Sample records for biologic response modifiers

  1. Progress in the understanding and utilization of biologic response modifiers in the treatment of uveitis.

    PubMed

    Maleki, Arash; Meese, Halea; Sahawneh, Haitham; Foster, C Stephen

    2016-07-01

    Uveitis is the third most common cause of blindness in developed countries. Considering the systemic and local complications of long-term corticosteroid therapy and the intolerance due to side effects and ineffectiveness of conventional chemotherapy, use of biologic response modifiers is a reasonable alternative in the treatment of non-infectious uveitis and persistent uveitic macular edema. The majority of the evidence presented here comes from open uncontrolled analyses. Based on these studies, tumor necrosis factor alpha inhibitors, especially infliximab and adalimumab, have been shown to be effective in the treatment of non-infectious uveitis in numerous studies. More research is necessary, particularly multi-center randomized clinical trials, to address the choice of biologic response modifier agent and the length of treatment as we employ biologic response modifiers in different types of uveitis and persistent uveitic macular edema.

  2. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    EPA Science Inventory

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-Dose
    Cancer Responses
    .
    There has been a concerted effort in the field of radiation biology to better understand cellular
    responses that could have an impact on the estin1ation of cancer...

  3. Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples.

    PubMed

    Palanisamy, Selvakumar; Thangavelu, Kokulnathan; Chen, Shen-Ming; Gnanaprakasam, P; Velusamy, Vijayalakshmi; Liu, Xiao-Heng

    2016-10-20

    The accurate detection of dopamine (DA) levels in biological samples such as human serum and urine are essential indicators in medical diagnostics. In this work, we describe the preparation of chitosan (CS) biopolymer grafted graphite (GR) composite for the sensitive and lower potential detection of DA in its sub micromolar levels. The composite modified electrode has been used for the detection of DA in biological samples such as human serum and urine. The GR-CS composite modified electrode shows an enhanced oxidation peak current response and low oxidation potential for the detection of DA than that of electrodes modified with bare, GR and CS discretely. Under optimum conditions, the fabricated GR-CS composite modified electrode shows the DPV response of DA in the linear response ranging from 0.03 to 20.06μM. The detection limit and sensitivity of the sensor were estimated as 0.0045μM and 6.06μA μM(-1)cm(-2), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biological Response Modifiers in Rheumatoid Arthritis: Systematic Review and Meta-analysis of Safety

    PubMed Central

    Tank, Nitishkumar D.; Karelia, Bharti N.; Vegada, Bhavisha N.

    2017-01-01

    Objective: To analyze available evidence on the safety of different biological response modifiers which are used for a treatment of rheumatoid arthritis (RA). Materials and Methods: We searched systematically for randomized controlled clinical trials on treatment of RA with different biological response modifiers, followed by a systematic review with meta-analysis. Trials were searched from MEDLINE and Cochrane Library databases. The following safety parameters reported in the selected trials were analyzed: number of patients suffering any adverse event (AE), withdrawal due to AEs, serious AE (SAEs), infections, serious infections, infusion reactions, injection site reactions, malignancies, and overall mortality. Undesired effects were estimated using combined relative risks (RR) and number needed to harm (NNH). Heterogeneity was evaluated by Cochrane's Q and I2 statistics. Results: According to inclusion criteria, a total of 43 trials (20,504 patients) were included in this study. A total number of AEs were found more with abatacept (RR: 1.05, NNH: 21.93). Withdrawal due to AEs was found with all biologicals, highest with anakinra (RR: 3.48, NNH: 15.70). Patients receiving newer tumor necrosis factor-alpha inhibitors, golimumab, were more likely to develop SAEs (RR: 2.44, NNH: 12.72) and infection (RR: 1.25, NNH: 10.09), and in certolizumab, serious infections (RR: 2.95, NNH: 37.31) were found more. Infusion reaction develops more with rituximab (RR: 1.52, NNH: 8.47). Etanercept showed the highest risk to develop infusion site reaction (RR: 5.33, NNH: 4.65). Biologicals showed no difference to their control counterparts in malignancy and mortality risk. Conclusion: This meta-analysis helps to clarify some frequently encountered and unanswered safety questions of different biological response modifiers, a new class of drugs, in the clinical care of RA patients. PMID:29081616

  5. Beyond Psoriasis: Novel Uses for Biologic Response Modifiers in Pediatric Dermatology.

    PubMed

    Bellodi-Schmidt, Fernanda; Shah, Kara N

    2016-01-01

    Dermatologists have witnessed the increasing availability of novel biologic response modifiers for the treatment of inflammatory and autoimmune diseases in recent years. The most common dermatologic indication for the use of biologic response modifiers in adults is psoriasis, but the U.S. Food and Drug Administration has not approved any of these agents for use in any dermatologic disease in children with the exception of omalizumab, and as such, use in this population is considered off-label. In this review, we focus on the use of these agents in children to treat inflammatory skin diseases other than psoriasis, including atopic dermatitis, hidradenitis suppurativa, pemphigus vulgaris, bullous pemphigoid, and toxic epidermal necrolysis, with an emphasis on the use of etanercept, infliximab, rituximab, omalizumab, and ustekinumab. By highlighting novel uses of these agents, particularly for the treatment of dermatologic conditions for which optimal therapies are yet to be established, we hope to raise awareness of the potential use of this class of medications to treat inflammatory skin diseases in children. © 2015 Wiley Periodicals, Inc.

  6. Apparatus and Methods for Manipulation and Optimization of Biological Systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2014-01-01

    The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.

  7. Biological Response Modifiers in the Immune Response.

    DTIC Science & Technology

    1982-12-01

    8217 \\* *’• "*"^ ’ • ’•’• .’•- "• " T" • " * " . .-.-.--.•-. T . - • * • • 32 9) Colket, M. B., III, Naegeli , D. W., and Glassman, I., High Temperature Pyrolysis of

  8. Safety and effectiveness of tacrolimus add-on therapy for rheumatoid arthritis patients without an adequate response to biological disease-modifying anti-rheumatic drugs (DMARDs): Post-marketing surveillance in Japan.

    PubMed

    Takeuchi, Tsutomu; Ishida, Kota; Shiraki, Katsuhisa; Yoshiyasu, Takashi

    2018-01-01

    Post-marketing surveillance (PMS) was conducted to assess the safety and effectiveness of tacrolimus (TAC) add-on therapy for patients with rheumatoid arthritis (RA) and an inadequate response to biological disease-modifying anti-rheumatic drugs (DMARDs). Patients with RA from 180 medical sites across Japan were registered centrally with an electronic investigation system. The observational period was 24 weeks from the first day of TAC administration concomitantly with biological DMARDs. Safety and effectiveness populations included 624 and 566 patients, respectively. Patients were predominantly female (81.1%), with a mean age of 61.9 years. Overall, 125 adverse drug reactions (ADRs) occurred in 94 patients (15.1%), and 15 serious ADRs occurred in 11 patients (1.8%). These incidences were lower compared with previously reported incidences after TAC treatment in PMS, and all of the observed ADRs were already known. A statistically significant improvement was observed in the primary effectiveness variable of Simplified Disease Activity Index after TAC treatment; 62.7% of patients achieved remission or low disease activity at week 24. TAC is well tolerated and effective when used as an add-on to biological DMARDs in Japanese patients with RA who do not achieve an adequate response to biological DMARDs in a real-world clinical setting.

  9. Starting of biological disease modifying antirheumatic drugs may be postponed in rheumatoid arthritis patients with multimorbidity: Single center real life results.

    PubMed

    Armagan, Berkan; Sari, Alper; Erden, Abdulsamet; Kilic, Levent; Erdat, Efe Cem; Kilickap, Saadettin; Kiraz, Sedat; Bilgen, Sule Apras; Karadag, Omer; Akdogan, Ali; Ertenli, Ihsan; Kalyoncu, Umut

    2018-03-01

    The objective of this study was to assess the frequency of comorbidities and multimorbidities in rheumatoid arthritis (RA) patients under biologic therapy and their effects on biological disease modifying antirheumatic drugs (DMARDs) choice, timing, and response.Hacettepe University Biologic Registry (HUR-BIO) is single center biological DMARD registry. Cardiovascular, infectious, cancer, and other comorbidities were recorded with face to face interviews. Multimorbidity is defined as >1 comorbidity. Disease duration, initial date of biological DMARDs, initial and overall biological DMARD choice were recorded. Disease activity score-28 (DAS-28) responses were compared to comorbidity presence and multimorbidity.Total of 998 RA patients were enrolled into the study. The mean age was 53.1 (12.5) and mean disease duration (standard deviation [SD]) was 11.7 (7.5) years. At least 1 comorbidity was detected in 689 (69.1%) patients, 375 (37.9%) patients had multimorbidity. Patients had mean 1.36 ± 1.32 comorbidity. The median durations of first biological DMARDs prescription were 60 (3-552) months after RA diagnosis. For multimorbidity patients, the median first biological prescription duration was longer than the duration for patients without multimorbidity (72 [3-552] vs 60 [3-396] months, P < .001). The physicians prescribe tumor necrosis factor inhibitor (TNFi) biological drugs less frequently than other biological DMARDs in patients with at least 1 comorbidity (66.2% vs 74.5%, P = .007) or multimorbidity (34.6% vs 43.5%, P = .006). Patients with comorbidities and multimorbidity achieved DAS-28 remission less frequently than patients without comorbidity (31.6% vs 42.6%, P = .012 and 27.2% vs 39.7%, P = .001, respectively).In real life, physicians may postpone to prescribe biological DMARDs and less frequently choose TNFi biological drugs in patients with multimorbidity. Furthermore, comorbidity may have a negative effect on the treatment response.

  10. Starting of biological disease modifying antirheumatic drugs may be postponed in rheumatoid arthritis patients with multimorbidity

    PubMed Central

    Armagan, Berkan; Sari, Alper; Erden, Abdulsamet; Kilic, Levent; Erdat, Efe Cem; Kilickap, Saadettin; Kiraz, Sedat; Bilgen, Sule Apras; Karadag, Omer; Akdogan, Ali; Ertenli, Ihsan; Kalyoncu, Umut

    2018-01-01

    Abstract The objective of this study was to assess the frequency of comorbidities and multimorbidities in rheumatoid arthritis (RA) patients under biologic therapy and their effects on biological disease modifying antirheumatic drugs (DMARDs) choice, timing, and response. Hacettepe University Biologic Registry (HUR-BIO) is single center biological DMARD registry. Cardiovascular, infectious, cancer, and other comorbidities were recorded with face to face interviews. Multimorbidity is defined as >1 comorbidity. Disease duration, initial date of biological DMARDs, initial and overall biological DMARD choice were recorded. Disease activity score-28 (DAS-28) responses were compared to comorbidity presence and multimorbidity. Total of 998 RA patients were enrolled into the study. The mean age was 53.1 (12.5) and mean disease duration (standard deviation [SD]) was 11.7 (7.5) years. At least 1 comorbidity was detected in 689 (69.1%) patients, 375 (37.9%) patients had multimorbidity. Patients had mean 1.36 ± 1.32 comorbidity. The median durations of first biological DMARDs prescription were 60 (3–552) months after RA diagnosis. For multimorbidity patients, the median first biological prescription duration was longer than the duration for patients without multimorbidity (72 [3–552] vs 60 [3–396] months, P < .001). The physicians prescribe tumor necrosis factor inhibitor (TNFi) biological drugs less frequently than other biological DMARDs in patients with at least 1 comorbidity (66.2% vs 74.5%, P = .007) or multimorbidity (34.6% vs 43.5%, P = .006). Patients with comorbidities and multimorbidity achieved DAS-28 remission less frequently than patients without comorbidity (31.6% vs 42.6%, P = .012 and 27.2% vs 39.7%, P = .001, respectively). In real life, physicians may postpone to prescribe biological DMARDs and less frequently choose TNFi biological drugs in patients with multimorbidity. Furthermore, comorbidity may have a negative effect on the treatment response. PMID:29595700

  11. The impact of a scheduling change on ninth grade high school performance on biology benchmark exams and the California Standards Test

    NASA Astrophysics Data System (ADS)

    Leonardi, Marcelo

    The primary purpose of this study was to examine the impact of a scheduling change from a trimester 4x4 block schedule to a modified hybrid schedule on student achievement in ninth grade biology courses. This study examined the impact of the scheduling change on student achievement through teacher created benchmark assessments in Genetics, DNA, and Evolution and on the California Standardized Test in Biology. The secondary purpose of this study examined the ninth grade biology teacher perceptions of ninth grade biology student achievement. Using a mixed methods research approach, data was collected both quantitatively and qualitatively as aligned to research questions. Quantitative methods included gathering data from departmental benchmark exams and California Standardized Test in Biology and conducting multiple analysis of covariance and analysis of covariance to determine significance differences. Qualitative methods include journal entries questions and focus group interviews. The results revealed a statistically significant increase in scores on both the DNA and Evolution benchmark exams. DNA and Evolution benchmark exams showed significant improvements from a change in scheduling format. The scheduling change was responsible for 1.5% of the increase in DNA benchmark scores and 2% of the increase in Evolution benchmark scores. The results revealed a statistically significant decrease in scores on the Genetics Benchmark exam as a result of the scheduling change. The scheduling change was responsible for 1% of the decrease in Genetics benchmark scores. The results also revealed a statistically significant increase in scores on the CST Biology exam. The scheduling change was responsible for .7% of the increase in CST Biology scores. Results of the focus group discussions indicated that all teachers preferred the modified hybrid schedule over the trimester schedule and that it improved student achievement.

  12. Manipulation of the osteoblast response to a Ti 6Al 4V titanium alloy using a high power diode laser

    NASA Astrophysics Data System (ADS)

    Hao, L.; Lawrence, J.; Li, L.

    2005-07-01

    To improve the bone integration of titanium-based implants a high power diode laser (HPDL) was used to modify the material for improved osteoblast cell response. The surface properties of un-treated and HPDL treated samples were characterized. Contact angles for the un-treated and the HPDL modified titanium alloy (Ti-6Al-4V) were determined with selected biological liquids by the sessile drop technique. The analysis revealed that the wettability of the Ti-6Al-4V improved after HPDL laser treatment, indicating that better interaction with the biological liquids occurred. Moreover, an in vitro human fetal osteoblast cells (hFOB 1.19) evaluation revealed a more favourable cell response on the HPDL laser treated Ti-6Al-4V alloy than on either un-treated sample or a mechanically roughened sample. It was consequently determined that the HPDL provides more a controllable and effective technique to improve the biocompatibility of bio-metals.

  13. Femtosecond laser microstructured Alumina toughened Zirconia: A new strategy to improve osteogenic differentiation of hMSCs

    NASA Astrophysics Data System (ADS)

    Carvalho, Angela; Cangueiro, Liliana; Oliveira, Vítor; Vilar, Rui; Fernandes, Maria H.; Monteiro, Fernando J.

    2018-03-01

    The use of topographic patterns has been a continuously growing area of research for tissue engineering and it is widely accepted that the surface topography of biomaterials can influence and modulate the initial biological response. Ultrafast lasers are extremely powerful tools to machine and pattern the surface of a wide range of biomaterials, however, only few work has been performed on ceramics with the intent of biomedical applications, and the biological characterization of these structured materials is scarce. In this work, relevance is given to the biological performance of such materials. A femtosecond laser ablation technique was used to modify Alumina toughened Zirconia (ATZ) surface topography, developing surfaces structured at the micro and nanoscale levels (μATZ), in a controlled and reproducible manner. Materials characterization was performed before and after laser treatment, and both materials were compared in terms of osteogenic response of human bone marrow derived mesenchymal stem cells cultured under basal conditions, expecting that the micro/nanofeatures will improve the biological response of cells. Cells metabolic activity and proliferation increased with the culture time and surface microtopography modulated cells alignment and guided proliferation. The modified surface, displayed significantly higher expression of osteogenic transcription factors and genes and, additionally, the formation of a mineralized extracellular matrix, when compared to the control surface, i.e. unmodified ATZ.

  14. Addenda to Allied Medical Publication 8, NATO Planning Guide for the Estimation of Chemical, Biological, Radiological, and Nuclear (CBRN) Casualties (AMedP-8(C)) to Consider the Impact of Medical Treatment on Casualty Estimation

    DTIC Science & Technology

    2013-05-01

    122 I. Q Fever Model Parameters (Section C131) ....................................................128 1...needed to incorporate human response models for five biological agents not originally considered in AMedP-8(C): brucellosis, glanders, Q fever ...0103.1b should be modified to read: b. Biological agents include the causative agents of anthrax, brucellosis, glanders, Q fever , tularemia

  15. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review

    PubMed Central

    2016-01-01

    Background The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses. Objective The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique. Data, Sources, and Selection The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. Results Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups. Conclusions The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies. PMID:27441840

  16. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  17. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples

    PubMed Central

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A.

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade-1 in the concentration range of 1×10-7–1×10-2 and 6.2×10-7–1×10-2 mol L-1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0–8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10-7 and 6.2×10-7 mol L-1), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug. PMID:28979305

  18. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples.

    PubMed

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade -1 in the concentration range of 1×10 -7 -1×10 -2 and 6.2×10 -7 -1×10 -2 mol L -1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0-8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10 -7 and 6.2×10 -7 mol L -1 ), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug.

  19. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  20. Apparatus and methods for manipulation and optimization of biological systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2012-01-01

    The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.

  1. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  2. Modifiable risk factors in periodontitis: at the intersection of aging and disease.

    PubMed

    Reynolds, Mark A

    2014-02-01

    Chronic inflammation is a prominent feature of aging and of common age-related diseases, including atherosclerosis, cancer and periodontitis. This volume examines modifiable risk factors for periodontitis and other chronic inflammatory diseases. Oral bacterial communities and viral infections, particularly with cytomegalovirus and other herpesviruses, elicit distinct immune responses and are central in the initiation of periodontal diseases. Risk of disease is dynamic and changes in response to complex interactions of genetic, environmental and stochastic factors over the lifespan. Many modifiable risk factors, such as smoking and excess caloric intake, contribute to increases in systemic markers of inflammation and can modify gene regulation through a variety of biologic mechanisms (e.g. epigenetic modifications). Periodontitis and other common chronic inflammatory diseases share multiple modifiable risk factors, such as tobacco smoking, psychological stress and depression, alcohol consumption, obesity, diabetes, metabolic syndrome and osteoporosis. Interventions that target modifiable risk factors have the potential to improve risk profiles for periodontitis as well as for other common chronic diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Ultrasound disease activity of bilateral wrist and finger joints at three months reflects the clinical response at six months of patients with rheumatoid arthritis treated with biologic disease-modifying anti-rheumatic drugs.

    PubMed

    Kawashiri, Shin-Ya; Nishino, Ayako; Shimizu, Toshimasa; Umeda, Masataka; Fukui, Shoichi; Nakashima, Yoshikazu; Suzuki, Takahisa; Koga, Tomohiro; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Origuchi, Tomoki; Aoyagi, Kiyoshi; Kawakami, Atsushi

    2017-03-01

    We evaluated whether the early responsiveness of ultrasound synovitis can predict the clinical response in rheumatoid arthritis (RA) patients treated with biologic disease-modifying anti-rheumatic drugs (bDMARDs). Articular synovitis was assessed by ultrasound at 22 bilateral wrist and finger joints in 39 RA patients treated with bDMARDs. Each joint was assigned a gray-scale (GS) and power Doppler (PD) score from 0 to 3, and the sum of the GS or PD scores was considered to represent the ultrasound disease activity. We investigated the correlation of the change in ultrasound disease activity at three months with the EULAR response criteria at six months. GS and PD scores were significantly decreased at three months (p < 0.0001). The % changes of the GS and PD scores at three months were significantly higher at six months in moderate and good responders compared with non-responders (p < 0.05). These tendencies were numerically more prominent if clinical response was set as good responder or Disease Activity Score 28 remission. Poor improvement of ultrasound synovitis scores had good predictive value for non-responders at six months. The responsiveness of ultrasound disease activity is considered to predict further clinical response in RA patients treated with bDMARDs.

  4. Clinical utility of therapeutic drug monitoring in biological disease modifying anti-rheumatic drug treatment of rheumatic disorders: a systematic narrative review.

    PubMed

    Van Herwaarden, Noortje; Van Den Bemt, Bart J F; Wientjes, Maike H M; Kramers, Cornelis; Den Broeder, Alfons A

    2017-08-01

    Biological Disease Modifying Anti-Rheumatic Drugs (bDMARDs) have improved the treatment outcomes of inflammatory rheumatic diseases including Rheumatoid Arthritis and spondyloarthropathies. Inter-individual variation exists in (maintenance of) response to bDMARDs. Therapeutic Drug Monitoring (TDM) of bDMARDs could potentially help in optimizing treatment for the individual patient. Areas covered: Evidence of clinical utility of TDM in bDMARD treatment is reviewed. Different clinical scenarios will be discussed, including: prediction of response after start of treatment, prediction of response to a next bDMARD in case of treatment failure of the first, prediction of successful dose reduction or discontinuation in case of low disease activity, prediction of response to dose-escalation in case of active disease and prediction of response to bDMARD in case of flare in disease activity. Expert opinion: The limited available evidence does often not report important outcomes for diagnostic studies, such as sensitivity and specificity. In most clinical relevant scenarios, predictive value of serum (anti-) drug levels is absent, therefore the use of TDM of bDMARDs cannot be advocated. Well-designed prospective studies should be done to further investigate the promising scenarios to determine the place of TDM in clinical practice.

  5. Biological response modifiers: their possibilities for cancer treatment.

    PubMed

    Franz, G

    1989-01-01

    Immunotherapy with the so-called 'Biological Response Modifiers' is based on the concept that the immune system can be activated to control neoplastic growth. Immunotherapy gained popularity as a treatment in the 1960's because of data from experimental tumor models. This indicated that mainly nonspecific stimulation with products of bacterial or fungal origine could prevent recurrence of, or delay growth of experimentally transplanted tumors. Since immunotherapy was most effective against relatively small tumors, clinical investigators began to view it mainly as a post-surgical treatment for a inhibition of micrometastasis. Mainly the activation of the non specific killer cells, macrophages and lymphocytes seems very promising to target an immune stimulant in the tumor site with a relatively high specificity. In the present study a whole series of biological polymers were tested in view of their capacity to enhance the immune system. However, the relatively small number of such compounds which can be applied therapeutically demonstrates that the ability of a compound to stimulate the immune systems is dependent on several conditions, such as the molecular dimension, the structure type and the solubility criteria. It will be shown that specific fungal glucans are very promising candidates for a successful cancer treatment.

  6. Genes of innate immunity and the biological response to inhaled ozone

    PubMed Central

    Li, Zhuowei; Tighe, Robert M.; Feng, Feifei; Ledford, Julie G.; Hollingsworth, John W.

    2013-01-01

    Ambient ozone has a significant impact on human health. We have made considerable progress in understanding the fundamental mechanisms that regulate the biological response to ozone. It is increasingly clear that genes of innate immunity play a central role in both infectious and non-infectious lung disease. The biological response to ambient ozone provides a clinically relevant environmental exposure that allows us to better understand the role of innate immunity in non-infectious airways disease. In this brief review, we focus on: (1) specific cell types in the lung modified by ozone; (2) ozone and oxidative stress; (3) the relationship between genes of innate immunity and ozone; (4) the role of extracellular matrix in reactive airways disease; and (5) the effect of ozone on the adaptive immune system. We summarize recent advances in understanding the mechanisms that ozone contributes to environmental airways disease. PMID:23169704

  7. Institutional Oversight of Occupational Health and Safety for Research Programs Involving Biohazards

    PubMed Central

    Dyson, Melissa C; Carpenter, Calvin B; Colby, Lesley A

    2017-01-01

    Research with hazardous biologic materials (biohazards) is essential to the progress of medicine and science. The field of microbiology has rapidly advanced over the years, partially due to the development of new scientific methods such as recombinant DNA technology, synthetic biology, viral vectors, and the use of genetically modified animals. This research poses a potential risk to personnel as well as the public and the environment. Institutions must have appropriate oversight and take appropriate steps to mitigate the risks of working with these biologic hazards. This article will review responsibilities for institutional oversight of occupational health and safety for research involving biologic hazards. PMID:28662748

  8. Institutional Oversight of Occupational Health and Safety for Research Programs Involving Biohazards.

    PubMed

    Dyson, Melissa C; Carpenter, Calvin B; Colby, Lesley A

    2017-06-01

    Research with hazardous biologic materials (biohazards) is essential to the progress of medicine and science. The field of microbiology has rapidly advanced over the years, partially due to the development of new scientific methods such as recombinant DNA technology, synthetic biology, viral vectors, and the use of genetically modified animals. This research poses a potential risk to personnel as well as the public and the environment. Institutions must have appropriate oversight and take appropriate steps to mitigate the risks of working with these biologic hazards. This article will review responsibilities for institutional oversight of occupational health and safety for research involving biologic hazards.

  9. Protective effect of biological response modifiers on murine cytomegalovirus infection.

    PubMed Central

    Ebihara, K; Minamishima, Y

    1984-01-01

    Pretreatment with two biological response modifiers (BRM), OK-432 and PS-K, protected mice from lethal infection by murine cytomegalovirus (MCMV). This was evidenced by an increase in 50% lethal doses and a decrease in titers of infectious viruses replicated in the liver and spleen. Spleen cells from the BRM-treated mice augmented the natural killer (NK) cell activity and suppressed the replication of MCMV in vitro. During MCMV infection, the NK cell activity of the spleen cells was maintained at a high level in the BRM-treated mice, whereas it was severely impaired in untreated mice. The BRM-induced protection was nullified by concomitant administration of antiasialo GM1 antibody. Interferon was neither induced by BRM treatment nor enhanced in BRM-pretreated and MCMV-infected mice. Thus, the protective effect of OK-432 and PS-K seems to be based on activation of NK cells and prevention of MCMV-induced inhibition of the NK cell activity. PMID:6202880

  10. Acclimation capacity of the three-spined stickleback (Gasterosteus aculeatus, L.) to a sudden biological stress following a polymetallic exposure.

    PubMed

    Le Guernic, Antoine; Sanchez, Wilfried; Palluel, Olivier; Bado-Nilles, Anne; Floriani, Magali; Turies, Cyril; Chadili, Edith; Vedova, Claire Della; Cavalié, Isabelle; Adam-Guillermin, Christelle; Porcher, Jean-Marc; Geffard, Alain; Betoulle, Stéphane; Gagnaire, Béatrice

    2016-10-01

    To get closer to the environmental reality, ecotoxicological studies should no longer consider the evaluation of a single pollutant, but rather combination of stress and their interaction. The aim of this study was to determine if responses of a fish to a sudden biological stress could be modified by a prior exposure to a chemical stress (a polymetallic contamination). For this purpose, in situ experiment was conducted in three ponds in the Haute-Vienne department (France). One pond was chosen for its high uranium concentration due to uranium mine tailings, and the two other ponds, which were not submitted to these tailings. Three-spined sticklebacks (Gasterosteus aculeatus) were caged in these ponds for 14 days. After this period, fish were submitted to a biological stress, exerted by lipopolysaccharides injection after anesthesia, and were sacrificed 4 days after these injections for multi-biomarkers analyses (leucocyte viability, phagocytic capacity and reactive oxygen species production, antioxidant peptide and enzymes, lipid peroxidation and DNA damage). The pond which received uranium mine tailings had higher metallic concentrations. Without biological stress, sticklebacks caged in this pond presented an oxidative stress, with increasing of reactive oxygen species levels, modification of some parts of the antioxidant system, and lipid peroxidation. Caging in the two most metal-contaminated ponds resulted in an increase of susceptibility of sticklebacks to the biological stress, preventing their phagocytic responses to lipopolysaccharides and modifying their glutathione contents and glutathione-S-transferase activity.

  11. Physical and biological responses to an alternative removal strategy of a moderate-sized dam in Washington, USA.

    Treesearch

    Shannon Claeson; B. Coffin

    2015-01-01

    Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate-sized dams, like Hemlock Dam (7.9m tall and 56m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam...

  12. The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.

    PubMed

    Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A

    2013-12-01

    The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. [Biology and mechanobiology of the intervertebral disc].

    PubMed

    González Martínez, Emilio; García-Cosamalón, José; Cosamalón-Gan, Iván; Esteban Blanco, Marta; García-Suarez, Olivia; Vega, José A

    The intervertebral disc (IVD) is noted for its low cell content, and being the largest avascular structure of human body. The low amount of cells in the disc have to adapt to an anaerobic metabolism with low oxygen pressure and acidic pH. Apart from surviving in an adverse microenvironment, they are exposed to a high level of mechanical stress. The biological adaptation of cells to acidosis and hyperosmolarity conditions are regulated by mechanoproteins, which are responsible for converting a mechanical signal into a cellular response, thus modifying its gene expression. Mechanobiology helps us to better understand the pathophysiology of IVD and its potential biological repair. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. A systems approach to integrative biology: an overview of statistical methods to elucidate association and architecture.

    PubMed

    Ciaccio, Mark F; Finkle, Justin D; Xue, Albert Y; Bagheri, Neda

    2014-07-01

    An organism's ability to maintain a desired physiological response relies extensively on how cellular and molecular signaling networks interpret and react to environmental cues. The capacity to quantitatively predict how networks respond to a changing environment by modifying signaling regulation and phenotypic responses will help inform and predict the impact of a changing global enivronment on organisms and ecosystems. Many computational strategies have been developed to resolve cue-signal-response networks. However, selecting a strategy that answers a specific biological question requires knowledge both of the type of data being collected, and of the strengths and weaknesses of different computational regimes. We broadly explore several computational approaches, and we evaluate their accuracy in predicting a given response. Specifically, we describe how statistical algorithms can be used in the context of integrative and comparative biology to elucidate the genomic, proteomic, and/or cellular networks responsible for robust physiological response. As a case study, we apply this strategy to a dataset of quantitative levels of protein abundance from the mussel, Mytilus galloprovincialis, to uncover the temperature-dependent signaling network. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response.

    PubMed

    Parvez, Saba; Fu, Yuan; Li, Jiayang; Long, Marcus J C; Lin, Hong-Yu; Lee, Dustin K; Hu, Gene S; Aye, Yimon

    2015-01-14

    Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.

  16. Cold truths: how winter drives responses of terrestrial organisms to climate change.

    PubMed

    Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J

    2015-02-01

    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  17. Current and future pharmaceutical therapy for rheumatoid arthritis.

    PubMed

    Ruderman, Eric M

    2005-01-01

    Rheumatoid arthritis (RA) is a chronic, inflammatory arthritis with a population prevalence of approximately 1%. Pharmaceutical treatment includes both anti-inflammatory medications and disease modifying drugs (DMARDs) that impact the course of the damage associated with this disease. Traditional DMARD therapy includes immunomodulatory agents such as methotrexate, used both alone and in combination. Recently available biologic response modifiers are very effective at reducing both the clinical symptoms of disease and the radiographic damage that accompanies them. This manuscript describes the clinical assessments used to measure response to therapy in RA and reviews the results seen with the various treatment strategies in this disease. In addition, the clinical and structural outcomes seen in trials of newly available and pending biologic therapies are reviewed, along with the specific toxicity issues associated with these agents. Clinical trial data is reviewed for the TNF antagonists, which have become the standard of care in RA patients with an inadequate response to methotrexate. RA has been clearly shown to be a destructive and disabling disease. The widespread use of newer agents, however, along with more aggressive use of existing therapies, appears to limit disease progression very effectively, and should lead to better long-term outcomes for these patients.

  18. Estimating Likelihood of Fetal In Vivo Interactions Using In Vitro HTS Data (Teratology meeting)

    EPA Science Inventory

    Tox21/ToxCast efforts provide in vitro concentration-response data for thousands of compounds. Predicting whether chemical-biological interactions observed in vitro will occur in vivo is challenging. We hypothesize that using a modified model from the FDA guidance for drug intera...

  19. Biological responses to M13 bacteriophage modified titanium surfaces in vitro.

    PubMed

    Sun, Yuhua; Li, Yiting; Wu, Baohua; Wang, Jianxin; Lu, Xiong; Qu, Shuxin; Weng, Jie; Feng, Bo

    2017-08-01

    Phage-based materials have showed great potential in tissue engineering application. However, it is unknown what inflammation response will happen to this kind of materials. This work is to explore the biological responses to M13 bacteriophage (phage) modified titanium surfaces in vitro from the aspects of their interaction with macrophages, osteoblasts and mineralization behavior. Pretreated Ti surface, Ti surfaces with noncrosslinked phage film (APP) and crosslinked phage film (APPG) were compared. Phage films could limit the macrophage adhesion and activity due to inducing adherent-cell apoptosis. The initial inflammatory activity (24h) caused by phage films was relatively high with more production of TNF-α, but in the later stage (7-10days) inflammatory response was reduced with lower TNF-α, IL-6 and higher IL-10. In addition, phage films improved osteoblast adhesion, differentiation, and hydroapatite (HA)-forming via a combination of topographical and biochemcial cues. The noncrosslinked phage film displayed the best immunomodulatory property, osteogenic activity and HA mineralization ability. This work provides better understanding of inflammatory and osteogenetic activity of phage-based materials and contributes to their future application in tissue engineering. In vivo, the bone and immune cells share a common microenvironment, and are being affected by similar cytokines, signaling molecules, transcription factors and membrane receptors. Ideal implants should cause positive biological response, including adequate and appropriate inflammatory reaction, well-balanced bone formation and absorption. Phage-based materials have showed great potential in tissue engineering application. However, at present it is unknown what inflammation response will happen to this kind of materials. A good understanding of the immune response possibly induced by phage-based materials is needed. This work studied the osteoimmunomodulation property of phage films on titanium surface, involving inflammatory response, osteogenic activity and biomineralization ability. It provides more understanding of the phage-based materials and contributes to their future application in tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Transcriptional analysis of susceptible and resistant European corn borer strains and their response to Cry1F protoxin

    USDA-ARS?s Scientific Manuscript database

    The development of insect resistance to pesticides and biological toxins expressed by genetically modified crop plants is a serious threat to sustainable agricultural production. One of the central goals of insect resistance management (IRM) is to understand the evolution and adaptation of pest inse...

  1. THE BIOLOGICAL RESPONSE OF A SMALL CATCHMENT TO CLEAR-CUTTING

    EPA Science Inventory

    We modified a Plant-Soil Model (Stieglitz et al, 2006, GBC) that simulates the effects of a disturbance on stocks and fluxes of carbon (C) and nitrogen (N) in terrestrial ecosystems. The model was used to examine past, present and future changes in C storage and C-N dynamics at ...

  2. Immunogenicity of biotherapy used in psoriasis: the science behind the scenes.

    PubMed

    Jullien, Denis; Prinz, Jörg C; Nestle, Frank O

    2015-01-01

    A potential limitation in the use of biologic drugs used to treat psoriasis is the development of anti-drug antibodies (ADAs). Many factors contribute to this unwanted immune response, from the product itself, to its mode of administration, the underlying disease, and patient characteristics. ADAs may decrease the efficacy of biologic drugs by neutralizing them or modifying their clearance and may account for hypersensitivity reactions. This article reviews the scientific basis of immunogenicity and the mechanisms by which it affects clinical outcomes. It also considers testing for immunogenicity and how biologic therapy of psoriasis may be tailored on the basis of immunogenicity.

  3. Biological agents for controlling excessive scarring.

    PubMed

    Berman, Brian

    2010-01-01

    The potential of various biological agents to reduce or prevent excessive scar formation has now been evaluated in numerous in-vitro studies, experimental animal models and preliminary clinical trials, in some cases with particularly promising results. Perhaps prominent among this group of biological agents, and, to some degree, possibly representing marketed compounds already being used 'off label' to manage excessive scarring, are the tumor necrosis factor alpha antagonist etanercept, and immune-response modifiers such as IFNalpha2b and imiquimod. Additional assessment of these novel agents is now justified with a view to reducing or preventing hypertrophic scars, keloid scars and the recurrence of post-excision keloid lesions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, D.A.; McKenzie, D.H.

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact andmore » review biological information needed for intake design.« less

  5. Pharmacotherapy of Scleritis: Current Paradigms and Future Directions

    PubMed Central

    Beardsley, Robert M.; Suhler, Eric B.; Rosenbaum, James T.; Lin, Phoebe

    2013-01-01

    Introduction Scleritis is an inflammatory condition affecting the eye wall that may be associated with a number of systemic inflammatory diseases. Because scleritis can be refractory to standard treatment, knowledge of the body of available and emerging therapies is paramount and is reviewed here. Areas Covered This review focuses on both traditional and emerging therapies for non-infectious scleritis. We will cover the mechanisms of action and potential adverse effects of each of the treatment modalities. Additionally, a summary of the significant MEDLINE indexed literature under the subject heading “scleritis,” “treatment,” “immunomodulator” will be provided on each therapy, including commentary on appropriate use and relative contraindications. Lastly, novel treatments and potential drug candidates that are currently being evaluated in clinical trials with therapeutic potential will also be reviewed. Expert Opinion While oral non-steroidal anti-inflammatory drugs (NSAIDs) and oral corticosteroids are widely used, effective, first-line agents for inflammatory scleritis, refractory cases require anti-metabolites, T cell inhibitors, or biologic response modifiers. In particular, there is emerging evidence for the use of targeted biologic response modifiers, and potentially, for local drug delivery. PMID:23425055

  6. Exposure to arsenic at levels found inU.S. drinking water modifies expression in the mouse lung.

    PubMed

    Andrew, Angeline S; Bernardo, Viviane; Warnke, Linda A; Davey, Jennifer C; Hampton, Thomas; Mason, Rebecca A; Thorpe, Jessica E; Ihnat, Michael A; Hamilton, Joshua W

    2007-11-01

    The mechanisms of action of drinking water arsenic in the lung and the threshold for biologic effects remain controversial. Our study utilizes Affymetrix 22,690 transcript oligonucleotide microarrays to assess the long-term effects of increasing doses of drinking water arsenic on expression levels in the mouse lung. Mice were exposed at levels commonly found in contaminated drinking water wells in the United States (0, 0.1, 1 ppb), as well as the 50 ppb former maximum contaminant level, for 5 weeks. The expression profiles revealed modification of a number of important signaling pathways, many with corroborating evidence of arsenic responsiveness. We observed statistically significant expression changes for transcripts involved in angiogenesis, lipid metabolism, oxygen transport, apoptosis, cell cycle, and immune response. Validation by reverse transcription-PCR and immunoblot assays confirmed expression changes for a subset of transcripts. These data identify arsenic-modified signaling pathways that will help guide investigations into mechanisms of arsenic's health effects and clarify the threshold for biologic effects and potential disease risk.

  7. Effects of high-energy shock waves combined with biological response modifiers or Adriamycin on a human kidney cancer xenograft.

    PubMed

    Oosterhof, G O; Smiths, G A; deRuyter, J E; Schalken, J A; Debruyne, F M

    1990-01-01

    We have studied the effect of high-energy shock waves (HESW) alone or in combination with biological response modifiers (BRMs) or Adriamycin on the growth of the NU-1 human kidney cancer xenograft. When HESW are administered repeatedly (four sessions of 800 shock waves on days 0, 2, 4 and 6) a prolonged delay in tumor growth was found compared with that following a single administration. This effect was temporary, and several days after stopping the HESW administration the tumor regained its original growth potential (same doubling time). Tumor growth was suppressed for a longer period by the combination of 4 sessions of HESW and a single administration of Adriamycin, 5 mg/kg. Combination of HESW treatment with interferon alpha (5.0 ng/g body weight, three times/week) and tumor necrosis factor alpha (500 ng/g body weight, 5 days/week) s.c. around the tumor resulted in a complete cessation of tumor growth. While Adriamycin had an additive effect on HESW treatment, the combination with BRMs was highly synergistic.

  8. Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy.

    PubMed

    Wong, Hoi Man; Zhao, Ying; Leung, Frankie K L; Xi, Tingfei; Zhang, Zhixiong; Zheng, Yufeng; Wu, Shuilin; Luk, Keith D K; Cheung, Kenneth M C; Chu, Paul K; Yeung, Kelvin W K

    2017-04-01

    To achieve enhanced biological response and controlled degradation of magnesium alloy, a modified biodegradable polymer coating called polycaprolactone (PCL) is fabricated by a thermal approach in which the heat treatment neither alters the chemical composition of the PCL membrane nor the rate of magnesium ion release, pH value, or weight loss, compared with the untreated sample. The changes in the crystallinity, hydrophilicity, and oxygen content of heat-treated PCL coating not only improve the mechanical adhesion strength between the coating and magnesium substrate but also enhance the biological properties. Moreover, the thermally modified sample can lead to higher spreading and elongation of osteoblasts, due to the enhanced hydrophilicity and CO to CO functional group ratio. In the analyses of microcomputed tomography from one to four weeks postoperation, the total volume of new bone formation on the heat-treated sample is 10%-35% and 70%-90% higher than that of the untreated and uncoated controls, respectively. Surprisingly, the indentation modulus of the newly formed bone adjacent to the heat-treated sample is ≈20% higher than that of both controls. These promising results reveal the clinical potential of the modified PCL coating on magnesium alloy in orthopedic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The role of epigenetics in cardiovascular health and ageing: A focus on physical activity and nutrition.

    PubMed

    Wallace, Robert G; Twomey, Laura C; Custaud, Marc-Antoine; Turner, Jonathan D; Moyna, Niall; Cummins, Philip M; Murphy, Ronan P

    2017-11-16

    The cardiovascular system is responsible for transport of blood and nutrients to tissues, and is pivotal to the physiological health and longevity. Epigenetic modification is a natural, age-associated process resulting in highly contextualised gene expression with clear implications for cell differentiation and disease onset. Biological/epigenetic age is independent of chronological age, constituting a highly reflective snapshot of an individual's overall health. Accelerated vascular ageing is of major concern, effectively lowering disease threshold. Age-related chronic illness involves a complex interplay between many biological processes and is modulated by non-modifiable and modifiable risk factors. These alter the static genome by a number of epigenetic mechanisms, which change gene expression in an age and lifestyle dependent manner. This 'epigenetic drift' impacts health and contributes to the etiology of chronic illness. Lifestyle factors may cause acceleration of this epigenetic "clock", pre-disposing individuals to cardiovascular disease. Nutrition and physical activity are modifiable lifestyle choices, synergistically contributing to cardiovascular health. They represent a powerful potential epigenetic intervention point for effective cardiovascular protective and management strategies. Thus, together with traditional risk factors, monitoring the epigenetic signature of ageing may prove beneficial for tailoring lifestyle to fit biology - supporting the increasingly popular concept of "ageing well". Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2008-01-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (VP) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive VP shift (>1 V) and a steeper subthreshold slope (∼80 mV∕decade), whereas “dummy” RNA induced a small positive VP shift (∼0.3 V) without a significant change in subthreshold slopes (∼330 mV∕decade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules. PMID:19484151

  11. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation

    PubMed Central

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-01-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters. PMID:27535103

  12. A comparative assessment of cigarette smoke aerosols using an in vitro air–liquid interface cytotoxicity test

    PubMed Central

    Thorne, David; Dalrymple, Annette; Dillon, Deborah; Duke, Martin; Meredith, Clive

    2015-01-01

    Abstract This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products. PMID:26339773

  13. A comparison of discontinuation rates of tofacitinib and biologic disease-modifying anti-rheumatic drugs in rheumatoid arthritis: a systematic review and Bayesian network meta-analysis.

    PubMed

    Park, Sun-Kyeong; Lee, Min-Young; Jang, Eun-Jin; Kim, Hye-Lin; Ha, Dong-Mun; Lee, Eui-Kyung

    2017-01-01

    The purpose of this study was to compare the discontinuation rates of tofacitinib and biologics (tumour necrosis factor inhibitors (TNFi), abatacept, rituximab, and tocilizumab) in rheumatoid arthritis (RA) patients considering inadequate responses (IRs) to previous treatment(s). Randomised controlled trials of tofacitinib and biologics - reporting at least one total discontinuation, discontinuation due to lack of efficacy (LOE), and discontinuation due to adverse events (AEs) - were identified through systematic review. The analyses were conducted for patients with IRs to conventional synthetic disease-modifying anti-rheumatic drugs (cDMARDs) and for patients with biologics-IR, separately. Bayesian network meta-analysis was used to estimate rate ratio (RR) of a biologic relative to tofacitinib with 95% credible interval (CrI), and probability of RR being <1 (P[RR<1]). The analyses of 34 studies showed no significant differences in discontinuation rates between tofacitinib and biologics in the cDMARDs-IR group. In the biologics-IR group, however, TNFi (RR 0.17, 95% CrI 0.01-3.61, P[RR<1] 92.0%) and rituximab (RR 0.20, 95% CrI 0.01-2.91, P[RR<1] 92.3%) showed significantly lower total discontinuation rates than tofacitinib did. Despite the difference, discontinuation cases owing to LOE and AEs revealed that tofacitinib was comparable to the biologics. The comparability of discontinuation rate between tofacitinib and biologics was different based on previous treatments and discontinuation reasons: LOE, AEs, and total (due to other reasons). Therefore, those factors need to be considered to decide the optimal treatment strategy.

  14. Correlation of Mutagenic, Carcinogenic and Co-Carcinogenic Effects of Chemical Substances. Granuloma Pouch Assay.

    DTIC Science & Technology

    1983-10-25

    from GP 4. Abbreviations and Symbols AP4A : D! adenostne tetr aphosphate FCS: fetal calf serum GP: Granuloma pouch GPA: Granuloma pouch assay T -, SCE...biological response modifiers ) These studies were conducted with malignant granuloma pouch cells. It was found that Al (OH)3, Vitamin E and AP4A (Diadenosine

  15. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    PubMed

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.

  16. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    DTIC Science & Technology

    2011-12-01

    Song GY (2003) Mechanisms of immune resolution. Crit Care Med 31: S558–571. 69. Martinon F (2010) Update on biology: uric acid and the activation of...Alox12e and Alox15 belong to a family of arachidonate lipoxygenases responsible for production of anti- inflammatory lipoxins from arachidonic acid ...lethal factor. Protein Expr Purif 18: 293–302. 71. Gupta PK, Moayeri M, Crown D, Fattah RJ, Leppla SH (2008) Role of N- terminal amino acids in the

  17. The Effects of Linear and Modified Linear Programed Materials on the Achievement of Slow Learners in Tenth Grade BSCS Special Materials Biology.

    ERIC Educational Resources Information Center

    Moody, John Charles

    Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…

  18. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses

    PubMed Central

    Besson-Bard, Angélique; Griveau, Sophie; Bedioui, Fethi; Wendehenne, David

    2008-01-01

    It was previously reported that cryptogein, an elicitor of defence responses, induces an intracellular production of nitric oxide (NO) in tobacco. Here, the possibility was explored that cryptogein might also trigger an increase of NO extracellular content through two distinct approaches, an indirect method using the NO probe 4,5-diaminofluorescein (DAF-2) and an electrochemical method involving a chemically modified microelectrode probing free NO in biological media. While the chemical nature of DAF-2-reactive compound(s) is still uncertain, the electrochemical modified microelectrodes provide real-time evidence that cryptogein induces an increase of extracellular NO. Direct measurement of free extracellular NO might offer important new insights into its role in plants challenged by biotic stresses. PMID:18653691

  20. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology

    PubMed Central

    Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B.; Subjeck, John R.; Wang, Xiang-Yang

    2015-01-01

    Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted. PMID:26216637

  1. The bioavailability of chemicals in soil for earthworms

    USGS Publications Warehouse

    Lanno, R.; Wells, J.; Conder, Jason M.; Bradham, K.; Basta, N.

    2004-01-01

    The bioavailability of chemicals to earthworms can be modified dramatically by soil physical/chemical characteristics, yet expressing exposure as total chemical concentrations does not address this problem. In order to understand the effects of modifying factors on bioavailability, one must measure and express chemical bioavailability to earthworms in a consistent, logical manner. This can be accomplished by direct biological measures of bioavailability (e.g., bioaccumulation, critical body residues), indirect biological measures of bioavailability (e.g., biomarkers, reproduction), or indirect chemical measures of bioavailability (e.g., chemical or solid-phase extracts of soil). If indirect chemical measures of bioavailability are to be used, they must be correlated with some biological response. Bioavailability can be incorporated into ecological risk assessment during risk analysis, primarily in the estimation of exposure. However, in order to be used in the site-specific ecological risk assessment of chemicals, effects concentrations must be developed from laboratory toxicity tests based on exposure estimates utilizing techniques that measure the bioavailable fraction of chemicals in soil, not total chemical concentrations. ?? 2003 Elsevier Inc. All rights reserved.

  2. Endocannabinoids: Multi-scaled, Global Homeostatic Regulators of Cells and Society

    NASA Astrophysics Data System (ADS)

    Melamede, Robert

    Living systems are far from equilibrium open systems that exhibit many scales of emergent behavior. They may be abstractly viewed as a complex weave of dissipative structures that maintain organization by passing electrons from reduced hydrocarbons to oxygen. Free radicals are unavoidable byproducts of biological electron flow. Due to their highly reactive chemical properties, free radicals modify all classes of biological molecules (carbohydrates, lipids, nucleic acids, and proteins). As a result, free radicals are destructive. The generally disruptive nature of free radicals makes them the "friction of life." As such, they are believed to be the etiological agents behind age related illnesses such as cardiovascular, immunological, and neurological diseases, cancer, and ageing itself. Free radicals also play a critical constructive role in living systems. From a thermodynamic perspective, life can only exist if a living system takes in sufficient negative entropy from its environment to overcome the obligatory increase in entropy that would result if the system could not appropriately exchange mass, energy and information with its environment. Free radicals are generated in response to perturbations in the relationship between a living system and its environment. However, evolution has selected for biological response systems to free radicals so that the cellular biochemistry can adapt to environmental perturbations by modifying cellular gene expression and biochemistry. Endocannabinoids are marijuana-like compounds that have their origins hundreds of millions of years in the evolutionary past. They serve as fundamental modulators of energy homeostasis in all vertebrates. Their widespread biological activities may often be attributed to their ability to minimize the negative consequences of free radicals.

  3. Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation*

    PubMed Central

    Habisov, Sabrina; Huber, Jessica; Ichimura, Yoshinobu; Akutsu, Masato; Rogova, Natalia; Loehr, Frank; McEwan, David G.; Johansen, Terje; Dikic, Ivan; Doetsch, Volker; Komatsu, Masaaki; Rogov, Vladimir V.; Kirkin, Vladimir

    2016-01-01

    The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/γ-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway. PMID:26929408

  4. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  5. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.

  6. WITHDRAWN: The platelet storage lesion: A comparative analysis of six leukoreduction processes in terms of biocompatability, microvesiculation, retention of prions, and generation/removal of biological response modifiers.

    PubMed

    Seghatchian, Jerard

    2005-06-16

    The Publisher regrets that this article was an accidental duplication of an article that has already been published in Transfus Apher Sci, 34 (1) 125 - 130, doi:10.1016/j.transci.2005.09.002. The duplicate article has therefore been withdrawn.

  7. Typhoon Impacts

    DTIC Science & Technology

    2014-09-30

    and Rmax is the radius of maximum winds . Figure 1 compares two properties of the cold wake, its location and its strength , from 6 storms. The...dimensional response of the underlying ocean including strong surface currents, upwelling of the thermocline, intense mixing across the thermocline, the...mixing determining the rate and character of wake dissipation. The wake is also expected to modify the atmospheric boundary layer and the biology

  8. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    PubMed

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  9. Essential Features of Responsible Governance of Agricultural Biotechnology

    PubMed Central

    Hartley, Sarah; Wickson, Fern

    2016-01-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge. PMID:27144921

  10. Essential Features of Responsible Governance of Agricultural Biotechnology.

    PubMed

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  11. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    PubMed

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Programmable assembly of pressure sensors using pattern-forming bacteria.

    PubMed

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-11-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to assemble patterned materials. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height, and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.

  13. Reality of Dental Implant Surface Modification: A Short Literature Review

    PubMed Central

    Yeo, In-Sung

    2014-01-01

    Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking. PMID:25400716

  14. Microarrays--new possibilities for detecting biological factors hazardous for humans and animals, and for use in environmental protection.

    PubMed

    Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Gryko, Romuald; Kocik, Janusz; Niemcewicz, Marcin; Chomiczewski, Krzysztof

    2016-01-01

    Both the known biological agents that cause infectious diseases, as well as modified (ABF-Advanced Biological Factors) or new, emerging agents pose a significant diagnostic problem using previously applied methods, both classical, as well as based on molecular biology methods. The latter, such as PCR and real-time PCR, have significant limitations, both quantitative (low capacity), and qualitative (limited number of targets). The article discusses the results of studies on using the microarray method for the identification of viruses (e.g. Orthopoxvirus group, noroviruses, influenza A and B viruses, rhino- and enteroviruses responsible for the FRI (Febrile Respiratory Illness), European bunyaviruses, and SARS-causing viruses), and bacteria (Mycobacterium spp., Yersinia spp., Campylobacter spp., Streptococcus pneumoniae, Salmonella typhi, Salmonella enterica, Staphylococcus aureus, Neisseria meningitidis, Clostridium difficile , Helicobacter pylori), including multiple antibiotic-resistant strains. The method allows for the serotyping and genotyping of bacteria, and is useful in the diagnosis of genetically modified agents. It allows the testing of thousands of genes in one experiment. In addition to diagnosis, it is applicable for gene expression studies, analysis of the function of genes, microorganisms virulence, and allows the detection of even single mutations. The possibility of its operational application in epidemiological surveillance, and in the detection of disease outbreak agents is demonstrated.

  15. Graphitic and oxidised high pressure high temperature (HPHT) nanodiamonds induce differential biological responses in breast cancer cell lines.

    PubMed

    Woodhams, Benjamin; Ansel-Bollepalli, Laura; Surmacki, Jakub; Knowles, Helena; Maggini, Laura; de Volder, Michael; Atatüre, Mete; Bohndiek, Sarah

    2018-06-19

    Nanodiamonds have demonstrated potential as powerful sensors in biomedicine, however, their translation into routine use requires a comprehensive understanding of their effect on the biological system being interrogated. Under normal fabrication processes, nanodiamonds are produced with a graphitic carbon shell, but are often oxidized in order to modify their surface chemistry for targeting to specific cellular compartments. Here, we assessed the biological impact of this purification process, considering cellular proliferation, uptake, and oxidative stress for graphitic and oxidized nanodiamond surfaces. We show for the first time that oxidized nanodiamonds possess improved biocompatibility compared to graphitic nanodiamonds in breast cancer cell lines, with graphitic nanodiamonds inducing higher levels of oxidative stress despite lower uptake.

  16. Biologically-inspired hexapod robot design and simulation

    NASA Technical Reports Server (NTRS)

    Espenschied, Kenneth S.; Quinn, Roger D.

    1994-01-01

    The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.

  17. The use of CD47-modified biomaterials to mitigate the immune response.

    PubMed

    Tengood, Jillian E; Levy, Robert J; Stachelek, Stanley J

    2016-05-01

    Addressing the aberrant interactions between immune cells and biomaterials represents an unmet need in biomaterial research. Although progress has been made in the development of bioinert coatings, identifying and targeting relevant cellular and molecular pathways can provide additional therapeutic strategies to address this major healthcare concern. To that end, we describe the immune inhibitory motif, receptor-ligand pairing of signal regulatory protein alpha and its cognate ligand CD47 as a potential signaling pathway to enhance biocompatibility. The goals of this article are to detail the known roles of CD47-signal regulatory protein alpha signal transduction pathway and to describe how immobilized CD47 can be used to mitigate the immune response to biomaterials. Current applications of CD47-modified biomaterials will also be discussed herein. © 2016 by the Society for Experimental Biology and Medicine.

  18. Armed Forces Radiobiology Research Institute Annual Research Report, Fiscal Year 1984.

    DTIC Science & Technology

    1984-01-01

    thromboxane B2, cyclic AMP and GMP, ACTH, beta -endorphin, cortisol/corticosterone, and complement in bio- logical fluids and tissues. Mediators will...immunomodulators are being tested for their ability to enhance the *recovery of hemopoiesis following irradiation. These include glucan , detoxified...endotoxin, and selected agents from the Biological Response Modifiers Program (NCI, Frederick, MD). Glucan has proved to be very effective in stimulating

  19. Dynamic survey of mitochondria by ubiquitin

    PubMed Central

    Escobar-Henriques, Mafalda; Langer, Thomas

    2014-01-01

    Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria. PMID:24569520

  20. Exposure to Violence Predicting Cortisol Response During Adolescence and Early Adulthood: Understanding Moderating Factors

    PubMed Central

    Heinze, Justin E.; Miller, Alison L.; Stoddard, Sarah A.; Zimmerman, Marc A.

    2014-01-01

    Previous research on the association between violence and biological stress regulation has been largely cross-sectional, and has also focused on childhood. Using longitudinal data from a low-income, high-risk, predominantly African-American sample (n = 266; 57 % female), we tested hypotheses about the influence of cumulative exposure to violence during adolescence and early adulthood on cortisol responses in early adulthood. We found that cumulative exposure to violence predicted an attenuated cortisol response. Further, we tested whether sex, mothers’ support, or fathers’ support moderated the effect of exposure to violence on cortisol responses. We found that the effect of cumulative exposure to violence on cortisol was modified by sex; specifically, males exposed to violence exhibited a more attenuated response pattern. In addition, the effect of cumulative exposure to violence on cortisol was moderated by the presence of fathers’ support during adolescence. The findings contribute to a better understanding of how cumulative exposure to violence influences biological outcomes, emphasizing the need to understand sex and parental support as moderators of risk. PMID:24458765

  1. Molecular effects of resistance elicitors from biological origin and their potential for crop protection

    PubMed Central

    Wiesel, Lea; Newton, Adrian C.; Elliott, Ian; Booty, David; Gilroy, Eleanor M.; Birch, Paul R. J.; Hein, Ingo

    2014-01-01

    Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonizing internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance toward non-adapted pathogens they can also be described as “defense elicitors.” In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defense elicitors in the absence of pathogens can promote plant resistance by uncoupling defense activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context. PMID:25484886

  2. Molecular effects of resistance elicitors from biological origin and their potential for crop protection.

    PubMed

    Wiesel, Lea; Newton, Adrian C; Elliott, Ian; Booty, David; Gilroy, Eleanor M; Birch, Paul R J; Hein, Ingo

    2014-01-01

    Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonizing internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance toward non-adapted pathogens they can also be described as "defense elicitors." In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defense elicitors in the absence of pathogens can promote plant resistance by uncoupling defense activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.

  3. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: abridged Cochrane systematic review and network meta-analysis

    PubMed Central

    Barnabe, Cheryl; Tomlinson, George; Marshall, Deborah; Devoe, Dan; Bombardier, Claire

    2016-01-01

    Objective To compare methotrexate based disease modifying antirheumatic drug (DMARD) treatments for rheumatoid arthritis in patients naive to or with an inadequate response to methotrexate. Design Systematic review and Bayesian random effects network meta-analysis of trials assessing methotrexate used alone or in combination with other conventional synthetic DMARDs, biologic drugs, or tofacitinib in adult patients with rheumatoid arthritis. Data sources Trials were identified from Medline, Embase, and Central databases from inception to 19 January 2016; abstracts from two major rheumatology meetings from 2009 to 2015; two trial registers; and hand searches of Cochrane reviews. Study selection criteria Randomized or quasi-randomized trials that compared methotrexate with any other DMARD or combination of DMARDs and contributed to the network of evidence between the treatments of interest. Main outcomes American College of Rheumatology (ACR) 50 response (major clinical improvement), radiographic progression, and withdrawals due to adverse events. A comparison between two treatments was considered statistically significant if its credible interval excluded the null effect, indicating >97.5% probability that one treatment was superior. Results 158 trials were included, with between 10 and 53 trials available for each outcome. In methotrexate naive patients, several treatments were statistically superior to oral methotrexate for ACR50 response: sulfasalazine and hydroxychloroquine (“triple therapy”), several biologics (abatacept, adalimumab, etanercept, infliximab, rituximab, tocilizumab), and tofacitinib. The estimated probability of ACR50 response was similar between these treatments (range 56-67%), compared with 41% with methotrexate. Methotrexate combined with adalimumab, etanercept, certolizumab, or infliximab was statistically superior to oral methotrexate for inhibiting radiographic progression, but the estimated mean change over one year with all treatments was less than the minimal clinically important difference of 5 units on the Sharp-van der Heijde scale. Triple therapy had statistically fewer withdrawals due to adverse events than methotrexate plus infliximab. After an inadequate response to methotrexate, several treatments were statistically superior to oral methotrexate for ACR50 response: triple therapy, methotrexate plus hydroxychloroquine, methotrexate plus leflunomide, methotrexate plus intramuscular gold, methotrexate plus most biologics, and methotrexate plus tofacitinib. The probability of response was 61% with triple therapy and ranged widely (27-70%) with other treatments. No treatment was statistically superior to oral methotrexate for inhibiting radiographic progression. Methotrexate plus abatacept had a statistically lower rate of withdrawals due to adverse events than several treatments. Conclusions Triple therapy (methotrexate plus sulfasalazine plus hydroxychloroquine) and most regimens combining biologic DMARDs with methotrexate were effective in controlling disease activity, and all were generally well tolerated in both methotrexate naive and methotrexate exposed patients. PMID:27102806

  4. Tofacitinib Versus Biologic Treatments in Patients With Active Rheumatoid Arthritis Who Have Had an Inadequate Response to Tumor Necrosis Factor Inhibitors: Results From a Network Meta-analysis.

    PubMed

    Vieira, Maria-Cecilia; Zwillich, Samuel H; Jansen, Jeroen P; Smiechowski, Brielan; Spurden, Dean; Wallenstein, Gene V

    2016-12-01

    Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). This analysis compared the efficacy and safety of tofacitinib with biologic disease-modifying antirheumatic drugs in patients with RA and a prior inadequate response (IR) to tumor necrosis factor inhibitors (TNFi). A systematic literature review identified 5 randomized placebo-controlled trials that evaluated tofacitinib or biologic disease-modifying antirheumatic drugs (bDMARDs) against placebo in patient populations with RA with a prior IR to TNFi. The definition of TNFi-IR varied across studies, and included patients with an IR or who had failed treatment with TNFi for any reason. A network meta-analysis was conducted comparing study data with regard to American College of Rheumatology response rates and Health Assessment Questionnaire-Disability Index improvement at weeks 12 and 24, rates of treatment withdrawal due to all causes; adverse events (AEs) and lack of efficacy; and rates of AEs, serious AEs, and serious infections. The 5 trials included a total of 2136 patients. Tofacitinib 5 mg twice daily combined with methotrexate was found to have relative risk estimates of American College of Rheumatology responses and change from baseline in Health Assessment Questionnaire-Disability Index score comparable with abatacept, golimumab, rituximab, and tocilizumab combined with conventional synthetic disease-modifying antirheumatic drugs. Withdrawal rates from trials due to all causes and AEs were comparable between treatments, and tofacitinib had a lower rate of withdrawals due to lack of efficacy. Rates of AEs and HAQ-DI were comparable between tofacitinib, other active treatments, and placebo. No serious infections were reported with tofacitinib during the placebo-controlled period (up to week 12) in this study population; rates of serious infection with other active treatments were generally low and similar to placebo. During a 24-week period, tofacitinib had efficacy and rates of AEs comparable with currently available bDMARDs in the treatment of patients with RA who had a prior IR to TNFi. ClinicalTrials.gov identifiers: ORAL Step, NCT00960440; ATTAIN, NCT00124982; GO-AFTER, NCT00299546; RADIATE, NCT00106522; REFLEX, NCT00462345. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  5. Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population.

    PubMed

    Hudgens, Edward E; Drobna, Zuzana; He, Bin; Le, X C; Styblo, Miroslav; Rogers, John; Thomas, David J

    2016-05-26

    Because some adverse health effects associated with chronic arsenic exposure may be mediated by methylated arsenicals, interindividual variation in capacity to convert inorganic arsenic into mono- and di-methylated metabolites may be an important determinant of risk associated with exposure to this metalloid. Hence, identifying biological and behavioral factors that modify an individual's capacity to methylate inorganic arsenic could provide insights into critical dose-response relations underlying adverse health effects. A total of 904 older adults (≥45 years old) in Churchill County, Nevada, who chronically used home tap water supplies containing up to 1850 μg of arsenic per liter provided urine and toenail samples for determination of total and speciated arsenic levels. Effects of biological factors (gender, age, body mass index) and behavioral factors (smoking, recent fish or shellfish consumption) on patterns of arsenicals in urine were evaluated with bivariate analyses and multivariate regression models. Relative contributions of inorganic, mono-, and di-methylated arsenic to total speciated arsenic in urine were unchanged over the range of concentrations of arsenic in home tap water supplies used by study participants. Gender predicted both absolute and relative amounts of arsenicals in urine. Age predicted levels of inorganic arsenic in urine and body mass index predicted relative levels of mono- and di-methylated arsenic in urine. Smoking predicted both absolute and relative levels of arsenicals in urine. Multivariate regression models were developed for both absolute and relative levels of arsenicals in urine. Concentration of arsenic in home tap water and estimated water consumption were strongly predictive of levels of arsenicals in urine as were smoking, body mass index, and gender. Relative contributions of arsenicals to urinary arsenic were not consistently predicted by concentrations of arsenic in drinking water supplies but were more consistently predicted by gender, body mass index, age, and smoking. These findings suggest that analyses of dose-response relations in arsenic-exposed populations should account for biological and behavioral factors that modify levels of inorganic and methylated arsenicals in urine. Evidence of significant effects of these factors on arsenic metabolism may also support mode of action studies in appropriate experimental models.

  6. Air-spun PLA nanofibers modified with reductively sheddable hydrophilic surfaces for vascular tissue engineering: synthesis and surface modification.

    PubMed

    Ko, Na Re; Sabbatier, Gad; Cunningham, Alexander; Laroche, Gaétan; Oh, Jung Kwon

    2014-02-01

    Polylactide (PLA) is a class of promising biomaterials that hold great promise for various biological and biomedical applications, particularly in the field of vascular tissue engineering where it can be used as a fibrous mesh to coat the inside of vascular prostheses. However, its hydrophobic surface providing nonspecific interactions and its limited ability to further modifications are challenges that need to be overcome. Here, the development of new air-spun PLA nanofibers modified with hydrophilic surfaces exhibiting reduction response is reported. Surface-initiated atom transfer radical polymerization allows for grafting pendant oligo(ethylene oxide)-containing polymethacrylate (POEOMA) from PLA air-spun fibers labeled with disulfide linkages. The resulting PLA-ss-POEOMA fibers exhibit enhanced thermal stability and improved surface properties, as well as thiol-responsive shedding of hydrophilic POEOMA by the cleavage of its disulfide linkages in response to reductive reactions, thus tuning the surface properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Novel Mouse Model of Penetrating Brain Injury

    PubMed Central

    Cernak, Ibolja; Wing, Ian D.; Davidsson, Johan; Plantman, Stefan

    2014-01-01

    Penetrating traumatic brain injury (pTBI) has been difficult to model in small laboratory animals, such as rats or mice. Previously, we have established a non-fatal, rat model for pTBI using a modified air-rifle that accelerates a pellet, which hits a small probe that then penetrates the experimental animal’s brain. Knockout and transgenic strains of mice offer attractive tools to study biological reactions induced by TBI. Hence, in the present study, we adapted and modified our model to be used with mice. The technical characterization of the impact device included depth and speed of impact, as well as dimensions of the temporary cavity formed in a brain surrogate material after impact. Biologically, we have focused on three distinct levels of severity (mild, moderate, and severe), and characterized the acute phase response to injury in terms of tissue destruction, neural degeneration, and gliosis. Functional outcome was assessed by measuring bodyweight and motor performance on rotarod. The results showed that this model is capable of reproducing major morphological and neurological changes of pTBI; as such, we recommend its utilization in research studies aiming to unravel the biological events underlying injury and regeneration after pTBI. PMID:25374559

  8. Programmable assembly of pressure sensors using pattern-forming bacteria

    PubMed Central

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D.; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-01-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to mimic such natural processes to assemble patterned materials.. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration. PMID:28991268

  9. Modeling flow for modified concentric cylinder rheometer geometry

    NASA Astrophysics Data System (ADS)

    Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz

    2016-11-01

    Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.

  10. Targeted Immunomodulation Using Antigen-Conjugated Nanoparticles

    PubMed Central

    McCarthy, Derrick P.; Hunter, Zoe N.; Chackerian, Bryce; Shea, Lonnie D.; Miller, Stephen D.

    2014-01-01

    The growing prevalence of nanotechnology in the fields of biology, medicine and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This “targeted immunomodulation” can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses. PMID:24616452

  11. Chemistry and biological activity of platinum amidine complexes.

    PubMed

    Michelin, Rino A; Sgarbossa, Paolo; Sbovata, Silvia Mazzega; Gandin, Valentina; Marzano, Cristina; Bertani, Roberta

    2011-07-04

    Platinum amidine complexes represent a new class of potential antitumor drugs that contain the imino moiety HN=C(sp(2)) bonded to the platinum center. They can be related to the iminoether derivatives, which were recently shown to be the first Pt(II) compounds with a trans configuration endowed with anticancer activity. The chemical and biological properties of platinum amidine complexes, and more generally of platinum imino derivatives, can be rationally modified through suitable synthetic procedures with the aim of improving their cytotoxicity and antitumor activity. The addition of protic nucleophiles to nitriles coordinated to platinum in various oxidation states can offer a wide variety of complexes with chemical, structural, and physical properties specifically tuned for a more efficacious biological response. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Granulocyte-colony stimulating factor in the prevention of postoperative infectious complications and sub-optimal recovery from operation in patients with colorectal cancer and increased preoperative risk (ASA 3 and 4). Protocol of a controlled clinical trial developed by consensus of an international study group. Part one: rationale and hypothesis.

    PubMed

    Lorenz, W; Stinner, B; Bauhofer, A; Rothmund, M; Celik, I; Fingerhut, A; Koller, M; Lorijn, R H; Nyström, P O; Sitter, H; Schein, M; Solomkin, J S; Troidl, H; Wyatt, J; Wittmann, D H

    2001-03-01

    Presentation of a novel study protocol to evalue the effectiveness of an immune modifier (rhG-CSF, filgrastim): prevention of postoperative infectious complications and sub-optimal recovery from operation in patients with colorectal cancer and increased preoperative risk (ASA 3 and 4). The rationale and hypothesis are presented in this part of the protocol of the randomised, placebo controlled, double-blinded, single-centre study performed at an university hospital (n = 40 patients for each group). Part one of this protocol describes the concepts of three major sections of the study: Definition of optimum and sub-optimal recovery after operation. Recovery, as an outcome, is not a simple univariate endpoint, but a complex construction of mechanistic variables (i. e. death, complications and health status assessed by the surgeon), quality of life expressed by the patient, and finally a weighted outcome judgement by both the patient and the surgeon (true endpoint). Its conventional early assessment within 14-28 days is artificial: longer periods (such as 6 months) are needed for the patient to state: "I am now as well as I was before". Identification of suitable target patients: the use of biological response modifiers (immune modulators) in addition to traditional prophylaxes (i. e. antibiotics, heparin, volume substitutes) may improve postoperative outcome in appropriate selected patients with reduced host defence and increased immunological stress response, but these have to be defined. Patients classified as ASA 3 and 4 (American Society for Anaesthesiologists) and with colorectal cancer will be studied to prove this hypothesis. Choice of biological response modifier: Filgrastim has been chosen as an example of a biological response modifier because it was effective in a new study type, clinic-modelling randomised trials in rodents, and has shown promise in some clinical trials for indications other than preoperative prophylaxis. It has also enhanced host defence and has been anti-inflammatory in basic research. The following hypothesis will be tested in patients with operations for colorectal cancer and increased preoperative risk (ASA 3 and 4): is the outcome as evaluated by the hermeneutic endpoint (quality of life expressed by the patient) and mechanistic endpoints (mortality rate, complication rate, relative hospital stay, assessed by the doctor) improved in the group receiving filgrastim prophylaxis in comparison with the placebo group? Quality of life will be the first primary endpoint in the hierarchical, statistical testing of confirmatory analysis.

  13. Enteric Disease Surveillance Under the AFHSC-GEIS: Current Efforts, Landscape Analysis and Vision Forward

    DTIC Science & Technology

    2011-01-01

    Severe diarrhea study at Cairo University • Case-control study of modifiable risk behaviors • Molecular biology and cholera/ rotavirus microbiology...capacity as WHO Rotavirus Reference Laboratory • Norovirus outbreak response support, Incirlik Air Base, Turkey NMRCD-Peru • Cohort study among basic...identified rotavirus as the leading causative agent • Advanced characterization of Campylobacter spp. and Shigella spp. USAMRU-K • Movement of Enteric

  14. AFRRI Reports, Third Quarter 1994

    DTIC Science & Technology

    1994-10-01

    with biologic response modifiers (BRMs), such as LPS, 3D monophosphoryl lipid A (MPL), and synthetic trehalose dico- rynomycolate (S-TDCM...monophosphosphoryl lipid A; S-TDCM, synthetic trehalose dicorynomycolate; Sm-BRM, extract from Serratia marcescens; TS, 2% Tween 80 in 0.9% NaCI; RT-PCR...Immun. 58:2429. 42 23. Madonna, G. S.. G, D. Ledney, D. C. Funckes, and E. E. Ribi. 1988. Monophosphoryl lipid A and trehalose dimycolate therapy

  15. Psychometric properties of sleep and coping numeric rating scales in rheumatoid arthritis: a subanalysis of an etanercept trial.

    PubMed

    Avila-Ribeiro, Pedro; Brault, Yves; Dougados, Maxime; Gossec, Laure

    2017-01-01

    In rheumatoid arthritis, quality of sleep and ability to cope are important for patients; however their usefulness as outcome measures is not well established. Post-hoc analysis of an open-label 12-week trial of etanercept in biologic-naïve rheumatoid arthritis patients with visits at screening, baseline and over 12 weeks. Outcomes measured included Disease Activity Score 28 erythrocyte sedimentation rate (DAS28), numeric rating scales for sleep, coping, patient and physician-global assessment, pain and fatigue, and modified-HAQ. Reliability between screening and baseline visits by intra-class correlation, and responsiveness between baseline and 12 weeks by standardised response means were assessed for each outcome. In 108 patients, mean age 54 (standard deviation (SD) 13) years, mean disease duration 8 (SD 7) years, 75% women; disease activity was high at baseline: mean DAS28 5.5 (SD 0.8). Reliability intra-class correlation was 0.83[95% confidence interval: 0.77;0.88] for sleep, 0.81[0.74;0.87] for modified-HAQ, 0.80[0.71;0.86] for fatigue, 0.72[0.62;0.80] for physician-global assessment, 0.66[0.54;076] for coping, 0.65[0.53;0.75] for pain and 0.63[0.50;0.73] for patient-global assessment. Responsiveness standardised response means was 1.65[1.32;2.10] for physician-global assessment, 1.37[1.09;1.73] for pain, 1.36[1.08;1.73] for patient-global assessment, 1.15[0.95;1.41] for fatigue, 0.96[0.70;1.28] for coping, 0.92[0.73;1.15] for sleep and 0.86[0.69;1.07] for modified-HAQ. Numeric rating scales assessing sleep and coping were found to be generally as reliable as 'usual' outcomes in rheumatoid arthritis. Responsiveness was less high, indicating these domains of health may be less accessible to biologic treatment. When assessing the patient's perspective on treatment, it is feasible and valid to measure sleep and coping by numeric rating scales.

  16. An analysis of Methylenetetrahydrofolate reductase and Glutathione S-transferase omega-1 genes as modifiers of the cerebral response to ischemia

    PubMed Central

    Peddareddygari, Leema Reddy; Dutra, Ana Virginia; Levenstien, Mark A; Sen, Souvik; Grewal, Raji P

    2009-01-01

    Background Cerebral ischemia involves a series of reactions which ultimately influence the final volume of a brain infarction. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of the cerebral response to ischemia and impact the resultant stroke volume. The final volume of a cerebral infarct is important as it correlates with the morbidity and mortality associated with non-lacunar ischemic strokes. Methods The proteins encoded by the methylenetetrahydrofolate reductase (MTHFR) and glutathione S-transferase omega-1 (GSTO-1) genes are, through oxidative mechanisms, key participants in the cerebral response to ischemia. On the basis of these biological activities, they were selected as candidate genes for further investigation. We analyzed the C677T polymorphism in the MTHFR gene and the C419A polymorphism in the GSTO-1 gene in 128 patients with non-lacunar ischemic strokes. Results We found no significant association of either the MTHFR (p = 0.72) or GSTO-1 (p = 0.58) polymorphisms with cerebral infarct volume. Conclusion Our study shows no major gene effect of either the MTHFR or GSTO-1 genes as a modifier of ischemic stroke volume. However, given the relatively small sample size, a minor gene effect is not excluded by this investigation. PMID:19624857

  17. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells.

    PubMed

    González-Duarte, Ramiro José; Cázares-Ordoñez, Verna; Romero-Córdoba, Sandra; Díaz, Lorenza; Ortíz, Víctor; Freyre-González, Julio Augusto; Hidalgo-Miranda, Alfredo; Larrea, Fernando; Avila, Euclides

    2015-08-01

    MicroRNAs play important roles in cancer biology. Calcitriol, the hormonal form of vitamin D3, regulates microRNAs expression in tumor cells. In the present study we asked if calcitriol would modify some of the components of the microRNA processing machinery, namely, Drosha and Dicer, in calcitriol-responsive cervical cancer cells. We found that calcitriol treatment did not affect Drosha mRNA; however, it significantly increased Dicer mRNA and protein expression in VDR-positive SiHa and HeLa cells. In VDR-negative C33-A cells, calcitriol had no effect on Dicer mRNA. We also found a vitamin D response element in Dicer promoter that interacts in vitro to vitamin D and retinoid X receptors. To explore the biological plausibility of these results, we asked if calcitriol alters the microRNA expression profile in SiHa cells. Our results revealed that calcitriol regulates the expression of a subset of microRNAs with potential regulatory functions in cancer pathways, such as miR-22, miR-296-3p, and miR-498, which exert tumor-suppressive effects. In summary, the data indicate that in SiHa cells, calcitriol stimulates the expression of Dicer possibly through the vitamin D response element located in its promoter. This may explain the calcitriol-dependent modulation of microRNAs whose target mRNAs are related to anticancer pathways, further adding to the various anticancer mechanisms of calcitriol.

  18. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  19. Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy.

    PubMed

    Ryoma, Yoshiki; Moriya, Yoichiro; Okamoto, Masato; Kanaya, Isao; Saito, Motoo; Sato, Mitsunobu

    2004-01-01

    OK-432 (Picibanil), a streptococcal preparation with potent biological response modifying activities, was approved in Japan as an anticancer agent in 1975. In the ensuing 30 years, since then, a significant amount of data, including clinical as well as experimental studies, has been accumulated. OK-432 has been reported to induce various cytokines, activate immunological cells and thus augment anticancer immunity. Recently, the interrelation between innate immunity and adaptive immunity has become clear and it was reported that OK-432 acts, at least in part, via Toll-like receptor (TLR) 4-MD2 signaling pathway. In addition, dendritic cells (DCs) are considered to play a pivotal role in immunological response and it is reported that OK-432 induced maturation of DCs both in vitro and in vivo. These results suggest that OK-432 is a useful adjuvant in DC-based anticancer immunotherapy. Clinical studies of DC therapy with OK-432 are under way.

  20. Poorer functionality is related to better quality of life response following the use of biological drugs: 6-month outcomes in a prospective cohort from the Public Health System (Sistema Único de Saúde), Minas Gerais, Brazil.

    PubMed

    de Oliveira Junior, Haliton Alves; dos Santos, Jéssica Barreto; Acurcio, Francisco Assis; Almeida, Alessandra Maciel; Kakehasi, Adriana Maria; Alvares, Juliana; de Carvalho, Luis Fernando Duarte; Cherchiglia, Mariangela Leal

    2015-06-01

    We aim to analyze factors associated with the quality of life (QOL) response of individuals with rheumatic diseases treated by the Public Health System (Sistema Único de Saúde) with biological disease-modifying antirheumatic drugs (bDMARDs). Data from 428 patients using bDMARDs were collected using a standardized form at baseline and 6 months after the onset of treatment. The average reduction of the scores on EuroQol-five dimension was 0.11 ± 0.18 6 months after the onset of treatment with bDMARDs, denoting significant improvement of the participants' QOL. All the investigated types of disease exhibited significant improvement at the 6-month assessment, without any difference among them (p = 0.965). The participants with baseline poorest functionality and best QOL exhibited the best QOL outcomes after 6 months of treatment. Our study showed that the use of biological drugs induced considerable improvement in the participants' QOL.

  1. Biological Warfare Improved Response Program (BW-IRP) CDC/DoD Smallpox Workshop

    DTIC Science & Technology

    2005-01-01

    national surveillance effort. Awareness of unique symptoms will need to be raised by training clinicians. For example, adults presenting with chicken pox ...no case definitions but rather visual recognition cards. Presently, the chicken pox definition has been modified to create a smallpox definition. The...the last 2 weeks • Pharmaceuticals prescribed or issued for chicken pox • A number of suspected cases of chicken pox • Reports of rashes, especially a

  2. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode.

    PubMed

    Chauhan, Nidhi; Chawla, Sheetal; Pundir, C S; Jain, Utkarsh

    2017-03-15

    An essential biological sensor for acetylcholine (ACh) detection is constructed by immobilizing enzymes, acetylcholinesterase (AChE) and choline oxidase (ChO), on the surface of iron oxide nanoparticles (Fe 2 O 3 NPs), poly(3,4-ethylenedioxythiophene) (PEDOT)-reduced graphene oxide (rGO) nanocomposite modified fluorine doped tin oxide (FTO). The qualitative and quantitative measurements of nanocomposites properties were accomplished by scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This prepared biological sensor delineated a wide linear range of 4.0nM to 800μM with a response time less than 4s and detection limit (based on S/N ratio) of 4.0nM. The sensor showed perfect sensitivity, excessive selectivity and stability for longer period of time during storage. Besides its very high-sensitivity, the biosensor has displayed a low detection limit which is reported for the first time in comparison to previously reported ACh sensors. By fabricating Fe 2 O 3 NPs/rGO/PEDOT modified FTO electrode for determining ACh level in serum samples, the applicability of biosensor has increased immensely as the detection of the level neurotransmitter is first priority for patients suffering from memory loss or Alzheimer's disease (AD). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Moisture Sorption, Biological Durability, and Mechanical Performance of WPC Containing Modified Wood and Polylactates

    Treesearch

    B. Kristoffer Segerholm; Rebecca E. Ibach; Mats Westin

    2012-01-01

    Biological durability is an important feature for wood-plastic composites (WPC) intended for outdoor applications. One route to achieving WPC products with increased biological durability is to use wood preservative agents in the formulation of the WPC. Another option could be to use a chemically modified wood component that already exhibits increased resistance to...

  4. The effect on biological and moisture resistance of epichlorohydrin chemically modified wood

    Treesearch

    Rebecca E. Ibach; Beom-Goo Lee

    2002-01-01

    Southern pine solid wood and fiber were chemically modified with epichlorohydrin to help in understanding the role of moisture in the mechanism of biological effectiveness of chemically modified wood. The solid wood had weight gains from 11% to 34%, while the fiber had weight gains from 9% to 75%. After modification, part of the specimens were water leached for 2 weeks...

  5. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    PubMed

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    PubMed

    Yang, Feng; Waters, Katrina M; Miller, John H; Gritsenko, Marina A; Zhao, Rui; Du, Xiuxia; Livesay, Eric A; Purvine, Samuel O; Monroe, Matthew E; Wang, Yingchun; Camp, David G; Smith, Richard D; Stenoien, David L

    2010-11-30

    High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  7. Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals Pathways and Proteins Affected by Low Doses of Ionizing Radiation

    PubMed Central

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-01-01

    Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. PMID:21152398

  8. A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland

    PubMed Central

    2010-01-01

    Introduction Molecular dissection of the signaling pathways that underlie complex biological responses in the mammary epithelium is limited by the difficulty of propagating large numbers of mouse mammary epithelial cells, and by the inability of ribonucleic acid interference-based knockdown approaches to fully ablate gene function. Here we describe a method for the generation of conditionally immortalized mammary epithelial cells with defined genetic defects, and we show how such cells can be used to investigate complex signal transduction processes using the transforming growth factor beta (TGFβ)/Smad pathway as an example. Methods We intercrossed the previously described H-2Kb-tsA58 transgenic mouse (Immortomouse), which expresses a temperature-sensitive mutant of the simian virus-40 large T-antigen (tsTAg), with mice of differing Smad genotypes. Conditionally immortalized mammary epithelial cell cultures were derived from the virgin mammary glands of offspring of these crosses and were used to assess the Smad dependency of different biological responses to TGFβ. Results IMECs could be propagated indefinitely at permissive temperatures and had a stable epithelial phenotype, resembling primary mammary epithelial cells with respect to several criteria, including responsiveness to TGFβ. Using this panel of cells, we demonstrated that Smad3, but not Smad2, is necessary for TGFβ-induced apoptotic, growth inhibitory and epithelial-to-mesenchymal transition responses, whereas either Smad2 or Smad3 can support TGFβ-induced invasion as long as a threshold level of total Smad is exceeded. Conclusions The present work demonstrates the practicality and utility of generating conditionally immortalized mammary epithelial cell lines from genetically modified Immortomice for detailed investigation of complex signaling pathways in the mammary epithelium. PMID:20942910

  9. Development of a local-scale urban stream assessment method using benthic macroinvertebrates: An example from the Santa Clara Basin, California

    USGS Publications Warehouse

    Carter, J.L.; Purcell, A.H.; Fend, S.V.; Resh, V.H.

    2009-01-01

    Research that explores the biological response to urbanization on a site-specific scale is necessary for management of urban basins. Recent studies have proposed a method to characterize the biological response of benthic macroinvertebrates along an urban gradient for several climatic regions in the USA. Our study demonstrates how this general framework can be refined and applied on a smaller scale to an urbanized basin, the Santa Clara Basin (surrounding San Jose, California, USA). Eighty-four sampling sites on 14 streams in the Santa Clara Basin were used for assessing local stream conditions. First, an urban index composed of human population density, road density, and urban land cover was used to determine the extent of urbanization upstream from each sampling site. Second, a multimetric biological index was developed to characterize the response of macroinvertebrate assemblages along the urban gradient. The resulting biological index included metrics from 3 ecological categories: taxonomic composition ( Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (shredder richness), and habit ( clingers). The 90th-quantile regression line was used to define the best available biological conditions along the urban gradient, which we define as the predicted biological potential. This descriptor was then used to determine the relative condition of sites throughout the basin. Hierarchical partitioning of variance revealed that several site-specific variables (dissolved O2 and temperature) were significantly related to a site's deviation from its predicted biological potential. Spatial analysis of each site's deviation from its biological potential indicated geographic heterogeneity in the distribution of impaired sites. The presence and operation of local dams optimize water use, but modify natural flow regimes, which in turn influence stream habitat, dissolved O2, and temperature. Current dissolved O2 and temperature regimes deviate from natural conditions and appear to affect benthic macroinvertebrate assemblages. The assessment methods presented in our study provide finer-scale assessment tools for managers in urban basins. ?? North American Benthological Society.

  10. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing.

    PubMed

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-02-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

  11. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing

    PubMed Central

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2014-01-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2′, 7′-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12–7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field. PMID:25530670

  12. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological disease-modifying antirheumatic drugs

    PubMed Central

    Charles-Schoeman, Christina; Burmester, Gerd; Nash, Peter; Zerbini, Cristiano A F; Soma, Koshika; Kwok, Kenneth; Hendrikx, Thijs; Bananis, Eustratios; Fleischmann, Roy

    2016-01-01

    Objectives Biological disease-modifying antirheumatic drugs (bDMARDs) have shown diminished clinical response following an inadequate response (IR) to ≥1 previous bDMARD. Here, tofacitinib was compared with placebo in patients with an IR to conventional synthetic DMARDs (csDMARDs; bDMARD-naive) and in patients with an IR to bDMARDs (bDMARD-IR). Methods Data were taken from phase II and phase III studies of tofacitinib in patients with rheumatoid arthritis (RA). Patients received tofacitinib 5 or 10 mg twice daily, or placebo, as monotherapy or with background methotrexate or other csDMARDs. Efficacy endpoints and incidence rates of adverse events (AEs) of special interest were assessed. Results 2812 bDMARD-naive and 705 bDMARD-IR patients were analysed. Baseline demographics and disease characteristics were generally similar between treatment groups within subpopulations. Across subpopulations, improvements in efficacy parameters at month 3 were generally significantly greater for both tofacitinib doses versus placebo. Clinical response was numerically greater with bDMARD-naive versus bDMARD-IR patients (overlapping 95% CIs). Rates of safety events of special interest were generally similar between tofacitinib doses and subpopulations; however, patients receiving glucocorticoids had more serious AEs, discontinuations due to AEs, serious infection events and herpes zoster. Numerically greater clinical responses and incidence rates of AEs of special interest were generally reported for tofacitinib 10 mg twice daily versus tofacitinib 5 mg twice daily (overlapping 95% CIs). Conclusions Tofacitinib demonstrated efficacy in both bDMARD-naive and bDMARD-IR patients with RA. Clinical response to tofacitinib was generally numerically greater in bDMARD-naive than bDMARD-IR patients. The safety profile appeared similar between subpopulations. Trial registration numbers (NCT00413660, NCT0050446, NCT00603512, NCT00687193, NCT00960440, NCT00847613, NCT00814307, NCT00856544, NCT00853385). PMID:26275429

  13. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological disease-modifying antirheumatic drugs.

    PubMed

    Charles-Schoeman, Christina; Burmester, Gerd; Nash, Peter; Zerbini, Cristiano A F; Soma, Koshika; Kwok, Kenneth; Hendrikx, Thijs; Bananis, Eustratios; Fleischmann, Roy

    2016-07-01

    Biological disease-modifying antirheumatic drugs (bDMARDs) have shown diminished clinical response following an inadequate response (IR) to ≥1 previous bDMARD. Here, tofacitinib was compared with placebo in patients with an IR to conventional synthetic DMARDs (csDMARDs; bDMARD-naive) and in patients with an IR to bDMARDs (bDMARD-IR). Data were taken from phase II and phase III studies of tofacitinib in patients with rheumatoid arthritis (RA). Patients received tofacitinib 5 or 10 mg twice daily, or placebo, as monotherapy or with background methotrexate or other csDMARDs. Efficacy endpoints and incidence rates of adverse events (AEs) of special interest were assessed. 2812 bDMARD-naive and 705 bDMARD-IR patients were analysed. Baseline demographics and disease characteristics were generally similar between treatment groups within subpopulations. Across subpopulations, improvements in efficacy parameters at month 3 were generally significantly greater for both tofacitinib doses versus placebo. Clinical response was numerically greater with bDMARD-naive versus bDMARD-IR patients (overlapping 95% CIs). Rates of safety events of special interest were generally similar between tofacitinib doses and subpopulations; however, patients receiving glucocorticoids had more serious AEs, discontinuations due to AEs, serious infection events and herpes zoster. Numerically greater clinical responses and incidence rates of AEs of special interest were generally reported for tofacitinib 10 mg twice daily versus tofacitinib 5 mg twice daily (overlapping 95% CIs). Tofacitinib demonstrated efficacy in both bDMARD-naive and bDMARD-IR patients with RA. Clinical response to tofacitinib was generally numerically greater in bDMARD-naive than bDMARD-IR patients. The safety profile appeared similar between subpopulations. (NCT00413660, NCT00550446, NCT00603512, NCT00687193, NCT00960440, NCT00847613, NCT00814307, NCT00856544, NCT00853385). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Portuguese guidelines for the use of biological agents in rheumatoid arthritis - March 2010 update.

    PubMed

    Fonseca, João Eurico; Canhão, Helena; Reis, Paulo; Santos, Maria José; Branco, Jaime; Quintal, Alberto; Malcata, Armando; Araújo, Domingos; Ventura, Francisco; Figueiredo, Guilherme; da Silva, José Canas; Patto, José Vaz; de Queiroz, Mário Viana; Santos, Rui André; Neto, Adriano José; de Matos, Alves de; Rodrigues, Ana; Mourão, Ana Filipa; Ribeiro, Ana Sofia; Cravo, Ana Rita; Barcelos, Anabela; Cardoso, Anabela; Vilar, António; Braña, Arecili; Faustino, Augusto; Silva, Candida; Godinho, Fátima; Cunha, Inês; Costa, José António; Gomes, José António Melo; Pinto, José António Araújo; da Silva, J A Pereira; Miranda, Luís Cunha; Inês, Luís; Santos, Luís Maurício; Cruz, Margarida; Salvador, Maria João; Ferreira, Maria Júlia; Rial, Maria; Bernardes, Miguel; Bogas, Mónica; Araújo, Paula; Machado, Pedro; Pinto, Patrícia; de Melo, Rui Gomes; Cortes, Sara; Alcino, Sérgio; Capela, Susana

    2010-01-01

    The authors present the revised version of the Portuguese Society of Rheumatology (SPR) guidelines for the treatment of rheumatoid arthritis (RA) with biological therapies. In these guidelines the criteria for introduction and maintenance of biological agents are discussed as well as the contraindications and procedures in the case of non-responders. Biological treatment should be considered in RA patients with a disease activity score 28 (DAS 28) superior to 3.2 despite treatment with 20mg/week of methotrexate (MTX) for at least 3 months or, if such treatment is not possible, after 6 months of other conventional disease modifying drug or combination therapy. A DAS 28 score between 2.6 and 3.2 with a significant functional or radiological deterioration under treatment with conventional regimens could also constitute an indication for biological treatment. The treatment goal should be remission or, if that is not achievable, at least a low disease activity, characterized by a DAS28 lower than 3.2, without significative functional or radiological worsening. The response criteria, at the end of the first 3 months of treatment, are a decrease of 0.6 in the DAS28 score. After 6 months of treatment response criteria is defined as a decrease of more than 1.2 in the DAS28 score. Non-responders, in accordance to the Rheumatologist's clinical opinion, should try a switch to another biological agent (tumour necrosis factor antagonist, abatacept, rituximab or tocilizumab).

  15. The Regulation of a Post-Translational Peptide Acetyltransferase: Strategies for Selectively Modifying the Biological Activity of Neural and Endocrine Peptides

    DTIC Science & Technology

    1988-02-01

    quantitatively miror pathway. Only two of the enzymes which process 8-endorphin have been firmly identified, peptide acetyltransferase and... quantitatively minor. This implied that perhaps peptide acetyltransferase is not a critical determinant of the bioactivity of B-endorphin in brain. If so...provided us with a more difinitive understanding of the role of processing enzyme regulation in the overall biochemical and cellular response of the

  16. 9 CFR 112.7 - Special additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a biological product containing inactivated rabies virus, carton labels, enclosures, and all but... biological product containing modified live rabies virus, the carton labels, enclosures, and all but very... Any Other Animal!” (2) For other vaccines containing modified live rabies virus, the statement “For...

  17. A MoS₂-based system for efficient immobilization of hemoglobin and biosensing applications.

    PubMed

    Chao, Jie; Zou, Min; Zhang, Chi; Sun, Haofan; Pan, Dun; Pei, Hao; Su, Shao; Yuwen, Lihui; Fan, Chunhai; Wang, Lianhui

    2015-07-10

    A novel hydrogen peroxide (H2O2) and nitric oxide (NO) biosensor was fabricated by immobilizing hemoglobin (Hb) on a gold nanoparticle-decorated MoS2 nanosheet (AuNPs@MoS2) nanocomposite film modified glass carbon electrode. The AuNPs@MoS2 nanocomposite not only made the immobilized Hb keep its native biological activity but also facilitated the electron transfer between electrode and the electroactive center of Hb due to its excellent conductivity and biocompatibility. The direct electrochemistry and bioelectrocatalytic activity of Hb were investigated by cyclic voltammetry (CV). The modified electrode showed good electrocatalytic ability toward the reduction of H2O2 and NO. Under optimal conditions, the current response was linear with the concentration of H2O2 and NO in the range from 10 to 300 μM and 10 to 1100 μM with a detection limit of 4 and 5 μM, respectively. This MoS2-based biosensor was sensitive, reproducible and stable, indicating that AuNPs@MoS2 nanocomposite maybe a promising platform to construct electrochemical sensors for chemical and biological molecules detection.

  18. Improved delivery through biological membranes. XXXL: Solubilization and stabilization of an estradiol chemical delivery system by modified beta-cyclodextrins.

    PubMed

    Brewster, M E; Estes, K S; Loftsson, T; Perchalski, R; Derendorf, H; Mullersman, G; Bodor, N

    1988-11-01

    A dihydropyridine in equilibrium pyridinium salt chemical delivery system (CDS) for estradiol (E2CDS) was complexed with various modified beta-cyclodextrins including hydroxyethyl-beta-cyclodextrin (HECD), hydroxypropyl-beta-cyclodextrin (HPCD), and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DMCD). Complex formation with all of these cyclodextrins resulted in dramatic increases in the water solubility of E2CDS. Studies on the complex of E2CDS and HPCD (E2CDS-CD) indicated that the encapsulated estrogen was approximately four times more stable than the unmanipulated CDS, producing an estimated half-life of degradation of 4 years compared with 1.2 years for the uncomplexed drug at room temperature. The complexation of E2CDS and HPCD also stabilized the dihydronicotinate in solutions containing potassium ferricyanide. This formulation was shown to be equivalent to E2CDS in dimethyl sulfoxide in delivering the oxidized, estradiol precursor (E2Q+) to the brain, and also produced similar biological responses; these included decreased luteinizing hormone (LH) secretion and a decrease in the rate of weight gain in castrated female rats.

  19. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions.

    PubMed

    Wen, Jin; Li, Wei; Chen, Shuang; Ma, Jing

    2016-08-17

    Surfaces modified with a functional molecular monolayer are essential for the fabrication of nano-scale electronics or machines with novel physical, chemical, and/or biological properties. Theoretical simulation based on advanced quantum chemical and classical models is at present a necessary tool in the development, design, and understanding of the interfacial nanostructure. The nanoscale surface morphology, growth processes, and functions are controlled by not only the electronic structures (molecular energy levels, dipole moments, polarizabilities, and optical properties) of building units but also the subtle balance between intermolecular and interfacial interactions. The switchable surfaces are also constructed by introducing stimuli-responsive units like azobenzene derivatives. To bridge the gap between experiments and theoretical models, opportunities and challenges for future development of modelling of ferroelectricity, entropy, and chemical reactions of surface-supported monolayers are also addressed. Theoretical simulations will allow us to obtain important and detailed information about the structure and dynamics of monolayer modified interfaces, which will guide the rational design and optimization of dynamic interfaces to meet challenges of controlling optical, electrical, and biological functions.

  20. Setting limits: The development and use of factor-ceiling distributions for an urban assessment using macroinvertebrates

    USGS Publications Warehouse

    Carter, J.L.; Fend, S.V.

    2005-01-01

    Lotic habitats in urban settings are often more modified than in other anthropogenically influenced areas. The extent, degree, and permanency of these modifications compromise the use of traditional reference-based study designs to evaluate the level of lotic impairment and establish restoration goals. Directly relating biological responses to the combined effects of urbanization is further complicated by the nonlinear response often observed in common metrics (e.g., Ephemeroptera, Plecoptera, and Trichoptera [EPT] species richness) to measures of human influence (e.g., percentage urban land cover). A characteristic polygonal biological response often arises from the presence of a generalized limiting factor (i.e., urban land use) plus the influence of multiple additional stressors that are nonuniformly distributed throughout the urban environment. Benthic macroinvertebrates, on-site physical habitat and chemistry, and geographical information systems-derived land cover data for 85 sites were collected within the 1,600-km2 Santa Clara Valley (SCV), California urban area. A biological indicator value was derived from EPT richness and percentage EPT. Partitioned regression was used to define reference conditions and estimate the degree of site impairment. We propose that an upper-boundary condition (factor-ceiling) modeled by partitioned regression using ordinary least squares represents an attainable upper limit for biological condition in the SCV area. Indicator values greater than the factor-ceiling, which is monotonically related to existing land use, are considered representative of reference conditions under the current habitat conditions imposed by existing land cover and land use.

  1. Aggressive treatment of early rheumatoid arthritis: recognizing the window of opportunity and treating to target goals.

    PubMed

    Resman-Targoff, Beth H; Cicero, Marco P

    2010-11-01

    Evidence supports the use of aggressive therapy for patients with early rheumatoid arthritis (RA). Clinical outcomes in patients with early RA can improve with a treat-to-target approach that sets the goal at disease remission. The current selection of antirheumatic therapies, including conventional and biologic disease-modifying antirheumatic drugs (DMARDs), has made disease remission a realistic target for patients with early RA. The challenge is selecting the optimal antirheumatic drug or combination of drugs for initial and subsequent therapy to balance the clinical benefits, risks, and economic considerations. In some cases, the use of biologic agents as part of the treatment regimen has shown superior results compared with conventional DMARDs alone in halting the progression of disease, especially in reducing radiographic damage. However, the use of biologic agents as initial therapy is challenged by cost-effectiveness analyses, which favor the use of conventional DMARDs. The use of biologic agents may be justified in certain patients with poor prognostic factors or those who experience an inadequate response to conventional DMARDs as a means to slow or halt disease progression and its associated disability. In these cases, the higher cost of treatment with biologic agents may be offset by decreased societal costs, such as lost work productivity, and increased health-related quality of life. Further research is needed to understand optimal strategies for balancing costs, benefits, and risks of antirheumatic drugs. Some key questions are (1) when biologic agents are appropriate for initial therapy, and (2) when to conclude that response to conventional DMARDs is inadequate and biologic agents should be initiated.

  2. A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects

    PubMed Central

    Gittens, Rolando A.; Scheideler, Lutz; Rupp, Frank; Hyzy, Sharon L.; Geis-Gerstorfer, Jürgen; Schwartz, Zvi; Boyan, Barbara D.

    2014-01-01

    Dental and orthopaedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues. PMID:24709541

  3. Biomarkers for diet and cancer prevention research: potentials and challenges.

    PubMed

    Davis, Cindy D; Milner, John A

    2007-09-01

    As cancer incidence is projected to increase for decades there is a need for effective preventive strategies. Fortunately, evidence continues to mount that altering dietary habits is an effective and cost-efficient approach for reducing cancer risk and for modifying the biological behavior of tumors. Predictive, validated and sensitive biomarkers, including those that reliably evaluate "intake" or exposure to a specific food or bioactive component, that assess one or more specific biological "effects" that are linked to cancer, and that effectively predict individual "susceptibility" as a function of nutrient-nutrient interactions and genetics, are fundamental to evaluating who will benefit most from dietary interventions. These biomarkers must be readily accessible, easily and reliably assayed, and predictive of a key process(es) involved in cancer. The response to a food is determined not only by the effective concentration of the bioactive food component(s) reaching the target tissue, but also by the amount of the target requiring modification. Thus, this threshold response to foods and their components will vary from individual to individual. The key to understanding a personalized response is a greater knowledge of nutrigenomics, proteomics and metabolomics.

  4. Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects

    PubMed Central

    Sveronis, Aris; Cescutti, Paola; Rizzo, Roberto

    2017-01-01

    Mushrooms represent a formidable source of bioactive compounds. Some of these may be considered as biological response modifiers; these include compounds with a specific biological function: antibiotics (e.g. plectasin), immune system stimulator (e,g, lentinan), antitumor agents (e.g. krestin, PSK) and hypolipidemic agents (e.g. lovastatin) inter alia. In this study, we focused on the Chinese medicinal mushroom “yun zhi”, Trametes versicolor, traditionally used for (cit.) “replenish essence and qi (vital energy)”. Previous studies indicated the potential activity of extracts from culture filtrate of asexual mycelia of T. versicolor in controlling the growth and secondary metabolism (e.g. mycotoxins) of plant pathogenic fungi. The quest of active principles produced by T. versicolor, allowed us characterising an exo-polysaccharide released in its culture filtrate and naming it Tramesan. Herein we evaluate the biological activity of Tramesan in different organisms: plants, mammals and plant pathogenic fungi. We suggest that the bioactivity of Tramesan relies mostly on its ability to act as pro antioxidant molecule regardless the biological system on which it was applied. PMID:28829786

  5. Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects.

    PubMed

    Scarpari, Marzia; Reverberi, Massimo; Parroni, Alessia; Scala, Valeria; Fanelli, Corrado; Pietricola, Chiara; Zjalic, Slaven; Maresca, Vittoria; Tafuri, Agostino; Ricciardi, Maria R; Licchetta, Roberto; Mirabilii, Simone; Sveronis, Aris; Cescutti, Paola; Rizzo, Roberto

    2017-01-01

    Mushrooms represent a formidable source of bioactive compounds. Some of these may be considered as biological response modifiers; these include compounds with a specific biological function: antibiotics (e.g. plectasin), immune system stimulator (e,g, lentinan), antitumor agents (e.g. krestin, PSK) and hypolipidemic agents (e.g. lovastatin) inter alia. In this study, we focused on the Chinese medicinal mushroom "yun zhi", Trametes versicolor, traditionally used for (cit.) "replenish essence and qi (vital energy)". Previous studies indicated the potential activity of extracts from culture filtrate of asexual mycelia of T. versicolor in controlling the growth and secondary metabolism (e.g. mycotoxins) of plant pathogenic fungi. The quest of active principles produced by T. versicolor, allowed us characterising an exo-polysaccharide released in its culture filtrate and naming it Tramesan. Herein we evaluate the biological activity of Tramesan in different organisms: plants, mammals and plant pathogenic fungi. We suggest that the bioactivity of Tramesan relies mostly on its ability to act as pro antioxidant molecule regardless the biological system on which it was applied.

  6. Old drugs, old problems: where do we stand in prediction of rheumatoid arthritis responsiveness to methotrexate and other synthetic DMARDs?

    PubMed Central

    2013-01-01

    Methotrexate (MTX) is the central drug in the management of rheumatoid arthritis (RA) and other immune mediated inflammatory diseases. It is widely used either in monotherapy or in association with other synthetic and biologic disease modifying anti-rheumatic drugs (DMARDs). Although comprehensive clinical experience exists for MTX and synthetic DMARDs, to date it has not been possible to preview correctly whether or not a patient will respond to treatment with these drugs. Predicting response to MTX and other DMARDs would allow the selection of patients based on their likelihood of response, thus enabling individualized therapy and avoiding unnecessary adverse effects and elevated costs. However, studies analyzing this issue have struggled to obtain consistent, replicable results and no factor has yet been recognized to individually distinguish responders from nonresponders at treatment start. Variables possibly influencing drug effectiveness may be disease-, patient- or treatment-related, clinical or biological (genetic and nongenetic). In this review we summarize current evidence on predictors of response to MTX and other synthetic DMARDs, discuss possible causes for the heterogeneity observed and address its translation into daily clinical practice. PMID:23343013

  7. Meeting the Challenge: Using Cytological Profiling to Discover Chemical Probes from Traditional Chinese Medicines against Parkinson's Disease.

    PubMed

    Wang, Chao; Yang, Xinzhou; Mellick, George D; Feng, Yunjiang

    2016-12-21

    Parkinson's disease (PD) is an incurable neurodegenerative disorder with a high prevalence rate worldwide. The fact that there are currently no proven disease-modifying treatments for PD underscores the urgency for a more comprehensive understanding of the underlying disease mechanism. Chemical probes have been proven to be powerful tools for studying biological processes. Traditional Chinese medicine (TCM) contains a huge reservoir of bioactive small molecules as potential chemical probes that may hold the key to unlocking the mystery of PD biology. The TCM-sourced chemical approach to PD biology can be advanced through the use of an emerging cytological profiling (CP) technique that allows unbiased characterization of small molecules and their cellular responses. This comprehensive technique, applied to chemical probe identification from TCM and used for studying the molecular mechanisms underlying PD, may inform future therapeutic target selection and provide a new perspective to PD drug discovery.

  8. Extracellular Vesicles: How the External and Internal Environment Can Shape Cell-To-Cell Communication.

    PubMed

    Neven, Kristof Y; Nawrot, Tim S; Bollati, Valentina

    2017-03-01

    To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process. EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress. EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.

  9. Radiation biology of HZE particles

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.

    1990-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets which may be related to charge, velocity, or rate of energy loss. There are many consequences of this feature to biological endpoints when compared to effects of ionizing photons. Dose vs response and dose rate kinetics are modified, DNA and cellular repair systems are altered in their abilities to cope with damage and, the qualitative features of damage are unique for different ions. These features must be incorporated into any risk assessment system for radiation health management. HZE induced mutation, cell inactivation and altered organogenesis will be discussed emphasizing studies with the nematode Caenorhabditis elegans and cultured cells. Observations from radiobiology experiments in space will also be reviewed along with plans for future space-based studies.

  10. Biological and behavioral modifiers of urinary arsenic metabolic profiles in a U.S. population

    EPA Science Inventory

    Biological and behavioral modifiers of urinary arsenic metabolic profiles in a U.S. population David J. Thomas – ISTD, NHEERL Edward F. Hudgens – EHPD, NHEERL John Rogers - Westat Relations between intensity of arsenic exposure from home tap water and levels of inorganic As ...

  11. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples.

  12. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples

    PubMed Central

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-01-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1% acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  13. Optoelectronic investigation of nanodiamond interactions with human blood

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Wróbel, M. S.; Wasowicz, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    We present optoelectronic investigation of in vitro interactions of whole human blood with different nanodiamond biomarkers. Plasmo-chemical modifications of detonation nanodiamond particles gives the possibility for controlling their surface for biological applications. Optical investigations reveal the biological activity of nanodiamonds in blood dependent on its surface termination. We compare different types of nanodiamonds: commercial non-modified detonation nanodiamonds, and nanodiamonds modified by MW PACVD method with H2-termination, and chemically modified nanodiamond with O2-termination. The absorption spectra, and optical microscope investigations were conducted. The results indicate haemocompatibility of non-modified detonation nanodiamond as well as modified nanodiamonds, which enables their application for drug delivery, as well as sensing applications.

  14. Biological effects of radiation, metabolic and replication kinetics alterations

    NASA Technical Reports Server (NTRS)

    Post, J.

    1972-01-01

    The biological effects of radiation upon normal and cancerous tissues were studied. A macromolecular precursor of DNA, 3ETdR, was incorporated into the cell nucleus during synthesis and provided intranuclear beta radiation. Tritium labeled cells were studied with autoradiographic methods; cell cycle kinetics were determined and cell functions modified by radiation dosage or by drugs were also evaluated. The long term program has included; (1) effects of radiation on cell replication and the correlation with incorporated dose levels, (2) radiation induced changes in cell function, viz., the response of beta irradiated spleen lymphocytes to antigenic stimulation by sheep red blood cells (SRBC), (3) kinetics of tumor and normal cell replication; and (4) megakaryocyte formation and modification by radiomimetic drugs.

  15. Infectious Disease risks associated with exposure to stressful environments

    NASA Technical Reports Server (NTRS)

    Meehan, Ichard T.; Smith, Morey; Sams, Clarence

    1993-01-01

    Multiple environmental factors asociated with space flight can increase the risk of infectious illness among crewmembers thereby adversely affecting crew health and mission success. Host defences can be impaired by multiple physiological and psychological stressors including: sleep deprivation, disrupted circadian rhythms, separation from family, perceived danger, radiation exposure, and possibly also by the direct and indirect effects of microgravity. Relevant human immunological data from isolated or stressful environments including spaceflight will be reviewed. Long-duration missions should include reliable hardware which supports sophisticated immunodiagnostic capabilities. Future advances in immunology and molecular biology will continue to provide therapeutic agents and biologic response modifiers which should effectively and selectively restore immune function which has been depressed by exposure to environmental stressors.

  16. Perceptions and Practices: Biology graduate teaching assistants' framing of a controversial socioscientific issue

    NASA Astrophysics Data System (ADS)

    Gardner, Grant; Jones, Gail

    2011-05-01

    Graduate teaching assistants (GTAs) are gaining increasing responsibility for the instruction of undergraduate science students, yet little is known about their beliefs about science pedagogy or subsequent classroom practices. This study looked at six GTAs who were primary instructors in an introductory biology laboratory course. Teaching assistants taught a lesson about the potential social, health, and environmental impacts of genetically modified crops. Through classroom observations and in-depth interviews, the researchers examined how instructors chose to frame their lessons and what GTAs perceived as important for students to know about this particular socioscientific issue (SSI). Results showed a disconnect between the relatively mature conceptualizations of effective SSI instruction that emerged during interviews and classroom practice.

  17. A Modified Trier Social Stress Test for Vulnerable Mexican American Adolescents.

    PubMed

    Johnson, Megan M; Deardorff, Julianna; Parra, Kimberly; Alkon, Abbey; Eskenazi, Brenda; Shirtcliff, Elizabeth

    2017-07-10

    The Trier Social Stress Test (TSST) is a well validated and widely used social stressor that has been shown to induce a 2-4 fold increase in cortisol, the biological output produced by the Hypothalamic-Pituitary-Adrenal (HPA) axis in humans. While studies have explored how modifications to the TSST influence stress responsivity, few studies have created a modified TSST appropriate for vulnerable youth that elicits a significant cortisol stress response. Thus, the current study sought to modify or adjust the TSST in a culturally sensitive way for a vulnerable sample of 14 year-old adolescents. The present study took place within the context of a longitudinal birth cohort study of Mexican American families in California called the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS). The CHAMACOS sample was optimal to test the effectiveness of a modified culturally appropriate TSST, as it is comprised of Mexican American youth, who are often excluded from research. These youths also have experienced significant early life adversity. Example modifications included timed prompts, alternative math tasks, use of same-ethnicity peers as confederates, debriefing immediately after the conclusion of the TSST, and using an unknown youth examiner to administer the debrief. Saliva samples were collected at baseline (after a resting phase), and then again at 15, 30, and 45 min post-TSST onset to assess cortisol concentration. A pilot study of 50 participants (50% female) have been analyzed for cortisol reaction to the TSST. Results confirmed that this modified version of the TSST was successful at eliciting a significant cortisol reaction, with a wide range of variability likely due to individual differences. Goals for modifications and ethnicity considerations are discussed. This study provides the foundation for future research to utilize a modified TSST with vulnerable youth.

  18. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    PubMed Central

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  19. Evaluation of Chemotherapeutic Agents Against Malaria, Drugs, Diet, and Biological Response Modifiers.

    DTIC Science & Technology

    1991-10-29

    The oils, MCT and Miglyol , were found to be suitable placebos for fish oil. A normal chow diet (with adequate vitamin E levels) supplemented with 20...year. Co-enzyme Q10 did not act as an antioxidant like vitamin E during a malarial infection. Two oils, MCT and Miglyol , were found to be suitable...manipulation. In experiment 84 miglyol was added to a standard rodent chow diet with normal levels of vitamin E to see whether it whould interfere with the

  20. Colorimetric detection and identification of natural and artificial sweeteners.

    PubMed

    Musto, Christopher J; Lim, Sung H; Suslick, Kenneth S

    2009-08-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments that are comprised of indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations, as well as commonly used individual-serving sweetener packets. The array has shown excellent reproducibility and long shelf life and has been optimized to work in the biological pH regime.

  1. A Systems Biology Study in Tomato Fruit Reveals Correlations between the Ascorbate Pool and Genes Involved in Ribosome Biogenesis, Translation, and the Heat-Shock Response

    PubMed Central

    Stevens, Rebecca G.; Baldet, Pierre; Bouchet, Jean-Paul; Causse, Mathilde; Deborde, Catherine; Deschodt, Claire; Faurobert, Mireille; Garchery, Cécile; Garcia, Virginie; Gautier, Hélène; Gouble, Barbara; Maucourt, Mickaël; Moing, Annick; Page, David; Petit, Johann; Poëssel, Jean-Luc; Truffault, Vincent; Rothan, Christophe

    2018-01-01

    Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes—ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream. PMID:29491875

  2. Assessment of Antibody-based Drugs Effects on Murine Bone Marrow and Peritoneal Macrophage Activation.

    PubMed

    Kozicky, Lisa; Sly, Laura M

    2017-12-26

    Macrophages are phagocytic innate immune cells, which initiate immune responses to pathogens and contribute to healing and tissue restitution. Macrophages are equally important in turning off inflammatory responses. We have shown that macrophages stimulated with intravenous immunoglobulin (IVIg) can produce high amounts of the anti-inflammatory cytokine, interleukin 10 (IL-10), and low levels of pro-inflammatory cytokines in response to bacterial lipopolysaccharides (LPS). IVIg is a polyvalent antibody, primarily immunoglobulin Gs (IgGs), pooled from the plasma of more than 1,000 blood donors. It is used to supplement antibodies in patients with immune deficiencies or to suppress immune responses in patients with autoimmune or inflammatory conditions. Infliximab, a therapeutic anti-tumor necrosis factor alpha (TNFα) antibody, has also been shown to activate macrophages to produce IL-10 in response to inflammatory stimuli. IVIg and other antibody-based biologics can be tested to determine their effects on macrophage activation. This paper describes methods for derivation, stimulation, and assessment of murine bone marrow macrophages activated by antibodies in vitro and murine peritoneal macrophages activated with antibodies in vivo. Finally, we demonstrate the use of western blotting to determine the contribution of specific cell signaling pathways to anti-inflammatory macrophage activity. These protocols can be used with genetically modified mice, to determine the effect of a specific protein(s) on anti-inflammatory macrophage activation. These techniques can also be used to assess whether specific biologics may act by changing macrophages to an IL-10-producing anti-inflammatory activation state that reduces inflammatory responses in vivo. This can provide information on the role of macrophage activation in the efficacy of biologics during disease models in mice, and provide insight into a potential new mechanism of action in people. Conversely, this may caution against the use of specific antibody-based biologics to treat infectious disease, particularly if macrophages play an important role in host defense against that infection.

  3. Integrative Radiation Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcellos-Hoff, Mary Helen

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive andmore » negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.« less

  4. The effect of UV-Vis to near-infrared light on the biological response of human dental pulp cells

    NASA Astrophysics Data System (ADS)

    Hadis, Mohammed A.; Cooper, Paul R.; Milward, Michael R.; Gorecki, Patricia; Tarte, Edward; Churm, James; Palin, William M.

    2015-03-01

    Human dental pulp cells (DPCs) were isolated and cultured in phenol-red-free α-MEM/10%-FCS at 37ºC in 5% CO2. DPCs at passages 2-4 were seeded (150μL; 25,000 cell/ml) in black 96-microwell plates with transparent bases. 24h post-seeding, cultures were irradiated using a bespoke LED array consisting of 60 LEDs (3.5mW/cm2) of wavelengths from 400-900nm (10 wavelengths, n=6) for time intervals of up to 120s. Metabolic and mitochondrial activity was assessed via a modified MTT assay. Statistical differences were identified using multi-factorial analysis of variance and post-hoc Tukey tests (P=0.05). The biological responses were significantly dependent upon post-irradiation incubation period, wavelength and exposure time (P<0.05). At shorter wavelength irradiances (400nm), a reduction in mitochondrial activity was detected although not significant, whereas longer wavelength irradiances (at 633, 656, 781 and 799nm) significantly increased mitochondrial activity (P<0.05) in DPCs. At these wavelengths, mitochondrial activity was generally increased for exposures less than 90s with 30s exposures being most effective with 24h incubation. Increasing the post-irradiation incubation period increased the measured response and identified further significance (P<0.05). The biological responses of human DPCs were wavelength, exposure-time and incubation period dependent. The optimisation of irradiation parameters will be key to the successful application of LLLT in dentistry.

  5. Membrane Cholesterol Modulates Superwarfarin Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but notmore » warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.« less

  6. Thermal biology mediates responses of amphibians and reptiles to habitat modification.

    PubMed

    Nowakowski, A Justin; Watling, James I; Thompson, Michelle E; Brusch, George A; Catenazzi, Alessandro; Whitfield, Steven M; Kurz, David J; Suárez-Mayorga, Ángela; Aponte-Gutiérrez, Andrés; Donnelly, Maureen A; Todd, Brian D

    2018-03-01

    Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta-analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non-thermal traits. Heat tolerances alone explained 24-66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities. © 2018 John Wiley & Sons Ltd/CNRS.

  7. Biological impact of cigarette smoke compared to an aerosol produced from a prototypic modified risk tobacco product on normal human bronchial epithelial cells.

    PubMed

    Kogel, U; Gonzalez Suarez, I; Xiang, Y; Dossin, E; Guy, P A; Mathis, C; Marescotti, D; Goedertier, D; Martin, F; Peitsch, M C; Hoeng, J

    2015-12-01

    Cigarette smoking causes serious and fatal diseases. The best way for smokers to avoid health risks is to quit smoking. Using modified risk tobacco products (MRTPs) may be an alternative to reduce the harm caused for those who are unwilling to quit smoking, but little is known about the toxic effects of MRTPs, nor were the molecular mechanisms of toxicity investigated in detail. The toxicity of an MRTP and the potential molecular mechanisms involved were investigated in high-content screening tests and whole genome transcriptomics analyses using human bronchial epithelial cells. The prototypic (p)MRTP that was tested had less impact than reference cigarette 3R4F on the cellular oxidative stress response and cell death pathways. Higher pMRTP aerosol extract concentrations had impact on pathways associated with the detoxification of xenobiotics and the reduction of oxidative damage. A pMRTP aerosol concentration up to 18 times higher than the 3R4F caused similar perturbation effects in biological networks and led to the perturbation of networks related to cell stress, and proliferation biology. These results may further facilitate the development of a systems toxicology-based impact assessment for use in future risk assessments in line with the 21st century toxicology paradigm, as shown here for an MRTP. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The dilemma of dual use biological research: Polish perspective.

    PubMed

    Czarkowski, Marek

    2010-03-01

    Biological research with legitimate scientific purpose that may be misused to pose a biological threat to public health and/or national security is termed dual use. In Poland there are adequate conditions for conducting experiments that could be qualified as dual use research, and therefore, a risk of attack on Poland or other countries exists. Optimal solutions for limiting such threats are required, and the national system of biosecurity should enable early, reliable, and complete identification of this type of research. Scientists should have a fundamental role in this process, their duty being to immediately, upon identification, report research with dual use potential. An important entity in the identification system of dual use research should also be the Central Register of Biological and Biomedical Research, which gathers information about all biological and biomedical research being conducted in a given country. Publishers, editors, and review committees of journals and other scientific publications should be involved in evaluating results of clinical trials. The National Council of Biosecurity should be the governmental institution responsible for developing a system of dual use research threat prevention. Its role would be to develop codes of conduct, form counsel of expertise, and monitor the problem at national level, while the Dual Use Research Committee would be responsible for individual cases. In Poland, current actions aiming to provide biological safety were based on developing and passing an act about genetically modified organisms (GMO's) and creating a GMO Committee. Considering experiences of other nations, one should view these actions as fragmentary, and thus insufficient protection against dual use research threats.

  9. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK ...

    EPA Pesticide Factsheets

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecular Initiating Event (MIE), through intermediate KEs, ending in an Adverse Outcome (AO) which may be used as a basis for decision making. A KE is a measurable biological change, and is linked with other KEs via Key Event Relationships (KERs). A given KE may be involved in several AOPs, leading to a plausible network of biological changes that are involved in an organism’s response to an external stressor. When describing an AOP, five guiding principles have been proposed [1]: 1) an AOP is not specific to a single external stressor, 2) AOPs are modular, with KEs and KERs that can be used in several AOPs, 3) a single AOP is the unit of development, 4) most biological responses will be the result of networks of AOPs, and 5) AOPs will be modified as more biological knowledge becomes available. The collaborative development of AOPs is recommended to be performed using the AOP-Wiki (https://aopwiki.org), which is an effort between the European Commission – DG Joint Research Centre (JRC) and U.S. Environmental Protection Agency (EPA). The Wiki is one part of a larger OECD-sponsored AOP Knowledgebase effort, which is a repository for all AOPs developed as part of the Organization for Economic

  10. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koritzinsky, Marianne, E-mail: mkoritzi@uhnresearch.ca

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed tomore » advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers.« less

  11. Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.

    PubMed

    Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R

    2018-04-19

    Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of <100 ms, significantly faster than that of previously reported response times using silica-based particles. Particles produced stable, pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.

  12. Niche construction, sources of selection and trait coevolution.

    PubMed

    Laland, Kevin; Odling-Smee, John; Endler, John

    2017-10-06

    Organisms modify and choose components of their local environments. This 'niche construction' can alter ecological processes, modify natural selection and contribute to inheritance through ecological legacies. Here, we propose that niche construction initiates and modifies the selection directly affecting the constructor, and on other species, in an orderly, directed and sustained manner. By dependably generating specific environmental states, niche construction co-directs adaptive evolution by imposing a consistent statistical bias on selection. We illustrate how niche construction can generate this evolutionary bias by comparing it with artificial selection. We suggest that it occupies the middle ground between artificial and natural selection. We show how the perspective leads to testable predictions related to: (i) reduced variance in measures of responses to natural selection in the wild; (ii) multiple trait coevolution, including the evolution of sequences of traits and patterns of parallel evolution; and (iii) a positive association between niche construction and biodiversity. More generally, we submit that evolutionary biology would benefit from greater attention to the diverse properties of all sources of selection.

  13. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.

    PubMed

    Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L

    2010-06-15

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.

  14. Development and Characterization of a Voltammetric Carbon-fiber Microelectrode pH Sensor

    PubMed Central

    Makos, Monique A.; Omiatek, Donna M.; Ewing, Andrew G.; Heien, Michael L.

    2010-01-01

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernable to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster. PMID:20380393

  15. Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration.

    PubMed

    Jain, Sanyog; Harde, Harshad; Indulkar, Anura; Agrawal, Ashish Kumar

    2014-02-01

    The present study was designed with the objective to investigate the stability and potential of glucomannan-modified bilosomes (GM-bilosomes) in eliciting immune response following oral administration. GM-bilosomes exhibited desired quality attributes simultaneously maintaining the chemical and conformation stability of the tetanus toxoid (TT) entrapped in to freeze dried formulations. The GM-bilosomes exhibited excellent stability in different simulated biological fluids and sustained release profile up to 24 h. GM-bilosomes elicited significantly higher (P<0.05) systemic immune response (serum IgG level) as compared to bilosomes, niosomes and alum adsorbed TT administered through oral route. More importantly, GM-bilosomes were found capable of inducing mucosal immune response, i.e. sIgA titre in salivary and intestinal secretions as well as cell mediated immune response (IL-2 and IFN-γ levels in spleen homogenate) which was not induced by i.m. TT, the conventional route of immunization. Conclusively, GM-bilosomes could be considered as a promising carrier and adjuvant system for oral mucosal immunization. This team reports on the development and effects of a glucomannan-modified bilosome as an oral vaccine vector, using tetanus toxoid in the experiments. These GM-bilosomes not only elicited significantly higher systemic immune response as compared to bilosomes, niosomes and alum adsorbed orally administered TT, but also demonstrated mucosal immune response induction as well as cell mediated immune responses, which were not induced by the conventional route of immunization. © 2014.

  16. Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72) and microRNA (miR-142-5p and miR-203).

    PubMed

    Beninson, Lida A; Brown, Peter N; Loughridge, Alice B; Saludes, Jonel P; Maslanik, Thomas; Hills, Abigail K; Woodworth, Tyler; Craig, Wendy; Yin, Hang; Fleshner, Monika

    2014-01-01

    Exosomes, biologically active nanoparticles (40-100 nm) released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA). Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72) and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS) activation of alpha-1 adrenergic receptors (ADRs), since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.

  17. Characterization of biologic response modifiers in the supernatant of conventional, refrigerated, and cryopreserved platelets.

    PubMed

    Johnson, Lacey; Tan, Shereen; Jenkins, Emily; Wood, Ben; Marks, Denese C

    2018-04-01

    Alternatives to room temperature storage of platelets (PLTs) are of interest to support blood banking logistics. The aim of this study was to compare the presence of biologic response modifiers (BRMs) in PLT concentrates stored under conventional room temperature conditions with refrigerated or cryopreserved PLTs. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were as follows: room temperature (20-24°C), cold (2-6°C), and cryopreserved (-80°C with DMSO). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were tested immediately after thawing and reconstitution in 30% plasma/70% SSP+ and after storage at room temperature. Coagulation factor activity was comparable between room temperature and cold PLTs, with the exception of protein S, while cryopreserved PLTs had reduced Factor (F)V and FVIII activity. Cold-stored PLTs retained α-granule proteins better than room temperature or cryopreserved PLTs. Cryopreservation resulted in 10-fold higher microparticle generation than cold-stored PLTs, but both groups contained significantly more microparticles than those stored at room temperature. The supernatant from both cold and cryopreserved PLTs initiated faster clot formation and thrombin generation than room temperature PLTs. Cold storage and cryopreservation alter the composition of the soluble fraction of stored PLTs. These differences in coagulation proteins, cytokines, and microparticles likely influence both the hemostatic capacity of the components and the auxiliary functions. © 2017 AABB.

  18. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    PubMed Central

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  19. Recent Progress in JAK Inhibitors for the Treatment of Rheumatoid Arthritis.

    PubMed

    Nakayamada, Shingo; Kubo, Satoshi; Iwata, Shigeru; Tanaka, Yoshiya

    2016-10-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovial inflammation and joint destruction. Considerable advance in the treatment of RA has been made following the advent of biological disease-modifying anti-rheumatic drugs (DMARDs). However, these biologics require intravenous or subcutaneous injection and some patients fail to respond to biological DMARDs or lose their primary response. Various cytokines and cell surface molecules bind to receptors on the cell surface, resulting in the activation of various cell signaling pathways, including phosphorylation of kinase proteins. Among these kinases, the non-receptor tyrosine kinase family Janus kinase (JAK) plays a pivotal role in the pathological processes of RA. Several JAK inhibitors have been developed as new therapies for patients with RA. These are oral synthetic DMARDs that inhibit JAK1, 2, and 3. One JAK inhibitor, tofacitinib, has already been approved in many countries. Results of phase III clinical trials using a JAK1/2 inhibitor, baricitinib, have shown feasible efficacy and tolerable safety. Both drugs are effective in patients who showed inadequate response to biological DMARDs as well as synthetic DMARDs. In addition, clinical phase III trials using filgotinib and ABT-494, specific JAK1 inhibitors, are currently underway. JAK inhibitors are novel therapies for RA, but further studies are needed to determine their risk-benefit ratio and selection of the most appropriate patients for such therapy.

  20. Carbohydrates--the renewable raw materials of high biotechnological value.

    PubMed

    Ramesh, Honnavally P F; Tharanathan, Rudrapatnam N

    2003-01-01

    Carbohydrates are the potential biomolecules derived from nature. Their molecular diversity has led to a bewildering variety of species, structures and characteristics all performing a large array of functions of great significance. Biologically they are vital as message (immunological) carriers, physiologically they are useful as energy (nutritional) reserves, and technologically they are needed for altering the texture and consistency (functional) of foods. Recent advances in glycobiology have opened up a new understanding of the role of sugars in biology and medicine. Noncellulosic beta-(1-3)-linked D-glucans, a group of polysaccharides found as constituents of fungi, algae, and higher plants, exhibit many interesting properties, depending on their molecular conformation. They are excellent 'biological response modifiers' and show significant immunomodulatory activities. They elicit a variety of host defense biological responses, for example, potent antitumor activity. On the other hand, the mixed-linkage ((1-3/1-4)-beta-linked) glucans are important constituents of cereal cell walls, where they perform properties of physiological importance, such as water holding capacity, porosity, and plasticity, which are useful at different stages of growth/development of plants. Of late, carbohydrate-based therapeutics are becoming the promise against many chronic diseases of today and tomorrow. Some of the characteristic features, structural attributes, functional significance, and applications of a selected few carbohydrate species are the subject matter of this review.

  1. Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents.

    PubMed

    Zhu, Liping; Yang, Yuan; Farquhar, Kirsten; Wang, Jingjing; Tian, Chixia; Ranville, James; Boyes, Stephen G

    2016-02-01

    Despite recent advances in the understanding of fundamental cancer biology, cancer remains the second most common cause of death in the United States. One of the primary factors indicative of high cancer morbidity and mortality and aggressive cancer phenotypes is tumors with a low extracellular pH (pHe). Thus, the ability to measure tumor pHe in vivo using noninvasive and accurate techniques that also provide high spatiotemporal resolution has become increasingly important and is of great interest to researchers and clinicians. In an effort to develop a pH-responsive magnetic resonance imaging (MRI) contrast agent (CA) that has the potential to be used to measure tumor pHe, well-defined pH-responsive polymers, synthesized via reversible addition-fragmentation chain transfer polymerization, were attached to the surface of gadolinium-based nanoparticles (GdNPs) via a "grafting to" method after reduction of the thiocarbonylthio end groups. The successful modification of the GdNPs was verified by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and dynamic light scattering. The performance of the pH-responsive polymer modified GdNPs was then evaluated for potential use as smart MRI CAs via monitoring the relaxivity changes with changing environmental pH. The results suggested that the pH-responsive polymers can be used to effectively modify the GdNPs surface to prepare a smart contrast agent for MRI.

  2. Comparison of new nitrosoureas esters with modified steroidal nucleus for cytogenetic and antineoplastic activity.

    PubMed

    Hussein, A; Mioglou-Kalouptsi, E; Papageorgiou, A; Karapidaki, I; Iakovidou-Kritsi, Z; Lialiaris, T; Xrysogelou, E; Camoutsis, C; Mourelatos, D

    2007-01-01

    Nitrosourea is decomposed under physiological conditions to react with biological macromolecules by two mechanisms: alkylation (with proteins and nucleic acids) and carbamoylation (with proteins but not nucleic acids). It has been suggested that the alkylating action is responsible for the therapeutic effects of nitrosoureas, and that the carbamoylation activity leads to toxicity effects. In order to reduce systemic toxicity and improve specificity and distribution for cancer therapy, 2-haloethyl nitrosourea has been esterified with modified steroids, which are used as biological platforms for transporting the alkylating agent to the tumor site in a specific manner. The cytogenetic and antineoplastic effect were studied of seven newly synthesized esters of N,N-bis(2-chloroethyl)alanyl carboxyl derivatives with a modified steroidal nucleus (compounds 1-7). As a very sensitive indicator of genotoxicity the Sister Chromatid Exchange (SCE) assay was used and as a valuable marker of cytostatic activity the cell Proliferation Rate Index (PRI) in cultures of normal human lymphocytes was used. The order of magnitude of the cytogenetic activity on a molar basis (15, 30, 120 microM) of the compounds was 7>6>3>5>2>4>1. The most active compound 7 has an enlarged (seven carbon atoms) A ring modified with a lactam group (-NHCO-) with the nitrosourea moiety esterified at position 17 In the group of seven substances a correlation was observed between the magnitude of SCE response and the depression in PRI (r=-O, 65, p<0.001). According to the criterion of activity of National Cancer Institute (NCI), the order of antineoplastic activity of compounds on lymphoid L1210 leukemia is 7>6>2>5>4>3>1 and on lympocytic P388 leukemia cells is 7>2>6>5>4>3>1. The present results are in agreement with previous suggestions that the effectiveness in cytogenetic activity may well be correlated with antitumor effects [T/C: 248% for the compound 7 in 250 mg/kg b.w.; T/C: mean survival time of drug-treated animals (T) (excluding long term survivals) vs. corn-oil-treated controls (C)].

  3. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    NASA Astrophysics Data System (ADS)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  4. Thomas K. Jeffers: pioneer of coccidiosis research.

    PubMed

    Chapman, H D

    2012-01-01

    Thomas K. Jeffers has made many significant contributions to our understanding of the biology of the parasite Eimeria, the cause of coccidiosis in poultry. His work has had direct practical application for the control of this widespread disease. Topics discussed include Jeffers' pioneering work concerned with genetics of the host response to infection, the nature of biological and immunological intraspecific variation, drug resistance and discovery, field surveys of resistance, and his most recognized achievement-the demonstration that the lifecycle of coccidia may be altered by artificial selection. Parasites so modified are attenuated but retain their immunogenicity, a discovery that has led to the development of live vaccines that are inherently non-pathogenic. This article provides a brief biography and describes the contributions that Jeffers has made to our knowledge of coccidiosis.

  5. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Waters, Katrina M.; Miller, John H.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peakmore » intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low dose radiation exposure on human health.« less

  6. S-Nitrosothiol measurements in biological systems⋄

    PubMed Central

    Gow, Andrew; Doctor, Allan; Mannick, Joan; Gaston, Benjamin

    2007-01-01

    S-Nitrosothiol (SNO) cysteine modifications are regulated signaling reactions that dramatically affect, and are affected by, protein conformation. The lability of the S-NO bond can make SNO-modified proteins cumbersome to measure accurately. Here, we review methodologies for detecting SNO modifications in biology. There are three caveats. 1) Many assays for biological SNOs are used near the limit of detection: standard curves must be in the biologically relevant concentration range. 2) The assays that are most reliable are those that modify SNO protein or peptide chemistry the least. 3) Each result should be quantitatively validated using more than one assay. Improved assays are needed and are in development. PMID:17379583

  7. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  8. Telling science’s stories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, H. S.

    Every biologist has been frustrated by an inability to find a specific piece of information in the literature. You are planning an experiment and you want to know whether factor X modifies the cellular response to factor Y. How do you find this information? Reference books and review articles are little help because most are supremely superficial, and any specific information they might contain is hopelessly out of date (not to mention the problem with constantly changing biological nomenclature). Online searching is only useful if the data you are looking for happens to be in the title or abstract. Unlessmore » what you’re looking for is the main subject of the paper, perusing the literature is almost hopeless. So what’s the best way to find biological information? The universal struggle that biologists undergo to find information in published papers indicates that the literature is not the actual repository of most biological knowledge. Most useful information, it seems, is not actually written down, but is passed orally between investigators. In other words, the best way to find biological information is to talk to other scientists.« less

  9. Emotions predictably modify response times in the initiation of human motor actions: A meta-analytic review.

    PubMed

    Beatty, Garrett F; Cranley, Nicole M; Carnaby, Giselle; Janelle, Christopher M

    2016-03-01

    Emotions motivate individuals to attain appetitive goals and avoid aversive consequences. Empirical investigations have detailed how broad approach and avoidance orientations are reflected in fundamental movement attributes such as the speed, accuracy, and variability of motor actions. Several theoretical perspectives propose explanations for how emotional states influence the speed with which goal directed movements are initiated. These perspectives include biological predisposition, muscle activation, distance regulation, cognitive evaluation, and evaluative response coding accounts. A comprehensive review of literature and meta-analysis were undertaken to quantify empirical support for these theoretical perspectives. The systematic review yielded 34 studies that contained 53 independent experiments producing 128 effect sizes used to evaluate the predictions of existing theories. The central tenets of the biological predisposition (Hedges' g = -0.356), distance regulation (g = -0.293; g = 0.243), and cognitive evaluation (g = -0.249; g = -0.405; g = -0.174) accounts were supported. Partial support was also identified for the evaluative response coding (g = -0.255) framework. Our findings provide quantitative evidence that substantiate existing theoretical perspectives, and provide potential direction for conceptual integration of these independent perspectives. Recommendations for future empirical work in this area are discussed. (c) 2016 APA, all rights reserved).

  10. Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability

    NASA Astrophysics Data System (ADS)

    Krasteva, N. A.; Toromanov, G.; Hristova, K. T.; Radeva, E. I.; Pecheva, E. V.; Dimitrova, R. P.; Altankov, G. P.; Pramatarova, L. D.

    2010-11-01

    Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.

  11. Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control.

    PubMed

    Skirvin, D J; Fenlon, J S

    2001-02-01

    The functional response of the predatory mite Phytoseiulus persimilis Athias-Henriot to eggs of its prey, the spider mite Tetranychus urticae Koch was examined on three plant species. Experiments were done to determine whether differences in the functional response on the three plant species were due to the morphological features of the crop directly on the predator or through an effect of the plant species on the prey. The results show that crop morphology is the only factor influencing the predatory ability of P. persimilis on the three plant species. Fewer eggs were eaten on Ceanothus thyrsiflorus var. 'Autumnal Blue', the plant species with hairy leaves, and greater numbers of prey consumed on Choisya ternata, a species with smooth leaves. However, similarly few eggs were eaten on the smooth, but waxy leaved Euonymus japonicus as on Ceanothus thyrsiflorus, demonstrating that morphological characters of leaves other than the possession of hairs and trichomes may affect the rates of predation. The implications of these results for the tritrophic interactions between plant, predator and prey, and the development of suitable biological control strategies are discussed.

  12. Terrorism and dispelling the myth of a panic prone public.

    PubMed

    Sheppard, Ben; Rubin, G James; Wardman, Jamie K; Wessely, Simon

    2006-01-01

    Governments and commentators perceive the public to be prone to panic in response to terrorist attacks--conventional or involving chemical, biological or radiological weapons. Evidence from five such incidents suggests that the public is not prone to panic, although people can change their behaviours and attitudes to reduce the risk of themselves being exposed to a terrorist incident. Behavioural responses may be divided into acts of omission, such as not making unnecessary journeys, and acts of commission, such as taking prophylactic medication despite the inherent risk of side effects. Evidence suggests that the public are aware of these differences, and tend to adopt responses proportionate to the risk. Drawing upon the literature in the social and natural sciences, our discussion encompasses differing risk perceptions of terrorist threats and consequences of attacks. How do fear and anxiety interact with behavioural responses to amplify or attenuate perceptions that can be modified through risk communication undertaken by authorities?

  13. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leucocyte genotoxicity

    PubMed Central

    Yamamoto, Mitsuko L.; Maier, Irene; Dang, Angeline Tilly; Berry, David; Liu, Jared; Ruegger, Paul M.; Yang, Jiue-in; Soto, Phillip A.; Presley, Laura L.; Reliene, Ramune; Westbrook, Aya M.; Wei, Bo; Loy, Alexander; Chang, Christopher; Braun, Jonathan; Borneman, James; Schiestl, Robert H.

    2013-01-01

    Ataxia-telangiectasia (A-T) is a genetic disorder associated with high incidence of B cell lymphoma. Using an A-T mouse model, we compared lymphoma incidence in several isogenic mouse colonies harboring different bacterial communities, finding that intestinal microbiota are a major contributor to disease penetrance and latency, lifespan, molecular oxidative stress and systemic leucocyte genotoxicity. High throughput sequence analysis of rRNA genes identified mucosa-associated bacterial phylotypes that were colony-specific. Lactobacillus johnsonii, which was deficient in the more cancer-prone mouse colony, was causally tested for its capacity to confer reduced genotoxicity when restored by short-term oral transfer. This intervention decreased systemic genotoxicity, a response associated with reduced basal leucocytes and the cytokine-mediated inflammatory state, and mechanistically linked to the host cell biology of systemic genotoxicity. Our results suggest that intestinal microbiota are a potentially modifiable trait for translational intervention in individuals at risk for B cell lymphoma, or for other diseases that are driven by genotoxicity or the molecular response to oxidative stress. PMID:23860718

  14. Advances in the management of rheumatoid arthritis.

    PubMed

    Dale, James

    2015-08-01

    Modern early rheumatoid arthritis strategies are usually based upon a number of important overarching principles: 1. early diagnosis facilitates early commencement of disease modifying anti-rheumatic therapy; 2. early commencement of treatment reduces the long-term risk of erosive damage and functional decline; 3. composite disease activity measures should be used to quantify global rheumatoid arthritis disease activity; and 4. therapy should be intensified until a predefined disease activity target has been achieved. A substantial minority of rheumatoid arthritis patients (approximately 40%) will experience an adequate response to methotrexate monotherapy; however, the remainder may require disease modifying anti-rheumatic combination therapy, and/or biologic therapy, to achieve disease activity targets. Importantly, short term trials of methotrexate monotherapy do not appear to disadvantage outcomes provided treatment continues to be intensified if disease activity targets are not achieved. © The Author(s) 2015.

  15. My Treatment Approach to Rheumatoid Arthritis

    PubMed Central

    Davis, John M.; Matteson, Eric L.

    2012-01-01

    The past decade has brought important advances in the understanding of rheumatoid arthritis and its management and treatment. New classification criteria for rheumatoid arthritis, better definitions of treatment outcome and remission, and the introduction of biologic response-modifying drugs designed to inhibit the inflammatory process have greatly altered the approach to managing this disease. More aggressive management of rheumatoid arthritis early after diagnosis and throughout the course of the disease has resulted in improvement in patient functioning and quality of life, reduction in comorbid conditions, and enhanced survival. PMID:22766086

  16. Understanding genetics: a primer for occupational health practice.

    PubMed

    Wright, Lynette

    2005-12-01

    Because biologic diversity is essential for life, genes have developed many versions that may be further modified by interaction with other genes and with environmental factors. Polymorphic alterations of genetic material influence drug responses, predisposition or resistance to disease, and susceptibility to environmental toxicity. The occupational health professional should be aware of rapidly changing genetic tests, be able to distinguish between screening and diagnostic modalities, be able to access genetic resources to find the latest protocols, and should consider the ethical, legal, and social implications of genetic testing in the workplace.

  17. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    PubMed

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Inflammatory Disequilibrium in Stroke

    PubMed Central

    Petrovic-Djergovic, Danica; Goonewardena, Sascha N.; Pinsky, David J.

    2016-01-01

    Over the past several decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. Understanding the benefits of timely reperfusion has led to the development of thrombolytic therapy as the cornerstone of current management of ischemic stroke, but there remains much to be learned about mechanisms of neuronal ischemic and reperfusion injury and associated inflammation. For ischemic stroke, novel therapeutic targets have continued to remain elusive. When considering modern molecular biologic techniques, advanced translational stroke models, and clinical studies, a consistent pattern emerges, implicating perturbation of the immune equilibrium by stroke in both central nervous system injury and repair responses. Stroke triggers activation of the neuroimmune axis, comprised of multiple cellular constituents of the immune system resident within the parenchyma of the brain, leptomeninges, and vascular beds, as well as through secretion of biological response modifiers and recruitment of immune effector cells. This neuroimmune activation can directly impact the initiation, propagation, and resolution phases of ischemic brain injury. In order to leverage a potential opportunity to modulate local and systemic immune responses to favorably affect the stroke disease curve, it is necessary to expand our mechanistic understanding of the neuroimmune axis in ischemic stroke. This review explores the frontiers of current knowledge of innate and adaptive immune responses in the brain and how these responses together shape the course of ischemic stroke. PMID:27340273

  19. Surface modification of biomaterials using plasma immersion ion implantation and deposition

    PubMed Central

    Lu, Tao; Qiao, Yuqin; Liu, Xuanyong

    2012-01-01

    Although remarkable progress has been made on biomaterial research, the ideal biomaterial that satisfies all the technical requirements and biological functions is not available up to now. Surface modification seems to be a more economic and efficient way to adjust existing conventional biomaterials to meet the current and ever-evolving clinical needs. From an industrial perspective, plasma immersion ion implantation and deposition (PIII&D) is an attractive method for biomaterials owing to its capability of treating objects with irregular shapes, as well as the control of coating composition. It is well acknowledged that the physico-chemical characteristics of biomaterials are the decisive factors greatly affecting the biological responses of biomaterials including bioactivity, haemocompatibility and antibacterial activity. Here, we mainly review the recent advances in surface modification of biomaterials via PIII&D technology, especially titanium alloys and polymers used for orthopaedic, dental and cardiovascular implants. Moreover, the variations of biological performances depending on the physico-chemical properties of modified biomaterials will be discussed. PMID:23741609

  20. Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

    DOE PAGES

    Tagliazucchi, Mario; Szleifer, Igal

    2014-11-03

    The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental andmore » theoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.« less

  1. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    NASA Astrophysics Data System (ADS)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  2. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    PubMed

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Concomitant methotrexate and tacrolimus augment the clinical response to abatacept in patients with rheumatoid arthritis with a prior history of biological DMARD use.

    PubMed

    Takahashi, Nobunori; Fujibayashi, Takayoshi; Kida, Daihei; Hirano, Yuji; Kato, Takefumi; Kato, Daizo; Saito, Kiwamu; Kaneko, Atsushi; Yabe, Yuichiro; Takagi, Hideki; Oguchi, Takeshi; Miyake, Hiroyuki; Watanabe, Tsuyoshi; Hayashi, Masatoshi; Kanayama, Yasuhide; Funahashi, Koji; Hanabayashi, Masahiro; Hirabara, Shinya; Asai, Shuji; Takemoto, Toki; Terabe, Kenya; Asai, Nobuyuki; Yoshioka, Yutaka; Ishiguro, Naoki; Kojima, Toshihisa

    2015-10-01

    This observational retrospective study examined whether abatacept efficacy could be augmented with concomitant methotrexate (MTX) or tacrolimus (TAC) in patients with rheumatoid arthritis (RA) who experienced failure with prior biological disease-modifying antirheumatic drugs (DMARDs) and in whom favorable therapeutic efficacy is difficult to achieve. All patients with a prior biological DMARD history who were treated with abatacept for 52 weeks and registered in a Japanese multicentre registry were included. Clinical efficacy and safety of abatacept according to the concomitant drug used, i.e., none (ABT-mono), MTX (ABT-MTX), and TAC (ABT-TAC), were compared. A greater mean percent change of DAS28-ESR was observed in the ABT-TAC group compared with the ABT-mono group at weeks 12 (-20.5 vs. -5.4 %, p = 0.035) and 24 (-25.0 vs. -11.0 %, p = 0.036). ABT-MTX and ABT-TAC groups had a significantly higher proportion of patients who achieved low disease activity (LDA) within 52 weeks compared with the respective baselines, while no significant change was observed in the ABT-mono group. A higher proportion of patients in the ABT-TAC group achieved EULAR moderate response compared with the ABT-mono group at week 52 (66.7 vs. 35.0 %, p = 0.025). Multivariate logistic regression analysis revealed that concomitant TAC use was independently associated with the achievement of LDA and EULAR response at 52 weeks, while concomitant MTX use was not. Concomitant TAC use may offer a suitable option for RA patients treated with abatacept after prior biological DMARD failure, likely because both abatacept and TAC affect T cell activation.

  4. Multiple Ligands Targeting Cholinesterases and β-Amyloid: Synthesis, Biological Evaluation of Heterodimeric Compounds with Benzylamine Pharmacophore.

    PubMed

    Szałaj, Natalia; Bajda, Marek; Dudek, Katarzyna; Brus, Boris; Gobec, Stanislav; Malawska, Barbara

    2015-08-01

    Alzheimer's disease (AD) is a fatal and complex neurodegenerative disorder for which effective treatment remains the unmet challenge. Using donepezil as a starting point, we aimed to develop novel potential anti-AD agents with a multidirectional biological profile. We designed the target compounds as dual binding site acetylcholinesterase inhibitors, where the N-benzylamine pharmacophore is responsible for interactions with the catalytic anionic site of the enzyme. The heteroaromatic fragment responsible for interactions with the peripheral anionic site was modified and three different heterocycles were introduced: isoindoline, isoindolin-1-one, and saccharine. Based on the results of the pharmacological evaluation, we identified compound 8b with a saccharine moiety as the most potent and selective human acetylcholinesterase inhibitor (IC50  = 33 nM) and beta amyloid aggregation inhibitor. It acts as a non-competitive acetylcholinesterase inhibitor and is able to cross the blood-brain barrier in vitro. We believe that compound 8b represents an important lead compound for further development as potential anti-AD agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Mozhdehi, Davoud; Luginbuhl, Kelli M.; Simon, Joseph R.; Dzuricky, Michael; Berger, Rüdiger; Varol, H. Samet; Huang, Fred C.; Buehne, Kristen L.; Mayne, Nicholas R.; Weitzhandler, Isaac; Bonn, Mischa; Parekh, Sapun H.; Chilkoti, Ashutosh

    2018-05-01

    Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.

  6. Enhancement of natural killer cell activity in human immunodeficiency virus-infected subjects by in vitro treatment with biologic response modifier OK-432.

    PubMed Central

    Huang, X L; Fan, Z; Murayama, T; Rinaldo, C

    1995-01-01

    A decrease in natural killer (NK) cell function has been related to the progression of human immunodeficiency virus (HIV) infection. In the present study, we assessed the ability of a streptococcus-derived biologic response modifier, OK-432, to augment NK lysis of uninfected K562 and U937 cells and HIV-infected U937 cells by peripheral blood mononuclear cells (PBMC) from HIV-seropositive homosexual men. Optimal two- to fourfold increases in lysis of the three targets were observed after pretreatment of PBMC from HIV-negative subjects for 4 h with 2 micrograms of OK-432 per ml. This effect was related primarily to gamma interferon (IFN-gamma) production induced by OK-432 and was not linked to production of tumor necrosis factors alpha and beta or to monocytes in the cultures. The enhancing effect of OK-432 on NK cell function was diminished but still evident in PBMC from subjects with relatively early-phase (< 3-year) HIV infection and high CD4+ cell counts and was lower in subjects with longer-term HIV infection (> 3 years), in association with reduced production of IFN-gamma. Augmentation of NK cell activity in HIV-infected men by OK-432 was comparable to that induced by treatment of cells with 1,000 U of IFN-alpha or interleukin 2 per ml. The data suggest that the NK cell-enhancing effects of OK-432 are at least in part mediated by IFN-gamma and that OK-432 may be effective in treatment of patients with early-phase HIV infection. PMID:7719919

  7. The Pathogenesis and Therapy of Combined Radiation Injury

    DTIC Science & Technology

    2006-10-01

    17 Table 7. Effects of Different Biological Respose Modifiers on Blood Cell Recovery After C o m b ined Inju ry...16 Table 7. Effects of Different Biological Respose Modifiers on Blood Cell Recovery After Combined Injury. Group 7 days 14 days 21 days 30 days...injury may become self -de- structive, and may be capable of explaining (in part) the more severe out- comes of combined injuries compared with acute

  8. Dual response to nest flooding during monsoon in an Indian ant

    PubMed Central

    Kolay, Swetashree; Annagiri, Sumana

    2015-01-01

    Flooding causes destruction of shelter and disruption of activity in animals occupying subterranean nests. To ensure their survival organisms have evolved various responses to combat this problem. In this study we examine the response of an Indian ant, Diacamma indicum, to nest flooding during the monsoon season. Based on characterization of nest location, architecture and the response of these ants to different levels of flooding in their natural habitat as well as in the laboratory, we infer that they exhibit a dual response. On the one hand, the challenges presented by monsoon are dealt with by occupying shallow nests and modifying the entrance with decorations and soil mounds. On the other hand, inundated nests are evacuated and the ants occupy shelters at higher elevations. We conclude that focused studies of the monsoon biology of species that dwell in such climatic conditions may help us appreciate how organisms deal with, and adapt to, extreme seasonal changes. PMID:26349015

  9. Genetics and blood pressure response to exercise, and its interactions with adiposity.

    PubMed

    Rankinen, T; Bouchard, C

    2002-01-01

    Regular aerobic exercise has the potential to induce several beneficial health effects, including a decrease in blood pressure level, especially in hypertensive patients and in subjects with high-normal blood pressure. However, it is also well documented that some people show more pronounced blood pressure responses to endurance training than others, despite identical training programs and similar initial blood pressure levels. This kind of variation is an example of normal biologic diversity and most likely originates from interactions with genetic factors. Data from genetic epidemiologic studies indicate that there is a genetic component that affects both resting blood pressure and blood pressure responses to acute exercise. Evidence from molecular genetic studies is scarce, but the first reports suggest that DNA sequence variation in the hypertension candidate genes, such as angiotensinogen, also modify blood pressure responses to endurance training. The current knowledge regarding the role of genetic factors in the modification of blood pressure responses to endurance training will be summarized and discussed. Copyright 2002 CHF, Inc.

  10. Investigating Novice and Expert Conceptions of Genetically Modified Organisms

    PubMed Central

    Potter, Lisa M.; Bissonnette, Sarah A.; Knight, Jonathan D.; Tanner, Kimberly D.

    2017-01-01

    The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students’ conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non–biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales. PMID:28821537

  11. Dengue-2 structural proteins associate with human proteins to produce a coagulation and innate immune response biased interactome.

    PubMed

    Folly, Brenda B; Weffort-Santos, Almeriane M; Fathman, C G; Soares, Luis R B

    2011-01-31

    Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem. A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology. Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis. Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.

  12. Lipid-lipid and lipid-drug interactions in biological membranes

    NASA Astrophysics Data System (ADS)

    Martynowycz, Michael W.

    Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host defense peptides from the innate immune system, are active against bacteria, and avoid developed antibiotic resistance. Optimization of peptoids by modulation of hydrophobicity and structural rigidity are explored.

  13. Applications of systems biology towards microbial fuel production.

    PubMed

    Gowen, Christopher M; Fong, Stephen S

    2011-10-01

    Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish (Danio rerio) model: applications for developmental toxicology.

    PubMed

    Timme-Laragy, Alicia R; Karchner, Sibel I; Hahn, Mark E

    2012-01-01

    The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knockdown via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e., phenotypic anchoring). In this chapter, we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use.

  15. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish model: applications for developmental toxicology

    PubMed Central

    Timme-Laragy, Alicia R.; Karchner, Sibel I.; Hahn, Mark E.

    2014-01-01

    Summary The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knock-down via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level, while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e. phenotypic anchoring). In this chapter we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use. PMID:22669659

  16. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia.

    PubMed

    Emmanuel, R; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S; Prakash, P

    2014-08-30

    The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600μM with high sensitivity of 1.01μAμM(-1)cm(-2) and low limit of detection of 0.016μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    PubMed Central

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y-H.; Jaspers, I.; Jeffries, H. E.

    2013-01-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) – even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this “effect modification” phenomena (NAS, 2004). These results present an unambiguous demonstration that – even in these simple mixtures – physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels. PMID:23457430

  18. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect.

    PubMed

    Wegmann, Udo; Carvalho, Ana Lucia; Stocks, Martin; Carding, Simon R

    2017-05-23

    The use of live, genetically modified bacteria as delivery vehicles for biologics is of considerable interest scientifically and has attracted significant commercial investment. We have pioneered the use of the commensal gut bacterium Bacteroides ovatus for the oral delivery of therapeutics to the gastrointestinal tract. Here we report on our investigations of the biological safety of engineered B. ovatus bacteria that includes the use of thymineless death as a containment strategy and the potential for the spread of transgenes in vivo in the mammalian gastrointestinal tract. We demonstrate the ability of GM-strains of Bacteroides to survive thymine starvation and overcome it through the exchange of genetic material. We also provide evidence for horizontal gene transfer in the mammalian gastrointestinal tract resulting in transgene-carrying wild type bacteria. These findings sound a strong note of caution on the employment of live genetically modified bacteria for the delivery of biologics.

  19. Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes.

    PubMed

    Park, Junwon; Yamashita, Naoyuki; Park, Chulhwi; Shimono, Tatsumi; Takeuchi, Daniel M; Tanaka, Hiroaki

    2017-07-01

    We investigated the concentrations of 57 target compounds in the different treatment units of various biological treatment processes in South Korea, including modified biological nutrient removal (BNR), anaerobic-anoxic-aerobic (A2O), and membrane bioreactor (MBR) systems, to elucidate the occurrence and removal fates of PPCPs in WWTPs. Biological treatment processes appeared to be most effective in eliminating most PPCPs, whereas some PPCPs were additionally removed by post-treatment. With the exception of the MBR process, the A2O system was effective for PPCPs removal. As a result, removal mechanisms were evaluated by calculating the mass balances in A2O and a lab-scale MBR process. The comparative study demonstrated that biodegradation was largely responsible for the improved removal performance found in lab-scale MBR (e.g., in removing bezafibrate, ketoprofen, and atenolol). Triclocarban, ciprofloxacin, levofloxacin and tetracycline were adsorbed in large amounts to MBR sludge. Increased biodegradability was also observed in lab-scale MBR, despite the highly adsorbable characteristics. The enhanced biodegradation potential seen in the MBR process thus likely plays a key role in eliminating highly adsorbable compounds as well as non-degradable or persistent PPCPs in other biological treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    PubMed

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus.

    PubMed

    Pizzolla, Angela; Smith, Jeffery M; Brooks, Andrew G; Reading, Patrick C

    2017-04-01

    Influenza remains a major global health issue and the effectiveness of current vaccines and antiviral drugs is limited by the continual evolution of influenza viruses. Therefore, identifying novel prophylactic or therapeutic treatments that induce appropriate innate immune responses to protect against influenza infection would represent an important advance in efforts to limit the impact of influenza. Cellular pattern recognition receptors (PRRs) recognize conserved structures expressed by pathogens to trigger intracellular signaling cascades, promoting expression of proinflammatory molecules and innate immunity. Therefore, a number of approaches have been developed to target specific PRRs in an effort to stimulate innate immunity and reduce disease in a variety of settings, including during influenza infections. Herein, we discuss progress in immunomodulation strategies designed to target cell-associated PRRs of the innate immune system, thereby, modifying innate responses to IAV infection and/or augmenting immune responses to influenza vaccines. © Society for Leukocyte Biology.

  2. Radioprotection by Biological Response Modifiers Alone and in Combination with WR-2721

    DTIC Science & Technology

    1989-01-01

    reasons related to cancer therapy rather 247 CH2 OH CH 2OH CH 2 0H H H H OH H OH H OH H OH FI(; . Chemical structure of glucan . a polgl~can consisting...2. GLUCAN : BACKGROUND AND GENERAL IMMUNOLOGIC AND HEMOPOIETIC EFFECTS Glucan (Fig. 1) is a beta -l,3-polyglucose isolated from the inner cell wall of...Adju’an, Therapy. pp. 183- 194. CH iiGOS. M. A led ) Ra%.en Press. New York Ciop. J. K. and AtSTiN. K. F 11985) A beta - glucan inhibitable receptor on human

  3. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon.

    PubMed

    Karmous, Inès; Trevisan, Rafael; El Ferjani, Ezzeddine; Chaoui, Abdelilah; Sheehan, David

    2017-01-01

    In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hâtif) seeds to copper (Cu). Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin) occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination.

  4. Do cities simulate climate change? A comparison of herbivore response to urban and global warming

    USGS Publications Warehouse

    Youngsteadt, Elsa; Dale, Adam G.; Terando, Adam; Dunn, Robert R.; Frank, Steven D.

    2014-01-01

    Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.

  5. Biologics in pediatric psoriasis - efficacy and safety.

    PubMed

    Dogra, Sunil; Mahajan, Rahul

    2018-01-01

    Childhood psoriasis is a special situation that is a management challenge for the treating dermatologist. As is the situation with traditional systemic agents, which are commonly used in managing severe psoriasis in children, the biologics are being increasingly used in the recalcitrant disease despite limited data on long term safety. Areas covered: We performed an extensive literature search to collect evidence-based data on the use of biologics in pediatric psoriasis. The relevant literature published from 2000 to September 2017 was obtained from PubMed, using the MeSH words 'biologics', 'biologic response modifiers' and 'treatment of pediatric/childhood psoriasis'. All clinical trials, randomized double-blind or single-blind controlled trials, open-label studies, retrospective studies, reviews, case reports and letters concerning the use of biologics in pediatric psoriasis were screened. Articles covering the use of biologics in pediatric psoriasis were screened and reference lists in the selected articles were scrutinized to identify other relevant articles that had not been found in the initial search. Articles without relevant information about biologics in general (e.g. its mechanism of action, pharmacokinetics and adverse effects) and its use in psoriasis in particular were excluded. We screened 427 articles and finally selected 41 relevant articles. Expert opinion: The available literature on the use of biologics such as anti-tumor necrosis factor (TNF)-α agents, and anti-IL-12/23 agents like ustekinumab suggests that these are effective and safe in managing severe pediatric psoriasis although there is an urgent need to generate more safety data. Dermatologists must be careful about the potential adverse effects of the biologics before administering them to children with psoriasis. It is likely that with rapidly evolving scenario of biologics in psoriasis, these will prove to be very useful molecules particularly in managing severe and recalcitrant psoriasis in pediatric age group.

  6. Exemplary Programs in Secondary School Biology.

    ERIC Educational Resources Information Center

    McComas, William F.; Penick, John E.

    1989-01-01

    Summarizes 10 exemplary programs which address topics on individualized biology, a modified team approach, limnology, physical anthropology, the relevance of biology to society, ecology, and health. Provides names and addresses of contact persons for further information. Units cover a broad range of abilities and activities. (RT)

  7. Biologic and oral disease-modifying antirheumatic drug monotherapy in rheumatoid arthritis

    PubMed Central

    Emery, Paul; Sebba, Anthony; Huizinga, Tom W J

    2013-01-01

    Clinical evidence demonstrates coadministration of tumour necrosis factor inhibitor (TNFi) agents and methotrexate (MTX) is more efficacious than administration of TNFi agents alone in patients with rheumatoid arthritis, leading to the perception that coadministration of MTX with all biologic agents or oral disease-modifying antirheumatic drugs is necessary for maximum efficacy. Real-life registry data reveal approximately one-third of patients taking biologic agents use them as monotherapy. Additionally, an analysis of healthcare claims data showed that when MTX was prescribed in conjunction with a biologic agent, as many as 58% of patients did not collect the MTX prescription. Given this discrepancy between perception and real life, we conducted a review of the peer-reviewed literature and rheumatology medical congress abstracts to determine whether data support biologic monotherapy as a treatment option for patients with rheumatoid arthritis. Our analysis suggests only for tocilizumab is there evidence that the efficacy of biologic monotherapy is comparable with combination therapy with MTX. PMID:23918035

  8. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  9. Integrating diverse scientific and practitioner knowledge in ecological risk analysis: a case study of biodiversity risk assessment in South Africa.

    PubMed

    Dana, G V; Kapuscinski, A R; Donaldson, J S

    2012-05-15

    Ecological risk analysis (ERA) is a structured evaluation of threats to species, natural communities, and ecosystem processes from pollutants and toxicants and more complicated living stressors such as invasive species, genetically modified organisms, and biological control agents. Such analyses are typically conducted by a narrowly-focused group of scientific experts using technical information. We evaluate whether the inclusion of more diverse experts and practitioners in ERA improved the ecological knowledge base about South African biodiversity and the potential impacts of genetically modified (GM) crops. We conducted two participatory ERA workshops in South Africa, analyzing potential impacts of GM maize on biodiversity. The first workshop involved only four biological scientists, who were joined by 18 diverse scientists and practitioners in the second, and we compared the ERA process and results between the two using descriptive statistics and semi-structured interview responses. The addition of diverse experts and practitioners led to a more comprehensive understanding of biological composition of the agro-ecosystem and a more ecologically relevant set of hazards, but impeded hazard prioritization and the generation of precise risk assessment values. Results suggest that diverse participation can improve the scoping or problem formulation of the ERA, by generating an ecologically robust set of information on which to base the subsequent, more technical risk assessment. The participatory ERA process also increased the transparency of the ERA by exposing the logic and rationale for decisions made at each step. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The functional response of bioactive titania-modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Zhang, W

    2016-10-01

    The objective of the study is to fundamentally elucidate the biological response of 3D printed mesh structures subjected to plasma electrolytic oxidation process through the study of osteoblast functions. The cellular activity of plasma electrolytic-oxidized mesh structure was explored in terms of cell-to-cell communication involving proliferation, synthesis of extracellular and intracellular proteins, and mineralization. Upon plasma electrolytic oxidation of the mesh structure, a thin layer of bioactive titania with pore size 1-3 µm was nucleated on the surface. The combination of microporous bioactive titania and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and tissue and a favorable osteogenic microenvironment for tissue on-growth and in-growth, in relation to the unmodified mesh structure. The formation of a confluent layer as envisaged via electron microscopy and quantitative assessment of the expression level of proteins (actin, vinculin, and fibronectin) point toward the determining role of surface-modified mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2488-2501, 2016. © 2016 Wiley Periodicals, Inc.

  11. HZE reactions and data-base development

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.

    1993-01-01

    The primary cosmic rays are dispersed over a large range of linear energy transfer (LET) values and their distribution over LET is a determinant of biological response. This LET distribution is modified by radiation shielding thickness and shield material composition. The current uncertainties in nuclear cross sections will not allow the composition of the shield material to be distinguished in order to minimize biological risk. An overview of the development of quantum mechanical models of heavy ion reactions will be given and computational results compared with experiments. A second approach is the development of phenomenological models from semi-classical considerations. These models provide the current data base in high charge and energy (HZE) shielding studies. They will be compared with available experimental data. The background material for this lecture will be available as a review document of over 30 years of research at Langley but will include new results obtained over the last year.

  12. A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    PubMed

    Turan, Nil; Kalko, Susana; Stincone, Anna; Clarke, Kim; Sabah, Ayesha; Howlett, Katherine; Curnow, S John; Rodriguez, Diego A; Cascante, Marta; O'Neill, Laura; Egginton, Stuart; Roca, Josep; Falciani, Francesco

    2011-09-01

    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.

  13. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).

    PubMed

    Singh, Neha Atulkumar; Mandal, Abul Kalam Azad; Khan, Zaved Ahmed

    2016-06-07

    Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.

  14. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Schubert, W. W.; Marshall, T. M.

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space.

  15. Interactive effects of nitrogen addition, warming and invasion across organizational levels in an old-field plant community.

    PubMed

    Gornish, Elise S

    2014-10-08

    Response to global change is dependent on the level of biological organization (e.g. the ecologically relevant spatial scale) in which species are embedded. For example, individual responses can affect population-level responses, which, in turn, can affect community-level responses. Although relationships are known to exist among responses to global change across levels of biological organization, formal investigations of these relationships are still uncommon. I conducted an exploratory analysis to identify how nitrogen addition and warming by open top chambers might affect plants across spatial scales by estimating treatment effect size at the leaf level, the plant level and the community level. Moreover, I investigated if the presence of Pityopsis aspera, an experimentally introduced plant species, modified the relationship between spatial scale and effect size across treatments. I found that, overall, the spatial scale significantly contributes to differences in effect size, supporting previous work which suggests that mechanisms driving biotic response to global change are scale dependent. Interestingly, the relationship between spatial scale and effect size in both the absence and presence of experimental invasion is very similar for nitrogen addition and warming treatments. The presence of invasion, however, did not affect the relationship between spatial scale and effect size, suggesting that in this system, invasion may not exacerbate or attenuate climate change effects. This exercise highlights the value of moving beyond integration and scaling to the practice of directly testing for scale effects within single experiments. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  17. Determination of drug lipophilicity by phosphatidylcholine-modified microemulsion high-performance liquid chromatography.

    PubMed

    Xuan, Xueyi; Xu, Liyuan; Li, Liangxing; Gao, Chongkai; Li, Ning

    2015-07-25

    A new biomembrane-mimetic liquid chromatographic method using a C8 stationary phase and phosphatidylcholine-modified (PC-modified) microemulsion mobile phase was used to estimate unionized and ionized drugs lipophilicity expressed as an n-octanol/water partition coefficient (logP and logD). The introduction of PC into sodium dodecyl sulfate (SDS) microemulsion yielded a good correlation between logk and logD (R(2)=0.8). The optimal composition of the PC-modified microemulsion liquid chromatography (PC-modified MELC) mobile phase was 0.2% PC-3.0% SDS-6.0% n-butanol-0.8% ethyl acetate-90.0% water (pH 7.0) for neutral and ionized molecules. The interactions between the analytes and system described by this chromatographic method is more similar to biological membrane than the n-octanol/water partition system. The result in this paper suggests that PC-modified MELC can serve as a possible alternative to the shake-flask method for high-throughput unionized and ionized drugs lipophilicity determination and simulation of biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor.

    PubMed

    Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei

    2009-12-15

    Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.

  19. Update and future perspectives of a thymic biological response modifier (Thymomodulin).

    PubMed

    Cazzola, P; Mazzanti, P; Kouttab, N M

    1987-01-01

    Thymomodulin (Ellem Industria Farmaceutica spa, Milan, Italy) is a calf thymus acid lysate with immunomodulating activities. It is composed of several peptides with a molecular weight range of 1-10kD. Extensive studies in animal systems showed that Thymomodulin exhibited no, or very little toxicity even when used at high doses. Studies done in vitro and in vivo demonstrated that Thymomodulin is a biologically active compound which regulates the maturation of human and murine pre T lymphocytes, as well as modulate the functions of apparently mature human and animal B and T lymphocytes. It was observed that Thymomodulin can promote myelopoiesis as demonstrated by an increase of granulocyte-macrophage colonies in agar. Although additional studies to examine its target cell lineage are required, it appears that Thymomodulin exhibits specificity toward T cells. Therefore, enhancement of other cell lineage functions by Thymomodulin may be indirect, and mainly due to its effect on T cells. Of major importance is to note that Thymomodulin is prepared in a manner which allows it to maintain its biological activity when administered orally.

  20. Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test.

    PubMed

    Allen, Andrew P; Kennedy, Paul J; Cryan, John F; Dinan, Timothy G; Clarke, Gerard

    2014-01-01

    Validated biological and psychological markers of acute stress in humans are an important tool in translational research. The Trier Social Stress Test (TSST), involving public interview and mental arithmetic performance, is among the most popular methods of inducing acute stress in experimental settings, and reliably increases hypothalamic-pituitary-adrenal axis activation. However, although much research has focused on HPA axis activity, the TSST also affects the sympathetic-adrenal-medullary system, the immune system, cardiovascular outputs, gastric function and cognition. We critically assess the utility of different biological and psychological markers, with guidance for future research, and discuss factors which can moderate TSST effects. We outline the effects of the TSST in stress-related disorders, and if these responses can be abrogated by pharmacological and psychological treatments. Modified TSST protocols are discussed, and the TSST is compared to alternative methods of inducing acute stress. Our analysis suggests that multiple readouts are necessary to derive maximum information; this strategy will enhance our understanding of the psychobiology of stress and provide the means to assess novel therapeutic agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-09-15

    Polymeric hydrogels have great potential in soft biological micro-actuator applications. However, inappropriate micro-architecture, non-anisotropy, weak biomechanics, and inferior response behaviors limit their development. In this study, we designed and manufactured novel polyacrylonitrile (PAN)-based hydrogel yarns composed with uniaxially aligned nanofibers. The nanofibrous hydrogel yarns possessed anisotropic architecture and robust mechanical properties with flexibility, and could be assembled into defined scaffold structures by subsequent processes. The as-prepared hydrogel yarns showed excellent pH response behaviors, with around 100% maximum length and 900% maximum diameter changes, and the pH response was completed within several seconds. Moreover, the hydrogel yarns displayed unique cell-responsive abilities to promote the cell adhesion, proliferation, and smooth muscle differentiation of human adipose derived mesenchymal stem cells (HADMSC). Chicken cardiomyocytes were further seeded onto our nanofibrous hydrogel yarns to engineer living cell-based microactuators. Our results demonstrated that the uniaxially aligned nanofibrous networks within the hydrogel yarns were the key characteristics leading to the anisotropic organization of cardiac cells, and improved sarcomere organization, mimicking the cardiomyocyte bundles in the native myocardium. The construct is capable of sustaining spontaneous cardiomyocyte pumping behaviors for 7days. Our PAN-based nanofibrous hydrogel yarns are attractive for creating linear microactuators with pH-response capacity and biological microactuators with cardiomyocyte-drivability. A mechanically robust polyacrylonitrile-based nanofibrous hydrogel yarn is fabricated by using a modified electrospinning setup in combination with chemical modification processes. The as-prepared hydrogel yarn possesses a uniaxially aligned nanofiber microarchitecture and supports a rapid, pH-dependent expansion/contraction response within a few seconds. Embryonic cardiomyocytes-seeded hydrogel yarn improves the sarcomere organization and mimics the cardiomyocyte bundles in the native myocardium, which sustains spontaneous cardiomyocyte pumping behaviors. The nanofibrous hydrogel yarn has several advantages over traditional bulk hydrogel scaffolds in terms of robust biomechanics, anisotropic aligned architecture, and superior pH response behaviors. Our nanofibrous hydrogel yarn holds the potential to be developed into novel linear and biological microactuators for various biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: Challenges, opportunities, and research needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess-Herbert, Sarah L., E-mail: sarah.burgess@alum.mit.edu; Euling, Susan Y.

    A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionarymore » biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended.« less

  3. Highly selective electrode for potentiometric analysis of methadone in biological fluids and pharmaceutical formulations.

    PubMed

    Ardeshiri, Moslem; Jalali, Fahimeh

    2016-06-01

    In order to develop a fast and simple procedure for methadone analysis in biological fluids, a graphite paste electrode (GPE) was modified with the ion-pair of methadone-phosphotungstic acid, and multiwalled carbon nanotubes (MWCNTs). Optimized composition of the electrode with respect to graphite powder:paraffin oil:MWCNTs:ion pair, was 58:30:8:4 (w/w%). The electrode showed a near-Nernstian slope of 58.9 ± 0.3 mV/decade for methadone in a wide linear range of 1.0 × 10(-8)-4.6 × 10(-3)M, with a detection limit of 1.0 × 10(-8)M. The electrode response was independent of pH in the range of 5-11, with a fast response time (~4s) at 25 °C. The sensor showed high selectivity and was successfully applied to the determination of sub-micromolar concentrations of methadone in human blood serum and urine samples, with recoveries in the range of 95-99.8%. The average recovery of methadone from tablets (5 mg/tablet) by using the proposed method was 98%. The life time of the modified electrode was more than 5 months, due to the characteristic of GPE which can be cut off and fresh electrode surface be available. A titration procedure was performed for methadone analysis by using phosphotungstic acid, as titrating agent, which showed an accurate end point and 1:1 stoichiometry for the ion-pair formed (methadone:phosphotungstic acid). The simple and rapid procedure as well as excellent detection limit and selectivity are some of the advantages of the proposed sensor for methadone. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping

    2015-12-01

    We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d

  5. Plasma membrane vesicles decorated with glycolipid-anchored antigens and adjuvants via protein transfer as an antigen delivery platform for inhibition of tumor growth.

    PubMed

    Patel, Jaina M; Vartabedian, Vincent F; Bozeman, Erica N; Caoyonan, Brianne E; Srivatsan, Sanjay; Pack, Christopher D; Dey, Paulami; D'Souza, Martin J; Yang, Lily; Selvaraj, Periasamy

    2016-01-01

    Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Analysis of the Threat of Genetically Modified Organisms for Biological Warfare

    DTIC Science & Technology

    2011-05-01

    biological weapons of unimagined which pose an existential threat. Some believe that, inevitably, these advances will lead to a catastrophic...d. Personnel and Costs Assertions to the effect that a high school graduate can develop an effective biological weapon are arguably... biologic - weapons development.35“   Is this really true and, if so, how far is the barrier to biological weapons development being lowered? Being able to

  8. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  9. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    PubMed Central

    Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.

    2012-01-01

    Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157

  10. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  11. Thematic Minireview Series: The State of the Cytoskeleton in 2015.

    PubMed

    Fischer, Robert S; Fowler, Velia M

    2015-07-10

    The study of cytoskeletal polymers has been an active area of research for more than 70 years. However, despite decades of pioneering work by some of the brightest scientists in biochemistry, cell biology, and physiology, many central questions regarding the polymers themselves are only now starting to be answered. For example, although it has long been appreciated that the actin cytoskeleton provides contractility and couples biochemical responses with mechanical stresses in cells, only recently have we begun to understand how the actin polymer itself responds to mechanical loads. Likewise, although it has long been appreciated that the microtubule cytoskeleton can be post-translationally modified, only recently have the enzymes responsible for these modifications been characterized, so that we can now begin to understand how these modifications alter the polymerization and regulation of microtubule structures. Even the septins in eukaryotes and the cytoskeletal polymers of prokaryotes have yielded new insights due to recent advances in microscopy techniques. In this thematic series of minireviews, these topics are covered by some of the very same scientists who generated these recent insights, thereby providing us with an overview of the State of the Cytoskeleton in 2015. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Nanodosimetry-Based Plan Optimization for Particle Therapy

    PubMed Central

    Schulte, Reinhard W.

    2015-01-01

    Treatment planning for particle therapy is currently an active field of research due uncertainty in how to modify physical dose in order to create a uniform biological dose response in the target. A novel treatment plan optimization strategy based on measurable nanodosimetric quantities rather than biophysical models is proposed in this work. Simplified proton and carbon treatment plans were simulated in a water phantom to investigate the optimization feasibility. Track structures of the mixed radiation field produced at different depths in the target volume were simulated with Geant4-DNA and nanodosimetric descriptors were calculated. The fluences of the treatment field pencil beams were optimized in order to create a mixed field with equal nanodosimetric descriptors at each of the multiple positions in spread-out particle Bragg peaks. For both proton and carbon ion plans, a uniform spatial distribution of nanodosimetric descriptors could be obtained by optimizing opposing-field but not single-field plans. The results obtained indicate that uniform nanodosimetrically weighted plans, which may also be radiobiologically uniform, can be obtained with this approach. Future investigations need to demonstrate that this approach is also feasible for more complicated beam arrangements and that it leads to biologically uniform response in tumor cells and tissues. PMID:26167202

  13. Characterization of the interactions between protein and carbon black.

    PubMed

    Chen, Tzu-Tao; Chuang, Kai-Jen; Chiang, Ling-Ling; Chen, Chun-Chao; Yeh, Chi-Tai; Wang, Liang-Shun; Gregory, Clive; Jones, Tim; BéruBé, Kelly; Lee, Chun-Nin; Chuang, Hsiao-Chi; Cheng, Tsun-Jen

    2014-01-15

    A considerable amount of studies have been conducted to investigate the interactions of biological fluids with nanoparticle surfaces, which exhibit a high affinity for proteins and particles. However, the mechanisms underlying these interactions have not been elucidated, particularly as they relate to human health. Using bovine serum albumin (BSA) and mice bronchoalveolar lavage fluid (BALF) as models for protein-particle conjugates, we characterized the physicochemical modifications of carbon blacks (CB) with 23nm or 65nm in diameter after protein treatment. Adsorbed BALF-containing proteins were quantified and identified by pathways, biological analyses and protein classification. Significant modifications of the physicochemistry of CB were induced by the addition of BSA. Enzyme modulators and hydrolase predominately interacted with CB, with protein-to-CB interactions that were associated with the coagulation pathways. Additionally, our results revealed that an acute-phase response could be activated by these proteins. With regard to human health, the present study revealed that the CB can react with proteins (∼55kDa and 70kDa) after inhalation and may modify the functional structures of lung proteins, leading to the activation of acute-inflammatory responses in the lungs. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Does a family history of RA influence the clinical presentation and treatment response in RA?

    PubMed

    Frisell, Thomas; Saevarsdottir, Saedis; Askling, Johan

    2016-06-01

    To assess whether family history of rheumatoid arthritis (RA), among the strongest risk factors for developing RA, also carries information on the clinical presentation and treatment response. The prospective Swedish Rheumatology register was linked to family history of RA, defined as diagnosed RA in any first-degree relative, ascertained through the Swedish Multi-Generation and Patient registers. Clinical presentation was examined among patients with early RA 2000-2011 (symptom onset <12 months before inclusion, N=6869), and response to methotrexate (MTX) monotherapy in the subset starting this treatment (N=4630). Response to tumour necrosis factor inhibitors (TNFi) was examined among all patients with RA starting a TNFi as the first biological disease-modifying antirheumatic drug 2000-2011 (N=9249). Association of family history with clinical characteristics, drug survival, European League Against Rheumatism (EULAR) response and change in disease activity at 3 and 6 months was estimated using linear and generalised logistic regression models. Correlation in relatives' response measures was also assessed. Patients with early RA with family history of RA were more often rheumatoid factor positive, but with no other clinically meaningful differences in their clinical presentation. Family history of RA did not predict response to MTX or TNFi, with the possible exception of no versus good EULAR response to TNFi at 6 months (OR=1.4, 95% CI 1.1 to 1.7). Having a relative who discontinued TNFi within a year increased the odds of doing the same (OR=3.7, 95% CI 1.8 to 7.5), although we found no significant familial correlations in change in disease activity measures. Family history of RA did not modify the clinical presentation of RA or predict response to standard treatment with MTX or TNFi. Treatment response, particularly drug survival, may itself be familial. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    PubMed

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  16. STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection.

    PubMed

    Srinivasa, Bharat T; Restori, Katherine H; Shan, Jichuan; Cyr, Louis; Xing, Li; Lee, Soojin; Ward, Brian J; Fixman, Elizabeth D

    2017-02-01

    Respiratory syncytial virus (RSV)-related hospitalization during infancy is strongly associated with the subsequent development of asthma. Early life RSV infection results in a Th2-biased immune response, which is also typical of asthma. Murine models of neonatal RSV infection have been developed to examine the possible contribution of RSV-driven Th2 responses to the development of airway hyper-responsiveness later in childhood. We have investigated the ability of a cell-penetrating STAT6 inhibitory peptide (STAT6-IP), when delivered selectively during neonatal RSV infection, to modify pathogenesis induced upon secondary RSV reinfection of adults 6 wk later. Neonatal STAT6-IP treatment inhibited the development of airway hyper-responsiveness (AHR) and significantly reduced lung eosinophilia and collagen deposition in adult mice following RSV reinfection. STAT6-IP-treated, RSV-infected neonates had reduced levels of both IL-4 and alternatively activated macrophages (AAMs) in the lungs. Our findings suggest that targeting STAT6 activity at the time of early-life RSV infection may effectively reduce the risk of subsequent asthma development. © Society for Leukocyte Biology.

  17. Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression.

    PubMed

    Souza Queiroz, Julia; Marín Blasco, Ignacio; Gagliano, Humberto; Daviu, Nuria; Gómez Román, Almudena; Belda, Xavier; Carrasco, Javier; Rocha, Michelle C; Palermo Neto, João; Armario, Antonio

    2016-03-01

    Predominantly emotional stressors activate a wide range of brain areas, as revealed by the expression of immediate early genes, such as c-fos. Chlorella vulgaris (CV) is considered a biological response modifier, as demonstrated by its protective activities against infections, tumors and stress. We evaluated the effect of acute pretreatment with CV on the peripheral and central responses to forced swimming stress in adult male rats. Pretreatment with CV produced a significant reduction of stress-related hypothalamic-pituitary-adrenal activation, demonstrated by decreased corticotrophin releasing factor gene expression in the hypothalamic paraventricular nucleus (PVN) and lower ACTH response. Hyperglycemia induced by the stressor was similarly reduced. This attenuated neuroendocrine response to stress occurred in parallel with a diminished c-fos expression in most evaluated areas, including the PVN. The data presented in this study reinforce the usefulness of CV to diminish the impact of stressors, by reducing the HPA response. Although our results suggest a central effect of CV, further studies are necessary to understand the precise mechanisms underpinning this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Antimicrobial 3D Porous Scaffolds Prepared by Additive Manufacturing and Breath Figures.

    PubMed

    Vargas-Alfredo, Nelson; Dorronsoro, Ane; Cortajarena, Aitziber L; Rodríguez-Hernández, Juan

    2017-10-25

    We describe herein a novel strategy for the fabrication of efficient 3D printed antibacterial scaffolds. For this purpose, both the surface topography as well as the chemical composition of 3D scaffolds fabricated by additive manufacturing were modified. The scaffolds were fabricated by fused deposition modeling (FDM) using high-impact polystyrene (HIPS) filaments. The surface of the objects was then topographically modified providing materials with porous surfaces by means of the Breath Figures approach. The strategy involves the immersion of the scaffold in a polymer solution during a precise period of time. This approach permitted the modification of the pore size varying the immersion time as well as the solution concentration. Moreover, by using polymer blend solutions of polystyrene and polystyrene-b-poly(acrylic acid) (PS 23 -b-PAA 18 ) and a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate) (PS 42 -b-PDMAEMAQ 17 ), the scaffolds were simultaneously chemically modified. The surfaces were characterized by scanning electron microscopy and infrared spectroscopy. Finally, the biological response toward bacteria was explored. Porous surfaces prepared using quaternized PDMAEMA as well as those prepared using PAA confer antimicrobial activity to the films, i.e., were able to kill on contact Staphylococcus aureus employed as model bacteria.

  19. Modifiable Risk Factors and Interventions for Childhood Obesity Prevention within the First 1,000 Days.

    PubMed

    Dattilo, Anne M

    2017-01-01

    Worldwide, the prevalence of childhood obesity has increased, amounting to 42 million overweight or obese children, and there is increasing evidence that the origins are within the first 1,000 days: the period of conception through 2 years. Antecedents of early childhood obesity are multifactorial, and associations of varying strength have been documented for genetic/epigenetic, biologic, dietary, environmental, social, and behavioral influences. Modifiable factors in pregnancy and early infancy associated with childhood obesity include maternal overweight/obesity, maternal smoking, gestational weight gain, infant and young child feeding, caregiver responsive feeding practices, as well as sleep duration, and physical activity. Promising obesity prevention interventions include those beginning during the first 1,000 days, using a multicomponent approach, with roots in nutrition education theories or behavior change communication that can continue over time. However, the limited number of completed interventions to date (within pediatric clinics or in home-based or community settings) may not be scalable to the magnitude needed for sustainable obesity prevention. Scale-up interventions that can be maintained for the durations needed, addressing infant and young child feeding and other modifiable risk factors associated with childhood obesity are needed. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  20. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    NASA Astrophysics Data System (ADS)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  1. A multicompartment approach--diatoms, macrophytes, benthic macroinvertebrates and fish--to assess the impact of toxic industrial releases on a small French river.

    PubMed

    Lainé, Manon; Morin, Soizic; Tison-Rosebery, Juliette

    2014-01-01

    The River Luzou flows through a sandy substrate in the South West of France. According to the results of two assessment surveys, the Water Agency appraised that this river may not achieve the good ecological status by 2015 as required by the Water Framework Directive (2000/60/EC). This ecosystem is impacted by industrial effluents (organic matter, metals and aromatic compounds). In order to assess and characterize the impact, this study aimed to combine a set of taxonomic and non-taxonomic metrics for diatoms, macrophytes, macroinvertebrates and fish along the up- to downstream gradient of the river. Diversity metrics, biological indices, biological and ecological traits were determined for the four biological quality elements (BQE). Various quantitative metrics (biomass estimates) were also calculated for diatom communities. The results were compared to physicochemical analysis. Biological measurements were more informative than physicochemical analysis, in the context of the study. Biological responses indicated both the contamination of water and its intensity. Diversity metrics and biological indices strongly decreased with pollution for all BQE but diatoms. Convergent trait selection with pollution was observed among BQE: reproduction, colonization strategies, or trophic regime were clearly modified at impaired sites. Taxon size and relation to the substrate diverged among biological compartments. Multiple anthropogenic pollution calls for alternate assessment methods of rivers' health. Our study exemplifies the fact that, in the case of complex contaminations, biological indicators can be more informative for environmental risk, than a wide screening of contaminants by chemical analysis alone. The combination of diverse biological compartments provided a refined diagnostic about the nature (general mode of action) and intensity of the contamination.

  2. A Multicompartment Approach - Diatoms, Macrophytes, Benthic Macroinvertebrates and Fish - To Assess the Impact of Toxic Industrial Releases on a Small French River

    PubMed Central

    Lainé, Manon; Morin, Soizic; Tison-Rosebery, Juliette

    2014-01-01

    The River Luzou flows through a sandy substrate in the South West of France. According to the results of two assessment surveys, the Water Agency appraised that this river may not achieve the good ecological status by 2015 as required by the Water Framework Directive (2000/60/EC). This ecosystem is impacted by industrial effluents (organic matter, metals and aromatic compounds). In order to assess and characterize the impact, this study aimed to combine a set of taxonomic and non-taxonomic metrics for diatoms, macrophytes, macroinvertebrates and fish along the up- to downstream gradient of the river. Diversity metrics, biological indices, biological and ecological traits were determined for the four biological quality elements (BQE). Various quantitative metrics (biomass estimates) were also calculated for diatom communities. The results were compared to physicochemical analysis. Biological measurements were more informative than physicochemical analysis, in the context of the study. Biological responses indicated both the contamination of water and its intensity. Diversity metrics and biological indices strongly decreased with pollution for all BQE but diatoms. Convergent trait selection with pollution was observed among BQE: reproduction, colonization strategies, or trophic regime were clearly modified at impaired sites. Taxon size and relation to the substrate diverged among biological compartments. Multiple anthropogenic pollution calls for alternate assessment methods of rivers' health. Our study exemplifies the fact that, in the case of complex contaminations, biological indicators can be more informative for environmental risk, than a wide screening of contaminants by chemical analysis alone. The combination of diverse biological compartments provided a refined diagnostic about the nature (general mode of action) and intensity of the contamination. PMID:25019954

  3. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones.

    PubMed

    Jimenez-Aleman, Guillermo H; Machado, Ricardo A R; Görls, Helmar; Baldwin, Ian T; Boland, Wilhelm

    2015-06-07

    Jasmonates are phytohormones involved in a wide range of plant processes, including growth, development, senescence, and defense. Jasmonoyl-L-isoleucine (JA-Ile, 2), an amino acid conjugate of jasmonic acid (JA, 1), has been identified as a bioactive endogenous jasmonate. However, JA-Ile (2) analogues trigger different responses in the plant. ω-Hydroxylation of the pentenyl side chain leads to the inactive 12-OH-JA-Ile (3) acting as a “stop” signal. On the other hand, a lactone derivative of 12-OH-JA (5) (jasmine ketolactone, JKL) occurs in nature, although with no known biological function. Inspired by the chemical structure of JKL (6) and in order to further explore the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation to a similar extent as methyl jasmonate does in Nicotiana attenuata leaves. Surprisingly, the highest nicotine contents were found in plants treated with the JA-Ile-lactone (4b), which has (3S,7S) configuration at the cyclopentanone not known from natural jasmonates. Macrolactone (4a) is a valuable standard to explore for its occurrence in nature.

  4. Investigating Novice and Expert Conceptions of Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Potter, Lisa M.; Bissonnette, Sarah A.; Knight, Jonathan D.; Tanner, Kimberly D.

    2017-01-01

    The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students' conceptions of…

  5. Contradictory results in interferon research

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1984-01-01

    Several reports on immunologically related interferon research, both in the areas of basic science and clinical research, are briefly reviewed, and it is noted that in many cases the results obtained are contradictory. It is argued, however, that the contradictory results are not surprising since interferon is a biological response modifier and has been known to produce opposite results even when the same interferon prepartion is used. It is emphasized that dosage, timing, route, and other experimental conditions are essential factors in planning immunological studies with interferon. Careful planning of future experiments with interferon should be required to prevent the possible generation of effects that are opposite to those expected.

  6. Identification and Biological Evaluation of Secondary Metabolites from Marine Derived Fungi-Aspergillus sp. SCSIOW3, Cultivated in the Presence of Epigenetic Modifying Agents.

    PubMed

    Li, Xiaofan; Xia, Zhenyao; Tang, Jianqiang; Wu, Jiahui; Tong, Jing; Li, Mengjie; Ju, Jianhua; Chen, Huirong; Wang, Liyan

    2017-08-04

    Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW3, resulting in significant changes of the secondary metabolites. One new diphenylether- O -glycoside (diorcinol 3- O -α-D-ribofuranoside), along with seven known compounds, were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). Compounds 2 and 4 exhibited significant biomembrane protective effect of erythrocytes. 2 also showed algicidal activity against Chattonella marina , a bloom forming alga responsible for large scale fish deaths.

  7. Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study.

    PubMed

    Paz, María Dolores; Álava, J Iñaki; Goikoetxea, Leire; Chiussi, Stefano; Díaz-Güemes, Idoia; Usón, Jesus; Sánchez, Francisco; León, Betty

    2011-01-01

    To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants. A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively. Human fetal osteoblastic cell culture and a sheep tibia model were used to assess the cell response and the osseogeneration capability of as-machined, laser macrostructured and laser macrostructured and oxidized surfaces. In vitro: Laser macrostructuration alone did not promote cell response. Cellular proliferation was enhanced by the additional UV laser oxidation. In vivo: A greater significant percentage of bone-implant contact was obtained for both laser treated surfaces compared to machine-turned control samples, three months after implantation, in spite of the low cellular response for macrostructured samples. The use of sheep model for six months appears to be less adequate for a comparison because of the high level of bone integration in all samples. In spite of the often reported positive effect of titanium oxidation on the triggering of faster osseointegration, in this experiment the additional UV laser oxidation did not lead to a significant in vivo improvement. Laser macrostructuration of titanium alloy surfaces appears to promote bone apposition and may therefore constitute a promising surface modification strategy. In animal models, the natural process of titanium surface oxidation, because of physiologic fluids, alters properties observed in vitro with cells.

  8. Do cities simulate climate change? A comparison of herbivore response to urban and global warming.

    PubMed

    Youngsteadt, Elsa; Dale, Adam G; Terando, Adam J; Dunn, Robert R; Frank, Steven D

    2015-01-01

    Cities experience elevated temperature, CO2 , and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  9. The Role of Epigenomics in Aquatic Toxicology.

    PubMed

    Brander, Susanne M; Biales, Adam D; Connon, Richard E

    2017-10-01

    Over the past decade, the field of molecular biology has rapidly incorporated epigenetic studies to evaluate organism-environment interactions that can result in chronic effects. Such responses arise from early life stage stress, the utilization of genetic information over an individual's life time, and transgenerational inheritance. Knowledge of epigenetic mechanisms provides the potential for a comprehensive evaluation of multigenerational and heritable effects from environmental stressors, such as contaminants. Focused studies have provided a greater understanding of how many responses to environmental stressors are driven by epigenetic modifiers. We discuss the promise of epigenetics and suggest future research directions within the field of aquatic toxicology, with a particular focus on the potential for identifying key heritable marks with consequential impacts at the organism and population levels. Environ Toxicol Chem 2017;36:2565-2573. © 2017 SETAC. © 2017 SETAC.

  10. Pharmacogenomics in pediatric rheumatology.

    PubMed

    Becker, Mara L

    2012-09-01

    Despite major advancements in therapeutics, variability in drug response remains a challenge in both adults and children diagnosed with rheumatic disease. The genetic contribution to interindividual variability has emerged as a promising avenue of exploration; however, challenges remain in making this knowledge relevant in the clinical realm. New genetic associations in patients with rheumatic disease have been reported for disease modifying antirheumatic drugs, antimetabolites and biologic drugs. However, many of these findings are in need of replication, and few have taken into account the concept of ontogeny, specific to pediatrics. In the current era in which we practice, genetic variation will undoubtedly contribute to variability in therapeutic response and may be a factor that will ultimately impact individualized care. However, preliminary studies have shown that there are many hurdles that need to be overcome as we explore pharmacogenomic associations specifically in the field of pediatric rheumatology.

  11. Report of an Expert Panel on the reanalysis by of a 90-day study conducted by Monsanto in support of the safety of a genetically modified corn variety (MON 863).

    PubMed

    Doull, J; Gaylor, D; Greim, H A; Lovell, D P; Lynch, B; Munro, I C

    2007-11-01

    MON 863, a genetically engineered corn variety that contains the gene for modified Bacillus thuringiensis Cry3Bb1 protein to protect against corn rootworm, was tested in a 90-day toxicity study as part of the process to gain regulatory approval. This study was reanalyzed by Séralini et al. who contended that the study showed possible hepatorenal effects of MON 863. An Expert Panel was convened to assess the original study results as analyzed by the Monsanto Company and the reanalysis conducted by Séralini et al. The Expert Panel concludes that the Séralini et al. reanalysis provided no evidence to indicate that MON 863 was associated with adverse effects in the 90-day rat study. In each case, statistical findings reported by both Monsanto and Séralini et al. were considered to be unrelated to treatment or of no biological or clinical importance because they failed to demonstrate a dose-response relationship, reproducibility over time, association with other relevant changes (e.g., histopathology), occurrence in both sexes, difference outside the normal range of variation, or biological plausibility with respect to cause-and-effect. The Séralini et al. reanalysis does not advance any new scientific data to indicate that MON 863 caused adverse effects in the 90-day rat study.

  12. A distributed national network for label-free rapid identification of emerging pathogens

    NASA Astrophysics Data System (ADS)

    Robinson, J. Paul; Rajwa, Bartek P.; Dundar, M. Murat; Bae, Euiwon; Patsekin, Valery; Hirleman, E. Daniel; Roumani, Ali; Bhunia, Arun K.; Dietz, J. Eric; Davisson, V. Jo; Thomas, John G.

    2011-05-01

    Typical bioterrorism prevention scenarios assume well-known and well-characterized pathogens like anthrax or tularemia, which are serious public concerns if released into food and/or water supplies or distributed using other vectors. Common governmental contingencies include rapid response to these biological threats with predefined treatments and management operations. However, bioterrorist attacks may follow a far more sophisticated route. With the widely known and immense progress in genetics and the availability of molecular biology tools worldwide, the potential for malicious modification of pathogenic genomes is very high. Common non-pathogenic microorganisms could be transformed into dangerous, debilitating pathogens. Known pathogens could also be modified to avoid detection, because organisms are traditionally identified on the basis of their known physiological or genetic properties. In the absence of defined primers a laboratory using genetic biodetection methods such as PCR might be unable to quickly identify a modified microorganism. Our concept includes developing a nationwide database of signatures based on biophysical (such as elastic light scattering (ELS) properties and/or Raman spectra) rather than genetic properties of bacteria. When paired with a machine-learning system for emerging pathogen detection these data become an effective detection system. The approach emphasizes ease of implementation using a standardized collection of phenotypic information and extraction of biophysical features of pathogens. Owing to the label-free nature of the detection modalities ELS is significantly less costly than any genotypic or mass spectrometry approach.

  13. Predictive factors for structural remission using abatacept: results from the ABROAD study.

    PubMed

    Murakami, Kosaku; Sekiguchi, Masahiro; Hirata, Shintaro; Fujii, Takao; Matsui, Kiyoshi; Morita, Satoshi; Ohmura, Koichiro; Kawahito, Yutaka; Nishimoto, Norihiro; Mimori, Tsuneyo; Sano, Hajime

    2018-05-29

    To investigate the effect of abatacept (ABA) on preventing joint destruction in biological disease-modifying anti-rheumatic drug (bDMARD)-naïve rheumatoid arthritis (RA) patients in real-world clinical practice. RA patients were collected from the ABROAD (ABatacept Research Outcomes as a First-line Biological Agent in the Real WorlD) study cohort. They had moderate or high disease activity and were treated with ABA as a first-line bDMARD. Radiographic change between baseline and 1 year after ABA treatment was assessed with the van der Heijde's modified total Sharp score (mTSS). Predictive factors for structural remission (St-REM), defined as ΔmTSS ≤0.5/year, were determined. Among 118 patients, 81 (67.5%) achieved St-REM. Disease duration <3 years (odds ratio (OR) = 3.152, p = 0.007) and slower radiographic progression (shown as "baseline mTSS/year <3", OR = 3.727, p = 0.004) were independently significant baseline predictive factors for St-REM irrespective of age and sex. St-REM prevalence increased significantly if clinical remission based on the Simplified Disease Activity Index was achieved at least once until 24 weeks after ABA treatment. Shorter disease duration, smaller radiographic progression at baseline, and rapid clinical response were predictive factors for sustained St-REM after ABA therapy in bDMARD-naïve RA patients.

  14. [Uveitis associated with juvenile idiopathic arthritis : Optimization of immunomodulatory therapy].

    PubMed

    Heiligenhaus, A; Tappeiner, C; Walscheid, K; Heinz, C

    2016-05-01

    Uveitis associated with juvenile idiopathic arthritis (JIA-associated uveitis) is a vision-threatening disorder with a high complication rate. Besides early diagnosis within screening programs an adequate therapy is essential for improvement of the long-term prognosis. Corticosteroid therapy is often insufficient. In addition to conventional immunosuppression, immunomodulatory drugs, so-called biologicals, are novel highly effective treatment modalities. A systematic search of the literature was carried out for biologicals currently used in the treatment of JIA-associated uveitis. Review of current publications, summary of treatment guidelines and discussion of treatment options for therapy refractive patients. In accordance with the current recommendations tumor necrosis factor (TNF) inhibitors are administered if uveitis inactivity cannot be achieved with topical corticosteroids and in the next stage with immunosuppressants (methotrexate preferred). According to the currently available data adalimumab is then preferred. When the effectiveness of TNF inhibitors ceases during long-term administration and/or recurrences, other biological response modifiers are attractive treatment options (e. g. lymphocyte inhibitors or specific receptor antagonists). The TNF inhibitors are of major importance for the treatment of JIA-associated uveitis. Prospective studies and registries would be desirable in order to be able to compare the value of TNF inhibitors and other biologicals and for optimization of treatment recommendations.

  15. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    PubMed

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  16. Response of human renal tubular cells to cyclosporine and sirolimus: A toxicogenomic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallet, Nicolas; Rabant, Marion; Xu-Dubois, Yi-Chun

    The molecular mechanisms involved in the potentially nephrotoxic response of tubular cells to immunosuppressive drugs remain poorly understood. Transcriptional profiles of human proximal tubular cells exposed to cyclosporine A (CsA), sirolimus (SRL) or their combination, were established using oligonucleotide microarrays. Hierarchical clustering of genes implicated in fibrotic processes showed a clear distinction between expression profiles with CsA and CsA + SRL treatments on the one hand and SRL treatment on the other. Functional analysis found that CsA and CsA + SRL treatments preferentially alter biological processes located at the cell membrane, such as ion transport or signal transduction, whereas SRLmore » modifies biological processes within the nucleus and related to transcriptional activity. Genome wide expression analysis suggested that CsA may induce an endoplasmic reticulum (ER) stress in tubular cells in vitro. Moreover we found that CsA exposure in vivo is associated with the upregulation of the ER stress marker BIP in kidney transplant biopsies. In conclusion, this toxicogenomic study highlights the molecular interaction networks that may contribute to the tubular response to CsA and SRL. These results may also offer a new working hypothesis for future research in the field of CsA nephrotoxicity. Further studies are needed to evaluate if ER stress detection in tubular cells in human biopsies can predict CsA nephrotoxicity.« less

  17. The rise of biosimilars: potential benefits and drawbacks in rheumatoid arthritis.

    PubMed

    Yoo, Dae Hyun

    2014-08-01

    Although biologic agents are effective in the treatment of rheumatoid arthritis, the high price of drugs and restricted health care budgets have restricted easy access to biologics. Eventually, the use of biologic disease-modifying antirheumatic drugs might be inversely associated with disease activity in countries with low gross domestic product. The EMA approved an infliximab biosimilar for the first time in September 2013. The first approval of a biosimilar monoclonal antibody by a major regulatory authority provided a global standard for subsequent biosimilars and for biopharmaceutical companies developing biosimilars. Biosimilars with a highly similar quality and efficacy profile at an acceptable lower cost would significantly increase affordability of biologic disease-modifying antirheumatic drugs in the treatment of rheumatoid arthritis. Here, we will review the current status of first biosimilar antibody agent and the potential discussion points raised against biosimilars. In addition, the importance of awareness on biosimilars for stakeholders is discussed.

  18. Connecting qualitative observation and quantitative measurement for enhancing quantitative literacy in plant anatomy course

    NASA Astrophysics Data System (ADS)

    Nuraeni, E.; Rahmat, A.

    2018-05-01

    Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.

  19. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  20. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

    PubMed

    Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich

    2014-01-28

    Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.

  1. Simultaneous voltammetry detection of dopamine and uric acid in human serum and urine with a poly(procaterol hydrochloride) modified glassy carbon electrode.

    PubMed

    Kong, Dexian; Zhuang, Qizhao; Han, Yejian; Xu, Lanping; Wang, Zeming; Jiang, Lili; Su, Jinwei; Lu, Chun-Hua; Chi, Yuwu

    2018-08-01

    In the present study, procaterol hydrochloride (ProH) was successfully electropolymerized onto a glass carbon electrode (GCE) with simply cyclic voltammetry scans to construct a poly(procaterol hydrochloride) (p-ProH) membrane modified electrode. Compared with the bare GCE, much higher oxidation peak current responses and better peak potentials separation could be obtained for the simultaneous oxidation of dopamine (DA) and uric acid (UA), owning to the excellent electrocatalytic ability of the p-ProH membrane. And it's based on that a square wave voltammetry (SWV) method was developed to selective and simultaneous measurement of DA and UA. Under the optimum conditions, the linear dependence of oxidation peak current on analyte concentrations were found to be 1.0-100 μmol/L and 2-100 μmol/L, giving detection limits of 0.3 μmol/L and 0.5 μmol/L for DA and UA, separately. The as prepared modified electrode shows simplicity in construction with the merits of good reproducibility, high stability, passable selectivity and nice sensitivity. Finally, the proposed p-ProH membrane modified electrode was successfully devoted to the detection of DA and UA in biological fluids such as human serum and urine with acceptable results. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84

    PubMed Central

    Yu, Jun Myoung; Wang, Dongping; Pierson, Leland S.; Pierson, Elizabeth A.

    2018-01-01

    Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations. PMID:29422787

  3. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish.

    PubMed

    Carroll, Kelli J; North, Trista E

    2014-08-01

    Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor, and effector cell emergence, expansion, and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell types can be identified and characterized. Further, myriad transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of blood stem and progenitor cell biology during development, in response to infection or injury, or in the setting of hematologic malignancy continues to deepen, zebrafish will remain essential for exploring the spatiotemporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  4. Oceans of Opportunity: Exploring Vertebrate Hematopoiesis in Zebrafish

    PubMed Central

    Carroll, Kelli J.; North, Trista E.

    2015-01-01

    Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell (HSPC) biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor and effector cell emergence, expansion and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell-types can be identified and characterized. Further, a myriad of transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of HSPC biology during development, in response to infection or injury, or in the setting of hematological malignancy, continues to deepen, zebrafish will remain essential for exploring the spatio-temporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease. PMID:24816275

  5. Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids.

    PubMed

    Goyal, Rajendra N; Bishnoi, Sunita

    2009-08-15

    A sensitive, rapid and reliable electrochemical method based on voltammetry at single wall carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of prednisolone and prednisone in human body fluids and pharmaceutical preparations. The electrochemical response of both the drugs was evaluated by osteryoung square wave voltammetry (OSWV) in phosphate buffer medium of pH 7.2. The modified electrode exhibited good electrocatalytic properties towards prednisone and prednisolone reduction with a peak potential of approximately -1230 and approximately -1332 mV respectively. The concentration versus peak current plots were linear for both the analytes in the range 0.01-100 microM and the detection limit (3 sigma/slope) observed for prednisone and prednisolone were 0.45 x 10(-8), 0.90 x 10(-8)M, respectively. The results of the quantitative estimation of prednisone and prednisolone in biological fluids were also compared with HPLC and the results were in good agreement.

  6. BioPhotonics workstation: A versatile setup for simultaneous optical manipulation, heat stress, and intracellular pH measurements of a live yeast cell

    NASA Astrophysics Data System (ADS)

    Aabo, Thomas; Banás, Andrew Raphael; Glückstad, Jesper; Siegumfeldt, Henrik; Arneborg, Nils

    2011-08-01

    In this study we have modified the BioPhotonics workstation (BWS), which allows for using long working distance objective for optical trapping, to include traditional epi-fluorescence microscopy, using the trapping objectives. We have also added temperature regulation of sample stage, allowing for fast temperature variations while trapping. Using this modified BWS setup, we investigated the internal pH (pHi) response and membrane integrity of an optically trapped Saccharomyces cerevisiae cell at 5 mW subject to increasing temperatures. The pHi of the cell is obtained from the emission of 5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester, at 435 and 485 nm wavelengths, while the permeability is indicated by the fluorescence of propidium iodide. We present images mapping the pHi and permeability of the cell at different temperatures and with enough spatial resolution to localize these attributes within the cell. The combined capability of optical trapping, fluorescence microscopy and temperature regulation offers a versatile tool for biological research.

  7. Electrochemical determination of inorganic mercury and arsenic--A review.

    PubMed

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 78 FR 45231 - Medicare and Medicaid Programs; Initial Approval of Center for Improvement in Healthcare Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ....23(c)(1), CIHQ modified its standards to address biologicals. To meet the requirements at Sec. 482.23... sets, and protocols for orders related to the preparation and administration of drugs and biologicals... to limit the removal of drugs and biologicals from the pharmacy or storage area only by personnel...

  9. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer.

    PubMed

    Wang, Lin; Liu, Li; Dong, Bingyang; Zhao, Hanying; Zhang, Mingming; Chen, Wenjuan; Hong, Yanhang

    2017-05-01

    A thermoresponsive polymer-protein biodynamer was prepared via the bioconjugation of an aliphatic aldehyde-functionalized copolymer to hydrazine-modified bovine serum albumin (BSA) through reversible pyridylhydrazone linkages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) results indicated that the pyridylhydrazone linkages cleaved in an intracellular-mimicking acidic milieu, thus leading to the release of BSA. The dynamic character of the protein biodynamer was demonstrated by exchange reactions with aldehyde-containing molecules. The biodynamer self-assembled into spherical micelles at a temperature above its lower critical solution temperature (LCST). Subsequently, BSA molecules within the hydrophilic coronae of the micelles were readily cross-linked via reaction with cystamine at 45°C, and multi-stimuli-responsive nanoparticles were generated. The biohybrid nanoparticles reversibly swelled and shrank as the cores of the nanoparticles were solvated below the LCST and desolvated above the LCST. The accessible reversibility of the pyridylhydrazone bonds imparts pH-responsive and dynamic characteristics to the nanoparticles. The nanoparticles displayed glutathione (GSH) responsiveness, and the synergistic effects of pH and GSH resulted in complete disintegration of the nanoparticles under the intracellular-mimicking acidic and reductive conditions. The nanoparticles were also enzyme-responsive and disintegrated rapidly in the presence of protease. In vitro cytotoxicity and cell uptake assays demonstrated that the nanoparticles were highly biocompatible and effectively internalized by HepG2 cells, which make them interesting candidates as vehicles for drug delivery application and biomimetic platforms to investigate the biological process in nature. In this research, we report the synthesis of a temperature and pH dual-responsive polymer-protein biodynamer through reversible pyridylhydrazone formation. The prepared biodynamer can offer a potential platform for intracellular protein delivery. The multi-stimuli-responsive biohybrid nanoparticles containing disulfide functionalities are constructed by cross-linking albumin coronae of the biodynamer micelles. With the combination of a thermoresponsive polymer, protein and reversible covalent bonds, the biohybrid nanoparticles are endowed with highly biocompatible, environmentally responsive and adaptive features. These nanoparticles present the ability to undergo changes in their constitution, hydrodynamic size and nanostructure in response to physical, chemical and biological stimuli, which make them interesting candidates as vehicles for drug delivery application and a biomimetic platform to investigate the biological process in nature. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Human nicotine conditioning requires explicit contingency knowledge: is addictive behaviour cognitively mediated?

    PubMed

    Hogarth, Lee; Duka, Theodora

    2006-03-01

    Two seemingly contrary theories describe the learning mechanisms that mediate human addictive behaviour. According to the classical incentive theories of addiction, addictive behaviour is motivated by a Pavlovian conditioned appetitive emotional response elicited by drug-paired stimuli. Expectancy theory, on the other hand, argues that addictive behaviour is mediated by an expectancy of the drug imparted by cognitive knowledge of the Pavlovian (predictive) contingency between stimuli (S+) and the drug and of the instrumental (causal) contingency between instrumental behaviour and the drug. The present paper reviewed human-nicotine-conditioning studies to assess the role of appetitive emotional conditioning and explicit contingency knowledge in mediating addictive behaviour. The studies reviewed here provided evidence for both the emotional conditioning and the expectancy accounts. The first source of evidence is that nicotine-paired S+ elicit an appetitive emotional conditioned response (CR), albeit only in participants who expect nicotine. Furthermore, the magnitude of this emotional state is modulated by nicotine deprivation/satiation. However, the causal status of the emotional response in driving other forms of conditioned behaviour remains undemonstrated. The second source of evidence is that other nicotine CRs, including physiological responses, self-administration, attentional bias and subjective craving, are also dependent on participants possessing explicit knowledge of the Pavlovian contingencies arranged in the experiment. In addition, several of the nicotine CRs can be brought about or modified by instructed contingency knowledge, demonstrating the causal status of this knowledge. Collectively, these data suggest that human nicotine conditioned effects are mediated by an explicit expectancy of the drug coupled with an appetitive emotional response that reflects the positive biological value of the drug. The implication of this conclusion is that treatments designed to modify the expected value of the drug may prove effective.

  11. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications.

    PubMed

    Hartman, Zachary C; Appledorn, Daniel M; Amalfitano, Andrea

    2008-03-01

    Extensively characterized, modified, and employed for a variety of purposes, adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility (i.e., Ad-based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad-based vaccines are regarded as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane-bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray-based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well as highlight areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications.

  12. Adenovirus vector induced Innate Immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications

    PubMed Central

    Hartman, Zachary C.; Appledorn, Daniel M.; Amalfitano, Andrea

    2013-01-01

    Extensively characterized, modified, and employed for a variety of purposes, Adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility, (i.e.: Ad based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad based vaccines are highly acknowledged as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well point areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications. PMID:18036698

  13. Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified D-phenylalanine residues.

    PubMed

    van der Knaap, Matthijs; Engels, Eefje; Busscher, Henk J; Otero, José M; Llamas-Saiz, Antonio L; van Raaij, Mark J; Mars-Groenendijk, Roos H; Noort, Daan; van der Marel, Gijsbert A; Overkleeft, Herman S; Overhand, Mark

    2009-09-01

    The synthesis of new analogues of the cationic antimicrobial peptide gramicidin S, having a modified D-phenylalanine residue, their antibacterial properties against several gram positive and negative strains, as well as their hemolytic activity is reported.

  14. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    PubMed Central

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  15. Selectivity and Sensitivity of Ultrathin Monolayer Electrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Quan

    The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the ultramicroelectrodes (UME) is investigated, demonstrating high permselectivity and high sensitivity of the monolayer modified UMEs. Because of the more effective mass transport to the UMEs, effects of electrolyte on the monolayer response can be characterized facilely. Amperometric pH sensing on the thioctic acid UMEs using a redox mediator is discussed. Finally, the thioctic acid monolayer microelectrode is applied to investigate direct electrochemistry of a redox protein, cytochrome c. A sketch for developing a biosensor via mediation effects using the monolayer assembly is proposed.

  16. Development of threshold values for a seagrass epiphyte ...

    EPA Pesticide Factsheets

    Epiphytes on seagrasses have been studied for more than 50 years, and proposed as an indicator of anthropogenic nutrient enrichment for over 30 years. Epiphytes have been correlated with seagrass declines, causally related to nutrient additions in both field and mesocosm experiments, and have quantifiable impacts on light available to host plants. An extensive review of seagrass epiphyte literature was conducted to determine whether seagrass epiphyte metrics can be used as a biological indicator for nutrient impacts. While a wide variety of epiphyte metrics have been used by authors, epiphyte biomass as biomass per unit seagrass biomass may be the most effective epiphyte indicator. Regression analyses of epiphyte versus seagrass response metrics were used to estimate values representing potential thresholds for environmental concern. Median epiphyte loads associated with 25 and 50% reduction in seagrass biomass, density and productivity are proposed as potential thresholds. Location-specific modifying factors (grazing pressure, seagrass species) that cause variation in response patterns are the greatest challenge to regional scale applicability of threshold values. An extensive review of seagrass epiphyte literature was conducted to determine whether, and under what conditions, seagrass epiphyte metrics could be used as a potential indicator for nutrient impacts in estuarine ecosystems. Location-specific modifying factors (grazing pressure, seagrass speci

  17. Designing allostery-inspired response in mechanical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less

  18. Designing allostery-inspired response in mechanical networks

    DOE PAGES

    Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; ...

    2017-02-21

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less

  19. Designing allostery-inspired response in mechanical networks

    PubMed Central

    Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.

    2017-01-01

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks. PMID:28223534

  20. Designing allostery-inspired response in mechanical networks.

    PubMed

    Rocks, Jason W; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P; Liu, Andrea J; Nagel, Sidney R

    2017-03-07

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.

  1. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology.

    PubMed

    Hocek, Michal

    2014-11-07

    The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.

  2. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization.

    PubMed

    Lin, Yi-Li; Tsai, Chia-Cheng; Zheng, Nai-Yun

    2018-09-01

    In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Investigating Novice and Expert Conceptions of Genetically Modified Organisms.

    PubMed

    Potter, Lisa M; Bissonnette, Sarah A; Knight, Jonathan D; Tanner, Kimberly D

    2017-01-01

    The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students' conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non-biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales. © 2017 L. M. Potter et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System.

    PubMed

    Hauser, Kurt F; Knapp, Pamela E

    2017-01-01

    The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.

  5. Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells.

    PubMed

    Schamel, Martha; Bernhardt, Anne; Quade, Mandy; Würkner, Claudia; Gbureck, Uwe; Moseke, Claus; Gelinsky, Michael; Lode, Anja

    2017-04-01

    The application of biologically active metal ions to stimulate cellular reactions is a promising strategy to accelerate bone defect healing. Brushite-forming calcium phosphate cements were modified with low doses of Cu 2+ , Co 2+ and Cr 3+ . The modified cements released the metal ions in vitro in concentrations which were shown to be non-toxic for cells. The release kinetics correlated with the solubility of the respective metal phosphates: 17-45 wt.-% of Co 2+ and Cu 2+ , but <1 wt.-% of Cr 3+ were released within 28days. Moreover, metal ion doping led to alterations in the exchange of calcium and phosphate ions with cell culture medium. In case of cements modified with 50mmol Cr 3+ /mol β-tricalcium phosphate (β-TCP), XRD and SEM analyses revealed a significant amount of monetite and a changed morphology of the cement matrix. Cell culture experiments with human mesenchymal stromal cells indicated that the observed cell response is not only influenced by the released metal ions but also by changed cement properties. A positive effect of modifications with 50mmol Cr 3+ or 10mmol Cu 2+ per mol β-TCP on cell behaviour was observed in indirect and direct culture. Modification with Co 2+ resulted in a clear suppression of cell proliferation and osteogenic differentiation. In conclusion, metal ion doping of the cement influences cellular activities in addition to the effect of released metal ions by changing properties of the ceramic matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses

    PubMed Central

    Banerjee, Aditya

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  7. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  8. Development and characterization of thermal responsivehydrogel films for biomedical sensor application

    NASA Astrophysics Data System (ADS)

    López-Barriguete, Jesús Eduardo; Isoshima, Takashi; Bucio, Emilio

    2018-04-01

    Two flexible stimuli-responsive hydrogel films were elaborated as biomedical sensor application. The hydrogel systems were contained in glass moulds and synthesized using gamma radiation at a dose rate of 10.1 kGy h‑1, and absorbed dose of 50 kGy. The poly(NIPAAm) with a low critical solution temperature (LCST) close to the human body temperature, was employed as the principal component for the responsive materials. The addition of dimethyl acrylamide (DMAAm) for hydrophilic effect, methyl methacrylate (MMA) for mechanical property, and ethoxyethyl methacrylate (EEM) for mechanical property, modified the thermo dynamic transition point, obtaining viable responsive films with LCST of 36 °C and 39 °C. The samples were characterized by DSC to analyse the LCST, FT-IR to characterize the functional groups of the resulting films, AFM to examine the surface morphology, and swelling measurement to support the flexibility. Responsive ‘intelligent’ films with thermo sensitivity, biocompatibility, resistance, and conformableness are important to the development of flexible polymers for the application of biological sensor, smart membranes, or flexible electronics.

  9. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  10. Climate change and occupational allergies: an overview on biological pollution, exposure and prevention.

    PubMed

    D'Ovidio, Maria Concetta; Annesi-Maesano, Isabella; D'Amato, Gennaro; Cecchi, Lorenzo

    2016-01-01

    Climate change, air pollution, temperature increase and other environmental variables are modifying air quality, contributing to the increase of prevalence of allergic respiratory diseases. Allergies are complex diseases characterized by multilevel interactions between individual susceptibility, response to immune modulation and environmental exposures to physical, chemical and biological agents. Occupational allergies introduce a further complexity to these relationships by adding occupational exposure to both the indoor and outdoor ones in the living environment. The aim of this paper is to overview climate-related allergy affecting environmental and occupational health, as literature data are scanty in this regard, and to suggest a management model of this risk based on a multidisciplinary approach, taking the case of biological pollution, with details on exposure and prevention. The management of climate-related occupational allergy should take into account preventive health strategies, environmental, public and occupational interventions, as well as to develop, implement, evaluate, and improve guidelines and standards protecting workers health under changing climatic conditions; new tools and strategies based on local conditions will have to be developed. Experimental studies and acquisition of environmental and personal data have to be matched to derive useful information for the scope of occupational health and safety.

  11. Current trends in pharmacy benefit designs: a threat to disease management in chronic complex diseases.

    PubMed

    Owens, Gary; Emons, Matthew F; Christian-Herman, Jennifer; Lawless, Grant

    2007-04-01

    With a focus on those patients who are candidates for treatment with biologic agents, we review the impact that current pharmacy benefit trends have on patients with chronic complex diseases and how they affect opportunities for disease management in this unique patient population. Dramatic increases in health care costs have led to a variety of strategies to manage cost. Many of these strategies either limit access to care or increase the patient's responsibility for choosing and paying for care, especially for medications. These strategies have a disproportionate impact on patients with chronic complex diseases, particularly those who require the use of biologic medications. A fundamental prerequisite of disease management has been coverage of disease-modifying therapies. If current pharmacy benefit trends continue, unintended consequences will likely occur including lost opportunities for disease management. Current pharmacy benefit trends could adversely impact disease management, particularly for patients requiring the use of biologic agents. Health plans should consider innovative benefit designs that reflect an appropriate level of cost sharing across all key stake-holders, ensuring appropriate access to needed therapies. Additional research is needed to clarify the value of newer approaches to therapies or benefit design changes.

  12. Rheumatoid arthritis in a military aviator.

    PubMed

    Moszyk, Danielle J; Sulit, Daryl J

    2007-01-01

    Rheumatoid arthritis is a chronic inflammatory condition whose pathogenesis is determined partially by genetic and environmental factors. Without treatment, 20 to 30% of individuals with this condition will become permanently disabled in a few years. Rheumatoid arthritis and its potential complications can cause significant disability and could seriously affect the performance of an aviator. Traditionally, disease-modifying anti-rheumatic drugs (DMARD) and biologics have not been used until disease progression occurs, but they recently have been added earlier in the course of disease for a more aggressive approach to treatment. It has been shown to significantly reduce the number of affected joints, pain, and disability. This newer treatment regimen has helped a military pilot continue his aviation career. We present the case of an experienced designated military pilot who was diagnosed with rheumatoid arthritis. He was initially treated early with a DMARD and biologic medication. He has remained in remission and currently only uses etanercept (biologic medication) and a non-steriodal anti-inflammatory drug to control his disease. He has responded favorably to therapy and has few limitations. Due to his positive response to treatment, the aviator was granted military aeromedical waivers for rheumatoid arthritis and chronic medication use.

  13. A comprehensive review and update on the biologic treatment of adult noninfectious uveitis: part II.

    PubMed

    Lee, Kyungmin; Bajwa, Asima; Freitas-Neto, Clovis A; Metzinger, Jamie Lynne; Wentworth, Bailey A; Foster, C Stephen

    2014-11-01

    Treatment of adult, noninfectious uveitis remains a major challenge for ophthalmologists around the world, especially in regard to recalcitrant cases. It is reported to comprise approximately 10% of preventable blindness in the USA. The cause of uveitis can be idiopathic or associated with infectious and systemic disorders. The era of biologic medical therapies provides new options for patients with otherwise treatment-resistant inflammatory eye disease. This two-part review gives a comprehensive overview of the existing medical treatment options for patients with adult, noninfectious uveitis, as well as important advances for the treatment ocular inflammation. Part I covers classic immunomodulation and latest information on corticosteroid therapy. In part II, emerging therapies are discussed, including biologic response modifiers, experimental treatments and ongoing clinical studies for uveitis. The hazard of chronic corticosteroid use in the treatment of adult, noninfectious uveitis is well documented. Corticosteroid-sparing therapies, which offer a very favorable risk-benefit profile when administered properly, should be substituted. Although nothing is currently approved for on-label use in this indication, many therapies, through either translation or novel basic science research, have the potential to fill the currently exposed gaps.

  14. Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection.

    PubMed

    Rajesh; Singal, Shobhita; Kotnala, Ravinder K

    2017-10-01

    A biofunctionalized reduced graphene oxide (rGO)-modified screen-printed carbon electrode (SPCE) was constructed as an immunosensor for C-reactive protein (CRP) detection, a biomarker released in early stage acute myocardial infarction. A different approach of single frequency analysis (SFA) study was utilized for the biomolecular sensing, by monitoring the response in phase angle changes obtained at an optimized frequency resulting from antigen-antibody interactions. A set of measurements were carried out to optimize a frequency where a maximum change in phase angle was observed, and in this case, we found it at around 10 Hz. The bioelectrode was characterized by contact angle measurements, scanning electron microscopy, and electrochemical techniques. A concentration-dependent response of immunosensor to CRP with the change in phase angle, at a fixed frequency of 10 Hz, was found to be in the range of 10 ng mL -1 to 10 μg mL -1 in PBS and was fit quantitative well with the Hill-Langmuir equation. Based on the concentration-response data, the dissociation constant (K d ) was found to be 3.5 nM (with a Hill coefficient n = 0.57), which indicated a negative cooperativity with high anti-CRP (antibody)-CRP (antigen) binding at the electrode surface. A low-frequency analysis of sensing with an ease of measurement on a disposable electroactive rGO-modified electrode with high selectivity and sensitivity makes it a potential tool for biological sensors.

  15. Immobilization of hyaluronic acid on plasma-sprayed porous titanium coatings for improving biological properties.

    PubMed

    Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting

    2014-01-01

    In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.

  16. A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Turan, Nil; Kalko, Susana; Stincone, Anna; Clarke, Kim; Sabah, Ayesha; Howlett, Katherine; Curnow, S. John; Rodriguez, Diego A.; Cascante, Marta; O'Neill, Laura; Egginton, Stuart; Roca, Josep; Falciani, Francesco

    2011-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients. PMID:21909251

  17. [Manipulation of the human genome: ethics and law].

    PubMed

    Goulart, Maria Carolina Vaz; Iano, Flávia Godoy; Silva, Paulo Maurício; Sales-Peres, Silvia Helena de Carvalho; Sales-Peres, Arsênio

    2010-06-01

    The molecular biology has provided the basic tool for geneticists deepening in the molecular mechanisms that influence different diseases. It should be noted the scientific and moral responsibility of the researchers, because the scientists should imagine the moral consequences of the commercial application of genetic tests, since this fact involves not only the individual and their families, but the entire population. Besides being also necessary to make a reflection on how this information from the human genome will be used, for good or bad. The objective of this review was to bring the light of knowledge, data on characteristics of the ethical application of molecular biology, linking it with the rights of human beings. After studying literature, it might be observed that the Human Genome Project has generated several possibilities, such as the identification of genes associated with diseases with synergistic properties, but sometimes modifying behavior to genetically intervene in humans, bringing benefits or social harm. The big challenge is to decide what humanity wants on this giant leap.

  18. The counterbend dynamics of cross-linked filament bundles and flagella

    PubMed Central

    Coy, Rachel

    2017-01-01

    Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516

  19. Dance expertise modulates visual sensitivity to complex biological movements.

    PubMed

    Orlandi, Andrea; Zani, Alberto; Proverbio, Alice Mado

    2017-09-01

    Motor resonance processes that occur when observing an individual perform an action may be modulated by acquired visuomotor expertise. We used the event-related potential (EEG/ERP) technique to investigate the ability to automatically recognize a subtle difference between very similar novel contemporary dance movements. Twelve professional dancers and twelve non-dancers were shown 212 pairs of videos of complex whole-body movements that lasted 3s. The second of each pair was the repetition of the previous movement or a slight variation of it (deviance). The participants were engaged in a secondary attentional task. Modulation of a larger centro-parietal N400 effect and a reduction of the Late Positivity amplitude (repetition suppression effect) were identified in response to deviant stimuli only in the dancers. Source reconstruction (swLORETA) showed activations in biological motion, body and face processing related areas, and fronto-parietal and limbic systems. The current findings provide evidence that acquired dance expertise modifies the ability to visually code whole-body complex movements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of Deposited Sediment and Macroinvertebrate Metrics Used to Quantify Biological Response to Excessive Sedimentation in Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Sutherland, Andrew B.; Culp, Joseph M.; Benoy, Glenn A.

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  1. Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.

    PubMed

    Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M

    2012-04-06

    Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.

  2. Evaluation of deposited sediment and macroinvertebrate metrics used to quantify biological response to excessive sedimentation in agricultural streams.

    PubMed

    Sutherland, Andrew B; Culp, Joseph M; Benoy, Glenn A

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  3. Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans

    PubMed Central

    Zhang, Xinxing; Bhar, Subhradeep; Jones Lipinski, Rachel A; Han, Jungsoo; Feng, Likui

    2018-01-01

    Caenorhabditis elegans produces ascaroside pheromones to control its development and behavior. Even minor structural differences in the ascarosides have dramatic consequences for their biological activities. Here, we identify a mechanism that enables C. elegans to dynamically tailor the fatty-acid side chains of the indole-3-carbonyl (IC)-modified ascarosides it has produced. In response to starvation, C. elegans uses the peroxisomal acyl-CoA synthetase ACS-7 to activate the side chains of medium-chain IC-ascarosides for β-oxidation involving the acyl-CoA oxidases ACOX-1.1 and ACOX-3. This pathway rapidly converts a favorable ascaroside pheromone that induces aggregation to an unfavorable one that induces the stress-resistant dauer larval stage. Thus, the pathway allows the worm to respond to changing environmental conditions and alter its chemical message without having to synthesize new ascarosides de novo. We establish a new model for biosynthesis of the IC-ascarosides in which side-chain β-oxidation is critical for controlling the type of IC-ascarosides produced. PMID:29863473

  4. A technical feasibility study of surfactant-free drug suspensions using octenyl succinate-modified starches.

    PubMed

    Kuentz, Martin; Egloff, Peter; Röthlisberger, Dieter

    2006-05-01

    Many new drugs exhibit poor wetting behaviour and low aqueous solubility. This is particularly an issue for preclinical studies like toxicological trials, in which considerably higher doses and volumes are being administered compared to clinical studies. Preclinical vehicles typically contain high levels of surfactants that can exert biological effects. However, the biological inertness of vehicles is pivotal for the application in preclinical studies stressing the need in finding new excipients to solve formulation problems of today's drug discovery. The present study investigated the technical feasibility of surfactant-free suspensions using a new poorly soluble drug as model. It was shown that octenyl succinate-modified starches adequately wetted the drug and homogenous tasteless suspensions were obtained. The polymer xanthan gum was identified as macroscopically compatible gelling agent. Concentration effects of xanthan, drug and different modified starches were studied in a D-optimal design with respect to rheological properties. The suspensions were also tested in an analytical centrifuge using NIR transmission profiles to obtain a measure of sedimentation stability under accelerated conditions. The modified starches exhibited only little influence on the viscosity as well as on the yield point in contrast to the rheological effects of xanthan gum. This gelling agent was the main stabilising excipient as the modified starches hindered to a lesser extent sedimentation. The most stable suspensions displayed convenient flow properties. The viscosity at 100 s(-1) and 25 degrees C was in technically acceptable range of 120-140 mPa s in view of a application via gavage or a syringe in animal studies. The results demonstrated that surfactant-free drug suspensions with excellent technical performance can be obtained using octenyl succinate-modified starches. The vehicles were tasteless and based on the experience of modified starches in the food industry, the vehicles should exhibit good tolerability. The future use of such surfactant-free drug suspensions in toxicological, pharmacokinetic and pharmacodynamic studies will have to determine their advantage in terms of biological inertness.

  5. Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    PubMed Central

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357

  6. Gold nanoparticles coated polystyrene/reduced graphite oxide microspheres with improved dispersibility and electrical conductivity for dopamine detection.

    PubMed

    Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2013-12-01

    Gold nanoparticles coated polystyrene/reduced graphite oxide (AuNPs@PS/RGO) microspheres have been successfully prepared via a facile process, and the decorative gold nanoparticles could prevent the aggregation of RGO by electrostatic repulsive interaction, and lead to high dispersibility of the composite. The prepared composite has a highly increased conductivity of 129Sm(-1) due to the unique electrical properties of citrate reduced gold nanoparticles. Being employed as an electrochemical sensor for detection of dopamine, the modified electrode exhibits remarkable sensitivity (3.44μA/μM) and lower detection limit (5nM), with linear response in a range of 0.05-20μM. Moreover, valid response to dopamine obtained in present work also indicates the prospective performances of AuNPs@PS/RGO microspheres to other biological molecules, such as nucleic acids, proteins and enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode.

    PubMed

    Zheng, Yu-Bin; Zhao, Shuang; Cao, Shuo-Hui; Cai, Sheng-Lin; Cai, Xiu-Hong; Li, Yao-Qun

    2017-01-07

    In this article, we have demonstrated for the first time a triple stimuli-responsive nanofluidic diode that can rectify ionic current under multiple external stimuli including temperature, pH, and sugar. This diode was fabricated by immobilizing poly[2-(dimethylamino)ethyl methacrylate]-co-[4-vinyl phenylboronic acid] (P(DMAEMA-co-VPBA)) onto the wall of a single glass conical nanopore channel via surface-initiator atom transfer radical polymerization (SI-ATRP). The copolymer brushes contain functional groups sensitive to pH, temperature and sugar that can induce charge and configuration change to affect the status of the pore wall. The experimental results confirmed that the P(DMAEMA-co-VPBA) brush modified nanochannel regulated the ionic current rectification successfully under three different external stimuli. This biomimetically inspired research simulates the complex biological multi-functions of ion channels and promotes the development of "smart" biomimetic nanochannel systems for actuating and sensing applications.

  8. Limits on the adaptability of coastal marshes to rising sea level

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; D'Alpaos, Andrea; Morris, James T.; Mudd, Simon M.; Temmerman, Stijn

    2010-01-01

    Assumptions of a static landscape inspire predictions that about half of the world's coastal wetlands will submerge during this century in response to sea-level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea-level assessments, we find that non-linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea-level rise where suspended sediment concentrations are greater than ~20 mg/L. Under scenarios of more rapid sea-level rise (e.g., those that include ice sheet melting), marshes will likely submerge near the end of the 21st century. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processes to modify their physical environment.

  9. Psoriatic arthritis: an update.

    PubMed

    López-Ferrer, A; Laiz-Alonso, A

    2014-12-01

    Advances in our understanding of the pathogenesis of psoriatic arthritis and clinical aspects of the disease justify the present review. Studies have identified common inflammatory pathways related to the innate immune response, such as the IL-12/IL-23 axis, along with numerous genes that affect susceptibility to both diseases and influence phenotypic development. Interest has grown in biomarkers that can be used for early diagnosis or prognosis or to predict joint destruction and the response to treatment. Recent reports describe important differences between the effects of disease-modifying antirheumatic drugs and biologics on the process of new bone formation. Other issues that have been discussed include the need for reliable screening methods, particularly for early detection of oligoarticular arthritis, and for protocols to guide referral to specialists, especially in newly created multidisciplinary practices. Copyright © 2013 Elsevier España, S.L.U. y AEDV. All rights reserved.

  10. Ethics for the "New Biology"

    ERIC Educational Resources Information Center

    Kieffer, George H.

    1977-01-01

    Discusses biological contributions to the changes occurring in today's society, stressing the need for modifying traditional ethics. Issues include contraception and abortion, fetal research, population control and food supply, individual freedom versus common welfare, and euthanasia. Suggests that study in personal and group ethics be…

  11. Portuguese guidelines for the use of biological agents in rheumatoid arthritis - October 2011 update.

    PubMed

    Fonseca, João Eurico; Bernardes, Miguel; Canhão, Helena; Santos, Maria José; Quintal, Alberto; Malcata, Armando; Neto, Adriano; Cordeiro, Ana; Rodrigues, Ana; Mourão, Ana Filipa; Ribeiro, Ana Sofia; Cravo, Ana Rita; Barcelos, Anabela; Cardoso, Anabela; Vilar, António; Braña, Arecili; Faustino, Augusto; Silva, Candida; Duarte, Cátia; Araújo, Domingos; Nour, Dolores; Sousa, Elsa; Simões, Eugénia; Godinho, Fátima; Brandão, Filipe; Ventura, Francisco; Sequeira, Graça; Figueiredo, Guilherme; Cunha, Inês; Matos, J Alves; Branco, Jaime; Ramos, João; Costa, José António; Gomes, José António; Pinto, José; Silva, José Canas; Silva, J A; Patto, José Vaz; Costa, Lúcia; Miranda, Luís Cunha; Inês, Luís; Santos, Luís Maurício; Cruz, Margarida; Salvador, Maria João; Ferreira, Maria Júlia; Rial, Maria; Queiroz, Mário Viana; Bogas, Mónica; Araújo, Paula; Reis, Paulo; Abreu, Pedro; Machado, Pedro; Pinto, Patrícia; André, Rui; Melo, Rui; Garcês, Sandra; Cortes, Sara; Alcino, Sérgio; Ramiro, Sofia; Capela, Susana

    2011-01-01

    The authors present the revised version of the Portuguese Society of Rheumatology (SPR) guidelines for the treatment of Rheumatoid Arthritis (RA) with biological therapies. In these guidelines the criteria for introduction and maintenance of biological agents are discussed as well as the contraindications and procedures in the case of nonresponders. Biological treatment (with a tumour necrosis factor antagonist, abatacept or tocilizumab) should be considered in RA patients with a disease activity score 28 (DAS 28) equal to or greater than 3.2 despite treatment with at least 20mg-weekly-dose of methotrexate (MTX) for at least 3 months or, if such treatment is not possible, after 3 months of other conventional disease modifying drug or combination therapy. A DAS 28 score between 2.6 and 3.2 with a significant functional or radiological deterioration under treatment with conventional regimens could also constitute an indication for biological treatment. The treatment goal should be remission or, if that is not achievable, at least a low disease activity, defined by a DAS28 lower than 3.2, without significative functional or radiological worsening. The response criteria, at the end of the first 3 months of treatment, are a decrease of at least 0.6 in the DAS28 score. After 6 months of treatment res­ponse criteria is defined as a decrease greater than 1.2 in the DAS28 score. Non-responders, in accordance to the Rheumatologist’s clinical opinion, should try a switch to another biological agent (tumour necrosis factor antagonist, abatacept, rituximab or tocilizumab).

  12. Relevance of protein-protein interactions on the biological identity of nanoparticles.

    PubMed

    Vasti, Cecilia; Bonnet, Laura V; Galiano, Mauricio R; Rojas, Ricardo; Giacomelli, Carla E

    2018-06-01

    Considering that the use of nanoparticles (NPs) as carriers of therapeutic or theranostic agents has increased in the last years, it is mandatory to understand the interaction between NPs and living systems. In contact with biological fluids, the NPs (synthetic identity) are covered with biomolecules that form a protein corona, which defines the biological identity. It is well known that the protein corona formation is mediated by non-specific physical interactions, but protein-protein interactions (PPI), involving specific recognition sites of the polypeptides, are also involved. This work explores the relationship between the synthetic and biological identities of layered double hydroxides nanoparticles (LDH-NPs) and the effect of the protein corona on the cellular response. With such a purpose, the synthetic identity was modified by coating LDH-NPs with either a single protein or a complex mixture of them, followed by the characterization of the protein corona formed in a commonly used cell culture medium. A proteomic approach was used to identify the protein corona molecules and the PPI network was constructed with a novel bioinformatic tool. The coating on LDH-NPs defines the biological identity in such a way that the composition of the protein corona as well as PPI are changed. Electrostatic interactions appear not to be the only driving force regulating the interactions between NPs, proteins and cells since the specific recognition also play a fundamental role. However, the biological identity of LDH-NPs does not affect the interactions with cells that shows negligible cytotoxicity and high internalization levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  14. Logarithmic and power law input-output relations in sensory systems with fold-change detection.

    PubMed

    Adler, Miri; Mayo, Avi; Alon, Uri

    2014-08-01

    Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling.

  15. Effects of cognitive-behavioral therapy on brain responses to subliminal and supraliminal threat and their functional significance in specific phobia.

    PubMed

    Lipka, Judith; Hoffmann, Marius; Miltner, Wolfgang H R; Straube, Thomas

    2014-12-01

    Neurocircuitry models of anxiety disorders suggest dysregulated mechanisms encompassing both automatic and elaborate threat processing. However, the extent to which these processes might be differentially modified by psychotherapy and the neural basis of such changes are unknown. We examined the effects of cognitive-behavioral therapy (CBT) in patients with anxiety disorder on brain responses to subliminal and supraliminal threat. 3-Tesla functional magnetic resonance imaging was used to assess neural responses to disorder-related stimuli, presented during two backward-masking conditions employed to manipulate stimulus awareness. In 28 spider-phobic patients randomly assigned to a therapy group or a waiting-list control group scanning was performed before and after completing CBT or a waiting period. Scanning was performed one time in 16 healthy control subjects. Self-report and behavioral measures were used to relate CBT-mediated brain activation changes with symptom improvement. Untreated patients demonstrated abnormal hyperactivation in the amygdala, fusiform gyrus, insula, anterior cingulate cortex, and dorsomedial prefrontal cortex. Successful CBT was reflected in an overall downregulation in these fear circuitry structures, especially in the right amygdala and anterior cingulate cortex, with reductions in amygdala responsiveness associated with self-reported symptom improvement. However, subliminal threat induced a pattern of right-lateralized hyperactivation in the amygdala and fusiform gyrus that was subject to intersession habituation across groups without showing significant sensitivity to CBT. These results challenge prevailing models that emphasize a role for amygdala automaticity in the maintenance of anxiety. Our results suggest CBT-related changes in neural activation associated with fear responses to consciously perceived threat. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  16. An Old Problem: Aging and Skeletal-Muscle-Strain Injury.

    PubMed

    Baker, Brent A

    2017-04-01

    Clinical Scenario: Even though chronological aging is an inevitable phenomenological consequence occurring in every living organism, it is biological aging that may be the most significant factor challenging our quality of life. Development of functional limitations, resulting from improper maintenance and restoration of various organ systems, ultimately leads to reduced health and independence. Skeletal muscle is an organ system that, when challenged, is often injured in response to varying stimuli. Overt muscle-strain injury can be traumatic, clinically diagnosable, properly managed, and a remarkably common event, yet our contemporary understanding of how age and environmental stressors affect the initial and subsequent induction of injury and how the biological processes resulting from this event are modifiable and, eventually, lead to functional restoration and healing of skeletal muscle and adjacent tissues is presently unclear. Even though the secondary injury response to and recovery from "contraction-induced" skeletal-muscle injury are impaired with aging, there is no scientific consensus as to the exact mechanism responsible for this event. Given the multitude of investigative approaches, particular consideration given to the appropriateness of the muscle-injury model, or research paradigm, is critical so that outcomes may be physiologically relevant and translational. In this case, methods implementing stretch-shortening contractions, the most common form of muscle movements used by all mammals during physical movement, work, and activity, are highlighted. Understanding the fundamental evidence regarding how aging influences the responsivity of skeletal muscle to strain injury is vital for informing how clinicians approach and implement preventive strategies, as well as therapeutic interventions. From a practical perspective, maintaining or improving the overall health and tissue quality of skeletal muscle as one ages will positively affect skeletal muscle's safety threshold and responsivity, which may reduce incidence of injury, improve recovery time, and lessen overall fiscal burdens.

  17. Modified Primers for the Identification of Nonpathogenic Fusarium oxysporum Isolates That Have Biological Control Potential against Fusarium Wilt of Cucumber in Taiwan

    PubMed Central

    Wang, Chaojen; Lin, Yisheng; Lin, Yinghong; Chung, Wenhsin

    2013-01-01

    Previous investigations demonstrated that Fusarium oxysporum (Fo), which is not pathogenic to cucumbers, could serve as a biological control agent for managing Fusarium wilt of cucumber caused by Fo f. sp. cucumerinum (Foc) in Taiwan. However, thus far it has not been possible to separate the populations of pathogenic Fo from the nonpathogenic isolates that have biological control potential through their morphological characteristics. Although these two populations can be distinguished from one another using a bioassay, the work is laborious and time-consuming. In this study, a fragment of the intergenic spacer (IGS) region of ribosomal DNA from an Fo biological control agent, Fo366, was PCR-amplified with published general primers, FIGS11/FIGS12 and sequenced. A new primer, NPIGS-R, which was designed based on the IGS sequence, was paired with the FIGS11 primer. These primers were then evaluated for their specificity to amplify DNA from nonpathogenic Fo isolates that have biological control potential. The results showed that the modified primer pair, FIGS11/NPIGS-R, amplified a 500-bp DNA fragment from five of seven nonpathogenic Fo isolates. These five Fo isolates delayed symptom development of cucumber Fusarium wilt in greenhouse bioassay tests. Seventy-seven Fo isolates were obtained from the soil and plant tissues and then subjected to amplification using the modified primer pair; six samples showed positive amplification. These six isolates did not cause symptoms on cucumber seedlings when grown in peat moss infested with the isolates and delayed disease development when the same plants were subsequently inoculated with a virulent isolate of Foc. Therefore, the modified primer pair may prove useful for the identification of Fo isolates that are nonpathogenic to cucumber which can potentially act as biocontrol agents for Fusarium wilt of cucumber. PMID:23762289

  18. Biomimetic design in microparticulate vaccines.

    PubMed

    Keegan, Mark E; Whittum-Hudson, Judith A; Mark Saltzman, W

    2003-11-01

    Current efforts to improve the effectiveness of microparticle vaccines include incorporating biomimetic features into the particles. Many pathogens use surface molecules to target specific cell types in the gut for host invasion. This observation has inspired efforts to chemically conjugate cell-type targeting ligands to the surfaces of microparticles in order to increase the efficiency of uptake, and therefore the effectiveness, of orally administered microparticles. Bio-mimicry is not limited to the exterior surface of the microparticles. Anti-idiotypic antibodies, cytokines or other biological modifiers can be encapsulated for delivery to sites of interest as vaccines or other therapeutics. Direct mucosal delivery of microparticle vaccines or immunomodulatory agents may profoundly enhance mucosal and systemic immune responses compared to other delivery routes.

  19. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  20. Mechanisms, biology and inhibitors of deubiquitinating enzymes.

    PubMed

    Love, Kerry Routenberg; Catic, André; Schlieker, Christian; Ploegh, Hidde L

    2007-11-01

    The addition of ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers to proteins serves to modulate function and is a key step in protein degradation, epigenetic modification and intracellular localization. Deubiquitinating enzymes and Ubl-specific proteases, the proteins responsible for the removal of Ub and Ubls, act as an additional level of control over the ubiquitin-proteasome system. Their conservation and widespread occurrence in eukaryotes, prokaryotes and viruses shows that these proteases constitute an essential class of enzymes. Here, we discuss how chemical tools, including activity-based probes and suicide inhibitors, have enabled (i) discovery of deubiquitinating enzymes, (ii) their functional profiling, crystallographic characterization and mechanistic classification and (iii) development of molecules for therapeutic purposes.

  1. Dietary modification of brain function: effects on neuroendocrine and psychological determinants of mental health- and stress-related disorders.

    PubMed

    Waladkhani, A R; Hellhammer, J

    2008-01-01

    Stress is associated with both psychological and biological adaptation. Chronic stress, however, impairs adaptation, and may finally lead to illness, in part through unhealthy changes in nutritional behavior. This chapter shows how physiological and psychological stress responses are affected by different food ingredients, and how stress affects health behavior, for example food choice. It becomes obvious that nutrition is closely linked to food choice and that food ingredients affect a broad range of neuroendocrine and related psychological processes, which regulate adaptation to chronic stress. Thus, dietary modification may become a valuable tool to modify the susceptibility to stress and stress-related disorders.

  2. An Overview of the Chemistry and Biology of Reactive Aldehydes

    PubMed Central

    Fritz, Kristofer S.; Petersen, Dennis R.

    2012-01-01

    The non-enzymatic free radical generation of reactive aldehydes is known to contribute to diseases of sustained oxidative stress including rheumatoid arthritis, atherosclerosis, neurodegenerative and a number of liver diseases. At the same time, the accumulation of lipid electrophiles has been demonstrated to play a role in cell signaling events through modification of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability to modify numerous proteomic and genomic processes, new emphasis is being placed on a systems-based analysis of the consequences of electrophilic adduction. This review focuses on the generation and chemical reactivity of lipid-derived aldehydes with a special focus on the homeostatic responses to electrophilic stress. PMID:22750507

  3. Real-time Measurements of Biological Particles at Several Continental Sites using the WIBS-4A

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kok, G. L.; Petters, M. D.; Wright, T.; Hader, J.; Mccubbin, I. B.; Hallar, A. G.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.; McCluskey, C.; Baumgardner, D.

    2013-12-01

    Biological particles (bacteria, fungi/fungal spores, viruses, algae and fragments of biological material) may play a significant role in modifying cloud properties by acting as ice nuclei and thus have an indirect effect on climate forcing. Little is known, however, regarding the abundance and distribution of biological particles and their importance to cloud microphysics in different environments. On-line, continuous measurement systems offer the potential to measure biological systems at high time resolution and sensitivity, providing greater insight into their distribution in the atmosphere, dispersal mechanisms and potential soures. The WIBS-4A (Wideband Integrated Bioaerosol Sensor) detects fluorescent biological material in real-time associated with individual particles. It measures five properties: a) optical size via light scattering, b) fluorescent emissions in the wavelength range 310-400 following excitation by 280 nm light, c) fluorescent emissions in the wavelength range 420-650 following excitation by 280 nm light, d) fluorescent emissions in the wavelength range 420-650 following excitation by 370 nm light, and e) particle asymmetry factor based on intensities of forward scattered light onto a 4-element detector. Together, these properties aid the classification of sampled particles that contain biofluorophores such as tryptophan or NAD(P)H, which can be found in biological particles. Here we present results from a series of laboratory, ground- and aircraft-based measurements of biological particles using the WIBS-4A. The studies include airborne measurements over the United States, ground-based measurements at a coastal site, an urban site in the southeast US and a high alpine site, and laboratory measurements of a variety of biological and non-biological particles. Our analysis focused on both the characterization of the instrument response as well as an evaluation of its suitability for performing ambient measurements and potential artifacts. We also present recommendations for field operation of the instrument, sample system design considerations, and data analysis approaches.

  4. The biological age linked to oxidative stress modifies breast cancer aggressiveness.

    PubMed

    Sáez-Freire, María Del Mar; Blanco-Gómez, Adrián; Castillo-Lluva, Sonia; Gómez-Vecino, Aurora; Galvis-Jiménez, Julie Milena; Martín-Seisdedos, Carmen; Isidoro-García, María; Hontecillas-Prieto, Lourdes; García-Cenador, María Begoña; García-Criado, Francisco Javier; Patino-Alonso, María Carmen; Galindo-Villardón, Purificación; Mao, Jian-Hua; Prieto, Carlos; Castellanos-Martín, Andrés; Kaderali, Lars; Pérez-Losada, Jesús

    2018-05-20

    The incidence of breast cancer increases with age until menopause, and breast cancer is more aggressive in younger women. The existence of epidemiological links between breast cancer and aging indicates that both processes share some common mechanisms of development. Oxidative stress is associated with both cancer susceptibility and aging. Here we observed that ERBB2-positive breast cancer, which developed in genetically heterogeneous ERBB2-positive transgenic mice generated by a backcross, is more aggressive in chronologically younger than in older mice (differentiated by the median survival of the cohort that was 79 weeks), similar to what occurs in humans. In this cohort, we estimated the oxidative biological age using a mathematical model that integrated several subphenotypes directly or indirectly related to oxidative stress. The model selected the serum levels of HDL-cholesterol and magnesium and total AKT1 and glutathione concentrations in the liver. The grade of aging was calculated as the difference between the predicted biological age and the chronological age. This comparison permitted the identification of biologically younger and older mice compared with their chronological age. Interestingly, biologically older mice developed more aggressive breast cancer than the biologically younger mice. Genomic regions on chromosomes 2 and 15 linked to the grade of oxidative aging were identified. The levels of expression of Zbp1 located on chromosome 2, a gene related to necroptosis and inflammation, positively correlated with the grade of aging and tumour aggressiveness. Moreover, the pattern of gene expression of genes linked to the inflammation and the response to infection pathways was enriched in the livers of biologically old mice. This study shows part of the complex interactions between breast cancer and aging. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives.

    PubMed

    Joly, Carlos A; Metzger, Jean Paul; Tabarelli, Marcelo

    2014-11-01

    The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma.

    PubMed

    Prevost, Luanna B; Smith, Michelle K; Knight, Jennifer K

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students' ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. © 2016 L. B. Prevost et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Fatigue resistance, electrochemical corrosion and biological response of Ti-15Mo with surface modified by amorphous TiO2 nanotubes layer.

    PubMed

    Campanelli, Leonardo C; Oliveira, Nilson T C; da Silva, Paulo Sergio C P; Bolfarini, Claudemiro; Palmieri, Annalisa; Cura, Francesca; Carinci, Francesco; Motheo, Artur J

    2018-03-04

    The objective of this work was a systemic evaluation of the anodizing treatment in a β-type Ti-15Mo alloy to grow a TiO 2 nanostructured layer for osseointegration improvement. The technical viability of the surface modification was assessed based on the resistance to mechanical fatigue, electrochemical corrosion, and biological response. By using an organic solution of NH 4 F in ethylene glycol, a well-organized array of 90 nm diameter nanotubes was obtained with a potential of 40 V for 6 h, while undefined nanotubes of 25 nm diameter were formed with a potential of 20 V for 1 h. Nevertheless, the production of the 90 nm diameter nanotubes was followed by micrometer pits that significantly reduced the fatigue performance. The undefined nanotubes of 25 nm diameter, besides the greater cell viability and improved osteoblastic cell differentiation in comparison to the as-polished surface, were not deleterious to the fatigue and corrosion properties. This result strengthens the necessity of an overall evaluation of the anodizing treatment, particularly the fatigue resistance, before suggesting it for the design of implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  8. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation.

    PubMed

    Jędrzejewski, Tomasz; Pawlikowska, Małgorzata; Piotrowski, Jakub; Kozak, Wiesław

    2016-10-01

    Protein-bound polysaccharides (PBP) isolated from Coriolus versicolor (CV) are classified as biological response modifiers capable of exhibiting various biological activities, such as anti-tumour and immunopotentiating activity. Since we have found in vivo studies that the tested PBP induced prolongation of endotoxin fever in rats, the aim of the present study was to investigate the in vitro effect of the PBP on the production of pro-inflammatory cytokines by the lipolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs). The results showed that the PBP affect the immunomodulating properties of the LPS-treated PBMCs by the enhancement of mitogenic activity and attenuation of the LPS-induced production of interleukin (IL)-1β and IL-6. Moreover, the tested polysaccharides peptides themselves also exhibit immunomodulatory properties manifested in the increased cell proliferation and pro-inflammatory cytokine release from PBMCs. The effect of PBP on the both phenomena was time-dependent and occurred in the U-shaped dose response manner. These findings are significant when considering the use of commercially available PBP from CV extract by cancer patients suffering from immunodeficiency, who may experience microbial infections during therapy. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Advances in Campylobacter biology and implications for biotechnological applications.

    PubMed

    Jeon, Byeonghwa; Muraoka, Wayne T; Zhang, Qijing

    2010-05-01

    Campylobacter jejuni is a major foodborne pathogen of animal origin and a leading cause of bacterial gastroenteritis in humans. During the past decade, especially since the publication of the first C. jejuni genome sequence, major advances have been made in understanding the pathobiology and physiology of this organism. It is apparent that C. jejuni utilizes sophisticated mechanisms for effective colonization of the intestinal tracts in various animal species. Although Campylobacter is fragile in the environment and requires fastidious growth conditions, it exhibits great flexibility in the adaptation to various habitats including the gastrointestinal tract. This high adaptability is attributable to its genetically, metabolically and phenotypically diverse population structure and its ability to change in response to various challenges. Unlike other enteric pathogens, such as Escherichia coli and Salmonella, Campylobacter is unable to utilize exogenous glucose and mainly depends on the catabolism of amino acids as a carbon source. Campylobacter proves highly mutable in response to antibiotic treatments and possesses eukaryote-like dual protein glycosylation systems, which modify flagella and other surface proteins with specific sugar structures. In this review we will summarize the distinct biological traits of Campylobacter and discuss the potential biotechnological approaches that can be developed to control this enteric pathogen. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Phytochemicals perturb membranes and promiscuously alter protein function.

    PubMed

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  11. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  12. Nanoparticle-based strategy for personalized B-cell lymphoma therapy

    PubMed Central

    Martucci, Nicola M; Migliaccio, Nunzia; Ruggiero, Immacolata; Albano, Francesco; Calì, Gaetano; Romano, Simona; Terracciano, Monica; Rea, Ilaria; Arcari, Paolo; Lamberti, Annalisa

    2016-01-01

    B-cell lymphoma is associated with incomplete response to treatment, and the development of effective strategies targeting this disease remains challenging. A new personalized B-cell lymphoma therapy, based on a site-specific receptor-mediated drug delivery system, was developed in this study. Specifically, natural silica-based nanoparticles (diatomite) were modified to actively target the antiapoptotic factor B-cell lymphoma/leukemia 2 (Bcl2) with small interfering RNA (siRNA). An idiotype-specific peptide (Id-peptide) specifically recognized by the hypervariable region of surface immunoglobulin B-cell receptor was exploited as a homing device to ensure specific targeting of lymphoma cells. Specific nanoparticle uptake, driven by the Id-peptide, was evaluated by flow cytometry and confocal microscopy and was increased by approximately threefold in target cells compared with nonspecific myeloma cells and when a random control peptide was used instead of Id-peptide. The specific internalization efficiency was increased by fourfold when siRNA was also added to the modified nanoparticles. The modified diatomite particles were not cytotoxic and their effectiveness in downregulation of gene expression was explored using siRNA targeting Bcl2 and evaluated by quantitative real-time polymerase chain reaction and Western blot analyses. The resulting gene silencing observed is of significant biological importance and opens new possibilities for the personalized treatment of lymphomas. PMID:27895482

  13. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content.

    PubMed

    Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam

    2017-05-05

    The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. BISRU: Synthetic Microbes for Moon, Mars and Beyond

    NASA Astrophysics Data System (ADS)

    Cumbers, J.; Rothchild, L.

    2010-04-01

    Synthetic biology and genomics will bring a new range of designer organisms into being and give us new tools for the manipulation and control of these organisms. BISRU or biological in situ resource utilization is the use of such genetically modified organisms in space.

  15. Urban sparrows respond to a sexually selected trait with increased aggression in noise.

    PubMed

    Phillips, Jennifer N; Derryberry, Elizabeth P

    2018-05-14

    Animals modify acoustic communication signals in response to noise pollution, but consequences of these modifications are unknown. Vocalizations that transmit best in noise may not be those that best signal male quality, leading to potential conflict between selection pressures. For example, slow paced, narrow bandwidth songs transmit better in noise but are less effective in mate choice and competition than fast paced, wide bandwidth songs. We test the hypothesis that noise affects response to song pace and bandwidth in the context of competition using white-crowned sparrows (Zonotrichia leucophrys). We measure male response to song variation along a gradient of ambient noise levels in San Francisco, CA. We find that males discriminate between wide and narrow bandwidth songs but not between slow and fast paced songs. These findings are biologically relevant because songs in noisy areas tend to have narrow bandwidths. Therefore, this song phenotype potentially increases transmission distance in noise, but elicits weaker responses from competitors. Further, we find that males respond more strongly to stimuli in noisier conditions, supporting the 'urban anger' hypothesis. We suggest that noise affects male responsiveness to song, possibly leading to more territorial conflict in urban areas.

  16. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    USDA-ARS?s Scientific Manuscript database

    The sensory, biological, chemical, and immunological characteristics of foods can be modified non-enzymatically during processing. Notably, these modifications may modulate the allergenic potency of food allergens, such as the Ara h 1 peanut allergen. Carboxymethyl-lysine (CML) modification is a p...

  17. Removing the tree-ring width biological trend using expected basal area increment

    Treesearch

    Franco Biondi; Fares Qeadan

    2008-01-01

    One of the main elements of dendrochronological standardization is the removal of the biological trend, i.e., the progressive decline of ring width along a cross-sectional radius that is mostly caused by the corresponding increase in stem diameter over time. A very common option for removing this biological trend is to fit a modified negative exponential curve to the...

  18. The complexities of skeletal biology

    NASA Technical Reports Server (NTRS)

    Karsenty, Gerard

    2003-01-01

    For a long time, the skeleton was seen as an amorphous tissue of little biological interest. But such a view ignored the large number of genetic and degenerative diseases affecting this organ. Over the past 15 years, molecular and genetic studies have modified our understanding of skeletal biology. By so doing this progress has affected our understanding of diseases and suggested in many instances new therapeutic opportunities.

  19. Two-Year Safety and Efficacy Experience in Patients with Methotrexate-Resistant Active Rheumatoid Arthritis Treated with Etanercept and Conventional Disease-Modifying Anti-rheumatic Drugs in the Latin American Region.

    PubMed

    Machado, Daniel A; Guzman, Renato; Xavier, Ricardo M; Simon, Jesus A; Mele, Linda; Shen, Qi; Pedersen, Ronald; Kotak, Sameer; Vlahos, Bonnie

    2016-01-01

    Although long-term data are available from biologic studies in North American/European populations with rheumatoid arthritis (RA), long-term findings in Latin American RA populations are limited. To examine long-term safety/efficacy of etanercept, methotrexate, and/or other disease-modifying anti-rheumatic drugs (DMARDs) in Latin American patients with moderate-to-severe active RA. In the first phase of this open-label study, patients were randomized to etanercept 50 mg weekly plus methotrexate or conventional DMARD (hydroxychloroquine or sulfasalazine) plus methotrexate for 24 weeks. At the start of the second phase (week 24), investigators selected a treatment regimen that included any combination/dosage of etanercept, methotrexate, hydroxychloroquine, or sulfasalazine based on previous treatment response, preference, and local product labeling, and was continued for the 104-week extension. In the extension, in the group previously randomized to etanercept-plus-methotrexate therapy, etanercept was continued in 259/260 patients; methotrexate continued in 260/260; and hydroxychloroquine and sulfasalazine added in 8/260 and 3/260, respectively. In the group previously randomized to conventional DMARD-plus-methotrexate therapy, conventional DMARD was discontinued in 86/126 and etanercept added in 105/126. Among etanercept-exposed patients (total exposure, 798.1 patient-year [PY]), rates of adverse events, serious adverse events, and serious infections per PY were 1.7, 0.07, and 0.02 events per PY. In both groups, after treatment modification was permitted, clinical response rates and improvements in clinical/patient-reported outcomes from baseline were sustained to week 128. After investigators were permitted to modify treatment, etanercept was part of the treatment regimen in 95% of patients. Continuation or addition of etanercept in the 2-year extension resulted in a consistently good risk:benefit profile. Open-Label Study Comparing Etanercept to Conventional Disease Modifying Antirheumatic Drug (DMARD) Therapy; ClinicalTrials.gov, number NCT00848354; https://clinicaltrials.gov/ct2/show/NCT00848354.

  20. Mandating coverage of biologic therapies for rheumatic disease: where evidence and politics meet.

    PubMed

    Bair, Yali A; White, Richard H; Kravitz, Richard L

    2006-06-15

    In this issue of Arthritis Care & Research, we inaugurate an occasional series of commentaries entitled Policy Matters. In all of clinical research, our goal is to improve patient outcomes. Usually, that means focusing on the medical, demographic, and socioeconomic factors at the level of individuals with rheumatic diseases; sometimes, our scope of inquiry expands to encompass the impact of the communities in which they live. However, increasingly, the welfare of persons with rheumatic conditions is also affected by health policies through such diverse mechanisms as reimbursement decisions for specific treatments, insurance coverage, manpower, and NIH budgets (the foregoing list is hardly exhaustive).Recently, a piece of legislation was introduced in California (SB913) that has the potential to alter the availability of biologic response modifying agents (BRMs) by mandating that health plans that provide coverage for one such agent include all on their formularies (a revised version would preclude a trial of another disease-modifying antirheumatic drug before use of a BRM). In this state, the California Health Benefits Review Program (CHBRP) provides evidence reviews of the medical effectiveness, cost, and public health impact of proposed health insurance mandates for the legislature. The analysts from the University of California who conducted the medical effectiveness review of SB913 for CHBRP provide a legislative history of the proposed law in this article. We hope that the readership of Arthritis Care & Research find this article informative as an exemplar of the policies that could dramatically alter the welfare of our patients.

  1. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis.

    PubMed

    Wang, Lu; Yao, Lina; Hao, Xinyuan; Li, Nana; Qian, Wenjun; Yue, Chuan; Ding, Changqing; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2018-04-01

    Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.

  2. Multilevel systems biology modeling characterized the atheroprotective efficiencies of modified dairy fats in a hamster model.

    PubMed

    Martin, Jean-Charles; Berton, Amélie; Ginies, Christian; Bott, Romain; Scheercousse, Pierre; Saddi, Alessandra; Gripois, Daniel; Landrier, Jean-François; Dalemans, Daniel; Alessi, Marie-Christine; Delplanque, Bernadette

    2015-09-01

    We assessed the atheroprotective efficiency of modified dairy fats in hyperlipidemic hamsters. A systems biology approach was implemented to reveal and quantify the dietary fat-related components of the disease. Three modified dairy fats (40% energy) were prepared from regular butter by mixing with a plant oil mixture, by removing cholesterol alone, or by removing cholesterol in combination with reducing saturated fatty acids. A plant oil mixture and a regular butter were used as control diets. The atherosclerosis severity (aortic cholesteryl-ester level) was higher in the regular butter-fed hamsters than in the other four groups (P < 0.05). Eighty-seven of the 1,666 variables measured from multiplatform analysis were found to be strongly associated with the disease. When aggregated into 10 biological clusters combined into a multivariate predictive equation, these 87 variables explained 81% of the disease variability. The biological cluster "regulation of lipid transport and metabolism" appeared central to atherogenic development relative to diets. The "vitamin E metabolism" cluster was the main driver of atheroprotection with the best performing transformed dairy fat. Under conditions that promote atherosclerosis, the impact of dairy fats on atherogenesis could be greatly ameliorated by technological modifications. Our modeling approach allowed for identifying and quantifying the contribution of complex factors to atherogenic development in each dietary setup. Copyright © 2015 the American Physiological Society.

  3. Effective protection of biological membranes against photo-oxidative damage: Polymeric antioxidant forming a protecting shield over the membrane.

    PubMed

    Mertins, Omar; Mathews, Patrick D; Gomide, Andreza B; Baptista, Mauricio S; Itri, Rosangela

    2015-10-01

    We have prepared a chitosan polymer modified with gallic acid in order to develop an efficient protection strategy biological membranes against photodamage. Lipid bilayers were challenged with photoinduced damage by photosensitization with methylene blue, which usually causes formation of hydroperoxides, increasing area per lipid, and afterwards allowing leakage of internal materials. The damage was delayed by a solution of gallic acid in a concentration dependent manner, but further suppressed by the polymer at very low concentrations. The membrane of giant unilamellar vesicles was covered with this modified macromolecule leading to a powerful shield against singlet oxygen and thus effectively protecting the lipid membrane from oxidative stress. The results have proven the discovery of a promising strategy for photo protection of biological membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Variation of DNA Methylome of Zebrafish Cells under Cold Pressure

    PubMed Central

    Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang

    2016-01-01

    DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266

  5. How biological background assumptions influence scientific risk evaluation of stacked genetically modified plants: an analysis of research hypotheses and argumentations.

    PubMed

    Rocca, Elena; Andersen, Fredrik

    2017-08-14

    Scientific risk evaluations are constructed by specific evidence, value judgements and biological background assumptions. The latter are the framework-setting suppositions we apply in order to understand some new phenomenon. That background assumptions co-determine choice of methodology, data interpretation, and choice of relevant evidence is an uncontroversial claim in modern basic science. Furthermore, it is commonly accepted that, unless explicated, disagreements in background assumptions can lead to misunderstanding as well as miscommunication. Here, we extend the discussion on background assumptions from basic science to the debate over genetically modified (GM) plants risk assessment. In this realm, while the different political, social and economic values are often mentioned, the identity and role of background assumptions at play are rarely examined. We use an example from the debate over risk assessment of stacked genetically modified plants (GM stacks), obtained by applying conventional breeding techniques to GM plants. There are two main regulatory practices of GM stacks: (i) regulate as conventional hybrids and (ii) regulate as new GM plants. We analyzed eight papers representative of these positions and found that, in all cases, additional premises are needed to reach the stated conclusions. We suggest that these premises play the role of biological background assumptions and argue that the most effective way toward a unified framework for risk analysis and regulation of GM stacks is by explicating and examining the biological background assumptions of each position. Once explicated, it is possible to either evaluate which background assumptions best reflect contemporary biological knowledge, or to apply Douglas' 'inductive risk' argument.

  6. Clarification of the Use of Biological Data and Information in the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance

    EPA Pesticide Factsheets

    The memorandum modifies the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance to provide clarity and promote consistency in the manner in which states use biological data and information in developing their 2002 submissions.

  7. The modified Memorial Symptom Assessment Scale Short Form: a modified response format and rational scoring rules.

    PubMed

    Sharp, J L; Gough, K; Pascoe, M C; Drosdowsky, A; Chang, V T; Schofield, P

    2018-07-01

    The Memorial Symptom Assessment Scale Short Form (MSAS-SF) is a widely used symptom assessment instrument. Patients who self-complete the MSAS-SF have difficulty following the two-part response format, resulting in incorrectly completed responses. We describe modifications to the response format to improve useability, and rational scoring rules for incorrectly completed items. The modified MSAS-SF was completed by 311 women in our Peer and Nurse support Trial to Assist women in Gynaecological Oncology; the PeNTAGOn study. Descriptive statistics were used to summarise completion of the modified MSAS-SF, and provide symptom statistics before and after applying the rational scoring rules. Spearman's correlations with the Functional Assessment for Cancer Therapy-General (FACT-G) and Hospital Anxiety and Depression Scale (HADS) were assessed. Correct completion of the modified MSAS-SF items ranged from 91.5 to 98.7%. The rational scoring rules increased the percentage of useable responses on average 4% across all symptoms. MSAS-SF item statistics were similar with and without the scoring rules. The pattern of correlations with FACT-G and HADS was compatible with prior research. The modified MSAS-SF was useable for self-completion and responses demonstrated validity. The rational scoring rules can minimise loss of data from incorrectly completed responses. Further investigation is recommended.

  8. Etiology of ejaculation and pathophysiology of premature ejaculation.

    PubMed

    Donatucci, Craig F

    2006-09-01

    Ejaculation is comprised of three stages of the male sexual response cycle, namely emission, ejection, and orgasm; however, in comparison with erection, which is a well-understood component of male sexual response, the pathophysiology of ejaculation has yet to be fully delineated. Premature ejaculation (PE), the most common sexual disorder in men, while believed to have a multifactorial etiology, is even less well understood. This article reviews the physiology of ejaculation, and the multifactorial pathophysiology of PE. The Sexual Medicine Society of North America hosted a State of the Art Conference on Premature Ejaculation on June 24-26, 2005 in collaboration with the University of South Florida. The purpose was to have an open exchange of contemporary research and clinical information on PE. There were 16 invited presenters and discussants; the group focused on several educational objectives. Data were obtained by extensive examination of published peer-reviewed literature. Evidence supports that biologic mechanisms associated with neurotransmitters such as norepinephrine, serotonin, oxytocin, Gamma-amino-butyric acid, and nitric oxide (NO) as well as the hormone estrogen play central roles in ejaculation, and subsequently may mediate PE. There is also emerging evidence to show that hyperthyroidism may be a causal factor in PE. Recent data also suggest that psychogenic factors include high level of any experience by some men with PE. The pathophysiology of both lifelong and acquired PE appears to be both neurobiogenic and psychogenic. While psychogenic factors appear to be contributory to PE, pharmacologic intervention of PE can modify intravaginal ejaculatory latency time (IELT), which suggests that IELT is a biological variable, and is likely biologically dependent upon neurotransmitters and hormones.

  9. The Temperature Optima and Temperature Sensitivity of Soil Respiration Explained By Macromolecular Rate Theory (MMRT).

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; O'Neill, T.; Arcus, V. L.

    2014-12-01

    One of the most fundamental factors controlling all biological and chemical processes is changing temperature. Temperature dependence was originally described by the Arrhenius function in the 19th century. This function provides an excellent description of chemical reaction rates. However, the Arrhenius function does not predict the temperature optimum of biological rates that is clearly evident in laboratory and field measurements. Previously, the temperature optimum of biological processes has been ascribed to denaturation of enzymes but the observed temperature optima in soil are often rather modest, occurring at about 40-50°C and generally less than recognised temperatures for protein unfolding. We have modified the Arrhenius function incorporating a temperature-dependent activation energy derived directly from first principles from thermodynamics of macromolecules. MacroMolecular Rate Theory (MMRT) accounts for large changes in the flexibility of enzymes during catalysis that result in changes in heat capacity (ΔC‡p) of the enzyme during the reaction. MMRT predicts an initially Arrhenius-like response followed by a temperature optimum without the need for enzyme denaturation (Hobbs et al., 2013. ACS Chemical Biology. 8: 2388-2393). Denaturation, of course, occurs at much higher temperatures. We have shown that MMRT fits biogeochemical data collected from laboratory and field studies with important implications for changes in absolute temperature sensitivity as temperature rises (Schipper et al., 2014. Global Change Biology). As the temperature optimum is approached the absolute temperature sensitivity of biological processes decreases to zero. Consequently, the absolute temperature-sensitivity of soil biological processes depends on both the change in ecosystem temperature and the temperature optimum of the biological process. MMRT also very clearly explains why Q10 values decline with increasing temperature more quickly than would be predicted from the Arrhenius function. Temperature optima of many soil biological processes including respiration are very poorly documented but would lead to a better understanding of how soil systems will respond to increasing global temperatures.

  10. Annual acquisition and administration cost of biologic response modifiers per patient with rheumatoid arthritis, psoriasis, psoriatic arthritis, or ankylosing spondylitis.

    PubMed

    Bonafede, Machaon; Joseph, George J; Princic, Nicole; Harrison, David J

    2013-09-01

    To estimate annual biologic response modifier (BRM) cost per treated patient with rheumatoid arthritis, psoriasis, psoriatic arthritis, and/or ankylosing spondylitis receiving etanercept, abatacept, adalimumab, certolizumab, golimumab, infliximab, rituximab, or ustekinumab. This was a cohort study of 69,349 commercially insured individuals in a nationwide claims database with one of these conditions that had a claim for one of these BRMs between January 2008 and December 2010 (the index BRM/index date). Cost per treated patient was calculated as the total BRM acquisition and administration cost to the payer in the first year after the index date (including costs of other BRMs after switching) divided by the number of patients who received the index BRM. Etanercept was selected as the reference for comparisons. Etanercept was the most commonly used index BRM (n = 32,298; 47%), followed by adalimumab (n = 20,582; 30%), infliximab (n = 11,157; 16%), abatacept (n = 2633; 4%), rituximab (n = 1359; 2%), golimumab (n = 687; <1%), ustekinumab (n = 388; <1%), and certolizumab (n = 245; <1%). Using etanercept as the reference, the cost per treated patient in the first year across all four conditions was 102% for adalimumab and 108% for infliximab. Newer BRMs had costs relative to etanercept that were 90% to 102% for rheumatoid arthritis, 132% for psoriasis, 100% for psoriatic arthritis, and 94% for ankylosing spondylitis. Potential study limitations were the lack of clinical information (e.g., disease severity, treatment outcomes) or indirect costs, the inability to compare costs of newer BRMs across all four conditions, and much smaller sample sizes for newer BRMs. Of the BRMs that are approved for indications within all four conditions studied, etanercept had the lowest cost per treated patient when assessed across all four conditions.

  11. 25 years and still going strong: 2'-O-(pyren-1-yl)methylribonucleotides - versatile building blocks for applications in molecular biology, diagnostics and materials science.

    PubMed

    Hrdlicka, Patrick J; Karmakar, Saswata

    2017-11-29

    Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.

  12. Agribusiness: Industry Study Final Report, AY 2003-2004, Seminar 1

    DTIC Science & Technology

    2004-01-01

    vulnerability of our nation’s food supply to a potential biological attack, primarily due to inadequate governmental oversight. He states, "The Food and Drug...national laboratory system to assist with chemical, biological , and radiological agent identification and analysis. Following the passage of the...Genetically Modified Foods,” June 2003. Chalk, Peter, “Hitting America’s Soft Underbelly: The Potential Threat of Deliberate Biological Attacks

  13. Biochemistry of plant class IV chitinases and fungal chitinase-modifying proteins

    USDA-ARS?s Scientific Manuscript database

    Plant class IV chitinases have 2 domains, a small (3 kDa) amino-terminal domain with homology to carbohydrate binding peptides, and a larger (25 kDa) catalytic domain. The biological function of these chitinases is not known. But it is known that some pathogenic fungi secrete chitinase modifying pro...

  14. Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation*

    PubMed Central

    Valiente, Esmeralda; Bouché, Laura; Hitchen, Paul; Faulds-Pain, Alexandra; Songane, Mario; Dawson, Lisa F.; Donahue, Elizabeth; Stabler, Richard A.; Panico, Maria; Morris, Howard R.; Bajaj-Elliott, Mona; Logan, Susan M.; Dell, Anne; Wren, Brendan W.

    2016-01-01

    Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439–25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains. PMID:27703012

  15. pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy.

    PubMed

    Lungu, Iulia Ioana; Rădulescu, Marius; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2016-01-01

    In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and shape are synthesized by various modern methods, such as homogeneous precipitation, coprecipitation, microemulsion or polyol approaches, high temperature and hydrothermal reactions, sol-gel reactions, aerosol÷vapor processes and sonolysis. Due to their unique combined physico-chemical and biological properties (such as higher dispensability, chemical and thermal stability, biocompatibility), pH responsive core-shell magnetic NPs are widely investigated for controlled release of cytostatic drugs into the tumor site by means of pH change: magnetite@silicon dioxide (Fe3O4@SiO2), Fe3O4@titanium dioxide (TiO2), β-thiopropionate-polyethylene glycol (PEG)-modified Fe3O4@mSiO2, Fe3O4 NPs core coated with SiO2 with an imidazole group modified PEG-polypeptide (mPEG-poly-L-Asparagine), polyacrylic acid (PAA) and folic acid (FA) coating of the iron oxide NP core, methoxy polyethylene glycol-block-polymethacrylic acid-block-polyglycerol monomethacrylate (MPEG-b-PMAA-b-PGMA) attached by a PGMA block to a Fe3O4 core, PEG-modified polyamidoamine (PAMAM) dendrimer shell with Fe3O4 core and mesoporous silica coated on Fe3O4, mostly coated with an anticancer drug. This review paper highlights the modern research directions currently employed to demonstrate the utility of the pH responsive core-shell magnetic NPs in diagnosis and treatment of oncological diseases.

  16. The Biological Basis of Learning and Individuality.

    ERIC Educational Resources Information Center

    Kandel, Eric R.; Hawkins, Robert D.

    1992-01-01

    Describes the biological basis of learning and individuality. Presents an overview of recent discoveries that suggest learning engages a simple set of rules that modify the strength of connection between neurons in the brain. The changes are cited as playing an important role in making each individual unique. (MCO)

  17. INTERACTIONS BETWEEN PHOTOCHEMICAL AND MICROBIAL DECOMPOSITION IN MODIFYING THE BIOLOGICAL AVAILABILITY AND OPTICAL PROPERTIES OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Direct photodecomposition and photochemically-mediated bacterial degradation (via photochemical modification of otherwise refractory DOM into biologically labile forms) provide
    important pathways for the loss of dissolved organic matter in coastal waters. Here we report
    lab...

  18. Knowlege of, attitudes toward, and acceptance of genetically modified organisms among prospective teachers of biology, home economics, and grade school in Slovenia.

    PubMed

    Sorgo, Andrej; Ambrožič-Dolinšek, Jana

    2010-05-01

    The objective of this study was to investigate knowledge, opinions, and attitudes toward, as well as readiness to accept genetically modified organisms (GMOs) among prospective primary and secondary Slovene teachers. Our findings are that prospective teachers want to take an active role in rejecting or supporting individual GMOs and are aware of the importance of education about genetically modified organism (GMO) items and their potential significance for society. Through cluster analysis, we recognized four clusters of GMOs, separated by degree of genetically modified acceptability. GM plants and microorganisms which are recognized as useful are accepted. They are undecided about organisms used in research or medicine and reject organisms used for food consumption and for fun. There are only weak correlations between knowledge and attitudes and knowledge and acceptance of GMOs, and a strong correlation between attitudes and acceptance. The appropriate strategies and actions for improving university courses in biotechnology are discussed. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  19. Student- and faculty-reported importance of science prerequisites for osteopathic medical school: a survey-based study.

    PubMed

    Binstock, Judith; Junsanto-Bahri, Tipsuda

    2014-04-01

    The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.

  20. Hedge your bets on Flood Risk: How do Hedgerows modify hillslope and catchment scale hydrological response?

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2017-04-01

    A dominant feature in the agricultural landscape in the UK are field boundaries. Two thirds of England has been continuously hedged for over a thousand years although most modern hedges were planted during the Enclosures Acts 1720-1840. However, the use of larger agricultural machinery has resulted in the removal of some field boundaries and the subsequent increase in field sizes over the 20th Century. The multiple benefits of hedgerows in ecology have been extensively studied, but the impact of these widespread features on hydrology and flood risk has seen very little attention. Nature-based solutions are increasingly being seen as a complementary approach to hard engineered flood defences. It is hypothesised that hedgerows play a part in this through modifying hillslope hydrological processes, including (a) changing the spatial distribution of precipitation due to sheltering effects; (b) biological loss of water through transpiration; (c) infiltration increased through improved soil structure at the boundaries; and (d) throughflow effected by modified hydraulic gradients. An extensive monitoring programme of a 20m transect through a hedgerow in the Skell Catchment, Northern England occurred from April 2014 to October 2015. The holistic hydrological cycle was monitored, including precipitation and soil moisture at different distances from the hedgerow, leaf wetness interception, stemflow collars, and throughfall gauges, and transpiration losses from the hedgerow. Results indicate that hedgerows modify precipitation volumes at different distances along the transect, but that relationships are complex, probably related to event specific weather conditions such as wind direction and speed and rainfall intensity. Soil moisture levels are significantly (p<0.001) lower along the hedgerow compared to 1, 3 and 10m away from it in all seasons. It has also been shown that hedgerows modify hydrological connectivity at the catchment scale.

  1. Bioprocessing for elimination antibiotics and hormones from swine wastewater.

    PubMed

    Cheng, D L; Ngo, H H; Guo, W S; Liu, Y W; Zhou, J L; Chang, S W; Nguyen, D D; Bui, X T; Zhang, X B

    2018-04-15

    Antibiotics and hormones in swine wastewater have become a critical concern worldwide due to the severe threats to human health and the eco-environment. Removal of most detectable antibiotics and hormones, such as sulfonamides (SAs), SMs, tetracyclines (TCs), macrolides, and estrogenic hormones from swine wastewater utilizing various biological processes were summarized and compared. In biological processes, biosorption and biodegradation are the two major removal mechanisms for antibiotics and hormones. The residuals in treated effluents and sludge of conventional activated sludge and anaerobic digestion processes can still pose risks to the surrounding environment, and the anaerobic processes' removal efficiencies were inferior to those of aerobic processes. In contrast, membrane bioreactors (MBRs), constructed wetlands (CWs) and modified processes performed better because of their higher biodegradation of toxicants. Process modification on activated sludge, anaerobic digestion and conventional MBRs could also enhance the performance (e.g. removing up to 98% SMs, 88.9% TCs, and 99.6% hormones from wastewater). The hybrid process combining MBRs with biological or physical technology also led to better removal efficiency. As such, modified conventional biological processes, advanced biological technologies and MBR hybrid systems are considered as a promising technology for removing toxicants from swine wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays

    NASA Astrophysics Data System (ADS)

    Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong

    2017-10-01

    We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.

  3. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    NASA Astrophysics Data System (ADS)

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of -37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays.

  4. Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration.

    PubMed

    Tsaryk, Roman; Silva-Correia, Joana; Oliveira, Joaquim Miguel; Unger, Ronald E; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram; Reis, Rui L; Kirkpatrick, C James

    2017-03-01

    Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan gum-based hydrogels was investigated. Both ionic- (iGG-MA) and photo-crosslinked (phGG-MA) methacrylated gellan gum hydrogels show no cytotoxicity in extraction assays with MSCs and NCs. Furthermore, the materials do not induce pro-inflammatory responses in endothelial cells. Moreover, MSCs and NCs can be encapsulated into the hydrogels and remain viable for at least 2 weeks, although apoptosis is observed in phGG-MA. Importantly, encapsulated MSCs and NCs show signs of in vivo chondrogenesis in a subcutaneous implantation of iGG-MA. Altogether, the data endorse the potential use of modified gellan gum-based hydrogel as a suitable material in NP tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine.

    PubMed

    Ruedas-Rama, Maria J; Hall, Elizabeth A H

    2010-11-01

    An enzyme-linked analytical nanosphere sensor (ANSor) is described, responding to enzyme-substrate turnover in the vicinity of a quantum dot (QD) due to coimmobilized enzyme and pH sensitive ligand. QD capping by mercapto-alkanoic acids were rejected as a pH sensitive ligand, but with the use of a layer-by-layer assembly on mercaptopropionic capped QDs and an intermediate poly(allylamine hydrochloride) layer, anthraquinone sulfonate (calcium red, CaR) was introduced to modify the pKa in the immobilized system > 8. QD-CaR absorption shows spectral overlap with QD530 emission at all pHs and gives a complex pH dependent fluorescence resonance energy transfer (FRET) efficiency, due to excited state proton transfer (λ(ex) = 540 nm; λ(em) = 585 nm). In contrast QD615-CaR with spectral overlap between the QD and CaR gave a strong and reproducible pH response. QD-urease and QD-creatinine deiminase conjugates could be linked with pH changes produced by enzyme degradation of urea and creatinine, respectively. Close coupling between the pH sensitive QD and enzyme conjugate maximized signal compared with solution based assays: QD-urease and QD-CD bioconjugates were tested in model biological media (Dulbecco's modified Eagle's Medium and fetal calf serum) and in urine, showing a response in 3-4 min.

  6. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    PubMed Central

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    Abstract The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of −37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays. PMID:27877886

  7. Biological effectiveness of nuclear fragments produced by high-energy protons interacting in tissues near the bone- soft tissue interface

    NASA Astrophysics Data System (ADS)

    Shavers, Mark Randall

    1999-12-01

    High-energy protons in the galactic cosmic rays (GCR)-or generated by nuclear interactions of GCR heavy-ions with material-are capable of penetrating great thicknesses of shielding to irradiate humans in spacecraft or in lunar or Martian habitats. As protons interact with the nuclei of the elemental constituents of soft tissue and bone, low energy nuclei-target fragments-are emitted into the cells responsible for bone development and maintenance and for hematopoiesis. Leukemogenesis is the principal endpoint of concern because it is the most likely deleterious effect, and it has a short latency period and comparatively low survival rate, although other myelo- proliferative disorders and osteosarcoma also may be induced. A one-dimensional proton-target fragment transport model was used to calculate the energy spectra of fragments produced in bone and soft tissue, and present in marrow cavities at distances from a bone interface. In terms of dose equivalent, the target fragments are as significant as the incident protons. An average radiation quality factor was found to be between 1.8 and 2.6. Biological response to the highly non- uniform energy deposition of the target fragments is such that an alternative approach to conventional predictive risk assessment is needed. Alternative procedures are presented. In vitro cell response and relative biological effectiveness were calculated from the radial dose distribution of each fragment produced by 1-GeV protons using parameters of a modified Ion-Gamma- Kill (IGK) model of radiation action. The modelled endpoints were survival of C3H10t 1/2 and V79 cells, neoplastic transformation of C3H10t1/2 cells, and mutation of the X-linked hypoxanthine phosphoribosyltransferase (HPRT) locus in V79 cells. The dose equivalent and cell responses increased by 10% or less near the interface. Since RBE increases with decreasing dose in the IGK model, comparisons with quality factors were made at dose levels 0.01 <= D [Gy] <= 2. Applying average quality factors derived herein to GCR exposures results in a <= 5% increase of in average quality. Calculated RBEs indicate that accepted quality factors for high-energy protons may be too low due to the relatively high effectiveness of the low-charged target fragments. Derived RBEs for target fragments increase the calculated biological effectiveness of GCR by 20% to 180%.

  8. Allosteric regulation of epigenetic modifying enzymes.

    PubMed

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  10. The role of chemotherapy in the treatment of malignant astrocytomas.

    PubMed

    Mathieu, David; Fortin, David

    2006-05-01

    Malignant astrocytomas are aggressive neoplasms with a dismal prognosis despite optimal treatment. Maximal resective surgery is traditionally complemented by radiation therapy. Chemotherapy is now used on patients as initial therapy when their functional status is congruent with further treatment. The classic agents used are nitrosoureas, but temozolomide has taken the front seat recently, with recent data demonstrating increased survival when this agent is used concurrently with radiation therapy in newly diagnosed glioblastoma patients. A new class of agents, refered to as biological modifiers, are increasingly used in clinical trials in an effort to affect the intrinsic biologic aberrations harboured by tumor cells. These drugs comprise differentiation agents, anti-angiogenic agents, matrix-metalloproteinase inhibitors and signal transduction inhibitors, among others. This article reviews the standard cytotoxic agents that have been used to treat malignant astrocytomas, and the different combination regimens offering promise. In addition, recent advances with biological modifiers are also discussed.

  11. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses.

    PubMed

    Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S; Parkhouse, Kaela; Cain, Derek W; Jones, Letitia; Moody, M Anthony; Verkerke, Hans P; Myles, Arpita; Willis, Elinor; LaBranche, Celia C; Montefiori, David C; Lobby, Jenna L; Saunders, Kevin O; Liao, Hua-Xin; Korber, Bette T; Sutherland, Laura L; Scearce, Richard M; Hraber, Peter T; Tombácz, István; Muramatsu, Hiromi; Ni, Houping; Balikov, Daniel A; Li, Charles; Mui, Barbara L; Tam, Ying K; Krammer, Florian; Karikó, Katalin; Polacino, Patricia; Eisenlohr, Laurence C; Madden, Thomas D; Hope, Michael J; Lewis, Mark G; Lee, Kelly K; Hu, Shiu-Lok; Hensley, Scott E; Cancro, Michael P; Haynes, Barton F; Weissman, Drew

    2018-06-04

    T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4 + T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses. © 2018 Pardi et al.

  12. Update on the use of systemic biologic agents in the treatment of noninfectious uveitis

    PubMed Central

    Pasadhika, Sirichai; Rosenbaum, James T

    2014-01-01

    Uveitis is one of the leading causes of blindness worldwide. Noninfectious uveitis may be associated with other systemic conditions, such as human leukocyte antigen B27-related spondyloarthropathies, inflammatory bowel disease, juvenile idiopathic arthritis, Behçet’s disease, and sarcoidosis. Conventional therapy with corticosteroids and immunosuppressive agents (such as methotrexate, azathioprine, mycophenolate mofetil, and cyclosporine) may not be sufficient to control ocular inflammation or prevent non-ophthalmic complications in refractory patients. Off-label use of biologic response modifiers has been studied as primary and secondary therapeutic agents. They are very useful when conventional immunosuppressive therapy has failed or has been poorly tolerated, or to treat concomitant ophthalmic and systemic inflammation that might benefit from these medications. Biologic therapy, primarily infliximab, and adalimumab, have been shown to be rapidly effective for the treatment of various subtypes of refractory uveitis and retinal vasculitis, especially Behçet’s disease-related eye conditions and the uveitis associated with juvenile idiopathic arthritis. Other agents such as golimumab, abatacept, canakinumab, gevokizumab, tocilizumab, and alemtuzumab may have great future promise for the treatment of uveitis. It has been shown that with proper monitoring, biologic therapy can significantly improve quality of life in patients with uveitis, particularly those with concurrent systemic symptoms. However, given high cost as well as the limited long-term safety data, we do not routinely recommend biologics as first-line therapy for noninfectious uveitis in most patients. These agents should be used with caution by experienced clinicians. The present work aims to provide a broad and updated review of the current and in-development systemic biologic agents for the treatment of noninfectious uveitis. PMID:24600203

  13. Immune response genes receptors expression and polymorphisms in relation to multiple sclerosis susceptibility and response to INF-β therapy.

    PubMed

    Karam, Rehab A; Rezk, Noha A; Amer, Mona M; Fathy, Hala A

    2016-09-01

    Interferon (IFN)-β is one of the disease modifying drugs used in the treatment of multiple sclerosis. A predictive marker that indicates good or poor response to the treatment is highly desirable. We aimed to investigate the relation between the immune response genes receptors (IFNAR1, IFNAR2, and CCR5) expression and their polymorhic variants and multiple sclerosis (MS) susceptibility as well as the response to IFN-β therapy. The immune response genes receptors expression and genotyping were analyzed in 80 patients with MS, treated with IFN-β and in 110 healthy controls. There was a significant decrease of IFNAR1 and IFNAR2 mRNA expression and a significant increase of CCR5 mRNA expression in MS patients compared with the control group. Also, the level of IFNAR1, IFNAR2, and CCR5 mRNA expression was found to be significantly lower in the responders than nonresponders. Carriers of IFNAR1 18417 C/C genotype and C allele had an increased risk of developing MS. There was a significant relation between CCR5 Δ32 allele and IFN-β treatment response in MS patients. Our results highlighted the significance of IFNAR and CCR5 genes in multiple sclerosis risk and the response to IFN-β therapy. © 2016 IUBMB Life, 68(9):727-734, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Social inclusion enhances biological motion processing: A functional near-infrared spectroscopy study

    PubMed Central

    Bolling, Danielle Z.; Pelphrey, Kevin A.; Kaiser, Martha D.

    2012-01-01

    Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscopy (fNIRS) to reliably measure brain responses to PLDs of biological motion, and determine the sensitivity of these responses to interpersonal contextual factors. To establish reliability, we measured brain activation to biological motion with fNIRS and functional magnetic resonance imaging (fMRI) during two separate sessions in an identical group of 12 participants. To establish sensitivity, brain responses to biological motion measured with fNIRS were subjected to an additional social manipulation where participants were either socially included or excluded before viewing PLDs of biological motion. Results revealed comparable brain responses to biological motion using fMRI and fNIRS in the right supramarginal gyrus. Further, social inclusion increased brain responses to biological motion in right supramarginal gyrus and posterior STS. Thus, fNIRS can reliably measure brain responses to biological motion and can detect social experience-dependent modulations of these brain responses. PMID:22941501

  15. In vitro characterization of peptide-modified p(AAm-co-EG/AAc) IPN-coated titanium implants.

    PubMed

    Barber, Thomas A; Gamble, Lara J; Castner, David G; Healy, Kevin E

    2006-07-01

    Interpenetrating polymer networks (IPNs) of poly(acrylamide-co-ethylene glycol/acrylic acid) [p(AAm-co-EG/AAc)] functionalized with an -Arg-Gly-Asp- containing peptide derived from rat bone sialoprotein [bsp-RGD(15)] were grafted to titanium implants in an effort to modulate osteoblast behavior in vitro. Surface characterization data were consistent with the presence of an IPN, and ligand density measurements established that the range of peptide density on the modified implants spanned three orders of magnitude (0.01-20 pmol/cm2). In vitro biological characterization of the modified implants employing the primary rat calvarial osteoblast (RCO) model resulted in the identification of a critical ligand density (0.01

  16. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    PubMed Central

    Pasternak, Anna; Hernandez, Frank J.; Rasmussen, Lars M.; Vester, Birte; Wengel, Jesper

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation. PMID:20870750

  17. Penicillin resistance compromises Nod1-dependent proinflammatory activity and virulence fitness of neisseria meningitidis.

    PubMed

    Zarantonelli, Maria Leticia; Skoczynska, Anna; Antignac, Aude; El Ghachi, Meriem; Deghmane, Ala-Eddine; Szatanik, Marek; Mulet, Céline; Werts, Catherine; Peduto, Lucie; d'Andon, Martine Fanton; Thouron, Françoise; Nato, Faridabano; Lebourhis, Lionel; Philpott, Dana J; Girardin, Stephen E; Vives, Francina Langa; Sansonetti, Philippe; Eberl, Gérard; Pedron, Thierry; Taha, Muhamed-Kheir; Boneca, Ivo G

    2013-06-12

    Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Human macrophage responses to metal-oxide nanoparticles: a review.

    PubMed

    Figueiredo Borgognoni, Camila; Kim, Joo Hyoung; Zucolotto, Valtencir; Fuchs, Harald; Riehemann, Kristina

    2018-05-04

    Nanomaterials have been widely used in our daily lives in medicine, cosmetics, paints, textiles and food products. Many studies aim to determine their biological effects in different types of cells. The interaction of these materials with the immune system leads to reactions by modifying the susceptibility or resistance of the host body which could induce adverse health effects. Macrophages, as specific cells of the innate immune response, play a crucial role in the human defence system to foreign agents. They can be used as a reliable test object for the investigation of immune responses under nanomaterials exposure displayed by expression of a variety of receptors and active secretion of key signalling substances for these processes. This report covers studies of human macrophage behaviours upon exposure of nanomaterials. We focused on their interaction with metal-oxide nanoparticles as these are largely used in medical and cosmetics applications. The discussion and summary of these studies can guide the development of new nanomaterials, which are, at the same time, safe and useful for new purposes, especially for health applications.

  19. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements

    PubMed Central

    Nguyen, Nga T.; McInturf, Samuel A.; Mendoza-Cózatl, David G.

    2016-01-01

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800

  20. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    PubMed

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  1. Putting a finger on the problem: Finger stick blood draw and immunization at the well-child exam elicit a cortisol response to stress among one-year-old children.

    PubMed

    Kertes, Darlene A; Kamin, Hayley S; Liu, Jingwen; Bhatt, Samarth S; Kelly, Maria

    2018-07-01

    Research examining stress reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis in young children has historically been hampered by a lack of reliable methods to invoke a cortisol stress response. This report details an effective method of eliciting a cortisol rise in one-year-old children (N = 83) by modifying and combining two naturalistic stressors previously used with infants and children. Salivary cortisol levels were collected from children before and after a finger stick blood draw and immunizations performed during their one year well-child checkup at their pediatrician's office. Results indicated that the stressor was successful at eliciting a significant cortisol response. An extensive set of potential demographic and clinical confounds were also assessed in order to identify methodological considerations important in studies of infant cortisol. The stress paradigm presented here provides a promising alternative for studies of infant HPA activity to enable investigators to more effectively evaluate early functioning of the biological stress system during this developmentally important life stage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility?

    PubMed

    Seebacher, Frank

    2005-10-01

    Biological functions are dependent on the temperature of the organism. Animals may respond to fluctuation in the thermal environment by regulating their body temperature and by modifying physiological and biochemical rates. Phenotypic flexibility (reversible phenotypic plasticity, acclimation, or acclimatisation in rate functions occurs in all major taxonomic groups and may be considered as an ancestral condition. Within the Reptilia, representatives from all major groups show phenotypic flexibility in response to long-term or chronic changes in the thermal environment. Acclimation or acclimatisation in reptiles are most commonly assessed by measuring whole animal responses such as oxygen consumption, but whole animal responses are comprised of variation in individual traits such as enzyme activities, hormone expression, and cardiovascular functions. The challenge now lies in connecting the changes in the components to the functioning of the whole animal and its fitness. Experimental designs in research on reptilian thermal physiology should incorporate the capacity for reversible phenotypic plasticity as a null-hypothesis, because the significance of differential body temperature-performance relationships (thermal reaction norms) between individuals, populations, or species cannot be assessed without testing that null-hypothesis.

  3. Application of pH-sensitive fusogenic polymer-modified liposomes for development of mucosal vaccines.

    PubMed

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji; Sekiya, Yukio

    2014-03-15

    To evaluate the usefulness of pH-sensitive fusogenic polymer (succinylated poly(glycidol) (SucPG) and 3-methylglutarylated poly(glycidol) (MGluPG))-modified liposomes as mucosal vaccine in the induction of a protective immune responses was evaluated. Mice were nasally immunized with OVA-containing SucPG-modified liposomes. After immunization, significant Ag-specific Abs were detected in the serum and intestine. When sera were analyzed for isotype distribution, antigen-specific IgG1 Ab responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ and IL-4 mRNA were detected. The same result was obtained also in the mouse immunized with OVA-containing MGluPG-modified liposomes. Furthermore, we examined the induction of immune responses in chickens following intraocular immunization with Salmonella Enteritidis Ag-containing MGluPG-modified liposomes, and the protective effect against the challenge with S. Enteritidis. Immunization with S. Enteritidis Ag-containing MGluPG-modified liposomes induced significant Ab responses against S. Enteritidis in the serum and intestine. Less fecal excretion of bacteria was observed in chickens immunized with S. Enteritidis Ag-containing MGluPG-modified liposomes after challenge. The numbers of bacteria in the caecum were also lower in immunized chickens than in unimmunized controls. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    PubMed Central

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  5. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    PubMed

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  6. The development of exploratory behaviour in the african striped mouse rhabdomys reflects a gene × environment compromise.

    PubMed

    Rymer, Tasmin L; Pillay, Neville

    2012-09-01

    Behaviour results from the interaction of an individual's genotype with prevailing environmental conditions, resulting in local adaptation to specific habitats. We investigated the development of exploratory behaviour in two closely-related species of African striped mice from the semi-arid Succulent Karoo (Rhabdomys pumilio) and moist grassland (R. dilectus chakae) localities. Irrespective of sex, R. pumilio displayed greater exploratory behaviour (open field) and greater use of the open arms of a modified plus maze, and thus were less anxious and bolder than R. d. chakae. When pups were cross-fostered between species, fostered individuals of both species showed an intermediate behavioural pattern between their foster and biological siblings: fostered R. pumilio explored more than their foster siblings but less than their biological siblings, whereas fostered R. d. chakae explored more than their biological siblings, but less than their foster siblings. Our study is one of the first to address how the underlying genotype and early postnatal experience interact to influence the expression of exploratory behaviour and personality. In particular, we showed that, in striped mice, the early postnatal environment shapes the anxiety responses and concomitant exploratory behaviour, but the genotype apparently modulates the phenotype and constrains the limit of behavioural flexibility.

  7. A biologically inspired approach to modeling unmanned vehicle teams

    NASA Astrophysics Data System (ADS)

    Cortesi, Roger S.; Galloway, Kevin S.; Justh, Eric W.

    2008-04-01

    Cooperative motion control of teams of agile unmanned vehicles presents modeling challenges at several levels. The "microscopic equations" describing individual vehicle dynamics and their interaction with the environment may be known fairly precisely, but are generally too complicated to yield qualitative insights at the level of multi-vehicle trajectory coordination. Interacting particle models are suitable for coordinating trajectories, but require care to ensure that individual vehicles are not driven in a "costly" manner. From the point of view of the cooperative motion controller, the individual vehicle autopilots serve to "shape" the microscopic equations, and we have been exploring the interplay between autopilots and cooperative motion controllers using a multivehicle hardware-in-the-loop simulator. Specifically, we seek refinements to interacting particle models in order to better describe observed behavior, without sacrificing qualitative understanding. A recent analogous example from biology involves introducing a fixed delay into a curvature-control-based feedback law for prey capture by an echolocating bat. This delay captures both neural processing time and the flight-dynamic response of the bat as it uses sensor-driven feedback. We propose a comparable approach for unmanned vehicle modeling; however, in contrast to the bat, with unmanned vehicles we have an additional freedom to modify the autopilot. Simulation results demonstrate the effectiveness of this biologically guided modeling approach.

  8. The putative roles of the ubiquitin/proteasome pathway in resistance to anticancer therapy.

    PubMed

    Smith, Laura; Lind, Michael J; Drew, Philip J; Cawkwell, Lynn

    2007-11-01

    The ubiquitin/proteasome (UP) pathway plays a significant role in many important biological functions and alterations in this pathway have been shown to contribute to the pathology of many human diseases, including cancer. Proteasome inhibition has been well established as a rational strategy for the treatment of multiple myeloma and is currently under investigation for the treatment of other haematological malignancies and solid tumours. Recent evidence suggests that proteasome inhibition may also sensitise tumour cells to the actions of both conventional chemotherapy and radiotherapy, suggesting that this pathway may modify clinical response to anticancer therapy. However, conflicting evidence exists as to the roles of the UP pathway in resistance to treatment. This review endeavours to discuss such roles.

  9. Electrodeposited gels prepared from protein alloys

    PubMed Central

    Lin, Yinan; Wang, Siran; Chen, Ying; Wang, Qianrui; Burke, Kelly A; Spedden, Elise M; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2015-01-01

    Aim Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. Materials & methods Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. Results & discussion Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. Conclusion These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine. PMID:25816881

  10. Modified rubisco large subunit n-methyltransferase useful for targeting molecules to the active-site vicinity of ribulose-1,5-bisphosphate

    DOEpatents

    Houtz, Robert L [Lexington, KY

    2012-03-20

    The present invention generally relates to a modified Rubisco large subunit .sup..epsilon.N-Methyltransferase (Rubisco LSMT, or RLSMT). The present invention also relates to a modified RLSMT-carbonic anhydrase (RLSMT-CA). This modified RLSMT-CA improves the efficiency of the reduction of CO.sub.2 during photosynthesis, which may increase plant growth rates. The present invention also relates to nucleic acids encoding the modified RLSMT-CA or modified RLSMT. Also, the present invention relates to cells including the modified RLSMT-CA or modified RLSMT, plants containing the modified RLSMT-CA or modified RLSMT, and methods using compositions of the present invention. In addition, the present invention relates to antibodies conjugated to CA which may bind to Rubisco, and antibodies which bind a modified RLSMT-CA. The invention also relates to modified forms of the LS and SS of Rubisco where the modified forms are fusions with CA or biologically active fragments thereof. The present invention provides methods of altering Rubisco carboxylase activity and altering plant growth.

  11. Favorable Effects of Weak Acids on Negative-Ion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Wu, Zengru; Gao, Wenqing; Phelps, Mitch A.; Wu, Di; Miller, Duane D.; Dalton, James T.

    2007-01-01

    Despite widespread use in pharmacokinetic, drug metabolism, and pesticide residue studies, little is known about the factors governing response during reversed-phase liquid chromatography coupled with negative-ion electrospray ionization (ESI−) mass spectrometry. We examined the effects of various mobile-phase modifiers on the ESI− response of four selective androgen receptor modulators using a postcolumn infusion system. Acetic, propionic, and butyric acid improved the ESI− responses of analytes to varying extents at low concentrations. Formic acid suppressed ionization, as did neutral salts (ammonium formate, ammonium acetate) and bases (ammonium hydroxide, triethylamine) under most conditions. Two modifiers (2,2,2-trifluoroethanol, formaldehyde) that produce anions with high gas-phase proton affinity increased ESI− responses. However, the concentrations of these modifiers required to enhance ESI− response were higher than that of acidic modifiers, which is a phenomenon likely related to their low pKa values. 2,2,2-Trifluoroethanol increased response of more hydrophobic compounds but decreased response of a more hydrophilic compound. Formaldehyde improved response of all the compounds, especially the hydrophilic compound with lower surface activity. In summary, these results suggest that an ideal ESI− modifier should provide cations that can be easily electrochemically reduced and produce anions with small molecular volume and high gas-phase proton affinity. PMID:14750883

  12. 30 CFR 254.51 - Modifying an existing OCS response plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Modifying an existing OCS response plan. 254.51 Section 254.51 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES LOCATED SEAWARD OF THE COAST LINE Oil-Spill Response...

  13. Development of liquid larval diet with modified rearing system for Bactrocera dorsalis (Hendel) (Diptera:Tephritidae) for the application of sterile insect technique

    USDA-ARS?s Scientific Manuscript database

    A liquid larval diet and its rearing system have been developed for mass rearing of Bactrocera dorsalis (Hendel) in Hawaii. Rearing facility in Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Dhaka, Bangladesh, modified protein source from brewer's yeast to a combinat...

  14. Opinion Building on a Socio-Scientific Issue: The Case of Genetically Modified Plants

    ERIC Educational Resources Information Center

    Ekborg, Margareta

    2008-01-01

    This paper presents results from a study with the following research questions: (a) are pupils' opinions on genetically modified organisms (GMOs) influenced by biology teaching; and (b) what is important for the opinion pupils hold and how does knowledge work together with other parameters such as values? 64 pupils in an upper secondary school…

  15. Nature versus design: synthetic biology or how to build a biological non-machine.

    PubMed

    Porcar, M; Peretó, J

    2016-04-18

    The engineering ideal of synthetic biology presupposes that organisms are composed of standard, interchangeable parts with a predictive behaviour. In one word, organisms are literally recognized as machines. Yet living objects are the result of evolutionary processes without any purposiveness, not of a design by external agents. Biological components show massive overlapping and functional degeneracy, standard-free complexity, intrinsic variation and context dependent performances. However, although organisms are not full-fledged machines, synthetic biologists may still be eager for machine-like behaviours from artificially modified biosystems.

  16. Science Curriculum Components Favored by Taiwanese Biology Teachers

    ERIC Educational Resources Information Center

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-01-01

    The new 1?9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and…

  17. Flush of CO2 as a short-term biological indicator of soil nitrogen mineralization in the Southeast

    USDA-ARS?s Scientific Manuscript database

    Determining the appropriate nitrogen (N) rate is critical to farm economics and environmental protection. In North Carolina, N fertilizer recommendations are not modified by residual inorganic N or biologically active N, but only by realistic yield expectation set for each soil type by crop. However...

  18. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    NASA Astrophysics Data System (ADS)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04275e

  19. Dynamic frequency tuning of electric and magnetic metamaterial response

    DOEpatents

    O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong

    2014-09-16

    A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.

  20. Efficiency of pH-Sensitive Fusogenic Polymer-Modified Liposomes as a Vaccine Carrier

    PubMed Central

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji

    2013-01-01

    The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses. PMID:23431260

  1. Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier.

    PubMed

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji

    2013-01-01

    The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses.

  2. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule.

    PubMed

    Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan

    2014-12-01

    Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component.

  3. The Arabidopsis domain of unknown function 1218 (DUF1218) containing proteins, MODIFYING WALL LIGNIN-1 and 2 (At1g31720/MWL-1 and At4g19370/MWL-2) function redundantly to alter secondary cell wall lignin content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine

    DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less

  4. The Arabidopsis domain of unknown function 1218 (DUF1218) containing proteins, MODIFYING WALL LIGNIN-1 and 2 (At1g31720/MWL-1 and At4g19370/MWL-2) function redundantly to alter secondary cell wall lignin content

    DOE PAGES

    Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine; ...

    2016-03-01

    DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less

  5. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Detection Methodologies for Pathogen and Toxins: A Review.

    PubMed

    Alahi, Md Eshrat E; Mukhopadhyay, Subhas Chandra

    2017-08-16

    Pathogen and toxin-contaminated foods and beverages are a major source of illnesses, even death, and have a significant economic impact worldwide. Human health is always under a potential threat, including from biological warfare, due to these dangerous pathogens. The agricultural and food production chain consists of many steps such as harvesting, handling, processing, packaging, storage, distribution, preparation, and consumption. Each step is susceptible to threats of environmental contamination or failure to safeguard the processes. The production process can be controlled in the food and agricultural sector, where smart sensors can play a major role, ensuring greater food quality and safety by low cost, fast, reliable, and profitable methods of detection. Techniques for the detection of pathogens and toxins may vary in cost, size, and specificity, speed of response, sensitivity, and precision. Smart sensors can detect, analyse and quantify at molecular levels contents of different biological origin and ensure quality of foods against spiking with pesticides, fertilizers, dioxin, modified organisms, anti-nutrients, allergens, drugs and so on. This paper reviews different methodologies to detect pathogens and toxins in foods and beverages.

  7. Enhancement of healing in osteochondral defects by collagen sponge implants.

    PubMed

    Speer, D P; Chvapil, M; Volz, R G; Holmes, M D

    1979-10-01

    Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.

  8. Design attributes of long-circulating polymeric drug delivery vehicles.

    PubMed

    Beck-Broichsitter, Moritz; Nicolas, Julien; Couvreur, Patrick

    2015-11-01

    Following systemic administration polymeric drug delivery vehicles allow for a controlled and targeted release of the encapsulated medication at the desired site of action. For an elevated and organ specific accumulation of their cargo, nanocarriers need to avoid opsonization, activation of the complement system and uptake by macrophages of the mononuclear phagocyte system. In this respect, camouflaged vehicles revealed a delayed elimination from systemic circulation and an improved target organ deposition. For instance, a steric shielding of the carrier surface by poly(ethylene glycol) substantially decreased interactions with the biological environment. However, recent studies disclosed possible deficits of this approach, where most notably, poly(ethylene glycol)-modified drug delivery vehicles caused significant immune responses. At present, identification of novel potential carrier coating strategies facilitating negligible immune reactions is an emerging field of interest in drug delivery research. Moreover, physical carrier properties including geometry and elasticity seem to be very promising design attributes to surpass numerous biological barriers, in order to improve the efficacy of the delivered medication. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthetic Biological Approaches to Natural Product Biosynthesis

    PubMed Central

    Winter, Jaclyn M; Tang, Yi

    2012-01-01

    Small molecules produced in Nature continue to be an inspiration for the development of new therapeutic agents. These natural products possess exquisite chemical diversity, which gives rise to their wide range of biological activities. In their host organism, natural products are assembled and modified by dedicated biosynthetic pathways that Nature has meticulously developed. Often times, the complex structures or chemical modifications instated by these pathways are difficult to replicate using traditional synthetic methods. An alternative approach for creating or enhancing the structural variation of natural products is through combinatorial biosynthesis. By rationally reprogramming and manipulating the biosynthetic machinery responsible for their production, unnatural metabolites that were otherwise inaccessible can be obtained. Additionally, new chemical structures can be synthesized or derivatized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed unnatural metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds. PMID:22221832

  10. Bioconcentration of the antidepressant fluoxetine and its effects on the physiological and biochemical status in Daphnia magna.

    PubMed

    Ding, Jiannan; Zou, Hua; Liu, Qingqing; Zhang, Shanshan; Mamitiana Razanajatovo, Roger

    2017-08-01

    The aim of this study was to evaluate the bioconcentration potential of fluoxetine and its biological effects in Daphnia magna. After 48h of waterborne exposure, the bioconcentration of fluoxetine in D. magna was determined to be 460.61 and 174.41Lkg -1 for nominal exposure concentrations of 0.5 and 5µgL -1 , respectively. Moreover, various biological endpoints, including physiological responses (filtration and ingestion rates), enzymatic biomarkers related to neurotoxicity [acetylcholinesterase (AChE)] and antioxidant defense [superoxide dismutase (SOD)], and an oxidative stress damage marker [malondialdehyde (MDA)], were assessed. Fluoxetine exposure increased the filtration rate of daphnia, while the ingestion rate was not obviously modified. AChE activity was significantly inhibited, highlighting the neurotoxicity of fluoxetine on D. magna. However, with some alterations in the SOD activity and MDA content, no obvious oxidative damage was observed in D. magna exposed to fluoxetine at the tested concentrations. These results indicate that fluoxetine can be accumulated and consequently induce physiological and biochemical perturbations in D. magna. Copyright © 2017. Published by Elsevier Inc.

  11. Stakeholders identify similar barriers but different strategies to facilitate return-to-work: A vignette of a worker with an upper extremity condition.

    PubMed

    Peters, Susan E; Truong, Anthony P; Johnston, Venerina

    2018-01-01

    Stakeholders involved in the return-to-work (RTW) process have different roles and qualificationsOBJECTIVE:To explore the perspectives of Australian stakeholders of the RTW barriers and strategies for a worker with an upper extremity condition and a complex workers' compensation case. Using a case vignette, stakeholders were asked to identify barriers and recommend strategies to facilitate RTW. Content analysis was performed on the open-ended responses. The responses were categorised into RTW barriers and strategies using the biopsychosocial model. Pearson's Chi Square and ANOVA were performed to establish group differences. 621 participants (488 healthcare providers (HCPs), 62 employers, 55 insurers and 16 lawyers) identified 36 barriers (31 modifiable): 4 demographic; 8 biological; 15 psychological and 9 social barriers. 484 participants reported 16 RTW strategies: 4 biological; 6 psychological and 6 social strategies. 'Work relationship stressors' (83.4%) and 'Personal relationship stressors' (64.7%) were the most frequently nominated barriers. HCPs most frequently nominated 'Pain management' (49.6%), while employers, insurers and lawyers nominated 'RTW planning/Suitable duties programs' (40.5%; 42.9%; 80%). Stakeholders perceived similar barriers for RTW but recommended different strategies. Stakeholders appeared to be more proficient in identifying barriers than recommending strategies. Future research should focus on tools to both identify RTW barriers and direct intervention.

  12. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

    PubMed

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

  13. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum

    PubMed Central

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G.

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  14. Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum.

    PubMed

    Wang, Dan; Dou, Wenchao; Zhao, Guangying; Chen, Yan

    2014-11-01

    In order to increase the reproducibility and stability of electrochemical immunosensor, which is a key issue for its application and popularization, an accurate and stable immunosensor for rapid detection of Salmonella pullorum (S. pullorum) was proposed in this study. The immunosensor was fabricated by modifying Screen-printed Carbon Electrode (SPCE) with electrodeposited gold nanoparticles (AuNPs), HRP-labeled anti-S. pullorum and ionic liquids (ILs) (AuNP/HRP/IL). AuNPs are electrodeposited on the working electrode surface to increase the amount of antibodies that bind to the electrode and then modified with ILs to protect the antibodies from being inactivated in the test environment and maintain their biological activity and the stability of the detection electrode. The electrochemical characteristics of the stepwise modified electrodes and the detection of S. pullorum were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). As shown in the results of the experiments, AuNPs with unique electrochemical properties as well as biocompatibility characteristics have been proven to be able to strengthen the antibody combination effectively and to increase the electrochemical response signal. In addition, a crucial assessment regarding implementation of stability and reproducibility analysis of a range of immunosensors is provided. We found that application of AuNPs/ILs in the immune modified electrodes showed obvious improvement when compared with other groups. Given their high levels of reproducibility, stability, target specificity and sensitivity, AuNPs and ILs were considered to be excellent elements for electrode modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Recognition of Double Stranded RNA by Guanidine-Modified Peptide Nucleic Acids (GPNA)

    PubMed Central

    Gupta, Pankaj; Muse, Oluwatoyosi; Rozners, Eriks

    2011-01-01

    Double helical RNA has become an attractive target for molecular recognition because many non-coding RNAs play important roles in control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double helical RNA via triple helix formation. Herein we tested if the molecular recognition of RNA can be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex-invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from D-arginine recognized the transactivation response element (TAR) of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNAs and the purine rich strand of bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex non-coding RNAs. PMID:22146072

  16. Non-viral RNA chimeric antigen receptor modified T cells in patients with Hodgkin lymphoma.

    PubMed

    Svoboda, Jakub; Rheingold, Susan R; Gill, Saar I; Grupp, Stephan A; Lacey, Simon F; Kulikovskaya, Irina; Suhoski, Megan M; Melenhorst, J Joseph; Loudon, Brandon; Mato, Anthony R; Nasta, Sunita Dwivedy; Landsburg, Daniel J; Youngman, Matthew R; Levine, Bruce L; Porter, David L; June, Carl H; Schuster, Stephen J

    2018-06-20

    Chimeric antigen receptor (CAR) modified T cells are being investigated in many settings including classical Hodgkin lymphoma (cHL). The unique biology of cHL, characterized by scant Hodgkin and Reed-Sternberg (HRS) cells within an immunosuppressive tumor microenvironment (TME), may pose challenges for cellular therapies directly targeting antigens expressed on HRS. We hypothesized that eradicating CD19 positive (+) B cells within the TME and the putative circulating CD19+ HRS clonotypic cells using anti-CD19 directed CAR modified T cells (CART19) may indirectly affect HRS cells, which do not express CD19. Here we describe our pilot trial using CART19 in patients with relapsed and refractory cHL. To limit potential toxicities, we used non-viral RNA CART19 cells which are expected to express CAR protein only a few days, as opposed to CART19 generated by viral vector transduction, which expand in vivo and retain CAR expression. All 5 enrolled patients underwent successful manufacturing of non-viral RNA CART19 and 4 were infused with protocol specified cell dose. There were no severe toxicities. Responses were seen, but these were transient. To our knowledge, this is the first CART19 clinical trial to use non-viral RNA gene delivery. This trial was registered at www.clinicaltrials.gov as NCT02277522 (adult) and NCT02624258 (pediatric). Copyright © 2018 American Society of Hematology.

  17. Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, Arnaud, E-mail: arnaud.courtois@u-bordeaux2.f; Inserm, U885, Bordeaux, F-33076; Andujar, Pascal

    2010-06-01

    Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP) decreased, and in some case abolished, the vasomotor responses induced by several vasoactive agents, whereas acute exposure to titanium dioxide nanoparticles (TiO{sub 2}NP) did not. This could be attributed to a decrease in the activity of those vasoactive agents (including PGF{sub 2{alpha}}, serotonin, endothelin-1 and acetylcholine), as suggested when they were exposedmore » to CNP before being applied to arteries. Also, CNP decreased the contraction induced by 30 mM KCl, without decreasing its activity. After endoplasmic reticulum calcium stores depletion (by caffeine and thapsigargin), CaCl{sub 2} addition induced a contraction, dependent on Store-Operated Calcium Channels that was not modified by acute CNP exposure. Further addition of 30 mM KCl elicited a contraction, originating from activation of Voltage-Operated Calcium Channels that was diminished by CNP. Contractile responses to PGF{sub 2{alpha}} or KCl, and relaxation to acetylcholine were modified neither in pulmonary arteries exposed in vitro for prolonged time to CNP or TiO{sub 2}NP, nor in those removed from rats intratracheally instilled with CNP or TiO{sub 2}NP. In conclusion, prolonged in vitro or in vivo exposure to CNP or TiO{sub 2}NP does not affect vasomotor responses of pulmonary arteries. However, acute exposure to CNP decreases contraction mediated by activation of Voltage-Operated, but not Store-Operated, Calcium Channels. Moreover, interaction of some vasoactive agents with CNP decreases their biological activity that might lead to misinterpretation of experimental data.« less

  18. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    PubMed

    Hawkins, Jared B; Jones, Mark T; Plassmann, Paul E; Thorley-Lawson, David A

    2011-01-01

    Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  19. Covalent bonding of YIGSR and RGD to PEDOT/PSS/MWCNT-COOH composite material to improve the neural interface.

    PubMed

    Wang, Kun; Tang, Rong-Yu; Zhao, Xiao-Bo; Li, Jun-Jie; Lang, Yi-Ran; Jiang, Xiao-Xia; Sun, Hong-Ji; Lin, Qiu-Xia; Wang, Chang-Yong

    2015-11-28

    The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.

  20. Modification of PBDEs (BDE-15, BDE-47, BDE-85 and BDE-126) biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential based on the pharmacophore modeling assistant with the full factor experimental design.

    PubMed

    Jiang, Long; Li, Yu

    2016-04-15

    In this study, the properties of AhR binding affinity, bio-concentration factor, half-life and vapor pressure were selected as the typical indicators of biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential for polybrominated diphenyl ethers (PBDEs), respectively. A three-dimensional pharmacophore modeling assistant with a full factor experimental design for each property was used to reveal the significant pharmacophore features and the substituent effects to obtain reasonable modified schemes for the selected target PBDEs. Finally, the performances of the persistent organic pollutant (POP) properties, the synthesis feasibility and the fire resistance of the modified compounds were evaluated. The most influential pharmacophore feature for all POP properties was the hydrophobic group, especially the vinyl and propyl groups. Modified compounds with two additional hydrophobic groups exhibited a better regulatory performance. The average reduction in the proportions of the four POP properties for the modified compounds (except for 3-phenyl-BDE-15) was 70.60%, 52.44%, 47.04% and 70.88%. In addition, the energy and the C-Br bond dissociation enthalpy of the four typical PBDEs were higher than those of the modified compounds (except for 3-phenyl-BDE-15), indicating the synthesis feasibility and the lower energy barrier of the modified compounds to release Br free radicals to provide fire resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Controlled electro-implementation of fluoride in titanium implant surfaces enhances cortical bone formation and mineralization.

    PubMed

    Taxt-Lamolle, Sébastien F; Rubert, Marina; Haugen, Håvard J; Lyngstadaas, Ståle Petter; Ellingsen, Jan Eirik; Monjo, Marta

    2010-03-01

    Previous studies have shown that bone-to-implant attachment of titanium implants to cortical bone is improved when the surface is modified with hydrofluoric acid. The aim of this study was to investigate if biological factors are involved in the improved retention of these implants. Fluoride was implemented in implant surfaces by cathodic reduction with increasing concentrations of HF in the electrolyte. The modified implants were placed in the cortical bone in the tibias of New Zealand white rabbits. After 4 weeks of healing, wound fluid collected from the implant site showed lower lactate dehydrogenase activity and less bleeding in fluoride-modified implants compared to control. A significant increase in gene expression levels of osteocalcin and tartrate-resistant acid phosphatase (TRAP) was found in the cortical bone attached to Ti implants modified with 0.001 and 0.01 vol.% HF, while Ti implants modified with 0.1% HF showed only induced TRAP mRNA levels. These results were supported by the performed micro-CT analyses. The volumetric bone mineral density of the cortical bone hosting Ti implants modified with 0.001% and 0.01% HF was higher both in the newly woven bone (<100 microm from the interface) and in the older Haversian bone (>100 microm). In conclusion, the modulation of these biological factors by surface modification of titanium implants with low concentrations of HF using cathodic reduction may explain their improved osseointegration properties. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation

    NASA Astrophysics Data System (ADS)

    Harting, Christine; Peschke, Peter; Borkenstein, Klaus; Karger, Christian P.

    2007-08-01

    Optimization of treatment plans in radiotherapy requires the knowledge of tumour control probability (TCP) and normal tissue complication probability (NTCP). Mathematical models may help to obtain quantitative estimates of TCP and NTCP. A single-cell-based computer simulation model is presented, which simulates tumour growth and radiation response on the basis of the response of the constituting cells. The model contains oxic, hypoxic and necrotic tumour cells as well as capillary cells which are considered as sources of a radial oxygen profile. Survival of tumour cells is calculated by the linear quadratic model including the modified response due to the local oxygen concentration. The model additionally includes cell proliferation, hypoxia-induced angiogenesis, apoptosis and resorption of inactivated tumour cells. By selecting different degrees of angiogenesis, the model allows the simulation of oxic as well as hypoxic tumours having distinctly different oxygen distributions. The simulation model showed that poorly oxygenated tumours exhibit an increased radiation tolerance. Inter-tumoural variation of radiosensitivity flattens the dose response curve. This effect is enhanced by proliferation between fractions. Intra-tumoural radiosensitivity variation does not play a significant role. The model may contribute to the mechanistic understanding of the influence of biological tumour parameters on TCP. It can in principle be validated in radiation experiments with experimental tumours.

  3. Obesity: impact of infections and response to vaccines.

    PubMed

    Tagliabue, C; Principi, N; Giavoli, C; Esposito, S

    2016-03-01

    Obesity is a common condition that has rapidly increased in both the industrialised and developing world in recent decades. Obese individuals show increased risk factors for severe infections and significant immune system dysregulation that may impair the immune response to vaccines. The main aim of this paper was to review the current knowledge regarding the association between obesity and the risk and outcome of infections as well as immune response to vaccines. The results showed that obesity is a highly complex clinical condition in which the functions of several organ and body systems, including the immune system, are modified. However, only a small minority of the biological mechanisms that lead to reduced host defences have been elucidated. Relevant efforts for future research should focus on obese children, as the available data on this population are scarce compared with the adult population. Even if most vaccines are given in the first months of life when obesity is rare, some vaccines require booster doses at preschool age, and other vaccines, such as the influenza vaccine, are recommended yearly in the obese population, but it is not known whether response to vaccines of obese patients is impaired. The reduced immune response of obese patients to vaccination can be deleterious not only for the patient but also for the community.

  4. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.

    PubMed

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-11-21

    Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.

  5. Stimuli-responsive polymers for antimicrobial therapy: drug targeting, contact-killing surfaces and competitive release.

    PubMed

    Alvarez-Lorenzo, Carmen; Garcia-Gonzalez, Carlos A; Bucio, Emilio; Concheiro, Angel

    2016-08-01

    Polymers can be designed to modify their features as a function of the level and nature of the surrounding microorganisms. Such responsive polymers can endow drug delivery systems and drug-medical device combination products with improved performance against intracellular infections and biofilms. Knowledge on microorganism growth environment outside and inside cells and formation of biofilm communities on biological and synthetic surfaces, together with advances in materials science and drug delivery are prompting strategies with improved efficacy and safety compared to traditional systemic administration of antimicrobial agents. This review deals with antimicrobial strategies that rely on: (i) polymers that disintegrate or undergo phase-transitions in response to changes in enzymes, pH and pO2 associated to microorganism growth; (ii) stimuli-responsive polymers that expose contact-killing groups when microorganisms try to adhere; and (iii) bioinspired polymers that recognize microorganisms for triggered (competitive/affinity-driven) drug release. Prophylaxis and treatment of infections may benefit from polymers that are responsive to the unique changes that microbial growth causes in the surrounding environment or that even recognize the microorganism itself or its quorum sensing signals. These polymers may offer novel tools for the design of macrophage-, bacteria- and/or biofilm-targeted nanocarriers as well as of medical devices with switchable antibiofouling properties.

  6. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    PubMed Central

    Saini, Kumud; AbdElgawad, Hamada; Markakis, Marios N.; Schoenaers, Sébastjen; Asard, Han; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris

    2017-01-01

    Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology. PMID:28824662

  7. Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size

    PubMed Central

    2015-01-01

    Ultrafast pump–probe measurements can discriminate the two forms of melanin found in biological tissue (eumelanin and pheomelanin), which may be useful for diagnosing and grading melanoma. However, recent work has shown that bound iron content changes eumelanin’s pump–probe response, making it more similar to that of pheomelanin. Here we record the pump–probe response of these melanins at a wider range of wavelengths than previous work and show that with shorter pump wavelengths the response crosses over from being dominated by ground-state bleaching to being dominated by excited-state absorption. The crossover wavelength is different for each type of melanin. In our analysis, we found that the mechanism by which iron modifies eumelanin’s pump–probe response cannot be attributed to Raman resonances or differences in melanin aggregation and is more likely caused by iron acting to broaden the unit spectra of individual chromophores in the heterogeneous melanin aggregate. We analyze the dependence on optical intensity, finding that iron-loaded eumelanin undergoes irreversible changes to the pump–probe response after intense laser exposure. Simultaneously acquired fluorescence data suggest that the previously reported “activation” of eumelanin fluorescence may be caused in part by the dissociation of metal ions or the selective degradation of iron-containing melanin. PMID:24446774

  8. Modifying effect of maternal nutritional status on the impact of maternal multiple micronutrient supplementation on birthweight in Indonesia.

    PubMed

    Sebayang, S K; Dibley, M J; Kelly, P; Shankar, A V; Shankar, A H

    2011-10-01

    Low birthweight (LBW) and intrauterine growth restriction are linked with maternal nutritional status during pregnancy, and maternal supplementation with multiple micronutrients (MMNs) is reported to increase birthweight. Responses to MMN, however, might be modified by maternal nutrition. To examine the differential effects of maternal nutritional status on birthweight responses to prenatal MMN supplementation, data from the Supplementation with Multiple Micronutrient Intervention Trial, a cluster-randomized trial in Indonesia was analyzed. Birthweight outcomes of 7001 infants whose mothers received iron/folic acid were compared with 7292 infants whose mothers received MMN. The modifying effects of maternal short-term nutritional status (mid-upper arm circumference (MUAC) and long-term nutritional status (height) on the birthweight response to MMN supplementation were assessed. For women with higher MUAC (≥23.5 cm), MMN increased mean birthweight by 33 g (95% confidence interval (CI): -1 to 66, P=0.06) and significantly reduced LBW by 21% (relative risk: 0.79, 95% CI: 0.64-0.99, P=0.04). The modifying effect of MUAC on mean birthweight, LBW and small for gestational age was significant. There was no evidence of a modifying effect of maternal height on the response to MMN. Supplementation with MMN in pregnancy increased birthweight, but maternal nutritional status modified this response, with infants born to women with better short-term nutrition having greater birthweight response.

  9. Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress.

    PubMed

    Medina, Matías H; Correa, Juan A; Barata, Carlos

    2007-05-01

    Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.

  10. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System

    PubMed Central

    Camilli, Giorgio; Tabouret, Guillaume; Quintin, Jessica

    2018-01-01

    β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents. PMID:29755450

  11. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements.

    PubMed

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-08-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only.

  12. Considerations for Using Genetic and Epigenetic Information in Occupational Health Risk Assessment and Standard Setting

    PubMed Central

    Schulte, P. A.; Whittaker, C.; Curran, C. P.

    2015-01-01

    Risk assessment forms the basis for both occupational health decision-making and the development of occupational exposure limits (OELs). Although genetic and epigenetic data have not been widely used in risk assessment and ultimately, standard setting, it is possible to envision such uses. A growing body of literature demonstrates that genetic and epigenetic factors condition biological responses to occupational and environmental hazards or serve as targets of them. This presentation addresses the considerations for using genetic and epigenetic information in risk assessments, provides guidance on using this information within the classic risk assessment paradigm, and describes a framework to organize thinking about such uses. The framework is a 4 × 4 matrix involving the risk assessment functions (hazard identification, dose-response modeling, exposure assessment, and risk characterization) on one axis and inherited and acquired genetic and epigenetic data on the other axis. The cells in the matrix identify how genetic and epigenetic data can be used for each risk assessment function. Generally, genetic and epigenetic data might be used as endpoints in hazard identification, as indicators of exposure, as effect modifiers in exposure assessment and dose-response modeling, as descriptors of mode of action, and to characterize toxicity pathways. Vast amounts of genetic and epigenetic data may be generated by high-throughput technologies. These data can be useful for assessing variability and reducing uncertainty in extrapolations, and they may serve as the foundation upon which identification of biological perturbations would lead to a new paradigm of toxicity pathway-based risk assessments. PMID:26583908

  13. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System.

    PubMed

    Camilli, Giorgio; Tabouret, Guillaume; Quintin, Jessica

    2018-01-01

    β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents.

  14. Comparison of the radioactive and modified techniques for measurement of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.; Grant, R. Stephen

    1978-01-01

    There are advantages and disadvantages to both the radioactive and modified tracer techniques. The main advantage of the radioactive technique is that the tracer gas is chemically inert; the main disadvantage is that a radioactive isotope of the gas must be used to obtain the necessary analytical sensitivity. The main advantage of the modified technique is that radioactive tracers are not necessary; the main disadvantage is that the hydrocarbon tracer gases may be subject to biological degradation and sorption losses. Results of this comparison study suggest that the modified technique is a promising alternative to the use of radioactive tracers.

  15. Flow interaction with a flexible viscoelastic sheet

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    2017-11-01

    Many new engineered materials and almost all soft biological tissues are made up of heterogeneous multi-scale components with complex viscoelastic behavior. This implies that their macro constitutive relations cannot be modeled sufficiently with a typical integer-order viscoelastic relation and a more general mode is required. Here, we study the flow-induced vibration of a viscoelastic sheet where a generalized fractional constitutive model is employed to represent the relation between the bending stress and the temporal response of the structure. A new method is proposed for the calculation of the convolution integral inside the fractal model and its computational benefits will be discussed. Using a coupled fluid-structure interaction (FSI) methodology based on the immersed boundary technique, dynamic fluttering modes of the structure as a result of the fluid force will be presented and the role of fractal viscoelasticity on the dynamic of the structure will be shown. Finally, it will be argued how the stress relaxation modifies the flow-induced oscillatory responses of this benchmark problem.

  16. Vegetation community response to tidal marsh restoration of a large river estuary

    USGS Publications Warehouse

    Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo

    2015-01-01

    Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.

  17. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance

    NASA Astrophysics Data System (ADS)

    Moline, Mark A.; Oliver, Matthew J.; Mobley, Curtis D.; Sundman, Lydia; Bensky, Thomas; Bergmann, Trisha; Bissett, W. Paul; Case, James; Raymond, Erika H.; Schofield, Oscar M. E.

    2007-11-01

    Nighttime water-leaving radiance is a function of the depth-dependent distribution of both the in situ bioluminescence emissions and the absorption and scattering properties of the water. The vertical distributions of these parameters were used as inputs for a modified one-dimensional radiative transfer model to solve for spectral bioluminescence water-leaving radiance from prescribed depths of the water column. Variation in the water-leaving radiance was consistent with local episodic physical forcing events, with tidal forcing, terrestrial runoff, particulate accumulation, and biological responses influencing the shorter timescale dynamics. There was a >90 nm shift in the peak water-leaving radiance from blue (˜474 nm) to green as light propagated to the surface. In addition to clues in ecosystem responses to physical forcing, the temporal dynamics in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection. This may provide the information needed to estimate the depth of internal light sources in the ocean, which is discussed in part 2 of this paper.

  18. Eosinophils in mucosal immune responses

    PubMed Central

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  19. Osmosis and Diffusion Conceptual Assessment

    PubMed Central

    Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts

    2011-01-01

    Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified from the previously published Diffusion and Osmosis Diagnostic Test (DODT) and some newly developed items. The ODCA, a validated instrument containing fewer items than the DODT and emphasizing different content areas within the realm of osmosis and diffusion, better aligns with our curriculum. Creation of the ODCA involved removal of six DODT item pairs, modification of another six DODT item pairs, and development of three new item pairs addressing basic osmosis and diffusion concepts. Responses to ODCA items testing the same concepts as the DODT were remarkably similar to responses to the DODT collected from students 15 yr earlier, suggesting that student mastery regarding the mechanisms of diffusion and osmosis remains elusive. PMID:22135375

  20. CFIRP: What we learned in the first ten years

    USGS Publications Warehouse

    Chambers, C.L.; McComb, W.C.; Tappeiner, J. C.; Kellogg, L.D.; Johnson, R.L.; Spycher, G.

    1999-01-01

    In response to public dissatisfaction with forest management methods, we initiated the College of Forestry Integrated Research Project (CFIRP) to test alternative silvicultural systems in Douglas-fir (Pseudotsuga menziesii stands in western Oregon. We compared costs and biological and human responses among a control and three replicated silvicultural alternatives to clearcutting that retained structural features found in old Douglas-fir forests. Treatments were applied within 8- to 15-ha stands and attempted to mimic crown fires (modified clearcut), windthrow (green tree retention), and small-scale impacts such as root rot diseases (small patch group selection). We also compared costs in three unreplicated treatments (large patch group selection, wedge cut, and strip cut). Each treatment included differences in the pattern of retained dead trees (snags), as either scattered individuals or as clumps. Good communication among researchers and managers, a long-term commitment to the project, and careful documentation of research sites and data are important to the success of long-term silvicultural research projects. To date, over 30 publications have resulted from the project.

  1. Effect of selected dimethylaminochalcones on some mitochondrial activities.

    PubMed

    Vašková, Janka; Reisch, Renáta; Vaško, Ladislav; Poškrobová, Martina; Kron, Ivan; Guzy, Juraj; Perjési, Pál

    2013-05-01

    Chalcones and their synthetic cyclic analogues have been shown to possess a full scale of biological activities in a variety of experimental systems. They were assessed to be mostly effective in defense against free radicals in the organism, but several compounds exhibited cytotoxic pro-oxidant activities. The respiratory response and antioxidant status in mitochondria were investigated upon addition of 4'-dimethylaminochalcone (1a) and its cyclic analogues, (E)-2-(4'-((CH3)2 N)-benzylidene)-1-indanone (1b), -1-tetralone (1c), and -1-benzosuberone (1d). Selected structures were able to change the respiratory response of mitochondria and showed an ability to modify mitochondrial metabolic and redox efficiency, though they did not indicate redox reactivity towards glutathione in adduct-free incubations. The results of the study indicate that -chalcone and -tetralone derivatives cause suppression of reactive oxygen species affecting mitochondrial respiration by mild uncoupling. In addition, (E)-2-(4'-((CH3)2 N)-indanone (1b), and to a greater extent, -benzosuberone (1d), showed pro-oxidant effects, which partially explain their cytotoxicity.

  2. Where clocks are redundant: weak circadian mechanisms in reindeer living under polar photic conditions

    NASA Astrophysics Data System (ADS)

    van Oort, Bob E. H.; Tyler, Nicholas J. C.; Gerkema, Menno P.; Folkow, Lars; Stokkan, Karl-Arne

    2007-03-01

    Biological rhythms are a result of interplay between endogenous clocks and the ambient light-dark (LD) cycle. Biological timing in resident polar organisms presents a conundrum because these experience distinct daily LD cycles for only a few weeks each year. We measured locomotor activity in reindeer, Rangifer tarandus platyrhynchus (SR, n = 5 and 6) and R. tarandus tarandus (NR, n = 6), ranging freely at 78 and 70°N, respectively, continuously throughout 1 year using data loggers. NR, but not SR, are gregarious which enabled us to examine the integrated effects of differences in social organisation and the photic environment at two different latitudes on the organisation of activity. In both sub-species, ultradian bouts of activity and inactivity alternated across the 24-h day throughout the year. This pattern was modified by the LD cycle in NR but barely at all in SR. Periodogram analysis revealed significant ultradian rhythmicity in both sub-species; the frequency of daily cycles of activity increased from three per day in winter to nearly five in summer. We conclude that this increase, and a concomitant increase in the level of daily activity, reflected the seasonal increase in the animals’ appetite and the quality of their forage. Secondly, the combination, most evident in SR, of a weak photic response, weak circadian mechanisms and a weak social synchronization reduces the constraints of biological timing in an environment which is effectively non-rhythmic most of the year and permits expression of the basic ultradian pattern of ruminant activity. Third, the weaker 24-h rhythmicity in SR compared to NR indicates a latitudinal decrease in circadian organization and photic responsiveness in Rangifer.

  3. A global parallel model based design of experiments method to minimize model output uncertainty.

    PubMed

    Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E

    2012-03-01

    Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.

  4. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate.

    PubMed

    Oyler, Benjamin L; Khan, Mohd M; Smith, Donald F; Harberts, Erin M; Kilgour, David P A; Ernst, Robert K; Cross, Alan S; Goodlett, David R

    2018-06-01

    Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS 3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. Graphical Abstract ᅟ.

  5. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response.

    PubMed

    Maiorano, Gabriele; Sabella, Stefania; Sorce, Barbara; Brunetti, Virgilio; Malvindi, Maria Ada; Cingolani, Roberto; Pompa, Pier Paolo

    2010-12-28

    The development of appropriate in vitro protocols to assess the potential toxicity of the ever expanding range of nanoparticles represents a challenging issue, because of the rapid changes of their intrinsic physicochemical properties (size, shape, reactivity, surface area, etc.) upon dispersion in biological fluids. Dynamic formation of protein coating around nanoparticles is a key molecular event, which may strongly impact the biological response in nanotoxicological tests. In this work, by using citrate-capped gold nanoparticles (AuNPs) of different sizes as a model, we show, by several spectroscopic techniques (dynamic light scattering, UV-visible, plasmon resonance light scattering), that proteins-NP interactions are differently mediated by two widely used cellular media (i.e., Dulbecco Modified Eagle's medium (DMEM) and Roswell Park Memorial Institute medium (RPMI), supplemented with fetal bovine serum). We found that, while DMEM elicits the formation of a large time-dependent protein corona, RPMI shows different dynamics with reduced protein coating. Characterization of these nanobioentities was also performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectroscopy, revealing that the average composition of protein corona does not reflect the relative abundance of serum proteins. To evaluate the biological impact of such hybrid bionanostructures, several comparative viability assays onto two cell lines (HeLa and U937) were carried out in the two media, in the presence of 15 nm AuNPs. We observed that proteins/NP complexes formed in RPMI are more abundantly internalized in cells as compared to DMEM, overall exerting higher cytotoxic effects. These results show that, beyond an in-depth NPs characterization before cellular experiments, a detailed understanding of the effects elicited by cell culture media on NPs is crucial for standardized nanotoxicology tests.

  6. Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014.

    PubMed

    2015-06-12

    On July 9, 2014, Aeras and the Max Planck Institute for Infection Biology convened a workshop entitled "Whole Mycobacteria Cell Vaccines for Tuberculosis" at the Max Planck Institute for Infection Biology on the grounds of the Charité Hospital in Berlin, Germany, close to the laboratory where, in 1882, Robert Koch first identified Mycobacterium tuberculosis (Mtb) as the pathogen responsible for tuberculosis (TB). The purpose of the meeting was to discuss progress in the development of TB vaccines based on whole mycobacteria cells. Live whole cell TB vaccines discussed at this meeting were derived from Mtb itself, from Bacille Calmette-Guérin (BCG), the only licensed vaccine against TB, which was genetically modified to reduce pathogenicity and increase immunogenicity, or from commensal non-tuberculous mycobacteria. Inactivated whole cell TB and non-tuberculous mycobacterial vaccines, intended as immunotherapy or as safer immunization alternatives for HIV+ individuals, also were discussed. Workshop participants agreed that TB vaccine development is significantly hampered by imperfect animal models, unknown immune correlates of protection and the absence of a human challenge model. Although a more effective TB vaccine is needed to replace or enhance the limited effectiveness of BCG in all age groups, members of the workshop concurred that an effective vaccine would have the greatest impact on TB control when administered to adolescents and adults, and that use of whole mycobacteria cells as TB vaccine candidates merits greater support, particularly given the limited understanding of the specific Mtb antigens necessary to generate an immune response capable of preventing Mtb infection and/or disease. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  7. Sexual orientation modulates endocrine stress reactivity.

    PubMed

    Juster, Robert-Paul; Hatzenbuehler, Mark L; Mendrek, Adrianna; Pfaus, James G; Smith, Nathan Grant; Johnson, Philip Jai; Lefebvre-Louis, Jean-Philippe; Raymond, Catherine; Marin, Marie-France; Sindi, Shireen; Lupien, Sonia J; Pruessner, Jens C

    2015-04-01

    Biological sex differences and sociocultural gender diversity influence endocrine stress reactivity. Although numerous studies have shown that men typically activate stronger stress responses than women when exposed to laboratory-based psychosocial stressors, it is unclear whether sexual orientation further modulates stress reactivity. Given that lesbian, gay, and bisexual (LGB) individuals frequently report heightened distress secondary to stigma-related stressors, we investigated whether cortisol stress reactivity differs between LGB individuals and heterosexual individuals in response to a well-validated psychosocial stressor. The study population comprised 87 healthy adults (mean age, 25 years) who were grouped according to their biological sex and their gendered sexual orientation: lesbian/bisexual women (n = 20), heterosexual women (n = 21), gay/bisexual men (n = 26), and heterosexual men (n = 20). Investigators collected 10 salivary cortisol samples throughout a 2-hour afternoon visit involving exposure to the Trier Social Stress Test modified to maximize between-sex differences. Relative to heterosexual women, lesbian/bisexual women showed higher cortisol stress reactivity 40 min after exposure to the stressor. In contrast, gay/bisexual men displayed lower overall cortisol concentrations throughout testing compared with heterosexual men. Main findings were significant while adjusting for sex hormones (estradiol-to-progesterone ratio in women and testosterone in men), age, self-esteem, and disclosure status (whether LGB participants had completed their "coming out"). Our results provide novel evidence for gender-based modulation of cortisol stress reactivity based on sexual orientation that goes beyond well-established between-sex differences. This study raises several important avenues for future research related to the physiologic functioning of LGB populations and gender diversity more broadly. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    NASA Astrophysics Data System (ADS)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-02-01

    Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. [Figure not available: see fulltext.

  9. Magnetically modified bioсells in constant magnetic field

    NASA Astrophysics Data System (ADS)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  10. 77 FR 61055 - Agricultural Bioterrorism Protection Act of 2002; Biennial Review and Republication of the Select...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... be modified genetically to become harmful are not included on the select agent list because of this... oryzae has been modified for use as a biological weapon in the past, it has been retained on the list of... disease virus is used by vaccine manufacturers as the challenge organism to verify the potency of...

  11. Modeling the effect of competition on tree diameter growth as applied in STEMS.

    Treesearch

    Margaret R. Holdaway

    1984-01-01

    The modifier function used in STEMS (Stand and Tree Evaluation and Modeling System) mathematically represents the effect that the surrounding forest community has on the growth of an individual tree. This paper 1) develops the most recent modifier function, 2) discusses its form, 3) reports the results of the analysis with biological considerations and 4) evaluates the...

  12. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    PubMed

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  13. Gone with the Wind: Conceiving of Moral Responsibility in the Case of GMO Contamination.

    PubMed

    Robaey, Zoë

    2016-06-01

    Genetically modified organisms are a technology now used with increasing frequency in agriculture. Genetically modified seeds have the special characteristic of being living artefacts that can reproduce and spread; thus it is difficult to control where they end up. In addition, genetically modified seeds may also bring about uncertainties for environmental and human health. Where they will go and what effect they will have is therefore very hard to predict: this creates a puzzle for regulators. In this paper, I use the problem of contamination to complicate my ascription of forward-looking moral responsibility to owners of genetically modified organisms. Indeed, how can owners act responsibly if they cannot know that contamination has occurred? Also, because contamination creates new and unintended ownership, it challenges the ascription of forward-looking moral responsibility based on ownership. From a broader perspective, the question this paper aims to answer is as follows: how can we ascribe forward-looking moral responsibility when the effects of the technologies in question are difficult to know or unknown? To solve this problem, I look at the epistemic conditions for moral responsibility and connect them to the normative notion of the social experiment. Indeed, examining conditions for morally responsible experimentation helps to define a range of actions and to establish the related epistemic virtues that owners should develop in order to act responsibly where genetically modified organisms are concerned.

  14. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow.

    PubMed

    Ravinet, M; Faria, R; Butlin, R K; Galindo, J; Bierne, N; Rafajlović, M; Noor, M A F; Mehlig, B; Westram, A M

    2017-08-01

    Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry

    PubMed Central

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems. PMID:25616408

  16. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry.

    PubMed

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.

  17. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

    PubMed

    Yu, Feng; Cao, Xiaodong; Zeng, Lei; Zhang, Qing; Chen, Xiaofeng

    2013-08-14

    In order to mimic the natural cartilage extracellular matrix, a novel biological degradable interpenetrating network hydrogel was synthesized from the gelatin (G), hyaluronic acid (HA) and chondroitin sulfate (CS) by Diels-Alder "click" chemistry. HA was modified with furylamine and G was modified with furancarboxylic acid respectively. (1)H NMR spectra and elemental analysis showed that the substitution degrees of HA-furan and G-furan were 71.5% and 44.5%. Then the hydrogels were finally synthesized by cross-linking furan-modified HA and G derivatives with dimaleimide poly(ethylene glycol) (MAL-PEG-MAL). The mechanical and degradation properties of the hydrogels could be tuned simply through varying the molar ratio between furan and maleimide. Rheological, mechanical and degradation studies demonstrated that the Diels-Alder "click" chemistry is an efficient method for preparing high performance biological interpenetrating hydrogels. This biomimic hydrogel with improved mechanical properties could have great potential applications in cartilage tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells.

    PubMed

    Gualde, N; Weinberger, O; Ratnofsky, S; Benacerraf, B; Burakoff, S J

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observed with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.

  19. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Weinberger, O.; Ratnofsky, S.

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observedmore » with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.« less

  20. Genetic Modifiers and Oligogenic Inheritance

    PubMed Central

    Kousi, Maria; Katsanis, Nicholas

    2015-01-01

    Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets. PMID:26033081

  1. Copper-free route to triazole-modified peptidomimetic by the combination of two multicomponent reactions in one pot.

    PubMed

    Niu, Teng-fei; Gu, Lin; Yi, Wen-bin; Cai, Chun

    2012-05-14

    An efficient copper-free protocol for the synthesis of 5-methyl-1H-1,2,3-triazole-modified peptidomimetics through the combination of Ugi four-component reaction with a three-component cycloaddition, has been developed. The copper-free straightforward process is suitable for drug discovery. The chemoselective preparation of 1,4-disubstituted, triazole-modified peptidomimetics by using alkynyl substituted amines may have potential biological and synthetic application. At last, a "Lapinski type" analysis of the physical properties was performed, which is expected to help drug discovery.

  2. Modified rotating biological contactor for removal of dichloromethane vapours.

    PubMed

    Ravi, R; Philip, Ligy; Swaminathan, T

    2015-01-01

    Bioreactors are used for the treatment of waste gas and odour that has gained much acceptance in the recent years to treat volatile organic compounds (VOCs). The different types of bioreactors (biofilter, biotrickling filter and bioscrubber) have been used for waste gas treatment. Each of these reactors has some advantages and some limitations. Though biodegradation is the main process for the removal of the pollutants, the mechanisms of removal and the microbial communities may differ among these bioreactors. Consequently, their performance or removal efficiency may also be different. Clogging of reactor and pressure drop are the main problems. In this study attempts are made to use the principle of rotating biological contactor (RBC) used for wastewater treatment for the removal of VOC. To overcome the above problem the RBC is modified which is suitable for the treatment of VOC (dichloromethane, DCM). DCM is harmful to human health and hazardous to the atmospheric environment. Modified RBC had no clogging problems and no pressure drop. So, it can handle the pollutant load for a longer period of time. A maximum elimination capacity of 25.7 g/m3 h has been achieved in this study for the DCM inlet load of 58 g/m3 h. The average biofilm thickness is 1 mm. The transient behaviour of the modified RBC treating DCM was investigated. The modified RBC is able to handle shutdown, restart and shock loading operations.

  3. Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay.

    PubMed

    Li, Ru; Huang, Jiqing; Kast, Juergen

    2015-05-01

    Oxidative stress due to the imbalance of reactive oxygen species (ROS) and the resulting reversible cysteine oxidation (CysOX) are involved in the early proatherogenic aspect of atherosclerosis. Given that the corresponding redox signaling pathways are still unclear, a modified biotin switch assay was developed to quantify the reversible CysOX in an atherosclerosis model established by using a monocytic cell line treated with platelet releasate. The accumulation of ROS was observed in the model system and validated in human primary monocytes. Through the application of the modified biotin switch assay, we obtained the first reversible CysOX proteome for this model. A total of 75 peptides, corresponding to 53 proteins, were quantified with oxidative modification. The bioinformatics analysis of these CysOX-containing proteins highlighted biological processes including glycolysis, cytoskeleton arrangement, and redox regulation. Moreover, the reversible oxidation of three glycolysis enzymes was observed using this method, and the regulation influence was verified by an enzyme activity assay. NADPH oxidase (NOX) inhibition treatment, in conjunction with the modified biotin switch method, was used to evaluate the global CysOX status. In conclusion, this versatile modified biotin switch assay provides an approach for the quantification of all reversible CysOX and for the study of redox signaling in atherosclerosis as well as in diseases in other biological systems.

  4. Critical role in CXCR4 signaling and internalization of the polypeptide main chain in the amino terminus of SDF-1α probed by novel N-methylated synthetically and modularly modified chemokine analogues.

    PubMed

    Dong, Chang-Zhi; Tian, Shaomin; Choi, Won-Tak; Kumar, Santhosh; Liu, Dongxiang; Xu, Yan; Han, Xiaofeng; Huang, Ziwei; An, Jing

    2012-07-31

    The replication of human immunodeficiency virus type 1 (HIV-1) can be profoundly inhibited by the natural ligands of two major HIV-1 coreceptors, CXCR4 and CCR5. Stromal cell-derived factor-1α (SDF-1α) is a natural ligand of CXCR4. We have recently developed a synthetic biology approach of using synthetically and modularly modified (SMM)-chemokines to dissect various aspects of the structure-function relationship of chemokines and their receptors. Here, we used this approach to design novel SMM-SDF-1α analogues containing unnatural N-methylated residues in the amino terminus to investigate whether the polypeptide main chain amide bonds in the N-terminus of SDF-1α play a role in SDF-1α signaling via CXCR4 and/or receptor internalization. The results show that SDF-1α analogues with a modified N-methylated main chain at position 2, 3, or 5 retain significant CXCR4 binding and yet completely lose signaling activities. Furthermore, a representative N-methylated analogue has been shown to be incapable of causing CXCR4 internalization. These results suggest that the ability of SDF-1α to activate CXCR4 signaling and internalization is dependent upon the main chain amide bonds in the N-terminus of SDF-1α. This study demonstrates the feasibility and value of applying a synthetic biology approach to chemically engineer natural proteins and peptide ligands as probes of important biological functions that are not addressed by other biological techniques.

  5. A glossary for avian conservation biology

    USGS Publications Warehouse

    Koford, Rolf R.; Dunning, J.B.; Ribic, C.A.; Finch, D.M.

    1994-01-01

    This glossary provides standard definitions for many of the terms used in avian conservation biology. We compiled these definitions to assist communication among researchers, managers, and others involved in the Neotropical Migratory Bird Conservation Program, also known as Partners in Flight. We used existing glossaries and recent literature to prepare this glossary. The cited sources were not necessarily the first ones to use the terms. Many definitions were taken verbatim from the cited source material. Others were modified slightly to clarify the meaning. Definitions that were modified to a greater extent are indicated as being adapted from the originals. Terms that have been used in more than one way by different authors are listed with numbered alternative definitions if the definitions differ substantially.

  6. Microbial screening test for lignite degradation. Quarterly progress report No. 3, July 1-September 30, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Degradation of Beulah std No. 3 lignite was carried out by means of cupric oxidation, modified-autoclaved-cupric oxidation, sodium dichromate oxidation, and also by biological methods. Assessment of the yield of alkaline-soluble and methanol soluble products of both cupric oxidation and modified cupric oxidation (on a moisture-free and ash-free basis) was carried out by both ion chromatography and gel permeation chromatography. Fractionation of lignite for natural-uninoculated-biological growth resulted in no growth for both benzene-methanol fraction and alkaline filtrate fraction, whereas that of alkaline geletinous fraction resulted in positive growth of unidentified white-rot fungi. Acclimation of Polyporus versicolor to lignite was attempted.more » 10 refs.« less

  7. Spectropolarimetry biopsies of the cervix at an early cancer and dysplasia

    NASA Astrophysics Data System (ADS)

    Yermolenko, S. B.; Peresunko, O. P.; Babechko, N. J.

    2015-11-01

    The analysis of the spectral anisotropic properties of layers of oncologic modified biological tissues with precancerous condition (CIN) and with cancer formation (G) of cervix according to linear dichroism determined in the wavelength range 300-800 nm was conducted. Comparison of results of animal testing of samples of biological samples oncologic modified human tissue was conducted, introduction of differentiation criterion spectropolarimetric precancerous condition and the stage cancer formation in the spectral band of 390-410 nm was proposed. Appropriate diagnostically important changes in the value ranges of linear dichroism at each stage of cancer formation (high- and low-grade dysplasia, high and low-grade adenocarcinoma) was determined. A differential method for diagnosis of epithelial cells in the above diseases was suggested.

  8. EPIGENETIC TRANSGENERATIONAL ACTIONS OF ENDOCRINE DISRUPTORS

    PubMed Central

    Skinner, Michael K.; Manikkam, Mohan; Guerrero-Bosagna, Carlos

    2010-01-01

    Environmental factors have a significant impact on biology. Therefore, environmental toxicants through similar mechanisms can modulate biological systems to influence physiology and promote disease states. The majority of environmental toxicants do not have the capacity to modulate DNA sequence, but can alter the epigenome. In the event an environmental toxicant such as an endocrine disruptor modifies the epigenome of a somatic cell, this may promote disease in the individual exposed, but not be transmitted to the next generation. In the event a toxicant modifies the epigenome of the germ line permanently, then the disease promoted can become transgenerationaly transmitted to subsequent progeny. The current review focuses on the ability of environmental factors such as endocrine disruptors to promote transgenerational phenotypes. PMID:21055462

  9. The karrikin response system of Arabidopsis.

    PubMed

    Waters, Mark T; Scaffidi, Adrian; Sun, Yueming K; Flematti, Gavin R; Smith, Steven M

    2014-08-01

    Arabidopsis thaliana provides a powerful means to investigate the mode of action of karrikins, compounds produced during wildfires that stimulate germination of seeds of fire-following taxa. These studies have revealed close parallels between karrikin signalling and strigolactone signalling. The two perception systems employ similar mechanisms involving closely related α/β-fold hydrolases (KAI2 and AtD14) and a common F-box protein (MAX2). However, karrikins and strigolactones may be distinguished from each other and elicit different responses. The karrikin response requires a newly discovered protein (SMAX1), a homologue of rice protein D53 that is required for the strigolactone response. Mutants defective in the response to karrikins have seeds with increased dormancy, altered seedling photomorphogenesis and modified leaf shape. As the karrikin and strigolactone response mechanisms are so similar, it is speculated that the endogenous signalling compound for the KAI2 system may be a specific strigolactone. However, new results show that the proposed endogenous signalling compound is not produced by the known strigolactone biosynthesis pathway via carlactone. Structural studies of KAI2 protein and its interaction with karrikins and strigolactone analogues provide some insight into possible protein-ligand interactions, but are hampered by lack of knowledge of the endogenous ligand. The KAI2 system appears to be present throughout angiosperms, implying a fundamentally important function in plant biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein

    PubMed Central

    Naciff, Jorge M.; Khambatta, Zubin S.; Carr, Gregory J.; Tiesman, Jay P.; Singleton, David W.; Khan, Sohaib A.; Daston, George P.

    2016-01-01

    To further define the utility of the Ishikawa cells as a reliable in vitro model to determine the potential estrogenic activity of chemicals of interest, transcriptional changes induced by genistein (GES) in Ishikawa cells at various doses (10 pM, 1 nM, 100 nM, and 10 μM) and time points (8, 24, and 48 h) were identified using a comprehensive microarray approach. Trend analysis indicated that the expression of 5342 unique genes was modified by GES in a dose- and time-dependent manner (P ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest dose of GES evaluated (10 μM). The GES’ estrogenic activity was identified by comparing the Ishikawa cells’ response to GES versus 17 α-ethynyl estradiol (EE, at equipotent doses, ie, 10 μM vs 1 μM, respectively) and was defined by changes in the expression of 284 unique genes elicited by GES and EE in the same direction, although the magnitude of the change for some genes was different. Further, comparing the response of the Ishikawa cells exposed to high doses of GES and EE versus the response of the juvenile rat uterus exposed to EE, we identified 66 unique genes which were up- or down regulated in a similar manner in vivo as well as in vitro. Genistein elicits changes in multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response and offer an in vitro model to assess this mode of action. PMID:26865667

  11. Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein.

    PubMed

    Naciff, Jorge M; Khambatta, Zubin S; Carr, Gregory J; Tiesman, Jay P; Singleton, David W; Khan, Sohaib A; Daston, George P

    2016-05-01

    To further define the utility of the Ishikawa cells as a reliable in vitro model to determine the potential estrogenic activity of chemicals of interest, transcriptional changes induced by genistein (GES) in Ishikawa cells at various doses (10 pM, 1 nM, 100 nM, and 10 μM) and time points (8, 24, and 48 h) were identified using a comprehensive microarray approach. Trend analysis indicated that the expression of 5342 unique genes was modified by GES in a dose- and time-dependent manner (P ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest dose of GES evaluated (10 μM). The GES' estrogenic activity was identified by comparing the Ishikawa cells' response to GES versus 17 α-ethynyl estradiol (EE, at equipotent doses, ie, 10 μM vs 1 μM, respectively) and was defined by changes in the expression of 284 unique genes elicited by GES and EE in the same direction, although the magnitude of the change for some genes was different. Further, comparing the response of the Ishikawa cells exposed to high doses of GES and EE versus the response of the juvenile rat uterus exposed to EE, we identified 66 unique genes which were up- or down regulated in a similar manner in vivo as well as in vitro Genistein elicits changes in multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response and offer an in vitro model to assess this mode of action. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Developments on drug discovery and on new therapeutics: highly diluted tinctures act as biological response modifiers.

    PubMed

    de Oliveira, Carolina C; Abud, Ana Paula R; de Oliveira, Simone M; Guimarães, Fernando de S F; de Andrade, Lucas F; Di Bernardi, Raffaello P; Coletto, Ediely L de O; Kuczera, Diogo; Da Lozzo, Eneida J; Gonçalves, Jenifer P; Trindade, Edvaldo da S; Buchi, Dorly de F

    2011-10-26

    In the search for new therapies novel drugs and medications are being discovered, developed and tested in laboratories. Highly diluted substances are intended to enhance immune system responses resulting in reduced frequency of various diseases, and often present no risk of serious side-effects due to its low toxicity. Over the past years our research group has been investigating the action of highly diluted substances and tinctures on cells from the immune system. We have developed and tested several highly diluted tinctures and here we describe the biological activity of M1, M2, and M8 both in vitro in immune cells from mice and human, and in vivo in mice. Cytotoxicity, cytokines released and NF-κB activation were determined after in vitro treatment. Cell viability, oxidative response, lipid peroxidation, bone marrow and lymph node cells immunophenotyping were accessed after mice in vivo treatment. None of the highly diluted tinctures tested were cytotoxic to macrophages or K562. Lipopolysaccharide (LPS)-stimulated macrophages treated with all highly diluted tinctures decreased tumour necrosis factor alpha (TNF-α) release and M1, and M8 decreased IFN-γ production. M1 has decreased NF-κB activity on TNF-α stimulated reporter cell line. In vivo treatment lead to a decrease in reactive oxygen species (ROS), nitric oxide (NO) production was increased by M1, and M8, and lipid peroxidation was induced by M1, and M2. All compounds enhanced the innate immunity, but M1 also augmented acquired immunity and M2 diminished B lymphocytes, responsible to acquired immunity. Based on the results presented here, these highly diluted tinctures were shown to modulate immune responses. Even though further investigation is needed there is an indication that these highly diluted tinctures could be used as therapeutic interventions in disorders where the immune system is compromised.

  13. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

    PubMed

    Gogineni, Vedanjali; Hamann, Mark T

    2018-01-01

    The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chemical methods for encoding and decoding of posttranslational modifications

    PubMed Central

    Chuh, Kelly N.; Batt, Anna R.; Pratt, Matthew R.

    2016-01-01

    A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full compliment of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come. PMID:26933738

  15. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    PubMed

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  16. Semisynthesis of SY-1 for investigation of breast cancer stem cell selectivity of C-ring-modified salinomycin analogues.

    PubMed

    Huang, Xiaoli; Borgström, Björn; Månsson, Linda; Persson, Lo; Oredsson, Stina; Hegardt, Cecilia; Strand, Daniel

    2014-07-18

    Salinomycin, a naturally occurring polyether ionophore was recently found to selectively reduce the proportion of CD44(+)/CD24(-) cells, a phenotype associated with breast cancer stem cells. Subsequent studies from our group showed that chemical modification of the allylic C20 hydroxyl of salinomycin, located at the C-ring, can enhance the activity of derivatives against breast cancer cells over 5-fold compared to the native structure. Access to C-ring-modified salinomycin analogues is thus of interest from both a mechanistic and a synthetic perspective. Here, we report efficient strategies for gram scale synthesis of the natural product SY-1 (20-deoxy salinomycin), and a saturated analogue, 18,19-dihydro SY-1, for a comparative in vitro investigation of the biological profiles of these compounds with that of salinomycin. Across several assays, the deoxygenated structures required higher concentrations to elicit similar cellular responses to that of salinomycin. Similarly to salinomycin, SY-1 or 18,19-dihydro SY-1 treatment was found to reduce the proportion of CD44(+)/CD24(-) cells with essentially complete selectivity up to ∼IC25. Importantly, the proportion of CD44(+)/CD24(-) cells showed a pronounced U-shaped dose response curve for salinomycin and its derivatives, but not for paclitaxel. The concentration for maximum response in this assay followed differences in IC50 for salinomycin and its analogues, which emphasizes the importance of taking concentration dependence into account when comparing effects on the CD44(+)/CD24(-) phenotype. Small differences in the global conformation within the triad of compounds investigated together with differences in activity across assays emphasize the importance of substitution at C20 for the activity of salinomycin and its derivatives.

  17. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

    PubMed

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.

  18. Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles

    PubMed Central

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F.; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn2+ leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. PMID:23894303

  19. The Same but Different: Making Meaning from Modified Texts with Cross-Cultural Themes

    ERIC Educational Resources Information Center

    Leung, Cynthia B.; Bennett, Susan V.; Gunn, AnnMarie Alberton

    2017-01-01

    Reader response theory provides the framework for the present study that explored literary elements and cultural responses of fifth-grade students to two modified versions of a cross-cultural text, "Homesick: My Own Story" by Jean Fritz. One group of students read the first chapter of the book and another group read a modified basal…

  20. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    PubMed

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Control of growth and squamous differentiation in normal human bronchial epithelial cells by chemical and biological modifiers and transferred genes.

    PubMed Central

    Pfeifer, A M; Lechner, J F; Masui, T; Reddel, R R; Mark, G E; Harris, C C

    1989-01-01

    The majority of human lung cancers arise from bronchial epithelial cells. The normal pseudostratified bronchial epithelium is composed of basal, mucous, and ciliated cells. This multi-differentiated epithelium usually responds to xenobiotics and physical injury by undergoing basal cell hyperplasia, mucous cell hyperplasia, and squamous metaplasia. One step of the multistage process of carcinogenesis is thought to involve aberrations in control of the squamous metaplastic processes. Decreased responsiveness to regulators of terminal squamous differentiation may confer a selective clonal expansion advantage to an initiated cell. We studied the effects of endogenous [e.g., transforming growth factor beta 1 (TGF-beta 1) and serum] and exogenous [e.g., 12-O-tetradecanoyl-13-phorbol-acetate (TPA), tobacco smoke condensate, and aldehydes] modifiers of normal human bronchial epithelial (NHBE) cell in a serum-free culture system. NHBE cells are growth inhibited by all of these compounds and induced to undergo squamous differentiation by TGF-beta 1 or TPA. In contrast, lung carcinoma cell lines are relatively resistant to inducers of terminal squamous differentiation which may provide them with a selective growth advantage. Chemical agents and activated protooncogenes (ras,raf,myc) altered the response to endogenous and exogenous inducers of squamous differentiation and caused extended cellular lifespan, aneuploidy, and/or tumorigenicity. The data suggest a close relationship between dysregulation of terminal differentiation pathways and neoplastic transformation of human bronchial epithelial cells. PMID:2538323

  2. Knowledge of, Attitudes toward, and Acceptance of Genetically Modified Organisms among Prospective Teachers of Biology, Home Economics, and Grade School in Slovenia

    ERIC Educational Resources Information Center

    Sorgo, Andrej; Ambrozic-Dolinsek, Jana

    2010-01-01

    The objective of this study was to investigate knowledge, opinions, and attitudes toward, as well as readiness to accept genetically modified organisms (GMOs) among prospective primary and secondary Slovene teachers. Our findings are that prospective teachers want to take an active role in rejecting or supporting individual GMOs and are aware of…

  3. Maintenance of remission with combination etanercept-DMARD therapy versus DMARDs alone in active rheumatoid arthritis: results of an international treat-to-target study conducted in regions with limited biologic access.

    PubMed

    Pavelka, Karel; Akkoç, Nurullah; Al-Maini, Mustafa; Zerbini, Cristiano A F; Karateev, Dmitry E; Nasonov, Evgeny L; Rahman, Mahboob U; Pedersen, Ronald; Dinh, Andrew; Shen, Qi; Vasilescu, Radu; Kotak, Sameer; Mahgoub, Ehab; Vlahos, Bonnie

    2017-09-01

    In this transglobal, randomized, double-blind, placebo-controlled, treat-to-target study, the maintenance of efficacy was compared between biologic-and biologic-free-disease-modifying antirheumatic drug (DMARD) combination regimens after low disease activity (LDA) was achieved with biologic DMARD induction therapy. Patients with moderate-to-severe rheumatoid arthritis despite methotrexate therapy received open-label etanercept 50 mg subcutaneously once weekly plus methotrexate with or without other conventional synthetic (cs) DMARDs for 24 weeks. Patients achieving LDA [disease activity score in 28 joints based on erythrocyte sedimentation rate (DAS28-ESR) <3.2] at week 24 were randomized to receive etanercept-methotrexate combination therapy or placebo-methotrexate combination therapy, with or without other csDMARDs, for 28 weeks. In the open-label period, 72% of patients achieved DAS28-ESR LDA at week 24. Patients enrolled in the double-blind period had long-standing rheumatoid arthritis and high disease activity at baseline (mean duration, 8.1 years; DAS28-ESR, 6.4). In the etanercept and placebo combination groups, 44% versus 17% achieved DAS28-ESR LDA and 34 versus 13% achieved DAS28-ESR remission at week 52 (p < 0.001). Adverse events were reported in 37 and 43%, serious adverse events in 0 and 4%, and serious infections in 0 and 2% in these groups, respectively, in the double-blind period. After induction of response with etanercept combination therapy following a treat-to-target approach in patients with long-standing rheumatoid arthritis and high disease activity at baseline, the etanercept combination regimen was significantly more effective in maintaining LDA and remission than a biologic-free regimen. ClinicalTrials.gov identifier. NCT01578850.

  4. The Impact of Biologics and Tofacitinib on Cardiovascular Risk Factors and Outcomes in Patients with Rheumatic Disease: A Systematic Literature Review.

    PubMed

    Nurmohamed, Michael; Choy, Ernest; Lula, Sadiq; Kola, Blerina; DeMasi, Ryan; Accossato, Paola

    2018-05-01

    Rheumatic diseases are autoimmune, inflammatory diseases often associated with cardiovascular (CV) disease, a major cause of mortality in these patients. In recent years, treatment with biologic and targeted synthetic disease-modifying anti-rheumatic drugs (DMARDs), either as monotherapy or in combination with other drugs, have become the standard of treatment. In this systematic literature review, we evaluated the effect of treatment with biologic or tofacitinib on the CV risk and outcomes in these patients. A systematic search was performed in MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews for articles reporting on CV risk and events in patients with rheumatic disease treated with a biologic agent or tofacitinib. Articles identified were subjected to two levels of screening. Articles that passed the first level based on title and abstract were assessed on full-text evaluation. The quality of randomized clinical trials was assessed by Jadad scoring system and the quality of the other studies and abstracts was assessed using the Downs and Black instrument. The data extracted included study design, baseline patient characteristics, and measurements of CV risk and events. Of the 5722 articles identified in the initial search, screening yielded 105 unique publications from 90 unique studies (33 clinical trials, 39 prospective cohort studies, and an additional 18 retrospective studies) that reported CV risk outcomes. A risk of bias analysis for each type of report indicated that they were of good or excellent quality. Importantly, despite some limitations in data reported, there were no indications of significant increase in adverse CV events or risk in response to treatment with the agents evaluated. Treatment with biologic or tofacitinib appears to be well-tolerated with respect to CV outcomes in these patients.

  5. Scaling Up: Adapting a Phage-Hunting Course to Increase Participation of First-Year Students in Research.

    PubMed

    Staub, Nancy L; Poxleitner, Marianne; Braley, Amanda; Smith-Flores, Helen; Pribbenow, Christine M; Jaworski, Leslie; Lopatto, David; Anders, Kirk R

    2016-01-01

    Authentic research experiences are valuable components of effective undergraduate education. Research experiences during the first years of college are especially critical to increase persistence in science, technology, engineering, and mathematics fields. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) model provides a high-impact research experience to first-year students but is usually available to a limited number of students, and its implementation is costly in faculty time and laboratory space. To offer a research experience to all students taking introductory biology at Gonzaga University (n = 350/yr), we modified the traditional two-semester SEA-PHAGES course by streamlining the first-semester Phage Discovery lab and integrating the second SEA-PHAGES semester into other courses in the biology curriculum. Because most students in the introductory course are not biology majors, the Phage Discovery semester may be their only encounter with research. To discover whether students benefit from the first semester alone, we assessed the effects of the one-semester Phage Discovery course on students' understanding of course content. Specifically, students showed improvement in knowledge of bacteriophages, lab math skills, and understanding experimental design and interpretation. They also reported learning gains and benefits comparable with other course-based research experiences. Responses to open-ended questions suggest that students experienced this course as a true undergraduate research experience. © 2016 N. L. Staub et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - Mass spectrometry analysis.

    PubMed

    Jiang, Han-Peng; Chu, Jie-Mei; Lan, Meng-Dan; Liu, Ping; Yang, Na; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-09-02

    More than 140 modified ribonucleosides have been identified in RNA. Determination of endogenous modified ribonucleosides in biological fluids may serve as non-invasive disease diagnostic strategy. However, detection of the modified ribonucleosides in biological fluids is challenging, especially for the low abundant modified ribonucleosides due to the serious matrix interferences of biological fluids. Here, we developed a facile preparation strategy and successfully synthesized zirconium oxide-silica (ZrO2/SiO2) composite capillary monolithic column that exhibited excellent performance for the selective enrichment of cis-diol-containing compounds. Compared with the boronate-based affinity monolith, the ZrO2/SiO2 monolith showed ∼2 orders of magnitude higher extraction capacity and can be used under physiological pH (pH 6.5-7.5). Using the prepared ZrO2/SiO2 composite monolith as the trapping column and reversed-phase C18 column as the analytical column, we further established an online solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry (online SPME-LC-MS/MS) analysis for the comprehensive profiling of ribonucleosides modification in human urine. Our results showed that 68 cis-diol-containing ribosylated compounds were identified in human urine, which is, to the best of our knowledge, the highest numbers of cis-diol-containing compounds were determined in a single analysis. It is worth noting that four modified ribonucleosides were discovered in the human urine for the first time. In addition, the quantification results from the pooled urine samples showed that compared to healthy controls, the contents of sixteen ribose conjugates in the urine of gastric cancer, eleven in esophagus cancer and seven in lymphoma increased more than two folds. Among these ribose conjugates, four ribose conjugates increased more than two folds in both gastric cancer and esophagus cancer; three ribose conjugates increased more than two folds in both gastric cancer and lymphoma; one ribose conjugate increased more than two folds in both esophagus cancer and lymphoma. The developed analytical method provides a good platform to study the modified ribonucleosides in human body fluids. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Radiation and cancer risk: a continuing challenge for epidemiologists

    PubMed Central

    2011-01-01

    This paper provides a perspective on epidemiological research on radiation and cancer, a field that has evolved over its six decade history. The review covers the current framework for assessing radiation risk and persistent questions about the details of these risks: is there a threshold and more generally, what is the shape of the dose-response relationship? How do risks vary over time and with age? What factors modify the risk of radiation? The example of radon progeny and lung cancer is considered as a case study, illustrating the modeling of epidemiological data to derive quantitative models and the coherence of the epidemiological and biological evidence. Finally, the manuscript considers the need for ongoing research, even in the face of research over a 60-year span. PMID:21489214

  8. Model systems: how chemical biologists study RNA

    PubMed Central

    Rios, Andro C.; Tor, Yitzhak

    2009-01-01

    Ribonucleic acids are structurally and functionally sophisticated biomolecules and the use of models, frequently truncated or modified sequences representing functional domains of the natural systems, is essential to their exploration. Functional non-coding RNAs such as miRNAs, riboswitches, and, in particular, ribozymes, have changed the view of RNA’s role in biology and its catalytic potential. The well-known truncated hammerhead model has recently been refined and new data provide a clearer molecular picture of the elements responsible for its catalytic power. A model for the spliceosome, a massive and highly intricate ribonucleoprotein, is also emerging, although its true utility is yet to be cemented. Such catalytic model systems could also serve as “chemo-paleontological” tools, further refining the RNA world hypothesis and its relevance to the origin and evolution of life. PMID:19879179

  9. Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability.

    PubMed

    Tao, Sarah L; Desai, Tejal A

    2005-12-05

    Advances in microelectomechanical systems (MEMS) have allowed the microfabrication of polymeric substrates and the development of a novel class of controlled delivery devices. These vehicles have specifically tailored three-dimensional physical and chemical features which, together, provide the capacity to target cells, promote unidirectional controlled release, and enhance permeation across the intestinal epithelial barrier. Examining the biological response at the microdevice biointerface may provide insight into the benefits of customized surface chemistry and structure in terms of complex drug delivery vehicle design. Therefore, the aim of this work was to determine the interfacial effects of selective surface chemistry and architecture of tomato lectin (TL)-modified poly(methyl methacrylate) (PMMA) drug delivery microdevices on the Caco-2 cell line, a model of the gastrointestinal tract.

  10. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Wilson, Michael

    1997-01-01

    If peptides consist of nonpolar residues only, they become inserted into the nonpolar phase. As demonstrated by the example of the leucine undecamer, such peptides fold into an a-helix as they partition into the nonpolar medium. The folding proceeds through an intermediate, called the 310-helix, which remains in equilibrium with the a-helix. This process represents a simple, protobiologically relevant example of environmentally-mediated self-organization of biological molecules. Once in the nonpolar environment, the peptides can readily change their orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The ability of nonpolar peptides to modify both the structure and orientation with changing external conditions may have provided a simple mechanism of transmitting signals from the environment to the interior of a protocell.

  11. Alpha-Fetoprotein and Hepatocellular Carcinoma Immunity

    PubMed Central

    Wang, Qiaoxia

    2018-01-01

    Hepatocarcinoma is one of the most prevalent gastroenterological cancers in the world with less effective therapy. As an oncofetal antigen and diagnostic marker for liver cancer, alpha-fetoprotein (AFP) possesses a variety of biological functions. Except for its diagnosis in liver cancer, AFP has become a target for liver cancer immunotherapy. Although the immunogenicity of AFP is weak and it could induce the immune escapes through inhibiting the function of dendritic cells, natural killer cells, and T lymphocytes, AFP has attracted more attention in liver cancer immunotherapy. By in vitro modification, the immunogenicity and immune response of AFP could be enhanced. AFP-modified immune cell vaccine or peptide vaccine has displayed the specific antitumor immunity against AFP-positive tumor cells and laid a better foundation for the immunotherapy of liver cancer.

  12. Two-Year Safety and Efficacy Experience in Patients with Methotrexate-Resistant Active Rheumatoid Arthritis Treated with Etanercept and Conventional Disease-Modifying Anti-rheumatic Drugs in the Latin American Region

    PubMed Central

    Machado, Daniel A.; Guzman, Renato; Xavier, Ricardo M.; Simon, Jesus A.; Mele, Linda; Shen, Qi; Pedersen, Ronald; Kotak, Sameer; Vlahos, Bonnie

    2016-01-01

    Background: Although long-term data are available from biologic studies in North American/European populations with rheumatoid arthritis (RA), long-term findings in Latin American RA populations are limited. Objective: To examine long-term safety/efficacy of etanercept, methotrexate, and/or other disease-modifying anti-rheumatic drugs (DMARDs) in Latin American patients with moderate-to-severe active RA. Methods: In the first phase of this open-label study, patients were randomized to etanercept 50 mg weekly plus methotrexate or conventional DMARD (hydroxychloroquine or sulfasalazine) plus methotrexate for 24 weeks. At the start of the second phase (week 24), investigators selected a treatment regimen that included any combination/dosage of etanercept, methotrexate, hydroxychloroquine, or sulfasalazine based on previous treatment response, preference, and local product labeling, and was continued for the 104-week extension. Results: In the extension, in the group previously randomized to etanercept-plus-methotrexate therapy, etanercept was continued in 259/260 patients; methotrexate continued in 260/260; and hydroxychloroquine and sulfasalazine added in 8/260 and 3/260, respectively. In the group previously randomized to conventional DMARD-plus-methotrexate therapy, conventional DMARD was discontinued in 86/126 and etanercept added in 105/126. Among etanercept-exposed patients (total exposure, 798.1 patient-year [PY]), rates of adverse events, serious adverse events, and serious infections per PY were 1.7, 0.07, and 0.02 events per PY. In both groups, after treatment modification was permitted, clinical response rates and improvements in clinical/patient-reported outcomes from baseline were sustained to week 128. Conclusion: After investigators were permitted to modify treatment, etanercept was part of the treatment regimen in 95% of patients. Continuation or addition of etanercept in the 2-year extension resulted in a consistently good risk:benefit profile. Trial Registration: Open-Label Study Comparing Etanercept to Conventional Disease Modifying Antirheumatic Drug (DMARD) Therapy; ClinicalTrials.gov, number NCT00848354; https://clinicaltrials.gov/ct2/show/NCT00848354 PMID:27006728

  13. [Synthetic biology toward microbial secondary metabolites and pharmaceuticals].

    PubMed

    Wu, Lin-Zhuan; Hong, Bin

    2013-02-01

    Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

  14. Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach.

    PubMed

    Pouryahya, Maryam; Oh, Jung Hun; Mathews, James C; Deasy, Joseph O; Tannenbaum, Allen R

    2018-04-23

    In the present work, we apply a geometric network approach to study common biological features of anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis can provide novel insights into drug response and cancer biology. We adopted a discrete notion of Ricci curvature to measure, via a link between Ricci curvature and network robustness established by the theory of optimal mass transport, the robustness of biological networks constructed with a pre-treatment gene expression dataset and coupled the results with the GI50 response of the cell lines to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that are likely associated with individual drug response. For genes identified as important, we performed a gene ontology enrichment analysis using a curated bioinformatics database which resulted in biological processes associated with drug response across cell lines and tissue types which are plausible from the point of view of the biological literature. These results demonstrate the potential of using the mathematical network analysis in assessing drug response and in identifying relevant genomic biomarkers and biological processes for precision medicine.

  15. Combustion method for assay of biological materials labeled with carbon-14 or tritium, or double-labeled

    NASA Technical Reports Server (NTRS)

    Huebner, L. G.; Kisieleski, W. E.

    1969-01-01

    Dry catalytic combustion at high temperatures is used for assaying biological materials labeled carbon-14 and tritium, or double-labeled. A modified oxygen-flask technique is combined with standard vacuum-line techniques and includes convenience of direct in-vial collection of final combustion products, giving quantitative recovery of tritium and carbon-14.

  16. Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium

    PubMed Central

    Ashton, Kevin J.; Tupicoff, Amanda; Williams-Pritchard, Grant; Kiessling, Can J.; See Hoe, Louise E.; Headrick, John P.; Peart, Jason N.

    2013-01-01

    Background Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. Methodology/Principal Findings Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. Conclusions Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered. PMID:23991079

  17. Preparation of hemoglobin-modified boron-doped diamond for acrylamide biosensors

    NASA Astrophysics Data System (ADS)

    Umam, K.; Saepudin, E.; Ivandini, T. A.

    2017-04-01

    Boron-doped diamond (BDD) electrode was modified with haemoglobin to develop electrochemical biosensors of acrylamide. Prior to modify with haemoglobin, the BDD was modified by gold nanoparticles to increase the affinity of BDD against haemoglobin. The electrochemical behaviour of the electrode in the presence of acrylamide was studied in comparison to haemoglobin-modified gold electrodes. Cyclic voltammetry indicated the optimum responses in 0.1 M sodium acetate buffer at pH 5. The responses were linear to the acrylamide concentration range of 5-50 μM with an estimated detection limit of 5.14 μM, suggesting that the electrode was promising for acrylamide biosensors.

  18. Novel immunotherapy vaccine development.

    PubMed

    Jutel, Marek; Akdis, Cezmi A

    2014-12-01

    Allergen-specific immunotherapy is the only curative treatment for allergic diseases. In spite of the great progress in both vaccine development and the methods of allergen immunotherapy (AIT) in recent years, several key problems related to limited efficacy, side-effects, low patient adherence and the relatively high costs due to the long duration (3-5 years) remain to be solved. The current approaches aiming at optimization of AIT are reviewed, including both conceptual studies in experimental models and proof-of-concept - as well as large, multicenter clinical studies. The most promising approaches to improve efficacy and safety of vaccine-based AIT include bypassing IgE binding and targeting allergen-specific T cells using hypoallergenic recombinant allergen derivatives and immunogenic peptides, the use of new adjuvants and stimulators of the innate immune response, the fusion of allergens to immune modifiers and peptide carrier proteins and new routes of vaccine administration. The cloning of allergen proteins and genetic engineering enabled the production of vaccines that have well defined molecular, immunologic and biologic characteristics as well as modified molecular structure. These new compounds along with new immunization protocols can bring us closer to the ultimate goal of AIT, that is, complete cure of a large number of allergic patients.

  19. Genetic engineering of grass cell wall polysaccharides for biorefining.

    PubMed

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Mitral valve disease—morphology and mechanisms

    PubMed Central

    Levine, Robert A.; Hagége, Albert A.; Judge, Daniel P.; Padala, Muralidhar; Dal-Bianco, Jacob P.; Aikawa, Elena; Beaudoin, Jonathan; Bischoff, Joyce; Bouatia-Naji, Nabila; Bruneval, Patrick; Butcher, Jonathan T.; Carpentier, Alain; Chaput, Miguel; Chester, Adrian H.; Clusel, Catherine; Delling, Francesca N.; Dietz, Harry C.; Dina, Christian; Durst, Ronen; Fernandez-Friera, Leticia; Handschumacher, Mark D.; Jensen, Morten O.; Jeunemaitre, Xavier P.; Le Marec, Hervé; Le Tourneau, Thierry; Markwald, Roger R.; Mérot, Jean; Messas, Emmanuel; Milan, David P.; Neri, Tui; Norris, Russell A.; Peal, David; Perrocheau, Maelle; Probst, Vincent; Pucéat, Michael; Rosenthal, Nadia; Solis, Jorge; Schott, Jean-Jacques; Schwammenthal, Ehud; Slaugenhaupt, Susan A.; Song, Jae-Kwan; Yacoub, Magdi H.

    2016-01-01

    Mitral valve disease is a frequent cause of heart failure and death. Emerging evidence indicates that the mitral valve is not a passive structure, but—even in adult life—remains dynamic and accessible for treatment. This concept motivates efforts to reduce the clinical progression of mitral valve disease through early detection and modification of underlying mechanisms. Discoveries of genetic mutations causing mitral valve elongation and prolapse have revealed that growth factor signalling and cell migration pathways are regulated by structural molecules in ways that can be modified to limit progression from developmental defects to valve degeneration with clinical complications. Mitral valve enlargement can determine left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, and might be stimulated by potentially modifiable biological valvular–ventricular interactions. Mitral valve plasticity also allows adaptive growth in response to ventricular remodelling. However, adverse cellular and mechanobiological processes create relative leaflet deficiency in the ischaemic setting, leading to mitral regurgitation with increased heart failure and mortality. Our approach, which bridges clinicians and basic scientists, enables the correlation of observed disease with cellular and molecular mechanisms, leading to the discovery of new opportunities for improving the natural history of mitral valve disease. PMID:26483167

Top