulting from the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) voyage by presenting some background information on the study area and Antarctic sea-ice conditions, and summarising the key findings from the project. Using the Australian icebreaker RV Aurora Australis, SIPEX-2 was conducted in the area between 115-125°E and 62-66°S off East Antarctica during September to November 2012. This region had been sampled during two previous experiments, i.e. ARISE in 2003 (Massom et al., 2006a) and SIPEX in 2007 (Worby et al., 2011a). The 2012 voyage combined traditional and newly developed sampling methods with satellite and other data to measure sea-ice physical properties and processes on large scales, which provided context for biogeochemical and ecological case studies. The specific goals of the SIPEX-2 project were to: (i) measure the spatial variability in sea-ice and snow-cover properties over small- to regional-length scales; (ii) improve understanding of sea-ice kinematic processes; and (iii) advance knowledge of the links between sea-ice physical characteristics, sea-ice biogeochemical cycling and ice-associated food-web dynamics. Our field-based activities were designed to inform modelling approaches and to improve our capability to assess impacts of predicted changes in Antarctic sea ice on Southern Ocean biogeochemical cycles and ecosystem function.

  16. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  17. Biogeochemical Processes Contributing to Nickel Dynamics Within a Mine Tailings Impacted Lake

    NASA Astrophysics Data System (ADS)

    Bernier, L.; Warren, L. A.

    2001-12-01

    Nickel mining in the Sudbury area in Ontario, Canada has been pursued since the late 1920's by Falconbridge and INCO. Large tailings deposits have therefore been generated and require remediation. At the Onaping mine site, Moose Lake is used as the treatment pond for tailings. The drainage released has had a profound effect on Moose Lake's geochemistry, rendering it highly acidic (pH below 3.5), metal impacted, and chemically stratified. These conditions removed higher trophic levels, thus making microbial processes dominant. Since Moose Lake discharges into the Onaping River system, waters from its upper basin need to be treated. Presently, chemical treatment is performed, however this procedure is not useful for long-term remediation. Rather, an effective remediation strategy for Moose Lake requires an understanding of metal transport through, and cycling within, its water column and particularly of the role that microbial processes play in influencing metal fate. Since the prevailing geochemical conditions and processes occurring within this lake are not well characterized, our aims are to: determine metal concentrations through the water column; identify potential solid phases retaining metals; and to identify biogeochemical processes controlling the dynamics of their partitioning. Initial samples were collected from June - Sept. 2001 for water column metals (particulate (above 0.45 um), colloidal (0.2-0.45 um) and dissolved (lower than 0.2um), iron (Fe3+ and Fe2+) sulfate and sulfide, microbial community structure and physico-chemical parameters (pH, temperature, O2, redox, conductivity). Results indicate that the water column is chemically stratified at a depth of 3.5 m (25 m max. depth). Water column pH is less than 3.5 and shows low to anoxic conditions below the chemocline. Metal analyses indicate high dissolved nickel concentrations (700 uM). A depth related decrease of Ni levels was observed near the sediment-water interface, probably due to solid

  18. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  19. Relaxation Biodynamics: Experimental Studies and Modeling of Biogeochemical Processes in Northern Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Panikov, N. S.; Pankratov, T.

    2001-12-01

    Relaxation phenomenon in physics and chemistry stands for delay between the application of an external stress to a system and its response. When an equilibrated nuclear, atomic or molecular system is subjected to an abrupt physical change (sudden rise in temperature or pressure), it takes time for the system to re-equilibrate under the new conditions. This period (relaxation time) can provide a powerful insight into mechanisms of chemical reaction. Our intention is to extend such approach to analysis of the complex biological phenomena related mainly to microbial growth and activity in the soil. We will show how this information can be used for better understanding the biogeochemical processes in northern terrestrial ecosystems such as aerobic and anaerobic decomposition of organic matter, gas (CO2 and CH4) emission to atmosphere, migration and transformation of biogenic elements, etc. The major source of experimental data is laboratory soil incubation under controlled environmental conditions with abrupt changes in one of the key parameters: temperature (including the water-to-ice phase transition), soil moisture, light (illumination of planted soil), supply of organic substrate and mineral nutrients. The state of biological component before and after abrupt changes was followed by continuous recording of gas (CO2, CH4) exchange rate and (in some special experiments), chemical analysis of the soil solution, and the characterization of soil community (microbial and plants biomass, species composition, change of life forms, etc.) The obtained dynamic data were fit to simulation models (sets of differential equations) describing the C- and energy flow through the studied microcosm systems. The comparison of predicted and observed relaxation dynamics allowed us to discard wrong assumptions on the nature of regulatory mechanisms involved in the functioning of the soil community. Finally, the conclusions derived from the lab experiments are projected to field

  20. Biogeochemical hotspots within forested landscapes: quantifying the functional role of vernal pools in ecosystem processes

    NASA Astrophysics Data System (ADS)

    Capps, K. A.; Rancatti, R.; Calhoun, A.; Hunter, M.

    2013-12-01

    Biogeochemical hotspots are characterized as small areas within a landscape matrix that show comparably high chemical reaction rates relative to surrounding areas. For small, natural features to generate biogeochemical hotspots within a landscape, their contribution to nutrient dynamics must be significant relative to nutrient demand of the surrounding landscape. In northeastern forests in the US, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of the summer. Ephemeral flooding alters soil moisture and the depth of the oxic/anoxic boundary in the soil, which may affect leaf-litter decomposition rates and nutrient dynamics including denitrification. Additionally, pool-breeding organisms may influence nutrient dynamics via consumer-driven nutrient remineralization. We studied the effects of vernal pools on rates of leaf-litter decomposition and denitrification in forested habitats in Maine. Our results indicate leaf-litter decomposition and denitrification rates in submerged habitats of vernal pools were greater than in upland forest habitat. Our data also suggest pool-breeding organisms, such as wood frogs, may play an important role in nutrient dynamics within vernal pools. Together, the results suggest vernal pools may function as biogeochemical hotspots within forested landscapes.

  1. Contribution of peat soil structure to biogeochemical processes: A physical understanding of pore distribution and solute transport characteristics

    NASA Astrophysics Data System (ADS)

    Rezanezhad, Fereidoun; Kleimeier, Christian; Milojevic, Tatjana; Liu, Haojie; Van Cappellen, Philippe; Lennartz, Bernd

    2017-04-01

    Peatlands are a valuable but environmentally vulnerable resource. They represent a globally-significant carbon and energy reservoir and play major roles in water and biogeochemical cycles. Peat soils are highly complex porous media with unique physical and hydraulic properties. In peat soils, the unique complex dual-porosity structure with mobile-immobile pore fractions controls water flow and solute migration, which, in turn, affect reactive transport processes and biogeochemical functions. In this presentation, we start with an introduction of key physical and hydraulic properties related to the structure of peat soils and discuss their implications for water storage, flow and the migration of solutes. Then, we present the results of two experiments to understand the effect of pore fractions on the denitrification process in a peat depth profile, with the main objective to show how this process is controlled by pore-scale mass transfer and exchange of nitrate between mobile and immobile pores. In these experiments, bromide and nitrate breakthrough curves were used to constrain transport parameters and steady-state nitrate reduction rates in the depth profile. The vertical distribution of potential denitrification rates were compared with depth distributions of partitioning mobile-immobile pores and the exchange coefficient between the pores. The results showed that an increase of immobile pore fractions with depth increases the common interface surface area between mobile and immobile pores which leads to a more pronounced exchange between the two transport domains and enhances the denitrification activities. Furthermore, the physical non-equilibrium approaches were linked to reactive geochemical transformation processes by comparing the different transport characteristics using the pore distribution analyses between degraded and un-degraded peats and their effects on denitrification activities. The conclusion was that in addition to a reducing condition

  2. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    PubMed

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  3. Relationship Between Storm Hydrograph Components and Subsurface Flow Processes in a Hilly Headwater Basin, Toyota, Japan

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Asai, K.; Takei, R.

    2001-05-01

    Temporal and spatial distribution of tracer elements and subsurface flow processes were investigated to study relationship between storm hydrograph components and behavior of subsurface water in a headwater catchment of Toyota Hill, Aichi prefecture, central Japan. The catchment has an area of 0.857 ha with an altitude of 60 to 100 m, and is underlain by granite. The soil depth revealed by sounding test ranges from 0.5 to 4.0 m. Rain, stream, soil and ground waters were sampled once in a week, and the stream water was sampled at 5 to 60 minute intervals during rainstorms. The pressure head of subsurface water was monitored using tensiometers and piezometers nests, and the stream flow was monitored using V-notch weir. The stable isotopic ratios of deuterium and oxygen 18 and inorganic ion concentrations were determined on all water samples. The oxygen 18 isotopic ratio in stream water decreased with rainfall during the rainstorms. The ratio of event water component to the total runoff water at the peak discharge ranged from 16 to 92 %, and the event water ratio correlated with the peak discharge rate and rainfall intensity. The tesiometric data showed that the shallow subsurface water with low isotopic ratios at the lower slope discharged directly to the stream during the heavy rainstorms. The shallow subsurface flow at the lower slope and overland flow on the raiparian zone contributed much to the stream water chemistry during heavy rainstorms.

  4. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.

  5. 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect

    Levander, Alan R.

    2004-12-01

    Under ER63662, 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface, we have completed a number of subprojects associated with the Hill Air Force Base (HAFB) high resolution 3-D reflection/tomography dataset.

  6. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands

    SciTech Connect

    Berthrong, Sean T; Schadt, Christopher Warren; Pineiro, Gervasio; Jackson, Robert B

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH{sub 4}{sup +} in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  7. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands.

    PubMed

    Berthrong, Sean T; Schadt, Christopher W; Piñeiro, Gervasio; Jackson, Robert B

    2009-10-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH(4)(+) in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  8. MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE: PROCESSES

    EPA Science Inventory

    Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...

  9. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    PubMed Central

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-01-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985

  10. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    NASA Astrophysics Data System (ADS)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-10-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

  11. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms

    SciTech Connect

    Farrington, J.W. )

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors included solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly.

  12. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    SciTech Connect

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-10-24

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

  13. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    DOE PAGES

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; ...

    2016-10-24

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less

  14. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    PubMed Central

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly. PMID:1904812

  15. Riverine skin temperature response to subsurface processes in low wind speeds

    NASA Astrophysics Data System (ADS)

    Brumer, Sophia E.; Zappa, Christopher J.; Anderson, Steven P.; Dugan, John P.

    2016-03-01

    Both surface and subsurface processes modulate the surface thermal skin and as such the skin temperature may serve as an indicator for coastal, estuarine, and alluvial processes. Infrared (IR) imagery offers the unique tool to survey such systems, allowing not only to assess temperature variability of the thermal boundary layer, but also to derive surface flow fields through digital particle image velocimetry, optical flow techniques, or spectral methods. In this study, IR time-series imagery taken from a boat moored in the Hudson River estuary is used to determine surface flow, turbulent kinetic energy dissipation rate, and characteristic temperature and velocity length scales. These are linked to subsurface measurements provided by in situ instruments. Under the low wind conditions and weak stratification, surface currents and dissipation rate are found to reflect subsurface mean flow (r2 = 0.89) and turbulence (r2 = 0.75). For relatively low dissipation rates, better correlations are obtained by computing dissipation rates directly from wavenumber spectra rather than when having to assume the validity of the Taylor hypothesis. Furthermore, the subsurface dissipation rate scales with the surface length scales (L) and mean flow (U) using ɛ ∝ U3/L (r2 = 0.9). The surface length scale derived from the thermal fields is found to have a strong linear relationship (r2 = 0.88) to water depth (D) with (D/L) ˜ 13. Such a relation may prove useful for remote bathymetric surveys when no waves are present.

  16. Interim report: Manipulation of natural subsurface processes: Field research and validation.

    SciTech Connect

    Fruchter, J.S.; Spane, F.A.; Amonette, J.E.

    1994-11-01

    Often the only alternative for treating deep subsurface contamination is in situ manipulation of natural processes to change the mobility or form of contaminants. However, the complex interactions of natural subsurface physical, chemical, and microbial processes limit the predictability of the system-wide impact of manipulation based on current knowledge. This report is a summary of research conducted to examine the feasibility of controlling the oxidation-reduction (redox) potential of the unconfined aquifer at the Hanford Site in southeastern Washington State by introducing chemical reagents and microbial nutrients. The experiment would allow the testing of concepts and hypotheses developed from fundamental research in the US Department of Energy`s (DOE`s) Subsurface Science Program. Furthermore, the achievement of such control is expected to have implications for in situ remediation of dispersed aqueous contaminants in the subsurface environment at DOE sites nationwide, and particularly at the Hanford Site. This interim report summarizes initial research that was conducted between July 1990 and October 1991.

  17. Evaluation of positron emission tomography as a method to visualize subsurface microbial processes

    SciTech Connect

    Kinsella K.; Schlyer D.; Kinsella, K.; Schlyer, D.J.; Fowler, J.S.; Martinez, R.J.; Sobecky, P.A.

    2012-01-18

    Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils were seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.

  18. Rn as a geochemical tool for estimating residence times in the hyporheic zone and its application to biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Dörner, Sebastian; Ebertshäuser, Marlene Esther; Glaser, Barbara; Klug, Maria; Pittroff, Marco; Pieruschka, Ines; Waldemer, Carolin

    2014-05-01

    The hyporheic zone is at the interface between groundwater and surface water systems. It is also often a geochemical and redox boundary between typically reduced groundwater and oxic surface water. It experiences dynamic physical and chemical conditions as both groundwater fluxes and surface water levels vary in time and space. This can be particularly important for processes such as biogeochemical processing of nutrients and carbon. There has recently been an increasing focus on coupling residence times of surface water in the hyporheic zone with biogeochemical reactions. While geochemical profiles can be readily measured using established geochemical sampling techniques (e.g. peepers), quantifying surface water residence times and flow paths within the hyporheic zone is more elusive. The nobel gas radon offers a method for quantification of surface water residence times in the hyporheic zone. Radon activities are typically low in surface waters due to degassing to the atmosphere and decay. However once the surface water flows into the hyporheic zone radon accumulates along the flow path due to emanation from the sediments. Using simple analytical equations the water residence time can be calculated based on the difference between measured 222Rn activities and 222Rn activities at secular equilibrium, with a maximum limit of about 20 days (depending on measurement precision). Rn is particularly suited to residence time measurements in the hyporheic zone since it does not require addition of tracers to the stream nor does it require complex simulations and assumptions (such as 1D vertical flow) as for temperature measurements. As part of the biogeochemistry course at the University of Bayreuth, we have investigated the coupling of redox processes and water residence times in the hyporheic zone using 222Rn as a tracer for residence time. Of particular interest were nitrate and sulfate reduction and methane and CO2 production. Measurements were made in a sandy section

  19. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    USGS Publications Warehouse

    Alexander, R.B.; Böhlke, J.K.; Boyer, E.W.; David, M.B.; Harvey, J.W.; Mulholland, P.J.; Seitzinger, S.P.; Tobias, C.R.; Tonitto, C.; Wollheim, W.M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  20. Hydro-biogeochemical Controls on Geophysical Signatures (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2013-12-01

    Geophysical techniques such as seismic, magnetic and electrical techniques have historically played a major role in oil exploration. Their main use has been for delineation basin geometry, structures and hydrocarbon traps and for understanding the subsurface stratigraphy. Their use for investigating microbial processes has only recently been recognized over the last decade resulting in the development of biogeophysics as a frontier research area which bridges the fields of environmental microbiology, biogeochemistry, geomicrobiology. Recent biogeophysical studies have demonstrated the potential of geophysical technologies to (1) probe the presence of microbial cells and biofilms in subsurface geologic media, (2) investigate the interactions between microorganisms and subsurface geologic media, (3) assess biogeochemical transformations, biomineralization, and biogeochemical reaction rates, and (4) investigate the alteration of physical properties of subsurface geologic media induced by microorganisms. The unique properties of geophysical datasets (e.g. non-invasive data acquisition, spatially continuous properties retrieved) make them attractive for probing microbial processes affecting fate and transport of contaminants. This presentation will provide an updated understanding of major controls on geophysical signatures by highlighting some of the important advancements in biogeophysical studies at hydrocarbon contaminated environments. Important challenges that provide an opportunity for further research in this new field will also be examined.

  1. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches.

    PubMed

    Guo, Huaming; Zhou, Yinzhu; Jia, Yongfeng; Tang, Xiaohui; Li, Xiaofeng; Shen, Mengmeng; Lu, Hai; Han, Shuangbao; Wei, Chao; Norra, Stefan; Zhang, Fucun

    2016-12-06

    The role of sulfur cycling in arsenic behavior under reducing conditions is not well-understood in previous investigations. This study provides observations of sulfur and oxygen isotope fractionation in sulfate and evaluation of sulfur cycling-related biogeochemical processes controlling dissolved arsenic groundwater concentrations using multiple isotope approaches. As a typical basin hosting high arsenic groundwater, the western Hetao basin was selected as the study area. Results showed that, along the groundwater flow paths, groundwater δ(34)SSO4, δ(18)OSO4, and δ(13)CDOC increased with increases in arsenic, dissolved iron, hydrogen sulfide and ammonium concentrations, while δ(13)CDIC decreased with decreasing Eh and sulfate/chloride. Bacterial sulfate reduction (BSR) was responsible for many of these observed changes. The δ(34)SSO4 indicated that dissolved sulfate was mainly sourced from oxidative weathering of sulfides in upgradient alluvial fans. The high oxygen-sulfur isotope fractionation ratio (0.60) may result from both slow sulfate reduction rates and bacterial disproportionation of sulfur intermediates (BDSI). Data indicate that both the sulfide produced by BSR and the overall BDSI reduce arsenic-bearing iron(III) oxyhydroxides, leading to the release of arsenic into groundwater. These results suggest that sulfur-related biogeochemical processes are important in mobilizing arsenic in aquifer systems.

  2. Introduction to Indian Ocean biogeochemical processes and ecological variability: Current understanding and emerging perspectives

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Hood, Raleigh R.; Naqvi, S. Wajih A.; Brink, Kenneth H.; Smith, Sharon L.

    Despite a history of exploration dating back to the classical era and its leading role as a pathway for trade and cultural exchange for the great civilizations of those times, the Indian Ocean has consistently been subject to less attention in the modern era in terms of oceanographic enquiry. The cornerstone of the Sustained Indian Ocean Biogeochemical and Ecosystem Research (SIBER) initiative has been to promote more frequent and persistent research activities that encompass the entire Indian Ocean basin and to facilitate international cooperation to realize these objectives. This volume's chapters are derived from the plenary talks given by the attendees of the first SIBER conference and are a blend of current knowledge reviews and new results. Thus this collection of papers represents an interdisciplinary contribution to the Indian Ocean literature by the leading members of the Indian Ocean research community.

  3. Biogeochemical processes controlling aquatic quality during drying and rewetting events in a Mediterranean non-perennial river reach.

    PubMed

    Skoulikidis, Nikolaos Th; Vardakas, Leonidas; Amaxidis, Yorgos; Michalopoulos, Panagiotis

    2017-01-01

    Desiccation and re-flooding processes play a key role on hydrological features of non-perennial rivers. This study addresses the effects of these processes on the aquatic quality and unravels underlying biogeochemical processes of an intermittent river reach in southern Greece containing a spring-fed pool. Combined spatio-temporal sampling for physicochemical parameters, major ions and nutrients and high frequency automatic monitoring during a hydrological year (2010-2011) indicate that during the dry period, solute variation was controlled by "concentration" processes (i.e. evaporative concentration and high dissolved ion input from base flow sources). Metabolic and "concentration" processes appear intensified during desiccation and water temperature rise. Photosynthesis induced carbonate precipitation, while respiration increased with gradual desiccation, but did not cause carbonate dissolution. In certain cases, photosynthesis and respiration may have occurred simultaneously as a result of differing microhabitat metabolism within the same water body. However, during the entire desiccation cycle, autotrophic production exceeded respiration resulting in relatively high oxygen concentrations, even during the night. With increasing desiccation, a rise in nutrient assimilation occurred as well as ammonification and/or desorption of ammonium from sediments, with simultaneous loss of nitrate. During initial floods, flushing of carbonate phases was not significant. In contrast, initial flood events were characterized by the dissolution of very soluble salts, i.e. epsomite-type (MgSO4∗7H2O) and gypsum (CaSO4∗2H2O). Regarding sediment transport and nutrients, a 1000-times increase of suspended sediments was observed during re-flooding, while the nutrient quality degraded, particularly for N-species. Results of the current research may serve to better understand the links of hydrological and biogeochemical processes in non-perennial rivers and streams towards their

  4. Hydrogeochemical processes controlling subsurface transport from an upper subcatchment of Walker Branch watershed during storm events. 1. Hydrologic transport processes

    NASA Astrophysics Data System (ADS)

    Wilson, G. V.; Jardine, P. M.; Luxmoore, R. J.; Zelazny, L. W.; Lietzke, D. A.; Todd, D. E.

    1991-03-01

    Concerns over the effects of acid rain have stimulated numerous hydrometric and geochemical studies on forested watersheds with an emphasis on stream water chemistry. However, integrated studies are seriously lacking, and inferences of soil hydrogeochemical processes from periodic stream water chemistry may be grossly misleading. A small forested subcatchment was intensively instrumented for hydrologic and chemical analyses to improve our understanding of the processes that control subsurface transport of solutes. The timing and volume of subsurface flows were found to be highly dependent upon soil hydromorphologic properties. Development of perched water tables was the predominate mechanism of subsurface flow through the lower layers during moderate to high flow events. Perching of water was insignificant during low flow events and only partially responsible for lateral flow through the upper soil layers during moderate events. The importance of nonequilibrium conditions during even low flow events was illustrated by the occurrence of saturated flow through unsaturated (matric potentials < - 2kPa soil. The initial subsurface flow response of a moderate and high flow event was predominately (> 70%) new water that bypassed the soil matrix. As flows continued the percentage of old water increased. Intermittent rainfall during the high flow event caused multiple peaks in subsurface flow with subtle increases in perching. These hydrograph peaks were associated with decreases in the percentage of old water. This suggests an increase in the portion of infiltrating water that bypasses soil matrix water via macropores causing increases in subsurface flows with limited growth of perched water tables. The persistence of perched water tables as flow decreased was consistently observed. Decreases in solute concentrations causing decreases in conductivity of pores was inferred as one mechanism for this.

  5. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  6. Thermal wave image processing for characterization of subsurface of flaws in materials

    SciTech Connect

    Gopalan, K.; Gopalsami, N.

    1993-08-01

    Infrared images resulting from back-scattered thermal waves in composite materials are corrupted by instrument noise and sample heat-spread function. This paper demonstrates that homomorphic deconvolution and {open_quotes}demultiplication{close_quotes} result in enhanced image quality for characterization of subsurface flaws in Kevlar and graphics composites. The choice of processing depends on the material characteristics and the extent of noise in the original image.

  7. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  8. Subsurface Biogeochemical Heterogeneity (Field-scale removal of U(VI) from groundwater in an alluvial aquifer by electron donor amendment)

    SciTech Connect

    Long, Philip E.; Lovley, Derek R.; N'Guessan, A. L.; Nevin, Kelly; Resch, C. T.; Arntzen, Evan; Druhan, Jenny; Peacock, Aaron; Baldwin, Brett; Dayvault, Dick; Holmes, Dawn; Williams, Ken; Hubbard, Susan; Yabusaki, Steve; Fang, Yilin; White, D. C.; Komlos, John; Jaffe, Peter

    2006-06-01

    Determine if biostimulation of alluvial aquifers by electron donor amendment can effectively remove U(VI) from groundwater at the field scale. Uranium contamination in groundwater is a significant problem at several DOE sites. In this project, the possibility of accelerating bioreduction of U(VI) to U(IV) as a means of decreasing U(VI) concentrations in groundwater is directly addressed by conducting a series of field-scale experiments. Scientific goals include demonstrating the quantitative linkage between microbial activity and U loss from groundwater and relating the dominant terminal electron accepting processes to the rate of U loss. The project is currently focused on understanding the mechanisms for unexpected long-term ({approx}2 years) removal of U after stopping electron donor amendment. Results obtained in the project successfully position DOE and others to apply biostimulation broadly to U contamination in alluvial aquifers.

  9. Using skin temperature variability to quantify surface and subsurface estuarine processes

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Anderson, S. P.; Dugan, J. P.

    2012-12-01

    IR imagery is a unique tool to study nearshore processes. It not only provides a measure for surface skin temperature, but also permits the determination of surface currents. Variations in the skin temperature arise from disruption and renewal of the thermal boundary layer (TBL) as a result of wind forcing at the air-water interface, or due to turbulent eddies generated from below. The TBL plays a critical role in nearshore processes, in particular air-water heat and gas exchanges. It is essential to characterize the spatio-temporal scales of the disruption of the TBL and the extent to which it is renewed, as well as to understand how environmental factors relate to skin temperature variability. Furthermore, it is necessary to evaluate the ability not only to derive surface currents, but also to infer subsurface properties and processes from IR images. Estuarine and inlet environments such as the Hudson River are more complex, with multitude of additional processes at play, compared to the open ocean. For instance, the atmospheric boundary layer is complicated by the fact that that air is moving over both land and water, flow is fetch limited and there is orographic steering of winds. In addition, the subsurface turbulence is enhanced due to the bottom boundary layer. Here, high resolution IR imagery was collected from a ship stationed roughly 12 miles upstream of the New York Harbor in November 2010. On a nearby piling, several in situ instruments were mounted both above and below water, measuring environmental parameters such as wind speed, heat fluxes, air and water temperature, humidity as well as subsurface currents, turbulence, temperature and salinity. An IR imager installed on the cliff overlooking the river provided a complete view of the experiment area, with both the ship and the steel piling in its field of view. This study aims not only to characterize the skin temperature variability, but also to assess the validity of the various models for surface

  10. Coupling of Flow and Biogeochemical Processes Controlling the Environmental Conditions in the Hyporheic Zone: Implications for the Streambed Habitat

    NASA Astrophysics Data System (ADS)

    Andersen, M. S.; Eberhard, S. M.; Rutlidge, H.; Rau, G. C.; Auhl, A.

    2016-12-01

    The hyporheic zone of streams not only connects groundwater and surface water, but is essential for nutrient and carbon cycling and provides crucial habitat for organisms (termed hyporheos). Here we demonstrate how flow (groundwater discharge and hyporheic exchange) and biogeochemical processes interact to form environmental conditions and habitat for hyporheos. This provides the understanding to assess how hyporheic conditions may be altered by changing flow paths caused by flow perturbations such as groundwater pumping. The studied reaches in the Maules Creek Catchment in New South Wales, Australia, comprise intermittent losing, perennial gaining and perennial losing sections, and are therefore well-suited to study how different flow paths affect water quality. Surface water, hyporheic zone pore water (at depths between 0.4 and 0.8 m), and groundwater from monitoring bores, was sampled and analysed for water quality and hyporheos. For each hyporheic site the hydraulic potential for upwelling or down-welling was measured by the vertical hydraulic head difference. Upwelling regional groundwater was generally oxic with detectable nitrate and low DOC (dissolved organic carbon). On the other hand, hyporheic water in down-welling zones became anoxic at shallow depths (< 1 m), with dissolved reduced species such as Fe2+, Mn2+ and NH4+ and no O2, forming a steep vertical redox gradient from the streambed into the sediment. Upwelling hyporheic water (originating from the stream) was found to have a similar hydrochemical signature. These zones did not support habitat for hyporheic invertebrates because metazoan organisms cannot permanently inhabit anoxic environments. No invertebrates were found for Fe2+ concentrations above 2 mg/L. The hyporheos in these zones appeared to be dominated by anaerobic microbes including Fe-reducing bacteria. Our results show that flow conditions affect water quality, which in turn regulates the habitat of hyporheic invertebrates as they will

  11. Autonomous Studies of Coupled Physical-Biogeochemical Processes- Lessons from NAB08 and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Lee, Craig; D'Asaro, Eric; Perry, Mary Jane

    2013-04-01

    Motivated by the increasing application of autonomous sensors to physical, biological and biogeochemical investigations at the submesoscale, we examine techniques developed during the 2008 North Atlantic Bloom Experiment (NAB08), review successes, failures, and lessons learned, and offer perspectives on how these approaches might evolve in response to near-term shifts in scientific goals and technological advances. NAB08 exploited the persistence of autonomous platforms coupled with the extensive capabilities of a ship-based sampling program to investigate the patch-scale physics, biogeochemistry and community dynamics of a spring phytoplankton bloom. Autonomous platforms (Seagliders following a heavily-instrumented Lagrangian float) collected measurements in a quasi-Lagrangian frame, beginning before bloom initiation and extending well past its demise. This system of autonomous instruments resolved variability at the patch scale while also providing the persistence needed to follow bloom evolution. Biological and biogeochemical measurements were conducted from R/V Knorr during the bloom. An aggressive protocol for sensor calibration and proxy building bridged the ship-based and autonomous efforts, leveraging the intensive but sparse ship-based measurements onto the much more numerous autonomous observations. The combination of sampling in the patch-following frame, persistent, autonomous surveys and focused, aggressive calibration and proxy building produced robust, quantitative estimates of physical and biogeochemical processes. For example, budgets of nitrate, dissolved oxygen and particulate organic carbon (POC) following the patch were used to estimate net community production (NCP) and apparent POC export. Net community production was 805 mmol C?m-2 during the main bloom, with apparent POC export of 564 mmol C?m-2 and 282 mmol C?m-2 lost due to net respiration (70%) and apparent export (30%) on the day following bloom termination. Thus, POC export of roughly

  12. Characterization and monitoring of subsurface processes using parallel computing and electrical resistivity imaging

    SciTech Connect

    Johnson, Timothy C.; Truex, Michael J.; Wellman, Dawn M.; Marble, Justin

    2011-12-01

    This newsletter discusses recent advancement in subsurface resistivity characterization and monitoring capabilities. The BC Cribs field desiccation treatability test resistivity monitoring data is use an example to demonstrate near-real time 3D subsurface imaging capabilities. Electrical resistivity tomography (ERT) is a method of imaging the electrical resistivity distribution of the subsurface. An ERT data collection system consists of an array of electrodes, deployed on the ground surface or within boreholes, that are connected to a control unit which can access each electrode independently (Figure 1). A single measurement is collected by injecting current across a pair of current injection electrodes (source and sink), and measuring the resulting potential generated across a pair of potential measurement electrodes (positive and negative). An ERT data set is generated by collecting many such measurements using strategically selected current and potential electrode pairs. This data set is then processed using an inversion algorithm, which reconstructs an estimate (or image) of the electrical conductivity (i.e. the inverse of resistivity) distribution that gave rise to the measured data.

  13. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    NASA Astrophysics Data System (ADS)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    The high floral biodiversity of groundwater fed fens and mesotrophic grasslands depends on the different chemical signatures of the shallow rainwater fed topsoil water and the slightly deeper geochemically affected groundwater. The relatively abrupt gradients between these two layers of groundwater enable the close proximity of plants that require quite different site factors and have different rooting depths. However, sulphur inflow into such botanically interesting areas is generally perceived as a major threat to biodiversity. Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems because of 'so called' internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. Complementary to conventions, we propose that upwelling sulphate rich groundwater may, in fact, promote the conservation of rare and threatened alkaline fens: excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness of the inflowing groundwater. For a very species-rich wetland nature reserve, we show that sulphate is reduced and effectively precipitated as iron sulphides, when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Also, we show that sulphate reduction occurs simultaneously with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction, we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with

  14. The role of perched aquifers in hydrological connectivity and biogeochemical processes in vernal pool landscapes, Central Valley, California

    NASA Astrophysics Data System (ADS)

    Cable Rains, Mark; Fogg, Graham E.; Harter, Thomas; Dahlgren, Randy A.; Williamson, Robert J.

    2006-03-01

    Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is 0.6 m in thickness in the uplands and 0.1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded 0.1 m above the claypan/duripan. Perched groundwater discharge accounted for 30-60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate-nitrogen concentrations were lower (e.g. 0.17 to 0.39 mg l-1) and dissolved organic carbon concentrations were higher (e.g. 5.97 to 3.24 mg l-1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface-water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape-scale water quality.

  15. Progress Towards Coupled Simulation of Surface/Subsurface Hydrologic Processes and Terrestrial Ecosystem Dynamics Using the Community Models PFLOTRAN and CLM

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Bisht, G.; Karra, S.; Hoffman, F. M.; Hammond, G. E.; Kumar, J.; Painter, S.; Thornton, P. E.; Lichtner, P. C.

    2012-12-01

    in how the governing equations are solved, and we will compare different surface flow formulations as well as coupling strategies between the surface and subsurface domains. Additionally, for studies of hydrology in Arctic regions, we have added a three-phase ice model. We will present some demonstrations of this capability and discuss solver strategies for handling the strong nonlinearities that arise. To provide a unified treatment of the unsaturated and saturated zones and to enable lateral redistribution of soil moisture (and eventually surface water, heat, and nutrients) in regional climate models, we have developed an approach for coupling PFLOTRAN with CLM. CLM is the global land model component used within the Community Earth System Model (CESM) to simulate an extensive set of biogeophysical and biogeochemical processes occurring at or near the terrestrial surface. We will describe our approach for replacing the existing CLM hydrology using PFLOTRAN and present some preliminary simulations undertaken with the CLM-PFLOTRAN coupled model.

  16. CWM1: a general model to describe biokinetic processes in subsurface flow constructed wetlands.

    PubMed

    Langergraber, Guenter; Rousseau, Diederik P L; García, Joan; Mena, Javier

    2009-01-01

    This paper presents the Constructed Wetland Model No1 (CWM1), a general model to describe biochemical transformation and degradation processes for organic matter, nitrogen and sulphur in subsurface flow constructed wetlands. The main objective of CWM1 is to predict effluent concentrations from constructed wetlands without predicting gaseous emissions. CWM1 describes aerobic, anoxic and anaerobic processes and is therefore applicable to both horizontal and vertical flow systems. 17 processes and 16 components (8 soluble and 8 particulate) are considered. CWM1 is based on the mathematical formulation as introduced by the IWA Activated Sludge Models (ASMs). It is important to note that besides the biokinetic model a number of other processes including porous media hydrodynamics, the influence of plants, the transport of particles/suspended matter to describe clogging processes, adsorption and desorption processes and physical re-aeration must be considered for the formulation of a full model for constructed wetlands.

  17. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  18. Solfatara volcano subsurface imaging: two different approaches to process and interpret multi-variate data sets

    NASA Astrophysics Data System (ADS)

    Bernardinetti, Stefano; Bruno, Pier Paolo; Lavoué, François; Gresse, Marceau; Vandemeulebrouck, Jean; Revil, André

    2017-04-01

    The need to reduce model uncertainty and produce a more reliable geophysical imaging and interpretations is nowadays a fundamental task required to geophysics techniques applied in complex environments such as Solfatara Volcano. The use of independent geophysical methods allows to obtain many information on the subsurface due to the different sensitivities of the data towards parameters such as compressional and shearing wave velocities, bulk electrical conductivity, or density. The joint processing of these multiple physical properties can lead to a very detailed characterization of the subsurface and therefore enhance our imaging and our interpretation. In this work, we develop two different processing approaches based on reflection seismology and seismic P-wave tomography on one hand, and electrical data acquired over the same line, on the other hand. From these data, we obtain an image-guided electrical resistivity tomography and a post processing integration of tomographic results. The image-guided electrical resistivity tomography is obtained by regularizing the inversion of the electrical data with structural constraints extracted from a migrated seismic section using image processing tools. This approach enables to focus the reconstruction of electrical resistivity anomalies along the features visible in the seismic section, and acts as a guide for interpretation in terms of subsurface structures and processes. To integrate co-registrated P-wave velocity and electrical resistivity values, we apply a data mining tool, the k-means algorithm, to individuate relationships between the two set of variables. This algorithm permits to individuate different clusters with the objective to minimize the sum of squared Euclidean distances within each cluster and maximize it between clusters for the multivariate data set. We obtain a partitioning of the multivariate data set in a finite number of well-correlated clusters, representative of the optimum clustering of our

  19. Response of Biogeochemical Processes to Recent Sea Ice Decreasing in Arctic Chukchi Sea and Canadian Basin

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jin, H.; Li, H.; Liu, Z.; Zhang, H.

    2009-04-01

    Because of its sea ice cover the Arctic Ocean has not been considered as a sink of atmospheric carbon dioxide. With recent observations of decreasing ice cover due to global warming there is the potential for an increasing of biological pump efficiency, especially in Arctic Chukchi Sea and Canadian Basin where upper ocean nutrients transported from Bering Sea are very abundant. During three Icebreaker Xuelong cruises of Chinese Arctic Expeditions in summers in 1999, 2003 and 2008, we analyzed nutrients, DO, chl a, opal, primary productivity and carried out nutrients enrichment experiments on board. The results showed that sea ice in summer decreased very rapidly since 1999. Silicate and nitrate were largely depleted along the 170°W longitude section from Bering Strait to Canadian Basin while phosphate was over 0.5μM in most areas during three cruises, with a slight decadal decrease trend of nutrients suggesting uptake increase due to longer open ocean period within a year. Nutrients enrichment experiments suggested that there was silicate and nitrate co-limitation in central Canadian Basin in summer 2008 where only 10-20% sea ice cover. Average water column chl a concentrations were 2.79, 2.42 and 2.89 μg/L in 1999, 2003 and 2008 respectively with the chl a maximum at depth between 20-40m in shelf area and 20-70m in deep basin. Interestingly, chl a maximum became deeper in early September than it in late July along the 170°W section in 2003 and 2008, suggesting subsurface nutrients would also be utilized when upper ocean nutrients was depleted. The size fraction analysis of chl a showed that about 70% of chl a was contributed by >20μ phytoplankton while nano- and pico- plankton were minor contributors. Size fraction of opal analysis (>20μ and 0.8-20μ) in water column also supported that large phytoplankton predominated. The active biological pump in water column lead to higher chl a concentration in multicore sediments, highest sedimentary chl a (core top, 0

  20. The Influence of Subsurface Processes on the Concentration and Composition of Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Aiken, G.

    2004-12-01

    Microbial and geochemical interactions in the subsurface can result in chemical alteration and fractionation of organic matter thereby altering the nature and composition of dissolved organic matter (DOM) in groundwater and in surface waters dominated by ground water inflow. In this paper, the results of a study designed to determine the effectiveness of subsurface processes for removing DOM from two surface waters in Southern California will be presented. The recharge zones immediately underneath two infiltration basins, Anaheim Lake and Kraemer Basin, were found to be very active with respect to changes in the amounts and reactivities of the DOM. In all cases, dissolved organic carbon (DOC) concentrations decrease as water moves from the basins into the regional aquifer system. Data obtained from relatively shallow wells located near the infiltration basins (travel times less than 30 days) indicate that a large amount of DOM is removed during the first stages of transport in the subsurface. Parcels of water from both basins were followed for up to 360 days as the water moved away from the infiltration basins. DOC concentrations and specific ultraviolet absorbance (SUVA), an excellent indicator of aromatic carbon content of DOM, continued to decrease substantially with a general decrease in DOC concentration of about 70%. Regardless of initial DOC concentrations present in the infiltration basins, values decreased to approximately 1.3 mg C/L at the furthest points sampled. Analyses of organic matter isolates obtained by chromatographic methods indicated greater removal of aromatic molecules and preservation of branched chain aliphatic and alicyclic structures more resistant to biodegradation. Compared to samples from a wide range of environments, the DOM in the down gradient wells most closely resembled similar materials obtained from other groundwater systems and those of microbial origin. These results suggest that subsurface processes are significant in the

  1. Hydrogen Utilization Potential in Subsurface Sediments

    PubMed Central

    Adhikari, Rishi R.; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  2. Hydrogen Utilization Potential in Subsurface Sediments.

    PubMed

    Adhikari, Rishi R; Glombitza, Clemens; Nickel, Julia C; Anderson, Chloe H; Dunlea, Ann G; Spivack, Arthur J; Murray, Richard W; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  3. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of

  4. Are Changes in Biogeochemical or Hydrologic Processes Responsible for Increasing DOC Concentrations in Headwater Streams of Northeastern North America?

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Murdoch, P. S.

    2005-12-01

    The recent recognition of widespread and significant upward trends in dissolved organic carbon (DOC) concentrations in surface waters of northeastern North America and Europe has stimulated research to understand the cause of these trends. Several factors have been offered to explain these DOC trends including climate warming, chronic atmospheric nitrogen deposition, decreasing atmospheric sulfur deposition, and increasing surface water pH. Changes in these factors have acted to either increase the solubility of DOC or increase the rates of biogeochemical processes that generate labile carbon in the soil. Additionally, it is well known that rain events and snowmelt increase DOC concentrations in many surface waters through flushing along shallow flow paths where most labile carbon is stored. Changes in hydrologic flushing rates have generally not been explored as a possible explanation of these widely reported upward trends in DOC concentrations. Biscuit Brook, a 9.9 km2 catchment in the Catskill Mountains of New York has shown a significant increasing trend in DOC concentrations since 1992, consistent with other streams in this region. Stream chemistry has been monitored at Biscuit Brook on a weekly basis supplemented with event samples since 1983, providing a detailed data set with which to examine the causes of changes in DOC concentrations. Here, we examine the relative roles of climate warming, decreasing sulfate (SO42-) and nitrate (NO3-) concentrations, and changes in the frequency and size of hydrologic events on the long-term temporal pattern (1992 to 2004) of DOC concentrations in Biscuit Brook. DOC concentrations increased significantly in weekly samples collected primarily during low flow conditions. No similar trend was apparent in the high flow samples. Mean annual SO42- plus NO3- concentrations showed a strong inverse relation (r2 = 0.91, p < 0.01) to DOC concentrations, but these concentrations were not related to stream pH nor to air temperature

  5. Impact of long-term drainage on hydrogeological and biogeochemical processes near a drainage ditch in a Canadian peatland

    NASA Astrophysics Data System (ADS)

    Kopp, B.; Fleckenstein, J.; Blodau, C.

    2009-04-01

    Little is known about long-term effects of climate change on hydrogeological and biogeochemical processes in northern peatlands. A drainage ditch in the Mer Bleue Bog, Canada which has been established around 100 years ago, was investigated as natural analogue for long-term drying due to climate change. To examine the effects of the hydrological manipulation, several piezometer nests were installed across a transect from an open bog, across the drainage ditch into a now forested bog. Forest growth likely started after lowering of the groundwater table. Piezometer nests were installed in 200, 60, 30, 15 m distance from the drainage ditch on each side; three nests were installed across the drainage ditch. Piezometers were inserted into 0.25, 0.75, 1.0, 2.0 and 3.0 m depth. Pore water samples were taken on three occasions during the study period in summer 2008 and contents of carbondioxide (CO2), methane (CH4), dissolved organic carbon (DOC), main anions and DOC quality were analysed. Water levels in each piezometer were measured every two to nine days and logger were inserted in two piezometer (depth 0.75m and 2.0m) at the 200 m sites which allowed continuous monitoring of hydraulic potentials. By ground water modelling (using the MODFLOW pre- and post-processor Groundwater Vistas) differences in ground water patterns will be elucidated. First results show higher concentrations of CO2, alongside with high concentrations of DOC and low concentrations of CH4 in the forested area, especially in the upper most 0.75 m, compared to the open bog. Together with low hydraulic conductivities (Kf) and a lower water table in the forested area, this indicates higher mineralization rates and higher decomposed peat. High chloride (Cl-) concentrations, stemming from under-lying marine clay, in the forested area suggest that lower water tables together with greater evapotranspiration (ET) result in an increased upwelling of ground water. Highest concentrations of CO2 and CH4 were

  6. Chilly Hilly - coupling models of landscape evolution and subsurface thermal processes

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Anderson, R. S.

    2014-12-01

    Many hillslope processes - physical, chemical, and biological - depend on subsurface temperature and water availability. As the subsurface temperature field varies both in space and through climate cycles, the dominant processes of mobile regolith production and transport and the rate at which they act will vary. These processes include the chemical weathering of minerals, cracking of rocks through frost action and tree roots, presence and impact of vegetation on soil cohesion, location and activity of burrowing and trampling animals, frost creep, and solifluction. In order to explore the interplay between these processes across a landscape and over geologic time, we develop a pseudo-three-dimensional subsurface thermal model within the Landlab landscape evolution modeling framework, driven by an associated spatially explicit radiative surface boundary condition. We begin with the analytical solution for conduction in a medium with uniform thermal properties and progress to a numerical model that acknowledges variable material properties, water content, and phase change. At the surface we incorporate spatial and temporal variations in incoming short-wave radiation due to elevation, latitude, aspect, shading and orbital variations. Outgoing long-wave radiation is taken to depend on the surface temperature and may be modified by allowing back-radiation from the atmosphere. With these tools we target variations in regolith production and motion over the long timescales on which hillslopes evolve. We implement a basic parameterization of temperature-dependent chemical and physical weathering linked to mobile regolith generation. We incorporate multiple regolith transport processes including heave, creep, solifluction, tree throw, and animal burrowing. We incorporate material tracking to trace the chemical evolution of regolith as it moves downslope. Our intention is not to parameterize all operative processes, but to include sufficient detail to identify how the

  7. Hydrogeophysical characterization of subsurface processes and properties in the critical zone

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Huisman, J. A.; Altdorf, D.; von Hebel, C.; Gueting, N.; Klotzsche, A.; Van Der Kruk, J.

    2015-12-01

    Hydrogeophysical methods are ideally suited to characterize subsurface hydrologic structures and processes within the critical zone. Recent improvements in the acquisition and inversion of Ground Penetrating Radar (GPR) and ElectroMagnetic Induction (EMI) data now enable to characterize the subsurface in terms of spatially distributed information on soil and hydrologic properties, and to monitor hydrological processes using time-lapse measurements. We will illustrate these new developments by presenting three example cases. The first case illustrates the potential of using GPR full-waveform inversion techniques to obtain detailed information on subsurface porosity. For this purpose, we used cross-borehole GPR measurements along a series of longitudinal and transversal transects at the test site Krauthausen. The obtained information is key for modelling flow and solute transport because the high resolution of the GPR inversion results allows to study the effect of hydraulic connectivity on solute transport. In the following two cases, we illustrate the potential of multi-receiver electromagnetic induction (EMI) sensors that enable the imaging of the soil at different depths. The second case deals with the mapping of peat land properties at the field scale. We used multi-coil offset EMI measurements to provide spatial estimates of SOC content, bulk density, and SOC stock. Together with laser scanning elevation and soil core reference data, regression equations were built predicting SOC content, bulk density, and SOC stocks. EMI-derived explanatory variables were shown to strongly determine the prediction quality of the regression equations. In the last example, we investigated the origin of observed leaf area index (LAI) patterns that indicate crop performance. Using multi-coil offset EMI, we obtained a moderate to excellent spatial consistency of ECa and LAI patterns. It was concluded from these EMI measurements that improved crop performance was related to a higher

  8. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report

    SciTech Connect

    Not Available

    1993-09-01

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

  9. Storms as agents of wetland elevation change: their impact on surface and subsurface sediment processes

    USGS Publications Warehouse

    Cahoon, D.R.

    2003-01-01

    Direct measures of the impact of major storms on wetland sediment elevation are rare. Recently developed techniques have enabled simultaneous, quantitative observations of surface and subsurface processes affecting sediment elevation. An analysis of ten wetland sites revealed the following patterns of sediment elevation change after storm passage: (1) elevation change equivalent to sediment accretion or erosion, (2) elevation loss in spite of sediment deposition, or in excess of erosion, and (3) elevation gain greater than the amount of sediment accretion. These observations suggest that storms influence sediment elevation not only by sediment deposition and erosion but also through subsurface processes of sediment compaction, root growth and decomposition, and water flux. Wetlands receiving a substantial deposit of sediment did not always realize an equivalent elevation gain. Some realized a net loss in elevation as a result of sediment compaction apparently caused by the weight of the sediment deposit or the tidal surge waters, or both. Sediment elevation collapsed in two mangrove forests with highly organic substrate when the storm killed the forest. In two marshes, elevation gain exceeded deposition apparently through increased sediment water storage or plant root growth via nutrient enrichment from storm sediment deposits. The elevation responses were either temporary or permanent on an ecological time scale (> 8 years). In one organic marsh substrate, compaction was followed by expansion, only to be compacted again by another storm. Thus the elevation response of coastal wetlands to major storms varied depending on local substrate conditions and degree of storm impact.

  10. Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1-RETRASO.

    PubMed

    Llorens, Esther; Saaltink, Maarten W; Poch, Manel; García, Joan

    2011-01-01

    The performance and reliability of the CWM1-RETRASO model for simulating processes in horizontal subsurface flow constructed wetlands (HSSF CWs) and the relative contribution of different microbial reactions to organic matter (COD) removal in a HSSF CW treating urban wastewater were evaluated. Various different approaches with diverse influent configurations were simulated. According to the simulations, anaerobic processes were more widespread in the simulated wetland and contributed to a higher COD removal rate [72-79%] than anoxic [0-1%] and aerobic reactions [20-27%] did. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis [58-73%]. All results provided by the model were in consonance with literature and experimental field observations, suggesting a good performance and reliability of CWM1-RETRASO. According to the good simulation predictions, CWM1-RETRASO is the first mechanistic model able to successfully simulate the processes described by the CWM1 model in HSSF CWs.

  11. Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Levin, Lisa A.

    2009-03-01

    Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (˜150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940, 1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on

  12. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments.

    PubMed

    Ohkouchi, Naohiko; Nakajima, Yoji; Okada, Hisatake; Ogawa, Nanako O; Suga, Hisami; Oguri, Kazumasa; Kitazato, Hiroshi

    2005-07-01

    Stable carbon and nitrogen isotopic compositions were determined for individual photosynthetic pigments isolated and purified from the saline meromictic Lake Kaiike, Japan, to investigate species-independent biogeochemical processes of photoautotrophs in the natural environment. In the anoxic monimolimnion and benthic microbial mats, the carbon isotopic compositions of BChls e and isorenieratene related to brown-coloured strains of green sulfur bacteria are substantially ( approximately 10 per thousand) depleted in (13)C relative to those found in the chemocline. In conjunction with 16S rDNA evidence reported previously, it strongly suggests that Pelodyctyon luteolum inhabited and photosynthesized in the anoxic monimolimnion and benthic microbial mats by using (13)C-depleted regenerated CO(2). By contrast, both Chl a and BChl a in the monimolimnion and microbial mats have similar isotopic compositions as they do in the chemocline, implying that the source organisms live only in the chemocline. In the chemocline, the nitrogen isotopic compositions of BChl e homologues ranges from -7.7 to-6.5 per thousand, whereas that of BChl a is -2.1 per thousand. These isotopic compositions suggest that green sulfur bacteria Chlorobium phaeovibrioides would conduct nitrogen fixation in the chemocline, whereas purple sulfur bacteria Halochromatium sp. and cyanobacteria Synechococcus sp. may assimilate nitrite.

  13. Integrated Biogeochemical and Hydrologic Processes Driving Arsenic Release from Shallow Sediments to Groundwaters of the Mekong Delta

    SciTech Connect

    Kocar, Benjamin D.; Polizzotto, Matthew L.; Benner, Shawn G.; Ying, Samantha C.; Ung, Mengieng; Ouch, Kagna; Samreth, Sopheap; Suy, Bunseang; Phan, Kongkea; Sampson, Michael; Fendorf, Scott

    2008-11-01

    Arsenic is contaminating the groundwater of Holocene aquifers throughout South and Southeast Asia. To examine the biogeochemical and hydrological processes influencing dissolved concentrations and transport of As within soils/sediments in the Mekong River delta, a ~50 km₂ field site was established near Phnom Penh, Cambodia, where aqueous As concentrations are dangerously high and where groundwater retrieval for irrigation is minimal. Dissolved As concentrations vary spatially, ranging up to 1300 µg/L in aquifer groundwater and up to 600 µg/L in surficial clay pore water. Groundwaters with high As concentrations are reducing with negligible dissolved O₂ and high concentrations of Fe(II), NH⁺₄ , and dissolved organic C. Within near-surface environments, these conditions are most pronounced in sediments underlying permanent wetlands, often found within oxbow channels near the Mekong River. There, labile C, co-deposited with As-bearing Fe (hydr)oxides under reducing conditions, drives the reductive mobilization (inclusive of Fe and As reduction) of As. Here, conditions are described under which As is mobilized from these sediments, and near-surface As release is linked to aquifer contamination over long time periods (100s to 1000s of years). Site biogeochemistry is coupled with extensive hydrologic measurements, and, accordingly, a comprehensive interpretation of spatial As release and transport within a calibrated hydraulic flow-field is provided of an As-contaminated aquifer that is representative of those found throughout South and Southeast Asia.

  14. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012

    SciTech Connect

    Long, Philip E.; Banfield, Jill; Chandler, Darrell P.; Davis, James A.; Hettich, Bob; VerBerkmoes, Nathan; Jaffe, Peter R.; Kerkhof, Lee J.; Kukkadapu, Ravi K.; Lipton, Mary; Peacock, Aaron; Williams, Kenneth H.; Yabusaki, Steven B.

    2012-02-15

    The Rifle IFRC continued to make excellent progress during the last 12 months. As noted above, a key field experiment (Best Western) was performed during 2011 as a logical follow-on to the Super 8 field experiment preformed in 2010. In the Super 8 experiment, we successfully combined desorption and bioreduction and deployed a number of novel tracer techniques to enhance our ability to interpret the biogeochemistry of the experiment. In the Best Western experiment, we used the same experimental plot (Plot C) as was used for Super 8. The overarching objective of the Best Western field experiment was to compared the impacts of abiotic vs. biotic increases in alkalinity and to assess the mass of the sorbed pool of U(VI) at Rifle at the field scale. Both of these objectives were met. Preliminary analysis of the data indicate that the underlying biogeochemical data sets were obtained that will support a mechanistic understanding of the underlying processes, including remarkable insight into previously unrecognized microbial processes taking place during acetate amendment of the subsurface for a second time.

  15. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  16. Generalized total least squares to characterize biogeochemical processes of the ocean

    NASA Astrophysics Data System (ADS)

    Guglielmi, Véronique; Goyet, Catherine; Touratier, Franck; El Jai, Marie

    2017-01-01

    The chemical composition of the global ocean is governed by biological, chemical, and physical processes. These processes interact with each other so that the concentrations of carbon, oxygen, nitrogen (mainly from nitrate, nitrite, ammonium), and phosphorous (mainly from phosphate), vary in constant proportions, referred to as the Redfield ratios. We construct here the generalized total least squares estimator of these ratios. The significance of our approach is twofold; it respects the hydrological characteristics of the studied areas, and it can be applied identically in any area where enough data are available. The tests applied to Atlantic Ocean data highlight a variability of the Redfield ratios, both with geographical location and with depth. This variability emphasizes the importance of local and accurate estimates of Redfield ratios.

  17. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    SciTech Connect

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.

    2009-08-05

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.

  18. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  19. Development of advanced process-based model towards evaluation of boundless biogeochemical cycles in terrestrial-aquatic continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu; Maksyutov, Shamil

    2014-05-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local, regional and global scales, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes. In this study, NICE was extended to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. Then, NICE was further developed to incorporate the biogeochemical cycle including the reaction between inorganic and organic carbons (DOC, POC, DIC, pCO2, etc.) in the biosphere (terrestrial and aquatic ecosystems including surface water and groundwater). The model simulated the carbon cycle, for example, CO2 evasion from inland water in global scale, which is relatively in good agreement in that estimated by empirical relation using the previous pCO2 data (Aufdenkampe et al., 2011; Global River Chemistry Database, 2013). This simulation system would play important role in identification of full greenhouse gas balance of the biosphere and spatio-temporal hot spots in boundless biogeochemical cycle (Cole et al. 2007; Frei et al. 2012). References; Aufdenkampe, A.K., et al., Front. Ecol. Environ., doi:10.1890/100014, 2011. Battin, T.J., et al., Nat. Geosci., 2, 598-600, 2009. Cole, J.J. et al., Ecosystems, doi:10.1007/s10021-006-9013-8, 2007. Fan, Y. et al

  20. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  1. Distinguishing biogeochemical processes influencing phosphorus dynamics in oxidizing and desiccating mud deposits from a freshwater wetland system

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Wassen, Martin J.; Griffioen, Jasper

    2015-04-01

    Focus and aim: Currently, lake Markermeer (680 km2) provides poor environmental conditions for the development of flora and fauna due to a thick fluffy layer that prevails at the lake's bed. To improve the conditions in the lake, large wetlands will be built from this fluffy layer, possibly mixed with sand or with the underlying Southern Sea deposit. The aim of this study is to distinguish biogeochemical processes influencing phosphorus dynamics in porewater during oxidation and desiccation of mud deposits from this lake. We focus on three important aspects that potentially influence these processes: granulometry, sediment type and modification by plants. Material and methods: A greenhouse experiment was conducted with three types of sediment that potentially will function as building material for the islands: fluffy mud (FM), sandy mud (SM) and Southern Sea deposit (SSD). Reed (Phragmites australis) was planted in half of the pots to distinguish influence by plants. For six months, the porewater-, soil- and plant quality was monitored to determine important biogeochemical processes. Variables measured from the porewater include: Cl-, NO2-, NO3-, PO43- and SO42- (IC); Ca, Fe, K, Mn, Na, P, Si, Sr (ICP-OES); as well as Fe2+, pH, alkalinity and EC. A phosphorus fractionation was carried out on the sediment to determine the phosphorus pools and the major elements of the sediments were determined following an aqua regia destruction using ICP-OES. Plant tissue was analysed for N, P, K and C content as well as the above- and belowground biomass. Results and discussion: It was found that sulfate production was the most important process influencing phosphorus availability in these soils. Due to oxidation processes in the mud, sulfate (SO42-) concentrations rose drastically in porewater from 100 ppm at the beginning of the experiment to well over 2000 ppm at the end of the experiment. This effect was strongest in SSD soils, likely due to higher presence of pyrite that gets

  2. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  3. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  4. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  5. [Biogeochemical processes of the major ions and dissolved inorganic carbon in the Guijiang River].

    PubMed

    Tang, Wen-Kui; Tao, Zhen; Gao, Quan-Zhou; Mao, Hai-Ruo; Jiang, Guang-Hui; Jiao, Shu-Lin; Zheng, Xiong-Bo; Zhang, Qian-Zhu; Ma, Zan-Wen

    2014-06-01

    Within the drainage basin, information about natural processes and human activities can be recorded in the chemical composition of riverine water. The analysis of the Guijiang River, the first level tributary of the Xijiang River, demonstrated that the chemical composition of water in the Guijiang River was mainly influenced by the chemical weathering of carbonate rocks within the drainage basin, in which CO2 was the main erosion medium, and that the weathering of carbonate rock by H2SO4 had a remarkable impact on the water chemical composition in the Guijiang River. Precipitation, human activities, the weathering of carbonate rocks and silicate rocks accounted for 2.7%, 6.3%, 72.8% and 18.2% of the total dissolved load, respectively. The stable isotopic compositions of dissolved inorganic carbon (delta13C(DIC)) indicated that DIC in the Guijiang River had been assimilated by the phytoplankton in photosynthesis. The primary production of phytoplankton contributed to 22.3%-30.9% of particulate organic carbon (POC) in the Guijiang River, which implies that phytoplankton can transform DIC into POC by photosynthesis, and parts of POC will sink into the bottom of the river in transit, which leads into the formation of burial organic carbon.

  6. ASSESSMENT OF SUBSURFACE FATE OF MONOETHANOLAMINE AT SOUR GAS PROCESSING PLANT SITES-PHASE III

    SciTech Connect

    James A. Sorensen

    1999-02-01

    Alkanolamines are commonly used by the natural gas industry to remove hydrogen sulfide, carbon dioxide, and other acid gases from the natural gas in which they occur (''sour'' gas if hydrogen sulfide is present). At sour gas-processing plants, as at all plants that use alkanolamines for acid gas removal (AGR), spills and on-site management of wastes containing alkanolamines and associated reaction products have occasionally resulted in subsurface contamination that is presently the focus of some environmental concern. In 1994, the Energy and Environmental Research Center (EERC) initiated a three-phase program to investigate the natural attenuation processes that control the subsurface transport and fate of the most commonly used alkanolamine in Canada, monoethanolamine (MEA). Funding for the MEA research program was provided by the U.S. Department of Energy (DOE), Canadian Association of Petroleum Producers (CAPP), Canadian Occidental Petroleum Ltd. (CanOxy), Gas Research Institute (GRI), Environment Canada, and the National Energy Board of Canada. The MEA research program focused primarily on examining the biodegradability of MEA and MEA-related waste materials in soils and soil-slurries under a variety of environmentally relevant conditions, evaluating the mobility of MEA in soil and groundwater and the effectiveness of bioremediation techniques for removing contaminants and toxicity from MEA-contaminated soil. The presently inactive Okotoks sour gas-processing plant, owned by CanOxy in Alberta, Canada, was the source of samples and field data for much of the laboratory-based experimental work and was selected to be the location for the field-based efforts to evaluate remediation techniques. The objective of the research program is to provide the natural gas industry with ''real world'' data and insights developed under laboratory and field conditions regarding the effective and environmentally sound use of biological methods for the remediation of soil

  7. Impact of hydrotalcite deposition on biogeochemical processes in a shallow tropical bay.

    PubMed

    Alongi, Daniel M; McKinnon, A David

    2011-03-01

    The biogeochemistry of a tropical shoal bay (Melville Bay, Australia) impacted by the effluent release, precipitation, and deposition of hydrotalcite from an alumina refinery was studied in both wet and dry seasons. Within the deposition zone, sulfate reduction dominated benthic carbon cycling accounting for ≈100% of total microbial activity, with rates greater than those measured in most other marine sediments. These rapid rates of anoxic metabolism resulted in high rates of sulfide and ammonium production and low C:S ratios, implying significant preservation of S in stable sulfide minerals. Rates of total microbial activity were significantly less in control sediments of equivalent grain size, where sulfate reduction accounted for ≈50% of total benthic metabolism. Rates of planktonic carbon cycling overlying the deposition zone were also greater than those measured in the control areas of southern Melville Bay. At the sediment surface, productive algal and cyanobacterial mats helped stabilize the sediment surface and oxidize sulfide to sulfate to maintain a fully oxygenated water-column overlying the impacted zone. The mats utilized a significant fraction of dissolved inorganic N and P released from the sea bed; some nutrients escaped to the water-column such that benthic regeneration of NH₄+ and PO₄³⁻ accounted for 100% and 42% of phytoplankton requirements for N and P, respectively. These percentages are high compared to other tropical coastal environments and indicate that benthic nutrient recycling may be a significant factor driving water-column production overlying the deposition zone. With regard to remediation, it is recommended that the sea bed not be disturbed as attempts at removal may result in further environmental problems and would require specific assessment of the proposed removal process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Towards the understanding of biogeochemical processes involved in the release of carbonyl sulfide (COS) from soil

    NASA Astrophysics Data System (ADS)

    Behrendt, Thomas; Catao, Elisa; Bunk, Rüdiger; Yi, Zhigang; Greule, Markus; Keppler, Frank; Kesselmeier, Jürgen; Trumbore, Susan

    2017-04-01

    Carbonyl sulfide (COS) is present in the atmosphere in low mixing ratio ( 500ppt). It is relevant in climate change through the effect in aerosol formation. Soils can act as source of COS, e.g. by microbial degradation of thiocyanate from plant material. On the other side it is known that COS can be consumed via various enzymatic pathways. Assuming that biogenic processes dominate over chemical reactions we extracted nucleic acids and performed amplicon sequencing for bacteria (16S rRNA) and fungi (ITS region) from a mid-latitude agricultural maize soil which was previously incubated under ambient COS and COS fumigation ( 1000ppt). The mixing ratios of COS have been measured online from soil samples in a dynamic chamber system under laboratory conditions by an integrated cavity output spectroscopy (IOCS) analyzer (Los Gatos Research Inc., USA). Additionally stable carbon isotope values (δ13C values) of COS were measured using a pre-concentration method and stable isotope ratio mass spectrometry (IRMS). Under low COS mixing ratio ( 50ppt) δ13C +4.7 ‰ for spruce forest ( 23°C), and -24.4‰ for mid-latitude cornfield ( 22°C), respectively. Linking gas release rates of (COS, CO2, CO, NO) to isotopic signatures of COS and molecular results might allow us to indicate bacterial s-compound degradation related to the higher activity of β-Proteobacteria and of the family Acetobacteraceae from the α-Proteobacteria phylum, potentially involved with the hydrolysis of thiocyanate in the soil releasing COS. Furthermore, our study reports the first COS data for rainforest and desert soils which are in the order of 0.5 pmol gdw-1 h-1 and 2 pmol gdw-1 h-1, respectively.

  9. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K.; Mogollón, J. M.; Picard, A.; Rühlemann, C.; Kuhn, T.; Nöthen, K.; Kasten, S.

    2014-09-01

    Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment, in both water column and sediment, supports our ability to locate future nodule deposits and to evaluate the potential ecological and environmental effects of future deep-sea mining. For these purposes we studied the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180-300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labeled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.

  10. New insights into biogeochemical processing gained from sub-daily river monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, S. J.; Wade, A. J.; Skeffington, R. A.; Bowes, M.; Palmer-Felgate, E.; Loewenthal, M.; Jarvie, H.; Neal, C.; Reynolds, B.; Gozzard, E.; Newman, J.

    2012-12-01

    This talk will focus on the insights obtained from sub-daily hydrochemical monitoring for a sustained time periods (> 1 year), at multiple sites within a catchment and across different catchment types. Sub-daily instream hydrochemical dynamics were investigated, using non-stationary time-series analysis techniques, for two catchments representative of upland and lowland UK. The River Hafren at Plynlimon, mid-Wales drains an upland catchment where half the land cover is unmanaged moorland and the other half is first generation plantation forestry. The Hafren was monitored at two sites on a 7-hourly basis, between March 2007 and January 2009, using a Xian automatic sampler. The River Enborne, Berkshire, southeast England, is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works discharges. The Enborne was monitored on an hourly basis between November 2009 and February 2012, using in situ field deployable analytical equipment to measure: Total Reactive Phosphorus (TRP: Systea Micromac C), Nitrate (Hach-Lange Nitratax), pH, dissolved oxygen, conductivity and water temperature (YSI 6600 Multi-parameter sonde). The results reveal complex diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by both flow conditions and nutrient sources. The comparison of the upland and lowland nitrate time series highlights how the different nitrogen sources within each system results in marked differences in the seasonal and diurnal dynamics, with a seasonal maximum in winter and a single peak diurnal cycle in the upland system, compared to a summer maximum and a two peak diurnal cycle in the lowland system. The analysis of TRP and nitrate concentrations in the Enborne catchment, in combination with flow, pH, dissolved oxygen, conductivity and water temperature, allowed the main processes controlling the observed sub-daily nutrient dynamics to be investigated. The different monitoring approaches adopted

  11. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  12. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (α2β2γ2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass

  13. Biogeochemical Processes Related to Metal Removal and Toxicity Reduction in the H-02 Constructed Wetland, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.

    2011-12-01

    The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02

  14. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    SciTech Connect

    Jain, Atul K.

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  15. Synchronous DOM and dissolved phosphorus release in riparian soil waters: linking water table fluctuations and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Dupas, R.; Humbert, G.; GU, S.; Jeanneau, L.; Fovet, O.; Denis, M.; Gascuel-Odoux, C.; Jaffrezic, A.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Petitjean, P.

    2015-12-01

    Riparian zones are often viewed as hot spots controlling N, C, P and Fe cycling and export in catchments. Groundwater and surface water flowpaths converge in these zones, and encounter the most reactive, organic-rich, uppermost soil horizons, while being at the same time zones in which soil moisture conditions temporarily fluctuate due to changes in water table depth, which can trigger biogeochemical processes. One well documented example is the process of denitrification which can remove N from riparian groundwater due to the anaerobic reduction of nitrate by soil organic matter. However, the role of riparian zones on the cycling of other nutrients such as dissolved organic matter (DOM) and dissolved P (DP) is much less well documented. In this study, we evaluated this role by using time series of DOM and DP concentrations obtained on the Kervidy-Naizin catchment, a temperate agricultural headwater catchment controlled by shallow groundwater. Over 2 years, groundwater DOM and DP were monitored fortnightly both in the riparian zones and at the bottom of hillslope domains. Two periods of synchronous DOM and DP release were evidenced, the first corresponding to the rise of the water table after the dry summer period, the second being concomitant of the installation of reducing conditions. The reductive dissolution of soil Fe oxyhydroxides initiated by the prolonged soil water saturation caused the second peak, a process which was, however, strongly temporarily and spatially variable at the catchment scale, being dependent on i) the local topographic slope and ii) the annual rainfall amount and frequency. As regard the first peak, it was due either to the flushing by the water table of DOM and DP accumulated during the summer period, or to the release of microbial DOM and DP due to microbial biomass killing by osmotic shock. This study argues for the existence of coupled and complex DOM and DP release processes in the riparian zones of shallow groundwater dominated

  16. Understanding the Relative Influence of Anthropogenic Versus Natural Nitrogen on Biogeochemical Processes in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    McLaughlin, K.; Howard, M. D.; Beck, C. D. A.; Emler, L.; Nezlin, N. P.; Sutula, M.

    2016-02-01

    Nitrogen (N) pollution is considered to be one of the most significant consequences of human-accelerated global change on coastal oceans (Howarth and Marino 2006). In the southern California Bight, wastewater effluent represents 92% of total terrestrial N loading and these loads are equivalent to the "background" N flux from upwelling (Howard et al. 2014). In this study, we attempt to quantify the relative influence of the two dominant nitrogen sources to the Bight (wastewater effluent and upwelled nitrogen) on biogeochemical processes linked to dissolved oxygen, pH and algal blooms. We will compare the sources and fate of nitrogen in an effluent impacted region (offshore of Los Angeles and Orange Counties) to minimally-impacted regions both along the coastline (offshore of Northern San Diego County) and two offshore stations. Key rates of nitrogen and carbon cycling are measured, including primary production and respiration, nitrogen uptake by primary producers, and nitrification. Stable isotope tracer techniques have also been applied to determine the relative influence of effluent versus upwelled nitrogen on biological communities and concentrations. Data generated from this study will be used to validate calculated rate constants used in oceanographic models of ecological response from natural and anthropogenic nutrient inputs in the Bight. These models will be used to estimate the extent to which anthropogenic nutrients are affecting primary production, acidification and hypoxia, as well as which regions are most at risk. They will also be used to analyze management scenarios to understand the effects of anthropogenic nutrient load reductions relative to climate change scenarios.

  17. Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a 1D interdisciplinary model

    NASA Astrophysics Data System (ADS)

    Raick, C.; Delhez, E. J. M.; Soetaert, K.; Grégoire, M.

    2005-04-01

    A one-dimensional coupled physical-biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of Liège. The ecosystem model contains 19 state variables describing the carbon and nitrogen cycles of the pelagic food web. Phytoplankton and zooplankton are both divided in three size-based compartments and the model includes an explicit representation of the microbial loop including bacteria, dissolved organic matter, nano-, and microzooplankton. The internal carbon/nitrogen ratio is assumed variable for phytoplankton and detritus, and constant for zooplankton and bacteria. Silicate is considered as a potential limiting nutrient of phytoplankton's growth. The aggregation model described by Kriest and Evans in (Proc. Ind. Acad. Sci., Earth Planet. Sci. 109 (4) (2000) 453) is used to evaluate the sinking rate of particulate detritus. The model is forced at the air-sea interface by meteorological data coming from the "Côte d'Azur" Meteorological Buoy. The dynamics of atmospheric fluxes in the Mediterranean Sea (DYFAMED) time-series data obtained during the year 2000 are used to calibrate and validate the biological model. The comparison of model results within in situ DYFAMED data shows that although some processes are not represented by the model, such as horizontal and vertical advections, model results are overall in agreement with observations and differences observed can be explained with environmental conditions.

  18. Deciphering the Role of Surface and Subsurface Processes on Solute Dynamics at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Scanlon, T. M.; Riscassi, A. L.; Ingram, S. M.

    2008-12-01

    Nitrate (NO3-) leakage from forested watersheds due to disturbance is a well-documented but not well- understood process that can contribute to the degradation of receiving waters through eutrophication. Several studies have shown large-scale defoliation events in small forested watersheds in the Eastern U.S. cause immediate and dramatic increases in NO3- flux to steams with large differences in recovery time. Here, we analyze water-quality and discharge data collected from the time period 1992-2004 following a large-scale gypsy moth defoliation in Shenandoah National Park, Virginia. Following the defoliation, groundwater NO3- concentrations declined exponentially with a distinct seasonal pattern. Initial NO3- groundwater concentrations were related to the magnitude of defoliation within each watershed. Surprisingly, no long-term trend or seasonal pattern were found for soil water NO3- concentrations, as inferred from a mixing model applied to individual storm events. By comparing decay constants associated with groundwater discharge with constants for nitrate recovery to background concentrations, we find a hydrological imprint on the recovery time. This was confirmed by performing similar analysis on data from Hubbard Brook and Coweeta, where more rapid recovery times are attributed to the distinct biogeochemical processes associated with deforestation or crown damage. Synoptic measurements of NO3- concentrations collected on eight occasions within a stream network during the period of recovery are used to fit a model designed to capture the observed spatial variability. We find that upland terrestrial processes, rather than in-stream processes, account for the greatest proportion of this variability.

  19. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    Treesearch

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer; Carol Kendall; Daniel H. Doctor

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this...

  20. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    NASA Astrophysics Data System (ADS)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  1. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface.

    PubMed

    Brusseau, Mark L

    2017-09-12

    A comprehensive understanding of the transport and fate of per- and poly-fluoroalkyl substances (PFAS) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. A multi-process retention model is proposed to account for potential additional sources of retardation for PFAS transport in source zones. These include partitioning to the soil atmosphere, adsorption at air-water interfaces, partitioning to trapped organic liquids (NAPL), and adsorption at NAPL-water interfaces. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for two PFAS of primary concern, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), and an example precursor (fluorotelomer alcohol, FTOH). The illustrative evaluation was conducted using measured porous-medium properties representative of a sandy vadose-zone soil. Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for the model system. The results showed that adsorption at the air-water interface was a primary source of retention for both PFOA and PFOS, contributing approximately 50% of total retention for the conditions employed. Adsorption to NAPL-water interfaces and partitioning to bulk NAPL were also shown to be significant sources of retention. NAPL partitioning was the predominant source of retention for FTOH, contributing ~98% of total retention. These results indicate that these additional processes may be, in some cases, significant sources of retention for subsurface transport of PFAS. The specific magnitudes and significance of the individual retention processes will depend upon the properties and conditions of the specific system of interest (e.g., PFAS constituent and concentration, porous medium, aqueous chemistry, fluid saturations, co-contaminants). In cases wherein these

  2. Integrating hydraulic conductivity with biogeochemical gradients and microbial activity along river-groundwater exchange zones in a subtropical stream

    NASA Astrophysics Data System (ADS)

    Claret, Cécile; Boulton, Andrew J.

    2009-02-01

    The pervious lateral bars (parafluvial zone) and beds (hyporheic zone), where stream water and groundwater exchange, are dynamic sites of hydrological and biological retention. The significance of these biogeochemical ‘hotspots’ to stream and groundwater metabolism is largely controlled by filtration capacity, defined as the extent to which subsurface flowpaths and matrix hydraulic conductivity modify water characteristics. Where hydraulic conductivity is high, gradients in biogeochemistry and microbial activity along subsurface flowpaths were hypothesized to be less marked than where hydraulic conductivity is low. This hypothesis was tested in two riffles and gravel bars in an Australian subtropical stream. At one site, gradients in chemical and microbial variables along flowpaths were associated with reduced hydraulic conductivity, longer water residence time and reduced filtration capacity compared with the second site where filtration capacity was greater and longitudinal biogeochemical trends were dampened. These results imply that factors affecting the sediment matrix in this subtropical stream can alter filtration capacity, interstitial microbial activity and biogeochemical gradients along subsurface flowpaths. This hydroecological approach also indicates potential for a simple field technique to estimate filtration capacity and predict the prevailing hyporheic gradients in microbial activity and biogeochemical processing efficiency, with significant implications for stream ecosystem function.

  3. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Vialard, Jérôme; Behrenfeld, Michael J.

    Characterizing how the Indian Ocean dipole (IOD) modifies typical basin-wide dynamical variability has been vigorously pursued over the past decade. Along with this dynamic response, a clear biological impact has been revealed in the ocean color data acquired by remote sensing platforms such as Sea-viewing Wide Field-of-View Sensor (SeaWiFS). The signature feature illustrating IOD alteration of typical spatiotemporal chlorophyll variability is the phytoplankton bloom that first appears in September along the eastern boundary of the IO in tropical waters that are normally highly oligotrophic. Positive chlorophyll anomalies (CLa) are also apparent in the southeastern Bay of Bengal, while negative anomalies are observed over much of the Arabian Sea. Moreover, in situ measurements obtained by the R/V Suroit as part of the Cirene cruise during the 2006/2007 IOD reveal anomalous subsurface biochemical distributions in the southern tropical IO that are not reflected in SeaWiFS data. Despite the clear basin-wide influence of IOD events on biological variability, the accompanying influence on biogeochemical cycling that must occur has received little attention. Here, the dynamical signatures apparent in remote sensing fields for the two positive-phase IODs of the SeaWiFS era are used to illuminate how these events are similar or distinct. A corresponding comparison of IOD-engendered surface CLa is performed, with the dynamical fields providing the framework for interpreting the mechanisms underlying the biological response. Then, results from a newly developed net primary production algorithm are presented that provide the first characterization of how biogeochemical fluxes throughout the IO are altered by IOD occurrence

  4. Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water

    NASA Technical Reports Server (NTRS)

    Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.

    2004-01-01

    The presence of water-ice in the Martian subsurface is a subject of much debate and excited speculation. Recent results from the gammaray spectrometer (GRS) on board NASA's Mars Odyssey spacecraft indicate the presence of large amounts of hydrogen in regions of predicted ice stability. The combination of chemistry, low gravitational field (3.71 m/s(exp 2)) and a surface pressure of about 6.36 mbar at the mean radius, place limits on the stability of H2O on the surface, however, results from the GRS indicate that the hydrogen rich phase may be present at a depth as shallow as one meter in some locations on Mars. The potential for water on Mars leads directly to the speculation that life may once have existed there, since liquid water is the unifying factor for environments known to support life on Earth. Lubricant-free drilling has been considered as a means of obtaining water-rich subsurface samples on Mars, and two recent white papers sponsored by the Mars Program have attempted to identify the problems associated with this goal. The two major issues identified were: the engineering challenges of drilling into a water-soil mixture where phase changes may occur; and the potential to compromise the integrity of in-situ scientific analysis due to contamination, volatilization, and mineralogical or chemical changes as a result of processing. This study is a first attempt to simulate lubricantfree drilling into JSC Mars-1 simulant containing up to 50% water by weight. The goal is to address the following: 1) Does sample processing cause reactions or changes in mineralogy which will compromise the interpretation of scientific measurements conducted on the surface? 2) Does the presence of water-ice in the sample complicate (1)? 3) Do lubricant-free drilling and processing leave trace contaminants which may compromise our understanding of sample composition? 4) How does the torque/power required for drilling change as a function of water content and does this lead to

  5. Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water

    NASA Technical Reports Server (NTRS)

    Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.

    2004-01-01

    The presence of water-ice in the Martian subsurface is a subject of much debate and excited speculation. Recent results from the gammaray spectrometer (GRS) on board NASA's Mars Odyssey spacecraft indicate the presence of large amounts of hydrogen in regions of predicted ice stability. The combination of chemistry, low gravitational field (3.71 m/s(exp 2)) and a surface pressure of about 6.36 mbar at the mean radius, place limits on the stability of H2O on the surface, however, results from the GRS indicate that the hydrogen rich phase may be present at a depth as shallow as one meter in some locations on Mars. The potential for water on Mars leads directly to the speculation that life may once have existed there, since liquid water is the unifying factor for environments known to support life on Earth. Lubricant-free drilling has been considered as a means of obtaining water-rich subsurface samples on Mars, and two recent white papers sponsored by the Mars Program have attempted to identify the problems associated with this goal. The two major issues identified were: the engineering challenges of drilling into a water-soil mixture where phase changes may occur; and the potential to compromise the integrity of in-situ scientific analysis due to contamination, volatilization, and mineralogical or chemical changes as a result of processing. This study is a first attempt to simulate lubricantfree drilling into JSC Mars-1 simulant containing up to 50% water by weight. The goal is to address the following: 1) Does sample processing cause reactions or changes in mineralogy which will compromise the interpretation of scientific measurements conducted on the surface? 2) Does the presence of water-ice in the sample complicate (1)? 3) Do lubricant-free drilling and processing leave trace contaminants which may compromise our understanding of sample composition? 4) How does the torque/power required for drilling change as a function of water content and does this lead to

  6. MRF Applications: Measurement of Process-dependent Subsurface Damage in Optical Materials using the MRF Wedge Technique

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Wong, L L; Suratwala, T I; Miller, P E

    2005-11-02

    Understanding the behavior of fractures and subsurface damage in the processes used during optic fabrication plays a key role in determining the final quality of the optical surface finish. During the early stages of surface preparation, brittle grinding processes induce fractures at or near an optical surface whose range can extend from depths of a few mm to hundreds of mm depending upon the process and tooling being employed. Controlling the occurrence, structure, and propagation of these sites during subsequent grinding and polishing operations is highly desirable if one wishes to obtain high-quality surfaces that are free of such artifacts. Over the past year, our team has made significant strides in developing a diagnostic technique that combines magnetorheological finishing (MRF) and scanning optical microscopy to measure and characterize subsurface damage in optical materials. The technique takes advantage of the unique nature of MRF to polish a prescribed large-area wedge into the optical surface without propagating existing damage or introducing new damage. The polished wedge is then analyzed to quantify subsurface damage as a function of depth from the original surface. Large-area measurement using scanning optical microscopy provides for improved accuracy and reliability over methods such as the COM ball-dimple technique. Examples of the technique's use will be presented that illustrate the behavior of subsurface damage in fused silica that arises during a variety of intermediate optical fabrication process steps.

  7. The interplay between estuarine transport and biogeochemical processes in determining the nutrient conditions in bottom layers of non-tidal Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Kõuts, Mariliis; Raudsepp, Urmas; Maljutenko, Ilja

    2017-04-01

    In coastal areas, especially estuaries, spatial distribution and seasonal cycling of chemical and biological variables is largely determined by local biogeochemical processes and water transport of different properties. In tidal estuaries, however, biogeochemical processes are affected by tides as frequent water exchange alters nutrient and oxygen concentrations. In wide and deep non-tidal estuary-type marginal seas spatial distribution and seasonal cycling are determined by the mixture of water transport and local biogeochemistry. The Baltic Sea is a stratified water basin where halocline divides the water column into two parts: upper layer, which is horizontally uniform in terms of distribution of chemical and biological parameters, and has clear seasonal cycle; and bottom part, where nutrient and oxygen dynamics is more complex. There water transport and sediment-water interface fluxes play a major role. Our prime focus is the Gulf of Finland in the Baltic Sea. It is a wide, non-tidal and stratified sub-basin known for its high nutrient concentrations and severe oxygen deficiency in summer. We modelled the Baltic Sea (including Gulf of Finland) using ERGOM, a biogeochemical model coupled with circulation model GETM. Seasonal cycling and water circulation were observed with a 40-year simulation from 1966 to 2006. Our results show that in shallow areas above halocline the seasonal cycle of phytoplankton, nutrients and oxygen concentrations is uniform in space. Water circulation does not create inhomogeneous distribution pattern of biogeochemical parameters and their seasonal cycle. The circulation in the Gulf of Finland is strongly modulated by the seasonality of estuarine transport. Below the halocline saline low-oxygen and nutrient-rich water is transported from the open Baltic Proper to the Gulf of Finland in spring and early summer. This results in the highest nutrient concentrations and the poorest oxygen conditions by the end of August. In the shallow area

  8. A global neural network-based parameterization of biogeochemical water mass properties and processes based on GLODAP data

    NASA Astrophysics Data System (ADS)

    Bittig, Henry C.; Sauzède, Raphaëlle; Claustre, Hervé; Pasqueron de Fommervault, Orens; Gattuso, Jean-Pierre; Legendre, Louis; Johnson, Ken

    2017-04-01

    Global data collections like GLODAP are an extensive source of biogeochemical and hydrological data. However, data are irregularly distributed in space and time with varying parameter-coverage. This poses a challenge to data analysis of, e.g., the global distribution of stoichiometric ratios or temporal trends. Here we utilize a neural network-based approach called CANYON to estimate carbonate system parameters (CT, AT, pH, and pCO2) and nitrate, phosphate, and silicate concentrations from commonly measured quantities (P, T, S, O2, location, and date). CANYON was derived using GLODAPv2 data but can be applied to any set of input quantities (e.g., observations from autonomous platforms like Biogeochemical-Argo floats with accurate O2 measurements). In essence, CANYON provides a mapping of water mass properties and biogeochemical relations for those parameters based on the multidecadal, global observations collected in GLODAPv2. It can thus provide biogeochemical context and fill observational gaps, e.g., where nutrient or carbonate system measurements are unavailable. As an example, float-based surface CTD-O2 observations together with the CANYON parameterization are used to obtain surface pCO2 estimates in the Southern Ocean, complementing sparse surface underway pCO2 data collected in SOCAT. Moreover, it can shed light on global variations of, e.g., Redfield ratios of nitrate, phosphate, oxygen, and carbon. We believe that this parametrization provides a useful alternative to scattered data points or a mapped climatology to facilitate utilization and exploitation of the unique GLODAP data collection.

  9. Final Report: A Model Management System for Numerical Simulations of Subsurface Processes

    SciTech Connect

    Zachmann, David

    2013-10-07

    The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.

  10. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    SciTech Connect

    Stegen, James C.; Konopka, Allan; McKinely, Jim; Murray, Christopher J.; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-29

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  11. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    NASA Astrophysics Data System (ADS)

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  12. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    PubMed Central

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  13. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies.

    PubMed

    Stegen, James C; Konopka, Allan; McKinley, James P; Murray, Chris; Lin, Xueju; Miller, Micah D; Kennedy, David W; Miller, Erin A; Resch, Charles T; Fredrickson, Jim K

    2016-07-29

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies-oxidized, reduced, and transition-within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness-the number of microbial taxa-was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  14. Joint hydrogeological and hydrogeophysical models to map subsurface heterogeneity and to model transport processes

    NASA Astrophysics Data System (ADS)

    Cattaneo, Laura; Giudici, Mauro; De Franco, Roberto; Mele, Mauro; Vassena, Chiara

    2014-05-01

    Hydraulic conductivity and electrical resistivity of the alluvial sediments depend, among the others, on textures and soil saturation. Characterization of the subsurface heterogeneity and monitoring the dynamics of groundwater can be accomplished by the collection of geoelectrical and hydraulic data and by the joint modeling of the corresponding physical processes. A research project, during which it has been developing an interpretative tool that profits from DC geoelectrical and hydraulic measurements, aims to provide a further step towards this objective. Two original computer codes, both based on conservative finite differences schemes, have been developed to solve the hydrological (YAGMOD) and the geoelectrical (YAELMOD) forward problems. The subsurface is considered to be subdivided in hydro-geo-bodies, which are regions occupied by geological materials (hydro-geo-facies, HGF) which share the same geoelectrical and hydrodynamic characteristics, namely phenomenological laws that relate electrical resistivity and hydraulic conductivity to texture, soil saturation and pore water conductivity, through specific phenomenological parameters for each HGF. If the spatial distribution of HGFs is estimated from a collection of lithological data (e.g. boreholes) and if the spatial distribution of soil saturation and pore water conductivity is known, then the hydraulic conductivity and electrical resistivity fields could be reconstructed. The developed interpretative tool could then apply an iterative procedure that repeatedly solves the hydraulic and electrical forward problem for different stress condition of the aquifer by changing the estimated HGF parameters, as a basic step to match experimental data with model outcomes, by the application of an approach based on the Kalman filter. In particular the goal of this presentation is to assess the sensitivity of some of the model features on the results and on the capability of the interpretative tool. The focus is on a

  15. Evolution of light hydrocarbon gases in subsurface processes: Constraints from chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Sugisaki, Ryuichi; Nagamine, Koichiro

    1995-06-01

    The behaviour of CH 4, C 2H 6 and C 3H 8 in subsurface processes such as magma intrusion, volcanic gas discharge and natural gas generation have been examined from the viewpoint of chemical equilibrium. It seems that equilibrium among these three hydrocarbons is attainable at about 200°C. When a system at high temperatures is cooled, re-equilibration is continued until a low temperature is reached. The rate at which re-equilibration is achieved, however, steadily diminishes and, below 200°C, the reaction between the hydrocarbons stops and the gas composition at this time is frozen in, and it remains unchanged in a metastable state for a long period of geological time. Natural gas compositions from various fields have shown that, when a hydrocarbon system out of chemical equilibrium is heated, it gradually approaches equilibrium above 150°C. On the way towards equilibration, compositions of thermogenic gases apparently temporarily show a thermodynamic equilibrium constant at a temperature that is higher than the real equilibrium temperature expected from the ambient temperature of the samples; in contrast, biogenic gases indicate a lower temperature. In lower temperature regions, kinetic effects probably control the gas composition; the compositions are essentially subjected to genetic processes operating on the gases (such as pyrolysis of organic material and bacterial activity) and they fluctuate substantially. Examination of volcanic gases and pyrolysis experimental data, however, have suggested that the equilibration rate of these hydrocarbons is sluggish in comparison with that of reactive inorganic species such as H 2S and SO 2. The view presented in this study will be helpful in understanding the genetic processes that create oil and gas and the migration of these hydrocarbons and in interpreting the origins of magmatic gases.

  16. GC×GC-TOF-MS of Metabolites of Lake Vida Brine (Antarctica): Evidence for Past and Current Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Chou, L.; Kenig, F. P. H.; Murray, A. E.; Fritsen, C. H.; Doran, P. T.

    2016-12-01

    Lake Vida, located in the McMurdo Dry Valleys, Antarctica, permanently encapsulates an interstitial anoxic, aphotic, cold (-13°C), brine ecosystem within 27 m of ice, and has been isolated from the environment for millennia (Murray et al. 2012; PNAS). Active, but slow-growing bacteria ( 120 yr generation time) were observed in this brine. The processes involved in the survivability of these microbes remain unclear. Thus, we attempt to elucidate the biogeochemistry of Lake Vida brine (LVBr) using metabolomics. LVBr contains high abundance of DOC (48.2±9.7 mmol•L-1). The slow metabolism of LVBr microbes allows for the accumulation of organic carbon that is inherited from a previous ecosystem, a glacial lake that occupied Lake Vida basin prior to LVBr isolation. Consequently, the presence of this legacy carbon, including dissolved metabolites, convolutes the interpretation of metabolic signals deriving from the current ecosystem. The aim of this study is to designate metabolites of LVBr as legacy, modern metabolic products, or both. A total lipid extract of LVBr was analyzed using a multi-dimensional comprehensive gas chromatography-time of flight-mass spectrometry (GC×GC-TOF-MS). Metabolites in LVBr are dominated by an altered legacy component: compounds synthesized in a previous ecosystem that was exposed to sunlight and the atmosphere. C8-C14 norisoprenoids observed in LVBr are derived from the oxidation of C40 and diatom pigments, whereas maleimides are degradation products of chlorophylls and bacteriochlorophylls. Additionally, we observe a diversity of sulfones and sulfoxides that may have resulted from microbial oxidation or abiotic oxidation of sulfur-bearing organic compounds. It is unclear if the alteration of legacy components in LVBr is enzymatically driven or is a pure abiotic diagenetic process. The production of some of the observed legacy compounds require molecular oxygen, which suggests that they were produced in an oxic environment, not within

  17. Afforestation Alters the Composition of Functional Genes in Soil and Biogeochemical Processes in South American Grasslands▿ †

    PubMed Central

    Berthrong, Sean T.; Schadt, Christopher W.; Piñeiro, Gervasio; Jackson, Robert B.

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH4+ in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils. PMID:19700539

  18. Biogeochemical processing of nutrients in groundwater-fed stream during baseflow conditions - the value of fluorescence spectroscopy and automated high-frequency nutrient monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2014-05-01

    Recent research in groundwater-dominated streams indicates that organic matter plays an important role in nutrient transformations at the surface-groundwater interface known as the hyporheic zone. Mixing of water and nutrient fluxes in the hyporheic zone controls in-stream nutrients availability, dynamics and export to downstream reaches. In particular, benthic sediments can form adsorptive sinks for organic matter and reactive nutrients (nitrogen and phosphorus) that sustain a variety of hyporheic processes e.g. denitrification, microbial uptake. Thus, hyporheic metabolism can have an important effect on both quantity (concentration) and quality (labile vs. refractory character) of organic matter. Here high-frequency nutrient monitoring combined with spectroscopic analysis was used to provide insights into biogeochemical processing of a small, agricultural stream in the NE England subject to diffuse nutrient pollution. Biogeochemical data were collected hourly for a week at baseflow conditions when in-stream-hyporheic nutrient dynamics have the greatest impact on stream health. In-stream nutrients (total phosphorus, reactive phosphorus, nitrate nitrogen) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured in situ hourly by an automated bank-side laboratory. Concurrent hourly autosamples were retrieved daily and analysed for nutrients and fine sediments including spectroscopic analyses of dissolved organic matter - excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorbance spectroscopy. Our results show that organic matter can potentially be utilised as a natural, environmental tracer of the biogeochemical processes occurring at the surface-groundwater interface in streams. High-frequency spectroscopic characterisation of in-stream organic matter can provide useful quantitative and qualitative information on fluxes of reactive nutrients in

  19. Distributed Temperature Sensing as a tool for monitoring heat transfer processes in the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; van de Giesen, N.; Jansen, J. H. A. M.; Hatch, C.; Selker, J.; Tyler, S.; Ochsner, T.; Cosh, M. H.

    2012-04-01

    Experimental data will be used to illustrate how Distributed Temperature Sensing (DTS) can be used to study spatial and temporal variability in heat and moisture fluxes in the shallow subsurface. In DTS, fiber-optic cables are used as temperature sensors. Temperature can be measured at resolutions of 25cm to 1m along cables several kilometers in length, and the measurement interval can be under a minute. Given this unique combination of spatial and temporal resolution and coverage, DTS has become a powerful and increasingly popular tool in environmental monitoring. It has been used to provide both qualitative and quantitative information on many processes with a thermal signature. Here, we will focus its current and future role in studying the spatial and temporal patterns in moisture and heat transport processes in the shallow soil surface. Two types of DTS measurements can be used. In "Passive DTS", cables are typically buried at a number of depths and used to monitor the natural temperature dynamics in the soil. Soil thermal properties (and hence soil moisture) can be determined using an inversion technique or they can be calculated from the difference in amplitude and phase between temperature measurements at the different depths. In "Active DTS", one or more cables are buried in the soil. The protective cable armor is heated, and the fiber monitors temperature changes in the cable. The temperature response in the fiber can be directly related to the soil moisture, or equivalently the thermal properties of the surrounding soil. In addition to monitoring soil temperature and moisture, the thermal conductivity determined from either Passive or Active DTS can be combined with the temperature profile to estimate the soil heat flux. By improving our ability to monitor the transfer of water and energy at the land surface, DTS can yield new insight into land-atmosphere interactions at fine scales. We will conclude by outlining the potential value of DTS in small

  20. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs

    PubMed Central

    Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493

  1. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs.

    PubMed

    Liebensteiner, Martin G; Tsesmetzis, Nicolas; Stams, Alfons J M; Lomans, Bartholomeus P

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed.

  2. Carbon Processing in the Marine Subsurface: What Are They Doing Down There?

    NASA Astrophysics Data System (ADS)

    Biddle, J.; Martino, A. J.; Russell, J. A., III; Christman, G.; House, C. H.

    2014-12-01

    The deep marine subsurface is a place where small amounts of carbon are deposited, yet the majority of microorganisms appear to have heterotrophic lifestyles and carbon accumulates on a global scale. In this enviroment, how are heterotrophic organisms gathering their carbon and utilizing it? This talk will utilize subsurface metagenomics and amplicon data to discuss the interactions of deep microorganisms with buried sedimentary carbon. We will compare the Peru, Iberian and Costa Rica Margins to the abyssopelagic Equatorial Pacific. Specific organisms and their anticipated functions will be discussed. Additionally, we will discuss the potential for small scale trophic levels to form between bacteria and eukaryotes in deep basalts.

  3. Process-Based Characterizations of Subsurface Fluid Pressures for a Devil's Slide-like System

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Loague, K.

    2014-12-01

    Coastal margins commonly host slope stability hazards that are influenced by hydrologic, geologic, and / or anthropogenic perturbations. A firm foundation for rigorously understanding the component contributions and process-based linkages among hydrologic and geomorphic response is comprehensive physics-based simulation. This study is motivated by the hydrologically-driven, creeping and episodic deep-seated bedrock slides that intersect a former section of the Pacific Coast Highway in the active landslide zone at Devil's Slide near Pacifica, California. For this study, deterministic-conceptual hydrogeologic simulation was employed to estimate fluid pressures for saturated three-dimensional (3D) subsurface systems. One-dimensional (1D) vertical, transient, variably-saturated simulations were conducted to establish the position of the water table (i.e., the upper boundary condition) for the 3D steady-state saturated problems which encode the geologic information for heterogeneous and anisotropic systems. The concept-development effort undertaken here demonstrates that, for a Devil's Slide-like system: (i) specific climatic conditions facilitate variable lag times associated with water-table dynamics, (ii) recharge is the most sensitive parameter to establish risk-averse estimates of fluid pressure, (iii) nuances in the 3D flow field related to fault zone characteristics markedly influence fluid pressures, and (iv) it is unlikely that seasonal fluctuations in the regional water table account for severe failure modes. The simulated fluid pressures encourage new interdisciplinary data discovery to investigate the spatial and temporal persistence of perched water in the study area. To capture event-driven failures for the Devil's Slide site, future efforts should develop characterizations of the unsaturated near surface with a rigor similar to the treatment of the saturated zone demonstrated by this study.

  4. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study

    NASA Astrophysics Data System (ADS)

    Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe

    2017-04-01

    Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water

  5. Seasonal evolution of Titan's polar caps: interaction between atmospheric and subsurface processes

    NASA Astrophysics Data System (ADS)

    Sotin, C.

    2012-12-01

    Titan is the only satellite of the solar system with a dense atmosphere. It is also the only object, besides Earth, with stable liquid bodies at its surface. The (P,T) conditions at Titan's surface suggest that methane and ethane are liquid. Ethane has been detected in the lakes [1] whereas the signature of liquid methane is hidden by that of atmospheric methane which is the second most abundant atmospheric component. Methane is irreversibly transformed into ethane by photolysis. Titan's atmosphere contains very little ethane, which suggests that it is present in the surface (lakes) or/and the subsurface. Lakes are mostly located in the polar areas with many more lakes on the North Pole than on the South Pole. Ethane clouds above the North Pole have been identified during the winter when the atmospheric circulation leads to the formation of downwellings at the North Pole. Remote sensing instruments onboard the Cassini spacecraft have recently witnessed the formation of the South Polar vortex after the equinox in August 2009. Ethane rain may now happen over the South Pole. Laboratory experiments show that ethane and methane can react with ice to form clathrates that are denser and more stable than pure ice. Laboratory experiments also suggest that ethane clathrates are more stable than methane clathrates. The atmosphere can be replenished in methane through the substitution of methane by ethane that rains and percolates into the subsurface [2]. Because ethane clathrates are denser than methane clathrates, such a process would lead to significant subsidence on geological time scales. It may explain why Titan's flattening is larger than that due to spin rate only [2]. The amount of ethane required to explain Titan's shape is in agreement with the a global resurfacing event that would have occurred between a few hundreds of Myrs and 1 Gyr as suggested by the density of impact craters [3] and the age of the atmospheric methane [4]. The Cassini observations and results

  6. Simulating temporal variations of nitrogen losses in river networks with a dynamic transport model unravels the coupled effects of hydrological and biogeochemical processes

    SciTech Connect

    Mulholland, Patrick J; Alexander, Richard; Bohlke, John; Boyer, Elizabeth; Harvey, Judson; Seitzinger, Sybil; Tobias, Craig; Tonitto, Christina; Wollheim, Wilfred

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  7. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  8. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  9. BIOGEOPHYSICS: THE EFFECTS OF MICROBIAL PROCESSES ON GEOPHYSICAL PROPERTIES OF THE SHALLOW SUBSURFACE

    EPA Science Inventory

    This chapter provides a brief review of how microbial interactions with the geologic media may translate to changes in the bulk physical properties of the subsurface

    which are potentially measurable by geophysical techniques. The results of select pioneering laboratory and...

  10. BIOGEOPHYSICS: THE EFFECTS OF MICROBIAL PROCESSES ON GEOPHYSICAL PROPERTIES OF THE SHALLOW SUBSURFACE

    EPA Science Inventory

    This chapter provides a brief review of how microbial interactions with the geologic media may translate to changes in the bulk physical properties of the subsurface

    which are potentially measurable by geophysical techniques. The results of select pioneering laboratory and...

  11. Biogeochemical processing of nitrogen transformation including nitrogen fixation and nitrification in the western part of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, M., Sr.

    2016-02-01

    Based on in situ observations made in summer, 2009 along one transect near Xisha Islands, South China Sea (SCS), this study aims at understanding factors controlling nutrient biogeochemical cycling, especially on nitrogen cycling. The weak cold eddy may have important influence on supplies of nutrients in water column in Xisha islands. Nitrite reaches 0.49 μmol L-1 at the depth of 50m. It is significant relationship between NO2- and Chl a (R2=0.58, p=0.00). Phytoplankton excretion had an important influence on primary nitrite maximum formation and maintenance in euphotic layer. In addition, the positive values of N* indicate that nitrogen fixation may occur in the surface water in the studying area. Our results indicate that cold eddy near Xisha Islands play a significant role in regulating biogeochemistry.

  12. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  13. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1

    SciTech Connect

    Gonzales, D.

    1993-12-01

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards.

  14. Up-scaling of process-based eco-hydrology model to global scale for identification of hot spots in boundless biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2013-12-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which includes surface-groundwater interactions and down-scaling process from regional to local simulation with finer resolution, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes in east Asia. In this study, NICE was further extended to implement map factor and non-uniform grid through up-scaling process of coordinate transformation from rectangular to longitude-latitude system applicable to global scale. This improved model was applied to several basins in Eurasia to evaluate the impact of coordinate transformation on eco-hydrological changes. Simulated eco-hydrological process after up-scaling corresponded reasonably to that in the original there after evaluating the effect of different latitude. Then, the model was expanded to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. This simulation system would play important role in identification of spatio-temporal hot spots in boundless biogeochemical cycle along terrestrial-aquatic continuum for global environmental change (Cole et al. 2007; Battin et al. 2009; Frei et al. 2012).

  15. Surface and subsurface flows and fluxes in a Florida salt marsh: Measurements, mass balances and process modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Meile, C. D.; Esch, M.; Gray, E. R.; Cable, J. E.

    2013-12-01

    Coastal wetlands play an important role in the exchange of carbon and nutrients between terrestrial and marine environments, with estimates exceeding 10% of the global ocean C inputs being attributed to wetlands. Constraining such contributions is challenging, as fluxes are bound to vary substantially over a range of timescales, including tidal inundation and seasons. An important factor determining export fluxes are subsurface processes, because fluid passing through the marsh subsurface becomes enriched in inorganic and organic carbon as well as nutrients released during decomposition of organic matter. Thus, even a modest flux of pore water to tidal creeks can lead to a significant loading of carbon and nutrients to the coastal ocean. Here, we present our efforts to quantify the role of groundwater in a microtidal saltmarsh located in the Big Bend region of the Florida Gulf Coast. We established a regional water balance, and from a survey of flow and dissolved organic carbon in tidal creeks between Econfina and Aucilla Rivers provide an estimate of DOC export, indicating that DOC significantly contributes to marsh carbon export. To constrain the role of subsurface processes, we also quantify seepage fluxes of pore water from tidal creek banks, using a combination of field experiments and modeling. Field work involved deploying devices designed to capture pore water seeping from creek banks at multiple heights of the bank. Results show that seepage varies dynamically with the tide, and indicate substantial spatial variability. Additionally, numerical flow modeling was used to assess the experimental design and the impact of the positioning of the seepage collector at the creek bank. Simulation results show significant variation in seepage with vertical position in the creek bank. This information on flow magnitude and dynamics was then combined with concentration measurements in creek and pore waters to scale up from individual observations to provide estimates

  16. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  17. Integrating functional diversity, food web processes, and biogeochemical carbon fluxes into a conceptual approach for modeling the upper ocean in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Legendre, Louis; Rivkin, Richard B.

    2005-09-01

    Marine food webs influence climate by channeling carbon below the permanent pycnocline, where it can be sequestered. Because most of the organic matter exported from the euphotic zone is remineralized within the "upper ocean" (i.e., the water column above the depth of sequestration), the resulting CO2 would potentially return to the atmosphere on decadal timescales. Thus ocean-climate models must consider the cycling of carbon within and from the upper ocean down to the depth of sequestration, instead of only to the base of the euphotic zone. Climate-related changes in the upper ocean will influence the diversity and functioning of plankton functional types. In order to predict the interactions between the changing climate and the ocean's biology, relevant models must take into account the roles of functional biodiversity and pelagic ecosystem functioning in determining the biogeochemical fluxes of carbon. We propose the development of a class of models that consider the interactions, in the upper ocean, of functional types of plankton organisms (e.g., phytoplankton, heterotrophic bacteria, microzooplankton, large zooplankton, and microphagous macrozooplankton), food web processes that affect organic matter (e.g., synthesis, transformation, and remineralization), and biogeochemical carbon fluxes (e.g., photosynthesis, calcification, respiration, and deep transfer). Herein we develop a framework for this class of models, and we use it to make preliminary predictions for the upper ocean in a high-CO2 world, without and with iron fertilization. Finally, we suggest a general approach for implementing our proposed class of models.

  18. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    SciTech Connect

    Sharp, Jonathan O.

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  19. Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Laurent, Arnaud; Fennel, Katja; Cai, Wei-Jun; Huang, Wei-Jen; Barbero, Leticia; Wanninkhof, Rik

    2017-01-01

    Nutrient inputs from the Mississippi/Atchafalaya River system into the northern Gulf of Mexico promote high phytoplankton production and lead to high respiration rates. Respiration coupled with water column stratification results in seasonal summer hypoxia in bottom waters on the shelf. In addition to consuming oxygen, respiration produces carbon dioxide (CO2), thus lowering the pH and acidifying bottom waters. Here we present a high-resolution biogeochemical model simulating this eutrophication-driven acidification and investigate the dominant underlying processes. The model shows the recurring development of an extended area of acidified bottom waters in summer on the northern Gulf of Mexico shelf that coincides with hypoxic waters. Not reported before, acidified waters are confined to a thin bottom boundary layer where the production of CO2 by benthic metabolic processes is dominant. Despite a reduced saturation state, acidified waters remain supersaturated with respect to aragonite.

  20. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  1. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    NASA Astrophysics Data System (ADS)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-02-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L-1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show

  2. Microbial abundance in the deep subsurface of the Chesapeake Bay impact crater: Relationship to lithology and impact processes

    USGS Publications Warehouse

    Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright

    2009-01-01

    Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.

  3. The Influence of Subsurface Processes on Martian Basalts: An Example of Hydrothermal and Acidic Basalt Alteration at the Skouriotissa Mine, Cyprus

    NASA Astrophysics Data System (ADS)

    Bost, N.; Westall, F.; Ramboz, C.; Meunier, A.; Georgiou-Morisseau, E.; Foucher, F.

    2012-05-01

    Basalts are the prevalent rock type on Mars and the products of aqueously altered basalts are of particular interest tracers or subsurface processes. We present an analogue site on Earth: the skouriotissa mine in Cyprus.

  4. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  5. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NASA Astrophysics Data System (ADS)

    Spiteri, Claudette; Slomp, Caroline P.; Tuncay, Kagan; Meile, Christof

    2008-02-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3-, NH4+, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox conditions. Results from the simplified model representations show that the prevalent flow characteristics and redox conditions in the freshwater-seawater mixing zone determine the extent of nutrient removal and the input of nitrogen and phosphorus to coastal waters. At low to moderate groundwater velocities, simultaneous nitrification and denitrification can lead to a reversal in the depth of freshwater NO3- and NH4+-PO4 plumes, compared to their original positions at the landward source. Model results suggest that autotrophic denitrification pathways with Fe2+ or FeS2 may provide an important, often overlooked link between nitrogen and phosphorus biogeochemistry through the precipitation of iron oxides and subsequent binding of phosphorus. Simulations also highlight that deviations of nutrient data from conservative mixing curves do not necessarily indicate nutrient removal.

  6. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  7. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE PAGES

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...

    2016-08-31

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme – which is based on a nonisothermal, multiphase hydrological model – provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of themore » dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash–Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  8. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    NASA Astrophysics Data System (ADS)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.

    2016-08-01

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme - which is based on a nonisothermal, multiphase hydrological model - provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.

  9. A Conceptual Model of Coupled Biogeochemical and Hydrogeological Processes Affected by In Situ Cr(VI) Bioreduction in Groundwater at Hanford 100H Site

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Hazen, T. C.; Hubbard, S. S.; Williams, K. H.; Peterson, J. E.; Chen, J.; Volkova, E. V.; Newcomer, D. R.; Resch, C. T.; Cantrell, K.; Conrad, M. S.; Brodie, E. L.; Joyner, D. C.; Borglin, S. E.; Chakraborty, R. C.

    2007-05-01

    The overall objective of this presentation is to demonstrate a conceptual multiscale, multidomain model of coupling of biogeochemical and hydrogeological processes during bioremediation of Cr(VI) contaminated groundwater at Hanford 100H site. A slow release polylactate, Hydrogen Release Compound (HRCTM), was injected in Hanford sediments to stimulate immobilization of Cr(VI). The HRC injection induced a 2-order-of- magnitude increase in biomass and the onset of reducing biogeochemical conditions [e.g., redox potential decreased from +240 to -130 mV and dissolved oxygen (DO) was completely removed]. A three-well system, comprised of an injection well and upgradient and downgradient monitoring wells, was used for conducting the in situ biostimulation, one regional flow (no-pumping) tracer test, and five pumping tests along with the Br-tracer injection. Field measurements were conducted using a Br ion-selective electrode and a multiparameter flow cell to collect hourly data on temperature, pH, redox potential, electrical conductivity, and DO. Groundwater sampling was conducted by pumping through specially designed borehole water samplers. Cross-borehole radar tomography and seismic measurements were carried out to assess the site background lithological heterogeneity and the migration pathways of HRC byproducts through groundwater after the HRC injection. Several alternative approaches, including conventional and fractional advective dispersion equations and geostatistical analysis, were used to characterize hydraulic and biogeochemical transport parameters. The results of a joint inversion of cross-borehole geophysical tomography and flow-rate measurements in boreholes indicate the presence of a bimodal distribution of hydraulic conductivity for Hanford sediments. The Br- concentration double-peak BTCs curves indicate that HRC injection caused an increase in the tracer travel time (mainly in the low-permeability zone) over the period of observations of about 2 years

  10. Identification and Quantification of Processes Affecting the Fate of Ethanol-Blended Fuel in the Subsurface

    NASA Astrophysics Data System (ADS)

    Devries, J. M.; Mayer, K. U.

    2015-12-01

    At present, the oil and gas industry distributes gasoline with an ethanol content of up to 10% (E10) to the consumer. However, ethanol advocates are promoting gasoline blends with higher ethanol content to be introduced into the market (e.g., E20, corresponding to an ethanol content of 20%). The likelihood of unintended fuel releases with elevated ethanol concentrations through surficial spills or from underground storage systems will therefore increase. A particular concern is the increased rate of CH4 and CO2 production as the spill biodegrades, which is believed to be associated with the increased ethanol content in the fuel. Consequently, high gas generation rates associated with ethanol-blended fuels may amplify the risk of vapor intrusion of CH4 and BTEX into basements or other subsurface structures that may be nearby. A comprehensive and comparative study on the fate of higher concentration ethanol-blended fuels in the subsurface has not been conducted to date. The present study focuses on determining the fate of ethanol blended fuels in the subsurface through a series of controlled and instrumented laboratory column experiments. The experiments compare the behavior of pure gasoline with that of ethanol-blended fuels for different soil types (sand and silt) in columns 2 meters tall and 30cm in diameter. The column experiments focus on the quantification of gas generation by volatilization and biodegradation and 1-D vertical fate and transport of CO2, CH4, benzene and toluene through the vadose zone. The fuel blends have been injected into the lower third of the columns and gas composition and fluxes within the column are being monitored over time. The goal of this study is to contribute to the scientific foundation that will allow gauging the level of risk and the need for remediation at fuel spill sites with higher ethanol blends.

  11. Dissecting the variable source area concept - Subsurface flow pathways and water mixing processes in a hillslope

    NASA Astrophysics Data System (ADS)

    Dahlke, Helen E.; Easton, Zachary M.; Lyon, Steve W.; Todd Walter, M.; Destouni, Georgia; Steenhuis, Tammo S.

    2012-02-01

    SummaryThis study uses an instrumented (trenched) 0.5 ha hillslope in the southern tier of New York State, USA, to provide new data and insights on how variable source areas and associated flow pathways form and combine to connect rainfall with downstream water flows across a hillslope. Measurements of water fluxes in the trench, upslope water table dynamics, surface and bedrock topography, and isotopic and geochemical tracers have been combined for a four-dimensional (space-time) characterization of subsurface storm flow responses. During events with dry antecedent conditions infiltrating rainwater was found to percolate through a prevailing fragipan layer to deeper soil layers, with much (33-71%) of the total discharge of the hillslope originating from deeper water flow below the fragipan. During storm events with wet antecedent conditions and large rainfall amounts, shallow lateral flow of event and pre-event water above the fragipan occurred and was one magnitude greater than the deeper water flow contribution. Spatial surface and subsurface water quality observations indicate that water from a distance of up to 56 m contributed runoff from the hillslope during storm events. In addition, mobilization of total dissolved phosphorus (TDP) with subsurface flow played a greater role than with overland or near-surface flow. During all events TDP loads were highest in the total discharge during peak flows (8-11.5 kg ha -1 d -1), except during the largest storm event, when TDP concentrations were highly diluted. These results have implications for strategies to protect streams and other downstream water recipients from waterborne nutrient and pollutant loading.

  12. Aqueous complexation reactions governing the rate and extent of biogeochemical U(VI) reduction

    SciTech Connect

    Kemner, K.M.; Kelly, S.D.; Brooks, Scott C.; Dong, Wenming; Carroll, Sue; Fredrickson, James K.

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments.

  13. Impact of dust on biogeochemical processes in the East Mediterranean Sea, lessons from on-board microcosm and land-based mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Herut, Barak; Pitta, Paraskevi; Mihalopoulos, Nikos; Tsagaraki, Tatiana; Rahav, Eyal; Berman-Frank, Ilana; Psarra, Stella; Giannakourou, Antonia; Tsiola, Anastasia; Shi, Zongbo; Tanaka, Tsuneo; Kocak, Mustafa; Yucel, Nebil; Liu, Hongbin; Louiza Pedrotti, Maria; Tsapakis, Manolis; Violaki, Kalliopi; Fernandez, MariLuz; Meador, Travis; Panagiotopoulos, Christos

    2014-05-01

    Recent on-board microcosm and land-based mesocosm experiments in the oligotrophic Eastern Mediterranean Sea (EMS) indicates a significant role of Mediterranean aerosols as a net supplier of macro and micro nutrients (N, P, Fe and other trace metals) to the Low Nutrient Low Chlorophyll EMS. In such ultra-oligotrophic environment the leachable nutrients from dry atmospheric inputs add significant quantities of nutrients and become rapidly (<2hrs) bioavailable influencing substantially biogeochemical processes. Experimental additions triggered an increase in several of the performed rate and state variables as bacterial production and abundance, primary production rates and chlorophyll a (or other phytopigments), abundance of certain pico and nanophytoplankton groups and nitrogen fixation rates. Understanding these relationships is important to follow the pathways of N, P (and C) into the EMS food web and the future climate- and human-induced changes in the EMS.

  14. BIOGEOCHEMICAL CYCLING AND ENVIRONMENTAL STABILITY OF PLUTONIUM RELEVANT TO LONG-TERM STEWARDSHIP OF DOE SITES

    SciTech Connect

    Francis, A.J.; Gillow, J.B.; Dodge, C.J.

    2006-06-01

    Pu is generally considered to be relatively immobile in the terrestrial environment, with the exception of transport via airborne and erosion mechanisms. More recently the transport of colloidal forms of Pu is being studied as a mobilization pathway from subsurface contaminated soils and sediments. The overall objective of this research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu species and Pu associated with extracellular carrier phases and the creation of environments favorable for retardation of Pu transport.

  15. BIOGEOCHEMICAL CYCLING AND ENVIRONMENTAL STABILITY OF PLUTONIUM RELEVANT TO LONG-TERM STEWARDSHIP OF DOE SITES.

    SciTech Connect

    FRANCIS, A.J.; GILLOW, J.P.; DODGE, C.J.

    2006-11-16

    Pu is generally considered to be relatively immobile in the terrestrial environment, with the exception of transport via airborne and erosion mechanisms. More recently the transport of colloidal forms of Pu is being studied as a mobilization pathway from subsurface contaminated soils and sediments. The overall objective of this research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu species and Pu associated with extracellular carrier phases and the creation of environments favorable for retardation of Pu transport.

  16. Biogeochemical Processes leading to release of As and Mn in the groundwaters of Murshidabad District of West Bengal, India

    NASA Astrophysics Data System (ADS)

    Johannesson, K. H.; Datta, S.; Vega, M.; Berube, M.

    2015-12-01

    Elevated concentrations of both manganese (Mn) and arsenic (As) have been observed in the groundwaters of Murshidabad, in eastern India. Mn, a postulated neurotoxin is known to cause neuromuscular problems, inhibition of neurological development particularly in children. The health impacts from higher bioavailable proportions of As is well known in being a Class I carcinogen. The discovery of this additional contaminant in the already As afflicted regions of SE Asia poses serious implications for millions of inhabitants. The current study aims to address three objectives in understanding biogeochemical cycling of Mn and As in groundwaters: i) the occurrence and overall distribution (lateral and temporal) of groundwater Mn and As; ii) characterization of the dissolved organic matter and microbial content and the resultant effects that are imposed on dissolved As and Mn; and iii) the relationship between Mn, As, and various other inorganic constituents and their impact on the subsequent release of Mn, on top of As. A three year time series of chemical data for the dissolved constituents from six villages in Murshidabad will be presented. Hariharpara, Beldanga, Naoda villages contain reducing groundwaters (mean Mn: 0.93mg/L); Nabagram, Kandi, Khidirpore demonstrate oxidizing aquifers (Mn: 0.74mg/L). Eighty-three percent of the wells surveyed contain Mn levels that exceed the recommended WHO limit of 0.4 mg/L. Dissolved As within the same locations show a range from <10μg/L to ~4000 μg/L. DOC values demonstrate a positive correlation with Mn in reducing and a negative correlation in oxidizing environments. The reducing aquifers are also high in As and DOC, indicating that the microbially mediated reductive dissolution of As-sorbed onto Fe-Mn mineral phases is probable. Fluorescence analyses of dissolved OM, solidphase modeling of Mn speciation are being combined in this study for more insight into the mechanisms of Mn release and its relation if any to As release.

  17. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  18. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07

    Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  19. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Flores Orozco, AdriáN.; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-09-01

    Experiments at the Department of Energy's Integrated Field Research Challenge (IFRC) site near Rifle, Colorado, have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally invasive and spatially extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IFRC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate-reducing microorganisms. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer, a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants such as uranium.

  20. Analysis of nitrogen removal processes in a subsurface flow carbonate sand filter treating municipal wastewater.

    PubMed

    Kløve, Bjørn; Søvik, Anne-Kristine; Holtan-Hartwig, Liv

    2005-01-01

    Controlled experiments were carried out in a mesoscale subsurface flow sand filter treating municipal wastewater from a single household. The system consisted of a 50 cm high vertical flow column (pre-filter) with unsaturated flow and a 3 m long horizontal subsurface flow unit (main filter) with saturated flow. Fluxes of nitrogen and carbon were analyzed in 4 different operating conditions (low and high loading, with and without the prefilter unit). Water samples were taken from the inlet, the outlet and within the sand filter at different depths and locations and analysed for water quality (Tot N, NO3-N, NH4-N, TOC, DOC, CODcr, BOD5, SS, pH, and EC) and dissolved gas content (N2O, CH4, and CO2). Emissions of N2O, CH4, and CO2 were measured with the closed-chamber technique adjacent to water quality sampling points. The results show that prefiltering in a vertical, unsaturated flow column changed the incoming ammonium to nitrate during low loading. During high loading part of the ammonium nitrified in the pre-filter was lost by denitrification. Within the horizontal main filter there were two pathways for the incoming nitrate: denitrification and dissimilatory nitrate reduction to ammonium (DNRA).

  1. What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH4 emissions as a case study

    NASA Astrophysics Data System (ADS)

    Bloom, A. Anthony; Lauvaux, Thomas; Worden, John; Yadav, Vineet; Duren, Riley; Sander, Stanley P.; Schimel, David S.

    2016-12-01

    Understanding the processes controlling terrestrial carbon fluxes is one of the grand challenges of climate science. Carbon cycle process controls are readily studied at local scales, but integrating local knowledge across extremely heterogeneous biota, landforms and climate space has proven to be extraordinarily challenging. Consequently, top-down or integral flux constraints at process-relevant scales are essential to reducing process uncertainty. Future satellite-based estimates of greenhouse gas fluxes - such as CO2 and CH4 - could potentially provide the constraints needed to resolve biogeochemical process controls at the required scales. Our analysis is focused on Amazon wetland CH4 emissions, which amount to a scientifically crucial and methodologically challenging case study. We quantitatively derive the observing system (OS) requirements for testing wetland CH4 emission hypotheses at a process-relevant scale. To distinguish between hypothesized hydrological and carbon controls on Amazon wetland CH4 production, a satellite mission will need to resolve monthly CH4 fluxes at a ˜ 333 km resolution and with a ≤ 10 mg CH4 m-2 day-1 flux precision. We simulate a range of low-earth orbit (LEO) and geostationary orbit (GEO) CH4 OS configurations to evaluate the ability of these approaches to meet the CH4 flux requirements. Conventional LEO and GEO missions resolve monthly ˜ 333 km Amazon wetland fluxes at a 17.0 and 2.7 mg CH4 m-2 day-1 median uncertainty level. Improving LEO CH4 measurement precision by 2 would only reduce the median CH4 flux uncertainty to 11.9 mg CH4 m-2 day-1. A GEO mission with targeted observing capability could resolve fluxes at a 2.0-2.4 mg CH4 m-2 day-1 median precision by increasing the observation density in high cloud-cover regions at the expense of other parts of the domain. We find that residual CH4 concentration biases can potentially reduce the ˜ 5-fold flux CH4 precision advantage of a GEO mission to a ˜ 2-fold

  2. Biogeochemical Cycling at Soil Interfaces in the Vadose Zone and its Impact on Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Hansen, D. J.; McGuire, J. T.; Mohanty, B. P.

    2007-12-01

    Much research has focused on understanding and predicting chemical fate and transport in subsurface systems to protect drinking water reserves and ecosystem health. However, chemical changes that occur in the unsaturated zone due to processes such as mineral-water interactions, desorption, or biogeochemical cycling have often been neglected. In particular, the effects of soil structure (i.e. layers, lenses, macropores, or fractures) on these processes remain poorly understood. This study focuses on characterizing the linkages between geochemical processes, hydrologic flow, and microbial activity in the vadose zone using packed soil columns. We constructed three laboratory soil columns: a homogenized medium-grained sand, homogenized organic-rich silty clay, and a sand-over-clay layered column. Both upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In situ collocated probes measured soil water content, matric potential, and Eh. Water samples extracted by lysimeter were analyzed for major cations and anions, ammonium, organic acids, alkalinity, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the layered column. For example, concentrations of the electron acceptor sulfate were two-fold greater in the layered column than in either of the homogeneous columns likely due to increased oxidation/reduction reactions. Rainfall events enhanced denitrification in the layered column through the addition of NO3- via enhanced ammonium oxidation. Biogeochemical cycling was directly linked to hydrologic flow and varied as a function of water infiltration direction (upward/downward). Enhanced biogeochemical activity produced mineral crusts and biofilms that decreased overall hydraulic conductivity. Preliminary results suggest that changes in the vadose zone occur too rapidly for the system to achieve redox equilibrium and suggest that a new conceptual framework to analyze

  3. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  4. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  5. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.

    1997-01-01

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.

  6. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.

    1997-01-14

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.

  7. Incorporating 3-D Subsurface Hydrologic Processes within the Community Land Surface Model (CLM): Coupling PFLOTRAN and CLM

    NASA Astrophysics Data System (ADS)

    Bisht, G.; Mills, R. T.; Hoffman, F. M.; Thornton, P. E.; Lichtner, P. C.; Hammond, G. E.

    2011-12-01

    Numerous studies have shown a positive soil moisture-rainfall feedback through observational data, as well as, modeling studies. Spatial variability of topography, soils, and vegetation play a significant role in determining the response of land surface states (soil moisture) and fluxes (runoff, evapotranspirtiaon); but their explicit accounting within Land Surface Models (LSMs) is computa- tionally expensive. Additionally, anthropogenic climate change is altering the hydrologic cycle at global and regional scales. Characterizing the sensitivity of groundwater recharge is critical for understanding the effects of climate change on water resources. In order to explicitly represent lateral redistribution of soil moisture and unified treatment of the unsaturated-saturated zone in the subsurface within the CLM, we propose coupling PFLOTRAN and CLM. PFLOTRAN is a parallel multiphase-multicomponent subsurface reactive flow and transport code for modeling subsurface processes and has been devel- oped under a DOE SciDAC-2 project. PFLOTRAN is written in Fortran 90 using a modular, object-oriented approach. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). The PFLOTRAN model is capable of simulating fluid flow through porous media with fluid phases of air, water, and supercritical CO2. PFLOTRAN has been successfully employed on up to 131,072 cores on Jaguar, the massively parallel Cray XT4/XT5 at ORNL, for problems composed of up to 2 billion degrees of freedom. In this work, we will present a strategy of coupling the two models, CLM and PFLOTRAN, along with a few preliminary results obtained from the coupled model.

  8. Catchment Hydro-biogeochemical Responses to Forest Harvest Intensity and Spatial Pattern

    NASA Astrophysics Data System (ADS)

    Abdelnour, A.; Stieglitz, M.; Pan, F.; McKane, R.

    2009-12-01

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specifically, we test for the occurrence of hydrological and biogeochemical threshold behavior in the catchment response. VELMA is a spatially-distributed eco-hydrology model that simulates the effects of climate, and land cover on daily changes in soil water storage, surface and subsurface runoff, vertical drainage, evapotranspiration, vegetation and soil C and N dynamics, and transport of nitrate, ammonium, DON, and DOC to streams. We simulate pre- and post-disturbance hydrological and biogeochemical responses of the WS10 catchment. Model parameters were initialized to simulate the post-fire build-up of ecosystem C and N stocks from 1725 to 1975. These parameters are then fixed and used to simulate the hydro-biogeochemical response after the 1975 clear-cut. Comparison of modeled and observed soil moisture, streamflow, DIN, DON and DOC losses for the post-clear-cut period (1975-2007) show that VELMA accurately captures spatial and temporal dynamics of hydrological and biogeochemical processes in WS10. We then examine the catchment response to alternative clear-cut scenarios for which the location and fraction of harvested area varied. These alternative clear-cut simulations suggest that the streamflow and harvest area relationship in this rain-dominated catchment is nearly linear, irrespective of clear-cut area and location. Simulations designed to identify threshold responses of DOC, DON and DIN export in relation to harvest area and location will be presented.

  9. Modelling Water Flow, Heat Transport, Soil Freezing and Thawing, and Snow Processes in a Clayey, Subsurface Drained Agricultural Field

    NASA Astrophysics Data System (ADS)

    Warsta, L.; Turunen, M.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Karvonen, T.; Taskinen, A.

    2012-12-01

    Simulation of hydrological processes for the purposes of agricultural water management and protection in boreal environment requires description of winter time processes, including heat transport, soil freezing and thawing, and snow accumulation and melt. Finland is located north of the latitude of 60 degrees and has one third to one fourth of the total agricultural land area (2.3 milj. ha) on clay soils (> 30% of clay). Most of the clayey fields are subsurface drained to provide efficient drainage and to enable heavy machines to operate on the fields as soon as possible after the spring snowmelt. Generation of drainflow and surface runoff in cultivated fields leads to nutrient and sediment load, which forms the major share of the total load reaching surface waters at the national level. Water, suspended sediment, and soluble nutrients on clayey field surface are conveyed through the soil profile to the subsurface drains via macropore pathways as the clayey soil matrix is almost impermeable. The objective of the study was to develop the missing winter related processes into the FLUSH model, including soil heat transport, snow pack simulation and the effects of soil freezing and thawing on the soil hydraulic conductivity. FLUSH is an open source (MIT license), distributed, process-based model designed to simulate surface runoff and drainflow in clayey, subsurface drained agricultural fields. 2-D overland flow is described with the diffuse wave approximation of the Saint Venant equations and 3-D subsurface flow with a dual-permeability model. Both macropores and soil matrix are simulated with the Richards equation. Soil heat transport is described with a modified 3-D convection-diffusion equation. Runoff and groundwater data was available from different periods from January 1994 to April 1999 measured in a clayey, subsurface drained field section (3.6 ha) in southern Finland. Soil temperature data was collected in two locations (to a depth of 0.8 m) next to the

  10. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt.

    PubMed

    Wang, Lei; Tian, Wei; Shi, Yongmin

    2017-08-07

    The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.

  11. Effect of sulfidogenesis cycling on the biogeochemical process in arsenic-enriched aquifers in the Lanyang Plain of Taiwan: Evidence from a sulfur isotope study

    NASA Astrophysics Data System (ADS)

    Kao, Yu-Hsuan; Liu, Chen-Wuing; Wang, Pei-Ling; Liao, Chung-Min

    2015-09-01

    This study evaluated the biogeochemical interactions between arsenic (As) and sulfur (S) in groundwater to understand the natural and anthropogenic influences of S redox processes on As mobilization in the Lanyang Plain, Taiwan. Cl- and the sulfate isotopic composition (δ34S[SO4]) were selected as conservative tracers. River water and saline seawater were considered as end members in the binary mixing model. Thirty-two groundwater samples were divided into four types of groundwater (I, pyrite-oxidation; II, iron- and sulfate-reducing; III, sulfate-reducing; and IV, anthropogenic and others). The binary mixing model coupled with discriminant analysis was applied to yield a classification with 97% correctness, indicating that the DO/ORP values and δ34S[SO4] and Fe2+ concentrations are effective redox-sensitive indicators. Type I groundwater is mostly located in a mountainous recharge area where pyrite oxidation is the major geochemical process. A high 18O enrichment factor (ε[SO4-H2O]) and high 34S enrichment factor (ε34S[FeS2-SO4]) indicate that disproportionation and dissimilatory sulfate reduction are both involved in Type II and Type III groundwater. The process of bacterial sulfate reduction may coprecipitate and sequester As, a mechanism that is unlikely to occur in Type II groundwater. The presence of high As and Fe2+ concentrations and enriched δ34S[SO4] in Type II groundwater suggest that biogeochemical reactions occurred under anaerobic conditions. The reductive dissolution of As-bearing Fe oxyhydroxides together with microbial disproportionation of sulfur explains the substantial correlations among the high As concentration and enriched δ34S[SO4] and Fe2+ concentrations in the iron- and sulfate-reducing zone (Type II). The As concentration in Type III groundwater (sulfate-reducing) is lower than that in Type II groundwater because of bacterial sulfate reduction and coprecipitation with As. Furthermore, the dissolution of sulfate minerals is not the

  12. Improving subsurface hydrology in Earth System Models

    NASA Astrophysics Data System (ADS)

    Volk, J. M.; Clark, M. P.; Swenson, S. C.; Lawrence, D. M.; Tyler, S. W.

    2015-12-01

    Hydrologic processes that govern storage and transport of soil water and groundwater can have strong dynamic relationships with biogeochemical and atmospheric processes. This understanding has lead to a push to improve subsurface hydrologic parametrization in Earth System Models. Here we present results related to improving the implementation of soil moisture distribution, groundwater recharge/discharge, and subsurface drainage in the Community Land Model (CLM) which is the land surface model in the Community Earth System Model. First we identified geo-climatically different locations around the world to develop test cases. For each case we compare the vertical soil moisture distribution from the different implementations of 1D Richards equation, considering the boundary conditions, the treatment of the groundwater sink term, the vertical discretization, and the time stepping schemes. Generally, large errors in the hydrologic mass balance within the soil column occur when there is a large vertical gradient in soil moisture or when there is a shallow water table within a soil column. We then test the sensitivity of the algorithmic parameters that control temporal discretization and error tolerance of the adaptive time-stepping scheme to help optimize its computational efficiency. In addition, we vary the spatial discretization of soil layers (i.e. quantity of layers and their thicknesses) to better understand the sensitivity of vertical discretization of soil columns on soil moisture variability in ESMs. We present multivariate and multi-scale evaluation for the different model options and suggest ways to move forward with future model improvements.

  13. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  14. New Insights into Fluvial Carbon Responses to Future Forest Management and Climate Change Obtained from Multi-Scale Modelling of Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Oni, S. K.; Tiwari, T.; Futter, M. N.; Agren, A.; Teutschbein, C.; Ledesma, J.; Schelker, J.; Laudon, H.

    2014-12-01

    The boreal ecozone covers 2x107 km2 of the northern circumpolar region and includes 29% of the world's forests. The boreal consists of mosaic of forest/wetland landscape elements and stores about 500 Gt3 carbon (C) with a delicate sink-source C balance. Dissolved organic carbon (DOC) is the main form of C exported from boreal landscapes and is fundamental to global C cycling. This northern ecosystem is vulnerable to global climate change, and increasing demands for forest products threaten its surface water resources. So far, there have been no attempts to assess the combined impacts of climate change and forest management on the future DOC fluxes from boreal surface waters. While differences in model assumptions may have negligible effects on present day simulations, these differences could be amplified when projecting the future climate and land use change conditions. Here we use an ensemble of regional climate models and multi-scale models of biogeochemical processes to gain insights into uncertainties associated with climate change and forest management on C and runoff dynamics in boreal landscape. While there are significant uncertainties associated with model projections, our results show that climate change will be the main driver of long term DOC dynamics in meso- to large boreal catchments in the future. However, forestry intensifies hydrological processes and can lead to large DOC fluxes at the headwater scales.

  15. Spatial Patterns in Biogeochemical Processes During Peak Growing Season in Oiled and Unoiled Louisiana Salt Marshes: A Multi-Year Analysis

    NASA Astrophysics Data System (ADS)

    Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.

    2016-02-01

    Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.

  16. Mechanisms of Arsenic Mobilization and Attenuation in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    O'Day, P. A.; Illera, V.; Root, R.; Choi, S.; Vlassopoulos, D.

    2007-12-01

    This talk will review molecular mechanisms of As mobilization and attenuation in subsurface sediments using examples from recent field studies that represent a range in oxidation-redox (redox) potential. As a ubiquitous trace element in sediments, As speciation and fate is linked to the abundance and biogeochemical behavior of the generally more abundant redox-active elements Fe, S, and Mn. All four elements are subject to oxidation, reduction, and pH-dependent processes such as sorption, desorption, precipitation, and dissolution, and which may include both biotic and abiotic reaction steps. We have used spectroscopic interrogation and geochemical modeling to characterize As speciation in subsurface sediments in several contrasting environments, including high and low S and Fe settings. Aquifers most at risk for contamination by As include those that are rich in organic matter and nutrients, stimulating high rates of microbial reduction and creating anoxic conditions, but limited in labile or available S and/or Fe that remove As by precipitation or adsorption. In subsurface sediments with low labile S and Fe, laboratory experiments and spectroscopic studies suggest that sediment Mn minerals are important in the oxidation of sorbed As(III) to As(V), but that they have a limited oxidation capacity. Arsenic attenuation and mobilization in the subsurface are affected by seasonal variations when hydraulic conditions are influenced by surface infiltration, which may induce transitions from oxidized to reduced conditions (or vice versa) in porewater.

  17. Best Practice -- Subsurface Investigations

    SciTech Connect

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  18. Comparison of local and regional heat transport processes into the subsurface urban heat island of Karlsruhe, Germany

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2014-05-01

    Temperatures in shallow urban ground are typically elevated. They manifest as subsurface urban heat islands, which are observed worldwide in different metropolitan areas and which have a site-specific areal extent and intensity. As of right now the governing heat transport processes accumulating heat in the subsurface of cities are insufficiently understood. Based on a spatial assessment of groundwater temperatures, six individual heat flux processes could be identified: (1) heat flux from elevated ground surface temperatures (GST), (2) heat flux from basements of buildings, (3) reinjection of thermal waste water, (4) sewage drains, (5) sewage leakage, and (6) district heating. In this study, the contributions of these processes are quantified on local and regional scales for the city of Karlsruhe in Germany. For the regional scale, the Regionalized Monte Carlo (RMC) method is used. This method applies a single Monte Carlo (MC) simulation for the entire study area. At relatively low data demand, the RMC method provides basic insights into the heat contribution for the entire city. For the local scale, the Local Monte Carlo (LMC) method was developed and applied. This method analyzes all dominant heat fluxes spatially dependent by performing an MC simulation for each arbitrary sized pixel of the study area (here 10 x 10 m). This more intricate approach allows for a spatial representation of all heat flux processes, which is necessary for the local planning of geothermal energy use. In order to evaluate the heat transport processes on a regional scale, we compared the mean annual thermal energies that result from the individual heat flux processes. Both methods identify the heat flux from elevated GST and the heat flux from buildings as the dominant regional processes. However, reinjection of thermal wastewater is by far the most dominant local heat flux processes with an average heat flux of 16 ± 2 W/m2 in the affected areas. Although being dominant on the regional

  19. A web accessible scientific workflow system for transparent and reproducible generation of information on subsurface processes from autonomously sensed data

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Richardson, A.; Thomas, S.; Lu, B.; Neto, J.; Wheeler, M.; Rowe, T.; Parashar, M.; Ankeny, M.

    2005-12-01

    Information on subsurface processes is required for a broad range of applications, including site remediation, groundwater management, fossil fuel production and CO2 sequestration. Data on these processes is obtained from diverse sensor networks, includes physical, hydrological and chemical sensors and semi permanent geophysical sensors (mainly seismic and resistivity). Currently, processing is done by specialists through the use of commercial and research software packages such as numerical inverse and forward models, statistical data analysis software and visualization and data presentation packages. Information is presented to stakeholders as tables, images and reports. Processing steps, data and assumptions used for information generation are mostly opaque to endusers. As data migrates between applications the steps taken in each application (e.g. in data reduction)are often only partly documented, resulting in irreproducible results. In this approach, interactive tuning of data processing in a systematic way (e.g. changing model parameters, visualization parameters or data used) or using data processing as a discovery tool is de facto impossible. We implemented a web accessible scientific workflow system for subsurface performance monitoring. This system integrates distributed, automated data acquisition from autonomous sensor networks with server side data management and information visualization through flexible browser based data access tools. Webservices are used for communication with the sensor networks and interaction with applications. This system was originally developed for a monitoring network at the Gilt Edge Mine Superfund site, but has now been implemented for a range of different sensor networks of different complexity. The workflow framework allows for rapid and easy integration in a modular, transparent and reproducible manner of a multitude of existing applications for data analysis and processes. By embedding applications in webservice

  20. Evaluation of Biogeochemical Processes and Rock-Water Interactions in the Black Warrior Basin Coalbed Methane Reservoir (Alabama, USA) Via Isotopic Characterization of Formation Water Samples

    NASA Astrophysics Data System (ADS)

    Quan, T. M.; Vinson, D. S.; Prock, A.; Darrah, T.; McIntyre-Redden, M. R.; Pashin, J. C.

    2016-12-01

    Isotopic analysis of formation waters from coalbed methane reservoirs can provide critical information regarding carbon cycling, methanogenesis, generation and biodegradation of organic compounds, and rock-water interactions. As part of a larger study characterizing the biogeochemical processes within the Black Warrior Basin coalbed methane reservoir (Alabama, USA), a series of isotopic analyses were performed on formation water samples collected in the summer of 2015, including δ13CDIC, δDH2O, δ18OH2O, and δ13CDOC. High measured δ13CDIC values indicate predominant microbial methane generation, which is supported by δ13CCH4 values. Preliminary sample values for δ18OH2O and δDH2O do not correlate with salinity or dissolved inorganic carbon concentrations, which suggests interesting implications for recharge patterns and potential rock-water interactions. Preliminary δ13CDOC data suggests that dissolved organic carbon in these samples has a biogenic, not a thermogenic source. Accordingly, our data indicates that methanogenic microbes appear to have utilized more labile biogenic organic compounds in formation water rather than the highly polymerized vitreous carbon from host coal seams.

  1. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  2. Processes Controlling Eutrophication-Induced Acidification in the Northern Gulf of Mexico: Current State and Projected Changes from a Coupled Physical-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Barbero, L.; Cai, W. J.; Huang, W. J.; Ko, D. S.; Lehrter, J. C.; Wanninkhof, R. H.

    2016-02-01

    The northern Gulf of Mexico receives excessive nutrient inputs from the Mississippi-Atchafalaya River Basin that promote high phytoplankton production and high respiration rates associated with algal decomposition. In combination with vertical stratification, respiration results in seasonal hypoxia, high dissolved inorganic carbon concentrations and low pH in bottom waters on the Louisiana Shelf. In the future, higher atmospheric CO2 and hydrological and land-use changes in the Mississippi-Atchafalaya River Basin may further compound eutrophication-induced acidification on the Louisiana Shelf. Using a high-resolution, regional circulation-biogeochemical model that simulates the nitrogen cycle, oxygen dynamics and inorganic carbon dynamics in the Northern Gulf of Mexico, we investigate present-day processes controlling acidification on the Louisiana Shelf and project changes for the coming century. Present-day model results show an extended area of acidified bottom waters during summer on the Louisiana Shelf that is primarily due to benthic metabolism. We then discuss projected changes in the size, location and determining factors of acidified bottom waters resulting from climate change.

  3. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-14

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  4. An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: Facilitating decisions for remediation of mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.

    2010-01-01

    Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.

  5. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  6. Disturbance decouples biogeochemical cycles across forests of the southeastern US

    Treesearch

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2016-01-01

    Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...

  7. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  8. Carbon, oxygen and strontium isotopic constraints on fluid sources, temperatures and biogeochemical processes during the formation of seep carbonates - Secchia River site, Northern Apennines

    NASA Astrophysics Data System (ADS)

    Viola, Irene; Capozzi, Rossella; Bernasconi, Stefano M.; Rickli, Jörg

    2017-07-01

    and fluid supply from a well-defined hydrocarbon field. The seep carbonate characteristics have enlightened variations in biogeochemical processes, which can be rarely quantified in ancient and present-day marine environments.

  9. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  10. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    SciTech Connect

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10/sup -4/, 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10/sup -4/, 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents.

  11. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  12. Modeling intrinsic bioremediation for interpret observable biogeochemical footprints of BTEX biodegradation: the need for fermentation and abiotic chemical processes.

    PubMed

    Maurer, Max; Rittmann, Bruce E

    2004-12-01

    The intrinsic bioremediation of BTEX must be documented by the stoichiometric consumption and production of several other compounds, called 'footprints' of the biodegradation reaction. Although footprints of BTEX biodegradation are easy to identify from reaction stoichiometry, they can be confounded by the stepwise nature of the biodegradation reactions and by several abiotic chemical reactions that also produce or consume the footprints. In order to track the footprints for BTEX biodegradation, the following reactions need to be considered explicitly: (1) fermentation and methanogenesis as separate processes, (2) precipitation and dissolution of calcite, (3) precipitation and dissolution of amorphous iron monosulfide (FeS), (4) conversion of FeS into the thermodynamically stable pyrite (FeS2) with loss of sulfide and abiotic formation of H2, and (5) reductive dissolution of solid iron(III) by oxidation of sulfide. We critically review the research that underlies why these mechanisms must be included and how to describe them quantitatively. A companion manuscript develops and applies a mathematical model that includes these reactions.

  13. PFLOTRAN: Recent Developments Facilitating Massively-Parallel Reactive Biogeochemical Transport

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.

    2015-12-01

    With the recent shift towards modeling carbon and nitrogen cycling in support of climate-related initiatives, emphasis has been placed on incorporating increasingly mechanistic biogeochemistry within Earth system models to more accurately predict the response of terrestrial processes to natural and anthropogenic climate cycles. PFLOTRAN is an open-source subsurface code that is specialized for simulating multiphase flow and multicomponent biogeochemical transport on supercomputers. The object-oriented code was designed with modularity in mind and has been coupled with several third-party simulators (e.g. CLM to simulate land surface processes and E4D for coupled hydrogeophysical inversion). Central to PFLOTRAN's capabilities is its ability to simulate tightly-coupled reactive transport processes. This presentation focuses on recent enhancements to the code that enable the solution of large parameterized biogeochemical reaction networks with numerous chemical species. PFLOTRAN's "reaction sandbox" is described, which facilitates the implementation of user-defined reaction networks without the need for a comprehensive understanding of PFLOTRAN software infrastructure. The reaction sandbox is written in modern Fortran (2003-2008) and leverages encapsulation, inheritance, and polymorphism to provide the researcher with a flexible workspace for prototyping reactions within a massively parallel flow and transport simulation framework. As these prototypical reactions mature into well-accepted implementations, they can be incorporated into PFLOTRAN as native biogeochemistry capability. Users of the reaction sandbox are encouraged to upload their source code to PFLOTRAN's main source code repository, including the addition of simple regression tests to better ensure the long-term code compatibility and validity of simulation results.

  14. Strong Seasonality of Biogeochemical Characteristics and Source Regions in Permafrost Watersheds

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.

    2015-12-01

    High latitude watersheds experience a dramatic seasonality of up to nine months of cold, snow covered winter and a warm, bright, summer. Spring melt runoff is a dramatic two to three week period when up to 75% of the yearly precipitation runs off. Identifying sources and measuring fluxes of compounds out of Arctic rivers is difficult in large rivers because they represent the combined effect of innumerable plot-scale melt water sources, each coming from different soil and vegetation types, each experiencing a slightly different melt timing and evolution. Numerous studies have shown spring melt is characterized by an ionic pulse of solutes, dissolved organic carbon and other nutrients (ammonium, phosphate and nitrate) leached by snow melt water from surface vegetation and soils. Summer and fall flows are comprised largely of shallow to deepening sources from a downwardly expanding seasonally thawed ("active") layer. In late summer flowpaths deepen and the biogeochemical composition of surface waters may be sourced from an increasing mineral weathering zone representing landscape scale soil processes. The watershed biogeochemical response to precipitation may also yield insight into subsurface permafrost geomorphological characteristics and flowpaths through water tracks or other small depressions. Winter processes are the least studied or understood but overflow ice ("aufeis") provides access to deep, old waters. The deeper snow pack in depressions can provide protection against winter cold and feed back to deeper summer season thaw. This presentation will focus on using water stable isotopes, major ion concentrations, trace metals, nutrients, and permafrost delineation to identify biogeochemical sources in watersheds draining continuous and discontinuous permafrost in Alaska. Biogeochemical processes associated with scaling, meteorology, and climate warming will be discussed.

  15. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    NASA Astrophysics Data System (ADS)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  16. Biogeochemical and microbial seasonal dynamics between water column and sediment processes in a productive mountain lake: Georgetown Lake, MT, USA

    NASA Astrophysics Data System (ADS)

    Parker, Stephen R.; West, Robert F.; Boyd, Eric S.; Feyhl-Buska, Jayme; Gammons, Christopher H.; Johnston, Tyler B.; Williams, George P.; Poulson, Simon R.

    2016-08-01

    This manuscript details investigations of a productive, mountain freshwater lake and examines the dynamic relationship between the chemical and stable isotopes and microbial composition of lake bed sediments with the geochemistry of the lake water column. A multidisciplinary approach was used in order to better understand the lake water-sediment interactions including quantification and sequencing of microbial 16S rRNA genes in a sediment core as well as stable isotope analysis of C, S, and N. One visit included the use of a pore water sampler to gain insight into the composition of dissolved solutes within the sediment matrix. Sediment cores showed a general decrease in total C with depth which included a decrease in the fraction of organic C combined with an increase in the fraction of inorganic C. One sediment core showed a maximum concentration of dissolved organic C, dissolved inorganic C, and dissolved methane in pore water at 4 cm depth which corresponded with a sharp increase in the abundance of 16S rRNA templates as a proxy for the microbial population size as well as the peak abundance of a sequence affiliated with a putative methanotroph. The isotopic separation between dissolved inorganic and dissolved organic carbon is consistent with largely aerobic microbial processes dominating the upper water column, while anaerobic microbial activity dominates the sediment bed. Using sediment core carbon concentrations, predictions were made regarding the breakdown and return of stored carbon per year from this temperate climate lake with as much as 1.3 Gg C yr-1 being released in the form of CO2 and CH4.

  17. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  18. Hydrologic and Biogeochemical Processes as Controls on the Quantity and Chemical Quality of Dissolved Organic Carbon Across Multiple Spatial Scales in the Colorado River

    NASA Astrophysics Data System (ADS)

    Miller, M.

    2012-12-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were described in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994-2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use, and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially-derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC; whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river, and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  19. Biogeochemical and hydrological processes controlling the transport and fate of 1,2-dibromoethane (EDB) in soil and ground water, central Florida

    USGS Publications Warehouse

    Katz, Brian G.

    1993-01-01

    Widespread contamination of ground water in central Florida by 1,2-dibromoethane (EDB) has resulted because of its heavy usage as a soil fumigant during a 20-year period, its relatively high aqueous solubility, and the low sorption capacity of the highly permeable sandy soils lacking organic matter. Two models were used to improve understanding of biogeochemical and hydrological processes that control the transport and fate of EDB in soil and ground water. First, a mass-balance model was developed to estimate the max-imum concentration of EDB in ground water resulting from known application rates of EDB. Key processes that were quantified in the model included volatilization, diffusion of EDB vapor in soils, partitioning between aqueous and gaseous phases, sorption of EDB vapor on organic carbon and soil particles, chemical and biological degradation reactions, and nonreversible binding of EDB to soils. Model calculations using an EDB half-life of 0.65 year closely reproduced the maximum observed concentrations in ground water, 37 and 0.22 micrograms per liter, at downgradient sites in two study areas in central Florida. Maximum concentrations of EDB in ground water also were estimated in a second model that incorporated an analytical solution to the three-dimensional advection-dispersion equation for instantaneous point sources of EDB entering the flow systems in the two study areas. The model used an EDB half-life of 0.65 year (obtained from the mass-balance calculations), mean ground-water flow velocities of 0.6 to 1 meter per day, coefficients of longitudinal hydro-dynamic dispersion of 0.6 to 1.0 square meter per day, and coefficients of transverse hydrodynamic dispersion of 0.1 square meter per day. Peak concentrations of EDB in ground water calculated from the analytical model agreed closely with observed peak concentrations measured from 1983 through 1987.

  20. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: implications for biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Bardhan, Pratirupa; Naqvi, Syed Wajih Ahmad; Karapurkar, Supriya G.; Shenoy, Damodar M.; Kurian, Siby; Naik, Hema

    2017-02-01

    Isotopic composition of nitrate (δ15N and δ18O) and particulate organic matter (POM; δ15N and δ13C) were measured in the Tillari Reservoir, located at the foothills of the Western Ghats, Maharashtra, western India. The reservoir, which is stratified during spring-summer and autumn seasons but gets vertically mixed during the southwest monsoon (SWM) and winter, is characterized by diverse redox nitrogen transformations in space and time. The δ15N and δ18O values of nitrate were low (δ15N = 2-10 ‰, δ18O = 5-8 ‰) during normoxic conditions but increased gradually (the highest at δ15N = 27 ‰, δ18O = 29 ‰) when anoxic conditions facilitated denitrification in the hypolimnion during spring-early summer. Once nitrate was fully utilized and sulfidic conditions set in, NH4+ became the dominant inorganic N species, with δ15N ranging from 1.3 to 2.6 ‰. Low δ15N (˜ -5 ‰) and δ13C (-37 to -32 ‰) of POM co-occurring with high NH4+ and CH4 in sulfidic bottom waters were probably the consequence of microbial chemosynthesis. Assimilation of nitrate in the epilimnion was the major controlling process on the N isotopic composition of POM (δ15N = 2-6 ‰). Episodic low δ15N values of POM (-2 to 0 ‰) during early summer, coinciding with the absence of nitrate, might arise from N fixation, although further work is required to confirm the hypothesis. δ13C POM in the photic zone ranged between -29 and -27 ‰ for most parts of the year. The periods of mixing were characterized by uniform δ15N-NO3- and δ18O-NO3- at all depths. Higher POM (particulate organic carbon, POC, as well as particulate organic nitrogen, PON) contents and C / N values with lower δ13C POM during the SWM point to allochthonous inputs. Overall, this study, the first of its kind in the Indian subcontinent, provides an insight into biogeochemistry of Indian reservoirs, using stable carbon and nitrogen isotopes as a tool, where the monsoons play an important role in controlling vertical

  1. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  2. MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE

    EPA Science Inventory

    Natural attenuation, also know as natural assimilation, intrinsic remediation, and passive remediation, along with other appellations, is defined according to the processes of biotic and abiotic transformations while stressing that bioremediation is the major cause for contaminan...

  3. Impact of biogeochemical processes on small scale variations in manganese nodule abundance in the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K. J.; Picard, A.; Mogollón, J. M.; Nöthen, K.; Rühlemann, C.; Kuhn, T.; Eisenhauer, A.; Kasten, S.

    2012-12-01

    Manganese nodules of the Clarion Clipperton Fracture Zone (CCFZ) in the equatorial east Pacific Ocean have been the subject of extensive studies in the past (i.e. Halbach et al., 1988). They are considered as a potential source for nonferrous metals. During RV Sonne cruise SO-205 in spring 2010 to the eastern part of the German manganese nodule license area, located in the east of the CCFZ, we recovered sediments with a box corer, multiple corer and piston corer at three sites with nodules on top of the sediment and one site without nodules. These samples were geochemically analyzed to elucidate whether diagenetic processes contribute to manganese nodule growth. High-resolution oxygen measurements at all sites revealed an average oxygen penetration depth of 2-3 m. This finding is in contrast to previous studies, which suggested oxic sediments over several tens of meters (Müller et al., 1988). Microbial activity rates were investigated in the oxic sediments. Highest activity was determined at the site without nodule coverage. Pore water analyses show that sites with large to medium-sized nodules on the sediment surface do not contain free manganese and exhibit no nitrate reduction. In contrast, sediments from nearby locations without nodules or medium to small-sized nodules on the sediment surface show an increase in Mn2+ and a decrease in NO3- pore-water concentrations with depth. This result suggests that at present suboxic diagenesis does not contribute to manganese nodule growth. Sedimentation rates are low at stations with larger nodules (0.35 cm kyr-1) and almost twice as high (~ 0.6cm kyr-1) at stations without or with smaller nodules. The organic carbon (OC) contents in the surface sediments at all stations are about 0.5 weight %. A reaction transport model was used to derive parameters, such as the depositional flux of organic matter, that control the geochemical conditions at the investigated sites. We propose that these small-scale regional differences

  4. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  5. An evaluation of physical and biogeochemical processes regulating the oxygen minimum zone in the water column of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sarma, V. V. S. S.

    2002-12-01

    Monthly oxygen budgets for the intermediate waters (100-1000 m) of the Bay of Bengal were constructed based on Modular Ocean Model (MOM) and oxygen data. The model results reveal that the oxygen levels in the oxygen minimum zone (OMZ) of the Bay of Bengal are controlled by physical and the associated biological processes. It results in maintaining low oxygen levels, with no significant seasonal variability, in the subsurface layer throughout the year. Low oxygen levels in the OMZ are sustained during the period of increased supply of organic matter through river runoff by enhanced supply of oxygen by the physical pump and vice versa. Thus, low oxygen levels in the OMZ are maintained by supply of oxygen by the physical pump to meet the demands of the biological processes. The inconsistency observed among oxygen consumption rates derived based on the present oxygen budget, carbon regeneration rate, and oxygen consumption rates computed based on electron transport system technique could be due to inadequate knowledge of seasonal and spatial variability in oxygen consumption in the latter two estimates. The residence time of intermediate waters (OMZ) of Bay of Bengal was computed to be 12 years.

  6. Process for guidance, containment, treatment, and imaging in a subsurface environment utilizing ferro-fluids

    DOEpatents

    Moridis, George J.; Oldenburg, Curtis M.

    2001-01-01

    Disclosed are processes for monitoring and control of underground contamination, which involve the application of ferrofluids. Two broad uses of ferrofluids are described: (1) to control liquid movement by the application of strong external magnetic fields; and (2) to image liquids by standard geophysical methods.

  7. MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE

    EPA Science Inventory

    Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...

  8. MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE

    EPA Science Inventory

    Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...

  9. Seasonal ERT monitoring of subsurface processes connected to freezing, thawing, snow accumulation and melt cycles

    NASA Astrophysics Data System (ADS)

    Krzeminska, Dominika; Starkloff, Torsten; Bloem, Esther; Stolte, Jannes

    2016-04-01

    For a better understanding of processes that influence snowmelt infiltration and runoff, and their consequences on soil erosion during spring periods, we established a long-term winter-spring ERT transect in the Gryteland catchment (Norway). The ERT transect is 71 m long, with 1 m spacing between the electrodes. It covers a depression with a north and south facing slope. The readings are collected once a week and, if needed, after a sudden change in weather conditions. Additionally, the soil transect is equipped with six TDR profiles, which register soil moisture and soil temperature every thirty minutes, at five depths (5, 10, 20, 30, 40 cm), for quantifying the ERT readings. The measurements performed during winter 2014/2015 gave promising results and showed the potential of ERT monitoring for understanding the soil thermal and hydraulic processes occurring during a winter and early spring. Moreover, there are visible differences in temporal trends and spatial variations in observed ERT patterns on the opposite facing slopes, which are of special interest. With the on-going experiment, we are aiming to understand the reoccurrence of the observed processes as well as to quantify soil moisture patterns. Herein, we would like to present the preliminary result of two ERT experiments (2014/2015 and 2015/2016) and discuss the advantages and limitations of our experiments. Moreover, we would like to stimulate the discussion about the potential of ERT for spatial and temporal monitoring of soil hydraulic and thermal processes and indirect measurements of soil water content.

  10. Coupling simultaneous dissolved nitrate measurements with quantum cascade laser based nitrous oxide flux and isotopocule analysis to investigate the biogeochemical processes occurring in a denitrifying bioreactor.

    NASA Astrophysics Data System (ADS)

    Williams, D. J.; Maxwell, B.; Deshmukh, P.; Chen, H.

    2016-12-01

    Denitrifying bioreactors are used to treat nitrogen enriched water from agricultural operations. These systems may also be an important source of nitrous oxide emissions, a potent greenhouse gas. Bioreactors also provide researchers with an opportunity to investigate the biogeochemical processes occurring in soils under controlled conditions. A pilot-scale bioreactor with woodchip media was injected with KNO3 at a constant flow rate through the system. The water-filled-pore-space (WFPS) was varied in separate experiments to create differing aerobic conditions. A quantum cascade laser spectroscopy system was used to determine the flux and isotopic signature of N2O emissions from woodchip bioreactor media over time. Simultaneous nitrate concentration measurements were made using an optical method at multiple points in the bioreactor. Isotopic site-preference (SP) characterization of N2O emissions was used to estimate production sources from soil nitrification and denitrification. A dynamic gas sampling method was used to measure N2O mixing ratios, which required ambient air to equalize chamber atmospheric pressure during sampling. Precise instrument calibration using gas samples of known isotopic abundances, provided by the Swiss Federal Labs (EMPA), together with a Keeling plot method to account for variations in isotopocule composition in ambient air, produced reliable SP estimates. Initial experiments during 100% WFPS show that SP and δ15Nbulk values were varied from -6‰ to 3‰ and -23‰ to -12‰, respectively. The trend of these values indicated that the N2O source was slightly changed from partial nitrification to denitrification during the measuring period of time. The peak rate of nitrous oxide production occurred 7 hours after peak nitrate removal. These results and others to be presented show the utility of coupling real-time dissolved and gas phase measurements for studying nitrogen cycling in soils.

  11. Predicting Mountainous Watershed Biogeochemical Dynamics, Including Response to Droughts and Early Snowmelt

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Williams, K. H.; Long, P.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.

    2016-12-01

    Climate change, extreme weather, land-use change, and other perturbations are significantly reshaping interactions with in watersheds throughout the world. While mountainous watersheds are recognized as the water towers for the world, hydrological processes in watersheds also mediate biogeochemical processes that support all terrestrial life. Developing predictive understanding of watershed hydrological and biogeochemical functioning is challenging, as complex interactions occurring within a heterogeneous watershed can lead to a cascade of effects on downstream water availability and quality. Although these interactions can have significant implications for energy production, agriculture, water quality, and other benefits valued by society, uncertainty associated with predicting watershed function is high. The Watershed Function project aims to substantially reduce this uncertainty through developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. The Watershed Function project is being carried out in a headwater mountainous catchment of the Upper Colorado River Basin, within a watershed characterized by significant gradients in elevation, vegetation and hydrogeology. A system-within system project perspective posits that the integrated watershed response to disturbances can be adequately predicted through consideration of interactions and feedbacks occurring within a limited number of subsystems, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A key technological goal is the development of scale-adaptive simulation capabilities that can incorporate genomic information where and when it is useful for predicting the overall watershed response to disturbance. Through developing

  12. Biogeochemical processes underpin ecosystem services

    USDA-ARS?s Scientific Manuscript database

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  13. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

    SciTech Connect

    Paul Meakin; Alexandre Tartakovsky; Tim Scheibe; Daniel Tartakovsky; Georgr Redden; Philip E. Long; Scott C. Brooks; Zhijie Xu

    2007-06-01

    A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

  14. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

    SciTech Connect

    Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Tartakovsky, Daniel M.; Redden, George; Long, Philip E.; Brooks, Scott C.; Xu, Zhijie

    2007-08-01

    A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

  15. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    SciTech Connect

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  16. Cretaceous-Palaeogene experiments in Biogeochemical Resilience

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Henehan, M. J.; Hull, P. M.; Planavsky, N.; Schmidt, D. N.; Rae, J. W. B.; Thomas, E.; Huber, B. T.

    2015-12-01

    Human activity is altering biogeochemical cycles in the ocean. While ultimately anthropogenic forcings may be brought under control, it is still unclear whether tipping points may exist beyond which human-induced changes to biogeochemical cycles become irreversible. We use the Late Cretaceous and the Cretaceous-Palaeogene (K-Pg) boundary interval as an informative case study. Over this interval, two carbon cycle perturbations (gradual flood basalt volcanism and abrupt bolide impact) occurred within a short time window, allowing us to investigate the resilience of biogeochemical cycles to different pressures applied to the same initial boundary conditions on very different time scales. We demonstrate that relatively gradual emission of CO2 from the Deccan large igneous province was efficiently mitigated within the limits of existing biogeochemical processes. However, the rapid extinction of pelagic calcifying organisms at the K-Pg boundary due to the Chicxulub bolide impact had more profound effects, and caused lasting (> 1 million years) changes to biogeochemical cycles. By combining sedimentological observations with boron isotope-based pH reconstructions over these events, we document two potentially useful partial analogues for best and worst case scenarios for anthropogenic global change. We suggest that if current ocean acidification results in the mass extinction of marine pelagic calcifiers, we may cause profound changes to the Earth system that will persist for 100,000s to millions of years.

  17. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  18. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal

  19. Process studies in modern glacial environments: An innovative method and tool for subsurface site characterization at U.S. Army Alaska installations

    NASA Astrophysics Data System (ADS)

    Evenson, E. B.; Lawson, D. E.; Kopczynski, S. E.; Finnegan, D. C.; Bigl, S. R.; Fosbrook, C.

    2002-12-01

    Subsurface stratigraphy in previously glaciated terrain is complex and difficult to interpret. Textbook models illustrating glacial and periglacial environments are often too idealized to serve as adequate analogs to interpret site-specific subsurface data. Models of emplacement generally provide the perspective of glacial and periglacial processes at synoptic scales. While these models are useful to understand general principles, these models are insufficient to provide geologic information at resolutions necessary for quantitative environmental remediation efforts. Contaminated sites on U.S. Army Alaska Installations are characterized by glacially driven complex subsurface stratigraphy. These subsurface conditions cannot entirely be defined through boreholes, nor can geophysical data (ground penetrating radar, shallow seismics, etc.) be readily interpreted through existing conceptual models, especially in areas of discontinuous permafrost (Fort Wainwright, central Alaska) or formerly glaciated terrains (Fort Richardson, South Central Alaska; Haines Fuel Terminal, Southeast Alaska). Process studies at modern glacier locales, such as the Matanuska Glacier and Glacier Bay, allow us to apply actual field-process observations at a variety of scales to characterize site-specific stratigraphy. This work has led us to refine our geophysical approaches to detect the presence of buried ice, permafrost and sediment layers in active terrestrial and tidewater glacial environments, which has greatly enhanced our ability to map the vertical and lateral distribution of confining layers in our investigative areas (i.e. permafrost and sediments). These data and process observations are synthesized as three-dimensional models allowing us to predict the probable spatial distribution and relationships that exist among aquifers and their confining units. This approach allows us the ability to accurately develop subsurface models that are essential in developing groundwater models to

  20. Improving Intercomparability of Marine Biogeochemical Time Series

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Telszewski, Maciej; Lorenzoni, Laura

    2013-04-01

    Shipboard biogeochemical time series represent one of the most valuable tools scientists have to quantify marine elemental fluxes and associated biogeochemical processes and to understand their links to changing climate. They provide the long, temporally resolved data sets needed to characterize ocean climate, biogeochemistry, and ecosystem variability and change. However, to monitor and differentiate natural cycles and human-driven changes in the global oceans, time series methodologies must be transparent and intercomparable when possible. To review current shipboard biogeochemical time series sampling and analytical methods, the International Ocean Carbon Coordination Project (IOCCP; http://www.ioccp.org/) and the Ocean Carbon and Biogeochemistry Program (http://www.us-ocb.org/) convened an international ocean time series workshop at the Bermuda Institute for Ocean Sciences.

  1. Ocean Circulation and Biogeochemical responses to Typhoons

    NASA Astrophysics Data System (ADS)

    Huang, S. M.; Oey, L. Y.; Lin, P. L.; Liu, K. K.

    2014-12-01

    Typhoons produce vertical and horizontal mixing in the ocean and impact biogeochemical response. The goal of this study is to examine the fundamental processes involved in the physical and biogeochemical changes occurring in an ocean basin traversed by a zonally moving typhoon. The study employs an idealized typhoon wind field with varying intensities and translation speeds over a rectangular ocean basin. The model is based on the mpiPOM which is coupled to an NPZD biogeochemical model. The results show north-south asymmetric responses depending on the translation speeds of the typhoon, due to (1) the different intensities of inertial oscillation, (2) mixing caused by symmetric instability, and (3) re-stratification by mixed-layer baroclinic instability along the typhoon track.

  2. Monitoring Subsurface Ice-Ocean Processes Using Underwater Acoustics in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lee, W. S.; Yun, S.

    2016-12-01

    The Ross Sea is a dynamic area of ice-ocean interaction, where a large component of the Southern Ocean's sea ice formation occurs within regional polynyas in addition to the destructive processes happening at the seaward boundary of the Ross Ice Shelf. Recent studies show the sea-ice season has been lengthening and the sea ice extent has been growing with more persistent and larger regional polynyas. These trends have important implications for the Ross Sea ecosystem with polynyas supporting high rates of primary productivity in the area. Monitoring trends in sea ice and ice shelf dynamics in the Southern Ocean has relied heavily on satellite imagery and remote sensing methods despite a significant portion of these physical processes occurring beneath the ocean surface. In January 2014, an ocean bottom hydrophone (OBH) was moored on the seafloor in the polynya area of Terra Nova Bay in the northwest region of the Ross Sea, north of the Drygalski Ice Tongue. The OBH recorded a year long record of the underwater low frequency acoustic spectrum up to 500 Hz from January 29 until it was recovered the following December 17, 2014. The acoustic records reveal a complex annual history of ice generated signals with over 50,000 detected events. These ice generated events related to collisions and cracking provide important insight for the timing and intensity of the ice-ocean dynamics happening below the sea surface as the polynya grows and expands and the nearby Drygalski ice tongue flows into Terra Nova Bay. Additionally, high concentrations of baleen whale vocalizations in frequencies ranging from 200-400 Hz from September - December suggest a strong seasonal presence of whales in this ecologically important polynya region.

  3. [Crust development and subsurface soil properties under dominant shrubs in the process of dune restoration, Horqin Sand Land].

    PubMed

    Guo, Yi-rui; Zhao, Ha-lin; Zuo, Xiao-an; Li, Yu-Lin; Huang, Yin-xin; Wang, Shao-kun

    2008-04-01

    Soil crust is a common and widespread phenomenon in desert areas all over the world due to its extraordinary ability to survive desiccation and extreme temperatures, high pH and salinity. Despite its unassuming appearance, biological soil crusts play a significant role in desert ecosystems, including involvement in the process of formation, stability and fertility of soil, preventing soil erosion by water or wind, increasing the possibility of vascular plant colonization, and being responsible for the stabilization of sand dunes. This study taking Horqin Sand Land as research region, by field sampling, crust and topsoil (0-2.5 cm and 2.5-5 cm under crust) samples in different dune habitats and shrub communities were collected, and their physicochemical properties were analyzed, including particle size distribution, bulk density, total nutrients and available nutrients, pH, EC and CaCO3 content. The result revealed that Artemisia halodendron in semi-mobile dune, Caragana microphylla in semi-fix dune, Artemisia frigida in fix dune and Salix microstachya in interdunal lowland were respectively developed physical soil crust, algae crust, lichen crust and moss crust. Crust thickness, hardness, water content, fine fraction, total and available nutrients gradually increased by semi-mobile dune < semi-fix dune < fix dune < interdunal lowland in terms of different dune habitats, and by physical soil crust < algae crust < lichen crust < moss crust in terms of different crust types. There were significant differences among crust types on nutrient content and particle size distribution (p < 0.01). Meanwhile, crust enhanced the < 0.05 mm content and nutrient content of topsoil, following an increasing trend from semi-mobile dune to interdunal lowland. As to each crust, the parameters of 0-2.5 cm subsurface soil layer were higher than that in 2.5-5 cm soil layer. The result also showed that the fine fraction and nutrient content of moss crust under Salix microstachya in

  4. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  5. Role of surface and subsurface processes in scaling N2O emissions along riverine networks.

    PubMed

    Marzadri, Alessandra; Dee, Martha M; Tonina, Daniele; Bellin, Alberto; Tank, Jennifer L

    2017-04-11

    Riverine environments, such as streams and rivers, have been reported as sources of the potent greenhouse gas nitrous oxide ([Formula: see text]) to the atmosphere mainly via microbially mediated denitrification. Our limited understanding of the relative roles of the near-surface streambed sediment (hyporheic zone), benthic, and water column zones in controlling [Formula: see text] production precludes predictions of [Formula: see text] emissions along riverine networks. Here, we analyze [Formula: see text] emissions from streams and rivers worldwide of different sizes, morphology, land cover, biomes, and climatic conditions. We show that the primary source of [Formula: see text] emissions varies with stream and river size and shifts from the hyporheic-benthic zone in headwater streams to the benthic-water column zone in rivers. This analysis reveals that [Formula: see text] production is bounded between two [Formula: see text] emission potentials: the upper [Formula: see text] emission potential results from production within the benthic-hyporheic zone, and the lower [Formula: see text] emission potential reflects the production within the benthic-water column zone. By understanding the scaling nature of [Formula: see text] production along riverine networks, our framework facilitates predictions of riverine [Formula: see text] emissions globally using widely accessible chemical and hydromorphological datasets and thus, quantifies the effect of human activity and natural processes on [Formula: see text] production.

  6. The Distributed Thermal Perturbation Sensor-A New Instrument for Monitoring Subsurface Processes and Parameters

    NASA Astrophysics Data System (ADS)

    Freifeld, B. M.

    2008-12-01

    Fiber-optic distributed temperature sensors (DTS) have been used for measuring temperatures in boreholes at high spatial resolution over the last 15 years. Owing to steady improvements in instrument resolution and accuracy, along with declines in cost, DTS are being deployed in an expanding list of applications. While DTS is commonly used as a passive measuring device, the versatility of DTS measurements can be greatly enhanced if a controlled thermal perturbation is created along the length of the borehole, and the thermal transient is monitored. The author presents three distinct applications of a Distributed Thermal Perturbation Sensor (DTPS), a combination DTS and electrical heater, for (1) monitoring fluid advection in the saturated zone near the proposed nuclear waste repository at Yucca Mountain, Nevada, USA, (2) estimating fluid phase-saturation during a CO2 sequestration experiment in Ketzin, Germany, and (3) providing in situ estimates of thermal conductivity in a permafrost borehole in Nunavut, Canada. While the measurement methodology is similar in all three applications, different physical process models are invoked for interpreting the data collected in each case. Lessons learned during these initial DTPS installations highlight the importance of careful calibration and reveal practical limitations in the interpretation of collected data. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  7. Removal processes of disinfection byproducts in subsurface-flow constructed wetlands treating secondary effluent.

    PubMed

    Chen, Yi; Wen, Yue; Tang, Zhiru; Li, Ling; Cai, Yanlong; Zhou, Qi

    2014-03-15

    The removal efficiencies and the kinetics of disinfection byproducts (DBPs) were studied in six greenhouse laboratory-scale SSF CWs. Cattail (Typha latifolia) and its litter (collected from the aboveground samples of cattail in autumn) were used as a potential phytoremediation technology and as a primary substrate, respectively, for DBP removal. Results showed that most of the 11 DBPs (except chloroform and 1, 1-dichloropropanone) were efficiently removed (>90%) in six SSF CWs with hydraulic retention time of 5 d and there were no significant differences among the systems. Under the batch mode, the removal of DBPs in SSF CWs followed first-order kinetics with half-lives of 1.0-770.2 h. As a primary DBP in wastewater effluent, removal efficiencies for chloroform were higher in planted systems than in unplanted ones and plant uptake accounted for more than 23.8% of the removal. Plant litter greatly enhanced the removal of trihalomethanes (THMs) by supplying primary substrates and reducing conditions, and the formation of dichloromethane supported the anaerobic biodegradation of THMs via reductive dechlorination in SSF CWs. Trichloroacetonitrile was completely removed within 10 h in each system and hydrolysis was considered to be the dominant process as there was a rapid formation of the hydrolysis byproduct, trichloroacetamide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Biogeochemical Coupling between Ocean and Sea Ice

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.

    2016-12-01

    Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.

  9. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation.

    PubMed

    van Breukelen, Boris M; Griffioen, Jasper

    2004-09-01

    Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of

  10. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH 4, and CH 4 oxidation

    NASA Astrophysics Data System (ADS)

    van Breukelen, Boris M.; Griffioen, Jasper

    2004-09-01

    Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH 4, Fe(II), Mn(II), and NH 4 from leachate and reduction of O 2, NO 3 and SO 4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH 4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence

  11. Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects

    NASA Astrophysics Data System (ADS)

    Gomez, Jesus D.; Wilson, John L.; Cardenas, M. Bayani

    2012-09-01

    Hyporheic exchange plays a key role in the biogeochemical evolution of water and in ecosystem functioning at the local, reach, and watershed scales. Residence time is a fundamental metric to describe the possible transformation taking place in this exchange zone. With this in mind, we use a simple conceptual model to explore the residence time distributions (RTDs) of sinuosity-driven hyporheic zones (HZs) and to discriminate the individual effect of sinuosity (σ), valley slope (Jx), hydraulic conductivity (K), aquifer dispersivity (αL), and the biogeochemical timescales (BTSs) that characterize the degradation of dissolved organic carbon in these hydrologic systems. We find that RTDs are characterized by one early mode and a late time power law behavior. For a given aquifer dispersivity, the shape of these distributions is stretched or compressed by changes in Jx, K, and σ, having a strong influence on the net biogeochemical transformations within the HZ. Using BTSs proposed in previous studies and sensitivity analyses, we show the potential of σ, Jx, and K to classify meander HZs as net sinks of nitrates or only modulators of the residence times in the subsurface where nitrate reduction is negligible. These findings can be used as predictive tools to quantify the potential of meanders as biogeochemical reactors at the watershed scale with the aid of remote sensing data and GIS processing techniques. These tools can guide experimental design, suggesting important locations to visit, sample, and/or instrument. Also, hyporheic restoration projects can use them for initial site selection and design of channel modifications.

  12. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ˜1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.

  13. Subsurface Microbes Expanding the Tree of Life

    ScienceCinema

    Banfield, Jillian

    2016-07-12

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  14. Subsurface Microbes Expanding the Tree of Life

    SciTech Connect

    Banfield, Jillian

    2015-05-11

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  15. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.; Qafoku, Nikolla P.; Last, George V.; Lee, Michelle H.; Kaplan, Daniel I.

    2015-09-01

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions. this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.

  16. Surface time-lapse electrical resistivity tomography (TLERT) monitoring of an SRS injection and associated biogeochemical processes, Oak Ridge National Laboratory, Tennessee USA

    NASA Astrophysics Data System (ADS)

    Baker, G. S.; Wu, Y.; Hubbard, S. S.; Wu, W.; Gaines, D. P.; Pratt, J. C.; Modi, A. L.; Watson, D.; Jardine, P.

    2009-05-01

    We present results from surface time-lapse electrical resistivity tomography (TLERT) data collected within a uranium-contaminated unconfined aquifer underlying the Oak Ridge Field Research Center (ORFRC) located at the Oak Ridge National Laboratory (ORNL) in Tennessee. As part of an Integrated Field Research Challenge (IFRC) project supported by the DOE Environmental Remediation Sciences Program (ERSP), bioreduction of U(VI) to U(IV) with ethanol as an electron donor has been tested during the last four years. Low U concentration (below US EPA MCL of 0.03 mg/L) can be achieved by frequent injection of electron donor. To reduce the costs and improve the sustainability for remediation and site maintenance, our IFRC team is exploring the effectiveness of a slowly degrading substrate such as commercial emulsified vegetable oil substrate (EVO) as alternative electron donor sources. Laboratory batch and flow-through column experiments were carried out to investigate the sensitivity of various physical properties (e.g., electrical conductivity) to EVO injection to test the applicability of geophysics as a monitoring tool at the field scale. Results revealed increased electrical conductivity during both EVO injection and subsequent degradation of surfactant with an overall increase in conductivity of ˜35%; thus, surface TLERT was selected as a monitoring tool to supplement well fluid samples. The field stimulation test began at Area 2 during early February 2009. Prior to the injection of the EVO, preliminary characterization completed, including a geochemical survey of the ground water from ˜50 wells, microbial samples of groundwater and sediment collected from selected wells, and site hydrology characterized by bromide tracer test and surface ERT methods. On February 9, 2009, diluted EVO solution (20% concentration, 900 gal vol) was injected into three injection wells within 1.5 hours. Distribution of the injected EVO and accompanying biogeochemical processes has been

  17. 129I/(127)I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine.

    PubMed

    Santschi, Peter H; Schwehr, Kathleen A

    2004-04-05

    Iodine is a biophilic element, with several short-lived isotopes (e.g. (131)I, t(1/2)=8 days), one long-lived isotope, (129)I (t(1/2)=15.6 million years) and one stable isotope, (127)I. The inventory of (129)I in surface environments has been overwhelmed by anthropogenic releases over the past 50 years. Iodine and its isotopes are important for a number of reasons: (1) The largest fraction of the short-term and long-term dose from accidental releases and fallout from atomic bomb tests was from iodine isotopes. (2) (129)I is one of the two long-lived nuclides with highest mobility in stored radioactive waste. (3) (129)I could provide the scientific community with a new geochemical tracer and new geochronological applications in environmental science. (4) A better assessment of iodine deficiency disorders, mineralization in exploration geochemistry, and the transfer of volatile organic greenhouse-active and ozone-destroying iodine species from the oceans to the atmosphere is needed. One of the most promising future applications for the (129)I/(127)I ratio is not only as a new geochronometer, but also as a new source tracer for terrestrial organic matter with ages of 50 years or less. This is especially attractive, since radiocarbon can be, at times, an ambiguous chronometer for the 50-year time-scale, whereas (129)I concentrations during this time are overwhelming previous levels by orders of magnitude. Iodine is to a significant extent involved in the cycle of organic matter in all surface environments. Its biophilic nature is demonstrated by a relative enrichment of iodine in seaweed and dissolved macromolecular organic matter. Because of the close coupling of iodine and organic carbon cycles, our understanding of the underlying molecular mechanisms of the processes regulating iodination reactions in aquatic systems is still limited. The binding of iodine by organic matter has the potential to modify the transport, bioavailability and transfer of iodine isotopes to

  18. Biofilm-induced calcium carbonate precipitation: application in the subsurface

    NASA Astrophysics Data System (ADS)

    Phillips, A. J.; Eldring, J.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Mitchell, A. C.; Esposito, R.; Cunningham, A. B.; Spangler, L.

    2012-12-01

    biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen high permeability regions or fractures (either natural or induced) in the subsurface. Novel high pressure test vessel to investigate biogeochemical processes under relevant subsurface scales and pressures.

  19. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration - the Thur River case study

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E. A. D.; Barry, D. A.; Hollender, J.; Cirpka, O. A.; Schneider, P.; Vogt, T.; Radny, D.; Durisch-Kaiser, E.

    2014-06-01

    River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground- and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics

  20. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    SciTech Connect

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  1. Surface and subsurface cleanup protocol for radionuclides Gunnison, Colorado, UMTRA Project Processing Site. Revision 3, Final report

    SciTech Connect

    Not Available

    1994-05-01

    The supplemental standards provisions of Title 40, Code of Federal Regulations, Part 192 (40 CFR Part 192) require the cleanup of radionuclides other than radium-226 (Ra-226) to levels ``as low as reasonably achievable`` (ALARA), taking into account site-specific conditions, if sufficient quantities and concentrations are present to constitute a significant radiation hazard. In this context, thorium-230 (Th-230) at the Gunnison, Colorado, processing site will require remediation. However, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Characterization data indicate that in the offpile areas, the removal of residual in situ bulk Ra-226 and Th-230 such that the 1000-year projected Ra-226 concentration (Ra-226 concentration in 1000 years due to the decay of in situ Ra-226 and the in-growth of Ra-226 from in situ Th-230) complies with the US Environmental Protection Agency (EPA) cleanup standard for in situ Ra-226 and the cleanup protocol for in situ Th-230 can be readily achieved using conventional excavation techniques for bulk contamination without encountering significant impacts due to groundwater. The EPA cleanup standard and criterion for Ra-226 and the 1000-year projected Ra-226 are 5 and 15 picocuries per gram (pCi/g) above background, respectively, averaged over 15-centimeter (cm) deep surface and subsurface intervals and 100-square-meter (m{sup 2}) grid areas. Significant differential migration of Th-230 relative to Ra-226 has occurred over 40 percent of the subpile area. To effectively remediate the site with respect to Ra-226 and Th-230, supplemental standard is proposed and discussed in this report.

  2. Evaluation of the giant reed (Arundo donax) in horizontal subsurface flow wetlands for the treatment of dairy processing factory wastewater.

    PubMed

    Idris, Shaharah Mohd; Jones, Paul L; Salzman, Scott A; Croatto, George; Allinson, Graeme

    2012-09-01

    Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental horizontal subsurface flow (HSSF), gravel-based constructed wetlands (CWs) and challenged by treated dairy processing factory wastewater with a median electrical conductivity of 8.9 mS cm(-1). The hydraulic loading rate was tested at 3.75 cm day(-1). In general, the plants grew well during the 7-month study period, with no obvious signs of salt stress. The major water quality parameters monitored (biological oxygen demand (BOD), suspended solids (SS) and total nitrogen (TN) but not total phosphorus) were generally improved after the effluent had passed through the CWs. There was no significance different in removal efficiencies between the planted beds and unplanted gravel beds (p > 0.007), nor was there any significant difference in removal efficiencies between the A. donax and P. australis beds for most parameters. BOD, SS and TN removal in the A. donax and P. australis CWs was 69, 95 and 26 % and 62, 97 and 26 %, respectively. Bacterial removal was observed but only to levels that would allow reuse of the effluent for use on non-food crops under Victorian state regulations. As expected, the A. donax CWs produced considerably more biomass (37 ± 7.2 kg wet weight) than the P. australis CWs (11 ± 1.4 kg wet weight). This standing crop equates to approximately 179 and 68 tonnes ha(-1) year(-1) biomass (dry weight) for A. donax and P. australis, respectively (assuming a 250-day growing season and single-cut harvest). The performance similarity of the A. donax and P. australis planted CWs indicates that either may be used in HSSF wetlands treating dairy factory wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

  3. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; Jim Fredrickson; Ken Kemner; Shelly Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  4. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  5. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  6. Continuous monitoring of the lunar or Martian subsurface using on-board pattern recognition and neural processing of Rover geophysical data

    NASA Technical Reports Server (NTRS)

    Mcgill, J. W.; Glass, C. E.; Sternberg, B. K.

    1990-01-01

    The ultimate goal is to create an extraterrestrial unmanned system for subsurface mapping and exploration. Neural networks are to be used to recognize anomalies in the profiles that correspond to potentially exploitable subsurface features. The ground penetrating radar (GPR) techniques are likewise identical. Hence, the preliminary research focus on GPR systems will be directly applicable to seismic systems once such systems can be designed for continuous operation. The original GPR profile may be very complex due to electrical behavior of the background, targets, and antennas, much as the seismic record is made complex by multiple reflections, ghosting, and ringing. Because the format of the GPR data is similar to the format of seismic data, seismic processing software may be applied to GPR data to help enhance the data. A neural network may then be trained to more accurately identify anomalies from the processed record than from the original record.

  7. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.

    PubMed

    Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T

    2016-01-01

    Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Coupled Biogeochemical Processes Governing the Stability of Bacteriogenic Uraninite and Release of U(VI) in Heterogeneous Media: Molecular to Meter Scales

    SciTech Connect

    Bargar, John R.

    2006-11-15

    In-situ reductive biotransformation of subsurface U(VI) to U(IV) (as ?UO2?) has been proposed as a bioremediation method to immobilize uranium at contaminated DOE sites. The chemical stability of bacteriogenic ?UO2? is the seminal issue governing its success as an in-situ waste form in the subsurface. The structure and properties of chemically synthesized UO2+x have been investigated in great detail. It has been found to exhibit complex structural disorder, with nonstoichiometry being common, hence the designation ?UO2+x?, where 0 < x < 0.25. Little is known about the structures and properties of the important bacteriogenic analogs, which are believed to occur as nanoparticles in the environment. Chemically synthesized UO2+x exhibits an open fluorite structure and is known to accommodate significant doping of divalent cations. The extent to which bacteriogenic UO2+x incorporates common ground water cations (e.g., Ca2+) has not been investigated, and little is known about nonstoichiometry and structure defects in the bacteriogenic material. Particle size, nonstoichiometry, and doping may significantly alter the reactivity, and hence stability, of bacteriogenic UO2+x in the subsurface. The presence of associated sulfide minerals, and solid phase oxidants such as bacteriogenic Mn oxides may also affect the longevity of bacteriogenic UO2 in the subsurface.

  9. Terrestrial Subsurface Ecosystem

    SciTech Connect

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free of microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our

  10. Chronology: An Important (and Potentially Accessible) Parameter in Understanding Europa Surface-Subsurface Material Interchange, Burial, and Resurfacing Processes

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.

    2001-01-01

    Time is an important parameter in understanding the interaction of the surface and subsurface of Europa. It should be possible to determine potassium-argon and cosmic ray exposure ages in situ on the surface of Europa. Additional information is contained in the original extended abstract.

  11. Chronology: An Important (and Potentially Accessible) Parameter in Understanding Europa Surface-Subsurface Material Interchange, Burial, and Resurfacing Processes

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.

    2001-01-01

    Time is an important parameter in understanding the interaction of the surface and subsurface of Europa. It should be possible to determine potassium-argon and cosmic ray exposure ages in situ on the surface of Europa. Additional information is contained in the original extended abstract.

  12. Subsurface Electromagnetic Target Characterization and Identification

    DTIC Science & Technology

    1979-06-01

    B. Subsurface Electromagnetic Video Pulse Radar System 5 C. The Subsurface Targets 11 D. Raw Measured Waveforms 14 E. Processed Waveforms 15 III...259 r i. I .. . . .... .. . . . . .;. . . . .. .. o _ • v . . • • • -• -. . .. -"... .. . II II LIST OF FIGURES Figure Page 1 The subsurface pulse ...7 3 Typical raw waveform received by the pulse radar system ..... ................... .i..... 9 4 Physical characteristics of the subsurface

  13. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    NASA Astrophysics Data System (ADS)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  14. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    PubMed

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  15. Investigating geophysical signatures of microbial cells, processes, and degradation: Implications for the geophysical monitoring of microbial activity and degradation in the subsurface

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, Dimitrios

    An integral part of soil remediation is the efficient monitoring of geochemical and microbial processes in the subsurface. The shallow subsurface environment is a dynamic system undergoing continuous change. The chemical and physical properties are affected by natural processes and by anthropogenic impacts, especially in the case of contaminated soils. Subsurface monitoring is hindered by our inability to directly observe any geochemical or microbiological process in real time and in situ. High resolution geophysical methods can be used for efficient shallow subsurface monitoring in real time and with high spatial variability. I investigated the use of common geophysical methods to detect and/or monitor microbial cells, microbial processes, and degradation in the subsurface. In chapter 2, I investigate the use of geoelectrical methods to monitor microbial presence within a simple system. Real and imaginary conductivity measurements are associated with the presence of metabolically inactive but alive microbial cells in sand media. Imaginary conductivity appears to be very sensitive in cell density changes whereas the real conductivity is not affected. The limitations of the method and possible mechanisms are discussed. In chapter 3, I investigate the use of geoelectrical methods to detect and monitor metal sulfide mineralization due to microbial activity. Imaginary conductivity changes are coupled with metal - fluid interfacial area changes and the biomineral formation. The mineral precipitants structure and aging influence both imaginary and real conductivity. This study shows the potential of geoelectrical methods to monitor microbial processes involving sequestration of heavy metals as insoluble precipitants. In chapter 4, the self potential method is used as a method to monitor abiotic DNAPL degradation. Geochemical monitoring indicated that DNAPL degradation is intensified due to HgCl2 presence in abiotic columns; the SP measurements are sensitive to these

  16. Microbial iron reduction under deep subsurface pressure conditions

    NASA Astrophysics Data System (ADS)

    Picard, A.; Daniel, I.; Testemale, D.; Hazemann, J.; Oger, P.

    2009-12-01

    The deep subsurface is characterized by hostile conditions in terms of temperature, pressure and nutrient availability. Our current view of the biosphere extension is restricted to depths shallower than the isotherm associated to the highest observed temperature for life, i.e. 122°C. At this temperature, depending on the geological setting, pressure varies between ambient pressure at geothermal springs and 350 MPa in cold subduction zones. In this high-pressure biosphere, biological iron reduction is an important process linked to carbon oxidation. Among the factors governing reaction rates and yields in the deep subsurface, pressure could be of importance due its effects on kinetic and equilibrium reactions. The understanding and modelling of Fe reduction in natural environments, especially in the subsurface, can be first comprehended thanks to studies of Fe reduction in pure cultures; indeed the study of the effects of high pressure on Fe-reducing bacteria in pure cultures can serve as a basic model for the effects of pressure on Fe reduction in the subsurface. We investigated the effects of pressure on the reduction of Fe(III) to Fe(II) by the bacterial model Shewanella oneidensis MR-1. This strain is a mesophilic and piezosensitive counterpart of the psychrophilic and piezophilic Shewanella representatives that have been frequently isolated from deep-sea environments. Kinetics of Fe(III) reduction to Fe(II) were monitored in situ by X-ray Absorption Spectroscopy (XAS) in an appropriate pressure vessel dedicated to in situ XAS measurements (Testemale et al. 2005). Measurements were performed at the BM30B beamline of the European Synchrotron Radiation Facilty (Grenoble, France). Experiments were conducted from 0.1 MPa to 100 MPa at MR-1 optimal temperature (30°C). Iron reduction was monitored until 100 MPa in cultures of MR-1 at a concentration of 10e8 cells/ml. This shows that the metabolic activity of a piezosensitive microbe extends far beyond its pressure

  17. Effect of Eley-Rideal Process on the Phase Diagram of a Monomer-Dimer Catalytic Reaction on (001) Surface and Subsurface of a Simple Cubic Structure

    NASA Astrophysics Data System (ADS)

    Qaisrani, A. U.; Khan, K. M.; Khalid, M.

    We have investigated the effects of the Eley-Rideal (ER) process on the phase diagram of the Langmuir-Hinshelwood (LH) type monomer-dimer (CO-O2) catalytic reaction on (001) surface and subsurface of a simple cubic structure. With the consideration of a new pathway in which a dimer is adsorbed in such a way that it takes one surface site whereas second site may be from a surface or from a subsurface, a situation close to experiments is observed, i.e., with slight introduction of the monomer (CO), the production of AB2 starts. In this case, the qualitative trend of surface oxygen coverage is consistent with the experimental situation.

  18. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Goldhammer, Tobias; Elvert, Marcus; Witt, Matthias; Lin, Yu-Shih; Wendt, Jenny; Zabel, Matthias; Heuer, Verena B.; Hinrichs, Kai-Uwe

    2017-06-01

    Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299-600 Da and covered a broader range of element ratios (H/C = 0.35-2.19, O/C = 0.03-1.19 vs. H/C = 0.56-2.13, O/C = 0.15-1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment-water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was

  19. Using Geochemical Indicators to Distinguish High Biogeochemical Activity in Sediments

    NASA Astrophysics Data System (ADS)

    Kenwell, A. M.; Navarre-Sitchler, A.; Prugue, R.; Spear, J. R.; Williams, K. H.; Maxwell, R. M.

    2014-12-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict elevated rates of biogeochemical activity (microbial "hotspots") in subsurface environments by correlating microbial community structure with the spatial distribution of geochemical indicators in subsurface sediments. Statistical hierarchical cluster analyses (HCA) of X-ray fluorescence (XRF), simulated precipitation leachate, bioavailable Fe and Mn, total organic carbon (TOC), microbial community structure, grain size, bulk density and moisture content data were used to identify regions of the subsurface characterized by biogeochemical hotspots and sample characteristics indicative of these hotspots within fluvially-derived aquifer sediments. The methodology has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 33 sediment samples were taken from 8 sediment cores and at the East River 33 soil/sediment samples were collected across and perpendicular to 3 active meanders. The East River watershed exhibits characteristic fluvial progression and serves as a representative example of many headwater catchments with the upper Colorado River basin. Initial clustering revealed that operationally defined hotspots were characterized by high organic carbon, bioavailable iron and dark colors but not necessarily low hydraulic conductivity. Applying the method to identify hotspots in both contaminated and natural floodplain deposits and their associated alluvial aquifers demonstrates the broad applicability of a geochemical indicator based approach.

  20. Archaea in biogeochemical cycles.

    PubMed

    Offre, Pierre; Spang, Anja; Schleper, Christa

    2013-01-01

    Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth's global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by Thaumarchaeota. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.

  1. Active Serpentinization and the Potential for a Diverse Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Canovas, P. A.; Shock, E.

    2013-12-01

    The ubiquitous nature of serpentinization and the unique fluids it generates have major consequences for habitat generation, abiotic organic synthesis, and biosynthesis. The production of hydrogen from the anaerobic hydrolysis of ultramafic minerals sets the redox state of serpentinizing fluids to be thermodynamically favorable for these processes. Consequently, a host of specialized microbial populations and metabolisms can be sustained. Active low-temperature serpentinizing systems, such as the Samail ophiolite in Oman, offer an ideal opportunity to investigate biogeochemical processes during the alteration of ultramafic minerals. At the Samail ophiolite in particular, serpentinization may provide the potential for an active subsurface microbial community shielded from potentially unfavorable surface conditions. Support for this assertion comes from geochemical data including Mg, Ca, CH4 (aq), and H2 (aq) abundances indicating that methane is a product of serpentinization. To further investigate viable metabolic strategies, affinity calculations were performed on both the surface waters and the hyperalkaline springs, which may be considered as messengers of processes occurring in the subsurface. Almost all sites yield positive affinities (i.e., are thermodynamically favorable) for a diverse suite of serpentinization metabolisms including methanogenesis, anammox, and carbon monoxide, nitrate, and sulfate reduction with hydrogen, as well as anaerobic methanotrophy coupled to nitrate, nitrite, and sulfate reduction. Reaction path modeling was performed to ascertain the extent to which serpentinization and mixing of surface waters with hyperalkaline spring waters in the subsurface can generate suitable habitats. The serpentinization model simulates the reaction of pristine Oman harzburgite with surface water to quantify the redox state and generation of hyperalkaline spring water. Preliminary results show that water-rock ratios as high as 100 could effectively reduce

  2. Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos; Erikson, Li H.; Ward, Kristen

    2010-01-01

    The restoration of 18 acres of historic tidal marsh at Crissy Field has had great success in terms of public outreach and visibility, but less success in terms of revegetated marsh sustainability. Native cordgrass (Spartina foliosa) has experienced dieback and has failed to recolonize following extended flooding events during unintended periodic closures of its inlet channel, which inhibits daily tidal flushing. We examined the biogeochemical impacts of these impoundment events on plant physiology and on sulfur and mercury chemistry to help the National Park Service land managers determine the relative influence of these inlet closures on marsh function. In this comparative study, we examined key pools of sulfur, mercury, and carbon compounds both during and between closure events. Further, we estimated the net hydrodynamic flux of methylmercury and total mercury to and from the marsh during a 24-hour diurnal cycle. This report documents the methods used and the data generated during the study.

  3. The Importance of Subsurface Production for Carbon Export - Evidence from Past Oceans

    NASA Astrophysics Data System (ADS)

    Kemp, A. E. S.

    2016-02-01

    The maxim of the geological concept of uniformitarianism is "the present is the key to the past", but in the context of our temporally and spatially minimal observational record of modern ocean biogeochemical processes, ancient ocean sediments may provide critical evidence of the key species involved in carbon flux. Specifically, laminated marine sediments that preserve the seasonal flux cycle represent "palaeo-sediment traps" that vastly expand our knowledge of the operations of the marine biological carbon pump. Several key subsurface-dwelling diatom taxa, hitherto thought to be biogeochemically insignificant, are dominant components of ancient marine sediments. For example, the sapropels and equivalent horizons that have accumulated in the Mediterranean over the past 5 million years, contain abundant rhizosolenid and hemiaulid diatoms. These deposits contain the highest concentrations of organic carbon and there is extensive evidence that this was produced by subsurface production in a deep chlorophyll maximum. The highly stratified conditions that led to this subsurface production and carbon flux are in contrast to prevailing views that have held upwelling systems as those with the highest potential for export in the global ocean. Similarly, studies of ancient "greenhouse" periods such as the Cretaceous, with highly stratified oceans and which are potential analogues for future climate change, show evidence for extensive subsurface productio