Sample records for bioimpedance measurement techniques

  1. Some Basic Techniques in Bioimpedance Research

    NASA Astrophysics Data System (ADS)

    Martinsen, Ørjan G.

    2004-09-01

    Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.

  2. On the use of The Bio-Impedance technique for Body Composition Measurements

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; González-Solís, J. L.; Gutiérrez-Juárez, G.

    2003-09-01

    Reviewing the methods and physical principles used in body composition measurements (BCM), it is evident that more accurate, reliable, and easily handled methods are required. The use of bio-impedance analysis (BIA) has been very useful in BCM. This technique, in the single frequency mode, has some commercial versions to perform BCM. However these apparatus have significant variability in the BCM values. The multi-frequency option of the bio-impedance technique has still a lot of challenges to overcome. We studied the variability of the body impedance spectrum (from 1 Hz to 1 MHz) in a group of subjects compared to the values obtained from commercial apparatus. We compared different anatomical body regions, some of them with less subcutaneous body fat (frontal, anterior tibial, knee, and frontal regions); others with more subcutaneous body fat (pectoral, abdominal, and internal calf regions). In order to model the bio-impedance spectrum, we analyzed layered samples with different thickness and material composition.

  3. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    PubMed

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  4. On the correct use of stepped-sine excitations for the measurement of time-varying bioimpedance.

    PubMed

    Louarroudi, E; Sanchez, B

    2017-02-01

    When a linear time-varying (LTV) bioimpedance is measured using stepped-sine excitations, a compromise must be made: the temporal distortions affecting the data depend on the experimental time, which in turn sets the data accuracy and limits the temporal bandwidth of the system that needs to be measured. Here, the experimental time required to measure linear time-invariant bioimpedance with a specified accuracy is analyzed for different stepped-sine excitation setups. We provide simple equations that allow the reader to know whether LTV bioimpedance can be measured through repeated time- invariant stepped-sine experiments. Bioimpedance technology is on the rise thanks to a plethora of healthcare monitoring applications. The results presented can help to avoid distortions in the data while measuring accurately non-stationary physiological phenomena. The impact of the work presented is broad, including the potential of enhancing bioimpedance studies and healthcare devices using bioimpedance technology.

  5. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells.

    PubMed

    Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen

    2015-12-01

    The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.

  6. Method and device for bio-impedance measurement with hard-tissue applications.

    PubMed

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-06-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kOmega to 10 MOmega across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kOmega to 10 MOmega and from 20 pF to 100 pF, are discussed.

  7. Application of longitudinal and transversal bioimpedance measurements in peritoneal dialysis at 50 kHz

    NASA Astrophysics Data System (ADS)

    Nescolarde, L.; Doñate, T.; Casañas, R.; Rosell-Ferrer, J.

    2010-04-01

    More relevant information of the fluid changes in peritoneal dialysis (PD) might be obtained with segmental bioimpedance measurements rather than whole-body measurement, who hidden information of body composition. Whole-body and segmental bioimpedance measurements were obtained using 5 configurations (whole-body or right-side (RS), longitudinal-leg (L-LEG), longitudinal-abdomen (L-AB), transversal-abdomen (T-AB), and transversal-leg (T-LEG)) in 20 patients: 15 males (56.5 ± 9.4 yr, 24.2 ± 4.2 kg/m2) and 5 females (58.4 ± 7.1 yr, 28.2 ± 5.9 kg/m2) in peritoneal dialysis (PD). The aim of this study is to analyze the relationship between whole-body, longitudinal-segmental (L-LEG and L-AB) and transversal-segmental (TAB and TLEG) bioimpedance measurement at 50 kHz, with clinical parameters of cardiovascular risk, dyslipidemia, nutrition and hydration. The Kolmogorov-Smirnov test was used for the normality test of all variables. Longitudinal bioimpedance parameters were normalized by the height of the patients. The Spearman correlation was used to analyze the correlation between bioimpedance and clinical parameters. The statistical significance was considered with P < 0.05. Transversal bioimpedance measurements have higher correlation with clinical parameters than longitudinal measurements.

  8. Bioimpedance and Fluid Status in Children and Adolescents Treated With Dialysis.

    PubMed

    Milani, Gregorio P; Groothoff, Jaap W; Vianello, Federica A; Fossali, Emilio F; Paglialonga, Fabio; Edefonti, Alberto; Agostoni, Carlo; Consonni, Dario; van Harskamp, Dewi; van Goudoever, Johannes B; Schierbeek, Henk; Oosterveld, Michiel J S

    2017-03-01

    Assessment of hydration status in patients with chronic kidney failure treated by dialysis is crucial for clinical management decisions. Dilution techniques are considered the gold standard for measurement of body fluid volumes, but they are unfit for day-to-day care. Multifrequency bioimpedance has been shown to be of help in clinical practice in adults and its use in children and adolescents has been advocated. We investigated whether application of multifrequency bioimpedance is appropriate for total-body water (TBW) and extracellular water (ECW) measurement in children and adolescents on dialysis therapy. A study of diagnostic test accuracy. 16 young dialysis patients (before a hemodialysis session or after peritoneal dialysis treatment) from the Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy, and the Emma Children's Hospital-Academic Medical Center, Amsterdam, the Netherlands. TBW and ECW volumes assessed by multifrequency bioimpedance. TBW and ECW volumes measured by deuterium and bromide dilution, respectively. Mean TBW volumes determined by multifrequency bioimpedance and deuterium dilution were 19.2±8.7 (SD) and 19.3±8.3L, respectively; Bland-Altman analysis showed a mean bias between the 2 methods of -0.09 (95% limits of agreement, -2.1 to 1.9) L. Mean ECW volumes were 8.9±4.0 and 8.3±3.3L measured by multifrequency bioimpedance and bromide dilution, respectively; mean bias between the 2 ECW measurements was +0.6 (95% limits of agreement, -2.3 to 3.5). Participants ingested the deuterated water at home without direct supervision by investigators, small number of patients, repeated measurements in individual patients were not performed. Multifrequency bioimpedance measurements were unbiased but imprecise in comparison to dilution techniques. We conclude that multifrequency bioimpedance measurements cannot precisely estimate TBW and ECW in children receiving dialysis. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier

  9. Evaluation of bioimpedance for the measurement of physiologic variables as related to hemodynamic studies in space flight

    NASA Technical Reports Server (NTRS)

    Taylor, Bruce C.

    1993-01-01

    Orthostatic intolerance, following space flight, has received substantial attention because of the possibility that it compromises astronaut safety and reduces the ability of astronauts to function at peak performance levels upon return to a one-g environment. Many pre- and post-flight studies are performed to evaluate changes in hemodynamic responses to orthostatic challenges after shuttle missions. The purpose of this present project is to validate bioimpedance as a means to acquire stroke volume and other hemodynamic information in these studies. In this study, ten male and ten female subjects were subjected to simultaneous measurements of thoracic bioimpedance and Doppler ultrasonic velocimetry under supine, 10 degree head down and 30 degree head up conditions. Paired measurements were made during six periods of five seconds breath holding, over a two minute period, for each of the three positions. Stroke volume was calculated by three bioimpedance techniques and ultrasonic Doppler.

  10. Bioimpedance for the spot measurement of tissue density

    NASA Astrophysics Data System (ADS)

    Dylke, E. S.; Ward, L. C.; Stannard, C.; Leigh, A.; Kilbreath, S. L.

    2013-04-01

    Long-standing lymphoedema is characterised by tissues changes which are currently not detectable using bioimpedance spectroscopy. It has been suggested that a combination of bipolar and tetrapolar measurements may be used to detect these tissues changes for a single site in the transverse direction. This was technique was trialled in a group of control participants with no history of lymphoedema or recent upper limb trauma. Repeated spot measurements were done without removal of electrodes to determine biological variability as well as with removal of electrodes to determine technical reproducibility. The inter-limb spot ratio of the controls was then compared to that of a number of women previously diagnosed with secondary lymphoedema in the forearm. Biological variability was not found to greatly influence repeated measures but only moderate technical reliability was found despite excellent co-efficient of variation for the majority of the measurements. A difference was seen between those with more severe swelling and the controls. This novel technique shows promise in detecting tissue changes associated with long-standing lymphoedema.

  11. AC instrumentation amplifier for bioimpedance measurements.

    PubMed

    Pallás-Areny, R; Webster, J G

    1993-08-01

    We analyze the input impedance and CMRR requirements for an amplifier for bioimpedance measurements when considering the capacitive components of the electrode-skin contact impedance. We describe an ac-coupled instrumentation amplifier (IA) that, in addition to fulfilling those requirements, both provides interference and noise reduction, and yields a zero phase shift over a wide frequency band without using broadband op amps.

  12. The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases

    PubMed Central

    Khalil, Sami F.; Mohktar, Mas S.; Ibrahim, Fatimah

    2014-01-01

    Bioimpedance analysis is a noninvasive, low cost and a commonly used approach for body composition measurements and assessment of clinical condition. There are a variety of methods applied for interpretation of measured bioimpedance data and a wide range of utilizations of bioimpedance in body composition estimation and evaluation of clinical status. This paper reviews the main concepts of bioimpedance measurement techniques including the frequency based, the allocation based, bioimpedance vector analysis and the real time bioimpedance analysis systems. Commonly used prediction equations for body composition assessment and influence of anthropometric measurements, gender, ethnic groups, postures, measurements protocols and electrode artifacts in estimated values are also discussed. In addition, this paper also contributes to the deliberations of bioimpedance analysis assessment of abnormal loss in lean body mass and unbalanced shift in body fluids and to the summary of diagnostic usage in different kinds of conditions such as cardiac, pulmonary, renal, and neural and infection diseases. PMID:24949644

  13. A new bioimpedance research device (BIRD) for measuring the electrical impedance of acupuncture meridians.

    PubMed

    Wong, Felix Wu Shun; Lim, Chi Eung Danforn; Smith, Warren

    2010-03-01

    The aim of this article is to introduce an electrical bioimpedance device that uses an old and little-known impedance measuring technique to study the impedance of the meridian and nonmeridian tissue segments. Three (3) pilot experimental studies involving both a tissue phantom (a cucumber) and 3 human subjects were performed using this BIRD-I (Bioimpedance Research Device) device. This device consists of a Fluke RCL meter, a multiplexer box, a laptop computer, and a medical-grade isolation transformer. Segment and surface sheath (or local) impedances were estimated using formulae first published in the 1930s, in an approach that differs from that of the standard four-electrode technique used in most meridian studies to date. Our study found that, when using a quasilinear four-electrode arrangement, the reference electrodes should be positioned at least 10 cm from the test electrodes to ensure that the segment (or core) impedance estimation is not affected by the proximity of the reference electrodes. A tissue phantom was used to determine the repeatability of segment (core) impedance measurement by the device. An applied frequency of 100 kHz was found to produce the best repeatability among the various frequencies tested. In another preliminary study, with a segment of the triple energizer meridian on the lower arm selected as reference segment, core resistance-based profiles around the lower arm showed three of the other five meridians to exist as local resistance minima relative to neighboring nonmeridian segments. The profiles of the 2 subjects tested were very similar, suggesting that the results are unlikely to be spurious. In electrical bioimpedance studies, it is recommended that the measuring technique and device be clearly defined and standardized to provide optimal working conditions. In our study using the BIRD I device, we defined our standard experimental conditions as a test frequency of 100 kHz and the position of the reference electrodes of at

  14. Bioimpedance measurements of human body composition: critical analysis and outlook.

    PubMed

    Matthie, James R

    2008-03-01

    Bioimpedance spectroscopy represents one of the largest emerging medical device technologies. The method is generally known as impedance spectroscopy and is an inexpensive, yet extremely powerful, analytical technique for studying the electrical properties of materials. Much of what we know about biological cells and tissues comes from use of this technique in vitro. Due to the high impedance of the cell membrane, current flow through the cell is frequency dependent and this allows the fluid volume inside versus outside the body's cells to be determined. The fluid outside the cells is primarily related to fluid volume status while the intracellular fluid also relates to the body's cellular mass. Technical advances have removed much of the method's basic complexities. The first commercial bioimpedance spectroscopy device for in vivo human body composition studies was introduced in 1990. Major strides have been made and the method is now poised to enter mainstream clinical medicine but the field is only in its infancy. This paper attempts to fully describe the current use of impedance in the body composition field.

  15. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  16. Heart rate detection from single-foot plantar bioimpedance measurements in a weighing scale.

    PubMed

    Diaz, Delia H; Casas, Oscar; Pallas-Areny, Ramon

    2010-01-01

    Electronic bathroom scales are an easy-to-use, affordable mean to measure physiological parameters in addition to body weight. They have been proposed to obtain the ballistocardiogram (BCG) and derive from it the heart rate, cardiac output and systolic blood pressure. Therefore, weighing scales may suit intermittent monitoring in e-health and patient screening. Scales intended for bioelectrical impedance analysis (BIA) have also been proposed to estimate the heart rate by amplifying the pulsatile impedance component superimposed on the basal impedance. However, electronic weighing scales cannot easily obtain the BCG from people that have a single leg neither are bioimpedance measurements between both feet recommended for people wearing a pacemaker or other electronic implants, neither for pregnant women. We propose a method to detect the heart rate (HR) from bioimpedance measured in a single foot while standing on an bathroom weighting scale intended for BIA. The electrodes built in the weighing scale are used to apply a 50 kHz voltage between the outer electrode pair and to measure the drop in voltage across the inner electrode pair. The agreement with the HR simultaneously obtained from the ECG is excellent. We have also compared the drop in voltage across the waist and the thorax with that obtained when measuring bioimpedance between both feet to compare the possible risk of the proposed method to that of existing BIA scales.

  17. Electrode placement in bioimpedance spectroscopy: evaluation of alternative positioning of electrodes when measuring relative dehydration in athletes.

    PubMed

    Birkemose, M; Møller, A J; Madsen, M L; Brantlov, S; Sørensen, H; Overgaard, K; Johansen, P

    2013-01-01

    In order to maintain a homeostatic environment in human cells, the balance between absorption and separation of water must be retained. Imbalance will have consequences on both the cellular and organ levels. Studies performed on athletes have shown coherence between their hydration status and ability to perform. A dehydration of 2-7% of total body weight resulted in a marked decrease in performance. Measurement and monitoring of hydration status may be used to optimize athlete performance. Therefore, in this current study bioimpedance spectroscopy is used to determine the hydration status of athletes. Trials were made to investigate alternative ways of electrode placement when performing bioimpedance spectroscopy in order to measure relative dehydration. A total of 14 test subjects underwent measurements before, during, and after a cycle test of 3×25min. Electrodes where placed to measure body impedance in three different ways: wrist-ankle (recommended method), wrist-wrist, and transthoracic. Furthermore, the relative loss in weight of the subjects during the trial was registered. The study showed no relation between relative weight loss and the wrist-wrist and transthoracic placement method, using bioimpedance spectroscopy to measure relative dehydration. The inability of the method to detect such relative changes in hydration may be due to the bioimpedance spectroscopy technology being extremely sensitive to changes in skin temperature, movement artifacts, thoroughness in placing the electrodes, and the physiological impact on the human body when performing exercise. Therefore, further research into the area of bioimpedance spectroscopy is needed before this methodology can be applied in monitoring active athletes. Hence, a simple weight measurement still seems a more useful way of determining a relative change of hydration in an active setting.

  18. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  19. Laser biostimulation of wound healing: bioimpedance measurements support histology.

    PubMed

    Solmaz, Hakan; Dervisoglu, Sergulen; Gulsoy, Murat; Ulgen, Yekta

    2016-11-01

    Laser biostimulation in medicine has become widespread supporting the idea of therapeutic effects of photobiomodulation in biological tissues. The aim of this study was to investigate the biostimulation effect of laser irradiation on healing of cutaneous skin wounds, in vivo, by means of bioimpedance measurements and histological examinations. Cutaneous skin wounds on rats were subjected to 635 nm diode laser irradiations at two energy densities of 1 and 3 J/cm 2 separately. Changes in the electrical properties of the wound sites were examined with multi-frequency electrical impedance measurements performed on the 3rd, 7th, 10th, and 14th days following the wounding. Tissue samples were both morphologically and histologically examined to determine the relationship between electrical properties and structure of tissues during healing. Laser irradiations of both energy densities stimulated the wound healing process. In particular, laser irradiation of lower energy density had more evidence especially for the first days of healing process. On the 7th day of healing, 3 J/cm 2 laser-irradiated tissues had significantly smaller wound areas compared to non-irradiated wounds (p < 0.05). The electrical impedance results supported the idea of laser biostimulation on healing of cutaneous skin wounds. Thus, bioimpedance measurements may be considered as a non-invasive supplementary method for following the healing process of laser-irradiated tissues.

  20. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.

    PubMed

    Ferreira, J; Seoane, F; Lindecrantz, K

    2013-01-01

    Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

  1. The use of bioimpedance analysis to evaluate lymphedema.

    PubMed

    Warren, Anne G; Janz, Brian A; Slavin, Sumner A; Borud, Loren J

    2007-05-01

    Lymphedema, a chronic disfiguring condition resulting from lymphatic dysfunction or disruption, can be difficult to accurately diagnose and manage. Of particular challenge is identifying the presence of clinically significant limb swelling through simple and noninvasive methods. Many historical and currently used techniques for documenting differences in limb volume, including volume displacement and circumferential measurements, have proven difficult and unreliable. Bioimpedance spectroscopy analysis, a technology that uses resistance to electrical current in comparing the composition of fluid compartments within the body, has been considered as a cost-effective and reproducible alternative for evaluating patients with suspected lymphedema. All patients were recruited through the Beth Israel Deaconess Medical Center Lymphedema Clinic. A total of 15 patients (mean age: 55.2 years) with upper-extremity or lower-extremity lymphedema as documented by lymphoscintigraphy underwent bioimpedance spectroscopy analysis using an Impedimed SFB7 device. Seven healthy medical students and surgical residents (mean age: 26.9 years) were selected to serve as normal controls. All study participants underwent analysis of both limbs, which allowed participants to act as their own controls. The multifrequency bioimpedance device documented impedance values for each limb, with lower values correlating with higher levels of accumulated protein-rich edematous fluid. The average ratio of impedance to current flow of the affected limb to the unaffected limb in lymphedema patients was 0.9 (range: 0.67 to 1.01). In the control group, the average impedance ratio of the participant's dominant limb to their nondominant limb was 0.99 (range: 0.95 to 1.02) (P = 0.01). Bioimpedance spectroscopy can be used as a reliable and accurate tool for documenting the presence of lymphedema in patients with either upper- or lower-extremity swelling. Measurement with the device is quick and simple and results

  2. A Temperature-Based Bioimpedance Correction for Water Loss Estimation During Sports.

    PubMed

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Mester, Joachim; Eskofier, Bjoern M

    2016-11-01

    The amount of total body water (TBW) can be estimated based on bioimpedance measurements of the human body. In sports, TBW estimations are of importance because mild water losses can impair muscular strength and aerobic endurance. Severe water losses can even be life threatening. TBW estimations based on bioimpedance, however, fail during sports because the increased body temperature corrupts bioimpedance measurements. Therefore, this paper proposes a machine learning method that eliminates the effects of increased temperature on bioimpedance and, consequently, reveals the changes in bioimpedance that are due to TBW loss. This is facilitated by utilizing changes in skin and core temperature. The method was evaluated in a study in which bioimpedance, temperature, and TBW loss were recorded every 15 min during a 2-h running workout. The evaluation demonstrated that the proposed method is able to reduce the error of TBW loss estimation by up to 71%, compared to the state of art. In the future, the proposed method in combination with portable bioimpedance devices might facilitate the development of wearable systems for continuous and noninvasive TBW loss monitoring during sports.

  3. Effect of Influenza-Induced Fever on Human Bioimpedance Values

    PubMed Central

    Marini, Elisabetta; Buffa, Roberto; Contreras, Monica; Magris, Magda; Hidalgo, Glida; Sanchez, Wilmer; Ortiz, Vanessa; Urbaez, Maryluz; Cabras, Stefano; Blaser, Martin J.; Dominguez-Bello, Maria G.

    2015-01-01

    Background and Aims Bioelectrical impedance analysis (BIA) is a widely used technique to assess body composition and nutritional status. While bioelectrical values are affected by diverse variables, there has been little research on validation of BIA in acute illness, especially to understand prognostic significance. Here we report the use of BIA in acute febrile states induced by influenza. Methods Bioimpedance studies were conducted during an H1N1 influenza A outbreak in Venezuelan Amerindian villages from the Amazonas. Measurements were performed on 52 subjects between 1 and 40 years of age, and 7 children were re-examined after starting Oseltamivir treatment. Bioelectrical Impedance Vector Analysis (BIVA) and permutation tests were applied. Results For the entire sample, febrile individuals showed a tendency toward greater reactance (p=0.058) and phase angle (p=0.037) than afebrile individuals, while resistance and impedance were similar in the two groups. Individuals with repeated measurements showed significant differences in bioimpedance values associated with fever, including increased reactance (p<0.001) and phase angle (p=0.007), and decreased resistance (p=0.007) and impedance (p<0.001). Conclusions There are bioelectrical variations induced by influenza that can be related to dehydration, with lower extracellular to intracellular water ratio in febrile individuals, or a direct thermal effect. Caution is recommended when interpreting bioimpedance results in febrile states. PMID:25915945

  4. Predicting burst pressure of radiofrequency-induced colorectal anastomosis by bio-impedance measurement.

    PubMed

    Zhao, Lingxi; Zhou, Yu; Song, Chengli; Wang, Zhigang; Cuschieri, Alfred

    2017-03-01

    The present study investigates the relationship between bio-impedance and burst pressure of colorectal anastomosis created by radiofrequency (RF)-induced tissue fusion. Colorectal anastomosis were created with ex vivo porcine colorectal segments, during which 5 levels of compression pressure were applied by a custom-made bipolar prototype, with 5 replicate experiments at each compression pressure. Instant anastomotic tensile strength was assessed by burst pressure. Bio-impedance of fused tissue was measured by Impedance Analyzer across frequency that 100 Hz to 3 MHz. Statistical analysis shows only a weak correlation between bio-impedance modulus and burst pressures at frequency of 445 kHz ([Formula: see text]  =  -0.426, P  =  0.099  >  0.05). In contrast, results demonstrated a highly significant negative correlation between reactance modulus and burst pressures ([Formula: see text]  =  -0.812, P  =  0.000  <  0.05). The decrease in mean reactance modulus with increasing burst pressures was highly significant (P  =  0.019  <  0.05). The observed strong negative correlation between reactance modulus and burst pressures at frequency of 445 kHz indicates that reactance is likely to be a good index for tensile strength of RF-induced colorectal anastomosis, and should be considered for inclusion in a feedback loops in devices design.

  5. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations.

    NASA Astrophysics Data System (ADS)

    Balleza, M.; Vargas, M.; Kashina, S.; Huerta, M. R.; Delgadillo, I.; Moreno, G.

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration.

  6. Electrical bioimpedance and other techniques for gastric emptying and motility evaluation

    PubMed Central

    Huerta-Franco, María Raquel; Vargas-Luna, Miguel; Montes-Frausto, Juana Berenice; Flores-Hernández, Corina; Morales-Mata, Ismael

    2012-01-01

    The aim of this article is to identify non-invasive, inexpensive, highly sensitive and accurate techniques for evaluating and diagnosing gastric diseases. In the case of the stomach, there are highly sensitive and specific methods for assessing gastric motility and emptying (GME). However, these methods are invasive, expensive and/or not technically feasible for all clinicians and patients. We present a summary of the most relevant international information on non-invasive methods and techniques for clinically evaluating GME. We particularly emphasize the potential of gastric electrical bioimpedance (EBI). EBI was initially used mainly in gastric emptying studies and was essentially abandoned in favor of techniques such as electrogastrography and the gold standard, scintigraphy. The current research evaluating the utility of gastric EBI either combines this technique with other frequently used techniques or uses new methods for gastric EBI signal analysis. In this context, we discuss our results and those of other researchers who have worked with gastric EBI. In this review article, we present the following topics: (1) a description of the oldest methods and procedures for evaluating GME; (2) an explanation of the methods currently used to evaluate gastric activity; and (3) a perspective on the newest trends and techniques in clinical and research GME methods. We conclude that gastric EBI is a highly effective non-invasive, easy to use and inexpensive technique for assessing GME. PMID:22368782

  7. Longitudinal changes and correlations of bioimpedance and anthropometric measurements in pregnancy: Simple possible bed-side tools to assess pregnancy evolution.

    PubMed

    Piuri, Gabriele; Ferrazzi, Enrico; Bulfoni, Camilla; Mastricci, Luciana; Di Martino, Daniela; Speciani, Attilio Francesco

    2017-12-01

    The aim of this study was to assess longitudinal changes of bioimpedance analysis compared with anthropometric measurements in low-risk pregnant woman recruited in the first trimester and to observe possible differences in these indices in women who developed high-risk pregnancies. Bioimpedance indices for the three trimesters of pregnancies were calculated separately for uneventful pregnancies delivered of newborns > the 10th centile. These findings were compared with anthropometric measurements. Data of women who developed hypertensive disorders of pregnancy (HDP) or delivered SGA newborns were calculated and compared. Significantly longitudinal increases were observed in these pregnancies for total body water (TBW), free fat mass, fat mass, and extra-cellular water. These increases were paralleled body mass index (BMI), skinfolds, and waist measurements. The correlations between these two sets of findings were poor. Women who developed HDP with AGA fetuses showed significantly different bioimpedance from normal cases. TBW indices were highly significantly different since the first trimester. In pregnancies delivered of SGA newborns, these indices were opposite of the values observed in patients with HDP-AGA, TBW in these patients was significantly reduced compared with normal pregnancies. The bioelectrical impedance is a fast, simple, noninvasive way to assess the TBW content in pregnancy. Our findings are in agreement with the hypothesis that bioimpedance might help to identify early in gestation patients at risk of developing different clinical phenotypes of hypertensive disease of pregnancy and SGA fetuses.

  8. Bioimpedance analysis and HIV-related fatigue.

    PubMed

    Meynell, Janet; Barroso, Julie

    2005-01-01

    Although various physiological and psychological causes of fatigue in HIV-positive persons have been proposed, it is still not well understood. Bioimpedance analysis has proved to be an easily used, non-invasive measurement of body composition and cellular integrity. This study, looking at whether body composition as measured by bioimpedance analysis is associated with fatigue, is part of a pilot study looking for physiological and psychological biomarkers that could be factors in the fatigue experienced by HIV-positive people. Twenty-nine men and eleven women were measured for height, weight, and bioimpedance analysis. Correlations were examined between fatigue intensity and weight, body mass index, body cell mass, fat-free mass, extracellular mass, and phase angle. Because of the fat redistribution that has occurred with some people taking protease inhibitors, we also examined differences in weight, body mass index, body cell mass, fat-free mass, and fatigue intensity between those taking and those not taking protease inhibitors. There was no association between fatigue intensity and weight, body mass index, body cell mass, fat-free mass, or phase angle, nor were there differences between those taking and those not taking protease inhibitors. However, it was noted that both the phase angle and the ratio of extracellular mass to body cell mass (extracellular mass:body cell mass) were below their respective normal ranges, indicating that the participants were somewhat compromised nutritionally and with regard to cell membrane integrity. Although fatigue was not shown to be related to body composition measurement in this study, further work is needed on the causes of fatigue, because its effects on the lives of HIV-positive people can be devastating.

  9. Normal values for segmental bioimpedance spectroscopy in pediatric patients.

    PubMed

    Avila, Maria Laura; Ward, Leigh C; Feldman, Brian M; Montoya, Madeline I; Stinson, Jennifer; Kiss, Alex; Brandão, Leonardo R

    2015-01-01

    Localized limb edema is a clinically relevant sign in diseases such as post-thrombotic syndrome and lymphedema. Quantitative evaluation of localized edema in children is mainly done by measuring the absolute difference in limb circumference, which includes fat and fat-free mass. Bioimpedance spectroscopy (BIS) provides information on the fluid volume of a body segment. Our objective was to determine normal ranges for segmental (arm and leg) BIS measurements in healthy children. Additionally, we determined the normal ranges for the difference in arm and ankle circumference and explored the influence of handedness and the correlation between techniques. Healthy children aged 1-18 years were recruited. The ratio of extracellular fluid content between contralateral limbs (estimated as the inter-arm and inter-leg extracellular impedance ratio), and the ratio of extracellular to intracellular fluid content for each limb (estimated as the intracellular to extracellular impedance ratio) were determined with a bioimpedance spectrometer. Arm and ankle circumference was determined with a Gulick II tape. We recruited 223 healthy children (48 infants, 54 preschoolers, 66 school-aged children, and 55 teenagers). Normal values for arm and leg BIS measurements, and for the difference in arm and ankle circumference were estimated for each age category. No influence of handedness was found. We found a statistically significant correlation between extracellular impedance ratio and circumference difference for arms among teenagers. We determined normal BIS ranges for arms and legs and for the difference in circumference between arms and between ankles in children. There was no statistically significant correlation between extracellular impedance ratio and difference in circumference, except in the case of arms in adolescents. This may indicate that limb circumference measures quantities other than fluid, challenging the adequacy of this technique to determine the presence of localized

  10. Intra-abdominal fat: Comparison of computed tomography fat segmentation and bioimpedance spectroscopy.

    PubMed

    Finch, Peter

    2017-06-01

    Intra-abdominal fat is an important factor in determining the metabolic syndrome/insulin resistance, and thus the risk of diabetes and ischaemic heart disease. Computed Tomography (CT) fat segmentation represents a defined method of quantifying intra-abdominal fat, with attendant radiation risks. Bioimpedance spectroscopy may offer a method of assessment without any risks to the patients. A comparison is made of these two methods. This was a preliminary study of the utility of multifrequency bioimpedance spectroscopy of the mid abdomen as a measure of intra-abdominal fat, by comparison with fat segmentation of an abdominal CT scan in the -30 to -190 HU range. There was a significant (P < 0.01) correlation between intra-abdominal fat and mid-upper arm circumference, as well as the bioimpedance parameter, the R/S ratio. Multivariate analysis showed that these were the only independant variables and allowed the derivation of a formula to estimate intra-abdominal fat: IAF = 0.02 × MAC - 0.757 × R/S + 0.036. Circumabdominal bioimpedance spectroscopy may prove a useful method of assessing intra-abdominal fat, and may be suitable for use in studies to enhance other measures of body composition, such as mid-upper arm circumference.

  11. Effects of Ventilation on Segmental Bioimpedance Spectroscopy Measures Using Generalizability Theory

    ERIC Educational Resources Information Center

    Turner, A. Allan; Lozano-Nieto, Albert; Bouffard, Marcel

    2010-01-01

    The purpose of this study was to examine the effect of three ventilation conditions (i.e., normal, regimented, and no-ventilation) on the reproducibility of bioimpedance scores in humans for the forearm and trunk segments. One hundred able-bodied North American men and women, from 18 to 71 years of age, volunteered as participants. The…

  12. CAP waveform estimation from the measured electrical bioimpedance values: Patient's heart rate variability analysis.

    PubMed

    Krivoshei, A; Uuetoa, H; Min, M; Annus, P; Uuetoa, T; Lamp, J

    2015-08-01

    The paper presents analysis of the generic transfer function (TF) between Electrical Bioimpedance (EBI) measured non-invasively on the wrist and Central Aortic Pressure (CAP) invasively measured at the aortic root. Influence of the Heart Rate (HR) variations on the generic TF and on reconstructed CAP waveforms is investigated. The HR variation analysis is provided on a single patient data to exclude inter-patient influences at the current research stage. A new approach for the generic TF estimating from a data ensemble is presented as well. Moreover, an influence of the cardiac period beginning point selection is analyzed and empirically optimal solution for its selection is proposed.

  13. Bioimpedance, dry weight and blood pressure control: new methods and consequences.

    PubMed

    Kuhlmann, Martin K; Zhu, Fansan; Seibert, E; Levin, Nathan W

    2005-11-01

    Chronic overhydration contributes to the development of left ventricular hypertrophy and a high cardiovascular mortality in end-stage renal disease. Assessment of dry weight is highly dependent on clinical assessment. Bioimpedance technology offers the potential to quantify body fluid compartments and to facilitate dry weight prescription. This review covers recent innovative approaches to dry weight assessment using bioimpedance technology. Three different bioimpedance approaches to determine dry weight have been published. The normovolemic/hypervolemic slope method applies whole body multifrequency bioimpedance to assess predialysis total body extracellular fluid volume and compares the extracellular fluid volume/body weight relation at hypervolemia with the standard value in normovolemic individuals. The resistance-reactance graph method uses whole body single frequency bioimpedance for assessment of hydration state and nutritional status from height-adjusted resistance and reactance. The resulting resistance-reactance vector is set in relation to a distribution range in a normovolemic population. An alternative method uses segmental bioimpedance in the form of continuous intradialytic calf bioimpedance to record changes in calf extracellular volume during dialysis. Dry weight by this method is defined as the weight at which calf extracellular volume is not further reduced despite ongoing ultrafiltration. Although promising, none of these methods has gained much popularity, probably due to the difficulties in understanding bioimpedance and the lack of gold standard methods for dry weight determination. Bioimpedance will improve dry weight assessment, but further refinement of the methods as well as large-scale clinical studies to demonstrate the accuracy and the clinical value of objective dry weight determination are needed.

  14. A bio-impedance probe to assess liver steatosis during transplant surgery.

    PubMed

    Smith, Penny Probert; You, Fusheng; Vogel, Thomas; Silva, Michael

    2011-01-01

    This work addresses the design of a bioimpedance probe to assess steatosis on the exposed liver in the donor during liver transplant surgery. Whereas typically bioimpedance uses needle probes to avoid surface effects, for clinical reasons a non-penetrative probe is required. In addition the need to ensure that the measurement is representative of the bulk tissue suggests a larger probe than is normally used to ensure a sufficiently large measurement volume. Using a simple model, simulations and tests on bovine liver, this paper investigates the relationship between probe dimensions and depth of measurement penetration and investigates the accuracy which might be expected in a configuration suitable for use in the operating theatre on intact but exposed livers. A probe using ECG electrodes is proposed and investigated.

  15. [A Digital System for Bioimpedance and Electrical Impedance Tomography Measurement System].

    PubMed

    Chen, Xiaoyan; Gao, Nana; Huang, Huafang

    2015-06-01

    A digital system for bioimpedance and electrical impedance tomography (EIT) measurement controlled by an ATmega16 microcontroller was constructed in our laboratory. There are eight digital electrodes using AD5933 to measure the impedance of the targets, and the data is transmitted to the computer wirelessly through nRF24L01. The structure of the system, circuit design, system testing, vitro measurements of animals' tissues and electrical impedance tomography are introduced specifically in this paper. The experimental results showed that the system relative error was 0.42%, and the signal noise ratio was 76.3 dB. The system not only can be used to measure the impedance by any two electrodes within the frequency of 1-100 kHz in a sweep scanning, but also can reconstruct the images of EIT. The animal experiments showed that the data was valid and plots were fitting with Cole-Cole theory. The testing verified the feasibility and effectiveness of the system. The images reconstructed of a salt-water tank are satisfactory and match with the actual distribution of the tank. The system improves the effectiveness of the front-end measuring signal and the stability of the system greatly.

  16. [Research on Detection Method with Wearable Respiration Device Based on the Theory of Bio-impedance].

    PubMed

    Liu, Guangda; Wang, Xianzhong; Cai, Jing; Wang, Wei; Zha, Yutong

    2016-12-01

    Considering the importance of the human respiratory signal detection and based on the Cole-Cole bio-impedance model,we developed a wearable device for detecting human respiratory signal.The device can be used to analyze the impedance characteristics of human body at different frequencies based on the bio-impedance theory.The device is also based on the method of proportion measurement to design a high signal to noise ratio(SNR)circuit to get human respiratory signal.In order to obtain the waveform of the respiratory signal and the value of the respiration rate,we used the techniques of discrete Fourier transform(DFT)and dynamic difference threshold peak detection.Experiments showed that this system was valid,and we could see that it could accurately detect the waveform of respiration and the detection accuracy rate of respiratory wave peak point detection results was over 98%.So it can meet the needs of the actual breath test.

  17. Accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance.

    PubMed

    Cotter, Gad; Moshkovitz, Yaron; Kaluski, Edo; Cohen, Amram J; Miller, Hilton; Goor, Daniel; Vered, Zvi

    2004-04-01

    Cardiac output (CO) is measured but sparingly due to limitations in its measurement technique (ie, right-heart catheterization). Yet, in recent years it has been suggested that CO may be of value in the diagnosis, risk stratification, and treatment titration of cardiac patients, especially those with congestive heart failure (CHF). We examine the use of a new noninvasive, continuous whole-body bioimpedance system (NICaS; NI Medical; Hod-Hasharon, Israel) for measuring CO. The aim of the present study was to test the validity of this noninvasive cardiac output system/monitor (NICO) in a cohort of cardiac patients. Prospective, double-blind comparison of the NICO and thermodilution CO determinations. We enrolled 122 patients in three different groups: during cardiac catheterization (n = 40); before, during, and after coronary bypass surgery (n = 51); and while being treated for acute congestive heart failure (CHF) exacerbation (n = 31). MEASUREMENTS AND INTERVENTION: In all patients, CO measurements were obtained by two independent blinded operators. CO was measured by both techniques three times, and an average was determined for each time point. CO was measured at one time point in patients undergoing coronary catheterization; before, during, and after bypass surgery in patients undergoing coronary bypass surgery; and before and during vasodilator treatment in patients treated for acute heart failure. Overall, 418 paired CO measurements were obtained. The overall correlation between the NICO cardiac index (CI) and the thermodilution CI was r = 0.886, with a small bias (0.0009 +/- 0.684 L) [mean +/- 2 SD], and this finding was consistent within each group of patients. Thermodilution readings were 15% higher than NICO when CI was < 1.5 L/min/m(2), and 5% lower than NICO when CI was > 3 L/min/m(2). The NICO has also accurately detected CI changes during coronary bypass operation and vasodilator administration for acute CHF. The results of the present study indicate

  18. A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.

    PubMed

    Ramos, Javier; Ausín, José Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco

    2013-01-01

    Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring.

  19. Comparison of dry-textile electrodes for electrical bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Márquez, J. C.; Seoane, F.; Välimäki, E.; Lindecrantz, K.

    2010-04-01

    Textile Electrodes have been widely studied for biopotentials recordings, specially for monitoring the cardiac activity. Commercially available applications, such as Adistar T-shirt and Textronics Cardioshirt, have proved a good performance for heart rate monitoring and are available worldwide. Textile technology can also be used for Electrical Bioimpedance Spectroscopy measurements enabling home and personalized health monitoring applications however solid ground research about the measurement performance of the electrodes must be done prior to the development of any textile-enabled EBI application. In this work a comparison of the measurement performance of two different types of dry-textile electrodes and manufacturers has been performed against standardized RedDot 3M Ag/AgCl electrolytic electrodes. 4-Electrode, whole body, Ankle-to-Wrist EBI measurements have been taken with the Impedimed spectrometer SFB7 from healthy subjects in the frequency range of 3kHz to 500kHz. Measurements have been taken with dry electrodes at different times to study the influence of the interaction skin-electrode interface on the EBI measurements. The analysis of the obtained complex EBI spectra shows that the measurements performed with textile electrodes produce constant and reliable EBI spectra. Certain deviation can be observed at higher frequencies and the measurements obtained with Textronics and Ag/AgCl electrodes present a better resemblance. Textile technology, if successfully integrated it, may enable the performance of EBI measurements in new scenarios allowing the rising of novel wearable monitoring applications for home and personal care as well as car safety.

  20. The detection of pleural effusion using a parametric EIT technique.

    PubMed

    Arad, M; Zlochiver, S; Davidson, T; Shoenfeld, Y; Adunsky, A; Abboud, S

    2009-04-01

    The bioimpedance technique provides a safe, low-cost and non-invasive alternative for routine monitoring of lung fluid levels in patients. In this study we have investigated the feasibility of bioimpedance measurements to monitor pleural effusion (PE) patients. The measurement system (eight-electrode thoracic belt, opposite sequential current injections, 3 mA, 20 kHz) employed a parametric reconstruction algorithm to assess the left and right lung resistivity values. Bioimpedance measurements were taken before and after the removal of pleural fluids, while the patient was sitting at rest during tidal respiration in order to minimize movements of the thoracic cavity. The mean resistivity difference between the lung on the side with PE and the lung on the other side was -48 Omega cm. A high correlation was found between the mean lung resistivity value before the removal of the fluids and the volume of pleural fluids removed, with a sensitivity of -0.17 Omega cm ml(-1) (linear regression, R=0.53). The present study further supports the feasibility and applicability of the bioimpedance technique, and specifically the approach of parametric left and right lung resistivity reconstruction, in monitoring lung patients.

  1. Perspectives on clinical use of bioimpedance in hemodialysis: focus group interviews with renal care professionals.

    PubMed

    Stenberg, Jenny; Henriksson, Catrin; Lindberg, Magnus; Furuland, Hans

    2018-05-23

    Inadequate volume control may be a main contributor to poor survival and high mortality in hemodialysis patients. Bioimpedance measurement has the potential to improve fluid management, but several dialysis centers lack an agreed fluid management policy, and the method has not yet been implemented. Our aim was to identify renal care professionals' perceived barriers and facilitators for use of bioimpedance in clinical practice. Qualitative data were collected through four focus group interviews with 24 renal care professionals: dieticians, nephrologists and nurses, recruited voluntarily from a nation-wide selection of hemodialysis centers, having access to a bioimpedance-device. The participants were connected to each other and a moderator via equipment for telemedicine and the sessions were recorded. The interviews were semi-structured, focusing on the participants' perceptions of use of bioimpedance in clinical practice. Thematic content analysis was performed in consecutive steps, and data were extracted by employing an inductive, interactive, comparative process. Several barriers and facilitators to the use of bioimpedance in clinical practice were identified, and a multilevel approach to examining barriers and incentives for change was found to be applicable to the ideas and categories that arose from the data. The determinants were categorized on five levels, and the different themes of the levels illustrated with quotations from the focus groups participants. Determinants for use of bioimpedance were identified on five levels: 1) the innovation itself, 2) the individual professional, 3) the patient, 4) the social context and 5) the organizational context. Barriers were identified in the areas of credibility, awareness, knowledge, self-efficacy, care processes, organizational structures and regulations. Facilitators were identified in the areas of the innovation's attractiveness, advantages in practice, and collaboration. Motivation, team processes and

  2. Visualizing transplanted muscle flaps using minimally invasive multi-electrode bioimpedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gordon, R.; Zorkova, V.; Min, M.; Rätsep, I.

    2010-04-01

    We describe here an imaging system that uses bioimpedance spectroscopy with multi-electrode array to indicate the state of muscle flap regions under the array. The system is able to differentiate between different health states in the tissue and give early information about the location and size of ischemic sub-regions. The array will be 4*8 electrodes with the spacing of 5mm between the electrodes (the number of electrodes and the spacing may vary). The electrodes are minimally invasive short stainless steel needles, that penetrate 0.3 mm into the tissue with the goal of achieving a wet electric contact. We combine 32 configurations of 4-electrode multi-frequency impedance measurements to derive a health-state map for the transplanted flap. The imaging method is tested on a model consisting of 2 tissues and FEM software (Finite Element Method -COMSOL Multiphysics based) is used to conduct the measurements virtually. Dedicated multichannel bioimpedance measurement equipment has already been developed and tested, that cover the frequency range from 100 Hz to 1 MHz.

  3. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    PubMed

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  4. Design and construction of the artificial patient module for testing bioimpedance measuring devices

    NASA Astrophysics Data System (ADS)

    Młyńczak, Marcel; Pariaszewska, Katarzyna; Niewiadomski, Wiktor; Cybulski, Gerard

    2013-10-01

    The purpose of this study was to describe the design of the electronic module for testing bioimpedance measuring devices, for example impedance cardiographs or impedance pneumographs. Artificial Patient was conceived as an electronic equivalent of the impedance of skin-electrode interface and the impedance between electrodes - measured one. Different approaches in imitating a resistance of skin and an impedance of electrode-skin connection were presented. The module was adapted for frequently applied tetrapolar electrode configuration. Therefore the design do not enclose the elements simulating impedance between skin and receiver electrodes due to negligible effect of this impedance on the current flow through the receiver. The Artificial Patient enables testing either application generators, or receiver parts, particularly the level of noise and distortions of the signal. Use of digitally controlled potentiometer allows simulating different tissue resistances changes such as constant values, very-low-frequency and low-frequency changes corresponding to those caused by breathing or heart activity. Also it allows distorting signals in order to test algorithms of artifacts attenuation.

  5. Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring.

    PubMed

    Rapin, M; Proença, M; Braun, F; Meier, C; Solà, J; Ferrario, D; Grossenbacher, O; Porchet, J-A; Chételat, O

    2015-04-01

    Cooperative sensors is a novel measurement architecture that allows the acquiring of biopotential signals on patients in a comfortable and easy-to-integrate manner. The novel sensors are defined as cooperative in the sense that at least two of them work in concert to measure a target physiological signal, such as a multi-lead electrocardiogram or a thoracic bioimpedance.This paper starts by analysing the state-of-the-art methods to simultaneously measure biopotential and bioimpedance signals, and justifies why currently (1) passive electrodes require the use of shielded or double-shielded cables, and (2) active electrodes require the use of multi-wired cabled technologies, when aiming at high quality physiological measurements.In order to overcome the limitations of the state-of-the-art, a new method for biopotential and bioimpedance measurement using the cooperative sensor is then presented. The novel architecture allows the acquisition of the aforementioned biosignals without the need of shielded or multi-wire cables by splitting the electronics into separate electronic sensors comprising each of two electrodes, one for voltage measurement and one for current injection. The sensors are directly in contact with the skin and connected together by only one unshielded wire. This new configuration requires one power supply per sensor and all sensors need to be synchronized together to allow them to work in concert.After presenting the working principle of the cooperative sensor architecture, this paper reports first experimental results on the use of the technology when applied to measuring multi-lead ECG signals on patients. Measurements performed on a healthy patient demonstrate the feasibility of using this novel cooperative sensor architecture to measure biopotential signals and compliance with common mode rejection specification accordingly to international standard (IEC 60601-2-47) has also been assessed.By reducing the need of using complex wiring setups, and

  6. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.

    PubMed

    Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I

    2011-07-01

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.

  7. Detection of questionable occlusal carious lesions using an electrical bioimpedance method with fractional electrical model

    NASA Astrophysics Data System (ADS)

    Morais, A. P.; Pino, A. V.; Souza, M. N.

    2016-08-01

    This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.

  8. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    . Structures down to sub-micrometer range and complex impedance measurements tools integrated at single chips are now affordable. Moreover, the introduction of alternative signals and data processing algorithms focuses on very fast and parallel electrical characterization which in turn pushes this technique to new applications and markets. Electrical impedance tomography today yields pictures in real time with a resolution that was impossible 10 years ago. The XVth International Conference on Electrical Bio-Impedance in conjunction with the XIVth Electrical Impedance Tomography ICEBI/EIT 2013 organized by the Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany, together with the EIT-group at the University of Göttingen, Germany, brings world leading scientists in these fields together. It is a platform to present the latest developments in instrumentation and signal processing but also points to new applications, especially in the field of biosensors and non-linear phenomena. Two Keynote lectures will extend the view of the participants above the mainstream of bio-impedance measurement. Friederich Kremer (University of Leipzig) delivers the plenary lecture on broad bandwidth dielectric spectroscopy. New achievements in the research of ligand gated ionic channels will be presented by Klaus Benndorf (University of Jena). Leading scientists in the field of bio-impedance measurement, such as, Sverre Grimnes, Orjan Martinsen, Andrea Robitzki, Richard Bayford, Jan Gimsa and Mart Min will give lectures for students but also more experienced scientists in a pre-conference tutorial which is a good opportunity to learn or refresh the basics. List of committees Conference Chair Dr Uwe Pliquett Professor Dieter Beckmann Institut für Bioprozess- und Analysenmesstechnik eV, Rosenhof, Heilbad Heiligenstadt, Germany Technical Program Chair Maik Hiller Conventus Congressmanagement & Marketing GmbH, Carl-Pulfrich-Str. 1 - 07745 Jena Pre

  9. Bioimpedance-Guided Fluid Management in Hemodialysis Patients

    PubMed Central

    Arias-Guillén, Marta; Wabel, Peter; Fontseré, Néstor; Carrera, Montserrat; Campistol, José Maria; Maduell, Francisco

    2013-01-01

    Summary Background and objectives Achieving and maintaining optimal fluid status remains a major challenge in hemodialysis therapy. The aim of this interventional study was to assess the feasibility and clinical consequences of active fluid management guided by bioimpedance spectroscopy in chronic hemodialysis patients. Design, setting, participants, & measurements Fluid status was optimized prospectively in 55 chronic hemodialysis patients over 3 months (November 2011 to February 2012). Predialysis fluid overload was measured weekly using the Fresenius Body Composition Monitor. Time-averaged fluid overload was calculated as the average between pre- and postdialysis fluid overload. The study aimed to bring the time-averaged fluid overload of all patients into a target range of 0.5±0.75 L within the first month and maintain optimal fluid status until study end. Postweight was adjusted weekly according to a predefined protocol. Results Time-averaged fluid overload in the complete study cohort was 0.9±1.6 L at baseline and 0.6±1.1 L at study end. Time-averaged fluid overload decreased by −1.20±1.32 L (P<0.01) in the fluid-overloaded group (n=17), remained unchanged in the normovolemic group (n=26, P=0.59), and increased by 0.59±0.76 L (P=0.02) in the dehydrated group (n=12). Every 1 L change in fluid overload was accompanied by a 9.9 mmHg/L change in predialysis systolic BP (r=0.55, P<0.001). At study end, 76% of all patients were either on time-averaged fluid overload target or at least closer to target than at study start. The number of intradialytic symptoms did not change significantly in any of the subgroups. Conclusions Active fluid management guided by bioimpedance spectroscopy was associated with an improvement in overall fluid status and BP. PMID:23949235

  10. Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System

    NASA Astrophysics Data System (ADS)

    Macías, R.; García, M. A.; Ramos, J.; Bragós, R.; Fernández, M.

    2013-04-01

    Nowadays, the road safety is one of the most important priorities in the automotive industry. Many times, this safety is jeopardized because of driving under inappropriate states, e.g. drowsiness, drugs and/or alcohol. Therefore several systems for monitoring the behavior of subjects during driving are researched. In this paper, a device based on a contactless electrical bioimpedance system is shown. Using the four-wire technique, this system is capable of obtaining the heart rate and the ventilation of the driver through multiple textile electrodes. These textile electrodes are placed on the car seat and the steering wheel. Moreover, it is also reported several measurements done in a controlled environment, i.e. a test room where there are no artifacts due to the car vibrations or the road state. In the mentioned measurements, the system response can be observed depending on several parameters such as the placement of the electrodes or the number of clothing layers worn by the driver.

  11. The bioimpedance analysis of a parenchyma of a liver in the conditions of its extensive resection in experiment

    NASA Astrophysics Data System (ADS)

    Agibalov, D. Y.; Panchenkov, D. N.; Chertyuk, V. B.; Leonov, S. D.; Astakhov, D. A.

    2017-01-01

    The liver failure which is result of disharmony of functionality of a liver to requirements of an organism is the main reason for unsatisfactory results of an extensive resection of a liver. However, uniform effective criterion of definition of degree of a liver failure it isn’t developed now. One of data acquisition methods about a morfo-functional condition of internals is the bioimpedance analysis (BIA) based on impedance assessment (full electric resistance) of a biological tissue. Measurements of an impedance are used in medicine and biology for the characteristic of physical properties of living tissue, studying of the changes bound to a functional state and its structural features. In experimental conditions we carried out an extensive resection of a liver on 27 white laboratory rats of the Vistar line. The comparative characteristic of data of a bioimpedansometriya in intraoperative and after the operational period with the main existing methods of assessment of a functional condition of a liver was carried out. By results of the work performed by us it is possible to claim that the bioimpedance analysis of a liver on the basis of an invasive bioimpedansometriya allows to estimate morphological features and functional activity of a liver before performance of an extensive resection of a liver. The data obtained during scientific work are experimental justification for use of an impedansometriya during complex assessment of functional reserves of a liver. Preliminary data of clinical approbation at a stage of introduction of a technique speak about rather high informational content of a bioimpedansometriya. The subsequent analysis of efficiency of the invasive bioimpedance analysis of a liver requires further accumulation of clinical data. However even at this stage the method showed the prospect for further use in clinical surgical hepathology.

  12. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  13. Detection of questionable occlusal carious lesions using an electrical bioimpedance method with fractional electrical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morais, A. P.; Salgado de Oliveira University, Marechal Deodoro Street, 217 – Centro, Niterói, Rio de Janeiro; Pino, A. V.

    This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C andmore » α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.« less

  14. Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients.

    PubMed

    Zhu, F; Kuhlmann, M K; Kaysen, G A; Sarkar, S; Kaitwatcharachai, C; Khilnani, R; Stevens, L; Leonard, E F; Wang, J; Heymsfield, S; Levin, N W

    2006-02-01

    Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.

  15. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    NASA Astrophysics Data System (ADS)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  16. A Bioimpedance Analysis Platform for Amputee Residual Limb Assessment.

    PubMed

    Sanders, Joan E; Moehring, Mark A; Rothlisberger, Travis M; Phillips, Reid H; Hartley, Tyler; Dietrich, Colin R; Redd, Christian B; Gardner, David W; Cagle, John C

    2016-08-01

    The objective of this research was to develop a bioimpedance platform for monitoring fluid volume in residual limbs of people with trans-tibial limb loss using prostheses. A customized multifrequency current stimulus profile was sent to thin flat electrodes positioned on the thigh and distal residual limb. The applied current signal and sensed voltage signals from four pairs of electrodes located on the anterior and posterior surfaces were demodulated into resistive and reactive components. An established electrical model (Cole) and segmental limb geometry model were used to convert results to extracellular and intracellular fluid volumes. Bench tests and testing on amputee participants were conducted to optimize the stimulus profile and electrode design and layout. The proximal current injection electrode needed to be at least 25 cm from the proximal voltage sensing electrode. A thin layer of hydrogel needed to be present during testing to ensure good electrical coupling. Using a burst duration of 2.0 ms, intermission interval of 100 μs, and sampling delay of 10 μs at each of 24 frequencies except 5 kHz, which required a 200-μs sampling delay, the system achieved a sampling rate of 19.7 Hz. The designed bioimpedance platform allowed system settings and electrode layouts and positions to be optimized for amputee limb fluid volume measurement. The system will be useful toward identifying and ranking prosthetic design features and participant characteristics that impact residual limb fluid volume.

  17. Assessment of body composition in dialysis patients by arm bioimpedance compared to MRI and 40K measurements.

    PubMed

    Carter, M; Zhu, F; Kotanko, P; Kuhlmann, M; Ramirez, L; Heymsfield, S B; Handelman, G; Levin, N W

    2009-01-01

    This study used multi-frequency bioimpedance spectroscopy (BIS) of the arm and whole body to estimate muscle mass (MM) and subcutaneous adipose tissue (SAT) in 31 hemodialysis (HD) patients comparing these results with magnetic resonance imaging (MRI) and body potassium ((40)K) as gold standards. Total body and arm MM (MM(MRI)) and SAT (SAT(MRI)) were measured by MRI. All measurements were made before dialysis treatment. Regression models with the arm (aBIS) and whole body (wBIS) resistances were established. Correlations between gold standards and the BIS model were high for the arm SAT (r(2) = 0.93, standard error of estimate (SEE) = 3.6 kg), and whole body SAT (r(2) = 0.92, SEE = 3.5 kg), and for arm MM (r(2) = 0.84, SEE = 2.28 kg) and whole body MM (r(2) = 0.86, SEE = 2.28 kg). Total body MM and SAT can be accurately predicted by arm BIS models with advantages of convenience and portability, and it should be useful to assess nutritional status in HD patients. Copyright (c) 2009 S. Karger AG, Basel.

  18. Using bioimpedance spectroscopy parameters as real-time feedback during tDCS.

    PubMed

    Nejadgholi, Isar; Caytak, Herschel; Bolic, Miodrag

    2016-08-01

    An exploratory analysis is carried out to investigate the feasibility of using BioImpedance Spectroscopy (BIS) parameters, measured on scalp, as real-time feedback during Transcranial Direct Current Stimulation (tDCS). TDCS is shown to be a potential treatment for neurological disorders. However, this technique is not considered as a reliable clinical treatment, due to the lack of a measurable indicator of treatment efficacy. Although the voltage that is applied on the head is very simple to measure during a tDCS session, changes of voltage are difficult to interpret in terms of variables that affect clinical outcome. BIS parameters are considered as potential feedback parameters, because: 1) they are shown to be associated with the DC voltage applied on the head, 2) they are interpretable in terms of conductive and capacitive properties of head tissues, 3) physical interpretation of BIS measurements makes them prone to be adjusted by clinically controllable variables, 4) BIS parameters are measurable in a cost-effective and safe way and do not interfere with DC stimulation. This research indicates that a quadratic regression model can predict the DC voltage between anode and cathode based on parameters extracted from BIS measurements. These parameters are extracted by fitting the measured BIS spectra to an equivalent electrical circuit model. The effect of clinical tDCS variables on BIS parameters needs to be investigated in future works. This work suggests that BIS is a potential method to be used for monitoring a tDCS session in order to adjust, tailor, or personalize tDCS treatment protocols.

  19. Role of bioimpedance vectorial analysis in cardio-renal syndromes.

    PubMed

    Aspromonte, Nadia; Cruz, Dinna N; Ronco, Claudio; Valle, Roberto

    2012-01-01

    The cardio-renal syndromes (CRS) are the result of complex bidirectional organ cross-talk between the heart and kidney, with tremendous overlap of diseases such as coronary heart disease, heart failure (HF), and renal dysfunction in the same patient. Volume overload plays an important role in the pathophysiology of CRS. The appropriate treatment of overhydration, particularly in HF and in chronic kidney disease, has been associated with improved outcomes and blood pressure control. Clinical examination alone is often insufficient for accurate assessment of volume status because significant volume overload can exist even in the absence of peripheral or pulmonary edema on physical examination or radiography. Bioelectrical impedance techniques increasingly are being used in the management of patients with HF and those on chronic dialysis. These methods provide more objective estimates of volume status in such patients. Used in conjunction with standard clinical assessment and biomarkers such as the natriuretic peptides, bioimpedance analysis may be useful in guiding pharmacologic and ultrafiltration therapies and subsequently restoring such patients to a euvolemic or optivolemic state. In this article, we review the use of these techniques in CRS. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Towards the development of a wearable Electrical Impedance Tomography system: A study about the suitability of a low power bioimpedance front-end.

    PubMed

    Menolotto, Matteo; Rossi, Stefano; Dario, Paolo; Della Torre, Luigi

    2015-01-01

    Wearable systems for remote monitoring of physiological parameter are ready to evolve towards wearable imaging systems. The Electrical Impedance Tomography (EIT) allows the non-invasive investigation of the internal body structure. The characteristics of this low-resolution and low-cost technique match perfectly with the concept of a wearable imaging device. On the other hand low power consumption, which is a mandatory requirement for wearable systems, is not usually discussed for standard EIT applications. In this work a previously developed low power architecture for a wearable bioimpedance sensor is applied to EIT acquisition and reconstruction, to evaluate the impact on the image of the limited signal to noise ratio (SNR), caused by low power design. Some anatomical models of the chest, with increasing geometric complexity, were developed, in order to evaluate and calibrate, through simulations, the parameters of the reconstruction algorithms provided by Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) project. The simulation results were compared with experimental measurements taken with our bioimpedance device on a phantom reproducing chest tissues properties. The comparison was both qualitative and quantitative through the application of suitable figures of merit; in this way the impact of the noise of the low power front-end on the image quality was assessed. The comparison between simulation and measurement results demonstrated that, despite the limited SNR, the device is accurate enough to be used for the development of an EIT based imaging wearable system.

  1. Stroke volume obtained by electrical interrogation of the brachial artery: transbrachial electrical bioimpedance velocimetry.

    PubMed

    Bernstein, Donald P; Henry, Isaac C; Banet, Mathew J; Dittrich, Teri

    2012-04-01

    The goal of this study is to measure left ventricular stroke volume (SV) from the brachial artery (BA) using electrical bioimpedance. Doppler-derived SV was used for comparison. Twenty-nine healthy adults were recruited for study. Doppler echocardiographic-derived SV was obtained from the product of distal left ventricular outflow tract cross-sectional area and systolic velocity integral. SV from the BA was obtained by transbrachial electrical bioimpedance velocimetry (TBEV). Application of a current field across the left brachium was effected by injection of a constant magnitude, high frequency, low amperage, alternating current. Therein, a static voltage (U(0)) and pulsatile voltage change (ΔU(t)) were measured and converted to their corresponding impedances, Z(0) and ΔZ(t). TBEV-derived SV was obtained by multiplying a square root value of the normalized, acceleration-based, peak first time derivative of ΔZ(t) by a volume conductor and systolic flow time. Inter-method agreement was determined by the Bland-Altman method. To assess the contribution of blood resistivity variations to ΔZ(t), BA diameters were measured at end-diastole and peak systolic expansion. Results indicate that since the BA demonstrates parabolic, laminar flow, with minimal diameter changes, blood resistivity variations are likely responsible for the derived impedance changes. Bland-Altman analysis shows that SV is obtainable by TBEV from healthy humans at rest. © 2012 Institute of Physics and Engineering in Medicine

  2. Use of bioimpedance vector analysis in critically ill and cardiorenal patients.

    PubMed

    Peacock, W Frank

    2010-01-01

    Prospective outcome prediction and volume status assessment are difficult tasks in the acute care environment. Rapidly available, non-invasive, bioimpedance vector analysis (BIVA) may offer objective measures to improve clinical decision-making and predict outcomes. Performed by the placement of bipolar electrodes at the wrist and ankle, data is graphically displayed such that short-term morality risk and volume status can be accurately quantified. BIVA is able to provide indices of general cellular health, which has significant prognostic implications, as well as total body volume. Knowledge of these parameters can provide insight as to the short-term prognosis, as well as the presenting volume status. 2010 S. Karger AG, Basel.

  3. Bioimpedance cardiography in pregnancy: A longitudinal cohort study on hemodynamic pattern and outcome.

    PubMed

    Andreas, Martin; Kuessel, Lorenz; Kastl, Stefan P; Wirth, Stefan; Gruber, Kathrin; Rhomberg, Franziska; Gomari-Grisar, Fatemeh A; Franz, Maximilian; Zeisler, Harald; Gottsauner-Wolf, Michael

    2016-06-01

    Pregnancy associated cardiovascular pathologies have a significant impact on outcome for mother and child. Bioimpedance cardiography may provide additional outcome-relevant information early in pregnancy and may also be used as a predictive instrument for pregnancy-associated diseases. We performed a prospective longitudinal cohort trial in an outpatient setting and included 242 pregnant women. Cardiac output and concomitant hemodynamic data were recorded from 11(th)-13(th) week of gestation every 5(th) week as well as at two occasions post partum employing bioimpedance cardiography. Cardiac output increased during pregnancy and peaked early in the third trimester. A higher heart rate and a decreased systemic vascular resistance were accountable for the observed changes. Women who had a pregnancy-associated disease during a previous pregnancy or developed hypertension or preeclampsia had a significantly increased cardiac output early in pregnancy. Furthermore, an effect of cardiac output on birthweight was found in healthy pregnancies and could be confirmed with multiple linear regression analysis. Cardiovascular adaptation during pregnancy is characterized by distinct pattern described herein. These may be altered in women at risk for preeclampsia or reduced birthweigth. The assessment of cardiac parameters by bioimpedance cardiography could be performed at low costs without additional risks.

  4. Stroke volume obtained from the brachial artery using transbrachial electrical bioimpedance velocimetry.

    PubMed

    Henry, Isaac C; Bernstein, Donald P; Banet, Matt J

    2012-01-01

    Stroke volume (SV) is the quantity of blood ejected by the cardiac ventricles per each contraction. When SV is multiplied by heart rate, cardiac output is the result. Cardiac output (CO), in conjunction with hemoglobin concentration and arterial oxygen saturation are the cornerstones of oxygen transport. Measurement of CO is important, especially in sick humans suffering from decompensated heart disease and systemic diseases affecting the contractility or loading conditions of the heart. Although reasonably accurate invasive cardiac output methods are available, their use is restricted to those individuals hospitalized in the intensive care units. Thus, a robust noninvasive alternative is considered desirable. Impedance cardiography (ICG) is one such method, but in patients with severe heart disease and/or excess extravascular lung water, the method is inaccurate. This paper concerns the introduction of a new method, transbrachial electrical bioimpedance velocimetry (TBEV). The technique involves passage of a constant magnitude, high frequency, and low amperage ac from the upper arm to the antecubital fossa. In all other respects, the operational aspects of TBEV are consistent with ICG. There is good evidence suggesting that the TBEV waveform and its derivatives are generated by blood resistivity changes only.

  5. Bioimpedence to Assess Breast Density as a Risk Factor for Breast Cancer in Adult Women and Adolescent Girls.

    PubMed

    Maskarinec, Gertraud; Morimoto, Yukiko; Laguana, Michelle B; Novotny, Rachel; Leon Guerrero, Rachael T

    2016-01-01

    Although high mammographic density is one of the strongest predictors of breast cancer risk, X-ray based mammography cannot be performed before the recommended screening age, especially not in adolescents and young women. Therefore, new techniques for breast density measurement are of interest. In this pilot study in Guam and Hawaii, we evaluated a radiation-free, bioimpedance device called Electrical Breast DensitometerTM (EBD; senoSENSE Medical Systems, Inc., Ontario, Canada) for measuring breast density in 95 women aged 31-82 years and 41 girls aged 8-18 years. Percent density (PD) was estimated in the women's most recent mammogram using a computer-assisted method. Correlation coefficients and linear regression were applied for statistical analysis. In adult women, mean EBD and PD values of the left and right breasts were 230±52 and 226±50 Ω and 23.7±15.1 and 24.2±15.2%, respectively. The EBD measurements were inversely correlated with PD (rSpearman=-0.52, p<0.0001); the correlation was stronger in Caucasians (rSpearman=-0.70, p<0.0001) than Asians (rSpearman=-0.54, p<0.01) and Native Hawaiian/Chamorro/Pacific Islanders (rSpearman=-0.34, p=0.06). Using 4 categories of PD (<10, 10-25, 26-50, 51-75%), the respective mean EBD values were 256±32, 249±41, 202±46, and 178±43 Ω (p<0.0001). In girls, the mean EBD values in the left and right breast were 148±40 and 155±54 Ω; EBD values decreased from Tanner stages 1 to 4 (204±14, 154±79, 136±43, and 119±16 Ω for stages 1-4, respectively) but were higher at Tanner stage 5 (165±30 Ω). With further development, this bioimpedance method may allow for investigations of breast development among adolescent, as well as assessment of breast cancer risk early in life and in populations without access to mammography.

  6. Blood Pressure Estimation Using Pulse Transit Time From Bioimpedance and Continuous Wave Radar.

    PubMed

    Buxi, Dilpreet; Redout, Jean-Michel; Yuce, Mehmet Rasit

    2017-04-01

    We have developed and tested a new architecture for pulse transit time (PTT) estimation at the central arteries using electrical bioimpedance, electrocardiogram, and continuous wave radar to estimate cuffless blood pressure. A transmitter and receiver antenna are placed at the sternum to acquire the arterial pulsation at the aortic arch. A four-electrode arrangement across the shoulders acquires arterial pulse across the carotid and subclavian arteries from bioimpedance as well as a bipolar lead I electrocardiogram. The PTT and pulse arrival times (PATs) are measured on six healthy male subjects during exercise on a bicycle ergometer. Using linear regression, the estimated PAT and PTT values are calibrated to the systolic and mean as well as diastolic blood pressure from an oscillometric device. For all subjects, the Pearson correlation coefficients for PAT-SBP and PTT-SBP are -0.66 (p = 0.001) and -0.48 (p = 0.0029), respectively. Correlation coefficients for individual subjects ranged from -0.54 to -0.9 and -0.37 to -0.95, respectively. The proposed system architecture is promising in estimating cuffless arterial blood pressure at the central, proximal arteries, which obey the Moens-Korteweg equation more closely when compared to peripheral arteries. An important advantage of PTT from the carotid and subclavian arteries is that the PTT over the central elastic arteries is measured instead of the peripheral arteries, which potentially reduces the changes in PTT due to vasomotion. Furthermore, the sensors can be completely hidden under a patients clothes, making them more acceptable by the patient for ambulatory monitoring.

  7. Bioimpedance spectroscopy can precisely discriminate human breast carcinoma from benign tumors.

    PubMed

    Du, Zhenggui; Wan, Hangyu; Chen, Yu; Pu, Yang; Wang, Xiaodong

    2017-01-01

    Intraoperative frozen pathology is critical when a breast tumor is not diagnosed before surgery. However, frozen tumor tissues always present various microscopic morphologies, leading to a high misdiagnose rate from frozen section examination. Thus, we aimed to identify breast tumors using bioimpedance spectroscopy (BIS), a technology that measures the tissues' impedance. We collected and measured 976 specimens from breast patients during surgery, including 581 breast cancers, 190 benign tumors, and 205 normal mammary gland tissues. After measurement, Cole-Cole curves were generated by a bioimpedance analyzer and parameters R0/R∞, fc, and α were calculated from the curve. The Cole-Cole curves showed a trend to differentiate mammary gland, benign tumors, and cancer. However, there were some curves overlapped with other groups, showing that it is not an ideal model. Subsequent univariate analysis of R0/R∞, fc, and α showed significant differences between benign tumor and cancer. However, receiver operating characteristic (ROC) analysis indicated the diagnostic value of fc and R0/R∞ were not superior to frozen sections (area under curve [AUC] = 0.836 and 0.849, respectively), and α was useless in diagnosis (AUC = 0.596). After further research, we found a scatter diagram that showed a synergistic effect of the R0/R∞ and fc, in discriminating cancer from benign tumors. Thus, we used multivariate analysis, which revealed that these two parameters were independent predictors, to combine them. A simplified equation, RF = 0.2fc + 3.6R0/R∞, based on multivariate analysis was developed. The ROC curve for RF' showed an AUC = 0.939, and the sensitivity and specificity were 82.62% and 95.79%, respectively. To match a clinical setting, the diagnostic criteria were set at 6.91 and 12.9 for negative and positive diagnosis, respectively. In conclusion, RF' derived from BIS can discriminate benign tumor and cancers, and integrated criteria were developed for

  8. Bioimpedance spectroscopy can precisely discriminate human breast carcinoma from benign tumors

    PubMed Central

    Du, Zhenggui; Wan, Hangyu; Chen, Yu; Pu, Yang; Wang, Xiaodong

    2017-01-01

    Abstract Intraoperative frozen pathology is critical when a breast tumor is not diagnosed before surgery. However, frozen tumor tissues always present various microscopic morphologies, leading to a high misdiagnose rate from frozen section examination. Thus, we aimed to identify breast tumors using bioimpedance spectroscopy (BIS), a technology that measures the tissues’ impedance. We collected and measured 976 specimens from breast patients during surgery, including 581 breast cancers, 190 benign tumors, and 205 normal mammary gland tissues. After measurement, Cole-Cole curves were generated by a bioimpedance analyzer and parameters R0/R∞, fc, and α were calculated from the curve. The Cole-Cole curves showed a trend to differentiate mammary gland, benign tumors, and cancer. However, there were some curves overlapped with other groups, showing that it is not an ideal model. Subsequent univariate analysis of R0/R∞, fc, and α showed significant differences between benign tumor and cancer. However, receiver operating characteristic (ROC) analysis indicated the diagnostic value of fc and R0/R∞ were not superior to frozen sections (area under curve [AUC] = 0.836 and 0.849, respectively), and α was useless in diagnosis (AUC = 0.596). After further research, we found a scatter diagram that showed a synergistic effect of the R0/R∞ and fc, in discriminating cancer from benign tumors. Thus, we used multivariate analysis, which revealed that these two parameters were independent predictors, to combine them. A simplified equation, RF′ = 0.2fc + 3.6R0/R∞, based on multivariate analysis was developed. The ROC curve for RF′ showed an AUC = 0.939, and the sensitivity and specificity were 82.62% and 95.79%, respectively. To match a clinical setting, the diagnostic criteria were set at 6.91 and 12.9 for negative and positive diagnosis, respectively. In conclusion, RF′ derived from BIS can discriminate benign tumor and cancers, and integrated criteria

  9. Multi-frequency bioimpedance in human muscle assessment

    PubMed Central

    Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul

    2015-01-01

    Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test the hypothesis that mfBIA can be used to assess the anatomical, physiological, and metabolic state of skeletal muscles. mfBIA measurements focusing on impedance, resistance, reactance, phase angle, center frequency, membrane capacitance, and both extracellular and intracellular resistance were carried out. Eight healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes in connection with a conductance paste to accommodate the typical BIA frequencies, and to facilitate accurate impedance and resistance measurements. The use of mfBIA parameters, often in conjunction with each other, can be used to reveal indications of contralateral muscle loss, extracellular fluid differences, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles. PMID:25896978

  10. Screening for pre-eclampsia in the first trimester: role of maternal hemodynamics and bioimpedance in non-obese patients.

    PubMed

    Gagliardi, G; Tiralongo, G M; LoPresti, D; Pisani, I; Farsetti, D; Vasapollo, B; Novelli, G P; Andreoli, A; Valensise, H

    2017-11-01

    To test if maternal hemodynamics and bioimpedance, assessed at the time of combined screening for PE, are able to identify in the first trimester of gestation normotensive non-obese patients at risk for pre-eclampsia (PE) and/or intrauterine growth restriction (IUGR). One hundred and fifty healthy nulliparous non-obese women (body mass index < 30 kg/m 2 ) in the first trimester of pregnancy underwent assessment by UltraSonic Cardiac Output Monitor (USCOM) to detect hemodynamic parameters, bioimpedance analysis to characterize body composition, and combined screening for PE (assessment of maternal history, biophysical and maternal biochemical markers). Patients were followed until term, noting the appearance of PE and/or IUGR. One hundred and thirty-eight patients had an uneventful pregnancy (controls), while 12 (8%) developed complications (cases). USCOM showed, in cases compared with controls, lower cardiac output (5.6 ± 0.3 vs 6.7 ± 1.1 L/min, P < 0.001), lower inotropy index (1.54 ± 0.38 vs 1.91 ± 0.32 W/m 2 , P < 0.001) and higher total vascular resistance (1279.8 ± 166.4 vs 1061.4 ± 179.5 dynes × s/cm 5 , P < 0.001). Bioimpedance analysis showed, in cases compared with controls, lower total body water (53.7 ± 3.3% vs 57.2 ± 5.6%, P = 0.037). Combined screening was positive for PE in 8% of the controls and in 50% of the cases (P < 0.001). After identification of cut-off values for USCOM and bioimpedance parameters, forward multivariate logistic regression analysis identified as independent predictors of complications in pregnancy the inotropy index (derived by USCOM), fat mass (derived from bioimpedance analysis) and combined screening. Combined screening for PE and assessment of bioimpedance and maternal hemodynamics can be used to identify early markers of impaired cardiovascular adaptation and body composition that may lead to complications in the third trimester of pregnancy. Copyright

  11. Glucose-independent segmental phase angles from multi-frequency bioimpedance analysis to discriminate diabetes mellitus.

    PubMed

    Jun, Min-Ho; Kim, Soochan; Ku, Boncho; Cho, JungHee; Kim, Kahye; Yoo, Ho-Ryong; Kim, Jaeuk U

    2018-01-12

    We investigated segmental phase angles (PAs) in the four limbs using a multi-frequency bioimpedance analysis (MF-BIA) technique for noninvasively diagnosing diabetes mellitus. We conducted a meal tolerance test (MTT) for 45 diabetic and 45 control subjects stratified by age, sex and body mass index (BMI). HbA1c and the waist-to-hip-circumference ratio (WHR) were measured before meal intake, and we measured the glucose levels and MF-BIA PAs 5 times for 2 hours after meal intake. We employed a t-test to examine the statistical significance and the area under the curve (AUC) of the receiver operating characteristics (ROC) to test the classification accuracy using segmental PAs at 5, 50, and 250 kHz. Segmental PAs were independent of the HbA1c or glucose levels, or their changes caused by the MTT. However, the segmental PAs were good indicators for noninvasively screening diabetes In particular, leg PAs in females and arm PAs in males showed best classification accuracy (AUC = 0.827 for males, AUC = 0.845 for females). Lastly, we introduced the PA at maximum reactance (PAmax), which is independent of measurement frequencies and can be obtained from any MF-BIA device using a Cole-Cole model, thus showing potential as a useful biomarker for diabetes.

  12. Bioimpedance to screen for abdominal fat in patients with breast cancer treatment-related lymphedema.

    PubMed

    de Fátima Guerreiro Godoy, Maria; Silva, Edivandra Buzato; de Godoy, Jose Maria Pereira

    2016-07-28

    One of the dreaded complications after the treatment of breast cancer is lymphedema. Therapies used in the treatment of breast cancer such as surgery, radiotherapy, hormone therapy and chemotherapy may be adversely affected by obesity. The objective of this study was to use bioimpedance to assess abdominal fat in women with breast cancer treatment-related lymphedema and suggest this as a screening method. Forty-five female patients with clinical diagnosis of breast cancer treatment-related lymphedema were evaluated in this quantitative cross-sectional study. A control group, composed of 38 patients with varicose veins and women attending a social support group, was matched for age and body mass index (BMI). All participants were submitted to a bioimpedance evaluation (In Body S 10), with particular attention being paid to abdominal fat and their BMI. The unpaired t -test, Fisher Exact test and Mann-Whitney test were used for statistical analysis and an alpha error of 5%. There was no significant difference (p -value = 0.23) in the mean BMI between the study group (27.79 kg∕m2) and the control group (28.80 kg∕m2). The mean abdominal circumference, a measure of abdominal fat, of the women in the study group was 130.54 cm2 and for the control group it was 102.24 cm2 (p -value = 0.0037). Thus the study group had more abdominal fat (p -value = 0.0003). Moreover, on comparing obese patients in the two groups, the study group had more abdominal fat (p -value = 0.02). However, no significant difference was observed comparing non-obese patients (p -value = 0.6). The comparison of obese patients with non-obese patients in the control group identifies an association between obesity and abdominal fat (p -value < 0.04). Overweight and obese women with breast cancer treatment-related lymphedema are more likely to have increased abdominal fat than the general population with bioimpedance.

  13. PREFACE: First Latin-American Conference on Bioimpedance (CLABIO 2012)

    NASA Astrophysics Data System (ADS)

    Bertemes Filho, Pedro

    2012-12-01

    The past decade has witnessed an unprecedented growth in medical technologies and a new generation of diagnostics, characterized by mobility, virtualization, homecare and costs. The ever growing demand and the rapid need for low cost tools for characterizing human tissue, and supporting intelligence and technologies for non-invasive tissue cancer investigation raise unique and evolving opportunities for research in Electrical Bioimpedance. The CLABIO2012 - First Latin American Conference on Bioimpedance is a premier Latin-American conference on Bioimpedance for research groups working on Electrical Bioimpedance. It allows Latin American researchers to share their experiences with other groups from all over the world by presenting scientific work and potential innovations in this research area and also in the social events promoting informal get togethers in the Brazilian style. The work covers a broad range including Biomedical Engineering and Computing, Medical Physics and Medical Sciences, Environment, Biology and Chemistry. Also, the Conference is intended to give students and research groups the opportunity to learn more about Bioimpedance as an important tool in biological material characterization and also in diagnosis. The conference is designed to showcase cutting edge research and accomplishments, and to enrich the educational and industrial experience in this field. It also represents a unique opportunity to meet colleagues and friends, exchanging ideas, and learning about new developments and best practice, while working to advance the understanding of the knowledge base that we will collectively draw upon in the years ahead to meet future challenges. Participants will attend presentations by scholars representing both institutes and academia. The CLABIO2012 proceedings include over 25 papers selected via a peer review process. The conference program features tutorial talks by world-leading scholars and five sessions for regular paper oral presentations

  14. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods.

    PubMed

    Kalvoy, Havard; Tronstad, Christian; Ullensvang, Kyrre; Steinfeldt, Thorsten; Sauter, Axel R

    2017-07-01

    In an ongoing project for electrical impedance-based needle guidance we have previously showed in an animal model that intraneural needle positions can be detected with bioimpedance measurement. To enhance the power of this method we in this study have investigated whether an early detection of the needle only touching the nerve also is feasible. Measurement of complex impedance during needle to nerve contact was compared with needle positions in surrounding tissues in a volunteer study on 32 subjects. Classification analysis using Support-Vector Machines demonstrated that discrimination is possible, but that the sensitivity and specificity for the nerve touch algorithm not is at the same level of performance as for intra-neuralintraneural detection.

  15. Efficiency assessment of shock wave therapy in patients with pelvic pain employing harmonic analysis of penile bioimpedance.

    PubMed

    Khodyreva, L A; Dudareva, A A; Mudraya, I S; Markosyan, T G; Revenko, S V; Kumachev, K V; Logvinov, L A

    2013-06-01

    In searching for novel objective methods to diagnosticate pelvic pain and assess efficiency of analgesic therapy, 37 male patients were examined prior to and after the course of extracorporeal shock wave therapy (5-10 sessions) with the waves directed to projections of prostate and/or crura and shaft of the penis. The repetition rate of mechanical pulses was 3-5 Hz. The range of energy pulse density was 0.09-0.45 mJ/mm(2). The overall number of pulses in a session was 1500-3000 in any treated zone with total energy smaller than 60 J. The applicator was relocated every other series of 300-500 pulses. Effect of the shock wave therapy was assessed according to subjective symptomatic scales: International Prostate Symptom Score, International Index of Erectile Function, Quality of Life, and nociceptive Visual Analog Scale. The objective assessment of shock wave therapy was performed with harmonic analysis of penile bioimpedance variability, which quantitatively evaluated the low-frequency rhythmic and asynchronous activities at rest as well as the total pulsatile activity of the penis. The magnitude of spectrum components of bioimpedance variations was assessed with a novel parameter, the effective impedance. The spectral parameters were measured in 16 patients prior to and after the treatment course. The corresponding control values were measured in the group of healthy patients. Prior to the shock wave therapy course, all spectrum parameters of penile bioimpedance significantly differed from the control (p<0.05). After this course, low-frequency rhythmic and the total pulsatile activity decreased to normal, while asynchronous activity remained significantly different from the normal. The novel objective physiological criteria of pelvic pain diagnostics and efficiency of its treatment reflecting the regional features of circulation and neural activity corresponded to the clinical symptom scaling prior to and after the shock wave course, and on the whole, these

  16. Impact of eating and drinking on body composition measurements by bioelectrical impedance.

    PubMed

    Androutsos, O; Gerasimidis, K; Karanikolou, A; Reilly, J J; Edwards, C A

    2015-04-01

    Bioelectrical impedance analysis would be a more practical tool to measure body composition in clinical settings, dietetic practice and epidemiological studies if patients/subjects did not have to fast before measurements. The present study assessed whether the ingestion of food or drink had any biologically significant effect on bioimpedance measurements and body composition by the foot-to-foot method. Fifty-five healthy adults [30 males and 25 females; mean (SD) age 27.7 (7.1) years; mean (SD)body mass index 24 (3.8) kg m(-2)] were randomly assigned to a 2-day food trial (high-fat meal or high-carbohydrate meal) or a 2-day drink trial (water or high electrolyte drink). Body composition measurements were carried out in the fasting state, immediately after meal consumption and every 30 min for 2 h by the foot-to-foot single frequency bioimpedance technique. Bioimpedance increased significantly after the ingestion of food and fluid, although the changes were small. The electrolyte drink, high-fat and high-carbohydrate meals significantly increased the percentage body fat and fat mass. In all cases, the median percentage changes from baseline were approximately 1% in body fat percentage units. Although there were statistically significant changes in body composition estimates after food or drink consumption, these were small and within the imprecision of the impedance technique, and so are unlikely to be of clinical significance. The present study suggests that impedance measures of body fatness in clinical settings do not require strict adherence to fasting, and this should increase the opportunities for clinical application. © 2014 The British Dietetic Association Ltd.

  17. Development of Bio-impedance Analyzer (BIA) for Body Fat Calculation

    NASA Astrophysics Data System (ADS)

    Riyadi, Munawar A.; Nugraha, A.; Santoso, M. B.; Septaditya, D.; Prakoso, T.

    2017-04-01

    Common weight scales cannot assess body composition or determine fat mass and fat-fress mass that make up the body weight. This research propose bio-impedance analysis (BIA) tool capable to body composition assessment. This tool uses four electrodes, two of which are used for 50 kHz sine wave current flow to the body and the rest are used to measure the voltage produced by the body for impedance analysis. Parameters such as height, weight, age, and gender are provided individually. These parameters together with impedance measurements are then in the process to produce a body fat percentage. The experimental result shows impressive repeatability for successive measurements (stdev ≤ 0.25% fat mass). Moreover, result on the hand to hand node scheme reveals average absolute difference of total subjects between two analyzer tools of 0.48% (fat mass) with maximum absolute discrepancy of 1.22% (fat mass). On the other hand, the relative error normalized to Omron’s HBF-306 as comparison tool reveals less than 2% relative error. As a result, the system performance offers good evaluation tool for fat mass in the body.

  18. Effect of Change in Fluid Status Evaluated by Bioimpedance Techniques on Body Composition in Hemodialysis Patients.

    PubMed

    Abbas, Samer R; Thijssen, Stephan; Penne, Erik L; Raimann, Jochen G; Liu, Li; Sipahioglu, Murat H; Seibert, Eric; Wang, Yuedong; Chen, Yuqi; Xiao, Qingqing; Levin, Nathan W; Kotanko, Peter; Zhu, Fansan

    2018-05-01

    This prospective study uses calf bioimpedance spectroscopy (cBIS) to guide the attainment of dry weight (DW cBIS ) in chronic hemodialysis (HD) patients. The primary aim of this study was to evaluate whether body composition is altered when fluid status is reduced to DW cBIS . Target post-HD weight was gradually reduced from baseline (BL) until DW cBIS was achieved. DW cBIS was defined as the presence of both flattening of the curve of extracellular resistance and the attainment calf normalized resistivity in the normal range during the dialysis treatment. Extracellular volume (ECV), intracellular volume, and total body water (TBW) were measured using whole body BIS (Hydra 4200). Fluid overload, lean body mass, and fat mass were calculated according to a body composition model. Seventy-three patients enrolled and 60 completed the study (55 ± 13 years, 49% male). Twenty-eight patients (25% diabetes) achieved DW cBIS , whereas 32 patients (47% diabetes) did not. Number of treatment measurements were 16 ± 10 and 12 ± 13 studies per patient in the DW cBIS and non-DW cBIS groups, respectively. Although significant decreases in body weight and ECV were observed, lean body mass and FM did not differ significantly in both groups from BL to the end of study. ECV, ECV/TBW, and fluid overload were higher in the non-DW cBIS than in the DW cBIS group both at BL and at the end of study. Ratios of intradialytic changes in calf normalized resistivity, ECV, and ECV/TBW to ultrafiltration volume were significantly lower in diabetic than in non-diabetic patients. This study shows that decreasing fluid status by gradual reduction of post-HD weight in both DW cBIS and Non-DW cBIS groups did not affect body composition significantly over a period of about 4 weeks. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. Mean Expected Error in Prediction of Total Body Water: A True Accuracy Comparison between Bioimpedance Spectroscopy and Single Frequency Regression Equations

    PubMed Central

    Abtahi, Shirin; Abtahi, Farhad; Ellegård, Lars; Johannsson, Gudmundur; Bosaeus, Ingvar

    2015-01-01

    For several decades electrical bioimpedance (EBI) has been used to assess body fluid distribution and body composition. Despite the development of several different approaches for assessing total body water (TBW), it remains uncertain whether bioimpedance spectroscopic (BIS) approaches are more accurate than single frequency regression equations. The main objective of this study was to answer this question by calculating the expected accuracy of a single measurement for different EBI methods. The results of this study showed that all methods produced similarly high correlation and concordance coefficients, indicating good accuracy as a method. Even the limits of agreement produced from the Bland-Altman analysis indicated that the performance of single frequency, Sun's prediction equations, at population level was close to the performance of both BIS methods; however, when comparing the Mean Absolute Percentage Error value between the single frequency prediction equations and the BIS methods, a significant difference was obtained, indicating slightly better accuracy for the BIS methods. Despite the higher accuracy of BIS methods over 50 kHz prediction equations at both population and individual level, the magnitude of the improvement was small. Such slight improvement in accuracy of BIS methods is suggested insufficient to warrant their clinical use where the most accurate predictions of TBW are required, for example, when assessing over-fluidic status on dialysis. To reach expected errors below 4-5%, novel and individualized approaches must be developed to improve the accuracy of bioimpedance-based methods for the advent of innovative personalized health monitoring applications. PMID:26137489

  20. Bioimpedance index for measurement of total body water in severely malnourished children: Assessing the effect of nutritional oedema.

    PubMed

    Girma, Tsinuel; Kæstel, Pernille; Workeneh, Netsanet; Mølgaard, Christian; Eaton, Simon; Andersen, Gregers S; Michaelsen, Kim F; Friis, Henrik; Wells, Jonathan C K

    2016-06-01

    Restoration of body composition indicates successful management of severe acute malnutrition (SAM). Bioimpedance (BI) index (height(2)/resistance) is used to predict total body water (TBW) but its performance in SAM, especially with oedema, requires further investigation. Children with SAM (mid-arm circumference <11.0 cm or weight-for-height <70% of median of NCHS reference and/or nutritional oedema) admitted to Jimma University Hospital were included. Tetrapolar-whole-body impedance (Z), resistance (R) and reactance (Xc) were measured at 50 and 200 kHzs. Pre- and post-deuterium dose saliva samples were analysed using isotope-ratio mass spectrometry. TBW was regressed on H(2)/Z. Xc and R were height (H)-indexed, and Xc/H plotted against R/H. Thirty five children (16 non-oedematous and 19 oedematous) with median (interquartile range) age of 42 (26-54) months were studied. Height-for-age z-score (mean ± SD) was low in both non-oedematous (-3.9 ± 2.8) and oedematous (-3.6 ± 1.7) children. Oedematous children had lower BI parameters than non-oedematous (p < 0.001) and hence higher H(2)/Z for a given amount of TBW. At both 50 and 200 kHz, association between H(2)/Z and TBW was stronger in non-oedematous children than oedematous (60% higher coefficient of determination and 20% lower standard error of estimate). Intercepts and regression estimates at 50 and 200 kHz were similar, in both oedematous and non-oedematous children. In children with oedematous SAM, BI index was weak in predicting TBW. Moreover, predicted TBWs at 200 kHz and 50 kHz did not differ and hence BI measurement at 50 kHz is still practical for TBW estimation. Copyright © 2015. Published by Elsevier Ltd.

  1. Wearable Vector Electrical Bioimpedance System to Assess Knee Joint Health

    PubMed Central

    Hersek, Sinan; Töreyin, Hakan; Teague, Caitlin N.; Millard-Stafford, Mindy L.; Jeong, Hyeon-Ki; Bavare, Miheer M.; Wolkoff, Paul; Sawka, Michael N.; Inan, Omer T.

    2017-01-01

    Objective We designed and validated a portable electrical bioimpedance (EBI) system to quantify knee joint health. Methods Five separate experiments were performed to demonstrate the: (1) ability of the EBI system to assess knee injury and recovery; (2) inter-day variability of knee EBI measurements; (3) sensitivity of the system to small changes in interstitial fluid volume; (4) reducing the error of EBI measurements using acceleration signals; (5) use of the system with dry electrodes integrated to a wearable knee wrap. Results (1) The absolute difference in resistance (R) and reactance (X) from the left to the right knee was able to distinguish injured and healthy knees (p<0.05); the absolute difference in R decreased significantly (p<0.05) in injured subjects following rehabilitation. (2) The average inter-day variability (standard deviation) of the absolute difference in knee R was 2.5Ω, and for X was, 1.2 Ω. (3) Local heating/cooling resulted in a significant decrease/increase in knee R (p<0.01). (4) The proposed subject position detection algorithm achieved 97.4% leave-one subject out cross-validated accuracy and 98.2% precision in detecting when the subject is in the correct position to take measurements. (5) Linear regression between the knee R and X measured using the wet electrodes and the designed wearable knee wrap were highly correlated (r2 = 0.8 and 0.9, respectively). Conclusion This work demonstrates the use of wearable EBI measurements in monitoring knee joint health. Significance The proposed wearable system has the potential for assessing knee joint health outside the clinic/lab and help guide rehabilitation. PMID:28026745

  2. Wearable Vector Electrical Bioimpedance System to Assess Knee Joint Health.

    PubMed

    Hersek, Sinan; Toreyin, Hakan; Teague, Caitlin N; Millard-Stafford, Mindy L; Jeong, Hyeon-Ki; Bavare, Miheer M; Wolkoff, Paul; Sawka, Michael N; Inan, Omer T

    2017-10-01

    We designed and validated a portable electrical bioimpedance (EBI) system to quantify knee joint health. Five separate experiments were performed to demonstrate the: 1) ability of the EBI system to assess knee injury and recovery; 2) interday variability of knee EBI measurements; 3) sensitivity of the system to small changes in interstitial fluid volume; 4) reducing the error of EBI measurements using acceleration signals; and 5) use of the system with dry electrodes integrated to a wearable knee wrap. 1) The absolute difference in resistance ( R) and reactance (X) from the left to the right knee was able to distinguish injured and healthy knees (p < 0.05); the absolute difference in R decreased significantly (p < 0.05) in injured subjects following rehabilitation. 2) The average interday variability (standard deviation) of the absolute difference in knee R was 2.5 Ω and for X was 1.2 Ω. 3) Local heating/cooling resulted in a significant decrease/increase in knee R (p < 0.01). 4) The proposed subject position detection algorithm achieved 97.4% leave-one subject out cross-validated accuracy and 98.2% precision in detecting when the subject is in the correct position to take measurements. 5) Linear regression between the knee R and X measured using the wet electrodes and the designed wearable knee wrap were highly correlated ( R 2 = 0.8 and 0.9, respectively). This study demonstrates the use of wearable EBI measurements in monitoring knee joint health. The proposed wearable system has the potential for assessing knee joint health outside the clinic/lab and help guide rehabilitation.

  3. Bioimpedance for oedema evaluation after total knee arthroplasty.

    PubMed

    Pichonnaz, Claude; Bassin, Jean-Philippe; Currat, Damien; Martin, Estelle; Jolles, Brigitte M

    2013-09-01

    Electrical bioimpedance spectroscopy (BIS) allows the evaluation of limb extracellular fluid (R0) and total fluid (Rinf). BIS could facilitate post-surgical oedema evaluation after total knee arthroplasty (TKA), as it is easily performed and is non-invasive. However, neither its applicability in this context nor the influence of metallic implants on measurement has been evaluated. The aim of this study was to evaluate the influence of TKA implants on the BIS R0 and Rinf variables used for oedema evaluation. This was a prospective non-randomized comparative clinical trial. One oedema-free group of patients with TKA was compared with a group presenting similar characteristics except for the arthroplasty, to assess the influence of the implant on BIS measurement in the absence of oedema. The TKA group included 15 patients who had undergone surgery more than a year previously, and the control group included 19 patients awaiting TKA surgery. Volume and perimeter measurements served as reference criterions. The lower limb percentage differences for BIS, knee perimeter and volume were calculated. The significance of differences between groups was calculated for all measurement methods, using the Mann-Whitney test. The setting was a Department of Orthopedic Surgery and Traumatology in a university hospital. The differences between groups were not significant for R0, Rinf, volume and perimeter. R0 showed the smallest mean difference in limb percentage difference between groups [means (SD): TKA 3.98 (8.09), controls 3.97 (5.16)]. The lower-leg percentage difference in the TKA group is comparable with that of healthy subjects. R0 can be used for oedema evaluation following TKA surgery, as there was no sign of alteration from the metallic implant. These findings indicate the potential for early oedema evaluation after TKA. More research is warranted to extensively validate the application of BIS for oedema evaluation after TKA. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Efficacy of dialysis in peritoneal dialysis: utility of bioimpedance to calculate Kt/V and the search for a target Kt.

    PubMed

    Martínez Fernández, G; Ortega Cerrato, A; Masiá Mondéjar, J; Pérez Rodríguez, A; Llamas Fuentes, F; Gómez Roldán, C; Pérez-Martínez, Juan

    2013-04-01

    To calculate Kt/V, volume (V) is usually obtained by Watson formula, but bioimpedance spectroscopy (BIS) is a simple and applicable technique to determinate V, along with other hydration and nutrition parameters, in peritoneal dialysis (PD) patients. Dialysis efficacy can also be measured with Kt, but no experience exists in PD, so there is no reference/target value for Kt that must be achieved in these patients to be considered adequately dialyzed. We evaluated the efficacy of PD with Kt/V using Watson formula and BIS for V calculation, assessed hydration status in a PD unit by data obtained by BIS, and attempted to find a reference Kt from the Kt/V previously obtained by BIS. In this observational prospective study of 78 PD patients, we measured V using BIS (V bis) and Watson formula (V w) and calculated weekly Kt/V using both volumes (Kt/V bis/V bis and Kt/V w). With the BIS technique, we obtained and subsequently analyzed other hydration status parameters. We achieved a reference Kt, extrapolating the value desired (weekly Kt/V 1.7) to the target Kt using the simple linear regression statistical technique, basing it on the results of the previously calculated Pearson's linear correlation coefficient. Volume was 1.8 l higher by Watson formula than with BIS (p < 0.001). Weekly Kt/V bis was 2.33 ± 0.68, and mean weekly Kt/V w was 2.20 ± 0.63 (p < 0.0001); 60.25 % of patients presented overhydration according to the BIS study (OH >1.1 l). The target value of Kt for the reference weekly Kt/V bis (1.7) was 64.87 l. BIS is a simple, applicable technique for calculating V in dialysis that can be especially useful in PD patients compared with the anthropometric formulas, by the abnormally distributed body water in these patients. Other parameters obtained by BIS will serve to assess both the distribution of body volume and nutritional status in the clinical setting. The target Kt value obtained from Kt/V bis allowed us to measure the efficacy of PD in a practical way

  5. Intracranial hemorrhage alters scalp potential distribution in bioimpedance cerebral monitoring: Preliminary results from FEM simulation on a realistic head model and human subjects

    PubMed Central

    Atefi, Seyed Reza; Seoane, Fernando; Kamalian, Shervin; Rosenthal, Eric S.; Lev, Michael H.; Bonmassar, Giorgio

    2016-01-01

    Purpose: Current diagnostic neuroimaging for detection of intracranial hemorrhage (ICH) is limited to fixed scanners requiring patient transport and extensive infrastructure support. ICH diagnosis would therefore benefit from a portable diagnostic technology, such as electrical bioimpedance (EBI). Through simulations and patient observation, the authors assessed the influence of unilateral ICH hematomas on quasisymmetric scalp potential distributions in order to establish the feasibility of EBI technology as a potential tool for early diagnosis. Methods: Finite element method (FEM) simulations and experimental left–right hemispheric scalp potential differences of healthy and damaged brains were compared with respect to the asymmetry caused by ICH lesions on quasisymmetric scalp potential distributions. In numerical simulations, this asymmetry was measured at 25 kHz and visualized on the scalp as the normalized potential difference between the healthy and ICH damaged models. Proof-of-concept simulations were extended in a pilot study of experimental scalp potential measurements recorded between 0 and 50 kHz with the authors’ custom-made bioimpedance spectrometer. Mean left–right scalp potential differences recorded from the frontal, central, and parietal brain regions of ten healthy control and six patients suffering from acute/subacute ICH were compared. The observed differences were measured at the 5% level of significance using the two-sample Welch t-test. Results: The 3D-anatomically accurate FEM simulations showed that the normalized scalp potential difference between the damaged and healthy brain models is zero everywhere on the head surface, except in the vicinity of the lesion, where it can vary up to 5%. The authors’ preliminary experimental results also confirmed that the left–right scalp potential difference in patients with ICH (e.g., 64 mV) is significantly larger than in healthy subjects (e.g., 20.8 mV; P < 0.05). Conclusions: Realistic

  6. The use of Cole-Cole plots to compare two multifrequency bioimpedance instruments.

    PubMed

    Stroud, D B; Cornish, B H; Thomas, B J; Ward, L C

    1995-10-01

    Two commercially available multifrequency bioimpedance spectrometers (Xitron 4000B and SEAC SFB3) were compared by performing measurements on a set of electronic circuits and by studying 14 healthy volunteers. Output data were plotted as reactance versus resistance and fitted with a semi-circle using a least squares fitting program. In tests with six electronic circuits both instruments produced impedance loci that were well described by semicircular Cole-Cole plots, though there were some minor discrepancies using the Xitron instrument at frequencies above 150 kHz. When tested on the volunteers the SEAC instrument gave very good fits (RMSE = 1.5 Omega) to a semi-circle from 5-600 kHz on all volunteers. The Xitron instrument gave excellent fits to the semi-circle between 5 and 55 kHz (RMSE = 0.7 Omega) but above 55 kHz the phase measurements stayed constant or even increased, confirming the anomalous behaviour reported by other authors. The conclusions to be drawn are that the semicircular plots predicted by the Cole-Cole theory give a very good description of multifrequency impedance data recorded by the SEAC SFB3 instrument, on human subjects, for frequencies between 5 and 600 kHz. The Xitron 4000B is not able to reproduce the theoretically expected results in humans above 55 kHz.

  7. Predictive abilities of baseline measurements of fluid overload, assessed by bioimpedance spectroscopy and serum N-terminal pro-B-type natriuretic peptide, for mortality in hemodialysis patients

    PubMed Central

    Siriopol, Ianis; Voroneanu, Luminita; Covic, Adrian

    2017-01-01

    Introduction Fluid overload is one of the most important, yet modifiable, risk factors associated with worse outcomes in hemodialysis (HD) patients. However, its precise assessment in clinical practice is still under investigation. Material and methods This is an observational prospective study which included 285 stable patients with end-stage renal disease on standard thrice-weekly HD therapy. Overhydration was assessed by the combination of relative fluid overload (RFO), using bioimpedance spectroscopy, and N-terminal pro-B-type natriuretic peptide (NT-proBNP). The outcome of interest was all-cause mortality. Results The median values for NT-proBNP and RFO were 4595 pg/ml and 6.9%, respectively. We divided the study population into four groups according to these median levels: group 1 – low NT-proBNP and low RFO; group 2 – high NT-proBNP and low RFO; group 3 – low NT-proBNP and high RFO; group 4 – high NT-proBNP and high RFO. During the follow-up (mean: 41.1, median: 48.7 months), 89 (31.2%) patients died. In the univariable Cox survival analysis only patients in group 4, and not those from group 2 or 3, had significantly higher HRs as compared to those in group 1 (HR = 1.5, 95% CI: 0.8–2.8, HR = 1.6, 95% CI: 0.8–2.9 and HR = 2.4, 95% CI: 1.3–4.2, for group 2, 3 and 4, respectively). Furthermore, these results were maintained in the multivariable Cox analysis. Conclusions Including both bioimpedance and NT-proBNP monitoring in a more comprehensive fluid status assessment could improve the diagnosis of fluid overload with a final improvement in patients’ outcome. PMID:28883854

  8. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    PubMed

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  9. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  10. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  11. Comparison of resting energy equations and total energy expenditure in haemodialysis patients and body composition measured by multi-frequency bioimpedance.

    PubMed

    Oliveira, Ben; Sridharan, Sivakumar; Farrington, Ken; Davenport, Andrew

    2017-07-13

    Waste products of metabolism are retained in haemodialysis (HD) patients. Cellular metabolism generates energy, and patients with greater energy expenditure may therefore require more dialysis. To determine the amount of dialysis required, equations estimating resting and total energy expenditure (REE,TEE) are required. We compared estimates of REE in HD patients using established equations with a novel equation recently validated in HD patients (HD equation). TEE was derived from REE (HD equation) and estimates of physical activity obtained by questionnaire. REE and TEE relationships with bioimpedance measured body composition were then determined. We studied 317 HD patients; 195 males (61.5%), 123 diabetic (38.9%), mean age 65.0 ± 15.3 and weight 73.1 ± 16.8 kg. REE from HD Equation was 1509 ± 241 kcal/day, which was greater than for Mifflin St Joer 1384 ± 259, Harris-Benedict 1437 ± 244, Katch-McArdle 1345 ± 232 (all p < 0.05 vs HD Equation), but less than Cunningham 1557 ± 236 kcal/day. Bland Altman mean bias ranged from -263 to 55 kcal/day. TEE was 1727 (1558-1976) kcal/day, and on multi-variable analysis was positively associated with skeletal muscle mass (β 23.3, p < 0.001), employment (β 406.5, p < 0.001), low co-morbidity (β 105.1, p = 0.006), and protein nitrogen appearance (β 2.7, p = 0.015), and negatively with age (β -7.9, p < 0.001), and dialysis vintage (β -121.2, p = 0.002). Most standard equations underestimate REE in HD patients compared to the HD Equation. TEE was greater in those with higher skeletal muscle mass and protein nitrogen appearance, lower co-morbidity, age, and dialysis vintage, and the employed. More metabolically active patients may require greater dialytic clearances. This article is protected by copyright. All rights reserved.

  12. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  13. Influence of body position, food and beverage consumption on BIS measurements

    NASA Astrophysics Data System (ADS)

    Medrano, G.; Eitner, F.; Ismail, A. H.; Pikkemaat, R.; Cordes, A.; Floege, J.; Leonhardt, S.

    2010-04-01

    Continuous monitoring of fluid changes using bioimpedance spectroscopy (BIS) during hemodialysis could help to predict hypotensive complications and extend the patient's life. Food and beverage consumption during the treatment may influence the measurements and the calculated fluid removal. In the present article the change observed in whole body and segmental (knee-to-knee, abdomen) BIS measurements following a sequence similar to the one of dialysis treatment (lying down, sitting and eating, lying down) on healthy subjects is presented. The measurements have been performed using a commercial bioimpedance device with a frequency range of 5 kHz to 1 MHz. Knee-to-knee measurements seem to be less sensitive to these influences, compared to the standard whole body and the alternative abdomen BIS measurements. The results indicate that the individual influence of both body posture and food and beverage consumption may be superposed when combined.

  14. Evaluation of multiple frequency bioelectrical impedance and Cole-Cole analysis for the assessment of body water volumes in healthy humans.

    PubMed

    Cornish, B H; Ward, L C; Thomas, B J; Jebb, S A; Elia, M

    1996-03-01

    To assess the application of a Cole-Cole analysis of multiple frequency bioelectrical impedance analysis (MFBIA) measurements to predict total body water (TBW) and extracellular water (ECW) in humans. This technique has previously been shown to produce accurate and reliable estimates in both normal and abnormal animals. The whole body impedance of 60 healthy humans was measured at 496 frequencies (ranging from 4 kHz to 1 MHz) and the impedance at zero frequency, Ro, and at the characteristic frequency, Zc, were determined from the impedance spectrum, (Cole-Cole plot). TBW and ECW were independently determined using deuterium and bromide tracer dilution techniques. At the Dunn Clinical Nutrition Centre and The Department of Biochemistry, University of Queensland. 60 healthy adult volunteers (27 men and 33 women, aged 18-45 years). The results presented suggest that the swept frequency bioimpedance technique estimates total body water, (SEE = 5.2%), and extracellular water, (SEE = 10%), only slightly better in normal, healthy subjects than a method based on single frequency bioimpedance or anthropometric estimates based on weight, height and gender. This study has undertaken the most extensive analysis to date of relationships between TBW (and ECW) and individual impedances obtained at different frequencies ( > 400 frequencies), and has shown marginal advantages of using one frequency over another, even if values predicted from theoretical bioimpedance models are used in the estimations. However in situations where there are disturbances of fluid distribution, values predicted from the Cole-Cole analysis of swept frequency bioimpedance measurements could prove to be more useful.

  15. Comparison of cardiac magnetic resonance imaging and bio-impedance spectroscopy for the assessment of fluid displacement induced by external leg compression.

    PubMed

    Saporito, Salvatore; Dovancescu, Silviu; Herold, Ingeborg H F; van den Bosch, Harrie C M; van Assen, Hans C; Aarts, Ronald M; Korsten, Hendrikus H M; Mischi, Massimo

    2017-01-01

    Heart failure is marked by frequent hospital admissions, often as a consequence of pulmonary congestion. Current gold standard techniques for thoracic fluid measurement require invasive heamodynamic access and therefore they are not suitable for continuous monitoring. Changes in thoracic impedance (TI) may enable non-invasive early detection of congestion and prevention of unplanned hospitalizations. However, the usefulness of TI to assess thoracic fluid status is limited by inter-subject variability and by the lack of reliable normalization methods. Indicator dilution methods allow absolute fluid volume estimation; cardiac magnetic resonance (CMR) has been recently proposed to apply indicator dilution methods in a minimally-invasive manner. In this study, we aim to compare bio-impedance spectroscopy (BIS) and CMR for the assessment of thoracic fluid status, and to determine their ability to detect fluid displacement induced by a leg compression procedure in healthy volunteers. A pressure gradient was applied across each subject's legs for 5 min (100-60 mmHg, distal to proximal). Each subject underwent a continuous TI-BIS measurement during the procedure, and repeated CMR-based indicator dilution measurements on a 1.5 T scanner at baseline, during compression, and after pressure release. The Cole-Cole and the local density random walk models were used for parameter extraction from TI-BIS and indicator dilution measurements, respectively. Intra-thoracic blood volume index (ITBI) derived from CMR, and extracellular fluid resistance (R E ) from TI-BIS, were considered as thoracic fluid status measures. Eight healthy volunteers were included in this study. An increase in ITBI of 45.2  ±  47.2 ml m -2 was observed after the leg inflation (13.1  ±  15.1% w.r.t. baseline, p  <  0.05), while a decrease of  -0.84  ±  0.39 Ω in R E (-1.7  ±  0.9% w.r.t. baseline, p  <  0.05) was observed. ITBV and R E normalized by

  16. Removing respiratory artefacts from transthoracic bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Cuba-Gyllensten, I.; Abtahi, F.; Bonomi, A. G.; Lindecrantz, K.; Seoane, F.; Amft, O.

    2013-04-01

    Transthoracic impedance spectroscopy (TIS) measurements from wearable textile electrodes provide a tool to remotely and non-invasively monitor patient health. However, breathing and cardiac processes inevitably affect TIS measurements, since they are sensitive to changes in geometry and air or fluid volumes in the thorax. This study aimed at investigating the effect of respiration on Cole parameters extracted from TIS measurements and developing a method to suppress artifacts. TIS data were collected from 10 participants at 16 frequencies (range: 10 kHz - 1 MHz) using a textile electrode system (Philips Technologie Gmbh). Simultaneously, breathing volumes and frequency were logged using an electronic spirometer augmented with data from a breathing belt. The effect of respiration on TIS measurements was studied at paced (10 and 16 bpm) deep and shallow breathing. These measurements were repeated for each subject in three different postures (lying down, reclining and sitting). Cole parameter estimation was improved by assessing the tidal expiration point thus removing breathing artifacts. This leads to lower intra-subject variability between sessions and a need for less measurements points to accurately assess the spectra. Future work should explore algorithmic artifacts compensation models using breathing and posture or patient contextual information to improve ambulatory transthoracic impedance measurements.

  17. Body Composition Measurements of 161-km Ultramarathon Participants

    USDA-ARS?s Scientific Manuscript database

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  18. Assessment of degree of hydration in dialysis patients using whole body and calf bioimpedance analysis

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Kotanko, P.; Handelman, G. J.; Raimann, J.; Liu, L.; Carter, M.; Kuhlmann, M. K.; Siebert, E.; Leonard, E. F.; Levin, N. W.

    2010-04-01

    Prescription of an appropriate post hemodialysis (HD) dialysis target weight requires accurate evaluation of the degree of hydration. The aim of this study was to investigate whether a state of normal hydration as defined by calf bioimpedance spectroscopy (cBIS) could be characterized in HD and normal subjects (NS). cBIS was performed in 62 NS (33 m/29 f) and 30 HD patients (16 m /14 f) pre- and post-dialysis to measure extracellular resistance. Normalized calf resistivity at 5 kHz (ρN,5) was defined as resistivity divided by body mass index. Measurements were made at baseline (BL) and at a state of normal hydration (NH) established following the progressive reduction of post-HD weight over successive dialysis treatments until the ρN,5 was in the range of NS. Blood pressures were measured pre- and post-HD treatment. ρN,5 in males and females differed significantly in NS (20.5±1.99 vs 21.7±2.6 10-2 Ωm3/kg, p>0.05). In patients, ρN,5 notably increased and reached NH range due to progressive decrease in body weight, and systolic blood pressure (SBP) significantly decreased pre- and post-HD between BL and NBH respectively. This establishes the use of ρN,5 as a new comparator allowing the clinician to incrementally monitor the effect of removal of extracellular fluid from patients over a course of dialysis treatments.

  19. Body composition in dialysis patients: a functional assessment of bioimpedance using different prediction models.

    PubMed

    Broers, Natascha J H; Martens, Remy J H; Cornelis, Tom; Diederen, Nanda M P; Wabel, Peter; van der Sande, Frank M; Leunissen, Karel M L; Kooman, Jeroen P

    2015-03-01

    The assessment of body composition (BC) in dialysis patients is of clinical importance given its role in the diagnosis of malnutrition and sarcopenia. Bioimpedance techniques routinely express BC as a 2-compartment (2-C) model distinguishing fat mass (FM) and fat-free mass (FFM), which may be influenced by the hydration of adipose tissue and fluid overload (OH). Recently, the BC monitor was introduced which applies a 3-compartment (3-C) model, distinguishing OH, adipose tissue mass, and lean tissue mass. The aim of this study was to compare BC between the 2-C and 3-C models and assess their relation with markers of functional performance (handgrip strength [HGS] and 4-m walking test), as well as with biochemical markers of nutrition. Forty-seven dialysis patients (30 males and 17 females) (35 hemodialysis, 12 peritoneal dialysis) with a mean age of 64.8 ± 16.5 years were studied. 3-C BC was assessed by BC monitor, whereas the obtained resistivity values were used to calculate FM and FFM according to the Xitron Hydra 4200 formulas, which are based on a 2-C model. FFM (3-C) was 0.99 kg (95% confidence interval [CI], 0.27 to 1.71, P = .008) higher than FFM (2-C). FM (3-C) was 2.43 kg (95% CI, 1.70-3.15, P < .001) lower than FM (2-C). OH was 1.4 ± 1.8 L. OH correlated significantly with ΔFFM (FFM 3-C - FFM 2-C) (r = 0.361; P < .05) and ΔFM (FM 3-C - FM 2-C) (r = 0.387; P = .009). HGS correlated significantly with FFM (2-C) (r = 0.713; P < .001), FFM (3-C) (r = 0.711; P < .001), body cell mass (2-C) (r = 0.733; P < .001), and body cell mass (3-C) (r = 0.767; P < .001). Both physical activity (r = 0.456; P = .004) and HGS (r = 0.488; P = .002), but not BC, were significantly related to walking speed. Significant differences between 2-C and 3-C models were observed, which are partly explained by the presence of OH. OH, which was related to ΔFFM and ΔFM of the 2-C and 3-C models, is therefore an important parameter for the differences in estimation of BC parameters

  20. Towards intraoperative surgical margin assessment and visualization using bioimpedance properties of the tissue

    NASA Astrophysics Data System (ADS)

    Khan, Shadab; Mahara, Aditya; Hyams, Elias S.; Schned, Alan; Halter, Ryan

    2015-03-01

    Prostate cancer (PCa) has a high 10-year recurrence rate, making PCa the second leading cause of cancer-specific mortality among men in the USA. PCa recurrences are often predicted by assessing the status of surgical margins (SM) with positive surgical margins (PSM) increasing the chances of biochemical recurrence by 2-4 times. To this end, an SM assessment system using Electrical Impedance Spectroscopy (EIS) was developed with a microendoscopic probe. This system measures the tissue bioimpedance over a range of frequencies (1 kHz to 1MHz), and computes a Composite Impedance Metric (CIM). CIM can be used to classify tissue as benign or cancerous. The system was used to collect the impedance spectra from excised prostates, which were obtained from men undergoing radical prostatectomy. The data revealed statistically significant (p<0.05) differences in the impedance properties of the benign and tumorous tissues, and between different tissue morphologies. To visualize the results of SM-assessment, a visualization tool using da Vinci stereo laparoscope is being developed. Together with the visualization tool, the EIS-based SM assessment system can be potentially used to intraoperatively classify tissues and display the results on the surgical console with a video feed of the surgical site, thereby augmenting a surgeon's view of the site and providing a potential solution to the intraoperative SM assessment needs.

  1. Development of a single-frequency bioimpedance prediction equation for fat-free mass in an adult Indigenous Australian population.

    PubMed

    Hughes, J T; Maple-Brown, L J; Piers, L S; Meerkin, J; O'Dea, K; Ward, L C

    2015-01-01

    To describe the development of a single-frequency bioimpedance prediction equation for fat-free mass (FFM) suitable for adult Aboriginal and Torres Strait Islander peoples with and without diabetes or indicators of chronic kidney disease (CKD). FFM was measured by whole-body dual-energy X-ray absorptiometry in 147 adult Indigenous Australians. Height, weight, body circumference and resistance were also measured. Adults with and without diabetes and indicators of CKD were examined. A random split sample with internal cross-validation approach was used to predict and subsequently validate FFM using resistance, height, weight, age and gender against measured FFM. Among 147 adults with a median body mass index of 31 kg/m(2), the final model of FFM was FFM (kg)=0.432 (height, cm(2)/resistance, ohm)-0.086 (age, years)+0.269 (weight, kg)-6.422 (if female)+16.429. Adjusted R(2) was 0.94 and the root mean square error was 3.33 kg. The concordance was high (rc=0.97) between measured and predicted FFM across a wide range of FFM (31-85 kg). In the context of the high burden of diabetes and CKD among adult Indigenous Australians, this new equation for FFM was both accurate and precise and based on easily acquired variables (height, weight, age, gender and resistance) among a heterogeneous adult cohort.

  2. Assessment by bioimpedance of forearm cell mass: a new approach to calibration.

    PubMed

    Pietrobelli, A; Nuñez, C; Zingaretti, G; Battistini, N; Morini, P; Wang, Z M; Yasumura, S; Heymsfield, S B

    2002-08-01

    Changes in skeletal muscle mass are involved in several important clinical disorders including sarcopenia and obesity. Unlike body fat, skeletal muscle is difficult to quantify in vivo, particularly without highly specialized equipment. The present study had a two-fold aim: to develop a regional (40)K counter for non-invasively estimating cell mass in the arm, mainly skeletal muscle cell mass, without radiation exposure; and to test the hypothesis that cell mass in the arm is highly correlated with electrical impedance after adjusting for the arm's length. Forearm cell mass was estimated using a rectangular lead-shielded (40)K counter with 4-NaI crystals; impedance of the arm was measured at multiple frequencies using a segmental bioimpedance analysis (BIA) system. The system's within- and between-day coefficient of variation (CV) for (40)K-derived elemental potassium averaged 1.8+/-1.3 and 5.8+/-1.2%, respectively. The corresponding BIA system's CVs were 1.0+/-0.4 and 2.1+/-1.0%, respectively. Participants in the study were 15 healthy adults (eight females, seven males; age 39+/-2.8 y, BMI 22.9+/-4.5 kg/m(2)). The right arm's K (5.2+/-1.7 g) was highly correlated with length-adjusted impedance (r(2)=0.81, 0.82, and 0.83 for 5, 50 and 300 kHz, respectively; all P<0.001); multiple regression analysis showed no additional improvement by adding age or sex to the prediction models. These results demonstrate the feasibility of calibrating BIA-measured electrical properties of the arm against estimates of arm cell mass, mainly of skeletal muscle, obtained by regional (40)K counting. This simple and practical approach should facilitate the development of BIA-based regional cell mass prediction formulas

  3. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the Physical Activity and Nutrition in Children study.

    PubMed

    Tompuri, Tuomo T; Lakka, Timo A; Hakulinen, Mikko; Lindi, Virpi; Laaksonen, David E; Kilpeläinen, Tuomas O; Jääskeläinen, Jarmo; Lakka, Hanna-Maaria; Laitinen, Tomi

    2015-01-01

    We compared InBody720 segmental multifrequency bioimpedance analysis (SMF-BIA) with Lunar Prodigy Advance dual-energy X-ray absorptiometry (DXA) in assessment of body composition among 178 predominantly prepubertal children. Segmental agreement analysis of body compartments was carried out, and inter-relationships of anthropometric and other measures of body composition were defined. Moreover, the relations of different reference criteria for excess body fat were evaluated. The prevalence of excess body fat varies greatly according to the used criteria. Intraclass and Pearson's correlations between SMF-BIA and DXA were >0·92 in total body and >0·74 in regional measures. SMF-BIA underestimated percentage body fat (%BF) and fat mass (FM), and overestimated lean mass (LM) and percentage LM with significant offset trend bias. Higher adiposity increased offsets, and overall agreement was poorer in girls. On average, %BF offsets (girls/boys) and limits of agreement (LA) were 3·9/1·6% [(-)1·4-9·2%/(-)3·4-6·7%]. Interestingly percentage offsets of fat content (%BF: 18·9/10·1%, FM: 18·8/11·1%) showed no significant bias trends indicating that the corresponding absolute methodological offset depends on the amount of fat content. The smallest percentage offset was found with LM: 4·3/0·1%, referring offset (LA) of 0·88/0·03 kg (±2·05/±1·71 kg). Correspondingly, segmental LM had poorer agreement than total body LM. All anthropometrics except for the waist-to-hip ratio showed strong correlations (r = 0·76-0·95) with abdominal and total body fat. Segmental multifrequency bioimpedance analysis is precise enough for total-LM analysis and had also sufficient trueness for total body composition analysis to be used in epidemiological purposes. There is need to generate scientifically and clinically relevant criteria and reference values for excess body fat. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley

  4. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    PubMed

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  5. Bioimpedance Spectroscopy for Assessment of Volume Status in Patients before and after General Anaesthesia

    PubMed Central

    Ernstbrunner, Matthäus; Kostner, Lisa; Kimberger, Oliver; Wabel, Peter; Säemann, Marcus; Markstaller, Klaus; Fleischmann, Edith; Kabon, Barbara; Hecking, Manfred

    2014-01-01

    Background Technically assisted assessment of volume status before surgery may be useful to direct intraoperative fluid administration. We therefore tested a recently developed whole-body bioimpedance spectroscopy device to determine pre- to postoperative fluid distribution. Methods Using a three-compartment physiologic tissue model, the body composition monitor (BCM, Fresenius Medical Care, Germany) measures total body fluid volume, extracellular volume, intracellular volume and fluid overload as surplus or deficit of ‘normal’ extracellular volume. BCM-measurements were performed before and after standardized general anaesthesia for gynaecological procedures (laparotomies, laparoscopies and vaginal surgeries). BCM results were blinded to the attending anaesthesiologist and data analysed using the 2-sided, paired Student’s t-test and multiple linear regression. Results In 71 females aged 45±15 years with body weight 67±13 kg and duration of anaesthesia 154±68 min, pre- to postoperative fluid overload increased from −0.7±1.1 L to 0.1±1.0 L, corresponding to −5.1±7.5% and 0.8±6.7% of normal extracellular volume, respectively (both p<0.001), after patients had received 1.9±0.9 L intravenous crystalloid fluid. Perioperative urinary excretion was 0.4±0.3 L. The increase in extracellular volume was paralleled by an increase in total body fluid volume, while intracellular volume increased only slightly and without reaching statistical significance (p = 0.15). Net perioperative fluid balance (administered fluid volume minus urinary excretion) was significantly associated with change in extracellular volume (r2 = 0.65), but was not associated with change in intracellular volume (r2 = 0.01). Conclusions Routine intraoperative fluid administration results in a significant, and clinically meaningful increase in the extracellular compartment. BCM-measurements yielded plausible results and may become useful to guide intraoperative fluid therapy in

  6. Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique.

    PubMed

    Moon, J R

    2013-01-01

    The purpose of the current review was to evaluate how body composition can be utilised in athletes, paying particular attention to the bioelectrical impedance analysis (BIA) technique. Various body composition methods are discussed, as well as the unique characteristics of athletes that can lead to large errors when predicting fat mass (FM) and fat-free mass (FFM). Basic principles of BIA are discussed, and past uses of the BIA technique in athletes are explored. Single-prediction validation studies and studies tracking changes in FM and FFM are discussed with applications for athletes. Although extensive research in the area of BIA and athletes has been conducted, there remains a large gap in the literature pertaining to a single generalised athlete equation developed using a multiple-compartment model that includes total body water (TBW). Until a generalised athlete-specific BIA equation developed from a multiple-compartment is published, it is recommended that generalised equations such as those published by Lukaski and Bolonchuk and Lohman be used in athletes. However, BIA equations developed for specific athletes may also produce acceptable values and are still acceptable for use until more research is conducted. The use of a valid BIA equation/device should produce values similar to those of hydrostatic weighing and dual-energy X-ray absorptiometry. However, researchers and practitioners need to understand the individual variability associated with BIA estimations for both single assessments and repeated measurements. Although the BIA method shows promise for estimating body composition in athletes, future research should focus on the development of general athlete-specific equations using a TBW-based three- or four-compartment model.

  7. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  8. Bioimpedance Identifies Body Fluid Loss after Exercise in the Heat: A Pilot Study with Body Cooling

    PubMed Central

    Gatterer, Hannes; Schenk, Kai; Laninschegg, Lisa; Schlemmer, Philipp; Lukaski, Henry; Burtscher, Martin

    2014-01-01

    Purpose Assessment of post-exercise changes in hydration with bioimpedance (BI) is complicated by physiological adaptations that affect resistance (R) and reactance (Xc) values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower. Methods Healthy males (n = 14, 24.1±1.7 yr; height (H): 182.4±5.6 cm, body mass: 72.3±6.3 kg) exercised for 1 hr at a self-rated intensity (15 BORG) in an environmental chamber (33°C and 50% relative humidity), then had a cold shower (15 min). Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again. Results Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05) with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001). Changes in Posm were negatively related to changes in body mass (r = −0.564, p = 0.036) and changes in Xc/H (r = −0.577, p = 0.041). Conclusions Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R) indicated greater Posm increase. PMID:25279660

  9. Non-invasive, multi-modal sensing of skin stretch and bioimpedance for detecting infiltration during intravenous therapy.

    PubMed

    Jambulingam, Jambu A; McCrory, Russell; West, Leanne; Inan, Omer T

    2016-08-01

    Intravenous infiltration is a condition wherein an infused solution leaks inadvertently into soft tissue surrounding a hypodermic needle site. This occurrence affects approximately 6.5% of patients in hospitals worldwide, and can lead to severe tissue damage if not treated immediately. The methods currently used by medical staff to detect an infiltration are subjective and can potentially be prone to error. Infiltration is an even larger concern in pediatric patients, who have smaller veins than adults and have more difficulty in communicating pain or other discomfort associated with the infiltration with medical staff. For these reasons, automatic IV infiltration detection could potentially reduce the risk associated with this damaging condition. This paper proposes a novel proof-of-concept system that uses non-invasive sensing in conjunction with a low-power embedded computing platform to deliver continuous infiltration monitoring around the IV catheter site. This kind of system could be able to detect an infiltration by non-invasively monitoring for known symptoms: swelling of soft tissue and increased skin firmness; these symptoms can be sensed by measuring skin stretch and local bioimpedance. Moreover, the low-power design and wireless capabilities can potentially enable continuous wear. The proposed automatic IV infiltration detection system could significantly improve the number of infiltrations identified and treated on time.

  10. Effect of psychological stress on gastric motility assessed by electrical bio-impedance.

    PubMed

    Huerta-Franco, María Raquel; Vargas-Luna, Miguel; Montes-Frausto, Juana Berenice; Morales-Mata, Ismael; Ramirez-Padilla, Lorena

    2012-09-28

    To evaluate gastric motility using electrical bio-impedance (EBI) and gastric changes as a result of stress induced by psychological tests. A group of 57 healthy women, aged 40-60 years, was recruited, and a clinical history and physical examination were performed. The women were free from severe anxiety, chronic or acute stress, severe depression, mental diseases and conditions that affect gastric activity. The women were evaluated under fasting conditions, and using a four-electrode configuration, the gastric signals were obtained through a BIOPAC MP-150 system. The volunteers were evaluated using the following paradigm: basal state, recording during the Stroop Test, intermediate resting period, recording during the Raven Test, and a final resting period. We analyzed the relative areas of the frequency spectrum: A1 (1-2 cpm), A2 (2-4 cpm), A3 (4-8 cpm), and A4 (8-12 cpm), as well as the median of area A2 + A3. The data were analyzed by an autoregressive method using a Butterworth filter with MatLab and Origin. Analysis of variance (ANOVA) and Friedman ANOVA (for nonparametric variables) were performed; in addition, pairs of groups were compared using the T dependent and Wilcoxon T tests. The results of the main values of area A2 were not significantly different comparing the five steps of the experimental paradigm. Nevertheless, there was a tendency of this A2 region to decrease during the stress tests, with recuperation at the final resting step. When an extended gastric region was considered (1-4 cpm), significant differences with the psychological stress tests were present (F = 3.85, P = 0.005). The A3 region also showed significant changes when the stress psychological tests were administered (F = 7.25, P < 0.001). These differences were influenced by the changes in the adjacent gastric region of A2. The parameter that we proposed in previous studies for the evaluation of gastric motility by electrical bio-impedance (EBI) was the median of the area under the

  11. A review on creatinine measurement techniques.

    PubMed

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Novel Diffusivity Measurement Technique

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2001-01-01

    A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.

  13. Evaluation of the predictive capacity of vertical segmental tetrapolar bioimpedance for excess weight detection in adolescents.

    PubMed

    Neves, Felipe Silva; Leandro, Danielle Aparecida Barbosa; Silva, Fabiana Almeida da; Netto, Michele Pereira; Oliveira, Renata Maria Souza; Cândido, Ana Paula Carlos

    2015-01-01

    To analyze the predictive capacity of the vertical segmental tetrapolar bioimpedance apparatus in the detection of excess weight in adolescents, using tetrapolar bioelectrical impedance as a reference. This was a cross-sectional study conducted with 411 students aged between 10 and 14 years, of both genders, enrolled in public and private schools, selected by a simple and stratified random sampling process according to the gender, age, and proportion in each institution. The sample was evaluated by the anthropometric method and underwent a body composition analysis using vertical bipolar, horizontal tetrapolar, and vertical segmental tetrapolar assessment. The ROC curve was constructed based on calculations of sensitivity and specificity for each point of the different possible measurements of body fat. The statistical analysis used Student's t-test, Pearson's correlation coefficient, and McNemar's chi-squared test. Subsequently, the variables were interpreted using SPSS software, version 17.0. Of the total sample, 53.7% were girls and 46.3%, boys. Of the total, 20% and 12.5% had overweight and obesity, respectively. The body segment measurement charts showed high values of sensitivity and specificity and high areas under the ROC curve, ranging from 0.83 to 0.95 for girls and 0.92 to 0.98 for boys, suggesting a slightly higher performance for the male gender. Body fat percentage was the most efficient criterion to detect overweight, while the trunk segmental fat was the least accurate indicator. The apparatus demonstrated good performance to predict excess weight. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  14. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  15. Measurement of absolute lung volumes by imaging techniques.

    PubMed

    Clausen, J

    1997-10-01

    In this paper, the techniques available for estimating total lung capacities from standard chest radiographs in children and infants as well as adults are reviewed. These techniques include manual measurements using ellipsoid and planimetry techniques as well as computerized systems. Techniques are also available for making radiographic lung volume measurements from portable chest radiographs. There are inadequate data in the literature to support recommending one specific technique over another. Though measurements of lung volumes by radiographic, plethysmographic, gas dilution or washout techniques result in remarkably similar mean results when groups of normal subjects are tested, in patients with disease, the results of these different basic measurement techniques can differ significantly. Computed tomographic and magnetic resonance techniques can also be used to measure absolute lung volumes and offer the theoretical advantages that the results in individual subjects are less affected by variances of thoracic shape than are measurements made using conventional chest radiographs.

  16. Comparison of bioimpedance methods for estimating total body water and intracellular water changes during hemodialysis.

    PubMed

    Dou, Yanna; Liu, Li; Cheng, Xuyang; Cao, Liyun; Zuo, Li

    2011-10-01

    The accurate assessment of body fluid volume is important in many clinical situations. Hannan et al. proposed a single-frequency bioimpedance equation (HE) to calculate extracellular water (ECW) and total body water (TBW). There are two equations based on the bioimpedance spectroscopy (BIS) method for the evaluation of body fluid volume: Xitron equations (XE) and body composition spectroscopy equations (BCSE). The aim of the study was to compare the accuracy of these three equations in body fluid volume point estimation in maintenance hemodialysis (MHD) patients. The BIS method was performed in MHD patients before and after a hemodialysis (HD) session. TBW, ECW and intracellular water (ICW) were calculated by XE, BCSE and HE, respectively. Hydration status (HS) was calculated using inputs of XE, BCSE and HE. ICW before dialysis was compared to ICW after dialysis. The change of TBW and HS using different equations was compared to actual ultrafiltration volume (AUV) that was calculated as weight difference of pre- to postdialysis. Fifty MHD patients (27 females) were included in the study. Significant changes in ICW were observed using the XE and HE method with ultrafiltration (XE: 15.51 ± 5.07 versus 16.17 ± 5.34 L, P < 0.01; HE: 17.40 ± 5.13 versus 16.55 ± 4.71 L, P < 0.01). However, no significant ICW change was observed using BCSE (17.47 ± 4.35 versus 17.54 ± 4.36 L, P > 0.05). ΔTBW_XE and ΔTBW_HE were significantly different from AUV (XE 1.76 ± 0.89 versus 2.46 ± 0.89 L, P < 0.01; HE 4.16 ± 1.36 versus 2.46 ± 0.89 L, P < 0.01); however, ΔTBW_BCSE was much closer to AUV (2.27 ± 0.90 versus 2.46 ± 0.89 L, P = 0.129). The change of HS using inputs of BCSE was also closer to AUV (2.41 ± 0.86 versus 2.46 ± 0.89 L, P = 1.0). Our study indicated that BCSE provided a better point estimation of ICW and TBW.

  17. Computer systems performance measurement techniques.

    DOT National Transportation Integrated Search

    1971-06-01

    Computer system performance measurement techniques, tools, and approaches are presented as a foundation for future recommendations regarding the instrumentation of the ARTS ATC data processing subsystem for purposes of measurement and evaluation.

  18. Bioactive leptin is stronger related to parameters of fat mass and distribution than conventionally measured leptin: Findings from a longitudinal study in obese children participating in a lifestyle intervention.

    PubMed

    Niklowitz, Petra; Rothermel, Juliane; Lass, Nina; Barth, Andre; Reinehr, Thomas

    2018-05-01

    This study analyzed the relationships between bioactive leptin, conventionally measured leptin, and parameters of fat mass and distribution in obese children before and after weight reduction. We determined bioactive leptin (bioLep), conventional measured leptin (conLep), weight, height, body fat based on skinfold measurements and bioimpedance analyses, waist circumference (wc), and pubertal stage in 88 obese children participating in a lifestyle intervention at baseline and one year later. We identified no child with homozygous or heterozygous status for bioinactive leptin mutations. The baseline associations between bioLep and BMI (r = 0.53), BMI-SDS (r = 0.48), body fat (bioimpedance: r = 0.61, skinfold thickness: r = 0.49), wc (r = 0.42), and waist to height ratio (whr) (r = 0.39) were stronger than the associations between conLep and BMI (r = 0.50), BMI-SDS (r = 0.44), body fat (bioimpedance: r = 0.57, skinfold thickness: r = 0.41), wc (r = 0.41), and whr (r = 0.37). The changes of bioLep were stronger related to changes of BMI-SDS (r = 0.54), body fat (bioimpedance r = 0.59, skinfold thickness: r = 0.37), wc (r = 0.22), and whr (r = 0.21) than the associations between changes of conLep and changes of BMI-SDS (r = 0.48), body fat (bioimpedance: r = 0.56, skinfold thickness: r = 0.43), wc (r = 0.20), and whr (r = 0.20). The same findings were observed in multiple linear regression analyses adjusted to multiple confounders. In contrast to changes of conLep (r = 0.22), the changes of bioLep during intervention were not related to weight regain after the end of intervention. BioLep concentrations did not differ between prepubertal girls and boys, but were higher in pubertal girls compared to pubertal boys (p = 0.031). Bioactive leptin was stronger related to fat mass and distribution compared to conventionally measured leptin. Copyright © 2018 Elsevier B.V. All rights

  19. Body Fat Equations and Electrical Bioimpedance Values in Prediction of Cardiovascular Risk Factors in Eutrophic and Overweight Adolescents

    PubMed Central

    Faria, Franciane Rocha; Faria, Eliane Rodrigues; Cecon, Roberta Stofeles; Barbosa Júnior, Djalma Adão; Franceschini, Sylvia do Carmo Castro; Peluzio, Maria do Carmo Gouveia; Ribeiro, Andréia Queiroz; Lira, Pedro Israel Cabral; Cecon, Paulo Roberto; Priore, Silvia Eloiza

    2013-01-01

    The aim of this study was to analyze body fat anthropometric equations and electrical bioimpedance analysis (BIA) in the prediction of cardiovascular risk factors in eutrophic and overweight adolescents. 210 adolescents were divided into eutrophic group (G1) and overweight group (G2). The percentage of body fat (% BF) was estimated using 10 body fat anthropometric equations and 2 BIA. We measured lipid profiles, uric acid, insulin, fasting glucose, homeostasis model assessment-insulin resistance (HOMA-IR), and blood pressure. We found that 76.7% of the adolescents exhibited inadequacy of at least one biochemical parameter or clinical cardiovascular risk. Higher values of triglycerides (TG) (P = 0.001), insulin, and HOMA-IR (P < 0.001) were observed in the G2 adolescents. In multivariate linear regression analysis, the % BF from equation (5) was associated with TG, diastolic blood pressure, and insulin in G1. Among the G2 adolescents, the % BF estimated by (5) and (9) was associated with LDL, TG, insulin, and the HOMA-IR. Body fat anthropometric equations were associated with cardiovascular risk factors and should be used to assess the nutritional status of adolescents. In this study, equation (5) was associated with a higher number of cardiovascular risk factors independent of the nutritional status of adolescents. PMID:23762051

  20. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  1. Modeling the human body shape in bioimpedance vector measurements.

    PubMed

    Kim, Chul-Hyun; Park, Jae-Hyeon; Kim, Hyeoijin; Chung, Sochung; Park, Seung-Hun

    2010-01-01

    Human body shape, called somatotype, has described physique of humans in health and sports applications, relating anthropometric measurements to fatness, muscularity and linearity in a structured way. Here we propose a new method based on bioelectric impedance vector analysis (BIVA) of R/H and Xc/H to represent the cross-sectional area and the body cell mass in a given surface area (m(2)) respectively. Data from six gymnasts, ten dancers, and five fashion models, groups whose physiques and BMI ranges were distinct from one another, were measured for somatotype and BIVA. The models had highest values of the R/H and gymnasts the lowest. Xc/H was lower in models than in the dancers and gymnasts (p < 0.05). Phase angle was lowest in the models and highest in gymnasts significantly (p < 0.05). Pattern analysis from BIVA corresponded to the calculated anthropometric somatotype supporting the hypothesis that BIA's resistance (R) and reactance (Xc) are meaningful discriminates of body size and function which relate to physique in a purposive way.

  2. Improved electrode positions for local impedance measurements in the lung-a simulation study.

    PubMed

    Orschulik, Jakob; Petkau, Rudolf; Wartzek, Tobias; Hochhausen, Nadine; Czaplik, Michael; Leonhardt, Steffen; Teichmann, Daniel

    2016-12-01

    Impedance spectroscopy can be used to analyze the dielectric properties of various materials. In the biomedical domain, it is used as bioimpedance spectroscopy (BIS) to analyze the composition of body tissue. Being a non-invasive, real-time capable technique, it is a promising modality, especially in the field of lung monitoring. Unfortunately, up to now, BIS does not provide any regional lung information as the electrodes are usually placed in hand-to-hand or transthoracic configurations. Even though transthoracic electrode configurations are in general capable of monitoring the lung, no focusing to specific regions is achieved. In order to resolve this issue, we use a finite element model (FEM) of the human body to study the effect of different electrode configurations on measured BIS data. We present evaluation results and show suitable electrode configurations for eight lung regions. We show that, using these optimized configurations, BIS measurements can be focused to desired regions allowing local lung analysis.

  3. The role of geriatric assessment tests and anthropometric measurements in identifying the risk of falls in elderly nursing home residents

    PubMed Central

    Yardimci, Bulent; Aran, Sinan N.; Ozkaya, Ismail; Aksoy, Sevki M.; Demir, Tarik; Tezcan, Gulsen; Kaptanoglu, Aysegul Y.

    2016-01-01

    Objectives: To determine the relation among the risk of falls, geriatric assessment, and anthropometric measurements, including the mini mental state examination, geriatric depression scale, handgrip test, and key pinch test. Methods: This prospective study included 89 residents hospitalized between May 2014 and September 2015 in the geriatric care unit of the Istanbul Balikli Rum Hospital, Istanbul, Turkey. Patients were followed-up for one year, and their falls were recorded. Medical records of the included patients were retrieved and analyzed. Results: A total of 89 patients, comprising 37 men and 52 women with an average age of 75.8 ± 8.2 years were included in the study. The residents’ annual falling averages were 1.0 ± 1.5. The most significant factors were identified to be predicted muscle mass, skeletal muscle index, whole body bioimpedance, dominant arm muscle strength, dominant arm bioimpedance, and free fat mass. Conclusions: The mini mental test, geriatric depression scale and lawton-brody scale combined with the handgrip, 6-meters walking, and bioimpedance tests are favorable for detecting the risk of falls and recurrent falls in vulnerable elderly nursing home residents. PMID:27652361

  4. A knitted garment using intarsia technique for Heart Rate Variability biofeedback: Evaluation of initial prototype.

    PubMed

    Abtahi, F; Ji, G; Lu, K; Rödby, K; Seoane, F

    2015-01-01

    Heart rate variability (HRV) biofeedback is a method based on paced breathing at specific rate called resonance frequency by giving online feedbacks from user respiration and its effect on HRV. Since the HRV is also influence by different factors like stress and emotions, stress related to an unfamiliar measurement device, cables and skin electrodes may cover the underling effect of such kind of intervention. Wearable systems are usually considered as intuitive solutions which are more familiar to the end-user and can help to improve usability and hence reducing the stress. In this work, a prototype of a knitted garment using intarsia technique is developed and evaluated. Results show the satisfactory level of quality for Electrocardiogram and thoracic electrical bioimpedance i.e. for respiration monitoring as a part of HRV biofeedback system. Using intarsia technique and conductive yarn for making the connection instead of cables will reduce the complexity of fabrication in textile production and hence reduce the final costs in a final commercial product. Further development of garment and Android application is ongoing and usability and efficiency of final prototype will be evaluated in detail.

  5. DSPI technique for nanometer vibration mode measurement

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Jia, Shuhai; Tan, Yushan

    2000-05-01

    A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.

  6. BMI and an Anthropometry-Based Estimate of Fat Mass Percentage Are Both Valid Discriminators of Cardiometabolic Risk: A Comparison with DXA and Bioimpedance

    PubMed Central

    Völgyi, Eszter; Savonen, Kai; Tylavsky, Frances A.; Alén, Markku; Cheng, Sulin

    2013-01-01

    Objective. To determine whether categories of obesity based on BMI and an anthropometry-based estimate of fat mass percentage (FM% equation) have similar discriminative ability for markers of cardiometabolic risk as measurements of FM% by dual-energy X-ray absorptiometry (DXA) or bioimpedance analysis (BIA). Design and Methods. A study of 40–79-year-old male (n = 205) and female (n = 388) Finns. Weight, height, blood pressure, triacylglycerols, HDL cholesterol, and fasting blood glucose were measured. Body composition was assessed by DXA and BIA and a FM%-equation. Results. For grade 1 hypertension, dyslipidaemia, and impaired fasting glucose >6.1 mmol/L, the categories of obesity as defined by BMI and the FM% equation had 1.9% to 3.7% (P < 0.01) higher discriminative power compared to DXA. For grade 2 hypertension the FM% equation discriminated 1.2% (P = 0.05) lower than DXA and 2.8% (P < 0.01) lower than BIA. Receiver operation characteristics confirmed BIA as best predictor of grade 2 hypertension and the FM% equation as best predictor of grade 1 hypertension. All other differences in area under curve were small (≤0.04) and 95% confidence intervals included 0. Conclusions. Both BMI and FM% equations may predict cardiometabolic risk with similar discriminative ability as FM% measured by DXA or BIA. PMID:24455216

  7. An intercomparison of five ammonia measurement techniques

    NASA Technical Reports Server (NTRS)

    Williams, E. J.; Sandholm, S. T.; Bradshaw, J. D.; Schendel, J. S.; Langford, A. O.; Quinn, P. K.; Lebel, P. J.; Vay, S. A.; Roberts, P. D.; Norton, R. B.

    1992-01-01

    Results obtained from five techniques for measuring gas-phase ammonia at low concentration in the atmosphere are compared. These methods are: (1) a photofragmentation/laser-induced fluorescence (PF/LIF) instrument; (2) a molybdenum oxide annular denuder sampling/chemiluminescence detection technique; (3) a tungsten oxide denuder sampling/chemiluminescence detection system; (4) a citric-acid-coated denuder sampling/ion chromatographic analysis (CAD/IC) method; and (5) an oxalic-acid-coated filter pack sampling/colorimetric analysis method. It was found that two of the techniques, the PF/LIF and the CAD/IC methods, measured approximately 90 percent of the calculated ammonia added in the spiking tests and agreed very well with each other in the ambient measurements.

  8. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  9. Techniques for measurement of thoracoabdominal asynchrony

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Hammer, J.; Newth, Christopher J L.

    2002-01-01

    Respiratory motion measured by respiratory inductance plethysmography often deviates from the sinusoidal pattern assumed in the traditional Lissajous figure (loop) analysis used to determine thoraco-abdominal asynchrony, or phase angle phi. We investigated six different time-domain methods of measuring phi, using simulated data with sinusoidal and triangular waveforms, phase shifts of 0-135 degrees, and 10% noise. The techniques were then used on data from 11 lightly anesthetized rhesus monkeys (Macaca mulatta; 7.6 +/- 0.8 kg; 5.7 +/- 0.5 years old), instrumented with a respiratory inductive plethysmograph, and subjected to increasing levels of inspiratory resistive loading ranging from 5-1,000 cmH(2)O. L(-1). sec(-1).The best results were obtained from cross-correlation and maximum linear correlation, with errors less than approximately 5 degrees from the actual phase angle in the simulated data. The worst performance was produced by the loop analysis, which in some cases was in error by more than 30 degrees. Compared to correlation, other analysis techniques performed at an intermediate level. Maximum linear correlation and cross-correlation produced similar results on the data collected from monkeys (SD of the difference, 4.1 degrees ) but all other techniques had a high SD of the difference compared to the correlation techniques.We conclude that phase angles are best measured using cross-correlation or maximum linear correlation, techniques that are independent of waveform shape, and robust in the presence of noise. Copyright 2002 Wiley-Liss, Inc.

  10. Solar Cell Calibration and Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    1997-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WDI 5387, 'Requirements for Measurement and Calibration Procedures for Space Solar Cells' was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and the international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  11. Solar Cell Calibration and Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  12. Liquidus temperature and optical properties measurement by containerless techniques

    NASA Technical Reports Server (NTRS)

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  13. An ultrasonic technique for measuring stress in fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, K. J.; Day, P.; Byron, D.

    1999-12-02

    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less

  14. Ionospheric Measurements Using Environmental Sampling Techniques

    NASA Technical Reports Server (NTRS)

    Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.

    1960-01-01

    Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.

  15. Review of Chest Deflection Measurement Techniques and Transducers

    DOT National Transportation Integrated Search

    1978-06-01

    A summary is presented of measurement techniques and transducers that have been used, or are presently available and exhibit potential for use in the measurement of dynamic chest deflection. Various techniques and transducers are evaluated for their ...

  16. Bioimpedance analysis vs. DEXA as a screening tool for osteosarcopenia in lean, overweight and obese Caucasian postmenopausal females.

    PubMed

    Peppa, Melpomeni; Stefanaki, Charikleia; Papaefstathiou, Athanasios; Boschiero, Dario; Dimitriadis, George; Chrousos, George P

    2017-04-01

    We aimed at evaluating the efficiency of a newly developed, advanced Bioimpedance Analysis (BIA-ACC®) device as a screening tool for determining the degree of obesity and osteosarcopenia in postmenopausal women with normal or decreased bone density determined by Dual-Energy X-Ray absorptiometry (DEXA) in a representative sample of Greek postmenopausal women. This is a single-gate cross-sectional study of body composition measured by BIA-ACC® and DEXA. Postmenopausal females with BMI ranging from 18.5 to 40 kg/m2 were subjected to two consecutive measurements of DEXA and BIA-ACC® within 5-10 minutes of each other. We used Pearson's co-efficient to examine linear correlations, the intraclass correlation co-efficient (ICC) to test reliability, Bland-Atman plots to assess bias and Deming regressions to establish the agreement in parameters measured by BIA-ACC® and DEXA. Last, we used ANOVA, with Bonferroni correction and Dunnett T3 post hoc tests, for assessing the differences between quantitative and Pearson's x2 between qualitative variables. Our sample consisted of 84 overweight/obese postmenopausal women, aged 39-83 years, of whom 22 had normal bone density, 38 had osteopenia and 24 had osteoporosis based on DEXA measurements, using quota sampling. ICCs and Deming regressions showed strong agreement between BIA-ACC® and DEXA and demonstrated minimal proportional differences of no apparent clinical significance. Bland-Altman plots indicated minimal biases. Fat, skeletal and bone mass measured by BIA-ACC® and DEXA were increased in the non-osteopenic/non-osteoporotic women compared with those of the osteopenic and osteoporotic groups. BIA-ACC® is a rapid, bloodless and useful screening tool for determining body composition adiposity and presence of osteo-sarcopenic features in postmenopausal women. Women with osteopenia and osteoporosis evaluated by DEXA had decreased fat, skeletal and bone mass compared with normal bone density women, suggesting concordance

  17. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  18. Measurement Techniques of the Magneto-Electric Coupling in Multiferroics

    PubMed Central

    Fetisov, Y. K.; Caruntu, G.; Srinivasan, G.

    2017-01-01

    The current surge of interest in multiferroic materials demands specialized measurement techniques to support multiferroics research. In this review article we detail well-established measurement techniques of the magneto-electric coupling coefficient in multiferroic materials, together with newly proposed ones. This work is intended to serve as a reference document for anyone willing to develop experimental measurement techniques of multiferroic materials. PMID:28817089

  19. Measurement Techniques for Hypervelocity Impact Test Fragments

    NASA Technical Reports Server (NTRS)

    Hill, Nicole E.

    2008-01-01

    The ability to classify the size and shape of individual orbital debris fragments provides a better understanding of the orbital debris environment as a whole. The characterization of breakup fragmentation debris has gradually evolved from a simplistic, spherical assumption towards that of describing debris in terms of size, material, and shape parameters. One of the goals of the NASA Orbital Debris Program Office is to develop high-accuracy techniques to measure these parameters and apply them to orbital debris observations. Measurement of the physical characteristics of debris resulting from groundbased, hypervelocity impact testing provides insight into the shapes and sizes of debris produced from potential impacts in orbit. Current techniques for measuring these ground-test fragments require determination of dimensions based upon visual judgment. This leads to reduced accuracy and provides little or no repeatability for the measurements. With the common goal of mitigating these error sources, allaying any misunderstandings, and moving forward in fragment shape determination, the NASA Orbital Debris Program Office recently began using a computerized measurement system. The goal of using these new techniques is to improve knowledge of the relation between commonly used dimensions and overall shape. The immediate objective is to scan a single fragment, measure its size and shape properties, and import the fragment into a program that renders a 3D model that adequately demonstrates how the object could appear in orbit. This information would then be used to aid optical methods in orbital debris shape determination. This paper provides a description of the measurement techniques used in this initiative and shows results of this work. The tradeoffs of the computerized methods are discussed, as well as the means of repeatability in the measurements of these fragments. This paper serves as a general description of methods for the measurement and shape analysis of

  20. Study of the Dynamics of Transcephalic Cerebral Impedance Data during Cardio-Vascular Surgery

    NASA Astrophysics Data System (ADS)

    Atefi, S. R.; Seoane, F.; Lindecrantz, K.

    2013-04-01

    Postoperative neurological deficits are one of the risks associated with cardio vascular surgery, necessitating development of new techniques for cerebral monitoring. In this study an experimental observation regarding the dynamics of transcephalic Electrical Bioimpedance (EBI) in patients undergoing cardiac surgery with and without extracorporeal circulation (ECC) was conducted to investigate the potential use of electrical Bioimpedance for cerebral monitoring in cardio vascular surgery. Tetrapolar transcephalic EBI measurements at single frequency of 50 kHz were recorded prior to and during cardio vascular surgery. The obtained results show that the transcephalic impedance decreases in both groups of patients as operation starts, however slight differences in these two groups were also observed with the cerebral impedance reduction in patients having no ECC being less common and not as pronounced as in the ECC group. Changes in the cerebral impedance were in agreement with changes of haematocrit and temperature. The origin of EBI changes is still unexplained however these results encourage us to continue investigating the application of electrical bioimpedance cerebral monitoring clinically.

  1. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  2. [Bioimpedance vector analysis for body composition in Mexican population].

    PubMed

    Espinosa-Cuevas, Maria de los Angeles; Rivas-Rodríguez, Lucía; González-Medina, Enna Cristal; Atilano-Carsi, Ximena; Miranda-Alatriste, Paola; Correa-Rotter, Ricardo

    2007-01-01

    To construct bivariate tolerance ellipses from impedance values normalized for height, which can be used in Mexican population for the assessment of body composition and compare them with others made in different populations. Body composition was assessed by bioelectrical impedance analysis (BIA) in 439 subjects (204 men and 235 women), 18 to 82 years old, with a BMI between 18-31, using an impedanciometer Quadscan 4000. Resistance, reactance and phase angle were used to calculate bioelectrical impedance vectors and construct bivariate tolerance ellipses. Mean age in men was 47.1 +/- 16 years and 42.4 +/- 13 for women, mean weight (73.4 + 9 vs. 60.1 + 8 kg) and height (1.68 vs. 1.55 m) were significant greater in men than in women (p < 0.002). Women in comparison with men, had greater values of impedance (622.96 +/- 66.16 S2 vs. 523.59 +/- 56.56 D) and resistance (618.96 +/- 66.10 Q 61.97 vs. 521.73 +/- 61.97 2), as well as of resistance and reactance standardized by height (398.24 +/-46.30 S2/m vs. 308.66 +/- 38.44) (44.32 +/- 7.14 i/m vs. 39.75 +/-6.29) respectively, with a significant difference in all of them (p < 0.0001). Similarly, the reactance was greater in females, nevertheless this difference did not reach statistical significance (68.96 +/- 11.17 vs. 67.18 +/- 10.3; p = 0.0861). The phase angle was greater in men than in women, with a statistically significant difference (7.330 +/- 0.88 vs. 6.360 +/- 0.97; p < 0.0001). Bivariate tolerance ellipses (50%, 75% and 95%) derived from Mexican subjects showed a significant upward deviation (p < 0.05) from previously published references from Mexican American and Italian populations. New ellipses of tolerance were therefore constructed for the Mexican population. Bioimpedance vectors in Mexican subjects are significantly different from the existing ones, supporting the need of population specific bivariate tolerance ellipses for the evaluation of body composition.

  3. A New Ultrasound Pulser Technique for Wide Range Measurements

    NASA Astrophysics Data System (ADS)

    Salim, M. S.; Abd Malek, M. F.; Noaman, N. M.; Sabri, Naseer; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The objective of this research was to design and implement a new ultrasonic pulse-power-decay technique that transmits multiple ultrasound pulses through slurry to determine the lowest concentration that can provide an accurate attenuation measurement. A wide measurement range is obtained using the pulsed-power-decay transmission technique, and regardless of the material used to construct the container. A signal in the receiver transducer provides the attenuation measurements, for each echo, a fast Fourier transform (FFT) of the appropriate signal was obtained and compared with the water signals to yield the attenuation as a function of frequency. The data show the feasibility of measuring a kaolin concentration of 5% wt. When using a commercial pulser with the same device setting, no detectable echo was observed. Therefore, new technique measurements may prove useful in detecting solid content in liquid. This study demonstrated that the proposed pulsed-power transmission technique is promising for evaluating low concentrations of solids in fluids and for measuring sedimentation in solid-liquid systems.

  4. The Sine Method: An Alternative Height Measurement Technique

    Treesearch

    Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer

    2011-01-01

    Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...

  5. Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review

    NASA Astrophysics Data System (ADS)

    Kanti Bera, Tushar

    2018-03-01

    Biological tissues are developed with biological cells which exhibit complex electrical impedance called electrical bioimpedance. Under an alternating electrical excitation the bioimpedance varies with the tissue anatomy, composition and the signal frequency. The current penetration and conduction paths vary with frequency of the applied signal. Bioimpedance spectroscopy is used to study the frequency response of the electrical impedance of biological materials noninvasively. In bioimpedance spectroscopy, a low amplitude electrical signal is injected to the tissue sample or body parts to characterization the sample in terms of its bioimpedance. The electrical current conduction phenomena, which is highly influenced by the tissue impedance and the signal frequency, is an important phenomena which should be studied to understand the bioimpedance techniques like bioelectrical impedance analysis (BIA), EIS, or else. In this paper the origin of bioelectrical impedance and current conduction phenomena has been reviewed to present a brief summary of bioelectrical impedance and the frequency dependent current conduction through biological tissues. Simulation studies are conducted with alternation current injection through a two dimensional model of biological tissues containing finite number of biological cells suspended in extracellular fluid. The paper demonstrates the simulation of alternating current conduction through biological tissues conducted by COMSOL Multiphysics. Simulation studies also show the frequency response of the tissue impedance for different tissue compositions.

  6. Measuring Speed Using a Computer--Several Techniques.

    ERIC Educational Resources Information Center

    Pearce, Jon M.

    1988-01-01

    Introduces three different techniques to facilitate the measurement of speed and the associated kinematics and dynamics using a computer. Discusses sensing techniques using optical or ultrasonic sensors, interfacing with a computer, software routines for the interfaces, and other applications. Provides circuit diagrams, pictures, and a program to…

  7. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  8. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  9. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  10. Modified Technique For Chemisorption Measurements

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Brown, Kenneth G.; Schryer, Jacqueline

    1989-01-01

    In measurements of chemisorption of CO on Pt/SnO2 catalyst observed that if small numbers of relatively large volumes of adsorbate gas are passed through sample, very little removal of CO detected. In these cases little or no CO has been chemisorbed on Pt/SnO2. Technique of using large number of small volumes of adsorbate gas to measure chemisorption applicable to many gas/material combinations other than CO on Pt/SnO2. Volume used chosen so that at least 10 percent of adsorbate gas removed during each exposure.

  11. Synopsis of timing measurement techniques used in telecommunications

    NASA Technical Reports Server (NTRS)

    Zampetti, George

    1993-01-01

    Historically, Maximum Time Interval Error (MTIE) and Maximum Relative Time Interval Error (MRTIE) have been the main measurement techniques used to characterize timing performance in telecommunications networks. Recently, a new measurement technique, Time Variance (TVAR) has gained acceptance in the North American (ANSI) standards body. TVAR was developed in concurrence with NIST to address certain inadequacies in the MTIE approach. The advantages and disadvantages of each of these approaches are described. Real measurement examples are presented to illustrate the critical issues in actual telecommunication applications. Finally, a new MTIE measurement is proposed (ZTIE) that complements TVAR. Together, TVAR and ZTIE provide a very good characterization of network timing.

  12. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  13. Experimental Techniques for Thermodynamic Measurements of Ceramics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Putnam, Robert L.; Navrotsky, Alexandra

    1999-01-01

    Experimental techniques for thermodynamic measurements on ceramic materials are reviewed. For total molar quantities, calorimetry is used. Total enthalpies are determined with combustion calorimetry or solution calorimetry. Heat capacities and entropies are determined with drop calorimetry, differential thermal methods, and adiabatic calorimetry . Three major techniques for determining partial molar quantities are discussed. These are gas equilibration techniques, Knudsen cell methods, and electrochemical techniques. Throughout this report, issues unique to ceramics are emphasized. Ceramic materials encompass a wide range of stabilities and this must be considered. In general data at high temperatures is required and the need for inert container materials presents a particular challenge.

  14. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  15. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  16. Comparison of Diagnostic Accuracy of Clinical Measures of Breast Cancer–Related Lymphedema: Area Under the Curve

    PubMed Central

    Smoot, Betty J.; Wong, Josephine F.; Dodd, Marylin J.

    2013-01-01

    Objective To compare diagnostic accuracy of measures of breast cancer–related lymphedema (BCRL). Design Cross-sectional design comparing clinical measures with the criterion standard of previous diagnosis of BCRL. Setting University of California San Francisco Translational Science Clinical Research Center. Participants Women older than 18 years and more than 6 months posttreatment for breast cancer (n=141; 70 with BCRL, 71 without BCRL). Interventions Not applicable. Main Outcome Measures Sensitivity, specificity, receiver operator characteristic curve, and area under the curve (AUC) were used to evaluate accuracy. Results A total of 141 women were categorized as having (n=70) or not having (n=71) BCRL based on past diagnosis by a health care provider, which was used as the reference standard. Analyses of ROC curves for the continuous outcomes yielded AUC of .68 to .88 (P<.001); of the physical measures bioimpedance spectroscopy yielded the highest accuracy with an AUC of .88 (95% confidence interval, .80–.96) for women whose dominant arm was the affected arm. The lowest accuracy was found using the 2-cm diagnostic cutoff score to identify previously diagnosed BCRL (AUC, .54–.65). Conclusions Our findings support the use of bioimpedance spectroscopy in the assessment of existing BCRL. Refining diagnostic cutoff values may improve accuracy of diagnosis and warrant further investigation. PMID:21440706

  17. Break-technique handheld dynamometry: relation between angular velocity and strength measurements.

    PubMed

    Burns, Stephen P; Spanier, David E

    2005-07-01

    To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.

  18. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  19. Doppler lidar wind measurement with the edge technique

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Gentry, Bruce M.

    1992-01-01

    The edge technique is a new and powerful method for measuring small frequency shifts. Range resolved lidar measurements of winds can be made with high accuracy and high vertical resolution using the edge technique to measure the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used at near-infrared or visible wavelengths using well developed solid state lasers and detectors with various edge filters. In the edge technique, the laser frequency is located on the steep slope of the spectral response function of a high resolution optical filter. Due to the steep slope of the edge, very small frequency shifts cause large changes in measured signal. The frequency of the outgoing laser pulse is determined by measuring its location on the edge of the filter. This is accomplished by sending a small portion of the beam to the edge detection setup where the incoming light is split into two channels - an edge filter and an energy monitor channel. The energy monitor signal is used to normalize the edge filter signal for magnitude. The laser return backscattered from the atmosphere is collected by a telescope and directed through the edge detection setup to determine its frequency (location on the edge) in a similar manner for each range element. The Doppler shift, and thus the wind, is determined from a differential measurement of the frequency of the outgoing laser pulse and the frequency of the laser return backscattered from the atmosphere. We have conducted simulations of the performance of an edge lidar system using an injection seeded pulsed Nd:YAG laser at 1.06 microns. The central fringe of a Fabry-Perot etalon is used as a high resolution edge filter to measure the shift of the aerosol return.

  20. Clinical, analytical and bioimpedance characteristics of persistently overhydrated haemodialysis patients.

    PubMed

    Castellano, Sandra; Palomares, Inés; Molina, Manuel; Pérez-García, Rafael; Aljama, Pedro; Ramos, Rosa; Merello, J Ignacio

    2014-11-17

    Fluid overload is an important and modifiable cardiovascular risk factor for haemodialysis patients. So far, the diagnosis was based on clinical methods alone. Nowadays, we have new tools to assess more objectively the hydration status of the patients on haemodialysis, as BCM (Body Composition Monitor). A Relative Overhydration (AvROH) higher than 15% (it means, Absolute Overhydration or AWOH higher than 2.5 Litres) is associated to greater risk in haemodialysis. However, there is a group of maintained hyperhydrated patients. The aim of the present study is to identify the characteristics of patients with maintained hyperhydrated status (AvROH higher than 15% or AWOH higher than 2.5 liters). The secondary aim is to show the hemodynamic and analytical changes that are related to the reduction in hyperhydration status. Longitudinal cohort study during six months in 2959 patients in haemodialysis (HD) that are grouped according to their hydration status by BCM. And we compare their clinical, analytical and bioimpedance spectroscopy parameters. The change in overhydration status is followed by a decrease in blood pressure and the need for hypotensive drugs (AHT) and erythropoiesis stimulating agents (ESA). The target hydration status is not reached by two subgroups of patients. First, in diabetic patients with a high comorbidity index and high number of hypotensive drugs (AHT) but a great positive sodium gradient during dialysis sessions; and, younger non-diabetic patients with longer time on hemodialysis and positive sodium gradient, lower fat tissue index (FTI) but similar lean tissue index (LTI) and albumin than those with a reduction in hyperhydration status. Those patients with a reduction in hyperhydration status, also show a better control in blood pressure and anemia with less number of AHT and ESA. The maintained hyperhydrated patients, diabetic patients with many comorbidities and young men patients with longer time on hemodialysis and non-adherence treatment

  1. Techniques to measure tension in wires or straw tubes

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Lin, S.; Wang, C.

    2018-01-01

    We discuss two different ways of measuring the tension in light wires and straws. The first technique uses an operational amplifier to subtract out the oscillating driving voltage mixed in the output voltage, which also has the signal. The isolated signal is amplified and displayed in an oscilloscope. In the second technique, an analog switch routes the oscillating voltage to a wire for a fraction of seconds, and then switches off the voltage. As the voltage is turned off, the induced signal from the wire is routed to an amplifier-rectifier circuit for a fraction of a second to measure the signal size as a function of the driving frequency. The first technique fits well to measure a single wire, while the second one fits well to measure many wires, 16 in our case, at a time.

  2. Monitoring Cole-Cole parameters during haemodialysis (HD).

    PubMed

    Al-Surkhi, Omar I; Riu, P J; Vazquez, F F; Ibeas, J

    2007-01-01

    The investigation of the hydration process during the haemodialysis treatment sessions is very important for the development of methods for predicting the unbalanced fluid shifts and hypotension crisis hence improving the quality of the haemodialysis procedure. Bioimpedance measurements can give valuable information about the tissue under measurement, therefore characterizing the tissue. In this work we propose a non-invasive method based on local multifrequency bioimpedance measurements that allow us to determine the fluid distribution and variations during haemodialysis. Clinical measurements were done using 10 HD patients during 60 HD sessions. Bioimpedance data, ultrafiltration volume, blood volume and blood heamatocrit variations were recorded continuously during the HD sessions. Bioimpedance of the local tissue was measured with a 4-elctrode impedance system using surface electrodes with sampling rate of 1meas./4min. at 6 different frequencies. The measured impedances were fitted into Cole-Cole model and the Cole-Cole parameters were continuously determined for each measurement point during the HD session. The 4 Cole-Cole parameters (R 00, R 0, Fc,alpha) and their variations were evaluated. Impedance values at infinite and zero (R 00, R 0) frequencies were extrapolated from Cole-Cole mathematical model. These values are assumed to represent the impedance of total tissue fluid and the impedance of the extracellular space respectively.

  3. Relationship between bioimpedance-determined body composition and peritoneal transport in peritoneal dialysis.

    PubMed

    da Costa, Bernardo M; Del Peso, Gloria; Bajo, Maria Auxiliadora; Carreño, Gilda; Ferreira, Marta; Ferreira, Carina; Selgas, Rafael

    2017-05-29

    In peritoneal dialysis (PD) patients, body fluid homeostasis is dependent on peritoneal elimination of water and solutes. Patients with less favorable peritoneal transport parameters should be more overhydrated. Despite this, the association between faster transport and overhydration (OH) is weak, and the factors that influence hydration status are still poorly characterized. Modified peritoneal equilibration tests (PET) offer us new parameters that might correlate better with hydration status, like free water transport (FWT). The aim of this study was thus to establish the relationships between new peritoneal transport parameters and body composition parameters estimated by bioimpedance spectroscopy (BIS). Prospective observational study on incident PD patients with a baseline and 1-year follow-up evaluation. 61 patients were included in the baseline evaluation, 19 of whom had a 1-year follow-up evaluation; 67.2% were fluid overloaded. There was a negative correlation between D/P creatinine and FWT (r = -0.598, p = 0.000). The fraction of FWT was negatively correlated with OH (r = -0.302, p = 0.018). Peritoneal protein losses (PPL) were also correlated with OH (r = 0.287, p = 0.028). There were no significant differences in OH according to small-solute transport status or fluid output parameters. After 1 year, we observed a significant worsening of renal function and an improvement in 24-hour ultrafiltration (UF) and hydration status, but we detected no differences in peritoneal transport of water or solutes that could explain these changes. There is a poor relationship between kidney/peritoneal function parameters and body composition parameters. The fraction of FWT and PPL may be underestimated markers of peritoneal health and of its contribution to the hydration status.

  4. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    PubMed Central

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  5. Bioimpedance imaging: an overview of potential clinical applications.

    PubMed

    Bayford, Richard; Tizzard, Andrew

    2012-10-21

    Electrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT. Beginning with a brief overview of the underlying principles behind the modality, it describes the background research leading towards the development of the application of EIT for monitoring pulmonary function, detecting and localising tumours and monitoring brain function.

  6. Intercomparison of techniques for the non-invasive measurement of bone mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques.

  7. A non-contact measurement technique at the micro scale

    NASA Astrophysics Data System (ADS)

    Ghosh, Santaneel

    During their production and normal use, electronic packages experience large temperature excursions, leading to high thermo-mechanical stress gradients that cause fatigue failure of the solder joints. In order to prevent premature failure and prolong the fatigue life of solder joints, there is a pressing need for the characterization of the solder, especially lead-free solder, at the micro-level (joint size). The characterization and modeling of solder behavior at the appropriate scale is a major issue. However, direct measurement techniques are not applicable to characterize the deformation response of solder joints because of their micro scale dimensions. Therefore, a non-contact measurement technique utilizing a Scanning Electron Microscope (SEM) in conjunction with Digital Image Correlation (DIC) has been developed. Validation was achieved by performing a four-point bending test in both an in-house optical system with DIC and inside the SEM. This non-contact measurement technique was then used to extract the stress-strain response of the solder. Mechanical tests were performed on solder joints that were created using the same type of solder balls used in the electronic industry and were representative of normal joint scales. The SEM-DIC technique has been proven to be applicable for the determining the stress-strain response of solder material at the micro-scale. This study resulted in a validated material characterization technique specifically designed for micro-scale material response. One of the main contributions of this study is that the method is a lot simpler and cheaper, yet highly effective, compared to the previous methods. This technique is also readily applicable to the measurement of the stress-strain response of any micro-scale specimen, such as other metals, polymers, etc. Also, the measured displacement field by obtained by DIC can be used as the base for calculating the strain field on the surface of a specimen.

  8. Techniques to measure complex-plane fields

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Majola, Nombuso; Chetty, Naven; Forbes, Andrew

    2014-10-01

    In this work we construct coherent superpositions of Gaussian and vortex modes which can be described to occupy the complex-plane. We demonstrate how these fields can be experimentally constructed in a digital, controllable manner with a spatial light modulator. Once these fields have been generated we illustrate, with three separate techniques, how the constituent components of these fields can be extracted, namely by measuring the intensity of the field at two adjacent points; performing a modal decomposition and a new digital Stokes measurement.

  9. Total body water measurements using resonant cavity perturbation techniques.

    PubMed

    Stone, Darren A; Robinson, Martin P

    2004-05-07

    A recent paper proposed a novel technique for determining the total body water (TBW) of patients suffering with abnormal hydration levels, using a resonant cavity perturbation method. Current techniques to measure TBW are limited by resolution and technical constraints. However, this new method involves measuring the dielectric properties of the body, by placing a subject in a large cavity resonator and measuring the subsequent change in its resonant frequency, fres and its Q-factor. Utilizing the relationship that water content correlates to these dielectric properties, it has been shown that the measured response of these parameters enables determination of TBW. Results are presented for a preliminary study using data estimated from anthropometric measurements, where volunteers were asked to lie and stand in an electromagnetic screened room, before and after drinking between 1 and 2 l of water, and in some cases, after voiding the bladder. Notable changes in the parameters were observed; fres showed a negative shift and Q was reduced. Preliminary calibration curves using estimated values of water content have been developed from these results, showing that for each subject the measured resonant frequency is a linear function of TBW. Because the gradients of these calibration curves correlate to the mass-to-height-ratio of the volunteers, it has proved that a system in which TBW can be unequivocally obtained is possible. Measured values of TBW have been determined using this new pilot-technique, and the values obtained correlate well with theoretical values of body water (r = 0.87) and resolution is very good (750 ml). The results obtained are measurable, repeatable and statistically significant. This leads to confidence in the integrity of the proposed technique.

  10. Total body water measurements using resonant cavity perturbation techniques

    NASA Astrophysics Data System (ADS)

    Stone, Darren A.; Robinson, Martin P.

    2004-05-01

    A recent paper proposed a novel technique for determining the total body water (TBW) of patients suffering with abnormal hydration levels, using a resonant cavity perturbation method. Current techniques to measure TBW are limited by resolution and technical constraints. However, this new method involves measuring the dielectric properties of the body, by placing a subject in a large cavity resonator and measuring the subsequent change in its resonant frequency, fres and its Q-factor. Utilizing the relationship that water content correlates to these dielectric properties, it has been shown that the measured response of these parameters enables determination of TBW. Results are presented for a preliminary study using data estimated from anthropometric measurements, where volunteers were asked to lie and stand in an electromagnetic screened room, before and after drinking between 1 and 2 l of water, and in some cases, after voiding the bladder. Notable changes in the parameters were observed; fres showed a negative shift and Q was reduced. Preliminary calibration curves using estimated values of water content have been developed from these results, showing that for each subject the measured resonant frequency is a linear function of TBW. Because the gradients of these calibration curves correlate to the mass-to-height-ratio of the volunteers, it has proved that a system in which TBW can be unequivocally obtained is possible. Measured values of TBW have been determined using this new pilot-technique, and the values obtained correlate well with theoretical values of body water (r = 0.87) and resolution is very good (750 ml). The results obtained are measurable, repeatable and statistically significant. This leads to confidence in the integrity of the proposed technique.

  11. Wind Gust Measurement Techniques-From Traditional Anemometry to New Possibilities.

    PubMed

    Suomi, Irene; Vihma, Timo

    2018-04-23

    Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.

  12. Comparison of non-invasive tear film stability measurement techniques.

    PubMed

    Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P

    2018-01-01

    Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p < 0.001) but not between the hand-held device and the instrument-mounted techniques (all p > 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p < 0.05), while no significant differences were observed between the two instrument-mounted devices (all p > 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.

  13. Metrology of vibration measurements by laser techniques

    NASA Astrophysics Data System (ADS)

    von Martens, Hans-Jürgen

    2008-06-01

    Metrology as the art of careful measurement has been understood as uniform methodology for measurements in natural sciences, covering methods for the consistent assessment of experimental data and a corpus of rules regulating application in technology and in trade and industry. The knowledge, methods and tools available for precision measurements can be exploited for measurements at any level of uncertainty in any field of science and technology. A metrological approach to the preparation, execution and evaluation (including expression of uncertainty) of measurements of translational and rotational motion quantities using laser interferometer methods and techniques will be presented. The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and upgraded ISO standards are reviewed with respect to their suitability for ensuring traceable vibration measurements and calibrations in an extended frequency range of 0.4 Hz to higher than 100 kHz. Using adequate vibration exciters to generate sufficient displacement or velocity amplitudes, the upper frequency limits of the laser interferometer methods specified in ISO 16063-11 for frequencies <= 10 kHz can be expanded to 100 kHz and beyond. A comparison of different methods simultaneously used for vibration measurements at 100 kHz will be demonstrated. A statistical analysis of numerous experimental results proves the highest accuracy achievable currently in vibration measurements by specific laser methods, techniques and procedures (i.e. measurement uncertainty 0.05 % at frequencies <= 10 kHz, <= 1 % up to 100 kHz).

  14. Development of a computational technique to measure cartilage contact area.

    PubMed

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Evolving Field of Wound Measurement Techniques: A Literature Review.

    PubMed

    Khoo, Rachel; Jansen, Shirley

    2016-06-01

    Wound healing is a complex and multifactorial process that requires the involvement of a multidisciplinary approach. Methods of wound measurement have been developed and continually refined with the purpose of ensuring precision in wound measurement and documentation as the primary indicator of healing. This review aims to ascertain the efficacies of current wound area measurement techniques, and to highlight any perceived gaps in the literature so as to develop suggestions for future studies and practice. Med- line, PubMed, CliniKey, and CINAHL were searched using the terms "wound/ulcer measurement techniques," "wound assessment," "digi- tal planimetry," and "structured light." Articles between 2000 and 2014 were selected, and secondary searches were carried out by exam- ining the references of relevant articles. Only papers written in English were included. A universal, standardized method of wound as- sessment has not been established or proposed. At present, techniques range from the simple to the more complex - most of which have char- acteristics that allow for applicability in both rural and urban settings. Techniques covered are: ruler measurements, acetate tracings/contact planimetry, digital planimetry, and structured light devices. Conclu- sion. In reviewing the literature, the precision and reliability of digital planimetry over the more conventional methods of ruler measurements and acetate tracings are consistently demonstrated. The advent and utility of the laser or structured light approach, however, is promising, has only been analyzed by a few, and opens up the scope for further evaluation of this technique.

  16. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  17. Diuretics prescribing in chronic kidney disease patients: physician assessment versus bioimpedence spectroscopy.

    PubMed

    Khan, Yusra Habib; Sarriff, Azmi; Adnan, Azreen Syazril; Khan, Amer Hayat; Mallhi, Tauqeer Hussain

    2017-06-01

    The relationship between hypertension and fluid overload in pre-dialysis CKD patients need to be elucidated. Current study aimed to find relationship between fluid overload and hypertension along with prescribed diuretic therapy using bioimpedance spectroscopy (BIS). A prospective observational study was conducted by inviting pre-dialysis CKD patients. Fluid overload was assessed by BIS. A total of 312 CKD patients with mean eGFR 24.5 ± 11.2 ml/min/1.73 m 2 were enrolled. Based on OH value ≥7 %, 135 (43.3 %) patients were hypervolemic while euvolemia was observed in 177 (56.7 %) patients. Patients were categorized in different regions of hydration reference plot (HRP) generated by BIS i.e., 5.1 % in region-N (normal BP and fluid status), 20.5 % in region I (hypertensive with severe fluid overload), 29.5 % in region I-II (hypertensive with mild fluid overload), 22 % in region II (hypertensive with normohydration), 10.2 % in region III (underhydration with normal/low BP) and 12.5 % in region IV (normal BP with severe fluid overload). A total of 144 (46 %) patients received diuretics on basis of physician assessment of BP and edema. Maximum diuretics 100 (69.4 %) were prescribed in patients belonging to regions I and I-II of HRP. Interestingly, a similar number of diuretic prescriptions were observed in region II (13 %) and region IV (12 %). Surprisingly, 7 (4.9 %) of patients in region III who were neither hypervolemic nor hypertensive were also prescribed with diuretics. BIS can aid clinicians to categorize CKD patients on basis of their fluid status and provide individualized pharmacotherapy to manage hypertensive CKD patients.

  18. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we

  19. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  20. Body Fat Analysis in Predialysis Chronic Kidney Disease: Multifrequency Bioimpedance Assay and Anthropometry Compared With Dual-Energy X-Ray Absorptiometry.

    PubMed

    Ravindranath, Jayasurya; Pillai, Priyamvada P Sivan; Parameswaran, Sreejith; Kamalanathan, Sadish Kumar; Pal, Gopal Krushna

    2016-09-01

    Body composition analysis is required for accurate assessment of nutritional status in patients with predialysis chronic kidney disease (CKD). The reference method for assessing body fat is dual-energy X-ray absorptiometry (DXA), but it is relatively expensive and often not available for widespread clinical use. There is only limited data on the utility of less expensive and easily available alternatives such as multifrequency bioimpedance assay (BIA) and skinfold thickness (SFT) measurements for assessing body fat in predialysis CKD. The study intends to assess the utility of BIA and SFT in measuring body fat compared to the reference method DXA in subjects with predialysis CKD. Body composition analysis was done in 50 subjects with predialysis CKD using multifrequency BIA, SFT, and DXA. The agreement between the body fat percentages measured by reference method DXA and BIA/SFT was assessed by paired t-test, intraclass correlation coefficients (ICCs), regression, and Bland-Altman plots. Percentage of body fat measured by BIA was higher compared to the measurements by DXA, but the difference was not significant (30.44 ± 9.34 vs. 28.62 ± 9.00; P = .071). The ICC between DXA and BIA was 0.822 (confidence interval: 0.688, 0.899; P = .000). The mean values of body fat percentages measured by anthropometry (SFT) was considerably lower when compared to DXA (23.62 ± 8.18 vs. 28.62 ± 9.00; P = .000). The ICC between DXA and SFT was .851 (confidence interval: 0.739, 0.915; P = .000). Bland-Altman plots showed that BIA overestimated body fat by a mean of 1.8% (standard deviation, 6.98), whereas SFT underestimated body fat by 5% (standard deviation, 4.01). Regression plots showed a better agreement between SFT and DXA (R(2) = .79) than BIA (R(2) = .50). Overall, SFT showed better agreement with the DXA. Body mass index (BMI) showed a moderate positive correlation with body fat measured by DXA whereas serum albumin failed to show good correlation. SFT

  1. The Double Edge Technique for Doppler lidar wind measurement

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Gentry, Bruce M.; Li, S. Xingfu; Flesia, Cristina; Chen, Huailin; Mathur, S.

    1998-01-01

    The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result, the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We will discuss the methodology of the technique in detail, present a broad range of simulation results, and provide preprints of a journal article currently in press.

  2. Wholefield displacement measurements using speckle image processing techniques for crash tests

    NASA Astrophysics Data System (ADS)

    Sriram, P.; Hanagud, S.; Ranson, W. F.

    The digital correlation scheme of Peters et al. (1983) was extended to measure out-of-plane deformations, using a white light projection speckle technique. A simple ray optic theory and the digital correlation scheme are outlined. The technique was applied successfully to measure out-of-plane displacements of initially flat rotorcraft structures (an acrylic circular plate and a steel cantilever beam), using a low cost video camera and a desktop computer. The technique can be extended to measurements of three-dimensional deformations and dynamic deformations.

  3. Optical skin friction measurement technique in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  4. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  5. In situ attosecond pulse characterization techniques to measure the electromagnetic phase

    NASA Astrophysics Data System (ADS)

    Spanner, M.; Bertrand, J. B.; Villeneuve, D. M.

    2016-08-01

    A number of techniques have been developed to characterize the attosecond emission from high-order-harmonic sources. These techniques are broadly classified as ex situ, where the attosecond pulse train photoionizes a target gas in the presence of an infrared field, and in situ, where the measurement takes place in the medium in which the attosecond pulses are generated. It is accepted that ex situ techniques measure the characteristics of the electromagnetic field, including the phase of the recombination transition moment of the emitting atom or molecule, when the phase of the second medium is known. However, there is debate about whether in situ techniques measure the electromagnetic field, or only the characteristics of the recolliding electron before recombination occurs. We show numerically that in situ measurements are not sensitive to the recombination phase, when implemented in the perturbative regime as originally envisioned, and that they do not measure the electromagnetic phase of the emission.

  6. Investigation of laser Doppler anemometry in developing a velocity-based measurement technique

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won

    2009-12-01

    Acoustic properties, such as the characteristic impedance and the complex propagation constant, of porous materials have been traditionally characterized based on pressure-based measurement techniques using microphones. Although the microphone techniques have evolved since their introduction, the most general form of the microphone technique employs two microphones in characterizing the acoustic field for one continuous medium. The shortcomings of determining the acoustic field based on only two microphones can be overcome by using numerous microphones. However, the use of a number of microphones requires a careful and intricate calibration procedure. This dissertation uses laser Doppler anemometry (LDA) to establish a new measurement technique which can resolve issues that microphone techniques have: First, it is based on a single sensor, thus the calibration is unnecessary when only overall ratio of the acoustic field is required for the characterization of a system. This includes the measurements of the characteristic impedance and the complex propagation constant of a system. Second, it can handle multiple positional measurements without calibrating the signal at each position. Third, it can measure three dimensional components of velocity even in a system with a complex geometry. Fourth, it has a flexible adaptability which is not restricted to a certain type of apparatus only if the apparatus is transparent. LDA is known to possess several disadvantages, such as the requirement of a transparent apparatus, high cost, and necessity of seeding particles. The technique based on LDA combined with a curvefitting algorithm is validated through measurements on three systems. First, the complex propagation constant of the air is measured in a rigidly terminated cylindrical pipe which has very low dissipation. Second, the radiation impedance of an open-ended pipe is measured. These two parameters can be characterized by the ratio of acoustic field measured at multiple

  7. Bioelectrical impedance for detecting and monitoring lymphedema in patients with breast cancer. Preliminary results of the florence nightingale breast study group.

    PubMed

    Erdogan Iyigun, Zeynep; Selamoglu, Derya; Alco, Gul; Pilancı, Kezban Nur; Ordu, Cetin; Agacayak, Filiz; Elbüken, Filiz; Bozdogan, Atilla; Ilgun, Serkan; Guler Uysal, Fusun; Ozmen, Vahit

    2015-03-01

    The aim of this study was to evaluate the efficacy of bioimpedance spectroscopy for the follow-up of patients with lymphedema in Turkey and its benefits in the diagnosis of stage 0, 1, and 2 lymphedema in patients who are under treatment for breast cancer. Thirty-seven female patients with breast cancer who underwent surgical procedures in our Breast Health Centre were followed up for lymphedema using bioimpedance, and clinical measurements were taken for a minimum period of 1 year at 3-month intervals. Patients who had been monitored regularly between November, 2011, and September, 2013, were enrolled to the study. In total, 8 patients developed lymphedema with an overall rate of 21.6%. Among the 8 patients who developed lymphedema, 4 had Stage 2, 1 had Stage 1, and 3 had Stage 0 lymphedema. Stage 0 lymphedema could not be detected with clinical measurements. During the patients' 1-year follow-up period using measurements of bioimpedance, a statistically significant relationship was observed between the occurrence of lymphedema and the disease characteristics. including the number of the extracted and remaining lymph nodes and the region of radiotherapy (p=0.042, p=0.024, p=0.040). Bioimpedance analysis seems to be a practical and reliable method for the early diagnosis of lymphedema. It is believed that regular monitoring of patients in the high-risk group using bioimpedance analyses increases the ability to treat lymphedema.

  8. Performance of an implantable impedance spectroscopy monitor using ZigBee

    NASA Astrophysics Data System (ADS)

    Bogónez-Franco, P.; Bayés-Genís, A.; Rosell, J.; Bragós, R.

    2010-04-01

    This paper presents the characterization measurements of an implantable bioimpedance monitor with ZigBee. Such measurements are done over RC networks, performing short and long-term measurements, with and without mismatch in electrodes and varying the temperature and the RF range. The bioimpedance monitor will be used in organ monitoring through electrical impedance spectroscopy in the 100 Hz - 200 kHz range. The specific application is the study of the viability and evolution of engineered tissue in cardiac regeneration in an experimental protocol with pig models. The bioimpedance monitor includes a ZigBee transceiver to transmit the measured data outside the animal chest. The bioimpedance monitor is based in the 12 Bit Impedance Converter and Network Analyzer AD5933, improved with an analog front-end that implements a 4-electrode measurement structure and allows to measure small impedances. In the debugging prototype, the system autonomy exceeds 1 month when a 14 frequencies impedance spectrum is acquired every 5 minutes. The receiver side consists of a ZigBee transceiver connected to a PC to process the received data. In the current implementation, the effective range of the RF link was of a few centimeters, then needing a range extender placed close to the animal. We have increased it by using an antenna with higher gain. Basic errors in the phantom circuit parameters estimation after model fitting are below 1%.

  9. An intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Gregory, G. L.; Mcdougal, D. S.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.

    1985-01-01

    Results from an intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted at Wallops Island, VA, in July 1983. Instruments intercompared included a laser-induced fluorescence system and two chemiluminescence instruments. The intercomparisons were performed with ambient air at NO mixing ratios ranging from 10 to 60 pptv and NO-enriched ambient air at mixing ratios from 20 to 170 pptv. All instruments sampled from a common manifold. The techniques exhibited a high degree of correlation among themselves and with changes in the NO mixing ratio. Agreement among the three techniques was placed at approximately + or - 30 percent. Within this level of agreement, no artifacts or species interferences were identified.

  10. Pre-procedural bioimpedance vectorial analysis of fluid status and prediction of contrast-induced acute kidney injury.

    PubMed

    Maioli, Mauro; Toso, Anna; Leoncini, Mario; Musilli, Nicola; Bellandi, Francesco; Rosner, Mitchell H; McCullough, Peter A; Ronco, Claudio

    2014-04-15

    The aim of this study was to evaluate the relationship between pre-procedural fluid status assessed by bioimpedance vector analysis (BIVA) and development of contrast-induced acute kidney injury (CI-AKI). Accurate fluid management in patients undergoing angiographic procedures is of critical importance in limiting the risk of CI-AKI. Therefore, establishing peri-procedural fluid volume related to increased risk of CI-AKI development is essential. We evaluated the fluid status by BIVA of 900 consecutive patients with stable coronary artery disease (CAD) immediately before coronary angiography, measuring the resistance/height (R/H) ratio and impedance/height (Z/H) vector. CI-AKI was defined as an increase in serum creatinine ≥0.5 mg/dl above baseline within 3 days after contrast administration (iodixanol). CI-AKI occurred in 54 patients (6.0%). Pre-procedural R/H ratios were significantly higher in patients with CI-AKI than without CI-AKI (395 ± 71 Ohm/m vs. 352 ± 58 Ohm/m, p = 0.001 for women; 303 ± 59 Ohm/m vs. 279 ± 45 Ohm/m, p = 0.009 for men), indicating lower fluid volume in the patients with CI-AKI. When patients were stratified according to R/H ratio, there was an almost 3-fold higher risk in patients with higher values (odds ratio [OR]: 2.9; 95% confidence interval [CI]: 1.5 to 5.5; p = 0.002). The optimal receiver-operating characteristic curve analysis threshold values of R/H ratio for predicting CI-AKI were 380 Ohm/m for women and 315 Ohm/m for men. R/H ratio above these thresholds was found to be a significant and independent predictor of CI-AKI (OR: 3.1; 95% CI: 1.8 to 5.5; p = 0.001). Lower fluid status evaluated by BIVA immediately before contrast medium administration resulted in a significant and independent predictor of CI-AKI in patients with stable CAD. This simple noninvasive analysis should be tested in guiding tailored volume repletion. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights

  11. Mississippi River streamflow measurement techniques at St. Louis, Missouri

    USGS Publications Warehouse

    Wastson, Chester C.; Holmes, Robert R.; Biedenham, David S.

    2013-01-01

    Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.

  12. A drag measurement technique for free piston shock tunnels

    NASA Technical Reports Server (NTRS)

    Sanderson, S. R.; Simmons, J. M.; Tuttle, S. L.

    1991-01-01

    A new technique is described for measuring drag with 100-microsecond rise time on a nonlifting model in a free piston shock tunnel. The technique involves interpretation of the stress waves propagating within the model and its support. A finite element representation and spectral methods are used to obtain a mean square optimal estimate of the time history of the aerodynamic loading. Thus, drag is measured instantaneously and the previous restriction caused by the mechanical time constant of balances is overcome. The effectiveness of the balance is demonstrated by measuring the drag on cones with 5 and 15 deg semi-vertex angles in nominally Mach 5.6 flow with stagnation enthalpies from 2.6 to 33 MJ/kg.

  13. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  14. Application of Replica Technique and SEM in Accuracy Measurement of Ceramic Crowns

    NASA Astrophysics Data System (ADS)

    Trifkovic, B.; Budak, I.; Todorovic, A.; Hodolic, J.; Puskar, T.; Jevremovic, D.; Vukelic, D.

    2012-01-01

    The paper presents a comparative study of the measuring values of the marginal gap related to the ceramic crowns made by dental CAD/CAM system using the replica technique and SEM. The study was conducted using three experimental groups, which consisted of ceramic crowns manufactured by the Cerec CAD/CAM system. The scanning procedure was carried out using three specialized dental 3D digitization systems from the Cerec family - two types of extraoral optical scanning systems and an intraoral optical scanner. Measurements of the marginal gap were carried out using the replica technique and SEM. The comparison of aggregate values of the marginal gap using the replica technique showed a statistically significant difference between the systems. The measured values of marginal gaps of ceramic crowns using the replica technique were significantly lower compared to those measured by SEM. The results indicate that the choice of technique for measuring the accuracy of ceramic crowns influences the final results of investigation.

  15. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  16. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    NASA Astrophysics Data System (ADS)

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.

  17. Comparison of cardiovascular risk factors in maintenance hemodialysis patients based on phase angle of bioimpedance analysis

    NASA Astrophysics Data System (ADS)

    Muzasti, R. A.; Lubis, H. R.

    2018-03-01

    Mortality and morbidity rate, especially from cardiovascular disease in hemodialysis patients in Indonesia is still quite high. One of indicator to assess the predictive value of mortality is the phase angle (PhA) of bioimpedance analysis (BIA) scan examination. Determining the comparison of BMI and laboratory data as cardiovascular risk factors in hemodialysis patients based on PhA.A cross-sectional analytical study was done on 155 outpatientsin RasyidaRenal Hospital, Medan in 2016. Patients were two groups, namely PhA<4 group and ≥ 4 group. The comparison of BMI and laboratory data based on PhA were by analyzingthe independent T-test. A P-value <0.05 was considered statistically significant. Most of thepatients are male (56.7%), obese (39.4%), with age 40-59 years (56.1%). Based on PhA, 56.7% patients have PhA ≥4. There are differences in the profile of age (p: 0.01), BMI (p: 0.028) and hemoglobin (p: 0.00) between two groups, but not in the profile of albumin (p: 0.071), total cholesterol (p: 0.65), HDL (p: 0.06), LDL (p: 0.07), triglyceride (p: 0.87), calcium (p: 0.59) and phosphorus (p: 0.17).Based onPhA, the cardiovascular risk factors of hemodialysis patients were determined by age, BMI, and hemoglobin.

  18. Updates on measurements and modeling techniques for expendable countermeasures

    NASA Astrophysics Data System (ADS)

    Gignilliat, Robert; Tepfer, Kathleen; Wilson, Rebekah F.; Taczak, Thomas M.

    2016-10-01

    The potential threat of recently-advertised anti-ship missiles has instigated research at the United States (US) Naval Research Laboratory (NRL) into the improvement of measurement techniques for visual band countermeasures. The goal of measurements is the collection of radiometric imagery for use in the building and validation of digital models of expendable countermeasures. This paper will present an overview of measurement requirements unique to the visual band and differences between visual band and infrared (IR) band measurements. A review of the metrics used to characterize signatures in the visible band will be presented and contrasted to those commonly used in IR band measurements. For example, the visual band measurements require higher fidelity characterization of the background, including improved high-transmittance measurements and better characterization of solar conditions to correlate results more closely with changes in the environment. The range of relevant engagement angles has also been expanded to include higher altitude measurements of targets and countermeasures. In addition to the discussion of measurement techniques, a top-level qualitative summary of modeling approaches will be presented. No quantitative results or data will be presented.

  19. Low thermal diffusivity measurements of thin films using mirage technique

    NASA Astrophysics Data System (ADS)

    Wong, P. K.; Fung, P. C. W.; Tam, H. L.

    1998-12-01

    Mirage technique is proved to be powerful in measurements of thermal diffusivity. Its contactless nature makes it suitable for delicate samples such as thin films and single crystals. However, as the damping of the thermal wave profile increases progressively upon the decrease in thermal diffusivity of the medium, mirage technique becomes more difficult to be applied to low thermal diffusivity measurements. Moreover influences from substrate signals make analysis difficult when the samples are thermally thin. Recently a thermal-wave-coupling method for mirage signal analysis [P. K. Wong, P. C. W. Fung, H. L. Tam, and J. Gao, Phys. Rev. B 51, 523 (1995)] was reported for thermal diffusivity measurements of thin film down to 60 nm thick. In this article we apply the thermal-wave-coupling method to thin films of low thermal diffusivity, especially polymer films. A new lower limit of thermal diffusivity measurable by mirage technique has been reached.

  20. Monitoring fugitive methane and natural gas emissions, validation of measurement techniques.

    NASA Astrophysics Data System (ADS)

    Robinson, Rod; Innocenti, Fabrizio; Gardiner, Tom; Helmore, Jon; Finlayson, Andrew; Connor, Andy

    2017-04-01

    The detection and quantification of fugitive and diffuse methane emissions has become an increasing priority in recent years. As the requirements for routine measurement to support industry initiatives increase there is a growing requirement to assess and validate the performance of fugitive emission measurement technologies. For reported emissions traceability and comparability of measurements is important. This talk will present recent work addressing these needs. Differential Absorption Lidar (DIAL) is a laser based remote sensing technology, able to map the concentration of gases in the atmosphere and determine emission fluxes for fugitive emissions. A description of the technique and its application for determining fugitive emissions of methane from oil and gas operations and waste management sites will be given. As DIAL has gained acceptance as a powerful tool for the measurement and quantification of fugitive emissions, and given the rich data it produces, it is being increasingly used to assess and validate other measurement approaches. In addition, to support the validation of technologies, we have developed a portable controlled release facility able to simulate the emissions from area sources. This has been used to assess and validate techniques which are used to monitor emissions. The development and capabilities of the controlled release facility will be described. This talk will report on recent studies using DIAL and the controlled release facility to validate fugitive emission measurement techniques. This includes side by side comparisons of two DIAL systems, the application of both the DIAL technique and the controlled release facility in a major study carried out in 2015 by South Coast Air Quality Management District (SCAQMD) in which a number of optical techniques were assessed and the development of a prototype method validation approach for techniques used to measure methane emissions from shale gas sites. In conclusion the talk will provide an

  1. Central Hemodynamics Measured During 5 Repetition Maximum Free Weight Resistance Exercise.

    PubMed

    Howard, Jonathan S; McLester, Cherilyn N; Evans, Thomas W; McLester, John R; Calloway, Jimmy P

    2018-01-01

    The PhysioFlow™ is a piece of equipment that uses bioimpedance cardiography to measure central hemodynamics. The purpose of this research was to explore the novel approach of monitoring central hemodynamics during free weight resistance exercise using bioimpedance cardiography throughout a 5 repetition maximum (5RM). Thirty participants ranging from beginner to advanced lifters (16 males and 14 females) completed a 5RM for back squat, seated push press, and bicep curl while connected to the PhysioFlow™ to assess the response of heart rate (HR), stroke volume (SV), cardiac output (Q), and ejection fraction (EF). Participants were cued for form and to breathe normally throughout the lifts. The PhysioFlow™ detected an increase in HR and Q for all lifts between rest and each repetition ( p < 0.05). There was also an increase in HR and Q from repetition 1 to repetition 5 for all lifts ( p < 0.05). No changes in EF or SV were detected between resting measurements and each repetition for all lifts ( p > 0.05) and no changes in EF or SV were detected when all repetitions were compared to each other for all lifts ( p > 0.05). In conclusion, the PhysioFlow™ was able to detect changes in HR and Q during dynamic free weight resistance exercise. This novel approach may provide a mechanism for monitoring central hemodynamics during free weight resistance training. However, more research needs to be conducted as the exercise protocol for this investigation did not allow for a comparison to a reference method.

  2. Prediction of limb lean tissue mass from bioimpedance spectroscopy in persons with chronic spinal cord injury

    PubMed Central

    Cirnigliaro, Christopher M.; La Fountaine, Michael F.; Emmons, Racine; Kirshblum, Steven C.; Asselin, Pierre; Spungen, Ann M.; Bauman, William A.

    2013-01-01

    Background Bioimpedance spectroscopy (BIS) is a non-invasive, simple, and inexpensive modality that uses 256 frequencies to determine the extracellular volume impedance (ECVRe) and intracellular volume impedance (ICVRi) in the total body and regional compartments. As such, it may have utility as a surrogate measure to assess lean tissue mass (LTM). Objective To compare the relationship between LTM from dual-energy X-ray absorptiometry (DXA) and BIS impedance values in spinal cord injury (SCI) and able-bodied (AB) control subjects using a cross-sectional research design. Methods In 60 subjects (30 AB and 30 SCI), a total body DXA scan was used to obtain total body and leg LTM. BIS was performed to measure the impedance quotient of the ECVRe and ICVRi in the total body and limbs. Results BIS-derived ECVRe yielded a model for LTM in paraplegia, tetraplegia, and control for the right leg (RL) (R2 = 0.75, standard errors of estimation (SEE) = 1.02 kg, P < 0.0001; R2 = 0.65, SEE = 0.91 kg, P = 0.0006; and R2 = 0.54, SEE = 1.31 kg, P < 0.0001, respectively) and left leg (LL) (R2 = 0.76, SEE = 1.06 kg, P < 0.0001; R2 = 0.64, SEE = 0.83 kg, P = 0.0006; and R2 = 0.54, SEE = 1.34 kg, P < 0.0001, respectively). The ICVRi was similarly predictive of LTM in paraplegia, tetraplegia, and AB controls for the RL (R2 = 0.85, SEE = 1.31 kg, P < 0.0001; R2 = 0.52, SEE = 0.95 kg, P = 0.003; and R2 = 0.398, SEE = 1.46 kg, P = 0.0003, respectively) and LL (R2 = 0.62, SEE = 1.32 kg, P = 0.0003; R2 = 0.57, SEE = 0.91 kg, P = 0.002; and R2 = 0.42, SEE = 1.31 kg, P = 0.0001, respectively). Conclusion Findings demonstrate that the BIS-derived impedance quotients for ECVRe and ICVRi may be used as surrogate markers to track changes in leg LTM in persons with SCI. PMID:23941792

  3. [Bioimpedometry and its utilization in dialysis therapy].

    PubMed

    Lopot, František

    2016-01-01

    Measurement of living tissue impedance - bioimpedometry - started to be used in medicine some 50 years ago, first exclusively for estimation of extracellular and intracellular compartment volumes. Its most simple single frequency (50 kHz) version works directly with the measured impedance vector. Technically more sophisticated versions convert the measured impedance in values of volumes of different compartments of body fluids and calculate also principal markers of nutritional status (lean body mass, adipose tissue mass). The latest version specifically developed for application in dialysis patients includes body composition modelling and provides even absolute value of overhydration (excess fluid). Still in experimental phase is the bioimpedance exploitation for more precise estimation of residual glomerular filtration. Not yet standardized is also segmental bioimpedance measurement which should enable separate assessment of hydration status of the trunk segment and ultrafiltration capacity of peritoneum in peritoneal dialysis patients.Key words: assessment - bioimpedance - excess fluid - fluid status - glomerular filtration - haemodialysis - nutritional status - peritoneal dialysis.

  4. Novel Techniques for Pulsed Field Gradient NMR Measurements

    NASA Astrophysics Data System (ADS)

    Brey, William Wallace

    Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find

  5. [Comparative study of the biometric measurements made by immersion and contact techniques].

    PubMed

    Kronbauer, Airton Leite; Kronbauer, Fernando Leite; Kronbauer, Cláudia Leite

    2006-01-01

    To compare clinical biometric findings between measurements of immersion technique and contact technique. Axial length was measured by A-scan in 120 medical examinations in 60 patients with cataract using a non-contact (immersion) and a contact technique in paired-samples by ultrasound. The mean axial length was found to be 23.19 mm (SD 1.32) with the immersion technique and 22.93 mm (SD 1.32) with the contact technique, using the same transducer probe. The difference of 0.255 mm (SD 0.3) was significant at the 0.01 level. The difference should be taken into account when evaluating the accuracy of IOL calculation. The mean standard deviation between recurrent measures in same eye was found to be 0.04 with the immersion technique and 0.19 with the contact technique. The difference of 0.15 was significant at the 0.01 level. The difference should be taken into account when evaluating the accuracy of reproductivity of technique examination. These data provide benchmark information that can be used to monitor clinical practice and to perform others studies.

  6. Objective techniques for psychological assessment, phase 2. [techniques for measuring human performance during space flight stress

    NASA Technical Reports Server (NTRS)

    Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.

    1974-01-01

    Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.

  7. True Airspeed Measurement by Ionization-Tracer Technique

    NASA Technical Reports Server (NTRS)

    Boyd, B.; Dorsch, R. G.; Brodie, G. H.

    1952-01-01

    Ion bundles produced in a pulse-excited corona discharge are used as tracers with a radar-like pulse transit-time measuring instrument in order to provide a measurement of airspeed that is independent of all variables except time and distance. The resulting instrumentation need not project into the air stream and, therefore, will not cause any interference in supersonic flow. The instrument was tested at Mach numbers ranging from 0.3 to 3.8. Use of the proper instrumentation and technique results in accuracy of the order of 1 percent.

  8. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise ofmore » an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.« less

  9. An Indentation Technique for Nanoscale Dynamic Viscoelastic Measurements at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Ye, Jiping

    2012-08-01

    Determination of nano/micro-scale viscoelasticity is very important to understand the local rheological behavior and degradation phenomena of multifunctional polymer blend materials. This article reviews research results concerning the development of indentation techniques for making nanoscale dynamic viscoelastic measurements at elevated temperature. In the last decade, we have achieved breakthroughs in noise floor reduction in air and thermal load drift/noise reduction at high temperature before taking on the challenge of nanoscale viscoelastic measurements. A high-temperature indentation technique has been developed that facilitates viscoelastic measurements up to 200 °C in air and 500 °C in a vacuum. During the last year, two viscoelastic measurement methods have been developed by making a breakthrough in suppressing the contact area change at high temperature. One is a sharp-pointed time-dependent nanoindentation technique for microscale application and the other is a spherical time-dependent nanoindentation technique for nanoscale application. In the near future, we expect to lower the thermal load drift and load noise floor even more substantially.

  10. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  11. Evaluation of turbulence measurement techniques from a single Doppler lidar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Pichugina, Yelena L.; Banta, Robert M.; Oncley, Steven P.; Wolfe, Daniel E.

    2017-08-01

    Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL). Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity-azimuth display (VAD), six-beam scans, and range-height indicators (RHIs) with a vertical stare.Measurements of turbulence kinetic energy (TKE), turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2 ≈ 0.78), showing little bias in its observations (slope of ≈ 0. 95). Turbulence measurements from the velocity-azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 = 0.15-0.17). Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  12. Optical technique for inner-scale measurement: possible astronomical applications.

    PubMed

    Masciadri, E; Vernin, J

    1997-02-20

    We propose an optical technique that allows us to estimate the inner scale by measuring the variance of angle of arrival fluctuations of collimated laser beams of different sections w (i) passing through a turbulent layer. To test the potential efficiency of the system, we made measurements on a turbulent air flow generated in the laboratory, the statistical properties of which are known and controlled, unlike atmospheric turbulence. We deduced a Kolmogorov behavior with a 6-mm inner scale and a 90-mm outer scale in accordance with measurements by a more complicated technique using the same turbulent channel. Our proposed method is especially sensitive to inner-scale measurement and can be adapted easily to atmospheric turbulence analysis. We propose an outdoor experimental setup that should work in less controlled conditions that can affect astronomical observations. The inner-scale assessment might be important when phase retrieval with Laplacian methods is used for adaptive optics purposes.

  13. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    NASA Astrophysics Data System (ADS)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  14. A comparison of techniques for nondestructive composition measurements in CdZnTe substrates

    NASA Astrophysics Data System (ADS)

    Tobin, S. P.; Tower, J. P.; Norton, P. W.; Chandler-Horowitz, D.; Amirtharaj, P. M.; Lopes, V. C.; Duncan, W. M.; Syllaios, A. J.; Ard, C. K.; Giles, N. C.; Lee, Jaesun; Balasubramanian, R.; Bollong, A. B.; Steiner, T. W.; Thewalt, M. L. W.; Bowen, D. K.; Tanner, B. K.

    1995-05-01

    We report an overview and a comparison of nondestructive optical techniques for determining alloy composition x in Cd1-xZnxTe substrates for HgCdTe epitaxy. The methods for single-point measurements include a new x-ray diffraction technique for precision lattice parameter measurements using a standard highresolution diffractometer, room-temperature photoreflectance, and low-temperature photoluminescence. We compare measurements on the same set of samples by all three techniques. Comparisons of precision and accuracy, with a discussion of the strengths and weaknesses of different techniques, are presented. In addition, a new photoluminescence excitation technique for full-wafer imaging of composition variations is described.

  15. Comparing the reliability of a trigonometric technique to goniometry and inclinometry in measuring ankle dorsiflexion.

    PubMed

    Sidaway, Ben; Euloth, Tracey; Caron, Heather; Piskura, Matthew; Clancy, Jessica; Aide, Alyson

    2012-07-01

    The purpose of this study was to compare the reliability of three previously used techniques for the measurement of ankle dorsiflexion ROM, open-chained goniometry, closed-chained goniometry, and inclinometry, to a novel trigonometric technique. Twenty-one physiotherapy students used four techniques (open-chained goniometry, closed-chained goniometry, inclinometry, and trigonometry) to assess dorsiflexion range of motion in 24 healthy volunteers. All student raters underwent training to establish competence in the four techniques. Raters then measured dorsiflexion with a randomly assigned measuring technique four times over two sessions, one week apart. Data were analyzed using a technique by session analysis of variance, technique measurement variability being the primary index of reliability. Comparisons were also made between the measurements derived from the four techniques and those obtained from a computerized video analysis system. Analysis of the rater measurement variability around the technique means revealed significant differences between techniques with the least variation being found in the trigonometric technique. Significant differences were also found between the technique means but no differences between sessions were evident. The trigonometric technique produced mean ROMs closest in value to those derived from computer analysis. Application of the trigonometric technique resulted in the least variability in measurement across raters and consequently should be considered for use when changes in dorsiflexion ROM need to be reliably assessed. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Thermal properties measurements in biodiesel oils using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; Vargas, H.; Constantino, R.; Baesso, M. L.

    2005-08-01

    In this Letter, thermal lens and open cell photoacoustic techniques are used to measure the thermal properties of biodiesel oils. The absolute values of the thermal effusivity, thermal diffusivity, thermal conductivity and the temperature coefficient of the refractive index were determined for samples obtained from soy, castor bean, sunflower and turnip. The results suggest that the employed techniques may be useful as complementary methods for biodiesel certification.

  17. The effect of antenatal lifestyle advice for women who are overweight or obese on secondary measures of neonatal body composition: the LIMIT randomised trial

    PubMed Central

    Dodd, Jodie M; Deussen, Andrea R; Mohomad, Izyan; Rifas-Shiman, Sheryl L; Yelland, Lisa N; Louise, Jennie; McPhee, Andrew J; Grivell, Rosalie M; Owens, Julie A; Gillman, Matthew W; Robinson, Jeffrey S

    2016-01-01

    Objective To evaluate the effect of providing antenatal dietary and lifestyle advice on neonatal anthropometry, and to determine the inter-observer variability in obtaining anthropometric measurements. Design Randomised controlled trial Setting Public maternity hospitals across metropolitan Adelaide, South Australia Population Pregnant women with a singleton gestation between 10+0–20+0, and body mass index (BMI) ≥25kg/m2. Methods Women were randomised to either Lifestyle Advice (comprehensive dietary and lifestyle intervention over the course of pregnancy including dietary, exercise and behavioral strategies, delivered by a research dietician and research assistants) or continued Standard Care. Analyses were conducted using intention to treat principles. Main Outcome Measures Secondary outcome measures for the trial included assessment of infant body composition using body circumference and skinfold thickness measurements (SFTM), percentage body fat, and bio-impedance analysis of fat free mass. Results Anthropometric measurements were obtained from 970 neonates (488 Lifestyle Advice Group, and 482 Standard Care Group). In 394 of these neonates (215 Lifestyle Advice Group, and 179 Standard Care Group) bio-impedance analysis was also obtained. There were no statistically significant differences identified between those neonates born to women receiving Lifestyle Advice and those receiving Standard Care, in terms of body circumference measures, SFTM, percentage body fat, fat mass, or fat free mass. The intra-class correlation coefficient for SFTM was moderate to excellent (ICC 0.55 to 0.88). Conclusions Among neonates born to women who are overweight or obese, anthropometric measures of body composition were not modified by an antenatal dietary and lifestyle intervention. PMID:26841217

  18. Noncontact sheet resistance measurement technique for wafer inspection

    NASA Astrophysics Data System (ADS)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  19. Optimization of the tungsten oxide technique for measurement of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.

    1987-01-01

    Hollow tubes coated with tungstic acid have been shown to be of value in the determination of ammonia and nitric acid in ambient air. Practical application of this technique was demonstrated utilizing an automated sampling system for in-flight collection and analysis of atmospheric samples. Due to time constraints these previous measurements were performed on tubes that had not been well characterized in the laboratory. As a result the experimental precision could not be accurately estimated. Since the technique was being compared to other techniques for measuring these compounds, it became necessary to perform laboratory tests which would establish the reliability of the technique. This report is a summary of these laboratory experiments as they are applied to the determination of ambient ammonia concentration.

  20. Computer System Performance Measurement Techniques for ARTS III Computer Systems

    DOT National Transportation Integrated Search

    1973-12-01

    The potential contribution of direct system measurement in the evolving ARTS 3 Program is discussed and software performance measurement techniques are comparatively assessed in terms of credibility of results, ease of implementation, volume of data,...

  1. Synchronization and communication of cooperative sensors.

    PubMed

    Chételat, Olivier; Rapin, Michael; Meier, Christophe; Bischof, André; Augustyniak, Marcin K

    2015-01-01

    Cooperative sensors are an emerging technology consisting of autonomous sensor units working in concert to measure physiological signals requiring distant sensing points, such as biopotential (e.g., ECG) or bioimpedance (e.g., EIT). Their advantage with respect to the state-of-the-art technology is that they do not require shielded and even insulated cables to measure best quality biopotential or bioimpedance signals. Moreover, as all sensors are simply connected to a single electrical connection (which can be for instance a conductive vest) there is no connecting limitation to the miniaturization of the system or to its extension to large numbers of sensors. This results in an increase of wearability and comfort, as well as in a decrease of costs and integration challenges. However, cooperative sensors must communicate to be synchronized and to centralize the data. This paper presents possible communication strategies and focuses on the implementation of one of them that is particularly well suited for biopotential and bioimpedance measurements.

  2. Silt fences: An economical technique for measuring hillslope soil erosion

    Treesearch

    Peter R. Robichaud; Robert E. Brown

    2002-01-01

    Measuring hillslope erosion has historically been a costly, time-consuming practice. An easy to install low-cost technique using silt fences (geotextile fabric) and tipping bucket rain gauges to measure onsite hillslope erosion was developed and tested. Equipment requirements, installation procedures, statistical design, and analysis methods for measuring hillslope...

  3. Measuring human remains in the field: Grid technique, total station, or MicroScribe?

    PubMed

    Sládek, Vladimír; Galeta, Patrik; Sosna, Daniel

    2012-09-10

    Although three-dimensional (3D) coordinates for human intra-skeletal landmarks are among the most important data that anthropologists have to record in the field, little is known about the reliability of various measuring techniques. We compared the reliability of three techniques used for 3D measurement of human remain in the field: grid technique (GT), total station (TS), and MicroScribe (MS). We measured 365 field osteometric points on 12 skeletal sequences excavated at the Late Medieval/Early Modern churchyard in Všeruby, Czech Republic. We compared intra-observer, inter-observer, and inter-technique variation using mean difference (MD), mean absolute difference (MAD), standard deviation of difference (SDD), and limits of agreement (LA). All three measuring techniques can be used when accepted error ranges can be measured in centimeters. When a range of accepted error measurable in millimeters is needed, MS offers the best solution. TS can achieve the same reliability as does MS, but only when the laser beam is accurately pointed into the center of the prism. When the prism is not accurately oriented, TS produces unreliable data. TS is more sensitive to initialization than is MS. GT measures human skeleton with acceptable reliability for general purposes but insufficiently when highly accurate skeletal data are needed. We observed high inter-technique variation, indicating that just one technique should be used when spatial data from one individual are recorded. Subadults are measured with slightly lower error than are adults. The effect of maximum excavated skeletal length has little practical significance in field recording. When MS is not available, we offer practical suggestions that can help to increase reliability when measuring human skeleton in the field. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  5. A radionuclide counting technique for measuring wind velocity. [drag force anemometers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.; Mall, G. H.

    1981-01-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  6. Quantitative Proton Magnetic Resonance Techniques for Measuring Fat

    PubMed Central

    Harry, Houchun; Kan, Hermien E.

    2014-01-01

    Accurate, precise, and reliable techniques for quantifying body and organ fat distributions are important tools in physiology research. They are critically needed in studies of obesity and diseases involving excess fat accumulation. Proton magnetic resonance methods address this need by providing an array of relaxometry-based (T1, T2) and chemical-shift-based approaches. These techniques can generate informative visualizations of regional and whole-body fat distributions, yield measurements of fat volumes within specific body depots, and quantify fat accumulation in abdominal organs and muscles. MR methods are commonly used to investigate the role of fat in nutrition and metabolism, to measure the efficacy of short and long-term dietary and exercise interventions, to study the implications of fat in organ steatosis and muscular dystrophies, and to elucidate pathophysiological mechanisms in the context of obesity and its comorbidities. The purpose of this review is to provide a summary of mainstream MR strategies for fat quantification. The article will succinctly describe the principles that differentiate water and fat proton signals, summarize advantages and limitations of various techniques, and offer a few illustrative examples. The article will also highlight recent efforts in MR of brown adipose tissue and conclude by briefly discussing some future research directions. PMID:24123229

  7. Uncertainty analysis technique for OMEGA Dante measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M. J.; Widmann, K.; Sorce, C.

    2010-10-15

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less

  8. Uncertainty Analysis Technique for OMEGA Dante Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M J; Widmann, K; Sorce, C

    2010-05-07

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less

  9. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  10. Pulsed thrust measurements using electromagnetic calibration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Haibin; Shi Chenbo; Zhang Xin'ai

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measuredmore » to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.« less

  11. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.

  12. Measurement techniques and applications of charge transfer to aerospace research

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1978-01-01

    A technique of developing high-velocity low-intensity neutral gas beams for use in aerospace research problems is described. This technique involves ionization of gaseous species with a mass spectrometer and focusing the resulting primary ion beam into a collision chamber containing a static gas at a known pressure and temperature. Equations are given to show how charge-transfer cross sections are obtained from a total-current measurement technique. Important parameters are defined for the charge-transfer process.

  13. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and

  14. Intercomparison of ground-based NO y measurement techniques

    NASA Astrophysics Data System (ADS)

    Williams, E. J.; Baumann, K.; Roberts, J. M.; Bertman, S. B.; Norton, R. B.; Fehsenfeld, F. C.; Springston, S. R.; Nunnermacker, L. J.; Newman, L.; Olszyna, K.; Meagher, J.; Hartsell, B.; Edgerton, E.; Pearson, J. R.; Rodgers, M. O.

    1998-09-01

    An informal intercomparison of NOy measurement techniques was conducted from June 13 to July 22, 1994, at a site in Hendersonville, Tennessee, near Nashville. The intercomparison involved five research institutions: Brookhaven National Laboratory, Environmental Science and Engineering, Georgia Institute of Technology, NOAA/Aeronomy Laboratory, and Tennessee Valley Authority. The NOy measurement techniques relied on the reduction of NOy species to NO followed by detection of NO using O3-chemiluminescence. The NOy methods used either the Au-catalyzed conversion of NOy to NO in the presence of CO or H2 or the reduction of NOy to NO on a heated molybdenum oxide surface. Other measurements included O3, NOx, PAN and other organic peroxycarboxylic nitric anhydrides, HNO3 and particulate nitrate, and meteorological parameters. The intercomparison consisted of six weeks of ambient air sampling with instruments and inlet systems normally used by the groups for field measurements. In addition, periodic challenges to the instruments (spike tests) were conducted with known levels of NO, NO2, NPN, HNO3 and NH3. The NOy levels were typically large and highly variable, ranging from 2 ppbv to about 100 ppbv, and for much of the time was composed mostly of NOx from nearby sources. The spike tests results and ambient air results were consistent only when NOx was a substantial fraction of NOy. Inconsistency with ambient air data and the other spike test results is largely attributed to imprecision in the spike results due to the high and variable NOy background. For the ambient air data, a high degree of correlation was found with the different data sets. Of the seven NOy instrument/converters deployed at the site, two (one Au and one Mo) showed evidence of some loss of conversion efficiency. This occurred when the more oxidized NOy species (e.g., HNO3) were in relatively high abundance, as shown by analysis of one period of intense photochemical activity. For five of the instruments

  15. Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.

    PubMed

    Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D

    2001-10-01

    The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.

  16. Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.

  17. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  18. An aircraft measurement technique for formaldehyde and soluble carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Lee, Yin-Nan; Zhou, Xianliang; Leaitch, W. Richard; Banic, Catharine M.

    1996-12-01

    An aircraft technique was developed for measuring ambient concentrations of formaldehyde and a number of soluble carbonyl compounds, including glycolaldehyde, glyoxal, methylglyoxal, glyoxylic acid, and pyruvic acid. Sampling was achieved by liquid scrubbing using a glass coil scrubber in conjunction with an autosampler which collected 5-min integrated liquid samples in septum-sealed vials. Analysis was performed on the ground after flight using high-performance liquid chromatography following derivatization of the carbonyl analytes with 2,4-dinitrophenylhydrazine; the limit of detection was 0.01 to 0.02 parts per billion by volume (ppbv) in the gas phase. Although lacking a real-time capability, this technique offers the advantage of simultaneously measuring six carbonyl compounds, savings in space and power on the aircraft, and a dependable ground-based analysis. This technique was deployed on the Canadian National Research Council DHC-6 Twin Otter during the 1993 summer intensive of the North Atlantic Regional Experiment. The data obtained on August 28, 1993, during a pollutant transport episode are presented as an example of the performance and capability of this technique.

  19. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  20. Technique for measurement of energy loss of proton in target medium

    NASA Astrophysics Data System (ADS)

    Khadke, U. V.

    2018-05-01

    Energy loss (EL) of charged particles in target medium needs special attention, when measurements are required to be done repeatedly over periods of couple of days. It is imperative to ensure that the measurements are not affected by the long term drifts of the accelerator beam energy and the associated electronic modules. For one such situation in measurement of EL of proton beam in thick target, we optimised and standardized the technique of measuring most probable energy loss of 24.774 MeV proton in aluminium target of thickness 330 mg/cm2. The paper described the method that we developed to ensure that our EL measurements were free from effects of drifts due to any associated electronic modules. The details of the energy spectrometer, basic principle and technique for energy loss measurements in target medium are described in this paper.

  1. High-concentration zeta potential measurements using light-scattering techniques

    PubMed Central

    Kaszuba, Michael; Corbett, Jason; Watson, Fraser Mcneil; Jones, Andrew

    2010-01-01

    Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent. Therefore, depending upon the size and optical properties of the particles, many samples will be too concentrated and will require dilution. The ability to measure samples at or close to their neat concentration would be desirable as it would minimize any changes in the zeta potential of the sample owing to dilution. However, the ability to measure turbid samples using light-scattering techniques presents a number of challenges. This paper discusses electrophoretic mobility measurements made on turbid samples at high concentration using a novel cell with reduced path length. Results are presented on two different sample types, titanium dioxide and a polyurethane dispersion, as a function of sample concentration. For both of the sample types studied, the electrophoretic mobility results show a gradual decrease as the sample concentration increases and the possible reasons for these observations are discussed. Further, a comparison of the data against theoretical models is presented and discussed. Conclusions and recommendations are made from the zeta potential values obtained at high concentrations. PMID:20732896

  2. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements

    NASA Astrophysics Data System (ADS)

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-10-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. The current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came to market with promising properties for trace gas analytics. The current study compares three instruments that have recently become commercially available (since 2011) with the best currently available technique (Vacuum UV Fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques perform considerably better compared to previous techniques, although some issues, such as temperature influence and cross sensitivities, need further attention.

  3. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  4. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  5. Measurement techniques investigated for detection of hydrogen chloride gas in ambient air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1976-01-01

    Nine basic techniques are discussed, ranging from concentration (parts per million) to dosage only (parts per million-seconds) measurement techniques. Data for each technique include lower detection limit, response time, instrument status, and in some cases, specificity. Several techniques discussed can detect ambient hydrogen chloride concentrations below 1 part per million with a response time of seconds.

  6. Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques

    NASA Technical Reports Server (NTRS)

    Reid, J.; Cassidy, D. T.; Menzies, R. T.

    1982-01-01

    Measurements of the linewidths of Pb-salt diode lasers operating in the 8- and 9-micron region are reported. The linewidths of the 9-micron lasers were determined by conventional heterodyne techniques, while for the 8-micron lasers a new technique based on a Fabry-Perot etalon was used. The new technique avoids the complexity and limited wavelength range of the heterodyne measurements and can be used for any tunable laser. The linewidths observed varied from 0.6 to more than 500-MHz FWHM. The linewidth was found to vary dramatically from device to device, to depend strongly on junction temperature and injection current, and to be correlated with vibrations caused by operation of a closed-cycle refrigerator.

  7. Slow neutron mapping technique for level interface measurement

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.

    2017-01-01

    Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.

  8. Disability: a model and measurement technique.

    PubMed Central

    Williams, R G; Johnston, M; Willis, L A; Bennett, A E

    1976-01-01

    Current methods of ranking or scoring disability tend to be arbitrary. A new method is put forward on the hypothesis that disability progresses in regular, cumulative patterns. A model of disability is defined and tested with the use of Guttman scale analysis. Its validity is indicated on data from a survey in the community and from postsurgical patients, and some factors involved in scale variation are identified. The model provides a simple measurement technique and has implications for the assessment of individual disadvantage, for the prediction of progress in recovery or deterioration, and for evaluation of the outcome of treatment regimes. PMID:953379

  9. Measuring Children's Attention Span: A Microcomputer Assessment Technique.

    ERIC Educational Resources Information Center

    Murphy-Berman, Virginia; And Others

    1986-01-01

    A microcomputer technique was used to measure the attention span of 115 boys and 117 girls in kindergarten through the ninth grade. Attentional ability increased only up through the fifth grade, and both the false alarm rate and the interstimulus interval scores were related to behavioral activity during test sessions. (Author/CB)

  10. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  11. Description and Evaluation of a Measurement Technique for Assessment of Performing Gender

    PubMed Central

    Harris, Kathleen Mullan; Halpern, Carolyn Tucker

    2016-01-01

    The influence of masculinity and femininity on behaviors and outcomes has been extensively studied in social science research using various measurement strategies. In the present paper, we describe and evaluate a measurement technique that uses existing survey items to capture the extent to which an individual behaves similarly to their same-gender peers. We use data from the first four waves of The National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally representative sample of adolescents (age 12–18) in the United States who were re-interviewed at ages 13–19, 18–26, and 24–32. We estimate split-half reliability and provide evidence that supports the validity of this measurement technique. We demonstrate that the resulting measure does not perform as a trait measure and is associated with involvement in violent fights, a pattern consistent with theory and empirical findings. This measurement technique represents a novel approach for gender researchers with the potential for expanding our current knowledge base. PMID:28630528

  12. An Investigation of a Photographic Technique of Measuring High Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Siviter, James H., Jr.; Strass, H. Kurt

    1960-01-01

    A photographic method of temperature determination has been developed to measure elevated temperatures of surfaces. The technique presented herein minimizes calibration procedures and permits wide variation in emulsion developing techniques. The present work indicates that the lower limit of applicability is approximately 1,400 F when conventional cameras, emulsions, and moderate exposures are used. The upper limit is determined by the calibration technique and the accuracy required.

  13. Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.

    2006-09-01

    The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.

  14. Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.

    PubMed

    Cash, David M; Frost, Chris; Iheme, Leonardo O; Ünay, Devrim; Kandemir, Melek; Fripp, Jurgen; Salvado, Olivier; Bourgeat, Pierrick; Reuter, Martin; Fischl, Bruce; Lorenzi, Marco; Frisoni, Giovanni B; Pennec, Xavier; Pierson, Ronald K; Gunter, Jeffrey L; Senjem, Matthew L; Jack, Clifford R; Guizard, Nicolas; Fonov, Vladimir S; Collins, D Louis; Modat, Marc; Cardoso, M Jorge; Leung, Kelvin K; Wang, Hongzhi; Das, Sandhitsu R; Yushkevich, Paul A; Malone, Ian B; Fox, Nick C; Schott, Jonathan M; Ourselin, Sebastien

    2015-12-01

    Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the

  15. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  16. Volume Estimates in Chronic Hemodialysis Patients by the Watson Equation and Bioimpedance Spectroscopy and the Impact on the Kt/Vurea calculation.

    PubMed

    Noori, Nazanin; Wald, Ron; Sharma Parpia, Arti; Goldstein, Marc B

    2018-01-01

    Accurate assessment of total body water (TBW) is essential for the evaluation of dialysis adequacy (Kt/V urea ). The Watson formula, which is recommended for the calculation of TBW, was derived in healthy volunteers thereby leading to potentially inaccurate TBW estimates in maintenance hemodialysis recipients. Bioimpedance spectroscopy (BIS) may be a robust alternative for the measurement of TBW in hemodialysis recipients. The primary objective of this study was to evaluate the accuracy of Watson formula-derived TBW estimates as compared with TBW measured with BIS. Second, we aimed to identify the anthropometric characteristics that are most likely to generate inaccuracy when using the Watson formula to calculate TBW. Finally, we derived novel anthropometric equations for the more accurate estimation of TBW. This was a cross-sectional study of prevalent in-center HD patients at St Michael's Hospital. One hundred eighty-four hemodialysis patients (109 men and 75 women) were evaluated in this study. Anthropometric measurements including weight, height, waist circumference, midarm circumference, and 4-site skinfold (biceps, triceps, subscapular, and suprailiac) thickness were measured; fat mass was measured using the formula by Durnin and Womersley. We measured TBW by BIS using the Body Composition Monitor (Fresenius Medical Care, Bad Homburg, Germany). We used the Bland-Altman method to calculate the difference between the TBW derived from the Watson method and the BIS. To derive new equations for TBW estimation, Pearson's correlation coefficients between BIS-TBW (the reference test) and other variables were examined. We used the least squares regression analysis to develop parsimonious equations to predict TBW. TBW values based on the Watson method had a high correlation with BIS-TBW (correlation coefficients = 0.87 and P < .001). Despite the high correlation, the Watson formula overestimated TBW by 5.1 (4.5-5.8) liters and 3.8 (3.0-4.5) liters, in men and women

  17. Impact during equine locomotion: techniques for measurement and analysis.

    PubMed

    Burn, J F; Wilson, A; Nason, G P

    1997-05-01

    Impact is implicated in the development of several types of musculoskeletal injury in the horse. Characterisation of impact experienced during strenuous exercise is an important first step towards understanding the mechanism for injury. Measurement and analysis of large, short duration impacts is difficult. The measurement system must be able to record transient peaks and high frequencies accurately. The analysis technique must be able to characterise the impact signal in time and frequency. This paper presents a measurement system and analysis technique for the characterisation of large impacts. A piezo-electric accelerometer was securely mounted on the dorsal surface of the horses hoof. Saddle mounted charge amplifiers and a 20 m coaxial cable transferred these data to a PC based logging system. Data were down-loaded onto a UNIX workstation and analysed using a proprietary statistics package. The values of parameters calculated from the time series data were comparable to those of other authors. A wavelet decomposition showed that the frequency profile of the signal changed with time. While most spectral energy was seen at impact, a significant amount of energy was contained in the signal immediately following impact. Over 99% of this energy was contained in frequencies less than 1250 Hz. The sampling rate and the frequency response of a measurement system for recording impact should be chosen carefully to prevent loss or corruption of data. Time scale analysis using a wavelet decomposition is a powerful technique which can be used to characterise impact data. The use of contour plots provides a highly visual representation of the time and frequency localisation of power during impact.

  18. Comparison of three techniques in measuring progressive addition lenses.

    PubMed

    Huang, Ching-Yao; Raasch, Thomas W; Yi, Allen Y; Sheedy, James E; Andre, Brett; Bullimore, Mark A

    2012-11-01

    To measure progressive addition lenses (PALs) by three techniques and to compare the differences across techniques. Five contemporary PALs (Varilux Comfort Enhanced, Varilux Physio Enhanced, Hoya Lifestyle, Shamir Autograph, and Zeiss individual) with plano distance power and a +2.00 diopters (D) add were evaluated under the condition of lateral displacement of the lens (no rotation and no tilt) using three methods. A Hartmann-Shack wavefront sensor (HSWFS) on a custom-built optical bench was used to capture and measure wavefront aberrations. A Rotlex Class Plus lens analyzer operating as a moiré interferometer was used to measure spherical and cylindrical powers. A coordinate measuring machine (CMM) was used to measure front and back surfaces of PALs and converted to desired optical properties. The data were analyzed with MATLAB programs. Contour plots of spherical equivalent power, cylindrical power, and higher-order aberrations (HOAs) in all PALs were generated to compare their differences. The differences in spherical equivalent and cylinder at distance, near, and progressive corridor areas among the HSWFS, Rotlex, and CMM methods were close to zero in all five PALs. The maximum differences are approximately 0.50 D and located below the near power zone and the edge areas of the lens when comparing the HSWFS and CMM with the Rotlex. HOAs measured both by the HSWFS and CMM were highest in the corridor area and the area surrounding the near zone in all PALs. The HOAs measured by the CMM were lower than those from the HSWFS by 0.02 to 0.04 μm. The three measurement methods are comparable for measuring spherical and cylindrical power across PALs. The non-optical method, CMM, can be used to evaluate the optical properties of a PAL by measuring front and back surface height measurements, although its estimates of HOAs are lower than those from the HSWFS.

  19. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.

  20. A photoacoustic technique to measure the properties of single cells

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  1. Interferometric Dynamic Measurement: Techniques Based on High-Speed Imaging or a Single Photodetector

    PubMed Central

    Fu, Yu; Pedrini, Giancarlo

    2014-01-01

    In recent years, optical interferometry-based techniques have been widely used to perform noncontact measurement of dynamic deformation in different industrial areas. In these applications, various physical quantities need to be measured in any instant and the Nyquist sampling theorem has to be satisfied along the time axis on each measurement point. Two types of techniques were developed for such measurements: one is based on high-speed cameras and the other uses a single photodetector. The limitation of the measurement range along the time axis in camera-based technology is mainly due to the low capturing rate, while the photodetector-based technology can only do the measurement on a single point. In this paper, several aspects of these two technologies are discussed. For the camera-based interferometry, the discussion includes the introduction of the carrier, the processing of the recorded images, the phase extraction algorithms in various domains, and how to increase the temporal measurement range by using multiwavelength techniques. For the detector-based interferometry, the discussion mainly focuses on the single-point and multipoint laser Doppler vibrometers and their applications for measurement under extreme conditions. The results show the effort done by researchers for the improvement of the measurement capabilities using interferometry-based techniques to cover the requirements needed for the industrial applications. PMID:24963503

  2. A noncontact laser technique for circular contouring accuracy measurement

    NASA Astrophysics Data System (ADS)

    Wang, Charles; Griffin, Bob

    2001-02-01

    The worldwide competition in manufacturing frequently requires the high-speed machine tools to deliver contouring accuracy in the order of a few micrometers, while moving at relatively high feed rates. Traditional test equipment is rather limited in its capability to measure contours of small radius at high speed. Described here is a new noncontact laser measurement technique for the test of circular contouring accuracy. This technique is based on a single-aperture laser Doppler displacement meter with a flat mirror as the target. It is of a noncontact type with the ability to vary the circular path radius continuously at data rates of up to 1000 Hz. Using this instrument, the actual radius, feed rate, velocity, and acceleration profiles can also be determined. The basic theory of operation, the hardware setup, the data collection, the data processing, and the error budget are discussed.

  3. 3D shape measurement of automotive glass by using a fringe reflection technique

    NASA Astrophysics Data System (ADS)

    Skydan, O. A.; Lalor, M. J.; Burton, D. R.

    2007-01-01

    In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.

  4. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  5. Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique

    DTIC Science & Technology

    2007-01-01

    Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3 Communications Arizona State University Mesa, AZ Mesa, AZ leah.rowe...7293 Page 2 of 8 Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3...training. ABOUT THE AUTHORS Leah J. Rowe is a Training Research Specialist with L -3 Communications at the Air Force Research Laboratory

  6. Electrical impedance measurements in the arm and the leg during a thirty day bed rest study

    NASA Technical Reports Server (NTRS)

    Cardus, David; Jaweed, Mazher; McTaggart, Wesley

    1995-01-01

    The need to detect, follow, and understand the effects of gravity on body fluid distribution is a constant stimulus to the quest for new techniques in this area of research. One of these techniques is electrical bioimpedance spectroscopy (BIS). Although not new, this is a technique whose applications to biomedical research are fairly recent. What is new is the development of instrumentation that has made practical the use of impedance spectroscopy in the biomedical setting, particularly in studies involving human subjects. The purpose of this paper is to report impedance spectroscopy observations made on a subject who was submitted to bed rest for a period of thirty days. These observations were made as part of a study on muscle atrophy during a thirty day head down bed rest. Since bed rest studies are very costly in human and financial terms, and technically difficult to realize, we felt that even though the present study deals only with a single case it was worthy of reporting because it illustrates kinds of questions impedance spectroscopy may help to answer in microgravity research.

  7. A new technique for measuring gas conversion factors for hydrocarbon mass flowmeters

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R.

    1983-01-01

    A technique for measuring calibration conversion factors for hydrocarbon mass flowmeters was developed. It was applied to a widely used type of commercial thermal mass flowmeter for hydrocarbon gases. The values of conversion factors for two common hydrocarbons measured using this technique are in good agreement with the empirical values cited by the manufacturer. Similar agreements can be expected for all other hydrocarbons. The technique is based on Nernst theorem for matching the partial pressure of oxygen in the combustion product gases with that in normal air. It is simple, quick and relatively safe--particularly for toxic/poisonous hydrocarbons.

  8. A modal separation measurement technique for broadband noise propagating inside circular ducts

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Johnston, J. P.

    1981-01-01

    A measurement technique which separates broadband noise propagating inside circular ducts into the acoustic duct modes is developed. The technique is also applicable to discrete frequency noise. The acoustic modes are produced by weighted combinations of the instantaneous outputs of microphones spaced around the duct circumference. The technique is compared with the cross spectral density approach presently available and found to have certain advantages, and disadvantages. Considerable simplification of both the new technique and the cross spectral density approach occurs when no correlation exists between different circumferential mode orders. The properties leading to uncorrelated modes and experimental tests which verify this condition are discussed. The modal measurement technique is applied to the case of broadband noise generated by flow through a coaxial obstruction (nozzle or orifice) in a pipe. Different circumferential mode orders are shown to be uncorrelated for this type of noise source.

  9. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods

    PubMed Central

    Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T.; Kornbluth, Joshua

    2016-01-01

    Abstract. Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation. PMID:27403447

  10. High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz

    2016-04-01

    Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords

  11. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  12. Online and offline experimental techniques for polycyclic aromatic hydrocarbons recovery and measurement.

    PubMed

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-01

    The implementation of techniques aimed at improving engine performance and reducing particulate matter (PM) pollutant emissions is strongly influenced by the limited understanding of the polycyclic aromatic hydrocarbons (PAH) formation chemistry, in combustion devices, that produces the PM emissions. New experimental results which examine the formation of multi-ring compounds are required. The present investigation focuses on two techniques for such an experimental examination by recovery of PAH compounds from a typical combustion oriented experimental apparatus. The online technique discussed constitutes an optimal solution but not always feasible approach. Nevertheless, a detailed description of a new online sampling system is provided which can serve as reference for future applications to different experimental set-ups. In comparison, an offline technique, which is sometimes more experimentally feasible but not necessarily optimal, has been studied in detail for the recovery of a variety of compounds with different properties, including naphthalene, biphenyl, and iodobenzene. The recovery results from both techniques were excellent with an error in the total carbon balance of around 10% for the online technique and an uncertainty in the measurement of the single species of around 7% for the offline technique. Although both techniques proved to be suitable for measurement of large PAH compounds, the online technique represents the optimal solution in view of the simplicity of the corresponding experimental procedure. On the other hand, the offline technique represents a valuable solution in those cases where the online technique cannot be implemented.

  13. Reliability of bioimpedance analysis compared with other adiposity measurements in children: the FLVS II Study.

    PubMed

    Kettaneh, A; Heude, B; Lommez, A; Borys, J M; Ducimetière, P; Charles, M A

    2005-12-01

    To evaluate the reproducibility of the measurement of% body fat by bipedal biometrical impedance analysis (BIA) compared with anthropometric measurements of adiposity in children and the correlations between these methods in children and adults. A cross-sectional study in a total of 1080 adults and children enrolled in 1999 in the Fleurbaix-Laventie Ville Santé II (FLVS II) population-based study in northern France. The reproducibility of anthropometrical and BIA methods was determined by a nested analysis of variance of repeated measurements by 2 investigators and a bipedal BIA device (Tanita TBF 310) in 64 pupils of two 5th grade classes. The correlation of BIA and anthropometric adiposity measurements with the unknown relative fat mass or volume of the body estimated by a latent adiposity variable (LAV) was established by the triads' method in 1080 subjects of the FLVS II cohort. The reproducibility was similar for the sum of skinfolds, waist circumference and BIA% fat measurements (intraclass correlation coefficients: 0.979-0.992). Correlation coefficient between BIA body fat% and the LAV was higher than 0.86 in all sex and Tanner stage related groups, and similar in children and adults, except in pubertal boys (0.76). With a high level of reproducibility, foot-to-foot BIA analysis provides a valuable measurement of total% fat for epidemiologic studies in children. However further studies are needed before extrapolating these results to overweight children.

  14. Effect of heterophoria measurement technique on the clinical accommodative convergence to accommodation ratio.

    PubMed

    Escalante, Jaime Bernal; Rosenfield, Mark

    2006-05-01

    Measurement of the stimulus accommodative convergence to accommodation (AC/A) ratio is a standard procedure in clinical optometric practice. Typically, heterophoria is assessed at several accommodative stimulus levels, and the gradient of the vergence to accommodation function computed. A number of procedures are available for the subjective measurement of heterophoria, but it is unclear whether the use of different vergence measurement techniques will alter the obtained AC/A value. Accordingly, the current study compared AC/A ratios measured using 3 clinical subjective heterophoria tests, namely the von Graefe (VG), Maddox Rod (MR), and Modified Thorington (MT) procedures. The AC/A ratio was measured in 60 visually normal subjects between 20 and 25 years of age using each of the 3 procedures listed above. The accommodative stimulus was varied by the introduction of +/-1.00 diopter (D) spherical lenses over the distance refractive correction while subjects viewed a target at a viewing distance of 40 cm. To examine the repeatability of each procedure, the AC/A ratio was measured on 2 separate occasions for each measurement technique, with the 2 sessions being separated by at least 24 hours. Mean values of stimulus AC/A ratio measured using the VG, MR, and MT procedures were 3.47, 2.99, and 2.46Delta/D, respectively. These differences were significant (p=0.0001). In addition, the coefficient of repeatability for the 3 techniques was 2.22, 1.99, and 1.20 Delta/D, respectively. Ratios obtained using the Modified Thorington technique with +/-1.00 D lenses showed the best repeatability, whereas the poorest repeatability was found with the von Graefe technique when only +1.00 D lenses were used to vary the accommodative stimulus. Accordingly, we recommend that that Modified Thorington procedure with +/-1.00 D lenses be used to quantify heterophoria during clinical measurement of the stimulus AC/A ratio.

  15. An Accurate Scatter Measurement and Correction Technique for Cone Beam Breast CT Imaging Using Scanning Sampled Measurement (SSM) Technique.

    PubMed

    Liu, Xinming; Shaw, Chris C; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C; Kappadath, S Cheenu

    2006-02-28

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images.Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  16. Uncertainty Analysis for Oil-Film Interferometry Skin-Friction Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.; Brown, James L.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Over the past 20 years, the use of oil-film interferometry to measure the skin friction coefficient (C(sub f) = tau/q where tau is the surface shear stress and q is the dynamic pressure) has increased. Different forms of this oil-film technique with various levels of accuracy and ease of use have been successfully applied in a wide range of flows. The method's popularity is growing due to its relative ease of implementation and minimal intrusiveness as well as an increased demand for C(sub f) measurements. Nonetheless, the accuracy of these methods has not been rigorously addressed to date. Most researchers have simply shown that the skin-friction measurements made using these techniques compare favorably with other measurements and theory, most of which are only accurate to within 5-20%. The use of skin-friction data in the design of commercial aircraft, whose drag at cruise is 50% skin-friction drag, and in the validation of computational fluid dynamics programs warrants better uncertainty estimates. Additional information is contained in the original extended abstract.

  17. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    NASA Astrophysics Data System (ADS)

    von Martens, Hans-Jürgen

    2010-05-01

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s2). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  18. Precision of lumbar intervertebral measurements: does a computer-assisted technique improve reliability?

    PubMed

    Pearson, Adam M; Spratt, Kevin F; Genuario, James; McGough, William; Kosman, Katherine; Lurie, Jon; Sengupta, Dilip K

    2011-04-01

    Comparison of intra- and interobserver reliability of digitized manual and computer-assisted intervertebral motion measurements and classification of "instability." To determine if computer-assisted measurement of lumbar intervertebral motion on flexion-extension radiographs improves reliability compared with digitized manual measurements. Many studies have questioned the reliability of manual intervertebral measurements, although few have compared the reliability of computer-assisted and manual measurements on lumbar flexion-extension radiographs. Intervertebral rotation, anterior-posterior (AP) translation, and change in anterior and posterior disc height were measured with a digitized manual technique by three physicians and by three other observers using computer-assisted quantitative motion analysis (QMA) software. Each observer measured 30 sets of digital flexion-extension radiographs (L1-S1) twice. Shrout-Fleiss intraclass correlation coefficients for intra- and interobserver reliabilities were computed. The stability of each level was also classified (instability defined as >4 mm AP translation or 10° rotation), and the intra- and interobserver reliabilities of the two methods were compared using adjusted percent agreement (APA). Intraobserver reliability intraclass correlation coefficients were substantially higher for the QMA technique THAN the digitized manual technique across all measurements: rotation 0.997 versus 0.870, AP translation 0.959 versus 0.557, change in anterior disc height 0.962 versus 0.770, and change in posterior disc height 0.951 versus 0.283. The same pattern was observed for interobserver reliability (rotation 0.962 vs. 0.693, AP translation 0.862 vs. 0.151, change in anterior disc height 0.862 vs. 0.373, and change in posterior disc height 0.730 vs. 0.300). The QMA technique was also more reliable for the classification of "instability." Intraobserver APAs ranged from 87 to 97% for QMA versus 60% to 73% for digitized manual

  19. CD-measurement technique for hole patterns on stencil mask

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mikio; Yusa, Satoshi; Takikawa, Tadahiko; Fujita, Hiroshi; Sano, Hisatake; Hoga, Morihisa; Hayashi, Naoya

    2004-12-01

    EB lithography has a potential to successfully form hole patterns as small as 80 nm with a stencil mask. In a previous paper we proposed a technique using a HOLON dual-mode critical dimension (CD) SEM ESPA-75S in the transmission mode for CD measurement of line-and-space patterns on a stencil mask. In this paper we extend our effort of developing a CD measurement technique to contact hole features and determine it in comparison of measured values between features on mask and those printed on wafer. We have evaluated the width method and the area methods using designed 80-500 nm wide contact hole patterns on a large area membrane mask and their resist images on wafer printed by a LEEPL3000. We find that 1) the width method and the area methods show an excellent mask-wafer correlation for holes over 110 nm, and 2) the area methods show a better mask-wafer correlation than the width method does for holes below 110 nm. We conclude that the area calculated from the transmission SEM image is more suitable in defining the hole dimensions than the width for contact holes on a stencil mask.

  20. Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge

    PubMed Central

    Cash, David M.; Frost, Chris; Iheme, Leonardo O.; Ünay, Devrim; Kandemir, Melek; Fripp, Jurgen; Salvado, Olivier; Bourgeat, Pierrick; Reuter, Martin; Fischl, Bruce; Lorenzi, Marco; Frisoni, Giovanni B.; Pennec, Xavier; Pierson, Ronald K.; Gunter, Jeffrey L.; Senjem, Matthew L.; Jack, Clifford R.; Guizard, Nicolas; Fonov, Vladimir S.; Collins, D. Louis; Modat, Marc; Cardoso, M. Jorge; Leung, Kelvin K.; Wang, Hongzhi; Das, Sandhitsu R.; Yushkevich, Paul A.; Malone, Ian B.; Fox, Nick C.; Schott, Jonathan M.; Ourselin, Sebastien

    2015-01-01

    Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated “direct” measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the

  1. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when themore » bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.« less

  2. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  3. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  4. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  5. An Exploration of Several Structural Measurement Techniques for Usage with Functionally Graded Materials

    DTIC Science & Technology

    2006-12-01

    Welsch, and E.W. Collings, eds. Materials Properties Handbook: Titanium Alloys . ASM International: 1994. p. 179 Davis, Joseph, ed. Properties ...AN EXPLORATION OF SEVERAL STRUCTURAL MEASUREMENT TECHNIQUES FOR USAGE WITH FUNCTIONALLY GRADED...of Defense, or the United States Government. AFIT/GAE/ENY/07-D03 AN EXPLORATION OF SEVERAL STRUCTURAL MEASUREMENT TECHNIQUES FOR USAGE WITH

  6. Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations

    NASA Astrophysics Data System (ADS)

    Zellweger, Christoph; Emmenegger, Lukas; Firdaus, Mohd; Hatakka, Juha; Heimann, Martin; Kozlova, Elena; Spain, T. Gerard; Steinbacher, Martin; van der Schoot, Marcel V.; Buchmann, Brigitte

    2016-09-01

    Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.

  7. Evaluation of Uranium-235 Measurement Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Lavender, Curt A.; Dibert, Mark W.

    2017-05-23

    Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution inmore » U-Mo cast plates.« less

  8. Evaluation of three new laser spectrometer techniques for in-situ carbon monoxide measurements

    NASA Astrophysics Data System (ADS)

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-07-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. However, the current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came on the market with promising properties for trace gas analytics. The current study compares three instruments that are recently commercially available (since 2011) with the up to now best available technique (vacuum UV fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques provide a considerably better performance compared to previous techniques, although some issues such as temperature influence and cross sensitivities need further attention.

  9. Nitrous acid measurements in urban Los Angeles using novel techniques

    NASA Astrophysics Data System (ADS)

    Young, C. J.; Washenfelder, R. A.; Brown, S. S.; Veres, P. R.; Cochran, A. K.; Roberts, J. M.; Pikelnaya, O.; Tsai, C.; Stutz, J.; Afif, C.; Michoud, V.; Borbon, A.

    2010-12-01

    Nitrous acid (HONO) is an important player in tropospheric photochemistry, as it is a source of hydroxyl radicals. Thus, accurate measurements of HONO and its sources and sinks are critical to fully understand tropospheric oxidation processes. Differential optical absorption spectroscopy (DOAS) has been used to measure HONO in the field over the past two decades, yielding much of the current knowledge about the molecule and its sources. In situ measurements with high sensitivity, time resolution and minimal interferences can provide further information about HONO sources and sinks. One method that could satisfy these criteria is incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). IBBCEAS combines the sensitivity of cavity-enhanced techniques with the specificity of spectral resolution. The application of IBBCEAS to laboratory HONO measurements has been demonstrated, but the technique has not yet been used to detect HONO in the field. A two-channel instrument was custom-built for field measurements of HONO, with the first channel a 365 nm-centred IBBCEAS to measure HONO and NO2 and the second channel a 403 nm cavity ring-down spectrometer for an independent measure of NO2. The instrument was successfully deployed at the CalNex Pasadena ground site in May and June, 2010. Measurements compared well with previously validated HONO instrumentation, including DOAS, negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) and a wet-chemical, derivitization system with HPLC detection (NitroMAC).

  10. Interferometric phase measurement techniques for coherent beam combining

    NASA Astrophysics Data System (ADS)

    Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Primot, Jérôme; Brignon, Arnaud

    2015-03-01

    Coherent beam combining of fiber amplifiers provides an attractive mean of reaching high power laser. In an interferometric phase measurement the beams issued for each fiber combined are imaged onto a sensor and interfere with a reference plane wave. This registration of interference patterns on a camera allows the measurement of the exact phase error of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Based on this technique, several architectures can be proposed to coherently combine a high number of fibers. The first one based on digital holography transfers directly the image of the camera to spatial light modulator (SLM). The generated hologram is used to compensate the phase errors induced by the amplifiers. This architecture has therefore a collective phase measurement and correction. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. In that case, only 20 pixels per fiber on the SLM are needed to obtain a residual phase shift error below λ/10rms. The second proposed architecture calculates the correction applied to each fiber channel by tracking the relative position of the interference finges. In this case, a phase modulator is placed on each channel. In that configuration, only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20rms, which demonstrates the scalability of this concept.

  11. Reproducibility of techniques using Archimedes' principle in measuring cancellous bone volume.

    PubMed

    Zou, L; Bloebaum, R D; Bachus, K N

    1997-01-01

    Researchers have been interested in developing techniques to accurately and reproducibly measure the volume fraction of cancellous bone. Historically bone researchers have used Archimedes' principle with water to measure the volume fraction of cancellous bone. Preliminary results in our lab suggested that the calibrated water technique did not provide reproducible results. Because of this difficulty, it was decided to compare the conventional water method to a water with surfactant and a helium method using a micropycnometer. The water/surfactant and the helium methods were attempts to improve the fluid penetration into the small voids present in the cancellous bone structure. In order to compare the reproducibility of the new methods with the conventional water method, 16 cancellous bone specimens were obtained from femoral condyles of human and greyhound dog femora. The volume fraction measurements on each specimen were repeated three times with all three techniques. The results showed that the helium displacement method was more than an order of magnitudes more reproducible than the two other water methods (p < 0.05). Statistical analysis also showed that the conventional water method produced the lowest reproducibility (p < 0.05). The data from this study indicate that the helium displacement technique is a very useful, rapid and reproducible tool for quantitatively characterizing anisotropic porous tissue structures such as cancellous bone.

  12. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.

    PubMed

    Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H

    2015-04-01

    Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas

  13. Comparisons between different techniques for measuring mass segregation

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Goodwin, Simon P.

    2015-06-01

    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.

  14. Initial development of an NIR strain measurement technique in brittle geo-materials

    NASA Astrophysics Data System (ADS)

    Butcher, Emily; Gibson, Andrew; Benson, Philip

    2016-04-01

    Visible-Near Infrared Spectroscopy (VIS-NIR) is a technique developed for the non-contact measurement of compositional characteristics of surfaces. The technique is rapid, sensitive to change in surface topology and has found applications ranging from planetary geology, soil science, pharmacy to materials testing. The technique has also been used in a limited fashion to measure strain changes in rocks and minerals (Ord and Hobbs 1986). However, there have been few quantitative studies linking such changes in material strains (and other rock physics parameters) to the resulting VIS-NIT signature. This research seeks to determine whether improvements in VIS-NIR equipment means that such a technique is a viable method to measure strains in rock via this remote (non-contact) method. We report new experiments carried out using 40 mm Brazilian Tensile discs of Carrera Marble and Darley Dale Sandstone using an Instron 600LX in the University of Portsmouth Rock Mechanics Laboratory. The tensile test was selected for this experiment as the sample shape and sensor arrangements allow access to a 'flat' surface area throughout the test, allowing surface measurements to be continuously taken whilst the discs are strained to failure. An ASD Labspec 5000 with 25 mm foreoptic was used to collect reflectance spectra in the range 350-2500 nm during each tensile test. Results from Carrera Marble experiments show that reflectance at 2050 nm negatively correlates (by polynomial regression) with axial strain between 0.05-0.5%, with r2 of 0.99. Results from Darley Dale Sandstone data show that reflectance at 1970 nm positively correlates with axial deformation between 0.05-0.5%, with r2 of 0.98. Initial analyses suggests that the VIS-NIR possesses an output that scales in a quantifiable manner with rock strain, and shows promise as a technique for strain measurement. The method has particular application for allowing our laboratory measurements to "ground truth" data taken from drone and

  15. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  16. Methodology of the Westinghouse dynamic rod worth measurement technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Y.A.; Chapman, D.M.; Easter, M.E.

    1992-01-01

    During zero-power physics testing, plant operations personnel use one of various techniques to measure the reactivity worth of the control rods to confirm shutdown margin. A simple and fast procedure for measuring rod worths called dynamic rod worth measurement (DRWM) has been developed at Westinghouse. This procedure was tested at the recent startups of Point Beach Nuclear Power Plant Unit 1 cycle 20 and Unit 2 cycle 18. The results of these tests show that DRWM measures rod worths with accuracy comparable to that of both boron dilution and rod bank exchange measurements. The DRWM procedure is a fast processmore » of measuring the reactivity worth of individual banks by inserting and withdrawing the bank continuously at the maximum stepping speed without changing the boron concentration and recording the signals of the ex-core detectors.« less

  17. Review of chemical separation techniques applicable to alpha spectrometric measurements

    NASA Astrophysics Data System (ADS)

    de Regge, P.; Boden, R.

    1984-06-01

    Prior to alpha-spectrometric measurements several chemical manipulations are usually required to obtain alpha-radiating sources with the desired radiochemical and chemical purity. These include sampling, dissolution or leaching of the elements of interest, conditioning of the solution, chemical separation and preparation of the alpha-emitting source. The choice of a particular method is dependent on different criteria but always involves aspects of the selectivity or the quantitative nature of the separations. The availability of suitable tracers or spikes and modern high resolution instruments resulted in the wide-spread application of isotopic dilution techniques to the problems associated with quantitative chemical separations. This enhanced the development of highly elective methods and reagents which led to important simplifications in the separation schemes. The chemical separation methods commonly used in connection with alpha-spectrometric measurements involve precipitation with selected scavenger elements, solvent extraction, ion exchange and electrodeposition techniques or any combination of them. Depending on the purpose of the final measurement and the type of sample available the chemical separation methods have to be adapted to the particular needs of environment monitoring, nuclear chemistry and metrology, safeguards and safety, waste management and requirements in the nuclear fuel cycle. Against the background of separation methods available in the literature the present paper highlights the current developments and trends in the chemical techniques applicable to alpha spectrometry.

  18. Measurement Techniques and Instruments Suitable for Life-prediction Testing of Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Wood, V. E.; Mcginniss, V. D.; Hassell, J. A.; Richard, N. A.; Gaines, G. B.; Carmichael, D. C.

    1979-01-01

    The validation of a 20-year service life for low-cost photovoltaic arrays is a critical requirement in the Low-Cost Solar Array (LSA) Project. The validation is accomplished through accelerated life-prediction tests. A two-phase study was conducted to address the needs before such tests are carried out. The results and recommended techniques from the Phase 1 investigation are summarized in the appendix. Phase 2 of the study is covered in this report and consisted of experimental evaluations of three techniques selected from these recommended as a results of the Phase 1 findings. The three techniques evaluated were specular and nonspecular optical reflectometry, chemiluminescence measurements, and electric current noise measurements.

  19. A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited amore » number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.« less

  20. Technique for calibrating angular measurement devices when calibration standards are unavailable

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.

    1991-01-01

    A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined.

  1. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  2. In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique

    PubMed Central

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065

  3. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    NASA Astrophysics Data System (ADS)

    Mohamad, M.; Sabbri, A. R. M.; Mat Jafri, M. Z.; Omar, A. F.

    2014-11-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R2) above 70 % for all the subjects. However, the value of R2 between NIRQuest and Moisture Checker was observed to be lower with the R2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field.

  4. Red blood cell-deformability measurement: review of techniques.

    PubMed

    Musielak, M

    2009-01-01

    Cell-deformability characterization involves general measurement of highly complex relationships between cell biology and physical forces to which the cell is subjected. The review takes account of the modern technical solutions simulating the action of the force applied to the red blood cell in macro- and microcirculation. Diffraction ektacytometers and rheoscopes measure the mean deformability value for the total red blood cell population investigated and the deformation distribution index of individual cells, respectively. Deformation assays of a whole single cell are possible by means of optical tweezers. The single cell-measuring setups for micropipette aspiration and atomic force microscopy allow conducting a selective investigation of deformation parameters (e.g., cytoplasm viscosity, viscoelastic membrane properties). The distinction between instrument sensitivity to various RBC-rheological features as well as the influence of temperature on measurement are discussed. The reports quoted confront fascinating possibilities of the techniques with their medical applications since the RBC-deformability has the key position in the etiology of a wide range of conditions.

  5. Non-contact measurement of diamagnetic susceptibility change by a magnetic levitation technique

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Mogi, I.; Awaji, S.; Watanabe, K.

    2011-03-01

    A new method for measuring the temperature dependence of the diamagnetic susceptibility is described. It is based on the Faraday method and employs a magnetic levitation technique. The susceptibility of a magnetically levitating diamagnetic sample is determined from the product of the magnetic flux density and the field gradient at the levitating position observed using a micro CCD camera. The susceptibility of a sample during containerless melting and solidification can be measured to a precision of better than ±0.05%. The temperature dependence of the susceptibility of paraffin wax was measured by the magnetic levitation technique with an accuracy of ±0.25%. This method enables sensitive and contactless measurements of the diamagnetic susceptibility across the melting point with in situ observations.

  6. Microwave techniques for measuring complex permittivity and permeability of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillon, P.

    1995-08-01

    Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.

  7. A comparison of 3 wound measurement techniques: effects of pressure ulcer size and shape.

    PubMed

    Bilgin, Mehtap; Güneş, Ulkü Yapucu

    2013-01-01

    The aim of this study was to examine the levels of agreement among 3 techniques used in wound measurement comparing more spherical versus irregularly shaped wounds. The design of this study is evaluative research. Sixty-five consecutive patients with 80 pressure ulcers of various sizes referred from a university hospital in Izmir, Turkey, were evaluated. The 80 pressure ulcers identified on the 65 participants were divided into 2 groups based on pressure ulcer shape and wound surface area. Twenty-four of the 80 ulcers (30%) were characterized as irregularly shaped and greater than 10 cm. Fifty-six were regularly shaped (approximating a circle) and less than 10 cm. Pressure ulcer areas were measured using 3 techniques: measurement with a ruler (wound area was calculated by measuring and multiplying the greatest length by the greatest width perpendicular to the greatest length), wound tracing using graduated acetate paper, and digital planimetry. The level of agreement among the techniques was explored using the intraclass correlation coefficient (ICC). Strong agreement was observed among the techniques when assessing small, more regularly shaped wounds (ICC = 0.95). Modest agreement was achieved when measuring larger, irregularly shaped wounds (ICC = 0.70). Each of these techniques is adequate for measuring surface areas of smaller wounds with an approximately circular shape. Measurement of pressure ulcer area via the ruler method tended to overestimate surface area in larger and more irregularly shaped wounds when compared to acetate and digital planimetry. We recommend digital planimetry or acetate tracing for measurement of larger and more irregularly shaped pressure ulcers in the clinical setting.

  8. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement.

    PubMed

    Wang, Kaiwei; Martin, Haydn; Jiang, Xiangqian

    2008-02-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.

  9. Modulation transfer function measurement technique for small-pixel detectors

    NASA Technical Reports Server (NTRS)

    Marchywka, Mike; Socker, Dennis G.

    1992-01-01

    A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.

  10. A new technique for measuring listening and reading literacy in developing countries

    NASA Astrophysics Data System (ADS)

    Greene, Barbara A.; Royer, James M.; Anzalone, Stephen

    1990-03-01

    One problem in evaluating educational interventions in developing countries is the absence of tests that adequately reflect the culture and curriculum. The Sentence Verification Technique is a new procedure for measuring reading and listening comprehension that allows for the development of tests based on materials indigenous to a given culture. The validity of using the Sentence Verification Technique to measure reading comprehension in Grenada was evaluated in the present study. The study involved 786 students at standards 3, 4 and 5. The tests for each standard consisted of passages that varied in difficulty. The students identified as high ability students in all three standards performed better than those identified as low ability. All students performed better with easier passages. Additionally, students in higher standards performed bettter than students in lower standards on a given passage. These results supported the claim that the Sentence Verification Technique is a valid measure of reading comprehension in Grenada.

  11. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  12. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivitymore » were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.« less

  13. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  14. Measurement of the Dielectric Constant of Seawater at L-Band: Techniques and Measurements

    NASA Technical Reports Server (NTRS)

    Lang, R.; Utku, C.; Tarkocin, Y.; LeVine, D.

    2009-01-01

    Satellite instruments, that will monitor salinity from space in the near future, require an accurate relationship between salinity/temperature and seawater dielectric constant. This paper will review measurements that were made of the dielectric constant of seawater during the past several years. The objective of the measurements is to determine the dependence of the dielectric constant of seawater on salinity and on temperature, more accurately than in the past. by taking advantage of modem instrumentation. The measurements of seawater permittivity have been performed as a function of salinity and temperature using a transmission resonant cavity technique. The measurements have been made in the salinity range of 10 to 38 psu and in the temperature range of IOU C to 35 C. These results will be useful in algorithm development for sensor systems such as SMOS and Aquarius. The measurement system consists of a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The diameter of the tube has been made very small so that the amount of seawater introduced in the cavity is small - thus maintaining the sensitivity of the measurements and allowing the use of perturbation theory predicting the seawater permittivity. The change in resonant frequency and the change in cavity Q can be used to determine the real and imaginary pare of the dielectric constant of seawater introduced into the slender tube. The microwave measurements are made by an HPS722D network analyzer. The cavity has been immersed in a uateriethylene-glycol bath which is connected to a Lauda circulator. The circulator keeps the brass cavity at a temperature constant to within 0.01 degrees. The system is automated using a Visual Basic program to control the analyzer and to collect the data. The results of the dielectric constant measurements of seawater will be presented. The measurement results will be

  15. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    PubMed

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Study of body composition in small animals by a multifrequency impedancemeter

    NASA Astrophysics Data System (ADS)

    Ribbe, E.; Khider, N.; Moreno, M. V.

    2010-04-01

    Bioimpedance is essentially used today to study the body composition in the human body but not really in small animals. The aim of this paper is to develop a model for body composition in rats to help pharmaceutical labs assessing effects of medicine on rats. We propose a non invasive, rapid and scientific method. With a multifrequency impedancemeter, Z-Métrix® (BioparHom© Company France), resistances and reactances are measured at 55 frequencies for a population of 40 rats (males and females). With our model, derived from Cole-Cole model, resistances of extracellular (Re) and total body (Rinf) compartment are extrapolated. Three methods were applied: posterior to posterior leg, anterior to posterior leg on the left and on the right side. Measurements by CT imaging were performed on the anesthetized population to determine Fat Mass (FM), Lean Body Mass (LBM) and Bone Mineral Content (BMC), as our reference measurements. With electrical data, age, sex and weight, equations are created to calculate FM, LBM and BMC with the three methods. Graphs of correlation, between tissue masses calculated by bioimpedance and obtained with scanner, indicate that measurements with posterior to posterior leg are better. Moreover, there is no significantly difference between tissue masses measured by bioimpedance and with the scanner.

  17. Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows

    DOE PAGES

    McCoy, Chad A.; Knudson, Marcus D.

    2017-08-24

    Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less

  18. Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Chad A.; Knudson, Marcus D.

    Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less

  19. A technique to measure rotordynamic coefficients in hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Capaldi, Russell J.

    1993-01-01

    An experimental technique is described for measuring the rotordynamic coefficients of fluid film journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit. This configuration yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed hydrostatic journal bearing.

  20. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  1. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    PubMed

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  2. Systems-oriented survey of noncontact temperature measurement techniques for rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Peyton, David; Kinoshita, Hiroyuki; Lo, G. Q.; Kwong, Dim-Lee

    1991-04-01

    Rapid Thermal Processing (RTP) is becoming a popular approach for future ULSI manufacturing due to its unique low thermal budget and process flexibility. Furthermore when RTP is combined with Chemical Vapor Deposition (CVD) the so-called RTP-CVD technology it can be used to deposit ultrathin films with extremely sharp interfaces and excellent material qualities. One major consequence of this type of processing however is the need for extremely tight control of wafer temperature both to obtain reproducible results for process control and to minimize slip and warpage arising from nonuniformities in temperature. Specifically temperature measurement systems suitable for RiP must have both high precision--within 1-2 degrees--and a short response time--to output an accurate reading on the order of milliseconds for closedloop control. Any such in-situ measurement technique must be non-contact since thermocouples cannot meet the response time requirements and have problems with conductive heat flow in the wafer. To date optical pyrometry has been the most widely used technique for RiP systems although a number of other techniques are being considered and researched. This article examines several such techniques from a systems perspective: optical pyrometry both conventional and a new approach using ellipsometric techniques for concurrent emissivity measurement Raman scattering infrared laser thermometry optical diffraction thermometry and photoacoustic thermometry. Each approach is evaluated in terms of its actual or estimated manufacturing cost remote sensing capability precision repeatability dependence on processing history range

  3. Dimensional measuring techniques in the automotive and aircraft industry

    NASA Astrophysics Data System (ADS)

    Muench, K. H.; Baertlein, Hugh

    1994-03-01

    Optical tooling methods used in industry are rapidly being replaced by new electronic sensor techniques. The impact of new measuring technologies on the production process has caused major changes on the industrial shop floor as well as within industrial measurement systems. The paper deals with one particular industrial measuring system, the manual theodolite measuring system (TMS), within the aircraft and automobile industry. With TMS, setup, data capture, and data analysis are flexible enough to suit industry's demands regarding speed, accuracy, and mobility. Examples show the efficiency and the wide range of TMS applications. In cooperation with industry, the Video Theodolite System was developed. Its origin, functions, capabilities, and future plans are briefly described. With the VTS a major step has been realized in direction to vision systems for industrial applications.

  4. Discrete filtering techniques applied to sequential GPS range measurements

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1987-01-01

    The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.

  5. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  6. Development of a noninvasive technique for the measurement of intracranial pressure

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Shuer, L. M.; Yost, W. T.; Hargens, A. R.

    1998-01-01

    Intracranial pressure (ICP) dynamics are important for understanding adjustments to altered gravity. Previous flight observations document significant facial edema during exposure to microgravity, which suggests that ICP is elevated during microgravity. However, there are no experimental results obtained during space flight, primarily due to the invasiveness of currently available techniques. We have developed and refined a noninvasive technique to measure intracranial pressure noninvasively. The technique is based upon detecting skull movements of a few micrometers in association with altered intracranial pressure. We reported that the PPLL technique has enough sensitivity to detect changes in cranial distance associated with the pulsation of ICP in cadavera. In normal operations, however, we place a transducer on the scalp. Thus, we cannot rule out the possibility that the PPLL technique picks up cutaneous pulsation. The purpose of the present study was therefore to show that the PPLL technique has enough sensitivity to detect changes in cranial distance associated with cardiac cycles in vivo.

  7. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  8. Free-flight measurement technique in the free-piston high-enthalpy shock tunnel.

    PubMed

    Tanno, H; Komuro, T; Sato, K; Fujita, K; Laurence, S J

    2014-04-01

    A novel multi-component force-measurement technique has been developed and implemented at the impulse facility JAXA-HIEST, in which the test model is completely unrestrained during the test and thus experiences free-flight conditions for a period on the order of milliseconds. Advantages over conventional free-flight techniques include the complete absence of aerodynamic interference from a model support system and less variation in model position and attitude during the test itself. A miniature on-board data recorder, which was a key technology for this technique, was also developed in order to acquire and store the measured data. The technique was demonstrated in a HIEST wind-tunnel test campaign in which three-component aerodynamic force measurement was performed on a blunted cone of length 316 mm, total mass 19.75 kg, and moment of inertia 0.152 kgm(2). During the test campaign, axial force, normal forces, and pitching moment coefficients were obtained at angles of attack from 14° to 32° under two conditions: H0 = 4 MJ/kg, P0 = 14 MPa; and H0 = 16 MJ/kg, P0 = 16 MPa. For the first, low-enthalpy condition, the test flow was considered a perfect gas; measurements were thus directly compared with those obtained in a conventional blow-down wind tunnel (JAXA-HWT2) to evaluate the accuracy of the technique. The second test condition was a high-enthalpy condition in which 85% of the oxygen molecules were expected to be dissociated; high-temperature real-gas effects were therefore evaluated by comparison with results obtained in perfect-gas conditions. The precision of the present measurements was evaluated through an uncertainty analysis, which showed the aerodynamic coefficients in the HIEST low enthalpy test agreeing well with those of JAXA-HWT2. The pitching-moment coefficient, however, showed significant differences between low- and high-enthalpy tests. These differences are thought to result from high-temperature real-gas effects.

  9. Free-flight measurement technique in the free-piston high-enthalpy shock tunnel

    NASA Astrophysics Data System (ADS)

    Tanno, H.; Komuro, T.; Sato, K.; Fujita, K.; Laurence, S. J.

    2014-04-01

    A novel multi-component force-measurement technique has been developed and implemented at the impulse facility JAXA-HIEST, in which the test model is completely unrestrained during the test and thus experiences free-flight conditions for a period on the order of milliseconds. Advantages over conventional free-flight techniques include the complete absence of aerodynamic interference from a model support system and less variation in model position and attitude during the test itself. A miniature on-board data recorder, which was a key technology for this technique, was also developed in order to acquire and store the measured data. The technique was demonstrated in a HIEST wind-tunnel test campaign in which three-component aerodynamic force measurement was performed on a blunted cone of length 316 mm, total mass 19.75 kg, and moment of inertia 0.152 kgm2. During the test campaign, axial force, normal forces, and pitching moment coefficients were obtained at angles of attack from 14° to 32° under two conditions: H0 = 4 MJ/kg, P0 = 14 MPa; and H0 = 16 MJ/kg, P0 = 16 MPa. For the first, low-enthalpy condition, the test flow was considered a perfect gas; measurements were thus directly compared with those obtained in a conventional blow-down wind tunnel (JAXA-HWT2) to evaluate the accuracy of the technique. The second test condition was a high-enthalpy condition in which 85% of the oxygen molecules were expected to be dissociated; high-temperature real-gas effects were therefore evaluated by comparison with results obtained in perfect-gas conditions. The precision of the present measurements was evaluated through an uncertainty analysis, which showed the aerodynamic coefficients in the HIEST low enthalpy test agreeing well with those of JAXA-HWT2. The pitching-moment coefficient, however, showed significant differences between low- and high-enthalpy tests. These differences are thought to result from high-temperature real-gas effects.

  10. Verification and extension of the MBL technique for photo resist pattern shape measurement

    NASA Astrophysics Data System (ADS)

    Isawa, Miki; Tanaka, Maki; Kazumi, Hideyuki; Shishido, Chie; Hamamatsu, Akira; Hasegawa, Norio; De Bisschop, Peter; Laidler, David; Leray, Philippe; Cheng, Shaunee

    2011-03-01

    In order to achieve pattern shape measurement with CD-SEM, the Model Based Library (MBL) technique is in the process of development. In this study, several libraries which consisted by double trapezoid model placed in optimum layout, were used to measure the various layout patterns. In order to verify the accuracy of the MBL photoresist pattern shape measurement, CDAFM measurements were carried out as a reference metrology. Both results were compared to each other, and we confirmed that there is a linear correlation between them. After that, to expand the application field of the MBL technique, it was applied to end-of-line (EOL) shape measurement to show the capability. Finally, we confirmed the possibility that the MBL could be applied to more local area shape measurement like hot-spot analysis.

  11. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  12. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  13. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  14. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  16. Investigation of a continuous heating/cooling technique for cardiac output measurement.

    PubMed

    Ehlers, K C; Mylrea, K C; Calkins, J M

    1987-01-01

    Cardiac output is frequently measured to assess patient hemodynamic status in the operating room and intensive care unit. Current research for measuring cardiac output includes continuous sinusoidal heating and synchronous detection of thermal signals. This technique is limited by maximum heating element temperatures and background thermal noise. A continuous heating and cooling technique was investigated in vitro to determine if greater thermal signal magnitudes could be obtained. A fast responding thermistor was employed to measure consecutive ejected temperature plateaus in the thermal signal. A flow bath and mechanical ventricle were used to simulate the cardiovascular system. A thermoelectric module was used to apply heating and cooling energy to the flow stream. Trials encompassing a range of input power, input frequency, and flow rate were conducted. By alternating heating and cooling, thermal signal magnitude can be increased when compared to continuous heating alone. However, the increase was not sufficient to allow for recording in all patients over the expected normal range of cardiac output. Consecutive ejected temperature plateaus were also measured on the thermal signal and ejection fraction calculations were made.

  17. Survey of Temperature Measurement Techniques For Studying Underwater Shock Waves

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Alderfer, David W.

    2004-01-01

    Several optical methods for measuring temperature near underwater shock waves are reviewed and compared. The relative merits of the different techniques are compared, considering accuracy, precision, ease of use, applicable temperature range, maturity, spatial resolution, and whether or not special additives are required.

  18. Correlation between alveolar ventilation and electrical properties of lung parenchyma.

    PubMed

    Roth, Christian J; Ehrl, Andreas; Becher, Tobias; Frerichs, Inéz; Schittny, Johannes C; Weiler, Norbert; Wall, Wolfgang A

    2015-06-01

    One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

  19. Comparative interpretations of renormalization inversion technique for reconstructing unknown emissions from measured atmospheric concentrations

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory

    2017-04-01

    The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.

  20. Scale-model charge-transfer technique for measuring enhancement factors

    NASA Technical Reports Server (NTRS)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  1. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  2. A New Correction Technique for Strain-Gage Measurements Acquired in Transient-Temperature Environments

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1996-01-01

    Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.

  3. The application of measurement techniques to track flutter testing

    NASA Technical Reports Server (NTRS)

    Roglin, H. R.

    1975-01-01

    The application is discussed of measurement techniques to captive flight flutter tests at the Supersonic Naval Ordnance Research Track (SNORT), U. S. Naval Ordnance Test Station, China Lake, California. The high-speed track, by its ability to prove the validity of design and to accurately determine the actual margin of safety, offers a unique method of flutter testing for the aircraft design engineer.

  4. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1987-01-01

    Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.

  5. Internal flow measurement in transonic compressor by PIV technique

    NASA Astrophysics Data System (ADS)

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  6. A modulation technique for the measurement of the DC longitudinal Faraday effect

    NASA Astrophysics Data System (ADS)

    Hunte, Carlos

    2018-03-01

    A modulation of light technique, using a lock-in amplifier, is described and tested to investigate the longitudinal Faraday effect in isotropic media. The Faraday rotation is measured directly from the lock-in amplifier. The Verdet constant and dispersion of lead-silica SF-59 Schott glass, at room temperature of 25 °C, were determined for varying wavelengths and expressions for their wavelength dependence were determined. The Verdet constant of water is also investigated. The results compare extremely well with other studies. The technique is suited to measure very small Verdet constants and can be easily conducted in an upper-level undergraduate laboratory.

  7. The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.

    2017-01-01

    In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less

  8. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zhang, Yuzhen; Chen, Qian; Zuo, Chao; Li, Rubin; Shen, Guochen

    2014-08-01

    This paper presents a general solution for realizing high dynamic range three-dimensional (3-D) shape measurement based on fringe projection. Three concrete techniques are involved in the solution for measuring object with large range of reflectivity (LRR) or one with shiny specular surface. For the first technique, the measured surface reflectivities are sub-divided into several groups based on its histogram distribution, then the optimal exposure time for each group can be predicted adaptively so that the bright as well as dark areas on the measured surface are able to be handled without any compromise. Phase-shifted images are then captured at the calculated exposure times and a composite phase-shifted image is generated by extracting the optimally exposed pixels in the raw fringes images. For the second technique, it is proposed by introducing two orthogonal polarizers which are placed separately in front of the camera and projector into the first technique and the third one is developed by combining the second technique with the strategy of properly altering the angle between the transmission axes of the two polarizers. Experimental results show that the first technique can effectively improve the measurement accuracy of diffuse objects with LRR, the second one is capable of measuring object with weak specular reflection (WSR: e.g. shiny plastic surface) and the third can inspect surface with strong specular reflection (SSR: e.g. highlight on aluminum alloy) precisely. Further, more complex scene, such as the one with LRR and WSR, or even the one simultaneously involving LRR, WSR and SSR, can be measured accurately by the proposed solution.

  9. Measurement of interface strength by a laser spallation technique

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Argon, A. S.; Parks, D. M.; Cornie, J. A.

    A LASER spallation experiment has been developed to measure the strength of planar interfaces between a substrate and a thin coating (in the thickness range of 0.3-3 μm). In this technique a laser pulse of a high enough energy and a pre-determined duration is converted into a pressure pulse of a critical amplitude and width that is sent through the substrate toward the free surface with the coating. The reflected tensile wave from the free surface of the coating pries-off the coating. The critical stress amplitude that accomplishes the removal of the coating is determined from a computer simulation of the process. The simulation itself is verified by means of a piezo-electric crystal probe that is capable of mapping out the profile of the stress pulse generated by the laser pulse. Interface strength values ranging from 3.7 to 10.5 GPa were determined for the Si/SiC system. For the interfaces between pyrolytic graphite and SiC coatings an average strength of 7.2 GPA was measured, while the corresponding interface strength between a Pitch-55 type ribbon with a fiber-like morphology and SiC coatings was found to be 0.23 GPa. Intrinsic strengths of SiC coatings and Si crystal were also determined using this technique. These were, on the average, 8.6 GPa for Si crystals and 11.9 GPa for a SiC coating. Furthermore, the potential of the laser technique to determine the interface toughness was also demonstrated, provided well-characterizable flaws can be planted on the interface.

  10. A Balloon Sounding Technique for Measuring SO2 Plumes

    NASA Technical Reports Server (NTRS)

    Morris, Gary A.; Komhyr, Walter D.; Hirokawa, Jun; Lefer, Barry; Krotkov, Nicholay; Ngan, Fong

    2010-01-01

    This paper reports on the development of a new technique for inexpensive measurements of SO2 profiles using a modified dual-ozonesonde instrument payload. The presence of SO2 interferes with the standard electrochemical cell (ECC) ozonesonde measurement, resulting in -1 molecule of O3 reported for each molecule of SO2 present (provided [O3] > [SO2]). In laboratory tests, an SO2 filter made with Cr03 placed on the inlet side of the sonde removes nearly 100% of the SO2 present for concentrations up to 60 ppbv and remained effective after exposure to 2.8 X 10(exp 16) molecules of SO2 [equivalent to a column approximately 150 DU (1 DU = 2.69 X 10(exp 20) molecules m(exp -2))]. Flying two ECC instruments on the same payload with one filtered and the other unfiltered yields SO2 profiles, inferred by subtraction. Laboratory tests and field experience suggest an SO2 detection limit of approximately 3 pbb with profiles valid from the surface to the ozonopause [i.e., approximately (8-10 km)]. Two example profiles demonstrate the success of this technique for both volcanic and industrial plumes.

  11. Study on fast measurement of sugar content of yogurt using Vis/NIR spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    In order to measuring the sugar content of yogurt rapidly, a fast measurement of sugar content of yogurt using Vis/NIR-spectroscopy techniques was established. 25 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The sugar content of yogurt on positions scanned by spectrum were measured by a sugar content meter. The mathematical model between sugar content and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS). The correlation coefficient of sugar content based on PLS model is more than 0.894, and standard error of calibration (SEC) is 0.356, standard error of prediction (SEP) is 0.389. Through predicting the sugar content quantitatively of 35 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0.934. The results show the good to excellent prediction performance. The Vis/NIR spectroscopy technique had significantly greater accuracy for determining the sugar content. It was concluded that the Vis/NIRS measurement technique seems reliable to assess the fast measurement of sugar content of yogurt, and a new method for the measurement of sugar content of yogurt was established.

  12. Developing and Implementing an Assessment Technique to Measure Linked Concepts

    ERIC Educational Resources Information Center

    Ye, Li; Oueini, Razanne; Lewis, Scott E.

    2015-01-01

    The links students make among chemistry content is considered essential for a robust, enduring understanding in multiple learning theories. This article describes the development and implementation of an assessment technique, termed a Measure of Linked Concepts, designed to inform instructors on students' understanding of linking content…

  13. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  14. Development of a Noninterference Technique for Measurement of Turbine Engine Compressor Blade Stress

    DTIC Science & Technology

    1980-06-01

    TECHNIQUE FOR MEASUREMENT OF TURBINE ENGINE COMPRESSOR BLADE STRESS 7 A U T H O R ( s ) P . E. M c C a r t y a n d J . W. Thompson , J r...e a e a ~ and tdentJ~ by b|ock numbe~ A noninterference technique for measuring stress in compressor blades of turbine engines is being developed...43 4 AEDC-TR-79-78 1.0 INTRODUCTION 1.1 BACKGROUND Compressor rotor blades in turbojet engines are subjected to

  15. Measuring Three-Dimensional Thorax Motion Via Biplane Radiographic Imaging: Technique and Preliminary Results.

    PubMed

    Baumer, Timothy G; Giles, Joshua W; Drake, Anne; Zauel, Roger; Bey, Michael J

    2016-01-01

    Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.

  16. Novel measurement techniques (development and analysis of silicon solar cells near 20% effciency)

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Newhouse, M.

    1986-01-01

    Work in identifying, developing, and analyzing techniques for measuring bulk recombination rates, and surface recombination velocities and rates in all regions of high-efficiency silicon solar cells is presented. The accuracy of the previously developed DC measurement system was improved by adding blocked interference filters. The system was further automated by writing software that completely samples the unkown solar cell regions with data of numerous recombination velocity and lifetime pairs. The results can be displayed in three dimensions and the best fit can be found numerically using the simplex minimization algorithm. Also described is a theoretical methodology to analyze and compare existing dynamic measurement techniques.

  17. Novel measurement techniques (development and analysis of silicon solar cells near 20% effciency)

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Newhouse, M.

    Work in identifying, developing, and analyzing techniques for measuring bulk recombination rates, and surface recombination velocities and rates in all regions of high-efficiency silicon solar cells is presented. The accuracy of the previously developed DC measurement system was improved by adding blocked interference filters. The system was further automated by writing software that completely samples the unkown solar cell regions with data of numerous recombination velocity and lifetime pairs. The results can be displayed in three dimensions and the best fit can be found numerically using the simplex minimization algorithm. Also described is a theoretical methodology to analyze and compare existing dynamic measurement techniques.

  18. Feasibility of automated dropsize distributions from holographic data using digital image processing techniques. [particle diameter measurement technique

    NASA Technical Reports Server (NTRS)

    Feinstein, S. P.; Girard, M. A.

    1979-01-01

    An automated technique for measuring particle diameters and their spatial coordinates from holographic reconstructions is being developed. Preliminary tests on actual cold-flow holograms of impinging jets indicate that a suitable discriminant algorithm consists of a Fourier-Gaussian noise filter and a contour thresholding technique. This process identifies circular as well as noncircular objects. The desired objects (in this case, circular or possibly ellipsoidal) are then selected automatically from the above set and stored with their parametric representations. From this data, dropsize distributions as a function of spatial coordinates can be generated and combustion effects due to hardware and/or physical variables studied.

  19. Implementation of and measurement with the LIPA technique in a subsonic jet

    NASA Technical Reports Server (NTRS)

    Falco, R. E.

    1994-01-01

    LIPA (Laser Induced Photochemical Anemometry) was used to measure velocity, vorticity, Reynolds stress, and turbulent intensity distributions in a subsonic jet. The jet region of interest was the area close to the jet-orifice. The LIPA-technique is a nonintrusive quantitative flow visualization technique, consisting of tracking a phosphorescing grid of fluid particles, which is impressed by laser-beams directed into the flow. The phosphorescence of biacetyl gas was used to enable tracking of the impressed light grid. In order to perform measurements in a jet, LIPA was developed and implemented for the specific flow requirements. Nitrogen was used as the carrier gas to avoid quenching of the phosphorescent radiation of the tracer gas biacetyl by ambient oxygen. The use of sulfur dioxide to sensitize phosphorescent emission of biacetyl was examined. Preliminary data was used in a discussion of the potential of the LIPA technique.

  20. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  1. Novel Optical Technique Developed and Tested for Measuring Two-Point Velocity Correlations in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Goldburg, Walter I.

    2002-01-01

    A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.

  2. A preliminary study of air-pollution measurement by active remote-sensing techniques

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Gasiorek, L. S.; Liston, E. M.

    1975-01-01

    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study.

  3. A comparison between internal and surface temperature measurement techniques during phacoemulsification cataract surgery: thermocamera versus thermocouple.

    PubMed

    Innocenti, B; Diciotti, S; Bocchi, L; Mencucci, R; Corvi, A

    2008-01-01

    Corneal and scleral burns, one of the main complications that can occur during a cataract operation, are produced by overheating due to the use of the phacoemulsifier. The temperature of the anterior chamber of the eye can be measured both invasively using thermocouples and non-invasively, but only superficially, using a thermocamera. To compare the measures obtained from both techniques an in vitro experimental analysis was conducted on pigs' eyes. During a simulated phacoemulsification cataract operation both the surface temperature with a thermocamera and the temperature inside the anterior chamber with a thermocouple were recorded. For each procedure, the maximum temperature values measured by each technique were compared. The results of this research show that the difference between the maximum values measured with the two techniques is on average 0.5 degrees C. It is possible to employ a thermocamera technique instead of a thermocouple technique to provide an indication of the temperature inside the anterior chamber.

  4. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  5. Review on the importance of measurement technique in micromachine technology

    NASA Astrophysics Data System (ADS)

    Umeda, Akira

    1996-09-01

    In the beginning stage of MITI micromachine project, the committee on the standardization established in Micromachine Center recognized the importance of measurement technique for the promotion and the systemization of the micromachine technology. Micromachine Center is the organizing body for private sectors working in the MITI micromachine project which started in 1991. MITI stands for Ministry of International Trade and Industry in Japan. In order to known the requirements on the measurement technologies, the questionnaire was organized by the measurement working group in the committee. This talk covers the questionnaire and its results, and some research results obtained at National Research Laboratory of Metrology working as a member in the project.

  6. Erosion measurement techniques for plasma-driven railgun barrels

    NASA Astrophysics Data System (ADS)

    Jamison, K. A.; Niiler, Andrus

    1987-04-01

    Plasma-driven railguns are now in operation at several locations throughout the world. All share common problems in barrel erosion arising from the fact that the bore surface must contain a high temperature plasma armature which transmits the acceleration force to a projectile. The plasma temperature at the core of the armature is estimated to be 30 000 K or higher. Such conditions are erosive to most materials even when the exposure time is 100 μs or less. We have adapted two accelerator based techniques to aid in the study of this erosion. The first technique involves the collection and analysis of material ablated and left behind by the plasma. This analysis is based on the unfolding of the Rutherford backscattered (RBS) spectra of 1 MeV deuterons incident on residue collected from a railgun bore. The second technique is an erosion measurement involving thin layer activation (TLA) of surfaces. In this process, the copper rail surface is activated by 2.4 MeV protons creating a relatively thin (3 m) layer sparsely seeded with a long lived zinc isotope. Monitoring the decay of the activated sample before and after a firing can detect surface wear of about 0. 1 m. Results from the RBS and TLA experiments on the BRL plasma driven railgun are described.

  7. Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique

    NASA Technical Reports Server (NTRS)

    Monson, Daryl J.; Mateer, George G.; Menter, Florian R.

    1993-01-01

    A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.

  8. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    NASA Astrophysics Data System (ADS)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  9. UCMS - A new signal parameter measurement system using digital signal processing techniques. [User Constraint Measurement System

    NASA Technical Reports Server (NTRS)

    Choi, H. J.; Su, Y. T.

    1986-01-01

    The User Constraint Measurement System (UCMS) is a hardware/software package developed by NASA Goddard to measure the signal parameter constraints of the user transponder in the TDRSS environment by means of an all-digital signal sampling technique. An account is presently given of the features of UCMS design and of its performance capabilities and applications; attention is given to such important aspects of the system as RF interface parameter definitions, hardware minimization, the emphasis on offline software signal processing, and end-to-end link performance. Applications to the measurement of other signal parameters are also discussed.

  10. Measurement Techniques for Transmit Source Clock Jitter for Weak Serial RF Links

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2010-01-01

    Techniques for filtering clock jitter measurements are developed, in the context of controlling data modulation jitter on an RF carrier to accommodate low signal-to-noise ratio thresholds of high-performance error correction codes. Measurement artifacts from sampling are considered, and a tutorial on interpretation of direct readings is included.

  11. Measurement techniques of exposure to nanomaterials in the workplace for low- and medium-income countries: A systematic review.

    PubMed

    Boccuni, Fabio; Gagliardi, Diana; Ferrante, Riccardo; Rondinone, Bruna Maria; Iavicoli, Sergio

    2017-10-01

    Nanotechnology offers many opportunities but there is still considerable uncertainty about the health risks and how to assess these.In the field of risk analysis for workers potentially exposed to nano-objects and their agglomerates and aggregates (NOAA) different methodological approaches to measure airborne NOAA have been proposed.This study proposes a systematic review of scientific literature on occupational exposure to NOAA in the workplace with the aim to identify techniques of exposure measurement to be recommended in low- and medium-income countries.We gathered scientific papers reporting techniques of NOAA exposure measurements in the workplace, we summarized the data for each eligible technique according to PRISMA guidelines, and we rated the quality of evidence following an adapted GRADE approach.We found 69 eligible studies to be included in qualitative synthesis: the majority of studies reported a moderate quality and only two studies demonstrated the use of a high quality exposure measurement technique.The review demonstrates that a basic exposure measurement, i.e. evidence for the presence or absence of NOAA in the workplace air, can be achieved with moderate (40 techniques) to high (2 techniques) quality; comprehensive exposure measurement, that allow the quantification of NOAA in the workplace, can be achieved with moderate (11 techniques) to high (2 techniques) quality.The findings of the study also allowed to finalize a list of requirements that must be fulfilled by an effective measurement technique (either basic or comprehensive) and to highlight the main weaknesses that need to be tackled for an effective affordability evaluation of measurement techniques to be recommended in low- and medium-income countries. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Indirect measurement of the solid/liquid interface using the minimization technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, H.; Chun, M.

    1985-11-01

    The phenomenon of solidification of a flowing fluid in a vertical tube is closely related to the relocation dynamics of molten nuclear fuels in hypothetical core-disruptive accidents of a liquid-metal fast breeder reactor. The knowledge of the transient shape and the position of the liquid/solid interface is of practical importance in analysis of phase change processes. Sparrow and Broadbent directly measured the solid liquid interface via experiments, whereas Viskanta observed the solid/liquid interface motion via a photographic method. In this paper, a new method to predict the transient position of the solid/liquid interface is developed. This method is based onmore » the minimization technique. To use this method one needs the temperature of the wall on which the phase change is to take place. The new technique is useful, in particular, for the case of inward solidification of a flowing fluid in a tube where direct measurement of the solid/liquid interface is not possible, whereas the tube wall temperature measurement is relatively easy.« less

  13. 3D interferometric shape measurement technique using coherent fiber bundles

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  14. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  15. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    PubMed

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  16. Experimental Methods Using Photogrammetric Techniques for Parachute Canopy Shape Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Downey, James M.; Lunsford, Charles B.; Desabrais, Kenneth J.; Noetscher, Gregory

    2007-01-01

    NASA Langley Research Center in partnership with the U.S. Army Natick Soldier Center has collaborated on the development of a payload instrumentation package to record the physical parameters observed during parachute air drop tests. The instrumentation package records a variety of parameters including canopy shape, suspension line loads, payload 3-axis acceleration, and payload velocity. This report discusses the instrumentation design and development process, as well as the photogrammetric measurement technique used to provide shape measurements. The scaled model tests were conducted in the NASA Glenn Plum Brook Space Propulsion Facility, OH.

  17. Toward Non-Invasive and Automatic Intravenous Infiltration Detection: Evaluation of Bioimpedance and Skin Strain in a Pig Model.

    PubMed

    Bicen, A Ozan; West, Leanne L; Cesar, Liliana; Inan, Omer T

    2018-01-01

    Intravenous (IV) therapy is prevalent in hospital settings, where fluids are typically delivered with an IV into a peripheral vein of the patient. IV infiltration is the inadvertent delivery of fluids into the extravascular space rather than into the vein (and requires urgent treatment to avoid scarring and severe tissue damage), for which medical staff currently needs to check patients periodically. In this paper, the performance of two non-invasive sensing modalities, electrical bioimpedance (EBI), and skin strain sensing, for the automatic detection of IV infiltration was investigated in an animal model. Infiltrations were physically simulated on the hind limb of anesthetized pigs, where the sensors for EBI and skin strain sensing were co-located. The obtained data were used to examine the ability to distinguish between infusion into the vein and an infiltration event using bioresistance and bioreactance (derived from EBI), as well as skin strain. Skin strain and bioresistance sensing could achieve detection rates greater than 0.9 for infiltration fluid volumes of 2 and 10 mL, respectively, for a given false positive, i.e., false alarm rate of 0.05. Furthermore, the fusion of multiple sensing modalities could achieve a detection rate of 0.97 with a false alarm rate of 0.096 for 5mL fluid volume of infiltration. EBI and skin strain sensing can enable non-invasive and real-time IV infiltration detection systems. Fusion of multiple sensing modalities can help to detect expanded range of leaking fluid volumes. The provided performance results and comparisons in this paper are an important step towards clinical translation of sensing technologies for detecting IV infiltration.

  18. Toward Non-Invasive and Automatic Intravenous Infiltration Detection: Evaluation of Bioimpedance and Skin Strain in a Pig Model

    PubMed Central

    Bicen, A. Ozan; West, Leanne L.; Cesar, Liliana

    2018-01-01

    Intravenous (IV) therapy is prevalent in hospital settings, where fluids are typically delivered with an IV into a peripheral vein of the patient. IV infiltration is the inadvertent delivery of fluids into the extravascular space rather than into the vein (and requires urgent treatment to avoid scarring and severe tissue damage), for which medical staff currently needs to check patients periodically. In this paper, the performance of two non-invasive sensing modalities, electrical bioimpedance (EBI), and skin strain sensing, for the automatic detection of IV infiltration was investigated in an animal model. Infiltrations were physically simulated on the hind limb of anesthetized pigs, where the sensors for EBI and skin strain sensing were co-located. The obtained data were used to examine the ability to distinguish between infusion into the vein and an infiltration event using bioresistance and bioreactance (derived from EBI), as well as skin strain. Skin strain and bioresistance sensing could achieve detection rates greater than 0.9 for infiltration fluid volumes of 2 and 10 mL, respectively, for a given false positive, i.e., false alarm rate of 0.05. Furthermore, the fusion of multiple sensing modalities could achieve a detection rate of 0.97 with a false alarm rate of 0.096 for 5mL fluid volume of infiltration. EBI and skin strain sensing can enable non-invasive and real-time IV infiltration detection systems. Fusion of multiple sensing modalities can help to detect expanded range of leaking fluid volumes. The provided performance results and comparisons in this paper are an important step towards clinical translation of sensing technologies for detecting IV infiltration. PMID:29692956

  19. Microrheometric upconversion-based techniques for intracellular viscosity measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sevilla, Paloma; Zhang, Yuhai; de Sousa, Nuno; Marqués, Manuel I.; Sanz-Rodríguez, Francisco; Jaque, Daniel; Liu, Xiaogang; Haro-González, Patricia

    2017-08-01

    Rheological parameters (viscosity, creep compliance and elasticity) play an important role in cell function and viability. For this reason different strategies have been developed for their study. In this work, two new microrheometric techniques are presented. Both methods take advantage of the analysis of the polarized emission of an upconverting particle to determine its orientation inside the optical trap. Upconverting particles are optical materials that are able to convert infrared radiation into visible light. Their usefulness has been further boosted by the recent demonstration of their three-dimensional control and tracking by single beam infrared optical traps. In this work it is demonstrated that optical torques are responsible of the stable orientation of the upconverting particle inside the trap. Moreover, numerical calculations and experimental data allowed to use the rotation dynamics of the optically trapped upconverting particle for environmental sensing. In particular, the cytoplasm viscosity could be measured by using the rotation time and thermal fluctuations of an intracellular optically trapped upconverting particle, by means of the two previously mentioned microrheometric techniques.

  20. PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-02-01

    Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all

  1. A Comparison of 3D3C Velocity Measurement Techniques

    NASA Astrophysics Data System (ADS)

    La Foy, Roderick; Vlachos, Pavlos

    2013-11-01

    The velocity measurement fidelity of several 3D3C PIV measurement techniques including tomographic PIV, synthetic aperture PIV, plenoptic PIV, defocusing PIV, and 3D PTV are compared in simulations. A physically realistic ray-tracing algorithm is used to generate synthetic images of a standard calibration grid and of illuminated particle fields advected by homogeneous isotropic turbulence. The simulated images for the tomographic, synthetic aperture, and plenoptic PIV cases are then used to create three-dimensional reconstructions upon which cross-correlations are performed to yield the measured velocity field. Particle tracking algorithms are applied to the images for the defocusing PIV and 3D PTV to directly yield the three-dimensional velocity field. In all cases the measured velocity fields are compared to one-another and to the true velocity field using several metrics.

  2. New techniques in neutron data measurements above 30 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, P.W.; Haight, R.C.

    1991-01-01

    Recent developments in experimental facilities have enabled new techniques for measurements of neutron interactions above 30 MeV. Foremost is the development of both monoenergetic and continuous neutron sources using accelerators in the medium energy region between 100 and 800 MeV. Measurements of the reaction products have been advanced by the continuous improvement in detector systems, electronics and computers. Corresponding developments in particle transport codes and in the theory of nuclear reactions at these energies have allowed more precise design of neutron sources, experimental shielding and detector response. As a result of these improvements, many new measurements are possible and themore » data base in this energy range is expanding quickly.« less

  3. Measurement of vibration using phase only correlation technique

    NASA Astrophysics Data System (ADS)

    Balachandar, S.; Vipin, K.

    2017-08-01

    A novel method for the measurement of vibration is proposed and demonstrated. The proposed experiment is based on laser triangulation: consists of line laser, object under test and a high speed camera remotely controlled by a software. Experiment involves launching a line-laser probe beam perpendicular to the axis of the vibrating object. The reflected probe beam is recorded by a high speed camera. The dynamic position of the line laser in camera plane is governed by the magnitude and frequency of the vibrating test-object. Using phase correlation technique the maximum distance travelled by the probe beam in CCD plane is measured in terms of pixels using MATLAB. An actual displacement of the object in mm is measured by calibration. Using displacement data with time, other vibration associated quantities such as acceleration, velocity and frequency are evaluated. The preliminary result of the proposed method is reported for acceleration from 1g to 3g, and from frequency 6Hz to 26Hz. The results are closely matching with its theoretical values. The advantage of the proposed method is that it is a non-destructive method and using phase correlation algorithm subpixel displacement in CCD plane can be measured with high accuracy.

  4. Water induced geohazards measured with spaceborne interferometry techniques

    NASA Astrophysics Data System (ADS)

    Poncos, V.; Serban, F.; Teleaga, D.; Ciocan, V.; Sorin, M.; Caranda, D.; Zamfirescu, F.; Andrei, M.; Copaescu, S.; Radu, M.; Raduca, V.

    2012-04-01

    Natural and anthropogenic occurrence of groundwater is inducing surficial crustal deformation processes that can be accurately measured with high spatial density from space, regardless of the ground access conditions. The detection of the surface deformation allows uncovering spatial and temporal patterns of subsurface processes such as land subsidence, cave-ins and differential ground settlement related to water content. InSAR measurements combined with ground truth data permit estimation of the mechanical properties of the rocks and the development of models and scenarios to predict disaster events such as cave-ins, landslides and soil liquefaction in the case of an Earthquake. A number of three sites in Romania that suffer of ground instability because of the water component will be presented. The DInSAR, Interferograms Stacking and Persistent Scatterers Interferometry techniques were applied to retrieve as accurate as possible the displacement information. The first studied site is the city of Bucharest; using 7 years of ERS data ground instability was detected on a large area that represents the historical watershed of the Dambovita river. A network of water wells shows that the ground instability is directly proportional to the groundwater depth. The second site is the Ocnele Mari brine extraction area. The exploitation of the Ocnele Mari salt deposit started from the Roman Empire time using the mining technology and from 1954 the salt dissolution technology which involves injecting water into the ground using a well and extracting the brine (water and salt) through another well. The extraction of salt through dissolution led to slow ground subsidence but the flooding and dissolution of the Roman caves led to catastrophic cave-ins and the relocation of an entire village. The water injection technique is still applied and the Roman cave system is an unknown, therefore further catastrophic events are expected. The existing theoretical simulations of the

  5. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  6. Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.

    PubMed

    Muller-Chrétien, Emilie

    2014-01-01

    The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.

  7. Analysis and correction of ground reflection effects in measured narrowband sound spectra using cepstral techniques

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Stevens, G. H.; Leininger, G. G.

    1975-01-01

    Ground reflections generate undesirable effects on acoustic measurements such as those conducted outdoors for jet noise research, aircraft certification, and motor vehicle regulation. Cepstral techniques developed in speech processing are adapted to identify echo delay time and to correct for ground reflection effects. A sample result is presented using an actual narrowband sound pressure level spectrum. The technique can readily be adapted to existing fast Fourier transform type spectrum measurement instrumentation to provide field measurements/of echo time delays.

  8. Edge technique lidar for high accuracy, high spatial resolution wind measurement in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.

    1995-01-01

    The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.

  9. The immediate effect of individual manipulation techniques on pulmonary function measures in persons with chronic obstructive pulmonary disease.

    PubMed

    Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J

    2009-10-08

    The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to

  10. A technique system for the measurement, reconstruction and character extraction of rice plant architecture

    PubMed Central

    Li, Xumeng; Wang, Xiaohui; Wei, Hailin; Zhu, Xinguang; Peng, Yulin; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    This study developed a technique system for the measurement, reconstruction, and trait extraction of rice canopy architectures, which have challenged functional–structural plant modeling for decades and have become the foundation of the design of ideo-plant architectures. The system uses the location-separation-measurement method (LSMM) for the collection of data on the canopy architecture and the analytic geometry method for the reconstruction and visualization of the three-dimensional (3D) digital architecture of the rice plant. It also uses the virtual clipping method for extracting the key traits of the canopy architecture such as the leaf area, inclination, and azimuth distribution in spatial coordinates. To establish the technique system, we developed (i) simple tools to measure the spatial position of the stem axis and azimuth of the leaf midrib and to capture images of tillers and leaves; (ii) computer software programs for extracting data on stem diameter, leaf nodes, and leaf midrib curves from the tiller images and data on leaf length, width, and shape from the leaf images; (iii) a database of digital architectures that stores the measured data and facilitates the reconstruction of the 3D visual architecture and the extraction of architectural traits; and (iv) computation algorithms for virtual clipping to stratify the rice canopy, to extend the stratified surface from the horizontal plane to a general curved surface (including a cylindrical surface), and to implement in silico. Each component of the technique system was quantitatively validated and visually compared to images, and the sensitivity of the virtual clipping algorithms was analyzed. This technique is inexpensive and accurate and provides high throughput for the measurement, reconstruction, and trait extraction of rice canopy architectures. The technique provides a more practical method of data collection to serve functional–structural plant models of rice and for the optimization of rice

  11. Dual measurement self-sensing technique of NiTi actuators for use in robust control

    NASA Astrophysics Data System (ADS)

    Gurley, Austin; Lambert, Tyler Ross; Beale, David; Broughton, Royall

    2017-10-01

    Using a shape memory alloy actuator as both an actuator and a sensor provides huge benefits in cost reduction and miniaturization of robotic devices. Despite much effort, reliable and robust self-sensing (using the actuator as a position sensor) had not been achieved for general temperature, loading, hysteresis path, and fatigue conditions. Prior research has sought to model the intricacies of the electrical resistivity changes within the NiTi material. However, for the models to be solvable, nearly every previous technique only models the actuator within very specific boundary conditions. Here, we measure both the voltage across the entire NiTi wire and of a fixed-length segment of it; these dual measurements allow direct calculation of the actuator length without a material model. We review previous self-sensing literature, illustrate the mechanism design that makes the new technique possible, and use the dual measurement technique to determine the length of a single straight wire actuator under controlled conditions. This robust measurement can be used for feedback control in unknown ambient and loading conditions.

  12. Magnetic field dependent measurement techniques of surface tension of magnetic fluid at an air interface

    NASA Astrophysics Data System (ADS)

    Nair, Nishant; Virpura, Hiral; Patel, Rajesh

    2015-06-01

    We describe here two measurement techniques to determine surface tension of magnetic fluid. (i) magneti c field dependent capillary rise method and (ii) Taylor wavelength method in which the distance between the consecutive stable spikes was measured and then surface tension was calculated. The surface tension measurements from both the methods are compared. It is observed that surface tension of magnetic fluid increases with increase in magnetic field due to field dependent structure formation in magnetic fluid at an air interface. We have also measured magnetic susceptibility and surface tension for different volume fractions. The measurement of magnetic susceptibility is carried out using Quincke's experimental techniques.

  13. Testing of a technique for remotely measuring water salinity in an estuarine environment

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%.

  14. Measurement of LNAPL flow using single-well tracer dilution techniques.

    PubMed

    Sale, Tom; Taylor, Geoffrey Ryan; Iltis, Gabriel; Lyverse, Mark

    2007-01-01

    This paper describes the use of single-well tracer dilution techniques to resolve the rate of light nonaqueous phase liquid (LNAPL) flow through wells and the adjacent geologic formation. Laboratory studies are presented in which a fluorescing tracer is added to LNAPL in wells. An in-well mixer keeps the tracer well mixed in the LNAPL. Tracer concentrations in LNAPL are measured through time using a fiber optic cable and a spectrometer. Results indicate that the rate of tracer depletion is proportional to the rate of LNAPL flow through the well and the adjacent formation. Tracer dilution methods are demonstrated for vertically averaged LNAPL Darcy velocities of 0.00048 to 0.11 m/d and LNAPL thicknesses of 9 to 24 cm. Over the range of conditions studied, results agree closely with steady-state LNAPL flow rates imposed by pumping. A key parameter for estimating LNAPL flow rates in the formation is the flow convergence factor alpha. Measured convergence factors for 0.030-inch wire wrap, 0.030-inch-slotted polyvinyl chloride (PVC), and 0.010-inch-slotted PVC are 1.7, 0.91, and 0.79, respectively. In addition, methods for using tracer dilution data to determine formation transmissivity to LNAPL are presented. Results suggest that single-well tracer dilution techniques are a viable approach for measuring in situ LNAPL flow and formation transmissivity to LNAPL.

  15. Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Lau, Matthew

    2011-01-01

    The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.

  16. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  17. Measurement of Device Parameters Using Image Recovery Techniques in Large-Scale IC Devices

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Edmonds, Larry

    2004-01-01

    Devices that respond to radiation on a cell level will produce histograms showing the relative frequency of cell damage as a function of damage. The measured distribution is the convolution of distributions from radiation responses, measurement noise, and manufacturing parameters. A method of extracting device characteristics and parameters from measured distributions via mathematical and image subtraction techniques is described.

  18. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    NASA Astrophysics Data System (ADS)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty <1% and a precision of about 0.06° in the measuring range ±5° of the morphing wing deflection.

  19. Determination of Probe Volume Dimensions in Coherent Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Weikl, Markus C.; Seeger, Thomas; Leipertz, Alfred

    2008-01-01

    When investigating combustion phenomena with pump-probe techniques, the spatial resolution is given by the overlapping region of the laser beams and thus defines the probe volume size. The size of this probe volume becomes important when the length scales of interest are on the same order or smaller. In this work, we present a new approach to measure the probe volume in three dimensions (3-D), which can be used to determine the probe volume length, diameter, and shape. The optical arrangement and data evaluation are demonstrated for a dual-pump dual-broadband coherent anti-Stokes Raman scattering (CARS) setup which is used for combustion diagnostics. This new approach offers a simple, quick alternative with more capabilities than formerly used probe volume measurement methods.

  20. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    NASA Astrophysics Data System (ADS)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  1. Bioimpedance-Based Wearable Measurement Instrumentation for Studying the Autonomic Nerve System Response to Stressful Working Conditions

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Álvarez, L.; Buendía, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R.; Seoane, F.

    2013-04-01

    The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.

  2. Bioimpedance profiling of the limbs: Update

    NASA Astrophysics Data System (ADS)

    Ward, L. C.; Essex, T.; Bartlett, M.; Kilbreath, S.; Brookes, D.

    2010-04-01

    Bioelectrical impedance spectroscopy (BIS) is now commonly used to assess breast cancer-related lymphoedema. Typically, the ratio of impedances of the two arms, determined at zero frequency (Z0), is used as a quantitative index of the presence of excess lymph. Measurement uses skin electrodes spanning the whole limb. However, lymphoedema may be highly localised and may involve changes other than simple fluid accumulation, e.g. increased fat and fibrosis, that also give rise to changes in impedance-related parameters such as capacitance. We have previously reported (13th ICEBI, Graz, 2007) a prototype mobile electrode probe that replaces the distal sense electrode which, when moved proximally along the arm, provides an impedance profile. We report here the further development of this technology to incorporate real-time measurement of impedance integrated with a digital measuring wheel. This allows exact synchronisation of impedance with position on the arm. A commercial BIS instrument (ImpediMed SFB7) was modified to collect impedance (R and Xc) data every msec and the mean impedance computed for each 10-mm slice. The apparent resistivity values for arm tissue were used to calculate slice volumes. These computed volumes were compared to equivalent slice volumes from perometry and DXA. The system is being further validated by correlating slice impedance parameters with lean tissue volume determined by pQCT (StraTec XCT 3000), for multiple positions along the arm. Ultimately, it is hoped that such measurements will not only allow localised tissue volume measurement but will also provide information of tissue composition in conditions such as lymphoedema.

  3. Evaluation of Two Computational Techniques of Calculating Multipath Using Global Positioning System Carrier Phase Measurements

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.

    1996-01-01

    Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.

  4. Uncertainties in assessing tillage erosion - How appropriate are our measuring techniques?

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gómez, J. A.; Guzmán, G.; Hardy, R. A.; Quinton, J. N.; Sommer, M.; Van Oost, K.; Wexler, R.

    2018-03-01

    Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 × 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = - 26 ± 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost

  5. Noncontact technique for measuring the electrical resistivity and magnetic susceptibility of electrostatically levitated melts

    NASA Astrophysics Data System (ADS)

    Rustan, G. E.; Spyrison, N. S.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.

    2012-02-01

    Over the last two decades the popularity of levitation methods for studying equilibrium and supercooled melts has increased steadily. Measurements of density, viscosity, surface tension, and atomic structure have become well established. In contrast, measurements of electrical resistivity and magnetic susceptibility of levitated melts have been very limited. To fill this void, we have combined the tunnel diode oscillator (TDO) technique with electrostatic levitation (ESL) to perform inductively coupled measurements on levitated melts. A description of the basic operating principles of the TDO and ESL will be given, as well as a description of the implementation and performance characteristics of this technique. Preliminary measurements of electrical resistivity in the solid and liquid state will be presented for samples of Zr, Si, and Ge, as well as the measurements of ferromagnetic transitions in Fe and Co based alloys.

  6. Relations among Spontaneous Preferences, Familiarized Preferences, and Novelty Effects: Measurements with Forced-Choice Techniques

    ERIC Educational Resources Information Center

    Civan, Andrea; Teller, Davida Y.; Palmer, John

    2005-01-01

    We here describe a discrete trial, forced-choice, combined spontaneous preference and novelty preference technique. In this technique, spontaneous preferences and familiarized (postfamiliarization) preferences are measured with the same stimulus pairs under closely parallel conditions. A variety of systematic stimulus variations were used in…

  7. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  8. The immediate effect of individual manipulation techniques on pulmonary function measures in persons with chronic obstructive pulmonary disease

    PubMed Central

    Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J

    2009-01-01

    Background The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Methods Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Results Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. Conclusion In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures

  9. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  10. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review.

    PubMed

    Hidding, Janine T; Viehoff, Peter B; Beurskens, Carien H G; van Laarhoven, Hanneke W M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J

    2016-12-01

    Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. The purpose of this study was to provide best evidence regarding which measurement instruments are most appropriate in measuring lymphedema in its different stages. The PubMed and Web of Science databases were used, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Clinical studies on measurement instruments assessing lymphedema were reviewed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) scoring instrument for quality assessment. Data on reliability, concurrent validity, convergent validity, sensitivity, specificity, applicability, and costs were extracted. Pooled data showed good intrarater intraclass correlation coefficients (ICCs) (.89) for bioimpedance spectroscopy (BIS) in the lower extremities and high intrarater and interrater ICCs for water volumetry, tape measurement, and perometry (.98-.99) in the upper extremities. In the upper extremities, the standard error of measurement was 3.6% (σ=0.7%) for water volumetry, 5.6% (σ=2.1%) for perometry, and 6.6% (σ=2.6%) for tape measurement. Sensitivity of tape measurement in the upper extremities, using different cutoff points, varied from 0.73 to 0.90, and specificity values varied from 0.72 to 0.78. No uniform definition of lymphedema was available, and a gold standard as a reference test was lacking. Items concerning risk of bias were study design, patient selection, description of lymphedema, blinding of test outcomes, and number of included participants. Measurement instruments with evidence for good reliability and validity were BIS, water volumetry, tape measurement, and perometry, where BIS can detect alterations in extracellular fluid in stage 1 lymphedema and the other measurement instruments can detect alterations in volume

  11. New test structures and techniques for measurement of mechanical properties of MEMS materials

    NASA Astrophysics Data System (ADS)

    Sharpe, William N., Jr.; Yuan, Bin; Vaidyanathan, Ranji; Edwards, Richard L.

    1996-09-01

    This paper presents techniques and procedures for addressing the three major problems of mechanical testing of the thin films used in surface micromachined microelectromechanical systems--specimen handling, friction, and strain measurement. The polysilicon tensile specimens are fabricated with two supporting side strips on silicon wafers at the Microelectronic Center of North Carolina. The tensile specimen is released by etching away the wafer, and the two support strips are cut after the specimen is glued in the test machine. Friction is reduced by a linear air bearing in the load train, and strain is measured with a noncontacting technique based on laser interferometry between two gold lines on the tensile specimen. The Young's modulus of polysilicon is 170 +/- 7 GPa and the strength is 1.21 +/- 0.16 GPa from a series of 29 tests. preliminary measurements have been made of Poisson's ratio and the fatigue behavior, and an attempt is underway to measure the fracture toughness.

  12. Static telescope aberration measurement using lucky imaging techniques

    NASA Astrophysics Data System (ADS)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  13. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  14. Measured extent of agricultural expansion depends on analysis technique

    DOE PAGES

    Dunn, Jennifer B.; Merz, Dylan; Copenhaver, Ken L.; ...

    2017-01-31

    Concern is rising that ecologically important, carbon-rich natural lands in the United States are losing ground to agriculture. We investigate how quantitative assessments of historical land use change to address this concern differ in their conclusions depending on the data set used. We examined land use change between 2006 and 2014 in 20 counties in the Prairie Pothole Region using the Cropland Data Layer, a modified Cropland Data Layer, data from the National Agricultural Imagery Program, and in-person ground-truthing. The Cropland Data Layer analyses overwhelmingly returned the largest amount of land use change with associated error that limits drawing conclusionsmore » from it. Analysis with visual imagery estimated a fraction of this land use change. Clearly, analysis technique drives understanding of the measured extent of land use change; different techniques produce vastly different results that would inform land management policy in strikingly different ways. As a result, best practice guidelines are needed.« less

  15. Measured extent of agricultural expansion depends on analysis technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Jennifer B.; Merz, Dylan; Copenhaver, Ken L.

    Concern is rising that ecologically important, carbon-rich natural lands in the United States are losing ground to agriculture. We investigate how quantitative assessments of historical land use change to address this concern differ in their conclusions depending on the data set used. We examined land use change between 2006 and 2014 in 20 counties in the Prairie Pothole Region using the Cropland Data Layer, a modified Cropland Data Layer, data from the National Agricultural Imagery Program, and in-person ground-truthing. The Cropland Data Layer analyses overwhelmingly returned the largest amount of land use change with associated error that limits drawing conclusionsmore » from it. Analysis with visual imagery estimated a fraction of this land use change. Clearly, analysis technique drives understanding of the measured extent of land use change; different techniques produce vastly different results that would inform land management policy in strikingly different ways. As a result, best practice guidelines are needed.« less

  16. Nondestructive hall coefficient measurements using ACPD techniques

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  17. Objective measures, sensors and computational techniques for stress recognition and classification: a survey.

    PubMed

    Sharma, Nandita; Gedeon, Tom

    2012-12-01

    Stress is a major growing concern in our day and age adversely impacting both individuals and society. Stress research has a wide range of benefits from improving personal operations, learning, and increasing work productivity to benefiting society - making it an interesting and socially beneficial area of research. This survey reviews sensors that have been used to measure stress and investigates techniques for modelling stress. It discusses non-invasive and unobtrusive sensors for measuring computed stress, a term we coin in the paper. Sensors that do not impede everyday activities that could be used by those who would like to monitor stress levels on a regular basis (e.g. vehicle drivers, patients with illnesses linked to stress) is the focus of the discussion. Computational techniques have the capacity to determine optimal sensor fusion and automate data analysis for stress recognition and classification. Several computational techniques have been developed to model stress based on techniques such as Bayesian networks, artificial neural networks, and support vector machines, which this survey investigates. The survey concludes with a summary and provides possible directions for further computational stress research. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. System and Method for Measuring Skin Movement and Strain and Related Techniques

    NASA Technical Reports Server (NTRS)

    Newman, Dava J. (Inventor); Wessendorf, Ashley M. (Inventor)

    2015-01-01

    Described herein are systems and techniques for a motion capture system and a three-dimensional (3D) tracking system used to record body position and/or movements/motions and using the data to measure skin strain (a strain field) all along the body while a joint is in motion (dynamic) as well as in a fixed position (static). The data and technique can be used to quantify strains, calculate 3D contours, and derive patterns believed to reveal skin's properties during natural motions.

  19. A Comparison of Galaxy Spiral Arm Pitch Angle Measurements Using Manual and Automated Techniques

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Treuthardt, Patrick

    2018-01-01

    Disk galaxy evolution is dominated by secular processes in the nearby universe. Revealing the morphological characteristics and underlying dynamics of these galaxies is key to understanding their evolution. The arm structure of disk galaxies can generally be described with logarithmic spirals, thereby giving measurements of pitch angle. These measurements are valuable for probing the dynamics and less apparent characteristics of these galaxies (i.e. supermassive black hole mass). Pitch angle measurements are powerful because they can be derived from a single, uncalibrated, broadband image with sufficient contrast, as opposed to more intensive observations. Accurate determination of these measurements can be challenging, however, since pitch angle can vary with radius.There are currently several semi-automated and manual techniques used to determine pitch angle. These are, or will be, used in at least two Zooniverse citizen science projects. The goal of this work is to determine if different, specific techniques return similar pitch angles for the same set of galaxies. We compare the results from a machine vision technique using SPARCFIRE, a non-Euclidean based hand selection of pitch angle, and two methods using 2D Fourier decomposition (i.e. selecting stable regions from the results of direct application to broadband images and application to traced versions of the observed spiral pattern). Each technique is applied to our sample of galaxies and the resulting pitch angles are compared to generated logarithmic spirals to evaluate the match quality.

  20. Measurement of the flux of ultra high energy cosmic rays by the stereo technique

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, B. K.; Zhang, X.; Zhang, Y.; High Resolution Fly's Eye Collaboration

    2009-08-01

    The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen-Zatsepin-Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.

  1. Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique

    NASA Astrophysics Data System (ADS)

    Chang, Tianying; Zhang, Xiansheng; Yang, Chuanfa; Sun, Zhonglin; Cui, Hong-Liang

    2017-04-01

    The complex dielectric properties of non-polar solid polymer materials were measured in the terahertz (THz) band by a free-space technique employing a frequency-extended vector network analyzer (VNA), and by THz time-domain spectroscopy (TDS). Mindful of THz wave’s unique characteristics, the free-space method for measurement of material dielectric properties in the microwave band was expanded and improved for application in the THz frequency region. To ascertain the soundness and utility of the proposed method, measurements of the complex dielectric properties of a variety of polymers were carried out, including polytetrafluoroethylene (PTFE, known also by the brand name Teflon), polypropylene (PP), polyethylene (PE), and glass fiber resin (Composite Stone). The free-space method relies on the determination of electromagnetic scattering parameters (S-parameters) of the sample, with the gated-reflect-line (GRL) calibration technique commonly employed using a VNA. Subsequently, based on the S-parameters, the dielectric constant and loss characteristic of the sample were calculated by using a Newtonian iterative algorithm. To verify the calculated results, THz TDS technique, which produced Fresnel parameters such as reflection and transmission coefficients, was also used to independently determine the dielectric properties of these polymer samples, with results satisfactorily corroborating those obtained by the free-space extended microwave technique.

  2. [Measurement of screw length through drilling technique in osteosynthesis of the proximal humerus fractures].

    PubMed

    Avcı, Cem Coşkun; Gülabi, Deniz; Sağlam, Necdet; Kurtulmuş, Tuhan; Saka, Gürsel

    2013-01-01

    This study aims to investigate the efficacy of screw length measurement through drilling technique on the reduction of intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures. Between January 2008 and June 2012, 98 patients (34 males, 64 females; mean age 64.4 years; range 35 to 81 years) who underwent osteosynthesis using locking anatomical proximal humerus plates (PHILOS) in our clinic with the diagnosis of Neer type 2, 3 or 4 were included. Two different surgical techniques were used to measure proximal screw length in the plate and patients were divided into two groups based on the technique used. In group 1, screw length was determined by a 3 mm blunt tipped Kirschner wire without fluoroscopic control. In group 2, bilateral fluoroscopic images for each screw at least were obtained. Intraarticular screw penetration was detected in five patients (10.6%) in group 1, and in 19 patients (37.3%) in group 2. The mean fluoroscopic imaging time was 10.6 seconds in group 1 and 24.8 seconds in group 2, indicating a statistically significant difference. Screw length measurement through the drilling technique significantly reduces the intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures using PHILOS plates.

  3. Measuring Tropospheric Winds from Space Using a Coherent Doppler Lidar Technique

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Kavaya, Michael J.; Emmitt, G. David

    1999-01-01

    The global measurement of tropospheric wind profiles has been cited by the operational meteorological community as the most important missing element in the present and planned observing system. The most practical and economical method for obtaining this measurement is from low earth orbit, utilizing a Doppler lidar (laser radar) technique. Specifically, this paper will describe the coherent Doppler wind lidar (CDWL) technique, the design and progress of a current space flight project to fly such a system on the Space Shuttle, and plans for future flights of similar instruments. The SPARCLE (SPAce Readiness Coherent Lidar Experiment) is a Shuttle-based instrument whose flight is targeted for March, 2001. The objectives of SPARCLE are three-fold: Confirm that the coherent Doppler lidar technique can measure line-of-sight winds to within 1-2 m/s accuracy; Collect data to permit validation and improvement of instrument performance models to enable better design of future missions; and Collect wind and backscatter data for future mission optimization and for atmospheric studies. These objectives reflect the nature of the experiment and its program sponsor, NASA's New Millennium Program. The experiment is a technology validation mission whose primary purpose is to provide a space flight validation of this particular technology. (It should be noted that the CDWL technique has successfully been implemented from ground-based and aircraft-based platforms for a number of years.) Since the conduct of the SPARCLE mission is tied to future decisions on the choice of technology for free-flying, operational missions, the collection of data is intrinsically tied to the validation and improvement of instrument performance models that predict the sensitivity and accuracy of any particular present or future instrument system. The challenges unique to space flight for an instrument such as SPARCLE and follow-ons include: Obtaining the required lidar sensitivity from the long distance

  4. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field.

    PubMed

    Herler, Jürgen; Dirnwöber, Markus

    2011-10-31

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (< 0.08%) and low standard error (< 0.01%) for repeated measurements of the same corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements.

  5. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  6. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less

  7. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  8. Dynamic footprint measurement collection technique and intrarater reliability: ink mat, paper pedography, and electronic pedography.

    PubMed

    Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S

    2012-01-01

    Identifying the variability of footprint measurement collection techniques and the reliability of footprint measurements would assist with appropriate clinical foot posture appraisal. We sought to identify relationships between these measures in a healthy population. On 30 healthy participants, midgait dynamic footprint measurements were collected using an ink mat, paper pedography, and electronic pedography. The footprints were then digitized, and the following footprint indices were calculated with photo digital planimetry software: footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index. Differences between techniques were identified with repeated-measures analysis of variance with post hoc test of Scheffe. In addition, to assess practical similarities between the different methods, intraclass correlation coefficients (ICCs) were calculated. To assess intrarater reliability, footprint indices were calculated twice on 10 randomly selected ink mat footprint measurements, and the ICC was calculated. Dynamic footprint measurements collected with an ink mat significantly differed from those collected with paper pedography (ICC, 0.85-0.96) and electronic pedography (ICC, 0.29-0.79), regardless of the practical similarities noted with ICC values (P = .00). Intrarater reliability for dynamic ink mat footprint measurements was high for the footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index (ICC, 0.74-0.99). Footprint measurements collected with various techniques demonstrate differences. Interchangeable use of exact values without adjustment is not advised. Intrarater reliability of a single method (ink mat) was found to be high.

  9. Measurement of D-7Li Neutron Production in Neutron Generators Using the Threshold Activation Foil Technique

    NASA Astrophysics Data System (ADS)

    Coventry, M. D.; Krites, A. M.

    Measurements to determine the absolute D-D and D-7Li neutron production rates with a neutron generator running at 100-200 kV acceleration potential were performed using the threshold activation foil technique. This technique provides a clear measure of fast neutron flux and with a suitable model, the neutron output. This approach requires little specialized equipment and is used to calibrate real-time neutron detectors and to verify neutron output. We discuss the activation foil measurement technique and describe its use in determining the relative contributions of D-D and D-7Li reactions to the total neutron yield and real-time detector response and compare to model predictions. The D-7Li reaction produces neutrons with a continuum of energies and a sharp peak around 13.5 MeV for measurement techniques outside of what D-D generators can perform. The ability to perform measurements with D-D neutrons alone, then add D-7Li neutrons for inelastic gamma production presents additional measurement modalities with the same neutron source without the use of tritium. Typically, D-T generators are employed for inelastic scattering applications but have a high regulatory burden from a radiological aspect (tritium inventory, liability concerns) and are export-controlled. D-D and D-7Li generators avoid these issues completely.

  10. Optimising the measurement of bruises in children across conventional and cross polarized images using segmentation analysis techniques in Image J, Photoshop and circle diameter measurements.

    PubMed

    Harris, C; Alcock, A; Trefan, L; Nuttall, D; Evans, S T; Maguire, S; Kemp, A M

    2018-02-01

    Bruising is a common abusive injury in children, and it is standard practice to image and measure them, yet there is no current standard for measuring bruise size consistently. We aim to identify the optimal method of measuring photographic images of bruises, including computerised measurement techniques. 24 children aged <11 years (mean age of 6.9, range 2.5-10 years) with a bruise were recruited from the community. Demographics and bruise details were recorded. Each bruise was measured in vivo using a paper measuring tape. Standardised conventional and cross polarized digital images were obtained. The diameter of bruise images were measured by three computer aided measurement techniques: Image J (segmentation with Simple Interactive Object Extraction (maximum Feret diameter), 'Circular Selection Tool' (Circle diameter), & the Photoshop 'ruler' software (Photoshop diameter)). Inter and intra-observer effects were determined by two individuals repeating 11 electronic measurements, and relevant Intraclass Correlation Coefficient's (ICC's) were used to establish reliability. Spearman's rank correlation was used to compare in vivo with computerised measurements; a comparison of measurement techniques across imaging modalities was conducted using Kolmogorov-Smirnov tests. Significance was set at p < 0.05 for all tests. Images were available for 38 bruises in vivo, with 48 bruises visible on cross polarized imaging and 46 on conventional imaging (some bruises interpreted as being single in vivo appeared to be multiple in digital images). Correlation coefficients were >0.5 for all techniques, with maximum Feret diameter and maximum Photoshop diameter on conventional images having the strongest correlation with in vivo measurements. There were significant differences between in vivo and computer-aided measurements, but none between different computer-aided measurement techniques. Overall, computer aided measurements appeared larger than in vivo. Inter- and intra

  11. Implant Monitoring Measurements On Ultra Shallow Implants Before And After Anneal Using Photomodulated Reflection And Junction Photovoltage Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    Ultra shallow junctions are becoming widely used in the micro- and nanoelectronic devices, and novel measurement methods are needed to monitor the manufacturing processes. Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are non-contact, nondestructive techniques suitable for characterizing both the implantation and the annealing process. Tests verify that these methods are consistent with each other and by using them together, defects originating in the implantation and anneal steps can be separated.

  12. Validation of oxygen extraction fraction measurement by qBOLD technique.

    PubMed

    He, Xiang; Zhu, Mingming; Yablonskiy, Dmitriy A

    2008-10-01

    Measurement of brain tissue oxygen extraction fraction (OEF) in both baseline and functionally activated states can provide important information on brain functioning in health and disease. The recently proposed quantitative BOLD (qBOLD) technique is MRI-based and provides a regional in vivo OEF measurement (He and Yablonskiy, MRM 2007, 57:115-126). It is based on a previously developed analytical BOLD model and incorporates prior knowledge about the brain tissue composition including the contributions from grey matter, white matter, cerebrospinal fluid, interstitial fluid and intravascular blood. The qBOLD model also allows for the separation of contributions to the BOLD signal from OEF and the deoxyhemoglobin containing blood volume (DBV). The objective of this study is to validate OEF measurements provided by the qBOLD approach. To this end we use a rat model and compare qBOLD OEF measurements against direct measurements of the blood oxygenation level obtained from venous blood drawn directly from the superior sagittal sinus. The cerebral venous oxygenation level of the rat was manipulated by utilizing different anestheisa methods. The study demonstrates a very good agreement between qBOLD approach and direct measurements. (c) 2008 Wiley-Liss, Inc.

  13. Measurement of interfacial tension by use of pendant drop video techniques

    NASA Astrophysics Data System (ADS)

    Herd, Melvin D.; Thomas, Charles P.; Bala, Gregory A.; Lassahn, Gordon D.

    1993-09-01

    This report describes an instrument to measure the interfacial tension (IFT) of aqueous surfactant solutions and crude oil. The method involves injection of a drop of fluid (such as crude oil) into a second immiscible phase to determine the IFT between the two phases. The instrument is composed of an AT-class computer, optical cell, illumination, video camera and lens, video frame digitizer board, monitor, and software. The camera displays an image of the pendant drop on the monitor, which is then processed by the frame digitizer board and non-proprietary software to determine the IFT. Several binary and ternary phase systems were taken from the literature and used to measure the precision and accuracy of the instrument in determining IFT's. A copy of the software program is included in the report. A copy of the program on diskette can be obtained from the Energy Science and Technology Software Center, P.O. Box 1020, Oak Ridge, TN 37831-1020. The accuracy and precision of the technique and apparatus presented is very good for measurement of IFT's in the range from 72 to 10(exp -2) mN/m, which is adequate for many EOR applications. With modifications to the equipment and the numerical techniques, measurements of ultralow IFT's (less than 10(exp -3) mN/m) should be possible as well as measurements at reservoir temperature and pressure conditions. The instrument has been used at the Idaho National Engineering Laboratory to support the research program on microbial enhanced oil recovery. Measurements of IFT's for several bacterial supernatants and unfractionated acid precipitates of microbial cultures containing biosurfactants against medium to heavy crude oils are reported. These experiments demonstrate that the use of automated video imaging of pendant drops is a simple and fast method to reliably determine interfacial tension between two immiscible liquid phases, or between a gas and a liquid phase.

  14. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  15. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-11-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  16. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-05-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  17. Accuracy of digital and analogue cephalometric measurements assessed with the sandwich technique.

    PubMed

    Santoro, Margherita; Jarjoura, Karim; Cangialosi, Thomas J

    2006-03-01

    The purpose of the study was to evaluate the accuracy of cephalometric measurements obtained with digital tracing software compared with equivalent hand-traced measurements. In the sandwich technique, a storage phosphor plate and a conventional radiographic film are placed in the same cassette and exposed simultaneously. The method eliminates positioning errors and potential differences associated with multiple radiographic exposures that affected previous studies. It was used to ensure the equivalence of the digital images to the hard copy radiographs. Cephalometric measurements instead of landmarks were the focus of this investigation in order to acquire data with direct clinical applications. The sample consisted of digital and analog radiographic images from 47 patients after orthodontic treatment. Nine cephalometric landmarks were identified and 13 measurements calculated by 1 operator, both manually and with digital tracing software. Measurement error was assessed for each method by duplicating measurements of 25 randomly selected radiographs and by using Pearson's correlation coefficient. A paired t test was used to detect differences between the manual and digital methods. An overall greater variability in the digital cephalometric measurements was found. Differences between the 2 methods for SNA, ANB, S-Go:N-Me, U1/L1, L1-GoGn, and N-ANS:ANS-Me were statistically significant (P < .05). However, only the U1/L1 and S-Go:N-Me measurements showed differences greater than 2 SE (P < .0001). The 2 tracing methods provide similar clinical results; therefore, efficient digital cephalometric software can be reliably chosen as a routine diagnostic tool. The user-friendly sandwich technique was effective as an option for interoffice communications.

  18. Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique

    NASA Astrophysics Data System (ADS)

    Pakluea, S.; Rimjaem, S.

    2017-09-01

    Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.

  19. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  20. Real-time direct measurement of liquid (water) evaporation by simple disturbance inhibited interfometry technique

    NASA Astrophysics Data System (ADS)

    Kim, Yong Gi

    2017-11-01

    A real-time in-situ interferometry method was proposed to measure water (liquid) evaporation directly over the liquid surface inside the reservoir. The direct evaporation measurement relied on the counting the number of sinusoidal fringes. As the water inside reservoir evaporated, the depth of the water decreases a little thus the optical path length changes. Evaporation signals have been determined as a function of the focusing beam position of the signal beam over the liquid surface. In interferometry technique, the most limiting factors are surface disturbances and vibrations over the liquid surface. This limiting factor was simply inhibited by placing a long cylindrical aluminum tube around the signal beam of the interferometer over the liquid surface. A small diameter cylindrical Al tube diminished vibrations and wind induced surface ripples more effectively than that of the larger one. Water evaporation was successfully measured in real-time with a warm water and cold water even under windy condition with an electric fan. The experimental results demonstrated that the interferometry technique allows determining of liquid evaporation in real-time. Interferometric technique opens up a new possibility of methodology for liquid evaporation measurement even in several environmental disturbances, such as, vibration, surface disturbance, temperature change and windy environments.

  1. Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques.

    PubMed

    Peng, Wen-Ping; Chou, Szu-Wei; Patil, Avinash A

    2014-07-21

    Large biomolecules and bioparticles play a vital role in biology, chemistry, biomedical science and physics. Mass is a critical parameter for the characterization of large biomolecules and bioparticles. To achieve mass analysis, choosing a suitable ion source is the first step and the instruments for detecting ions, mass analyzers and detectors should also be considered. Abundant mass spectrometric techniques have been proposed to determine the masses of large biomolecules and bioparticles and these techniques can be divided into two categories. The first category measures the mass (or size) of intact particles, including single particle quadrupole ion trap mass spectrometry, cell mass spectrometry, charge detection mass spectrometry and differential mobility mass analysis; the second category aims to measure the mass and tandem mass of biomolecular ions, including quadrupole ion trap mass spectrometry, time-of-flight mass spectrometry, quadrupole orthogonal time-of-flight mass spectrometry and orbitrap mass spectrometry. Moreover, algorithms for the mass and stoichiometry assignment of electrospray mass spectra are developed to obtain accurate structure information and subunit combinations.

  2. Measurement of bronchial blood flow in the sheep by video dilution technique.

    PubMed Central

    Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E

    1985-01-01

    Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564

  3. Ultrasonic techniques for measuring physical properties of fluids in harsh environments

    NASA Astrophysics Data System (ADS)

    Pantea, Cristian

    Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.

  4. Dynamic measurements of thermophysical properties of metals and alloys at high temperatures by subsecond pulse heating techniques

    NASA Technical Reports Server (NTRS)

    Cezairliyan, Ared

    1993-01-01

    Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting

  5. The measurement of ultrafine particles: A pilot study using a portable particle counting technique to measure generated particles during a micromachining process

    NASA Astrophysics Data System (ADS)

    Handy, Rodney G.; Jackson, Mark J.; Robinson, Grant M.; Lafreniere, Michael D.

    2006-04-01

    The accurate measurement of airborne particles in the nanometer range is a challenging task. Because several studies have linked exposures to airborne ultrafine particles to elevated human health risks, the need to assess the concentrations of particles in the workplace that are below 100 nm in diameter is imperative. Several different techniques for monitoring nanoparticles are now available, and others are currently being tested for their merit. Laboratory condensation particle counters (CPC), field-portable CPC, nanometer differential mobility analyzers, electron microscopy, and other novel and experimental approaches to measuring nanoparticles have been recently used in investigations. The first part of this article gives an overview of these techniques, and provides the advantages and disadvantages for each. The second part of this article introduces a portable technique, coupling two particle measurement devices that are capable of characterizing microscale and nanoscale particles in the field environment. Specifically, this pilot study involved the use of a direct-reading CPC and a laser particle counter to measure airborne concentrations of ultrafine particles during a laboratory machining process. The measurements were evaluated in real time, and subsequently, decisions regarding human exposure could be made in an efficient and effective manner. Along with the results from this study, further research efforts in related areas are discussed.

  6. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  7. The application of a shift theorem analysis technique to multipoint measurements

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Chapman, S. C.

    1999-03-01

    A Fourier domain technique has been proposed previously which, in principle, quantifies the extent to which multipoint in-situ measurements can identify whether or not an observed structure is time stationary in its rest frame. Once a structure, sampled for example by four spacecraft, is shown to be quasi-stationary in its rest frame, the structure's velocity vector can be determined with respect to the sampling spacecraft. We investigate the properties of this technique, which we will refer to as a stationarity test, by applying it to two point measurements of a simulated boundary layer. The boundary layer was evolved using a PIC (particle in cell) electromagnetic code. Initial and boundary conditions were chosen such, that two cases could be considered, i.e. a spacecraft pair moving through (1) a time stationary boundary structure and (2) a boundary structure which is evolving (expanding) in time. The code also introduces noise in the simulated data time series which is uncorrelated between the two spacecraft. We demonstrate that, provided that the time series is Hanning windowed, the test is effective in determining the relative velocity between the boundary layer and spacecraft and in determining the range of frequencies over which the data can be treated as time stationary or time evolving. This work presents a first step towards understanding the effectiveness of this technique, as required in order for it to be applied to multispacecraft data.

  8. Comparison of bone density measurement techniques: DXA and Archimedes' principle.

    PubMed

    Keenan, M J; Hegsted, M; Jones, K L; Delany, J P; Kime, J C; Melancon, L E; Tulley, R T; Hong, K D

    1997-11-01

    The standard method for determination of density (g/cm3) of bones from small animals has been the application of Archimedes' principle. A recent development has been software for the determination of "density" (g/cm2) of small animal bones with dual-energy X-ray absorptiometry (DXA). We compared Archimedes' principle and DXA (Hologic QDR-2000) in the measurement of the densities of whole and hollowed femurs of 5- to 6-month-old retired female breeder rats. In an attempt to ensure detectable treatment differences, rats were used from a low-vitamin D Holtzman and a supplemental-vitamin D Sprague-Dawley colony. Whole femur densities were higher for supplemental-vitamin D colony rats than for low vitamin D rats using both techniques (Archimedes' principle, p < 0.002; DXA, p < 0.005), and the densities from the two techniques were highly correlated (r = 0.82, p < 0.0001). Actual density values were higher for Archimedes' principle than for DXA. Other variables such as femur ash weight and calcium content were also highly correlated to densities with both techniques. Hollowed femur density values were higher than whole femur values with Archimedes' principle but lower with DXA. Colony effects for hollowed femur densities were diminished with Archimedes' principle (p < 0.03) and eliminated with DXA (p < 0.53). Investigation of whole bones is more biologically relevant, and both techniques were effective in detecting differences between whole femurs from low-vitamin D and supplemental-vitamin D colony rats.

  9. Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults

    PubMed Central

    Macias, Nayeli; Alemán-Mateo, Heliodoro; Esparza-Romero, Julián; Valencia, Mauro E

    2007-01-01

    Background The study of body composition in specific populations by techniques such as bio-impedance analysis (BIA) requires validation based on standard reference methods. The aim of this study was to develop and cross-validate a predictive equation for bioelectrical impedance using air displacement plethysmography (ADP) as standard method to measure body composition in Mexican adult men and women. Methods This study included 155 male and female subjects from northern Mexico, 20–50 years of age, from low, middle, and upper income levels. Body composition was measured by ADP. Body weight (BW, kg) and height (Ht, cm) were obtained by standard anthropometric techniques. Resistance, R (ohms) and reactance, Xc (ohms) were also measured. A random-split method was used to obtain two samples: one was used to derive the equation by the "all possible regressions" procedure and was cross-validated in the other sample to test predicted versus measured values of fat-free mass (FFM). Results and Discussion The final model was: FFM (kg) = 0.7374 * (Ht2 /R) + 0.1763 * (BW) - 0.1773 * (Age) + 0.1198 * (Xc) - 2.4658. R2 was 0.97; the square root of the mean square error (SRMSE) was 1.99 kg, and the pure error (PE) was 2.96. There was no difference between FFM predicted by the new equation (48.57 ± 10.9 kg) and that measured by ADP (48.43 ± 11.3 kg). The new equation did not differ from the line of identity, had a high R2 and a low SRMSE, and showed no significant bias (0.87 ± 2.84 kg). Conclusion The new bioelectrical impedance equation based on the two-compartment model (2C) was accurate, precise, and free of bias. This equation can be used to assess body composition and nutritional status in populations similar in anthropometric and physical characteristics to this sample. PMID:17697388

  10. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  11. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  12. The transverse technique; a complementary approach to the measurement of first-trimester uterine artery Doppler.

    PubMed

    Drouin, Olivier; Johnson, Jo-Ann; Chaemsaithong, Piya; Metcalfe, Amy; Huber, Janie; Schwarzenberger, Jill; Winters, Erin; Stavness, Lesley; Tse, Ada W T; Lu, Jing; Lim, Wan Teng; Leung, Tak Yeung; Bujold, Emmanuel; Sahota, Daljit; Poon, Liona C

    2017-10-04

    The objectives of this study were to 1) define the protocol for the first-trimester assessment of the uterine artery pulsatility index (UtA-PI) using the new transverse technique, 2) evaluate UtA-PI measured by the transverse approach versus that obtained by the conventional sagittal approach, and 3) determine if accelerated onsite training (both methods) of inexperienced sonographers can achieve reproducible UtA-PI measurements compared to that measured by an experienced sonographer. The study consists of 2 parts conducted in 2 centers (Part 1, Calgary, Canada and Part 2, Hong Kong). Part 1 Prospective observational study of women with singleton pregnancies between 11-13+6 weeks' gestation. UtA-PI measurements were performed using the 2 techniques (4 sonographers trained in both methods, 10 cases each) and measurement indices (PI), time required and subjective difficulty to obtain satisfactory measurements were compared. One sample t-test and Wilcoxon rank sign test was used when appropriate. Bland-Altman difference plots were used to assess measurement agreement, and intra-class correlation (ICC) was used to evaluate measurement reliability. A target plot was used to assess measures of central tendency and dispersion. Part 2 One experienced and three inexperienced sonographers prospectively measured the UtA-PI at 11-13+6 weeks' gestation in two groups of women (42 and 35, respectively), with singleton pregnancies using both approaches. Inexperienced sonographers underwent accelerated on-site training by the experienced sonographer. Measurement approach and sonographer order were on a random basis. ICC, Bland-Altman and Passing-Bablok analyses were performed to assess measurement agreement, reliability and effect of accelerated training. Part 1 We observed no difference in the mean time to acquire the measurements (Sagittal: 118 seconds vs Transverse: 106 seconds, p=0.38). The 4 sonographers reported the transverse technique was subjectively easier to perform (p=0

  13. Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time

    PubMed Central

    Seoane, Fernando; Mohino-Herranz, Inmaculada; Ferreira, Javier; Alvarez, Lorena; Buendia, Ruben; Ayllón, David; Llerena, Cosme; Gil-Pita, Roberto

    2014-01-01

    The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants' operational capabilities. Within this framework the ATREC project funded by the “Coincidente” program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems. PMID:24759113

  14. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time.

    PubMed

    Seoane, Fernando; Mohino-Herranz, Inmaculada; Ferreira, Javier; Alvarez, Lorena; Buendia, Ruben; Ayllón, David; Llerena, Cosme; Gil-Pita, Roberto

    2014-04-22

    The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants' operational capabilities. Within this framework the ATREC project funded by the "Coincidente" program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems.

  15. Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System

    PubMed Central

    Abtahi, Farhad; Snäll, Jonatan; Aslamy, Benjamin; Abtahi, Shirin; Seoane, Fernando; Lindecrantz, Kaj

    2015-01-01

    Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8–12 leads electrocardiogram (ECG) and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org. PMID:25545268

  16. Measuring thermal conductivity of polystyrene nanowires using the dual-cantilever technique.

    PubMed

    Canetta, Carlo; Guo, Samuel; Narayanaswamy, Arvind

    2014-10-01

    Thermal conductance measurements are performed on individual polystyrene nanowires using a novel measurement technique in which the wires are suspended between two bi-material microcantilever sensors. The nanowires are fabricated via electrospinning process. Thermal conductivity of the nanowire samples is found to be between 6.6 and 14.4 W m(-1) K(-1) depending on sample, a significant increase above typical bulk conductivity values for polystyrene. The high strain rates characteristic of electrospinning are believed to lead to alignment of molecular polymer chains, and hence the increase in thermal conductivity, along the axis of the nanowire.

  17. Neutron total cross section measurement at WNR. [215 to 250 MeV experimental techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, P.W.; Moore, M.S.; Morgan, G.L.

    1979-01-01

    The techniques involved in measuring fast-neutron total cross sections at the Weapons Neutron Facility (WNR) of the Los Alamos Scientific Laboratory are described. Results of total cross section measurements on natural carbon covering the range 2.5 to 250 MeV are presented. 16 references.

  18. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  19. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    This study was carried out to develop improved methods for measuring in-vivo stress relaxation of growing tissues and to compare relaxation in the stems of four different species. When water uptake by growing tissue is prevented, in-vivo stress relaxation occurs because continued wall loosening reduces wall stress and cell turgor pressure. With this procedure one may measure the yield threshold for growth (Y), the turgor pressure in excess of the yield threshold (P-Y), and the physiological wall extensibility (phi). Three relaxation techniques proved useful: "turgor-relaxation", "balance-pressure" and "pressure-block". In the turgor-relaxation method, water is withheld from growing tissue and the reduction in turgor is measured directly with the pressure probe. This technique gives absolute values for P and Y, but requires tissue excision. In the balance-pressure technique, the excised growing region is sealed in a pressure chamber, and the subsequent reduction in water potential is measured as the applied pressure needed to return xylem sap to the cut surface. This method is simple, but only measures (P-Y), not the individual values of P and Y. In the pressure-block technique, the growing tissue is sealed into a pressure chamber, growth is monitored continuously, and just sufficient pressure is applied to the chamber to block growth. The method gives high-resolution kinetics of relaxation and does not require tissue excision, but only measures (P-Y). The three methods gave similar results when applied to the growing stems of pea (Pisum sativum L.), cucumber (Cucumis sativus L.), soybean (Glycine max (L.) Merr.) and zucchini (Curcubita pepo L.) seedlings. Values for (P-Y) averaged between 1.4 and 2.7 bar, depending on species. Yield thresholds averaged between 1.3 and 3.0 bar. Compared with the other methods, relaxation by pressure-block was faster and exhibited dynamic changes in wall-yielding properties. Th