Sample records for biologic systems including

  1. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 395)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 82 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes: general life sciences; aerospace medicine (including physiological factors, biological effects of radiation, and effects of weightlessness on man and animals); behavioral sciences (including psychological factors, individual and group behavior, crew training and evaluation, and psychic research); man/system technology and life support (including human engineering, biotechnology, and space suits and protective clothing) and space biology (including exobiology, planetary biology, and extraterrestrial life).

  2. Advancing Systems Biology in the International Conference on Intelligent Biology and Medicine (ICIBM) 2015.

    PubMed

    Zhao, Zhongming; Liu, Yunlong; Huang, Yufei; Huang, Kun; Ruan, Jianhua

    2016-08-26

    The 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) was held on November 13-15, 2015 in Indianapolis, Indiana, USA. ICIBM 2015 included eight scientific sessions, three tutorial sessions, one poster session, and four keynote presentations that covered the frontier research in broad areas related to bioinformatics, systems biology, big data science, biomedical informatics, pharmacogenomics, and intelligent computing. Here, we present a summary of the 10 research articles that were selected from ICIBM 2015 and included in the supplement to BMC Systems Biology.

  3. Systems metabolic engineering strategies for the production of amino acids.

    PubMed

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  4. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    PubMed

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  5. Biological Systems, Energy Sources, and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Tribe, Michael; Pritchard, Alan J.

    This five-chapter document (part of a series on biology and human welfare) focuses on biological systems as energy sources and on the teaching of this subject area. Chapter 1 discusses various topics related to energy and ecology, including biomass, photosynthesis and world energy balances, energy flow through ecosystems, and others. Chapter 2…

  6. Modeling formalisms in Systems Biology

    PubMed Central

    2011-01-01

    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422

  7. Graphic Representation of Carbon Dioxide Equilibria in Biological Systems.

    ERIC Educational Resources Information Center

    Kindig, Neal B.; Filley, Giles F.

    1983-01-01

    The log C-pH diagram is a useful means of displaying quantitatively the many variables (including temperature) that determine acid-base equilibria in biological systems. Presents the diagram as extended to open/closed biological systems and derives a new water-ion balance method for determining equilibrium pH. (JN)

  8. Electrostatic thin film chemical and biological sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includesmore » providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.« less

  9. Systems biology for molecular life sciences and its impact in biomedicine.

    PubMed

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  10. Biologic and Conventional Systemic Therapies Show Similar Safety and Efficacy in Elderly and Adult Patients With Moderate to Severe Psoriasis.

    PubMed

    Garber, Caren; Plotnikova, Natalia; Au, Shiu-chung; Sorensen, Eric P; Gottlieb, Alice

    2015-08-01

    Despite the aging population, few studies have documented the treatment of geriatric psoriasis. The purpose of this study is to compare the efficacy, safety, and prescribing patterns of biologics and conventional systemic medications in elderly versus adult psoriasis. All patient visits coded for psoriasis or psoriatic arthritis (ICD-9 696.1 or 696.0) at the Tufts Medical Center General Dermatology Clinic from January 1, 2008, to March 1, 2015 were included in this retrospective cohort study. The outcome measure used was the validated simple-measure for assessing psoriasis activity (S-MAPA), the product of the physician's global assessment and the body surface area. 194 patients who underwent 278 treatment courses were included in the study. 48 patients were included in the elderly cohort (≥ 65 years old) and 146 in the adult cohort (18-64 years old). There was no significant difference in S-MAPA improvement at 12 weeks between the two cohorts when treated with biologics (42.92% improvement in adults, 48.77% in elderly; P=0.498) or conventional systemics (43.96% and 51.82%, respectively; P=0.448). Within the elderly cohort, there was no significant difference in efficacy of biologics versus conventional systemics at any time point. Topical prescription rates were significantly higher in the elderly cohort ( P=0.004) while biologic prescription rates were significantly lower ( P=0.014) despite the same baseline S-MAPA in both age groups. For both biologics and conventional systemics, there was no statistically significant intergroup difference in the rate of adverse events ( P=0.322 for biologics; P=0.581 for conventional systemics) or infection ( P=0.753 for biologics; P=0.828 for conventional systemics). Within the elderly cohort, there was a higher rate of adverse events with conventional systemic treatment than with biologic treatment ( P=0.033). This study provides preliminary evidence to suggest that biologic and conventional systemic therapies are similarly safe and effective in the elderly and non-elderly cohorts. Within the elderly population, biologics may be a safer option than conventional systemic agents.

  11. Apparatus and methods for manipulation and optimization of biological systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2012-01-01

    The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.

  12. USSR Space Life Sciences Digest, issue 14

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  13. Chemical and biological warfare. Should defenses be researched and deployed?

    PubMed

    Orient, J M

    1989-08-04

    The threat of chemical and biological weapons of mass destruction has intensified because of improved delivery systems and advances in chemistry, genetics, and other sciences. Possible US responses to this threat include deterrence, defenses, and/or disarmament, including a reaffirmation of the Biological and Toxin Weapons Convention of 1972, which is now in jeopardy. This article discusses the history of chemical and biological warfare, existing and potential weapons, the proliferation of weapons and delivery systems, ways to prevent the use of these weapons, and ways to protect populations from their effects.

  14. Interdisciplinary Dialogue for Education, Collaboration, and Innovation: Intelligent Biology and Medicine In and Beyond 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing; Huang, Yufei; McDermott, Jason E.

    The 2013 International Conference on Intelligent Biology and Medicine (ICIBM 2013) was held on August 11-13, 2013 in Nashville, Tennessee, USA. The conference included six scientific sessions, two tutorial sessions, one workshop, two poster sessions, and four keynote presentations that covered cutting-edge research topics in bioinformatics, systems biology, computational medicine, and intelligent computing. Here, we present a summary of the conference and an editorial report of the supplements to BMC Genomics and BMC Systems Biology that include 19 research papers selected from ICIBM 2013.

  15. Education, collaboration, and innovation: intelligent biology and medicine in the era of big data.

    PubMed

    Ruan, Jianhua; Jin, Victor; Huang, Yufei; Xu, Hua; Edwards, Jeremy S; Chen, Yidong; Zhao, Zhongming

    2015-01-01

    Here we present a summary of the 2014 International Conference on Intelligent Biology and Medicine (ICIBM 2014) and the editorial report of the supplement to BMC Genomics and BMC Systems Biology that includes 20 research articles selected from ICIBM 2014. The conference was held on December 4-6, 2014 at San Antonio, Texas, USA, and included six scientific sessions, four tutorials, four keynote presentations, nine highlight talks, and a poster session that covered cutting-edge research in bioinformatics, systems biology, and computational medicine.

  16. Education, collaboration, and innovation: intelligent biology and medicine in the era of big data

    PubMed Central

    2015-01-01

    Here we present a summary of the 2014 International Conference on Intelligent Biology and Medicine (ICIBM 2014) and the editorial report of the supplement to BMC Genomics and BMC Systems Biology that includes 20 research articles selected from ICIBM 2014. The conference was held on December 4-6, 2014 at San Antonio, Texas, USA, and included six scientific sessions, four tutorials, four keynote presentations, nine highlight talks, and a poster session that covered cutting-edge research in bioinformatics, systems biology, and computational medicine. PMID:26099197

  17. Interdisciplinary dialogue for education, collaboration, and innovation: Intelligent Biology and Medicine in and beyond 2013

    PubMed Central

    2013-01-01

    The 2013 International Conference on Intelligent Biology and Medicine (ICIBM 2013) was held on August 11-13, 2013 in Nashville, Tennessee, USA. The conference included six scientific sessions, two tutorial sessions, one workshop, two poster sessions, and four keynote presentations that covered cutting-edge research topics in bioinformatics, systems biology, computational medicine, and intelligent computing. Here, we present a summary of the conference and an editorial report of the supplements to BMC Genomics and BMC Systems Biology that include 19 research papers selected from ICIBM 2013. PMID:24564388

  18. Apparatus and Methods for Manipulation and Optimization of Biological Systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2014-01-01

    The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.

  19. USSR Space Life Sciences Digest, issue 1

    NASA Technical Reports Server (NTRS)

    Hooke, L. R.; Radtke, M.; Rowe, J. E.

    1985-01-01

    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.

  20. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic systems biology: a brief primer.

    PubMed

    Edwards, Lindsay M

    2017-05-01

    In the early to mid-20th century, reductionism as a concept in biology was challenged by key thinkers, including Ludwig von Bertalanffy. He proposed that living organisms were specific examples of complex systems and, as such, they should display characteristics including hierarchical organisation and emergent behaviour. Yet the true study of complete biological systems (for example, metabolism) was not possible until technological advances that occurred 60 years later. Technology now exists that permits the measurement of complete levels of the biological hierarchy, for example the genome and transcriptome. The complexity and scale of these data require computational models for their interpretation. The combination of these - systems thinking, high-dimensional data and computation - defines systems biology, typically accompanied by some notion of iterative model refinement. Only sequencing-based technologies, however, offer full coverage. Other 'omics' platforms trade coverage for sensitivity, although the densely connected nature of biological networks suggests that full coverage may not be necessary. Systems biology models are often characterised as either 'bottom-up' (mechanistic) or 'top-down' (statistical). This distinction can mislead, as all models rely on data and all are, to some degree, 'middle-out'. Systems biology has matured as a discipline, and its methods are commonplace in many laboratories. However, many challenges remain, especially those related to large-scale data integration. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. USSR Space Life Sciences Digest, issue 9

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  3. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  4. Calculating life? Duelling discourses in interdisciplinary systems biology.

    PubMed

    Calvert, Jane; Fujimura, Joan H

    2011-06-01

    A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by drawing on interviews with scientists working in systems biology, attendance at systems biology conferences and workshops, and visits to systems biology laboratories. It examines the discourses of systems biologists, looking at how they position their work in relation to previous types of biological inquiry, particularly molecular biology. For example, they raise the issue of reductionism to distinguish systems biology from molecular biology. This comparison with molecular biology leads to discussions about the goals and aspirations of systems biology, including epistemic commitments to quantification, rigor and predictability. Some systems biologists aspire to make biology more similar to physics and engineering by making living systems calculable, modelable and ultimately predictable-a research programme that is perhaps taken to its most extreme form in systems biology's sister discipline: synthetic biology. Other systems biologists, however, do not think that the standards of the physical sciences are the standards by which we should measure the achievements of systems biology, and doubt whether such standards will ever be applicable to 'dirty, unruly living systems'. This paper explores these epistemic tensions and reflects on their sociological dimensions and their consequences for future work in the life sciences. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Approaches to Quality Risk Management When Using Single-Use Systems in the Manufacture of Biologics.

    PubMed

    Ishii-Watabe, Akiko; Hirose, Akihiko; Katori, Noriko; Hashii, Norikata; Arai, Susumu; Awatsu, Hirotoshi; Eiza, Akira; Hara, Yoshiaki; Hattori, Hideshi; Inoue, Tomomi; Isono, Tetsuya; Iwakura, Masahiro; Kajihara, Daisuke; Kasahara, Nobuo; Matsuda, Hiroyuki; Murakami, Sei; Nakagawa, Taishiro; Okumura, Takehiro; Omasa, Takeshi; Takuma, Shinya; Terashima, Iyo; Tsukahara, Masayoshi; Tsutsui, Maiko; Yano, Takahiro; Kawasaki, Nana

    2015-10-01

    Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.

  6. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOEpatents

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Michael R.

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologiesmore » for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?« less

  8. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  9. Cross-generational influences on childhood anxiety disorders: pathways and mechanisms

    PubMed Central

    Leckman, James F.; Silverman, Wendy K.; Feldman, Ruth

    2016-01-01

    Anxiety disorders are common across the lifespan, cause severe distress and impairment, and usually have their onset in childhood. Substantial clinical and epidemiological research has demonstrated the existence of links between anxiety and its disorders in children and parents. Research on the pathways and mechanisms underlying these links has pointed to both behavioral and biological systems. This review synthesizes and summarizes several major aspects of this research. Behavioral systems include vicarious learning, social referencing, and modeling of parental anxiety; overly protective or critical parenting styles; and aspects of parental responses to child anxiety including family accommodation of the child’s symptoms. Biological systems include aspects of the prenatal environment affected by maternal anxiety, development and functioning of the oxytocinergic system, and genetic and epigenetic transmission. Implications for the prevention and treatment of child anxiety disorders are discussed, including the potential to enhance child anxiety treatment outcomes through biologically informed parent-based interventions. PMID:27145763

  10. Cross-generational influences on childhood anxiety disorders: pathways and mechanisms.

    PubMed

    Lebowitz, Eli R; Leckman, James F; Silverman, Wendy K; Feldman, Ruth

    2016-09-01

    Anxiety disorders are common across the lifespan, cause severe distress and impairment, and usually have their onset in childhood. Substantial clinical and epidemiological research has demonstrated the existence of links between anxiety and its disorders in children and parents. Research on the pathways and mechanisms underlying these links has pointed to both behavioral and biological systems. This review synthesizes and summarizes several major aspects of this research. Behavioral systems include vicarious learning, social referencing, and modeling of parental anxiety; overly protective or critical parenting styles; and aspects of parental responses to child anxiety including family accommodation of the child's symptoms. Biological systems include aspects of the prenatal environment affected by maternal anxiety, development and functioning of the oxytocinergic system, and genetic and epigenetic transmission. Implications for the prevention and treatment of child anxiety disorders are discussed, including the potential to enhance child anxiety treatment outcomes through biologically informed parent-based interventions.

  11. A new organismal systems biology: how animals walk the tight rope between stability and change.

    PubMed

    Padilla, Dianna K; Tsukimura, Brian

    2014-07-01

    The amount of knowledge in the biological sciences is growing at an exponential rate. Simultaneously, the incorporation of new technologies in gathering scientific information has greatly accelerated our capacity to ask, and answer, new questions. How do we, as organismal biologists, meet these challenges, and develop research strategies that will allow us to address the grand challenge question: how do organisms walk the tightrope between stability and change? Organisms and organismal systems are complex, and multi-scale in both space and time. It is clear that addressing major questions about organismal biology will not come from "business as usual" approaches. Rather, we require the collaboration of a wide range of experts and integration of biological information with more quantitative approaches traditionally found in engineering and applied mathematics. Research programs designed to address grand challenge questions will require deep knowledge and expertise within subfields of organismal biology, collaboration and integration among otherwise disparate areas of research, and consideration of organisms as integrated systems. Our ability to predict which features of complex integrated systems provide the capacity to be robust in changing environments is poorly developed. A predictive organismal biology is needed, but will require more quantitative approaches than are typical in biology, including complex systems-modeling approaches common to engineering. This new organismal systems biology will have reciprocal benefits for biologists, engineers, and mathematicians who address similar questions, including those working on control theory and dynamical systems biology, and will develop the tools we need to address the grand challenge questions of the 21st century. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    USDA-ARS?s Scientific Manuscript database

    Furan fatty acids (F-acids) gain special attentions since they are known to play important roles in biological systems including humans. Specifically F-acids are known to have strong antioxidant activity like radical scavenging activity. Although widely distributed in most biological systems, F-ac...

  13. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  14. Radiological/biological/aerosol removal system

    DOEpatents

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  15. Biophysics and systems biology.

    PubMed

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  16. Biophysics and systems biology

    PubMed Central

    Noble, Denis

    2010-01-01

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  17. Life Sciences and Space Research 25 (2) Radiation Biology: Topical Meeting of the COSPAR Interdisciplinary Scientific Commission F of the COSPAR 29th Plenary Meeting, Washington, DC, Aug. 28-Sep. 5, 1992

    NASA Technical Reports Server (NTRS)

    Horneck, G. (Editor); Buecher, H. (Editor); Cox, A. (Editor); Todd, P. (Editor); Yang, T. C. (Editor); Worgul, B. V. (Editor); Donlon, M. (Editor); Atwell, W. (Editor); Shea, M. A. (Editor); Smart, D. F. (Editor)

    1994-01-01

    Papers presented on long-term exposure to ionizing radiation, obtained from the Long Duration Exposure Facility, included radiation monitoring, radiation effects, and dosimetry. Mechanisms of biological systems, especially cells, under ionizing radiation and relative biological effectiveness were compared. The role of HZE particles as agents of mutation were reported from plant, animal, and in vitro models. Data on known and predicted effects of cosmic rays and other solar radiation on biological systems included differences related to Linear Energy Transfer and heavy ion particles.

  18. Interactive Biology[TM] Multimedia Courseware Series. [CD-ROM].

    ERIC Educational Resources Information Center

    1999

    Interactive Biology Multimedia Courseware is an on-going project, with new titles continually under development. Currently, Interactive Biology includes 38 biological titles on CD-ROM for Macintosh and IBM-compatible systems. Each title deals with a specific biological subject and provides in-depth, comprehensive course material for the 9th grade…

  19. Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 217, March 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Approximately 130 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981 are included in this bibliography. Topics include aerospace medicine and biology.

  20. Optoelectronic system and apparatus for connection to biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.

    The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.

  1. Systematic analysis of signaling pathways using an integrative environment.

    PubMed

    Visvanathan, Mahesh; Breit, Marc; Pfeifer, Bernhard; Baumgartner, Christian; Modre-Osprian, Robert; Tilg, Bernhard

    2007-01-01

    Understanding the biological processes of signaling pathways as a whole system requires an integrative software environment that has comprehensive capabilities. The environment should include tools for pathway design, visualization, simulation and a knowledge base concerning signaling pathways as one. In this paper we introduce a new integrative environment for the systematic analysis of signaling pathways. This system includes environments for pathway design, visualization, simulation and a knowledge base that combines biological and modeling information concerning signaling pathways that provides the basic understanding of the biological system, its structure and functioning. The system is designed with a client-server architecture. It contains a pathway designing environment and a simulation environment as upper layers with a relational knowledge base as the underlying layer. The TNFa-mediated NF-kB signal trans-duction pathway model was designed and tested using our integrative framework. It was also useful to define the structure of the knowledge base. Sensitivity analysis of this specific pathway was performed providing simulation data. Then the model was extended showing promising initial results. The proposed system offers a holistic view of pathways containing biological and modeling data. It will help us to perform biological interpretation of the simulation results and thus contribute to a better understanding of the biological system for drug identification.

  2. USSR Space Life Sciences Digest, issue 25

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  3. Evaluation of the Biolog MicroStation system for yeast identification

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.; Molina, T. C.; Pierson, D. L.; Mishra, S. K.

    1996-01-01

    One hundred and fifty-nine isolates representing 16 genera and 53 species of yeasts were processed with the Biolog MicroStation System for yeast identification. Thirteen genera and 38 species were included in the Biolog database. For these 129 isolates, correct identifications to the species level were 13.2, 39.5 and 48.8% after 24, 48 and 72 hours incubation at 30 degrees C, respectively. Three genera and 15 species which were not included in the Biolog database were also tested. Of the 30 isolates studied, 16.7, 53.3 and 56.7% of the isolates were given incorrect names from the system's database after 24,48 and 72 h incubation at 30 degrees C, respectively. The remaining isolates of this group were not identified.

  4. Tuning the properties of conjugated polyelectrolytes and application in a biosensor platform

    DOEpatents

    Chen, Liaohai

    2004-05-18

    The present invention provides a method of detecting a biological agent including contacting a sample with a sensor including a polymer system capable of having an alterable measurable property from the group of luminescence, anisotropy, redox potential and uv/vis absorption, the polymer system including an ionic conjugated polymer and an electronically inert polyelectrolyte having a biological agent recognition element bound thereto, the electronically inert polyelectrolyte adapted for undergoing a conformational structural change upon exposure to a biological agent having affinity for binding to the recognition element bound to the electronically inert polyelectrolyte, and, detecting the detectable change in the alterable measurable property. A chemical moiety being the reaction product of (i) a polyelectrolyte monomer and (ii) a biological agent recognition element-substituted polyelectrolyte monomer is also provided.

  5. USSR Space Life Sciences Digest, Issue 18

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  6. USSR Space Life Sciences Digest, issue 16

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  7. Biological diversity, ecological integrity, and neotropical migrants: New perspectives for wildlife management

    Treesearch

    Brian A. Maurer

    1993-01-01

    New initiatives in wildlife management have come from the realization that birds can be used as indicators of ecosystem health. Conceptually, biological diversity includes processes working at all scales in biological hierarchies that compose the natural world. Recent advances in the understanding of ecological systems suggest they are nonequilibrium systems, and must...

  8. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  9. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  10. USSR Space Life Sciences Digest, issue 13

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  11. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  12. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    NASA Astrophysics Data System (ADS)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  13. An Evolutionary Perspective on Learning Disability in Mathematics

    PubMed Central

    Geary, David C.

    2015-01-01

    A distinction between potentially evolved, or biologically-primary forms of cognition, and the culturally-specific, or biologically-secondary forms of cognition that are built from primary systems is used to explore mathematical learning disability (MLD). Using this model, MLD could result from deficits in the brain and cognitive systems that support biologically-primary mathematical competencies, or from the brain and cognitive systems that support the modification of primary systems for the creation of secondary knowledge and secondary cognitive competencies. The former include visuospatial long-term and working memory and the intraparietal sulcus, whereas the latter include the central executive component of working memory and the anterior cingulate cortex and lateral prefrontal cortex. Different forms of MLD are discussed as related to each of the cognitive and brain systems. PMID:17650991

  14. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  15. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 377)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 223 reports, articles, and other documents recently introduced into the NASA Scientific and Technical Information System. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  16. MCT-based SWIR hyperspectral imaging system for evaluation of biological samples

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) a...

  17. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 385)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 536 reports, articles and other documents introduced into the NASA Scientific and Technical Information System Database. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  18. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 389)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 234 reports, articles, and other documents recently introduced into the NASA Scientific and Technical Information System. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  19. From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data.

    PubMed

    Vella, Danila; Zoppis, Italo; Mauri, Giancarlo; Mauri, Pierluigi; Di Silvestre, Dario

    2017-12-01

    The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.

  20. Illustrations of mathematical modeling in biology: epigenetics, meiosis, and an outlook.

    PubMed

    Richards, D; Berry, S; Howard, M

    2012-01-01

    In the past few years, mathematical modeling approaches in biology have begun to fulfill their promise by assisting in the dissection of complex biological systems. Here, we review two recent examples of predictive mathematical modeling in plant biology. The first involves the quantitative epigenetic silencing of the floral repressor gene FLC in Arabidopsis, mediated by a Polycomb-based system. The second involves the spatiotemporal dynamics of telomere bouquet formation in wheat-rye meiosis. Although both the biology and the modeling framework of the two systems are different, both exemplify how mathematical modeling can help to accelerate discovery of the underlying mechanisms in complex biological systems. In both cases, the models that developed were relatively minimal, including only essential features, but both nevertheless yielded fundamental insights. We also briefly review the current state of mathematical modeling in biology, difficulties inherent in its application, and its potential future development.

  1. Physical constraints on biological integral control design for homeostasis and sensory adaptation.

    PubMed

    Ang, Jordan; McMillen, David R

    2013-01-22

    Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. USSR Space Life Sciences Digest, issue 29

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  3. Modeling of biological intelligence for SCM system optimization.

    PubMed

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  4. Modeling of Biological Intelligence for SCM System Optimization

    PubMed Central

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  5. The Future of Cell Biology: Emerging Model Organisms.

    PubMed

    Goldstein, Bob; King, Nicole

    2016-11-01

    Most current research in cell biology uses just a handful of model systems including yeast, Arabidopsis, Drosophila, Caenorhabditis elegans, zebrafish, mouse, and cultured mammalian cells. And for good reason - for many biological questions, the best system for the question is likely to be found among these models. However, in some cases, and particularly as the questions that engage scientists broaden, the best system for a question may be a little-studied organism. Modern research tools are facilitating a renaissance for unusual and interesting organisms as emerging model systems. As a result, we predict that an ever-expanding breadth of model systems may be a hallmark of future cell biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 401)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 140 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May 1995. Subject coverage includes: aerospace medicine, behavioral sciences, man/system technology and life support, and space biology.

  7. NOVEL CERAMIC MEMBRANE BIOREACTOR FOR LOW-FLOW SYSTEMS - PHASE I

    EPA Science Inventory

    Improved low-flow (50,000 gallons per day) sanitary wastewater treatment systems are needed. CeraMem Corporation's proposed approach includes a membrane bioreactor (MBR) using fully proven biological processes for biological oxygen demand oxidation and (optionally) fo...

  8. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 390)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 102 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System. Subject coverage includes: life sciences (general), aerospace medicine, behavioral sciences, man/system technology and life support, and space biology.

  9. Aerospace medicine and biology: A continuing bibliography with indexes, supplement 273

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 265 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1985. Topics in aerospace medicine and biology, metabolism, human behavior, man machine systems, and injuries are included.

  10. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease.

    PubMed

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-09-21

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.

  11. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease

    PubMed Central

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-01-01

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date. PMID:28934123

  12. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  13. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    PubMed

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 374)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 227 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Apr. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  15. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 408)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 84 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Dec. 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  16. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 376)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 265 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jun. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  17. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  18. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 383)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 100 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes the following topics: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  19. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 391)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 75 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Aug. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  20. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 370)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 219 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Dec. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  1. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 362)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 357 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  2. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 392)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 81 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Sep. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  3. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 369)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 209 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  4. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 361)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 141 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Mar. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  5. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 407)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 289 reports, articles and other documents announced in the NASA Scientific and Technical Information System during Nov. 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  6. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 363)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  7. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 386)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 117 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Mar. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  8. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 378)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 185 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Aug. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  9. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 387)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 60 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Apr. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  10. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 405)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 225 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Sep. 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  11. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 372)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 208 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  12. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 379)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 305 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Sep. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  13. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 367)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 205 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Aug. 1992. Subject coverage includes the following: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  14. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 406)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 346 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Oct. 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  15. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 382)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 119 reports, articles, and other documents recently introduced into the NASA Scientific and Technical Information System. Subject coverage includes the following: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  16. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 381)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 89 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  17. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 402)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 244 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  18. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 380)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 192 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Oct. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  19. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 357)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 186 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Dec. 1991. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  20. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 403)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 217 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during July 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  1. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 400)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 397 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  2. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 397)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 122 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  3. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 375)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 212 reports, articles, and other documents recently introduced into the NASA Scientific and Technical Information System database. Subject coverage includes the following: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  4. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 393)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 29 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Oct. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  5. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 394)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 71 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  6. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 364)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 188 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during June 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  7. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 360)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 217 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during February 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  8. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 365)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 211 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during July 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  9. Sixth International Conference on Systems Biology (ICSB 2005)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Professor Andrew Murray

    2005-10-22

    This grant supported the Sixth International Conference on Systems Biology (ICSB 2005), held in Boston, Massachusetts from October 19th to 22nd, 2005. The ICSB is the only major, annual, international conference focused exclusively on the important emerging field of systems biology. It draws together scientists with expertise in theoretical, computational and experimental approaches to understanding biological systems at many levels. Previous ICSB meetings have been held in Tokyo (2000), at Caltech (2001), at the Karolinska Institute (2002), at Washington University in St. Louis (2003), and in Heidelberg (2004). These conferences have been increasingly successful at bringing together the growing communitymore » of established and junior researchers with interests in this area. Boston is home to several groups that have shown leadership in the field and was therefore an ideal place to hold this conference . The executive committee for the conference comprised Jim Collins (Biomedical Engineering, Boston University), Marc Kirschner (chair of the new Department of Systems Biology at Harvard Medical School), Eric Lander (director of the Broad Institute of MIT and Harvard), Andrew Murray (director of Harvard’s Bauer Center for Genomics Research) and Peter Sorger (director of MIT’s Computational and Systems Biology Initiative). There are almost as many definitions of systems biology as there are systems biologists. We take a broad view of the field, and we succeeded in one of our major aims in organizing a conference that bridges two types of divide. The first is that between traditional academic disciplines: each of our sessions includes speakers from biology and from one or more physical or quantitative sciences. The second type includes those that separate experimental biologists from their colleagues who work on theory or computation. Here again, each session included representatives from at least two of these three categories; indeed, many of the speakers combined at least two of the categories in their own research activities. We define systems biology as a widening of focus in biology from individual genes or proteins to the complex networks of these molecules that allow cells and organisms to function. In the same way that conscious thought cannot be said to reside in any single neuron in the brain, simpler biological functions such as cell division arise from the interactions among many components in a network or ‘functional module’. For us, systems biology is characterized by the recognition that a higher-order description of biological function, accompanied by quantitative methods of analysis — often borrowed from disciplines such as physics, engineering, computer science or mathematics — can lead to the identification of general principles that underlie the structure, behavior, and evolution of cells and organisms. The heart of the conference were sessions on six topics: intracellular dynamics (featuring measurements on single cells, and their interpretation); biology by design (synthetic biology); intracellular networks (signal transduction and transcriptional regulation); multicellular networks (development and pattern formation); mechanics and scale in cellular behavior (featuring work on cytoskeletal mechanics, and on scaling relationships in biology); and evolution in action (including experimental evolution, of both real and artificial life-forms). Each session had four invited speakers; 23 of the 24 invited speakers attended (see below). We have selected these speakers not only for the interest of their research, but for their skills as communicators, thereby giving us the best chance of bridging the divides mentioned above. We also made a point of including women, younger investigators and people from outside the United States among the speakers. In addition to the invited speakers, we allotted time in the program for at least five contributed talks, which were selected from the poster submissions. Our aim in selecting these contributors showcased work that is “hot off the bench” (or computer) at the time of the conference, and also created additional opportunities for younger investigators to present their work. The main conference was preceded by a day of tutorials, and followed by two days of workshops, on a range of topics in quantitative, computational and systems biology.« less

  10. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 398)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 66 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Feb. 1995. Subject coverage includes: aerospace medicine, life sciences, behavioral sciences, man/system technology and life support, and space biology.

  11. Comparison of the efficacy of biologics versus conventional systemic therapies in the treatment of psoriasis at a comprehensive psoriasis care center.

    PubMed

    Au, Shiu-Chung; Madani, Abdulaziz; Alhaddad, Marwan; Alkofide, Maha; Gottlieb, Alice B

    2013-08-01

    The efficacy of biologic treatment for psoriasis has not been compared to that of conventional systemic therapies and phototherapy outside of clinical trial settings. Retrospective, cross-sectional. All patient visits with a code for psoriasis (ICD-9 696.1) in the clinical practice of two dermatologists with a high percentage (over 70% of chief complaints) of psoriasis patients from Jan 1, 2008 to Jan 4, 2012 inclusive were included in this retrospective data analysis. Patients were excluded if the baseline Physician's Global Assessment (PGA) at start of treatment was unknown, or less than 3 (moderate). The practice is a comprehensive psoriasis care center in the Northeastern United States serving a metropolitan population of over 4 million people. Patients were divided by treatment type (biologic, conventional systemic or both) and history of previous treatments. Patients were evaluated by Body Surface Area (BSA), PGA, Simple-Measure for Assessing Psoriasis Activity (S-MAPA, calculated by BSA multiplied by PGA). Patients were evaluated at baseline, 8, 12, 16, and 24 weeks after start of treatment. Patients must have completed at least 8 weeks on a single treatment in order to be included. 46 courses of biologics, 12 courses of conventional systemic therapies, and 18 courses of both together were identified with PGA 3 or greater at baseline. Baseline S-MAPA for biologics was 74, for non-biologic systemics was 62.25. At week 24, S-MAPA improved 70.2% over baseline in patients treated with biologics, patients treated with non-biologic systemics improved by only 40.4% (P<0.05). The average number of prior treatments for patients on biologics was 1.87 versus 1.25 for patients on conventional systemic therapies (P=0.169). Biologics show superior results to conventional systemic therapies (70% improvement versus 40% improvement) for the treatment of patients with moderate to severe psoriasis, as measured by decrease in S-MAPA (PGA multiplied by BSA) at week 24. These results were observed despite the fact that patients on biologics had a greater baseline severity and had a greater number of previous treatments.

  12. Advanced systems biology methods in drug discovery and translational biomedicine.

    PubMed

    Zou, Jun; Zheng, Ming-Wu; Li, Gen; Su, Zhi-Guang

    2013-01-01

    Systems biology is in an exponential development stage in recent years and has been widely utilized in biomedicine to better understand the molecular basis of human disease and the mechanism of drug action. Here, we discuss the fundamental concept of systems biology and its two computational methods that have been commonly used, that is, network analysis and dynamical modeling. The applications of systems biology in elucidating human disease are highlighted, consisting of human disease networks, treatment response prediction, investigation of disease mechanisms, and disease-associated gene prediction. In addition, important advances in drug discovery, to which systems biology makes significant contributions, are discussed, including drug-target networks, prediction of drug-target interactions, investigation of drug adverse effects, drug repositioning, and drug combination prediction. The systems biology methods and applications covered in this review provide a framework for addressing disease mechanism and approaching drug discovery, which will facilitate the translation of research findings into clinical benefits such as novel biomarkers and promising therapies.

  13. Systems biology of human atherosclerosis.

    PubMed

    Shalhoub, Joseph; Sikkel, Markus B; Davies, Kerry J; Vorkas, Panagiotis A; Want, Elizabeth J; Davies, Alun H

    2014-01-01

    Systems biology describes a holistic and integrative approach to understand physiology and pathology. The "omic" disciplines include genomics, transcriptomics, proteomics, and metabolic profiling (metabonomics and metabolomics). By adopting a stance, which is opposing (yet complimentary) to conventional research techniques, systems biology offers an overview by assessing the "net" biological effect imposed by a disease or nondisease state. There are a number of different organizational levels to be understood, from DNA to protein, metabolites, cells, organs and organisms, even beyond this to an organism's context. Systems biology relies on the existence of "nodes" and "edges." Nodes are the constituent part of the system being studied (eg, proteins in the proteome), while the edges are the way these constituents interact. In future, it will be increasingly important to collaborate, collating data from multiple studies to improve data sets, making them freely available and undertaking integrative analyses.

  14. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    PubMed

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Parameter estimation using meta-heuristics in systems biology: a comprehensive review.

    PubMed

    Sun, Jianyong; Garibaldi, Jonathan M; Hodgman, Charlie

    2012-01-01

    This paper gives a comprehensive review of the application of meta-heuristics to optimization problems in systems biology, mainly focussing on the parameter estimation problem (also called the inverse problem or model calibration). It is intended for either the system biologist who wishes to learn more about the various optimization techniques available and/or the meta-heuristic optimizer who is interested in applying such techniques to problems in systems biology. First, the parameter estimation problems emerging from different areas of systems biology are described from the point of view of machine learning. Brief descriptions of various meta-heuristics developed for these problems follow, along with outlines of their advantages and disadvantages. Several important issues in applying meta-heuristics to the systems biology modelling problem are addressed, including the reliability and identifiability of model parameters, optimal design of experiments, and so on. Finally, we highlight some possible future research directions in this field.

  16. Neural system modeling and simulation using Hybrid Functional Petri Net.

    PubMed

    Tang, Yin; Wang, Fei

    2012-02-01

    The Petri net formalism has been proved to be powerful in biological modeling. It not only boasts of a most intuitive graphical presentation but also combines the methods of classical systems biology with the discrete modeling technique. Hybrid Functional Petri Net (HFPN) was proposed specially for biological system modeling. An array of well-constructed biological models using HFPN yielded very interesting results. In this paper, we propose a method to represent neural system behavior, where biochemistry and electrical chemistry are both included using the Petri net formalism. We built a model for the adrenergic system using HFPN and employed quantitative analysis. Our simulation results match the biological data well, showing that the model is very effective. Predictions made on our model further manifest the modeling power of HFPN and improve the understanding of the adrenergic system. The file of our model and more results with their analysis are available in our supplementary material.

  17. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science.

    PubMed

    Huang, Kun; Liu, Yunlong; Huang, Yufei; Li, Lang; Cooper, Lee; Ruan, Jianhua; Zhao, Zhongming

    2016-08-22

    We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.

  18. Multi-agent-based bio-network for systems biology: protein-protein interaction network as an example.

    PubMed

    Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng

    2008-10-01

    Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.

  19. Synthetic Biology Open Language (SBOL) Version 2.0.0.

    PubMed

    Bartley, Bryan; Beal, Jacob; Clancy, Kevin; Misirli, Goksel; Roehner, Nicholas; Oberortner, Ernst; Pocock, Matthew; Bissell, Michael; Madsen, Curtis; Nguyen, Tramy; Zhang, Zhen; Gennari, John H; Myers, Chris; Wipat, Anil; Sauro, Herbert

    2015-09-04

    Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.0 of SBOL, introducing a standardized format for the electronic exchange of information on the structural and functional aspects of biological designs. The standard has been designed to support the explicit and unambiguous description of biological designs by means of a well defined data model. The standard also includes rules and best practices on how to use this data model and populate it with relevant design details. The publication of this specification is intended to make these capabilities more widely accessible to potential developers and users in the synthetic biology community and beyond.

  20. USSR Space Life Sciences Digest, Issue 10

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  1. Bayesian comparative effectiveness study of four consensus treatment plans for initial management of systemic juvenile idiopathic arthritis: FiRst-Line Options for Systemic juvenile idiopathic arthritis Treatment (FROST).

    PubMed

    Nigrovic, Peter A; Beukelman, Timothy; Tomlinson, George; Feldman, Brian M; Schanberg, Laura E; Kimura, Yukiko

    2018-06-01

    Systemic juvenile idiopathic arthritis is a rare febrile arthritis of childhood characterized by a potentially severe course, including prolonged glucocorticoid exposure, growth failure, destructive arthritis, and life-threatening macrophage activation syndrome. Early cytokine-blocking biologic therapy may improve long-term outcomes, although some systemic juvenile idiopathic arthritis patients respond well to non-biologic treatment, leaving optimal management undefined. Consequently, treatment of new-onset systemic juvenile idiopathic arthritis by expert clinicians varies widely. To describe a pragmatic, observational comparative effectiveness study that takes advantage of diversity in the management of a rare disease: FiRst-Line Options for Systemic juvenile idiopathic arthritis Treatment (FROST), comparing non-biologic and biologic consensus treatment plans for new-onset systemic juvenile idiopathic arthritis within the 60-center Childhood Arthritis and Rheumatology Research Alliance Registry (CARRA). FiRst-Line Options for Systemic juvenile idiopathic arthritis Treatment (FROST) is a multicenter, prospective, non-randomized study that compares four Childhood Arthritis and Rheumatology Research Alliance (CARRA) consensus treatment plans for new-onset systemic juvenile idiopathic arthritis: (1) glucocorticoids alone, (2) methotrexate, (3) interleukin-1 blockade, and (4) interleukin-6 blockade. Patients consenting to participation in the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry are started on one of four Consensus Treatment Plans at the discretion of the treating physician. The outcome of primary interest is clinically inactive disease off glucocorticoids at 9 months, comparing non-biologic (Consensus Treatment Plans 1 + 2) versus biologic (Consensus Treatment Plans 3 + 4) strategies. Bayesian analytic methods will be employed to evaluate response rates, using propensity scoring to balance treatment groups for potential confounding. With 200 patients in a 2:1 ratio of biologic to non-biologic, there is a >90% probability of finding biologic consensus treatment plans more effective if the rate of clinically inactive disease is 30% higher than for non-biologic therapy. Additional outcomes include Patient-Reported Outcomes Measurement Information System measures and other parent-/patient-reported outcomes reported in real time using smartphone technology. Routine operation of the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry will allow assessment of outcomes over at least 10 years. FiRst-Line Options for Systemic juvenile idiopathic arthritis Treatment (FROST) began enrollment in November 2016. The observational design may not provide balance in measured and unmeasured confounders. Use of consensus treatment plan (CTP) strategies at frequencies more unbalanced than predicted could reduce the chance of finding differences in efficacy. FiRst-Line Options for Systemic juvenile idiopathic arthritis Treatment (FROST) will provide the first prospective comparison of Childhood Arthritis and Rheumatology Research Alliance's (CARRA's) consensus-derived non-biologic versus biologic management strategies in systemic juvenile idiopathic arthritis, performed in a real-world setting wherein each patient receives standard-of-care treatment selected by the treating physician. Outcomes include clinician- and patient-/family-reported outcomes, empowering both physician and patient decision making in new-onset systemic juvenile idiopathic arthritis.

  2. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 373)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 206 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Feb. 1993. Subject coverage includes: aerospace medicine and physiology, pharmacology, toxicology, environmental effect, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  3. Biological robustness.

    PubMed

    Kitano, Hiroaki

    2004-11-01

    Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.

  4. The growing role of biologics and biosimilars in the United States: Perspectives from the APhA Biologics and Biosimilars Stakeholder Conference.

    PubMed

    Crespi-Lofton, Judy; Skelton, Jann B

    The American Pharmacists Association (APhA) convened the Biologics and Biosimilars Stakeholder Conference on November 30, 2016, in Washington DC. The objectives of the Conference were to determine the key issues and challenges within the marketplace for biologics, follow-on biologics (FOBs), and biosimilars, identify potential roles and responsibilities of pharmacists regarding biologic and biosimilar medications, and identify actions or activities that pharmacists may take to optimize the safe and cost-effective use of biologics and biosimilars. National thought leaders and stakeholder representatives, including individuals from the Food and Drug Administration, Centers for Medicare and Medicaid Services, a private third-party payer, manufacturers, and several national organizations of health care professionals, participated in the conference. Information shared by this group was supplemented with relevant legal and regulatory information and published literature. Biologics play a valuable role in the treatment of numerous health conditions, but their associated costs, which tend to be greater than those of small-molecule drugs, place a burden on the health care system. Biosimilars (both noninterchangeable and interchangeable) are highly similar copies of the originator biologic and offer the potential to reduce costs and improve patient access to biological products by increasing treatment options and creating a more competitive market. Despite the potential benefits of biosimilars, certain factors may limit their uptake. The conference participants explored issues that different stakeholders think influence the use of biologics, including biosimilars, in the United States. Barriers included technology, prescriber-pharmacist communication, legislation and regulations, limited patient and health care practitioner knowledge of biological products, patient and health care practitioner perceptions of biosimilars, and evolving science or lack of long-term data. After participants identified issues, they discussed strategies to address these concerns, including the need to enhance the education of pharmacists, prescribers, and patients regarding biologic products, including biosimilars and FOBs; the passage of state laws and regulations that do not impede the use of biosimilars, including interchangeable biosimilars; the use of product-specific tracking information in electronic health records and surveillance systems; bidirectional communication among pharmacists, prescribers, and other members of the care team to support pharmacovigilance and the maintenance of accurate patient records; and the development of evidence-based third-party payer policies. Patient access to safe and cost-effective treatments is an important goal for the health care system. As the availability and use of biosimilars, including those determined to be interchangeable, increases, their potential to lower costs and improve patient access to treatment grows. However, the extent of such growth is, in part, dependent on various stakeholders' decisions to provide, pay for, or use these products in a safe and thoughtful manner. Ongoing stakeholder collaboration, educational activities, and review of current government or payer policies are required to optimize the uptake of biological products, including biosimilars. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Developmental biology, the stem cell of biological disciplines.

    PubMed

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  6. Systems biology of cellular membranes: a convergence with biophysics.

    PubMed

    Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini

    2017-09-01

    Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  7. Cell illustrator 4.0: a computational platform for systems biology.

    PubMed

    Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru

    2011-01-01

    Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.

  8. Cell Illustrator 4.0: a computational platform for systems biology.

    PubMed

    Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru

    2010-01-01

    Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.

  9. System approaches of Weiss and Bertalanffy and their relevance for systems biology today.

    PubMed

    Drack, Manfred; Wolkenhauer, Olaf

    2011-06-01

    System approaches in biology have a long history. We focus here on the thinking of Paul A. Weiss and Ludwig von Bertalanffy, who contributed a great deal towards making the system concept operable in biology in the early 20th century. To them, considering whole living systems, which includes their organisation or order, is equally important as the dynamics within systems and the interplay between different levels from molecules over cells to organisms. They also called for taking the intrinsic activity of living systems and the conservation of system states into account. We compare these notions with today's systems biology, which is often a bottom-up approach from molecular dynamics to cellular behaviour. We conclude that bringing together the early heuristics with recent formalisms and novel experimental set-ups can lead to fruitful results and understanding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Synthetic biology: new engineering rules for an emerging discipline

    PubMed Central

    Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron

    2006-01-01

    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development. PMID:16738572

  11. Synthetic biology: new engineering rules for an emerging discipline.

    PubMed

    Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron

    2006-01-01

    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development.

  12. Research Frontiers in Bioinspired Energy: Molecular-Level Learning from Natural Systems: A Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolandz, Dorothy

    An interactive, multidisciplinary, public workshop, organized by a group of experts in biochemistry, biophysics, chemical and biomolecular engineering, chemistry, microbial metabolism, and protein structure and function, was held on January 6-7, 2011 in Washington, DC. Fundamental insights into the biological energy capture, storage, and transformation processes provided by speakers was featured in this workshop which included topics such as microbes living in extreme environments such as hydrothermal vents or caustic soda lakes (extremophiles) provided a fascinating basis for discussing the exploration and development of new energy systems. Breakout sessions and extended discussions among the multidisciplinary groups of participants in themore » workshop fostered information sharing and possible collaborations on future bioinspired research. Printed and web-based materials that summarize the committee's assessment of what transpired at the workshop were prepared to advance further understanding of fundamental chemical properties of biological systems within and between the disciplines. In addition, webbased materials (including two animated videos) were developed to make the workshop content more accessible to a broad audience of students and researchers working across disciplinary boundaries. Key workshop discussion topics included: Exploring and identifying novel organisms; Identifying patterns and conserved biological structures in nature; Exploring and identifying fundamental properties and mechanisms of known biological systems; Supporting current, and creating new, opportunities for interdisciplinary education, training, and outreach; and Applying knowledge from biology to create new devices and sustainable technology.« less

  13. Advances in synthetic peptides reagent discovery

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Bacterial display technology offers a number of advantages over competing display technologies (e.g, phage) for the rapid discovery and development of peptides with interaction targeted to materials ranging from biological hazards through inorganic metals. We have previously shown that discovery of synthetic peptide reagents utilizing bacterial display technology is relatively simple and rapid to make laboratory automation possible. This included extensive study of the protective antigen system of Bacillus anthracis, including development of discovery, characterization, and computational biology capabilities for in-silico optimization. Although the benefits towards CBD goals are evident, the impact is far-reaching due to our ability to understand and harness peptide interactions that are ultimately extendable to the hybrid biomaterials of the future. In this paper, we describe advances in peptide discovery including, new target systems (e.g. non-biological materials), advanced library development and clone analysis including integrated reporting.

  14. User Facilities | Argonne National Laboratory

    Science.gov Websites

    , including biology and medicine. More than 7,000 scientists conduct experiments at Argonne user facilities Transformations IGSBInstitute for Genomics and Systems Biology IMEInstitute for Molecular Engineering JCESRJoint Science Center SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science

  15. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenborn, B P

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  16. Analysing hierarchy in the organization of biological and physical systems.

    PubMed

    Jagers op Akkerhuis, Gerard A J M

    2008-02-01

    A structured approach is discussed for analysing hierarchy in the organization of biological and physical systems. The need for a structured approach follows from the observation that many hierarchies in the literature apply conflicting hierarchy rules and include ill-defined systems. As an alternative, we suggest a framework that is based on the following analytical steps: determination of the succession stage of the universe, identification of a specific system as part of the universe, specification of external influences on a system's creation and analysis of a system's internal organization. At the end, the paper discusses practical implications of the proposed method for the analysis of system organization and hierarchy in biology, ecology and physics.

  17. Integrating Computer Interfaced Videodisc Systems in Introductory College Biology.

    ERIC Educational Resources Information Center

    Ebert-Zawasky, Kathleen; Abegg, Gerald L.

    This study was designed as a systematic investigation of the feasibility and effectiveness of student authored videodisc presentations in a non-major introductory level college biology course. Students (n=66) used a quick-learn authoring system, the Macintosh computer, and videodisc player with color monitor. Results included: (1) students managed…

  18. Foundations of Space Biology and Medicine. Volume 3: Space Medicine and Biotechnology

    NASA Technical Reports Server (NTRS)

    Calvin, M. (Editor); Gazenko, O. G. (Editor)

    1975-01-01

    The results of medical and biological research in space are presented. Specific topics discussed include: methods of providing life support systems for astronauts, characteristics of integrated life support systems, protection against adverse factors of space flight, selection and training of astronauts, and future space biomedical research.

  19. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 388)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 132 reports, articles and other documents introduced into the NASA Scientific and Technical Information Database. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance.

  20. Biological sample evaluation using a line-scan based SWIR hyperspectral imaging system

    USDA-ARS?s Scientific Manuscript database

    A new line-scan hyperspectral imaging system was developed to enable short wavelength infrared (SWIR) imagery for biological sample evaluation. Critical sensing components include a SWIR imaging spectrograph and an HgCdTe (MCT) focal plane array detector. To date, agricultural applications of infra...

  1. Hazard identification and risk assessment for biologics targeting the immune system.

    PubMed

    Weir, Andrea B

    2008-01-01

    Biologic pharmaceuticals include a variety of products, such as monoclonal antibodies, fusion proteins and cytokines. Products in those classes include immunomodulatory biologics, which are intended to enhance or diminish the activity of the immune system. Immunomodulatory biologics have been approved by the U.S. FDA for a variety of indications, including cancer and inflammatory conditions. Prior to gaining approval for marketing, sponsoring companies for all types of products must demonstrate a product's safety in toxicology studies conducted in animals and show safety and efficacy in clinical trials conducted in patients. The overall goal of toxicology studies, which applies to immunomodulatory and other product types, is to identify the hazards that products pose to humans. Because biologics are generally highly selective for specific targets (receptors/epitopes), conducting toxicology studies in animal models with the target is essential. Such animals are referred to as pharmacologically relevant. Endpoints routinely included in toxicology studies, such as hematology, organ weight and histopathology, can be used to assess the effect of a product on the structure of the immune system. Additionally, specialized endpoints, such as immunophenotyping and immune function tests, can be used to define effects of immunomodulatory products on the immune system. Following hazard identification, risks posed to patients are assessed and managed. Risks can be managed through clinical trial design and risk communication, a practice that applies to immunomodulatory and other product types. Examples of risk management in clinical trial design include establishing a safe starting dose, defining the appropriate patient population and establishing appropriate patient monitoring. Risk communication starts during clinical trials and continues after product approval. A combination of hazard identification, risk assessment and risk management allows for drug development to proceed with minimum risks to patients.

  2. Genomes, Proteomes and the Central Dogma

    PubMed Central

    Franklin, Sarah; Vondriska, Thomas M.

    2011-01-01

    Systems biology, with its associated technologies of proteomics, genomics and metabolomics, is driving the evolution of our understanding of cardiovascular physiology. Rather than studying individual molecules or even single reactions, a systems approach allows integration of orthogonal datasets from distinct tiers of biological data, including gene, RNA, protein, metabolite and other component networks. Together these networks give rise to emergent properties of cellular function and it is their reprogramming that causes disease. We present five observations regarding how systems biology is guiding a revisiting of the central dogma: (i) de-emphasizing the unidirectional flow of information from genes to proteins; (ii) revealing the role of modules of molecules as opposed to individual proteins acting in isolation; (iii) enabling discovery of novel emergent properties; (iv) demonstrating the importance of networks in biology; and (v) adding new dimensionality to the study of biological systems. PMID:22010165

  3. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  4. The United States Army 1996 Modernization Plan.

    DTIC Science & Technology

    1996-03-08

    and a cadre of operations, intelligence, fire support, air defense, and nuclear, biological, and chemical warfare personnel. As required, ARSPACE will...aerial and stand-off chemical and biological detection systems. " Decontamination improvements include Modular Decontamination System fielding in the near... Chemical . As many as 25 nations are producing and stockpiling chemical weapons. Weapons systems from mortars to missiles can deliver chemical warfare (CW

  5. Construction of a Linux based chemical and biological information system.

    PubMed

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  6. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics.

    PubMed

    Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio

    2014-05-10

    Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.

  7. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics

    PubMed Central

    2014-01-01

    Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957

  8. Synthetic Biology Open Language (SBOL) Version 2.2.0.

    PubMed

    Cox, Robert Sidney; Madsen, Curtis; McLaughlin, James Alastair; Nguyen, Tramy; Roehner, Nicholas; Bartley, Bryan; Beal, Jacob; Bissell, Michael; Choi, Kiri; Clancy, Kevin; Grünberg, Raik; Macklin, Chris; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Samineni, Meher; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Gennari, John H; Myers, Chris; Sauro, Herbert; Wipat, Anil

    2018-04-02

    Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The synthetic biology open language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.2.0 of SBOL that builds upon version 2.1.0 published in last year's JIB special issue. In particular, SBOL 2.2.0 includes improved description and validation rules for genetic design provenance, an extension to support combinatorial genetic designs, a new class to add non-SBOL data as attachments, a new class for genetic design implementations, and a description of a methodology to describe the entire design-build-test-learn cycle within the SBOL data model.

  9. Synthetic Biology Open Language (SBOL) Version 2.1.0.

    PubMed

    Beal, Jacob; Cox, Robert Sidney; Grünberg, Raik; McLaughlin, James; Nguyen, Tramy; Bartley, Bryan; Bissell, Michael; Choi, Kiri; Clancy, Kevin; Macklin, Chris; Madsen, Curtis; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Roehner, Nicholas; Samineni, Meher; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Gennari, John H; Myers, Chris; Sauro, Herbert; Wipat, Anil

    2016-09-01

    Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.1 of SBOL that builds upon version 2.0 published in last year's JIB special issue. In particular, SBOL 2.1 includes improved rules for what constitutes a valid SBOL document, new role fields to simplify the expression of sequence features and how components are used in context, and new best practices descriptions to improve the exchange of basic sequence topology information and the description of genetic design provenance, as well as miscellaneous other minor improvements.

  10. Synthetic Biology Open Language (SBOL) Version 2.1.0.

    PubMed

    Beal, Jacob; Cox, Robert Sidney; Grünberg, Raik; McLaughlin, James; Nguyen, Tramy; Bartley, Bryan; Bissell, Michael; Choi, Kiri; Clancy, Kevin; Macklin, Chris; Madsen, Curtis; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Roehner, Nicholas; Samineni, Meher; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Gennari, John; Myers, Chris; Sauro, Herbert; Wipat, Anil

    2016-12-18

    Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.1 of SBOL that builds upon version 2.0 published in last year’s JIB special issue. In particular, SBOL 2.1 includes improved rules for what constitutes a valid SBOL document, new role fields to simplify the expression of sequence features and how components are used in context, and new best practices descriptions to improve the exchange of basic sequence topology information and the description of genetic design provenance, as well as miscellaneous other minor improvements.

  11. Managing biological networks by using text mining and computer-aided curation

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  12. USSR Space Life Sciences Digest, issue 32

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Rowe, Joseph (Editor)

    1992-01-01

    This is the thirty-second issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 34 journal or conference papers published in Russian and of 4 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, cardiovascular and respiratory systems, developmental biology, exobiology, habitability and environmental effects, human performance, hematology, mathematical models, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, and reproductive system.

  13. Bioterrorism: toxins as weapons.

    PubMed

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  14. What Is Sleep Apnea?

    MedlinePlus

    ... NHLBI Division of Intramural Research and its Systems Biology Center are studying how genes and the environment ... which supports research on sleep and the circadian biology of sleep disorders, including how the body regulates ...

  15. The Biology of Behaviour.

    ERIC Educational Resources Information Center

    Broom, D. M.

    1981-01-01

    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  16. Biological and Chemical Impact to Educational Facilities.

    ERIC Educational Resources Information Center

    Manicone, Santo

    2002-01-01

    Discusses preparing an educational facility to address the threat of biological or chemical terrorism, including understanding the potential impact, implementing information and communication systems, and improving medical surveillance and awareness. (EV)

  17. USSR Space Life Sciences Digest, issue 11

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  18. Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 260)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A bibliography containing 225 reports, articles, and other documents which were introduced into the NASA Scientific and Technical Information system in June 1984 is presented. All articles are indexed and abstracted. General topics include: life sciences, aerospace medicine, behavioral sciences, man/system technology and life support, and planetary biology.

  19. A Graphical Systems Model and Tissue-specific Functional Gene Sets to Aid Transcriptomic Analysis of Chemical Impacts on the Female Teleost Reproductive Axis

    EPA Science Inventory

    Oligonucleotide microarrays and other ‘omics’ approaches are powerful tools for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-b...

  20. Species-level Analysis of Biological Literature for Storage and Retrieval

    ERIC Educational Resources Information Center

    Shervis, L. J.; And Others

    1972-01-01

    Describes an information retrieval system in entomology which could also be used for other biological literature. With the examples of coding information into the system, a user might get some idea of how to search and what kind of information might be found. No cost analysis for running the program is included. (PS)

  1. Human Food Consumption: A Primer on Nonequilibrium Thermodynamics for College Physics

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2008-01-01

    Students often have great difficulties with applications of the energy principle, especially those from biology, although most introductory physics texts include a brief discussion of metabolism. We point out that many of these discussions are unsatisfactory, since they often fail to mention how biological systems are "thermal systems in…

  2. Biological Potential in Serpentinizing Systems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  3. Systems Biology Approaches for Host–Fungal Interactions: An Expanding Multi-Omics Frontier

    PubMed Central

    Culibrk, Luka; Croft, Carys A.

    2016-01-01

    Abstract Opportunistic fungal infections are an increasing threat for global health, and for immunocompromised patients in particular. These infections are characterized by interaction between fungal pathogen and host cells. The exact mechanisms and the attendant variability in host and fungal pathogen interaction remain to be fully elucidated. The field of systems biology aims to characterize a biological system, and utilize this knowledge to predict the system's response to stimuli such as fungal exposures. A multi-omics approach, for example, combining data from genomics, proteomics, metabolomics, would allow a more comprehensive and pan-optic “two systems” biology of both the host and the fungal pathogen. In this review and literature analysis, we present highly specialized and nascent methods for analysis of multiple -omes of biological systems, in addition to emerging single-molecule visualization techniques that may assist in determining biological relevance of multi-omics data. We provide an overview of computational methods for modeling of gene regulatory networks, including some that have been applied towards the study of an interacting host and pathogen. In sum, comprehensive characterizations of host–fungal pathogen systems are now possible, and utilization of these cutting-edge multi-omics strategies may yield advances in better understanding of both host biology and fungal pathogens at a systems scale. PMID:26885725

  4. USSR Space Life Sciences Digest, issue 19

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  5. Tick control: trapping, biocontrol, host management and other alternative strategies

    USGS Publications Warehouse

    Ginsberg, Howard S.; Edited by Sonenshine, Daniel E.; Roe, R. Michael

    2014-01-01

    Biology of Ticks is the most comprehensive work on tick biology and tick-borne diseases. This second edition is a multi-authored work, featuring the research and analyses of renowned experts across the globe. Spanning two volumes, the book examines the systematics, biology, structure, ecological adaptations, evolution, genomics and the molecular processes that underpin the growth, development and survival of these important disease-transmitting parasites. Also discussed is the remarkable array of diseases transmitted (or caused) by ticks, as well as modern methods for their control. This book should serve as a modern reference for students, scientists, physicians, veterinarians and other specialists. Volume I covers the biology of the tick and features chapters on tick systematics, tick life cycles, external and internal anatomy, and others dedicated to specific organ systems, specifically, the tick integument, mouthparts and digestive system, salivary glands, waste removal, salivary glands, respiratory system, circulatory system and hemolymph, fat body, the nervous and sensory systems and reproductive systems. Volume II includes chapters on the ecology of non-nidicolous and nidicolous ticks, genetics and genomics (including the genome of the Lyme disease vector Ixodes scapularis) and immunity, including host immune responses to tick feeding and tick-host interactions, as well as the tick's innate immune system that prevents and/or controls microbial infections. Six chapters cover in depth the many diseases caused by the major tick-borne pathogens, including tick-borne protozoa, viruses, rickettsiae of all types, other types of bacteria (e.g., the Lyme disease agent) and diseases related to tick paralytic agents and toxins. The remaining chapters are devoted to tick control using vaccines, acaricides, repellents, biocontrol, and, finally, techniques for breeding ticks in order to develop tick colonies for scientific study.

  6. Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 259)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A bibliography containing 476 documents introduced into the NASA scientific and technical information system in May 1984 is presented. The primary subject categories included are: life sciences, aerospace medicine, behavioral sciences, man/system technology, life support, and planetary biology. Topics extensively represented were space flight stress, man machine systems, weightlessness, human performance, mental performance, and spacecraft environments. Abstracts for each citation are given.

  7. Nanosilver: new ageless and versatile biomedical therapeutic scaffold

    PubMed Central

    Ullah Khan, Shahid; Khan, Muhammad Hafeez Ullah; Khan, Dilfaraz; Ullah Khan, Wasim; Rahim, Abdur; Kamal, Sajid; Ullah Khan, Farman; Fahad, Shah

    2018-01-01

    Silver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer. The mechanism of action of AgNPs in different biological systems still remains enigmatic. Here, due to limited available literature, we only focused on AgNPs mechanism in biological systems including human (wound healing and apoptosis), bacteria, and viruses which may open new windows for future research to ensure the versatile application of AgNPs in cosmetics, electronics, and medical fields. PMID:29440898

  8. Frontiers of optofluidics in synthetic biology.

    PubMed

    Tan, Cheemeng; Lo, Shih-Jie; LeDuc, Philip R; Cheng, Chao-Min

    2012-10-07

    The development of optofluidic-based technology has ushered in a new era of lab-on-a-chip functionality, including miniaturization of biomedical devices, enhanced sensitivity for molecular detection, and multiplexing of optical measurements. While having great potential, optofluidic devices have only begun to be exploited in many biotechnological applications. Here, we highlight the potential of integrating optofluidic devices with synthetic biological systems, which is a field focusing on creating novel cellular systems by engineering synthetic gene and protein networks. First, we review the development of synthetic biology at different length scales, ranging from single-molecule, single-cell, to cellular population. We emphasize light-sensitive synthetic biological systems that would be relevant for the integration with optofluidic devices. Next, we propose several areas for potential applications of optofluidics in synthetic biology. The integration of optofluidics and synthetic biology would have a broad impact on point-of-care diagnostics and biotechnology.

  9. Lipid Rafts in Mast Cell Biology

    PubMed Central

    Silveira e Souza, Adriana Maria Mariano; Mazucato, Vivian Marino; Jamur, Maria Célia; Oliver, Constance

    2011-01-01

    Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization. PMID:21490812

  10. Synthetic biology and occupational risk.

    PubMed

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  11. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes.

    PubMed

    Arakawa, Kazuharu; Yamada, Yohei; Shinoda, Kosaku; Nakayama, Yoichi; Tomita, Masaru

    2006-03-23

    Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology. We developed the Genome-based Modeling (GEM) System for the purpose of automatically prototyping simulation models of cell-wide metabolic pathways from genome sequences and other public biological information. Models generated by the GEM System include an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving 100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and 95.06% with iJR904 genome-scale model. The GEM System prototypes qualitative models to reduce the labor-intensive tasks required for systems biology research. Models of over 90 bacterial genomes are available at our web site.

  12. The Metals in the Biological Periodic System of the Elements: Concepts and Conjectures

    PubMed Central

    Maret, Wolfgang

    2016-01-01

    A significant number of chemical elements are either essential for life with known functions, or present in organisms with poorly defined functional outcomes. We do not know all the essential elements with certainty and we know even less about the functions of apparently non-essential elements. In this article, I discuss a basis for a biological periodic system of the elements and that biochemistry should include the elements that are traditionally part of inorganic chemistry and not only those that are in the purview of organic chemistry. A biological periodic system of the elements needs to specify what “essential” means and to which biological species it refers. It represents a snapshot of our present knowledge and is expected to undergo further modifications in the future. An integrated approach of biometal sciences called metallomics is required to understand the interactions of metal ions, the biological functions that their chemical structures acquire in the biological system, and how their usage is fine-tuned in biological species and in populations of species with genetic variations (the variome). PMID:26742035

  13. The Political System. SSEC Publication No. 103.

    ERIC Educational Resources Information Center

    Collier, David

    The systems analysis of political life might be used as a basis for teaching about the political process in all grades, including elementary school. A political system is part of an intra-societal environment including ecological, biological, personality, economic, cultural, and other systems, all operating in society and bound by an…

  14. USSR Space Life Sciences Digest, issue 21

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  15. Systems biology solutions for biochemical production challenges.

    PubMed

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The Second Annual Symposium of the NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology.

    PubMed

    Spooner, B S

    1993-04-01

    The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.

  17. The Second Annual Symposium of the NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.

    1993-01-01

    The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.

  18. Health, Health Care, and Systems Science: Emerging Paradigm.

    PubMed

    Janecka, Ivo

    2017-02-15

    Health is a continuum of an optimized state of a biologic system, an outcome of positive relationships with the self and others. A healthy system follows the principles of systems science derived from observations of nature, highlighting the character of relationships as the key determinant. Relationships evolve from our decisions, which are consequential to the function of our own biologic system on all levels, including the genome, where epigenetics impact our morphology. In healthy systems, decisions emanate from the reciprocal collaboration of hippocampal memory and the executive prefrontal cortex. We can decide to change relationships through choices. What is selected, however, only represents the cognitive interpretation of our limited sensory perception; it strongly reflects inherent biases toward either optimizing state, making a biologic system healthy, or not. Health or its absence is then the outcome; there is no inconsequential choice. Public health effort should not focus on punitive steps (e.g. taxation of unhealthy products or behaviors) in order to achieve a higher level of public's health. It should teach people the process of making healthy decisions; otherwise, people will just migrate/shift from one unhealthy product/behavior to another, and well-intended punitive steps will not make much difference. Physical activity, accompanied by nutrition and stress management, have the greatest impact on fashioning health and simultaneously are the most cost-effective measures. Moderate-to-vigorous exercise not only improves aerobic fitness but also positively influences cognition, including memory and senses. Collective, rational societal decisions can then be anticipated. Health care is a business system principally governed by self-maximizing decisions of its components; uneven and contradictory outcomes are the consequences within such a non-optimized system. Health is not health care. We are biologic systems subject to the laws of biology in spite of our incongruous decisions that are detrimental to health. A biologic system/a human body originates from structural, deterministic genes as well as shared epigenetic memory of our ancestors affecting our bodily function and structure. The political governing systems' vertical hierarchy has control over money and laws, neither of which materially affect individual lifestyle/behavioral choices toward health. Improved health comes from focusing on enhancing the biologic age and not the chronologic one, which simply represents a linear time from a birth certificate to a death certificate and is applicable only in its extremes. "Age-related diseases" are simply reflections of a given culture. Biologic age, reflecting the actual state of health, could be used in all health-related assessments including health-life insurance premiums, licensing of job categories, etc., all with a broader and healthy societal impact.

  19. Systems Biology in Immunology – A Computational Modeling Perspective

    PubMed Central

    Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra; Fraser, Iain D. C.

    2011-01-01

    Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and conduct simulations of immune function, We provide descriptions of the key data gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease. PMID:21219182

  20. Enabling plant synthetic biology through genome engineering.

    PubMed

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in biology and environmental education instruction, including, among others, sampling in ecology using an overhead projector, the slide finder as an aid to microscopy, teaching kidney function, and teaching wildlife conservation-sand dune systems. (SK)

  2. The genesis of craniofacial biology as a health science discipline.

    PubMed

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. © 2014 Australian Dental Association.

  3. Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johanson, Richard E.

    2004-08-01

    A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.

  4. Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Vanessa A.; Kothari, Ninad; Bhagia, Samarthya

    Populus natural variants have been shown to realize a broad range of sugar yields during saccharification, however, the structural features responsible for higher sugar release from natural variants are not clear. In addition, the sugar release patterns resulting from digestion with two distinct biological systems, fungal enzymes and Clostridium thermocellum, have yet to be evaluated and compared. This study evaluates the effect of structural features of three natural variant Populus lines, which includes the line BESC standard, with respect to the overall process of sugar release for two different biological systems.

  5. Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems

    DOE PAGES

    Thomas, Vanessa A.; Kothari, Ninad; Bhagia, Samarthya; ...

    2017-11-30

    Populus natural variants have been shown to realize a broad range of sugar yields during saccharification, however, the structural features responsible for higher sugar release from natural variants are not clear. In addition, the sugar release patterns resulting from digestion with two distinct biological systems, fungal enzymes and Clostridium thermocellum, have yet to be evaluated and compared. This study evaluates the effect of structural features of three natural variant Populus lines, which includes the line BESC standard, with respect to the overall process of sugar release for two different biological systems.

  6. USSR Space Life Sciences Digest, issue 31

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine.

  7. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  8. Cardiovascular safety of biologic therapies for the treatment of RA.

    PubMed

    Greenberg, Jeffrey D; Furer, Victoria; Farkouh, Michael E

    2011-11-15

    Cardiovascular disease represents a major source of extra-articular comorbidity in patients with rheumatoid arthritis (RA). A combination of traditional cardiovascular risk factors and RA-related factors accounts for the excess risk in RA. Among RA-related factors, chronic systemic inflammation has been implicated in the pathogenesis and progression of atherosclerosis. A growing body of evidence--mainly derived from observational databases and registries--suggests that specific RA therapies, including methotrexate and anti-TNF biologic agents, can reduce the risk of future cardiovascular events in patients with RA. The cardiovascular profile of other biologic therapies for the treatment of RA has not been adequately studied, including of investigational drugs that improve systemic inflammation but alter traditional cardiovascular risk factors. In the absence of large clinical trials adequately powered to detect differences in cardiovascular events between biologic drugs in RA, deriving firm conclusions on cardiovascular safety is challenging. Nevertheless, observational research using large registries has emerged as a promising approach to study the cardiovascular risk of emerging RA biologic therapies.

  9. Activated Biological Filters (ABF Towers). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Wooley, John F.

    This student manual contains textual material for a two-lesson unit on activated bio-filters (ABF). The first lesson (the sewage treatment plant) examines those process units that are unique to the ABF system. The lesson includes a review of the structural components of the ABF system and their functions and a discussion of several operational…

  10. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    PubMed

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-12-01

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  11. Joint Service Chemical and Biological Defense Program. FY00-02 Overview

    DTIC Science & Technology

    2001-09-01

    Development. Contractors: 12 BI DS Biological Integrated Detection System (BIDS) Lead Service Bio Road HERCULES, CA Bruker Analytical Systems BILLERICA, MA...Dynamics Land Systems Division DETROIT, MI Henschel Wehrtechnik GERMANY Bruker -Franzen GERMANY Block II – TBD Milestones Block I MS III (2QFY94) Block...ground. Accessories include hoses and hose reels, two trigger-controlled spray wands , and two electrical-powered scrub brush assemblies. The M22

  12. A Personal Journey of Discovery: Developing Technology and Changing Biology

    NASA Astrophysics Data System (ADS)

    Hood, Lee

    2008-07-01

    This autobiographical article describes my experiences in developing chemically based, biological technologies for deciphering biological information: DNA, RNA, proteins, interactions, and networks. The instruments developed include protein and DNA sequencers and synthesizers, as well as ink-jet technology for synthesizing DNA chips. Diverse new strategies for doing biology also arose from novel applications of these instruments. The functioning of these instruments can be integrated to generate powerful new approaches to cloning and characterizing genes from a small amount of protein sequence or to using gene sequences to synthesize peptide fragments so as to characterize various properties of the proteins. I also discuss the five paradigm changes in which I have participated: the development and integration of biological instrumentation; the human genome project; cross-disciplinary biology; systems biology; and predictive, personalized, preventive, and participatory (P4) medicine. Finally, I discuss the origins, the philosophy, some accomplishments, and the future trajectories of the Institute for Systems Biology.

  13. Health, Health Care, and Systems Science: Emerging Paradigm

    PubMed Central

    2017-01-01

    Health is a continuum of an optimized state of a biologic system, an outcome of positive relationships with the self and others. A healthy system follows the principles of systems science derived from observations of nature, highlighting the character of relationships as the key determinant. Relationships evolve from our decisions, which are consequential to the function of our own biologic system on all levels, including the genome, where epigenetics impact our morphology. In healthy systems, decisions emanate from the reciprocal collaboration of hippocampal memory and the executive prefrontal cortex. We can decide to change relationships through choices. What is selected, however, only represents the cognitive interpretation of our limited sensory perception; it strongly reflects inherent biases toward either optimizing state, making a biologic system healthy, or not. Health or its absence is then the outcome; there is no inconsequential choice. Public health effort should not focus on punitive steps (e.g. taxation of unhealthy products or behaviors) in order to achieve a higher level of public’s health. It should teach people the process of making healthy decisions; otherwise, people will just migrate/shift from one unhealthy product/behavior to another, and well-intended punitive steps will not make much difference. Physical activity, accompanied by nutrition and stress management, have the greatest impact on fashioning health and simultaneously are the most cost-effective measures. Moderate-to-vigorous exercise not only improves aerobic fitness but also positively influences cognition, including memory and senses. Collective, rational societal decisions can then be anticipated. Health care is a business system principally governed by self-maximizing decisions of its components; uneven and contradictory outcomes are the consequences within such a non-optimized system. Health is not health care. We are biologic systems subject to the laws of biology in spite of our incongruous decisions that are detrimental to health. A biologic system/a human body originates from structural, deterministic genes as well as shared epigenetic memory of our ancestors affecting our bodily function and structure. The political governing systems’ vertical hierarchy has control over money and laws, neither of which materially affect individual lifestyle/behavioral choices toward health. Improved health comes from focusing on enhancing the biologic age and not the chronologic one, which simply represents a linear time from a birth certificate to a death certificate and is applicable only in its extremes. “Age-related diseases” are simply reflections of a given culture. Biologic age, reflecting the actual state of health, could be used in all health-related assessments including health-life insurance premiums, licensing of job categories, etc., all with a broader and healthy societal impact. PMID:28357162

  14. Design and control strategies for CELSS - Integrating mechanistic paradigms and biological complexities

    NASA Technical Reports Server (NTRS)

    Moore, B., III; Kaufmann, R.; Reinhold, C.

    1981-01-01

    Systems analysis and control theory consideration are given to simulations of both individual components and total systems, in order to develop a reliable control strategy for a Controlled Ecological Life Support System (CELSS) which includes complex biological components. Because of the numerous nonlinearities and tight coupling within the biological component, classical control theory may be inadequate and the statistical analysis of factorial experiments more useful. The range in control characteristics of particular species may simplify the overall task by providing an appropriate balance of stability and controllability to match species function in the overall design. The ultimate goal of this research is the coordination of biological and mechanical subsystems in order to achieve a self-supporting environment.

  15. Systems biology of seeds: deciphering the molecular mechanisms of seed storage, dormancy and onset of germination.

    PubMed

    Sreenivasulu, Nese

    2017-05-01

    Seeds are heterogeneous storage reserves with wide array of storage compounds that include various soluble carbohydrates, starch polymer, storage proteins and lipids. These stored reserves comprise 70% of the world's caloric intake in the form of food and animal feed produced through sustainable agriculture, which contributes to food and nutritional security. Seed systems biology remains an enigmatic subject in understanding seed storage processes, maturation and pre-germinative metabolism. The reviews and research articles covered in this special issue of Plant Cell Reports highlight recent advances made in the area of seed biology that cover various systems biology applications such as gene regulatory networks, metabolomics, epigenetics and the role of micro-RNA in seed development.

  16. A framework for evolutionary systems biology

    PubMed Central

    Loewe, Laurence

    2009-01-01

    Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications. PMID:19239699

  17. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  18. Plant biology in space: proceedings of the International Workshop, Bad Honnef, Germany, June 24-27, 1996

    NASA Technical Reports Server (NTRS)

    Scott, T. K. (Principal Investigator)

    1997-01-01

    Papers presented at the International Workshop on Plant Biology in Space include reviews, reports, and perspectives related to plant gravitational biology. Presentations focused on nine subject areas: gravitropism in unicellular plants, gravitropism in fungi, cell development, gravity perception in multicellular plants, gravity responses in multicellular plants, plant reproduction, evaluation of a clinostat for weightlessness simulation, biological life support systems, and future research.

  19. Automatic Compilation from High-Level Biologically-Oriented Programming Language to Genetic Regulatory Networks

    PubMed Central

    Beal, Jacob; Lu, Ting; Weiss, Ron

    2011-01-01

    Background The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. Methodology/Principal Findings To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks. Conclusions/Significance Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems. PMID:21850228

  20. Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks.

    PubMed

    Beal, Jacob; Lu, Ting; Weiss, Ron

    2011-01-01

    The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes (~ 50%) and latency of the optimized engineered gene networks. Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.

  1. No question about exciting questions in cell biology.

    PubMed

    Pollard, Thomas D

    2013-12-01

    Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

  2. Molecular communication and networking: opportunities and challenges.

    PubMed

    Nakano, Tadashi; Moore, Michael J; Wei, Fang; Vasilakos, Athanasios V; Shuai, Jianwei

    2012-06-01

    The ability of engineered biological nanomachines to communicate with biological systems at the molecular level is anticipated to enable future applications such as monitoring the condition of a human body, regenerating biological tissues and organs, and interfacing artificial devices with neural systems. From the viewpoint of communication theory and engineering, molecular communication is proposed as a new paradigm for engineered biological nanomachines to communicate with the natural biological nanomachines which form a biological system. Distinct from the current telecommunication paradigm, molecular communication uses molecules as the carriers of information; sender biological nanomachines encode information on molecules and release the molecules in the environment, the molecules then propagate in the environment to receiver biological nanomachines, and the receiver biological nanomachines biochemically react with the molecules to decode information. Current molecular communication research is limited to small-scale networks of several biological nanomachines. Key challenges to bridge the gap between current research and practical applications include developing robust and scalable techniques to create a functional network from a large number of biological nanomachines. Developing networking mechanisms and communication protocols is anticipated to introduce new avenues into integrating engineered and natural biological nanomachines into a single networked system. In this paper, we present the state-of-the-art in the area of molecular communication by discussing its architecture, features, applications, design, engineering, and physical modeling. We then discuss challenges and opportunities in developing networking mechanisms and communication protocols to create a network from a large number of bio-nanomachines for future applications.

  3. Games network and application to PAs system.

    PubMed

    Chettaoui, C; Delaplace, F; Manceny, M; Malo, M

    2007-02-01

    In this article, we present a game theory based framework, named games network, for modeling biological interactions. After introducing the theory, we more precisely describe the methodology to model biological interactions. Then we apply it to the plasminogen activator system (PAs) which is a signal transduction pathway involved in cancer cell migration. The games network theory extends game theory by including the locality of interactions. Each game in a games network represents local interactions between biological agents. The PAs system is implicated in cytoskeleton modifications via regulation of actin and microtubules, which in turn favors cell migration. The games network model has enabled us a better understanding of the regulation involved in the PAs system.

  4. Summary Report: Pilot Study of an Innovative Biological Treatment Process for the Removal of Ammonia from a Small Drinking Water System

    EPA Science Inventory

    The use of biologically active filtration to oxidize ammonia as a full-scale drinking water treatment process has not been thoroughly considered in the United States. A number of concerns with biological water treatment exist including the potential release of excessive numbers o...

  5. Systems biology as a conceptual framework for research in family medicine; use in predicting response to influenza vaccination.

    PubMed

    Majnarić-Trtica, Ljiljana; Vitale, Branko

    2011-10-01

    To introduce systems biology as a conceptual framework for research in family medicine, based on empirical data from a case study on the prediction of influenza vaccination outcomes. This concept is primarily oriented towards planning preventive interventions and includes systematic data recording, a multi-step research protocol and predictive modelling. Factors known to affect responses to influenza vaccination include older age, past exposure to influenza viruses, and chronic diseases; however, constructing useful prediction models remains a challenge, because of the need to identify health parameters that are appropriate for general use in modelling patients' responses. The sample consisted of 93 patients aged 50-89 years (median 69), with multiple medical conditions, who were vaccinated against influenza. Literature searches identified potentially predictive health-related parameters, including age, gender, diagnoses of the main chronic ageing diseases, anthropometric measures, and haematological and biochemical tests. By applying data mining algorithms, patterns were identified in the data set. Candidate health parameters, selected in this way, were then combined with information on past influenza virus exposure to build the prediction model using logistic regression. A highly significant prediction model was obtained, indicating that by using a systems biology approach it is possible to answer unresolved complex medical uncertainties. Adopting this systems biology approach can be expected to be useful in identifying the most appropriate target groups for other preventive programmes.

  6. Synthetic biology: navigating the challenges ahead.

    PubMed

    Bhutkar, Arjun

    2005-01-01

    The emerging field of synthetic biology is broadly defined as the area of intersection of biology and engineering that focuses on the modification or creation of novel biological systems that do not have a counterpart in nature. Potential applications of this technology range from creating systems for environmental cleanup tasks, for medical diagnosis and treatment, to economical generation of hydrogen fuel. This technology is in tis nascent state and there are a number of concerns surrounding its potential applications and the nature of research being performed. With the potential to create hitherto unknown "living organisms", it raises a number of challenges along different dimensions. This article reviews the current state of the technology and analyzes synthetic biology using different lenses: patentability, ethics, and regulation. It proposes a classification system for the products of synthetic biology and provides recommendations in each of the above areas (patentability, ethics, and regulation) in the context of this classification system. These recommendations include an improved framework for patentability testing, ethical principles to guide work in this area, a controlled approval process, and reference frameworks for regulation.

  7. Generation of the Dimensional Embryology Application (App) for Visualization of Early Chick and Frog Embryonic Development

    ERIC Educational Resources Information Center

    Webb, Rebecca L.; Bilitski, James; Zerbee, Alyssa; Symans, Alexandra; Chop, Alexandra; Seitz, Brianne; Tran, Cindy

    2015-01-01

    The study of embryonic development of multiple organisms, including model organisms such as frogs and chicks, is included in many undergraduate biology programs, as well as in a variety of graduate programs. As our knowledge of biological systems increases and the amount of material to be taught expands, the time spent instructing students about…

  8. Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry.

  9. Flexible automated approach for quantitative liquid handling of complex biological samples.

    PubMed

    Palandra, Joe; Weller, David; Hudson, Gary; Li, Jeff; Osgood, Sarah; Hudson, Emily; Zhong, Min; Buchholz, Lisa; Cohen, Lucinda H

    2007-11-01

    A fully automated protein precipitation technique for biological sample preparation has been developed for the quantitation of drugs in various biological matrixes. All liquid handling during sample preparation was automated using a Hamilton MicroLab Star Robotic workstation, which included the preparation of standards and controls from a Watson laboratory information management system generated work list, shaking of 96-well plates, and vacuum application. Processing time is less than 30 s per sample or approximately 45 min per 96-well plate, which is then immediately ready for injection onto an LC-MS/MS system. An overview of the process workflow is discussed, including the software development. Validation data are also provided, including specific liquid class data as well as comparative data of automated vs manual preparation using both quality controls and actual sample data. The efficiencies gained from this automated approach are described.

  10. P43-S Computational Biology Applications Suite for High-Performance Computing (BioHPC.net)

    PubMed Central

    Pillardy, J.

    2007-01-01

    One of the challenges of high-performance computing (HPC) is user accessibility. At the Cornell University Computational Biology Service Unit, which is also a Microsoft HPC institute, we have developed a computational biology application suite that allows researchers from biological laboratories to submit their jobs to the parallel cluster through an easy-to-use Web interface. Through this system, we are providing users with popular bioinformatics tools including BLAST, HMMER, InterproScan, and MrBayes. The system is flexible and can be easily customized to include other software. It is also scalable; the installation on our servers currently processes approximately 8500 job submissions per year, many of them requiring massively parallel computations. It also has a built-in user management system, which can limit software and/or database access to specified users. TAIR, the major database of the plant model organism Arabidopsis, and SGN, the international tomato genome database, are both using our system for storage and data analysis. The system consists of a Web server running the interface (ASP.NET C#), Microsoft SQL server (ADO.NET), compute cluster running Microsoft Windows, ftp server, and file server. Users can interact with their jobs and data via a Web browser, ftp, or e-mail. The interface is accessible at http://cbsuapps.tc.cornell.edu/.

  11. Top-down models in biology: explanation and control of complex living systems above the molecular level.

    PubMed

    Pezzulo, Giovanni; Levin, Michael

    2016-11-01

    It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. © 2016 The Author(s).

  12. Top-down models in biology: explanation and control of complex living systems above the molecular level

    PubMed Central

    2016-01-01

    It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. PMID:27807271

  13. The Vitamin D Endocrine System.

    ERIC Educational Resources Information Center

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  14. Safety of High Speed Guided Ground Transportation Systems. Broadband Magnetic Fields : Their Possible Role in EMF Associated Bioeffects

    DOT National Transportation Integrated Search

    1993-08-01

    This report reviews electric and magnetic field (EMF) exposures from electrical transportation systems, including : electrically powered rail and magnetic levitation (maglev). Material also covered includes research concerning : biological effects of...

  15. Reconstructing Anaximander's biological model unveils a theory of evolution akin to Darwin's, though centuries before the birth of science.

    PubMed

    Trevisanato, Siro Igino

    2016-08-01

    Anaximander's fragments on biology report a theory of evolution, which, unlike the development of other biological systems in the ancient Aegean, is naturalistic and is not based on metaphysics. According to Anaximander, evolution affected all living beings, including humans. The first biological systems formed in an aquatic environment, and were encased in a rugged and robust envelope. Evolution progressed with modifications that enabled the formation of more dynamic biological systems. For instance, after reaching land, the robust armors around aquatic beings dried up, and became brittle, This led to the loss of the armor and the development of more mobile life forms. Anaximander's theory combines observations of animals with speculations, and as such mirrors the more famous theory of evolution by Charles Darwin expressed 24 centuries later. The poor reception received by Anaximander's model in his time, illustrates a zeitgeist that would explain the contemporary lag phase in the development of biology and, as a result, medicine, in the ancient western world.

  16. Strategies for structuring interdisciplinary education in Systems Biology: an European perspective

    PubMed Central

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure; Alberghina, Lilia; Almaas, Eivind; Besozzi, Daniela; Blomberg, Anders; Bretschneider, Till; Cascante, Marta; Collin, Olivier; de Atauri, Pedro; Depner, Cornelia; Dickinson, Robert; Dobrzynski, Maciej; Fleck, Christian; Garcia-Ojalvo, Jordi; Gonze, Didier; Hahn, Jens; Hess, Heide Marie; Hollmann, Susanne; Krantz, Marcus; Kummer, Ursula; Lundh, Torbjörn; Martial, Gifta; dos Santos, Vítor Martins; Mauer-Oberthür, Angela; Regierer, Babette; Skene, Barbara; Stalidzans, Egils; Stelling, Jörg; Teusink, Bas; Workman, Christopher T; Hohmann, Stefan

    2016-01-01

    Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material and example curricula. As university education at the Bachelor’s level is traditionally built upon disciplinary degrees, we believe that the most effective way to implement education in Systems Biology would be at the Master’s level, as it offers a more flexible framework. Our team of experts and active performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii) a description of possible career paths for students who undergo such an education, (iv) conditions that should improve the recruitment of students to such programmes and (v) mechanisms for collaboration and excellence spreading among education professionals. With the growing interest of industry in applying Systems Biology approaches in their fields, a concerted action between academia and industry is needed to build this expertise. Here we present a reflection of the European situation and expertise, where most of the challenges we discuss are universal, anticipating that our suggestions will be useful internationally. We believe that one of the overriding goals of any Systems Biology education should be a student’s ability to phrase and communicate research questions in such a manner that they can be solved by the integration of experiments and modelling, as well as to communicate and collaborate productively across different experimental and theoretical disciplines in research and development. PMID:28725471

  17. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  18. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    NASA Technical Reports Server (NTRS)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  19. Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.

    PubMed

    Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J

    2009-03-01

    Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].

  20. Web-based applications for building, managing and analysing kinetic models of biological systems.

    PubMed

    Lee, Dong-Yup; Saha, Rajib; Yusufi, Faraaz Noor Khan; Park, Wonjun; Karimi, Iftekhar A

    2009-01-01

    Mathematical modelling and computational analysis play an essential role in improving our capability to elucidate the functions and characteristics of complex biological systems such as metabolic, regulatory and cell signalling pathways. The modelling and concomitant simulation render it possible to predict the cellular behaviour of systems under various genetically and/or environmentally perturbed conditions. This motivates systems biologists/bioengineers/bioinformaticians to develop new tools and applications, allowing non-experts to easily conduct such modelling and analysis. However, among a multitude of systems biology tools developed to date, only a handful of projects have adopted a web-based approach to kinetic modelling. In this report, we evaluate the capabilities and characteristics of current web-based tools in systems biology and identify desirable features, limitations and bottlenecks for further improvements in terms of usability and functionality. A short discussion on software architecture issues involved in web-based applications and the approaches taken by existing tools is included for those interested in developing their own simulation applications.

  1. The Dominance Behavioral System and Psychopathology: Evidence from Self-Report, Observational, and Biological Studies

    PubMed Central

    Johnson, Sheri L.; Leedom, Liane J.; Muhtadie, Luma

    2012-01-01

    The dominance behavioral system (DBS) can be conceptualized as a biologically-based system which guides dominance motivation, dominant and subordinate behavior, and responsivity to perceptions of power and subordination. A growing body of research suggests that problems with the DBS are evident across a broad range of psychopathologies. We begin by describing psychological, social, and biological correlates of the dominance behavioral system (DBS). Extensive research suggests that externalizing disorders, mania-proneness, and narcissistic traits are related to heightened dominance motivation and behaviors. Mania and narcissistic traits also appear related to inflated self-perceptions of power. Anxiety and depression are related to subordination and submissiveness, as well as a desire to avoid subordination. Models of the DBS have received support from research with humans and animals; from self-report, observational, and biological methods; and using naturalistic and experimental paradigms. Limitations of available research include the relative lack of longitudinal studies using multiple measures of the DBS and the absence of relevant studies using diagnosed samples to study narcissistic personality disorder and bipolar disorder. We provide suggestions for future research on the DBS and psychopathology, including investigations of whether the DBS can be used to differentiate specific disorder outcomes; the need for more sophisticated biological research; and the value of longitudinal dynamical research. Implications of using the DBS as a tool in clinical assessment and treatment are discussed. PMID:22506751

  2. The NASA Space Radiobiology Risk Assessment Project

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Huff, Janice; Ponomarev, Artem; Patel, Zarana; Kim, Myung-Hee

    The current first phase (2006-2011) has the three major goals of: 1) optimizing the conventional cancer risk models currently used based on the double-detriment life-table and radiation quality functions; 2) the integration of biophysical models of acute radiation syndromes; and 3) the development of new systems radiation biology models of cancer processes. The first-phase also includes continued uncertainty assessment of space radiation environmental models and transport codes, and relative biological effectiveness factors (RBE) based on flight data and NSRL results, respectively. The second phase of the (2012-2016) will: 1) develop biophysical models of central nervous system risks (CNS); 2) achieve comphrensive systems biology models of cancer processes using data from proton and heavy ion studies performed at NSRL; and 3) begin to identify computational models of biological countermeasures. Goals for the third phase (2017-2021) include: 1) the development of a systems biology model of cancer risks for operational use at NASA; 2) development of models of degenerative risks, 2) quantitative models of counter-measure impacts on cancer risks; and 3) indiviudal based risk assessments. Finally, we will support a decision point to continue NSRL research in support of NASA's exploration goals beyond 2021, and create an archival of NSRL research results for continued analysis. Details on near term goals, plans for a WEB based data resource of NSRL results, and a space radiation Wikepedia are described.

  3. Evolutionary biology through the lens of budding yeast comparative genomics.

    PubMed

    Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R

    2017-10-01

    The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.

  4. The use of continuous culture in systems biology investigations.

    PubMed

    Winder, Catherine L; Lanthaler, Karin

    2011-01-01

    When acquiring data for systems biology studies, it is essential to perform the experiments in controlled and reproducible conditions. Advances in the fields of proteomics and metabolomics allow the quantitative analysis of the components of the biological cell. It is essential to include a method in the experimental pipeline to culture the biological system in controlled and reproducible conditions to facilitate the acquisition of high-quality data. The employment of continuous culture methods for the growth of microorganisms is an ideal tool to achieve these objectives. This chapter will review the continuous culture approaches which may be applied in such studies, outline the experimental options which should be considered, and describe the approach applied in the production of steady-state cultures of Saccharomyces cerevisiae. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. USSR Space Life Sciences Digest, issue 15

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 15th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 59 papers published in Russian language periodicals or presented at conferences and of two new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is a review of a conference devoted to the physiology of extreme states. The abstracts included in this issue have been identified as relevant to 29 areas of space biology and medicine. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, enzymology, equipment and instrumentation, exobiology, genetics, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception. personnel selection, psychology, radiobiology, reproductive biology, and space biology and medicine.

  6. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    PubMed

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 139

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space are referenced. Similar effects on biological organisms of lower order are also included. Related topics such as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors are discussed. Applied research is emphasized, but references to fundamental studies and theoretical principles related to experimental development are also included. A total of 242 reports, articles, and other documents are listed.

  8. 6th Institute for Systems Biology International Symposium: Systems Biology and the Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitski, Timothy P.

    2007-04-23

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology is an annual two-day event gathering the most influential researchers transforming biology into an integrative discipline investigating complex systems. In recognition of the fundamental similarity between the scientific problems addressed in environmental science and systems biology studies at the molecular, cellular, and organismal levels, the 2007 Symposium featured global leaders in “Systems Biology and the Environment.” The objective of the 2007 “Systems Biology and the Environment” International Symposium was to stimulate interdisciplinary thinking and research that spans systems biology andmore » environmental science. This Symposium was well aligned with the DOE’s Genomics: GTL program efforts to achieve scientific objectives for each of the three DOE missions: Develop biofuels as a major secure energy source for this century; Develop biological solutions for intractable environmental problems; Understand biosystems’ climate impacts and assess sequestration strategies. Our scientific program highlighted world-class research exemplifying these priorities. The Symposium featured 45 minute lectures from 12 researchers including: Penny/Sallie Chisholm of MIT gave the keynote address “Tiny Cells, Global Impact: What Prochlorococcus Can Teach Us About Systems Biology”, plus Jim Fredrickson of PNNL, Nitin Baliga of ISB, Steve Briggs of UCSD, David Cox of Perlegen Sciences, Antoine Danchin of Institut Pasteur, John Delaney of the U of Washington, John Groopman of Johns Hopkins, Ben Kerr of the U of Washington, Steve Koonin of BP, Elliott Meyerowitz of Caltech, and Ed Rubin of LBNL. The 2007 Symposium promoted DOE’s three mission areas among scientists from multiple disciplines representing academia, non-profit research institutions, and the private sector. As in all previous Symposia, we had excellent attendance of participants representing 20-30 academic or research-oriented facilities along with 25-30 private corporations from 5-10 countries. To broaden the audience for the Symposium and ensure the continued accessibility of the presentations, we made the presentation videos available afterward on the ISB’s website.« less

  9. End-to-End Data System Architecture for the Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Mian, Arshad; Scimemi, Sam; Adeni, Kaiser; Picinich, Lou; Ramos, Rubin (Technical Monitor)

    1998-01-01

    The Space Station Biological Research Project (SSBRP) Is developing hardware referred to as the "facility" for providing life sciences research capability on the International Space Station. This hardware includes several biological specimen habitats, habitat holding racks, a centrifuge and a glovebox. An SSBRP end to end data system architecture has been developed to allow command and control of the facility from the ground, either with crew assistance or autonomously. The data system will be capable of handling commands, sensor data, and video from multiple cameras. The data will traverse through several onboard and ground networks and processing entities including the SSBRP and Space Station onboard and ground data systems. A large number of onboard and ground (,entities of the data system are being developed by the Space Station Program, other NASA centers and the International Partners. The SSBRP part of the system which includes the habitats, holding racks, and the ground operations center, User Operations Facility (UOF) will be developed by a multitude of geographically distributed development organizations. The SSBRP has the responsibility to define the end to end data and communications systems to make the interfaces manageable and verifiable with multiple contractors with widely varying development constraints and schedules. This paper provides an overview of the SSBRP end-to-end data system. Specifically, it describes the hardware, software and functional interactions of individual systems, and interface requirements among various entities of the end-to-end system.

  10. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Judith

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genomemore » organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.« less

  11. Mammalian synthetic biology for studying the cell

    PubMed Central

    Mathur, Melina; Xiang, Joy S.

    2017-01-01

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576

  12. Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.

    PubMed

    Lee, Raphael C

    2013-03-01

    Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.

  13. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool.

    PubMed

    Zi, Zhike; Klipp, Edda

    2006-11-01

    The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of experimental data from different experimental conditions. SBML-PET has a unique feature of supporting event definition in the SMBL model. SBML models can also be simulated in SBML-PET. Stochastic Ranking Evolution Strategy (SRES) is incorporated in SBML-PET for parameter estimation jobs. A classic ODE Solver called ODEPACK is used to solve the Ordinary Differential Equation (ODE) system. http://sysbio.molgen.mpg.de/SBML-PET/. The website also contains detailed documentation for SBML-PET.

  14. How Animal Models Inform Child and Adolescent Psychiatry

    PubMed Central

    Stevens, Hanna E.; Vaccarino, Flora M.

    2015-01-01

    Objective Every available approach should be utilized to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of non-human animals and the biology and behavior they share with humans is an approach that must be used to advance the clinical work of child psychiatry. Method We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. Results We present examples of how animal systems are utilized to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Conclusion Animal models have clear advantages and disadvantages that must both be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. PMID:25901771

  15. Immunological Treatments for Autism.

    ERIC Educational Resources Information Center

    Gupta, Sudhir

    2000-01-01

    This article discusses research findings that indicate immunological abnormalities in children with autism, including the dysregulation of the immune system, and concludes that there are sufficient data to suggest a role of the immune system in the pathogenesis of autism. Various biological therapies are analyzed, including intravenous…

  16. A unique large-scale undergraduate research experience in molecular systems biology for non-mathematics majors.

    PubMed

    Kappler, Ulrike; Rowland, Susan L; Pedwell, Rhianna K

    2017-05-01

    Systems biology is frequently taught with an emphasis on mathematical modeling approaches. This focus effectively excludes most biology, biochemistry, and molecular biology students, who are not mathematics majors. The mathematical focus can also present a misleading picture of systems biology, which is a multi-disciplinary pursuit requiring collaboration between biochemists, bioinformaticians, and mathematicians. This article describes an authentic large-scale undergraduate research experience (ALURE) in systems biology that incorporates proteomics, bacterial genomics, and bioinformatics in the one exercise. This project is designed to engage students who have a basic grounding in protein chemistry and metabolism and no mathematical modeling skills. The pedagogy around the research experience is designed to help students attack complex datasets and use their emergent metabolic knowledge to make meaning from large amounts of raw data. On completing the ALURE, participants reported a significant increase in their confidence around analyzing large datasets, while the majority of the cohort reported good or great gains in a variety of skills including "analysing data for patterns" and "conducting database or internet searches." An environmental scan shows that this ALURE is the only undergraduate-level system-biology research project offered on a large-scale in Australia; this speaks to the perceived difficulty of implementing such an opportunity for students. We argue however, that based on the student feedback, allowing undergraduate students to complete a systems-biology project is both feasible and desirable, even if the students are not maths and computing majors. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):235-248, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  17. Deep UV autofluorescence microscopy for cell biology and tissue histology.

    PubMed

    Jamme, Frédéric; Kascakova, Slavka; Villette, Sandrine; Allouche, Fatma; Pallu, Stéphane; Rouam, Valérie; Réfrégiers, Matthieu

    2013-07-01

    Autofluorescence spectroscopy is a powerful tool for molecular histology and for following metabolic processes in biological samples as it does not require labelling. However, at the microscopic scale, it is mostly limited to visible and near infrared excitation of the samples. Several interesting and naturally occurring fluorophores can be excited in the UV and deep UV (DUV), but cannot be monitored in cellulo nor in vivo due to a lack of available microscopic instruments working in this wavelength range. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. © 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  18. Biological network motif detection and evaluation

    PubMed Central

    2011-01-01

    Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks. PMID:22784624

  19. Island biogeography: Taking the long view of nature's laboratories.

    PubMed

    Whittaker, Robert J; Fernández-Palacios, José María; Matthews, Thomas J; Borregaard, Michael K; Triantis, Kostas A

    2017-09-01

    Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos. Emergent patterns of diversity include predictable variation in island species-area relationships, progression rule colonization from older to younger land masses, and syndromes including loss of dispersability and secondary woodiness in herbaceous plant lineages. Further developments in Earth system science, molecular biology, and trait data for islands hold continued promise for unlocking many of the unresolved questions in evolutionary biology and biogeography. Copyright © 2017, American Association for the Advancement of Science.

  20. Biophysics at the Boundaries: The Next Problem Sets

    NASA Astrophysics Data System (ADS)

    Skolnick, Malcolm

    2009-03-01

    The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future biophysicists to fill these roles.

  1. Connections Matter: Social Networks and Lifespan Health in Primate Translational Models

    PubMed Central

    McCowan, Brenda; Beisner, Brianne; Bliss-Moreau, Eliza; Vandeleest, Jessica; Jin, Jian; Hannibal, Darcy; Hsieh, Fushing

    2016-01-01

    Humans live in societies full of rich and complex relationships that influence health. The ability to improve human health requires a detailed understanding of the complex interplay of biological systems that contribute to disease processes, including the mechanisms underlying the influence of social contexts on these biological systems. A longitudinal computational systems science approach provides methods uniquely suited to elucidate the mechanisms by which social systems influence health and well-being by investigating how they modulate the interplay among biological systems across the lifespan. In the present report, we argue that nonhuman primate social systems are sufficiently complex to serve as model systems allowing for the development and refinement of both analytical and theoretical frameworks linking social life to health. Ultimately, developing systems science frameworks in nonhuman primate models will speed discovery of the mechanisms that subserve the relationship between social life and human health. PMID:27148103

  2. Introduction to symposium: Arthropods and wildlife conservation: synergy in complex biological systems

    USDA-ARS?s Scientific Manuscript database

    The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....

  3. POLISHING EFFLUENT FROM A PERCHLORATE-REDUCING ANAEROBIC BIOLOGICAL CONTACTOR

    EPA Science Inventory

    The U.S. Environmental Protection Agency undertook at 3 ½ year pilot-scale biological perchlorate treatment study that included two long (311 and 340 days) examinations of anaerobic effluent polishing. The polishing system consisted of hydrogen peroxide addition and aeration, fo...

  4. Molecular Microbial Ecology of a Full-Scale Biologically Active Filter

    EPA Science Inventory

    Drinking water utilities are challenged with a variety of contamination issues both from the source water and in the distribution system. Source water issues include inorganic contaminants such as arsenic, barium, iron, and biological contaminants such as bacteria and viruses. ...

  5. Oxidation of Ammonia in Source Water Using Biological Filtration (slides)

    EPA Science Inventory

    Drinking water utilities are challenged with a variety of contamination issues from both the source water and the distribution system. Source water issues include biological contaminants such as bacteria and viruses as well as inorganic contaminants such as arsenic, barium, and ...

  6. An overview of bioinformatics methods for modeling biological pathways in yeast

    PubMed Central

    Hou, Jie; Acharya, Lipi; Zhu, Dongxiao

    2016-01-01

    The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein–protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae. In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways in S. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. PMID:26476430

  7. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciencesmore » Research section reports research conducted for the OHER human genome program.« less

  8. The 1990-1991 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1993-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  9. Collaborative Systems Biology Projects for the Military Medical Community.

    PubMed

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts from 18 extramural organizations and three other USAMRMC laboratories. Collaborators from six USAMRMC laboratories and 58 extramural organizations were identified who provided additional research expertise to these systems biology studies. At the end of fiscal year 2016, USAMRMC laboratories self-reported 66 systems biology/computational biology studies (62 of which were unique) with 25 intramural and 81 extramural collaborators. Nearly two-thirds were led by or in collaboration with the U.S. Army Telemedicine and Advanced Technology Research Center/Department of Defense Biotechnology High-Performance Computing Software Applications Institute and U.S. Army Center for Environmental Health Research. The most common study objective addressed biological mechanisms of disease. The most common types of Research Task Areas addressed infectious diseases (viral and bacterial) and chemical agents (environmental toxicant exposures, and traditional and emerging chemical threats). More than 40% of the studies (27/62) involved collaborations between the reporting USAMRMC laboratory and one other organization. Nearly half of the studies (30/62) involved collaborations between the reporting USAMRMC laboratory and at least two other organizations. These survey results indicate that USAMRMC laboratories are compliant with data-centric policy and guidance documents whose goals are to prevent redundancy and promote collaborations by sharing data and leveraging capabilities. These results also serve as a foundation to make recommendations for future systems biology research efforts. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  10. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  11. The 1992-1993 NASA Space Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1994-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  12. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1995-08-22

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  13. USSR Space Life Sciences Digest, issue 8

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  14. Systems and methods of detecting force and stress using tetrapod nanocrystal

    DOEpatents

    Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul

    2013-08-20

    Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

  15. From globally coupled maps to complex-systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  16. Human life support during interplanetary travel and domicile. VI - Generic modular flow schematic for hybrid physical/chemical-biological life support systems

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1992-01-01

    An extension is proposed for the NASA Space Exploration Initiative's Generic Modular Flow Schematics for physical/chemical life support systems which involves the addition of biological processes. The new system architecture includes plant, microbial, and animal habitat, as well as the human habitat subsystem. Major Feedstock Production and Food Preparation and Packaging components have also been incorporated. Inedible plant, aquaculture, microbial, and animal solids are processed for recycling.

  17. Deriving principles of microbiology by multiscaling laws of molecular physics.

    PubMed

    Ortoleva, Peter; Adhangale, P; Cheluvaraja, S; Fontus, Max; Shreif, Zeina

    2009-01-01

    It has long been an objective of the physical sciences to derive principles of biology from the laws of physics. At the angstrom scale for processes evolving on timescales of 10(-14) s, many systems can be characterized in terms of atomic vibrations and collisions. In contrast, biological systems display dramatic transformations including self-assembly and reorganization from one cell phenotype to another as the microenvironment changes. We have developed a framework for understanding the emergence of living systems from the underlying atomic chaos.

  18. Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamada, Hiroyasu; Nakagaki, Toshiyuki; Fujii, Teruo; Endo, Isao

    2001-08-01

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  19. Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold.

    PubMed

    Takamatsu, A; Tanaka, R; Yamada, H; Nakagaki, T; Fujii, T; Endo, I

    2001-08-13

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  20. Wireless Biological Electronic Sensors.

    PubMed

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  1. Biodiversity, Factor Endowments and National Security: The Next Great Game?

    DTIC Science & Technology

    2009-11-08

    biomass, the genetic material of biological systems, that exist largely in the global south8 in biodiversity hotspots.9 Through the increasing use of...including pharmaceutical bio-prospecting, ethno-botanical bio-prospecting, botanical medicines, nano-technology, biological control and crop protection...production mainly focuses on material that is extracted from areas where biological diversity is highest, i.e. genetic material from 10 developing

  2. Mammalian synthetic biology for studying the cell.

    PubMed

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  3. Synthetic Nanoelectronic Probes for Biological Cells and Tissue

    PubMed Central

    2013-01-01

    Research at the interface between nanoscience and biology has the potential to produce breakthroughs in fundamental science and lead to revolutionary technologies. In this review, we focus on nanoelectronic/biological interfaces. First, we discuss nanoscale field effect transistors (nanoFETs) as probes to study cellular systems, including the realization of nanoFET comparable in size to biological nanostructures involved in communication using synthesized nanowires. Second, we overview current progress in multiplexed extracellular sensing using planar nanoFET arrays. Third, we describe the design and implementation of three distinct nanoFETs used to realize the first intracellular electrical recording from single cells. Fourth, we present recent progress in merging electronic and biological systems at the 3D tissue level by using macroporous nanoelectronic scaffolds. Finally, we discuss future development in this research area, the unique challenges and opportunities, and the tremendous impact these nanoFET based technologies might have in advancing biology and medical sciences. PMID:23451719

  4. Biomolecular Modeling in a Process Dynamics and Control Course

    ERIC Educational Resources Information Center

    Gray, Jeffrey J.

    2006-01-01

    I present modifications to the traditional course entitled, "Process dynamics and control," which I renamed "Modeling, dynamics, and control of chemical and biological processes." Additions include the central dogma of biology, pharmacokinetic systems, population balances, control of gene transcription, and large­-scale…

  5. NASA Space Biology Program: 9th Annual Symposium

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1985-01-01

    Topics covered include plant and animal gravity receptors and transduction; the role of gravity in growth and development of plants and animals; biological support structures and the role of calcium; mechanisms and responses of gravity sensitive systems; and mechanisms of plant responses to gravity.

  6. Opportunities and questions for the fundamental biological sciences in space

    NASA Technical Reports Server (NTRS)

    Sharp, Joseph C.; Vernikos, Joan

    1992-01-01

    The nature of biological issues which can be addressed during long-term space missions is briefly discussed. These issues include structure, from cell to organ to organism; function, the regulation of systems such as immunology, neural sciences, and behavior; and reproduction and development.

  7. Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology

    PubMed Central

    Toohey, John I.; Cooper, Arthur J. L.

    2014-01-01

    The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0) sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters), sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione). A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide. PMID:25153879

  8. Constructive biology and approaches to temporal grounding in postreactive robotics

    NASA Astrophysics Data System (ADS)

    Nehaniv, Chrystopher L.; Dautenhahn, Kerstin; Loomes, Martin J.

    1999-08-01

    Constructive Biology means understanding biological mechanisms through building systems that exhibit life-like properties. Applications include learning engineering tricks from biological system, as well as the validation in biological modeling. In particular, biological system in the course of development and experience become temporally grounded. Researchers attempting to transcend mere reactivity have been inspired by the drives, motivations, homeostasis, hormonal control, and emotions of animals. In order to contextualize and modulate behavior, these ideas have been introduced into robotics and synthetic agents, while further flexibility is achieved by introducing learning. Broadening scope of the temporal horizon further requires post-reactive techniques that address not only the action in the now, although such action may perhaps be modulated by drives and affect. Support is needed for expressing and benefitting from pats experiences, predictions of the future, and form interaction histories of the self with the world and with other agents. Mathematical methods provide a new way to support such grounding in the construction of post-reactive systems. Moreover, the communication of such mathematical encoded histories of experience between situated agents opens a route to narrative intelligence, analogous to communication or story telling in societies.

  9. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  10. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Patel, Kamlesh D [Dublin, CA; Peterson, Kenneth A [Albuquerque, NM; Renzi, Ronald F [Tracy, CA

    2009-09-22

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  11. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A.; Hukari, Kyle W.; Patel, Kamlesh D.; Peterson, Kenneth A.; Renzi, Ronald F.

    2013-04-23

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  12. openBIS: a flexible framework for managing and analyzing complex data in biology research

    PubMed Central

    2011-01-01

    Background Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it. Results We have developed openBIS, an open source software framework for constructing user-friendly, scalable and powerful information systems for data and metadata acquired in biological experiments. openBIS enables users to collect, integrate, share, publish data and to connect to data processing pipelines. This framework can be extended and has been customized for different data types acquired by a range of technologies. Conclusions openBIS is currently being used by several SystemsX.ch and EU projects applying mass spectrometric measurements of metabolites and proteins, High Content Screening, or Next Generation Sequencing technologies. The attributes that make it interesting to a large research community involved in systems biology projects include versatility, simplicity in deployment, scalability to very large data, flexibility to handle any biological data type and extensibility to the needs of any research domain. PMID:22151573

  13. Evolving Relevance of Neuroproteomics in Alzheimer's Disease.

    PubMed

    Lista, Simone; Zetterberg, Henrik; O'Bryant, Sid E; Blennow, Kaj; Hampel, Harald

    2017-01-01

    Substantial progress in the understanding of the biology of Alzheimer's disease (AD) has been achieved over the past decades. The early detection and diagnosis of AD and other age-related neurodegenerative diseases, however, remain a challenging scientific frontier. Therefore, the comprehensive discovery (relating to all individual, converging or diverging biochemical disease mechanisms), development, validation, and qualification of standardized biological markers with diagnostic and prognostic functions with a precise performance profile regarding specificity, sensitivity, and positive and negative predictive value are warranted.Methodological innovations in the area of exploratory high-throughput technologies, such as sequencing, microarrays, and mass spectrometry-based analyses of proteins/peptides, have led to the generation of large global molecular datasets from a multiplicity of biological systems, such as biological fluids, cells, tissues, and organs. Such methodological progress has shifted the attention to the execution of hypothesis-independent comprehensive exploratory analyses (opposed to the classical hypothesis-driven candidate approach), with the aim of fully understanding the biological systems in physiology and disease as a whole. The systems biology paradigm integrates experimental biology with accurate and rigorous computational modelling to describe and foresee the dynamic features of biological systems. The use of dynamically evolving technological platforms, including mass spectrometry, in the area of proteomics has enabled to rush the process of biomarker discovery and validation for refining significantly the diagnosis of AD. Currently, proteomics-which is part of the systems biology paradigm-is designated as one of the dominant matured sciences needed for the effective exploratory discovery of prospective biomarker candidates expected to play an effective role in aiding the early detection, diagnosis, prognosis, and therapy development in AD.

  14. Cellular respiration: replicating in vivo systems biology for in ...

    EPA Pesticide Factsheets

    This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The express purpose is to provide a publication outlet for novel breath related research that includes in vitro studies, especially those that explore the biological origin and expression of compounds that may ultimately influence the constituents of exhaled breath. The new topics include all manner of methods and instrumentations for making in vivo and in vitro measurements, the use of different biological media (blood, urine saliva, swabs) including human and microbial cell-lines, in vitro kinetic studies of metabolism, and advances in ex vivo methods for maintaining metabolic competency and viability of biological samples. Traditionally, JBR has published articles on human breath analysis for diagnosing disease, tracking health state, assessing the dose and effect of exogenous chemicals, and contributions of malodorous compounds from the oral/nasal cavity. These have also included research describing novel sampling and analytical technologies, most notably those implementing mass spectrometry, chemical sensors and optical measurement instrumentation (Amann and Smith 2013). The journal’s original scope has also embraced animal models as surrogates for human sampling, new mathematical and

  15. Biological and chemical terrorism scenarios and implications for detection systems needs

    NASA Astrophysics Data System (ADS)

    Gordon, Susanna P.; Chumfong, Isabelle; Edwards, Donna M.; Gleason, Nathaniel J.; West, Todd; Yang, Lynn

    2007-04-01

    Terrorists intent on causing many deaths and severe disruption to our society could, in theory, cause hundreds to tens of thousands of deaths and significant contamination of key urban facilities by using chemical or biological (CB) agents. The attacks that have occurred to date, such as the 1995 Aum Shinrikyo CB attacks and the 2001 anthrax letters, have been very small on the scale of what is possible. In order to defend against and mitigate the impacts of large-scale terrorist attacks, defensive systems for protection of urban areas and high-value facilities from biological and chemical threats have been deployed. This paper reviews analyses of such scenarios and of the efficacy of potential response options, discusses defensive systems that have been deployed and detectors that are being developed, and finally outlines the detection systems that will be needed for improved CB defense in the future. Sandia's collaboration with San Francisco International Airport on CB defense will also be briefly reviewed, including an overview of airport facility defense guidelines produced in collaboration with Lawrence Berkeley National Laboratory. The analyses that will be discussed were conducted by Sandia National Laboratories' Systems Studies Department in support of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, and include quantitative analyses utilizing simulation models developed through close collaboration with subject matter experts, such as public health officials in urban areas and biological defense experts.

  16. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  17. Microfluidic microarray systems and methods thereof

    DOEpatents

    West, Jay A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Hux, Gary A [Tracy, CA

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  18. USSR Space Life Sciences Digest, issue 4

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  19. AIBS Education Review, Vol. 5, No. 1.

    ERIC Educational Resources Information Center

    Dodge, Richard A., Ed.

    This publication, published quarterly by the American Institute of Biological Sciences, focuses on biology education in colleges and universities. Included in this issue are articles dealing with mini-investigative labs in microbiology for nonscience students, the effects of various components of the Keller system on student attitudes and…

  20. Physics and Size in Biological Systems.

    ERIC Educational Resources Information Center

    Barnes, George

    1989-01-01

    Described is the subject of biological scaling for physics teachers including examples and in-depth reading. Topics are elements of scaling, terminal velocities, Lilliputian and Brobdingnagian, brain evolution, dolphin echolocation, surface tension, gravity change, food and oxygen, and seeing. Ten references on physics and size, and ten questions…

  1. Advances in Structural Biology and the Application to Biological Filament Systems.

    PubMed

    Popp, David; Koh, Fujiet; Scipion, Clement P M; Ghoshdastider, Umesh; Narita, Akihiro; Holmes, Kenneth C; Robinson, Robert C

    2018-04-01

    Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  2. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online

    PubMed Central

    Forsberg, Erica M; Huan, Tao; Rinehart, Duane; Benton, H Paul; Warth, Benedikt; Hilmers, Brian; Siuzdak, Gary

    2018-01-01

    Systems biology is the study of complex living organisms, and as such, analysis on a systems-wide scale involves the collection of information-dense data sets that are representative of an entire phenotype. To uncover dynamic biological mechanisms, bioinformatics tools have become essential to facilitating data interpretation in large-scale analyses. Global metabolomics is one such method for performing systems biology, as metabolites represent the downstream functional products of ongoing biological processes. We have developed XCMS Online, a platform that enables online metabolomics data processing and interpretation. A systems biology workflow recently implemented within XCMS Online enables rapid metabolic pathway mapping using raw metabolomics data for investigating dysregulated metabolic processes. In addition, this platform supports integration of multi-omic (such as genomic and proteomic) data to garner further systems-wide mechanistic insight. Here, we provide an in-depth procedure showing how to effectively navigate and use the systems biology workflow within XCMS Online without a priori knowledge of the platform, including uploading liquid chromatography (LCLC)–mass spectrometry (MS) data from metabolite-extracted biological samples, defining the job parameters to identify features, correcting for retention time deviations, conducting statistical analysis of features between sample classes and performing predictive metabolic pathway analysis. Additional multi-omics data can be uploaded and overlaid with previously identified pathways to enhance systems-wide analysis of the observed dysregulations. We also describe unique visualization tools to assist in elucidation of statistically significant dysregulated metabolic pathways. Parameter input takes 5–10 min, depending on user experience; data processing typically takes 1–3 h, and data analysis takes ~30 min. PMID:29494574

  3. The 'Biologically-Inspired Computing' Column

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike

    2006-01-01

    The field of Biology changed dramatically in 1953, with the determination by Francis Crick and James Dewey Watson of the double helix structure of DNA. This discovery changed Biology for ever, allowing the sequencing of the human genome, and the emergence of a "new Biology" focused on DNA, genes, proteins, data, and search. Computational Biology and Bioinformatics heavily rely on computing to facilitate research into life and development. Simultaneously, an understanding of the biology of living organisms indicates a parallel with computing systems: molecules in living cells interact, grow, and transform according to the "program" dictated by DNA. Moreover, paradigms of Computing are emerging based on modelling and developing computer-based systems exploiting ideas that are observed in nature. This includes building into computer systems self-management and self-governance mechanisms that are inspired by the human body's autonomic nervous system, modelling evolutionary systems analogous to colonies of ants or other insects, and developing highly-efficient and highly-complex distributed systems from large numbers of (often quite simple) largely homogeneous components to reflect the behaviour of flocks of birds, swarms of bees, herds of animals, or schools of fish. This new field of "Biologically-Inspired Computing", often known in other incarnations by other names, such as: Autonomic Computing, Pervasive Computing, Organic Computing, Biomimetics, and Artificial Life, amongst others, is poised at the intersection of Computer Science, Engineering, Mathematics, and the Life Sciences. Successes have been reported in the fields of drug discovery, data communications, computer animation, control and command, exploration systems for space, undersea, and harsh environments, to name but a few, and augur much promise for future progress.

  4. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    PubMed

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  5. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    PubMed

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Wide area restoration following biological contamination

    NASA Astrophysics Data System (ADS)

    Yang, Lynn; Hibbard, Wilthea; Edwards, Donna; Franco, David; Fruetel, Julie; Tucker, Mark; Einfeld, Wayne; Knowlton, Robert; Brown, Gary; Brockmann, John; Greenwalt, Robert; Miles, Robin; Raber, Ellen; Carlsen, Tina; Krauter, Paula; Dillon, Michael; MacQueen, Don; Intrepido, Tony; Hoppes, Bill; Wilson, Wendy; Mancieri, Sav

    2008-04-01

    Current understanding of how to restore a wide area that has been contaminated following a large biological attack is limited. The Department of Homeland Security and Department of Defense are executing a four-year collaborative program named the Interagency Biological Restoration Demonstration (IBRD) program. This program is aimed at developing technologies, methods, plans and policies necessary to restore a wide area, including military installations and critical infrastructures, in the event of a large outdoor aerosol release of anthrax. The IBRD program partner pilot city is the Seattle Urban Area to include Fort Lewis, WA and McChord Air Force Base. A front-end systems analysis was conducted as part of IBRD, to: 1) assess existing technologies and processes for wide area restoration; from this, 2) develop an "as-is" decision framework for wide area restoration; and 3) identify and prioritize capability gaps. Qualitative assessments and quantitative analyses, including sensitivity, timeline and case study analyses, were conducted to evaluate existing processes and rank capability gaps. This paper describes the approach and results from this front-end systems analysis.

  7. Cell-based composite materials with programmed structures and functions

    DOEpatents

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  8. Cell-based composite materials with programmed structures and functions

    DOEpatents

    Kaehr, Bryan J.; Brinker, C. Jeffrey; Townson, Jason L.

    2018-05-15

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  9. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 485

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  10. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 506

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.

  11. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 494

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes--subject and author are included after the abstract section.

  12. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 496

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.

  13. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 499

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  14. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review.

    PubMed

    Taatjes, Douglas J; Roth, Jürgen

    2016-03-01

    We provide here our annual review/synopsis of all of the articles published in Histochemistry and Cell Biology (HCB) for the preceding year. In 2015, HCB published 102 articles, representing a wide variety of topics and methodologies. For ease of access to these differing topics, we have created categories, as determined by the types of articles presented to provide a quick index representing the general areas covered. This year, these categories include: (1) advances in methodologies; (2) molecules in health and disease; (3) organelles, subcellular structures, and compartments; (4) the nucleus; (5) stem cells and tissue engineering; (6) cell cultures: properties and capabilities; (7) connective tissues and extracellular matrix; (8) developmental biology; (9) nervous system; (10) musculoskeletal system; (11) respiratory and cardiovascular system; (12) liver and gastrointestinal tract; and (13) male and female reproductive systems. Of note, the categories proceed from methods development, to molecules, intracellular compartments, stem cells and cell culture, extracellular matrix, developmental biology, and finishing with various organ systems, hopefully presenting a logical journey from methods to organismal molecules, cells, and whole tissue systems.

  15. Development and biological applications of optical tweezers and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be used as a valuable tool to study cellular processes within single living cells or intracellular organelles and may aid research in molecular and cellular biology.

  16. How animal models inform child and adolescent psychiatry.

    PubMed

    Stevens, Hanna E; Vaccarino, Flora M

    2015-05-01

    Every available approach should be used to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of nonhuman animals and the biology and behavior that they share with humans is an approach that must be used to advance the clinical work of child psychiatry. We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology, but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. We present examples of how animal systems are used to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Animal models have clear advantages and disadvantages that must be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  18. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE PAGES

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina; ...

    2016-02-02

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  19. Next-Generation Machine Learning for Biological Networks.

    PubMed

    Camacho, Diogo M; Collins, Katherine M; Powers, Rani K; Costello, James C; Collins, James J

    2018-06-14

    Machine learning, a collection of data-analytical techniques aimed at building predictive models from multi-dimensional datasets, is becoming integral to modern biological research. By enabling one to generate models that learn from large datasets and make predictions on likely outcomes, machine learning can be used to study complex cellular systems such as biological networks. Here, we provide a primer on machine learning for life scientists, including an introduction to deep learning. We discuss opportunities and challenges at the intersection of machine learning and network biology, which could impact disease biology, drug discovery, microbiome research, and synthetic biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Integrating biological redesign: where synthetic biology came from and where it needs to go.

    PubMed

    Way, Jeffrey C; Collins, James J; Keasling, Jay D; Silver, Pamela A

    2014-03-27

    Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The joint US-USSR biological satellite program

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1979-01-01

    The joint US-USSR biological satellite missions carried out in 1975 and 1977 using Cosmos 782 and Cosmos 936 spacecraft, respectively, is reviewed. The experimental equipment and the biological specimens aboard the aircraft are considered, and it is noted that Cosmos 782, unlike Cosmos 936, carried no centrifuges for rats, although it did contain a centrifuge where a variety of biological specimens, including carrot tissue and fruit flies, were subjected to artificial gravity during space flight. The ground control groups, designed for biological experiments under simulated space-conditions, are taken into account. The U.S. experiments aboard the aircraft are described, with attention given to the experiments with rats, fish embryos, plants, and insects. Results of the experiments are noted, including the finding that space flight factors, especially weightlessness, have a measurable effect on the erythropoietic and musculoskeletal systems of rats

  2. Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment.

    PubMed

    Levine, Audrey D; Raymer, Blake J; Jahn, Johna

    2004-01-01

    Hydrogen sulfide in groundwater can be oxidized by aerobic bacteria to form elemental sulfur and biomass. While this treatment approach is effective for conversion of hydrogen sulfide, it is important to have adequate control of the biomass exiting the biological treatment system to prevent release of elemental sulfur into the distribution system. Pilot scale tests were conducted on a Florida groundwater to evaluate the use of two-stage upflow filtration downstream of biological sulfur oxidation. The combined biological and filtration process was capable of excellent removal of hydrogen sulfide and associated turbidity. Additional benefits of this treatment approach include elimination of odor generation, reduction of chlorine demand, and improved stability of the finished water.

  3. [Concepts of rational taxonomy].

    PubMed

    Pavlinov, I Ia

    2011-01-01

    The problems are discussed related to development of concepts of rational taxonomy and rational classifications (taxonomic systems) in biology. Rational taxonomy is based on the assumption that the key characteristic of rationality is deductive inference of certain partial judgments about reality under study from other judgments taken as more general and a priory true. Respectively, two forms of rationality are discriminated--ontological and epistemological ones. The former implies inference of classifications properties from general (essential) properties of the reality being investigated. The latter implies inference of the partial rules of judgments about classifications from more general (formal) rules. The following principal concepts of ontologically rational biological taxonomy are considered: "crystallographic" approach, inference of the orderliness of organismal diversity from general laws of Nature, inference of the above orderliness from the orderliness of ontogenetic development programs, based on the concept of natural kind and Cassirer's series theory, based on the systemic concept, based on the idea of periodic systems. Various concepts of ontologically rational taxonomy can be generalized by an idea of the causal taxonomy, according to which any biologically sound classification is founded on a contentwise model of biological diversity that includes explicit indication of general causes responsible for that diversity. It is asserted that each category of general causation and respective background model may serve as a basis for a particular ontologically rational taxonomy as a distinctive research program. Concepts of epistemologically rational taxonomy and classifications (taxonomic systems) can be interpreted in terms of application of certain epistemological criteria of substantiation of scientific status of taxonomy in general and of taxonomic systems in particular. These concepts include: consideration of taxonomy consistency from the standpoint of inductive and hypothetico-deductive argumentation schemes and such fundamental criteria of classifications naturalness as their prognostic capabilities; foundation of a theory of "general taxonomy" as a "general logic", including elements of the axiomatic method. The latter concept constitutes a core of the program of general classiology; it is inconsistent due to absence of anything like "general logic". It is asserted that elaboration of a theory of taxonomy as a biological discipline based on the formal principles of epistemological rationality is not feasible. Instead, it is to be elaborated as ontologically rational one based on biologically sound metatheories about biological diversity causes.

  4. Lecture-Free High School Biology Using an Audience Response System

    ERIC Educational Resources Information Center

    Barnes, Larry J.

    2008-01-01

    Audience Response Systems (ARS) represent a powerful new tool for increasing student engagement. ARS technology (known variously as electronic voting systems, personal response systems, interactive student response systems, and classroom performance systems) includes one hand-held remote per student, a receiver (infrared or radio frequency,…

  5. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    PubMed

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2017-05-01

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  6. Derivation of Tissue-specific Functional Gene Sets to Aid Transcriptomic Analysis of Chemical Impacts on the Teleost Reproductive Axis.

    EPA Science Inventory

    Oligonucleotide microarrays are a powerful tool for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-based analyses to detect diffe...

  7. WATER QUALITY AND BIOLOGICAL CONDITIONS OF GREAT LAKES COASTAL WETLANDS, WITH AN EMPHASIS ON LAKE SUPERIOR

    EPA Science Inventory

    This presentation will focus on MED's past and ongoing research in Lake Superior wetlands, and will include data on habitat, water quality, and biological condition of these systems. Comparisons of the condition of Lake Superior wetlands relative to those found around the Great ...

  8. 76 FR 74040 - Emerging Technology and Research Advisory Committee (ETRAC): Notice of Recruitment of Private...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ...-manufacturing activity in biological sciences (particularly bio electronics and synthetic biology), chemical engineering, directed energy, materials, space technologies (including satellite systems). The purpose of this... science and engineering to conduct a ``zero- based'' annual review of the list of technologies on the CCL...

  9. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 11: Life support panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Life support technology requirements for long-term space habitation are identified with emphasis on regeneration capabilities and biological life support systems. Other topics discussed include: water recovery, oxygen recovery, waste management recycle, and a man-made closed ecology with selected biological species.

  10. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  11. Logic Gate Operation by DNA Translocation through Biological Nanopores.

    PubMed

    Yasuga, Hiroki; Kawano, Ryuji; Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2016-01-01

    Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs "1" and "0" as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment.

  12. Tools for visually exploring biological networks.

    PubMed

    Suderman, Matthew; Hallett, Michael

    2007-10-15

    Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.

  13. Logic Gate Operation by DNA Translocation through Biological Nanopores

    PubMed Central

    Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2016-01-01

    Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs “1” and “0” as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment. PMID:26890568

  14. Wireless Biological Electronic Sensors

    PubMed Central

    Cui, Yue

    2017-01-01

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220

  15. Acceptance Criteria Framework for Autonomous Biological Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzenitis, J M

    2006-12-12

    The purpose of this study was to examine a set of user acceptance criteria for autonomous biological detection systems for application in high-traffic, public facilities. The test case for the acceptance criteria was the Autonomous Pathogen Detection System (APDS) operating in high-traffic facilities in New York City (NYC). However, the acceptance criteria were designed to be generally applicable to other biological detection systems in other locations. For such detection systems, ''users'' will include local authorities (e.g., facility operators, public health officials, and law enforcement personnel) and national authorities [including personnel from the Department of Homeland Security (DHS), the BioWatch Program,more » the Centers for Disease Control and Prevention (CDC), and the Federal Bureau of Investigation (FBI)]. The panel members brought expertise from a broad range of backgrounds to complete this picture. The goals of this document are: (1) To serve as informal guidance for users in considering the benefits and costs of these systems. (2) To serve as informal guidance for developers in understanding the needs of users. In follow-up work, this framework will be used to systematically document the APDS for appropriateness and readiness for use in NYC.« less

  16. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  17. Biologic Therapy in Inflammatory and Immunomediated Arthritis: Safety Profile.

    PubMed

    Luchetti, Michele Maria; Balloni, Andrea; Gabrielli, Armando

    2016-01-01

    The increasing insights into the pathogenetic mechanisms of inflammatory autoimmune arthritis and the development of innovative systems of industrial production have led to discover molecules that are able to target/block other molecules that play a critical role in the immune system functioning, and that have been introduced in clinical practice alone and/or in addiction with other "old" disease-modifying anti-rheumatic drugs. For this reason, such drugs are currently known as "biological drugs" and include molecules that induce the immunosuppression acting on several immune pathways. However, though the biological drugs have been employed from more than a decade, there still exist some drawbacks of their use, in particular about the high costs of this therapy and their overall safety, including the route of administration for the intravenous use. In this review we provide an update on the correct use and current therapeutic indications of such drugs, including some of the new biologic therapies that will be soon available for the clinical use, focusing on these biological drugs: • Tumor necrosis factor-alpha (TNF-alpha) inhibitors (adalimumab, certolizumab-pegol, etanercept, golimumab and infliximab); • The T cell co-stimulation inhibitor, abatacept; • The anti-CD20 receptor monoclonal B cell agent, rituximab; • The interlukin-6 (IL-6) receptor-blocking monoclonal antibody, tocilizumab; • The interlukin-1 (IL-1) inhibitor, anakinra; • The interlukin-IL17 (IL-17) pathway inhibitors (ustekinumab, secukinumab, brodalumab).

  18. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles

    The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondinglymore » deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.« less

  19. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    PubMed Central

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. Lynn; McDermott, Jason G.; Proll, Sean C.; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

    2011-01-01

    The twentieth century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and waterborne illnesses are frequent, multidrug-resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the twenty-first century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program, we think that the time is at hand to redefine the pathogen-host research paradigm. PMID:21285433

  20. A Tricky Trait: Applying the Fruits of the "Function Debate" in the Philosophy of Biology to the "Venom Debate" in the Science of Toxinology.

    PubMed

    Jackson, Timothy N W; Fry, Bryan G

    2016-09-07

    The "function debate" in the philosophy of biology and the "venom debate" in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between "venomous" and "non-venomous" species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.

  1. An overview of bioinformatics methods for modeling biological pathways in yeast.

    PubMed

    Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin

    2016-03-01

    The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Eugene--a domain specific language for specifying and constraining synthetic biological parts, devices, and systems.

    PubMed

    Bilitchenko, Lesia; Liu, Adam; Cheung, Sherine; Weeding, Emma; Xia, Bing; Leguia, Mariana; Anderson, J Christopher; Densmore, Douglas

    2011-04-29

    Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly.

  3. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology.

    PubMed

    Malina, Carl; Larsson, Christer; Nielsen, Jens

    2018-08-01

    Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.

  4. Biomolecular computing systems: principles, progress and potential.

    PubMed

    Benenson, Yaakov

    2012-06-12

    The task of information processing, or computation, can be performed by natural and man-made 'devices'. Man-made computers are made from silicon chips, whereas natural 'computers', such as the brain, use cells and molecules. Computation also occurs on a much smaller scale in regulatory and signalling pathways in individual cells and even within single biomolecules. Indeed, much of what we recognize as life results from the remarkable capacity of biological building blocks to compute in highly sophisticated ways. Rational design and engineering of biological computing systems can greatly enhance our ability to study and to control biological systems. Potential applications include tissue engineering and regeneration and medical treatments. This Review introduces key concepts and discusses recent progress that has been made in biomolecular computing.

  5. Yakima/Klickitat Production Preliminary Design Report, Appendix C: Yakima and Klickitat Preliminary Engineering Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CH2M Hill; R.W. Beck and Associates.

    1990-03-01

    This chapter describes the biological and physical fish culture requirements of the hatchery system from which the concepts for the design are formulated. It includes a discussion of the program goals for fish production in the Yakima Basin followed by a brief summary of selected sites. The biological criteria are presented for the water system, adult holding, incubation, rearing, and finally transportation and release. The biological criteria address the water and space requirements, the number and type of vessels, and the related support requirements. To be assured that the components of the system meet all program demands, each life phasemore » from adult capture to the juvenile or smolt transfer into the acclimation sites is analyzed.« less

  6. USSR Space Life Sciences Digest, issue 28

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  7. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  8. Application of vascular aquatic plants for pollution removal, energy, and food production in a biological system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; Barlow, R.M.; Mcdonald, R.C.

    1975-05-12

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications. (Author) (GRA)

  9. USSR Space Life Sciences Digest, issue 30

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the thirtieth issue of NASA's Space Life Sciences Digest. It contains abstracts of 47 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, biospheric research, cardiovascular and respiratory systems, endocrinology, equipment and instrumentation, gastrointestinal system, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, psychology, radiobiology, and space biology and medicine.

  10. Estimating the dilemma strength for game systems. Comment on "Universal scaling for the dilemma strength in evolutionary games", by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojie

    2015-09-01

    The puzzle of cooperation exists widely in the realistic world, including biological, social, and engineering systems. How to solve the cooperation puzzle has received considerable attention in recent years [1]. Evolutionary game theory provides a common mathematical framework to study the problem of cooperation. In principle, these practical biological, social, or engineering systems can be described by complex game models composed of multiple autonomous individuals with mutual interactions. And generally there exists a dilemma for the evolution of cooperation in the game systems.

  11. Voting systems for environmental decisions.

    PubMed

    Burgman, Mark A; Regan, Helen M; Maguire, Lynn A; Colyvan, Mark; Justus, James; Martin, Tara G; Rothley, Kris

    2014-04-01

    Voting systems aggregate preferences efficiently and are often used for deciding conservation priorities. Desirable characteristics of voting systems include transitivity, completeness, and Pareto optimality, among others. Voting systems that are common and potentially useful for environmental decision making include simple majority, approval, and preferential voting. Unfortunately, no voting system can guarantee an outcome, while also satisfying a range of very reasonable performance criteria. Furthermore, voting methods may be manipulated by decision makers and strategic voters if they have knowledge of the voting patterns and alliances of others in the voting populations. The difficult properties of voting systems arise in routine decision making when there are multiple criteria and management alternatives. Because each method has flaws, we do not endorse one method. Instead, we urge organizers to be transparent about the properties of proposed voting systems and to offer participants the opportunity to approve the voting system as part of the ground rules for operation of a group. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  12. ISMB Conference Funding to Support Attendance of Early Researchers and Students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaasterland, Terry

    ISMB Conference Funding for Students and Young Scientists Historical Description The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 22 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on “intelligent systems” and actual biological data makes ISMB a unique and highly important meeting.more » 21 years of experience in holding the conference has resulted in a consistently well-organized, well attended, and highly respected annual conference. "Intelligent systems" include any software which goes beyond straightforward, closed-form algorithms or standard database technologies, and encompasses those that view data in a symbolic fashion, learn from examples, consolidate multiple levels of abstraction, or synthesize results to be cognitively tractable to a human, including the development and application of advanced computational methods for biological problems. Relevant computational techniques include, but are not limited to: machine learning, pattern recognition, knowledge representation, databases, combinatorics, stochastic modeling, string and graph algorithms, linguistic methods, robotics, constraint satisfaction, and parallel computation. Biological areas of interest include molecular structure, genomics, molecular sequence analysis, evolution and phylogenetics, molecular interactions, metabolic pathways, regulatory networks, developmental control, and molecular biology generally. Emphasis is placed on the validation of methods using real data sets, on practical applications in the biological sciences, and on development of novel computational techniques. The ISMB conferences are distinguished from many other conferences in computational biology or artificial intelligence by an insistence that the researchers work with real molecular biology data, not theoretical or toy examples; and from many other biological conferences by providing a forum for technical advances as they occur, which otherwise may be shunned until a firm experimental result is published. The resulting intellectual richness and cross-disciplinary diversity provides an important opportunity for both students and senior researchers. ISMB has become the premier conference series in this field with refereed, published proceedings, establishing an infrastructure to promote the growing body of research.« less

  13. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOEpatents

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  14. Illuminating Cell Biology

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  15. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  16. A chamber design for closed ecological systems research

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, H.; Stofan, P. E.

    1981-01-01

    A single-plant growth chamber is described which is closed with respect to nutrient and gas flows, in order to serve as a tool in the investigation of control over biological systems. Such control procedures are essential for the use of biological components in the development of a closed ecological life support system (CELSS). The chamber's design consists of two concentric clear plastic cylinders equipped with aeroponic feed tubing, a supporting platform for the plant and a set of sensors that includes an anemometer, thermistors, pressure and strain gauges, and humidity sensors.

  17. USSR Space Life Sciences Digest, issue 2

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  18. Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, Pamela; Flach, Evan

    Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek tomore » move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international synthetic biology centers and related infrastructure (synthesis/software/foundries) meet to discuss technology, standards, and education. SEED2015 will be the second in an annual series of meeting held to bring researchers from industry and academia in the area of Synthetic Biology. The first SEED conference was highly successful, attracting 285 attendees with varying backgrounds from academia, industry and government. The SEED series provides leadership in the development of the field of synthetic biology and serves to broaden the participants in the field by appealing to broad sectors in industry and providing a means for young investigators and those outside of the field to participate. Further, the series closely integrates with groups such as the SBCC to provide a means by which the synthetic biology community can communicate with policy makers. Further, we will pursue making the meeting the center for the exchange of educational materials as centers for synthetic biology emerge globally. Proceedings will be published each year in the journal ACS Synthetic Biology. After each SEED meeting, surveys are distributed to assess the success of the conference and to help guide changes year-to-year. The diverse application areas further extend the expertise needed from people in areas such as plant biology, agriculture and soil science, environmental science, medicine, and the chemical industry. These areas could have a widespread impact on society in a number of ways. For example, the CRISPR/Cas9 system that serves to immunize bacteria from phage has provided the fundamental chemistry that is used to edit the genomes of diverse organisms, including human stem cells, crop plants, and livestock animals.« less

  19. Population dynamics in controlled unsteady-state systems: An application to the degradation of glyphosate in a sequencing batch reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarakonda, M.S.

    1988-01-01

    Control over population dynamics and organism selection in a biological waste treatment system provides an effective means of engineering process efficiency. Examples of applications of organism selection include control of filamentous organisms, biological nutrient removal, industrial waste treatment requiring the removal of specific substrates, and hazardous waste treatment. Inherently, full scale biological waste treatment systems are unsteady state systems due to the variations in the waste streams and mass flow rates of the substrates. Some systems, however, have the capacity to impose controlled selective pressures on the biological population by means of their operation. An example of such a systemmore » is the Sequencing Batch Reactor (SBR) which was the experimental system utilized in this research work. The concepts of organism selection were studied in detail for the biodegradation of a herbicide waste stream, with glyphosate as the target compound. The SBR provided a reactor configuration capable of exerting the necessary selective pressures to select and enrich for a glyphosate degrading population. Based on results for bench scale SBRs, a hypothesis was developed to explain population dynamics in glyphosate degrading systems.« less

  20. Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148

    2012-05-15

    Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less

  1. Sex differences in the development of brain mechanisms for processing biological motion.

    PubMed

    Anderson, L C; Bolling, D Z; Schelinski, S; Coffman, M C; Pelphrey, K A; Kaiser, M D

    2013-12-01

    Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. © 2013 Elsevier Inc. All rights reserved.

  2. Sex Differences in the Development of Brain Mechanisms for Processing Biological Motion

    PubMed Central

    Anderson, L.C.; Bolling, D.Z.; Schelinski, S.; Coffman, M.C.; Pelphrey, K.A.; Kaiser, M.D.

    2013-01-01

    Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. PMID:23876243

  3. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 366)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 248 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Aug. 1992. Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  4. Nanoelectronics Meets Biology: From Novel Nanoscale Devices for Live Cell Recording to 3D Innervated Tissues†

    PubMed Central

    Duan, Xiaojie; Lieber, Charles M.

    2013-01-01

    High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279

  5. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 483

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  6. [Smart therapeutics based on synthetic gene circuits].

    PubMed

    Peng, Shuguang; Xie, Zhen

    2017-03-25

    Synthetic biology has an important impact on biology research since its birth. Applying the thought and methods that reference from electrical engineering, synthetic biology uncovers many regulatory mechanisms of life systems, transforms and expands a series of biological components. Therefore, it brings a wide range of biomedical applications, including providing new ideas for disease diagnosis and treatment. This review describes the latest advances in the field of disease diagnosis and therapy based on mammalian cell or bacterial synthetic gene circuits, and provides new ideas for future smart therapy design.

  7. Overview of chemical imaging methods to address biological questions.

    PubMed

    da Cunha, Marcel Menezes Lyra; Trepout, Sylvain; Messaoudi, Cédric; Wu, Ting-Di; Ortega, Richard; Guerquin-Kern, Jean-Luc; Marco, Sergio

    2016-05-01

    Chemical imaging offers extensive possibilities for better understanding of biological systems by allowing the identification of chemical components at the tissue, cellular, and subcellular levels. In this review, we introduce modern methods for chemical imaging that can be applied to biological samples. This work is mainly addressed to the biological sciences community and includes the bases of different technologies, some examples of its application, as well as an introduction to approaches on combining multimodal data. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    PubMed

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.

  9. Development of a Hands-On Survey Course in the Physics of Living Systems

    NASA Astrophysics Data System (ADS)

    Matthews, Megan; Goldman, Daniel I.

    Due to the widespread availability and technological capabilities of modern smartphones, many biophysical systems can be investigated using easily accessible, low-cost, and/or ``homemade'' equipment. Our survey course is structured to provide students with an overview of research in the physics of living systems, emphasizing the interplay between measurement, mechanism, and modeling required to understand principles at the intersection of physics and biology. The course proceeds through seven modules each consisting of one week of lectures and one week of hands-on experiments, called ``microlabs''. Using smartphones, Arduinos, and 3D printed materials students create their own laboratory equipment, including a 150X van Leeuwenhoek microscope, a shaking incubator, and an oscilloscope, and then use them to study biological systems ranging in length scales from nanometers to meters. These systems include population dynamics of rotifer/algae cultures, experimental evolution of multicellularity in budding yeast, and the bio- & neuromechanics involved in animal locomotion, among others. In each module, students are introduced to fundamental biological and physical concepts as well as theoretical and computational tools (nonlinear dynamics, molecular dynamics simulation, and statistical mechanics). At the end of the course, students apply these concepts and tools to the creation of their own microlab that integrates hands-on experimentation and modeling in the study of their chosen biophysical system.

  10. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 490

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  11. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 487

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  12. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 502

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  13. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 504

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes- subject and author are included after the abstract section.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolutionmore » FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.« less

  15. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry

    PubMed Central

    Harris, D. Calvin; Jewett, Michael C.

    2014-01-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of non-biological polymers having new backbone compositions, new chemical properties, new structures, and new functions. PMID:22483202

  16. Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria.

    PubMed

    Lee, Ki-Young; Lee, Bong-Jin

    2016-10-22

    Bacterial toxin-antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein-protein interactions. Accumulating knowledge about the structure-function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.

  17. Structure, Biology, and Therapeutic Application of Toxin–Antitoxin Systems in Pathogenic Bacteria

    PubMed Central

    Lee, Ki-Young; Lee, Bong-Jin

    2016-01-01

    Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems. PMID:27782085

  18. The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods.

    PubMed

    Gabanyi, Margaret J; Adams, Paul D; Arnold, Konstantin; Bordoli, Lorenza; Carter, Lester G; Flippen-Andersen, Judith; Gifford, Lida; Haas, Juergen; Kouranov, Andrei; McLaughlin, William A; Micallef, David I; Minor, Wladek; Shah, Raship; Schwede, Torsten; Tao, Yi-Ping; Westbrook, John D; Zimmerman, Matthew; Berman, Helen M

    2011-07-01

    The Protein Structure Initiative's Structural Biology Knowledgebase (SBKB, URL: http://sbkb.org ) is an open web resource designed to turn the products of the structural genomics and structural biology efforts into knowledge that can be used by the biological community to understand living systems and disease. Here we will present examples on how to use the SBKB to enable biological research. For example, a protein sequence or Protein Data Bank (PDB) structure ID search will provide a list of related protein structures in the PDB, associated biological descriptions (annotations), homology models, structural genomics protein target status, experimental protocols, and the ability to order available DNA clones from the PSI:Biology-Materials Repository. A text search will find publication and technology reports resulting from the PSI's high-throughput research efforts. Web tools that aid in research, including a system that accepts protein structure requests from the community, will also be described. Created in collaboration with the Nature Publishing Group, the Structural Biology Knowledgebase monthly update also provides a research library, editorials about new research advances, news, and an events calendar to present a broader view of structural genomics and structural biology.

  19. Towards systems metabolic engineering of microorganisms for amino acid production.

    PubMed

    Park, Jin Hwan; Lee, Sang Yup

    2008-10-01

    Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.

  20. Advanced Rotating Biological Surface Operation. Training Module 2.122.4.77.

    ERIC Educational Resources Information Center

    Paulson, W. L.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a rotating biological surface (RBS) wastewater treatment system. Included are objectives, instructor guides, student handouts, and transparency masters. This is the third level of a three module series and…

  1. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  2. Nanotechnology on duty in medical applications.

    PubMed

    Kubik, T; Bogunia-Kubik, K; Sugisaka, M

    2005-02-01

    At the beginning of 21(st) century, fifty years after discovery of deoxyribonucleic acid (DNA) double helix structure, scientific world is faced with a great progress in many disciplines of biological research, especially in the field of molecular biology and operating on nucleid acid molecules. Many molecular biology techniques have been implemented successfully in biology, biotechnology, medical science, diagnostics, and many more. The introduction of polymerase chain reaction (PCR) resulted in improving old and designing new laboratory devices for PCR amplification and analysis of amplified DNA fragments. In parallel to these efforts, the nature of DNA molecules and their construction have attracted many researchers. In addition, some studies concerning mimicking living systems, as well as developing and constructing artificial nanodevices, such as biomolecular sensors and artificial cells, have been conducted. This review is focused on the potential of nanotechnology in health care and medicine, including the development of nanoparticles for diagnostic and screening purposes, the manufacture of unique drug delivery systems, antisense and gene therapy applications and the enablement of tissue engineering, including the future of nanorobot construction.

  3. On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    PubMed Central

    Calcagno, Cristina; Coppo, Mario

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327

  4. Systems biology approaches to understand the effects of nutrition and promote health.

    PubMed

    Badimon, Lina; Vilahur, Gemma; Padro, Teresa

    2017-01-01

    Within the last years the implementation of systems biology in nutritional research has emerged as a powerful tool to understand the mechanisms by which dietary components promote health and prevent disease as well as to identify the biologically active molecules involved in such effects. Systems biology, by combining several '-omics' disciplines (mainly genomics/transcriptomics, proteomics and metabolomics), creates large data sets that upon computational integration provide in silico predictive networks that allow a more extensive analysis of the individual response to a nutritional intervention and provide a more global comprehensive understanding of how diet may influence health and disease. Numerous studies have demonstrated that diet and particularly bioactive food components play a pivotal role in helping to counteract environmental-related oxidative damage. Oxidative stress is considered to be strongly implicated in ageing and the pathophysiology of numerous diseases including neurodegenerative disease, cancers, metabolic disorders and cardiovascular diseases. In the following review we will provide insights into the role of systems biology in nutritional research and focus on transcriptomic, proteomic and metabolomics studies that have demonstrated the ability of functional foods and their bioactive components to fight against oxidative damage and contribute to health benefits. © 2016 The British Pharmacological Society.

  5. On designing multicore-aware simulators for systems biology endowed with OnLine statistics.

    PubMed

    Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.

  6. Colloquium and Report on Systems Microbiology: Beyond Microbial Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merry R. Buckley

    The American Academy of Microbiology convened a colloquium June 4-6, 2004 to confer about the scientific promise of systems microbiology. Participants discussed the power of applying a systems approach to the study of biology and to microbiology in particular, specifics about current research efforts, technical bottlenecks, requirements for data acquisition and maintenance, educational needs, and communication issues surrounding the field. A number of recommendations were made for removing barriers to progress in systems microbiology and for improving opportunities in education and collaboration. Systems biology, as a concept, is not new, but the recent explosion of genomic sequences and related datamore » has revived interest in the field. Systems microbiology, a subset of systems biology, represents a different approach to investigating biological systems. It attempts to examine the emergent properties of microorganisms that arise from the interplay of genes, proteins, other macromolecules, small molecules, organelles, and the environment. It is these interactions, often nonlinear, that lead to the emergent properties of biological systems that are generally not tractable by traditional approaches. As a complement to the long-standing trend toward reductionism, systems microbiology seeks to treat the organism or community as a whole, integrating fundamental biological knowledge with genomics, metabolomics, and other data to create an integrated picture of how a microbial cell or community operates. Systems microbiology promises not only to shed light on the activities of microbes, but will also provide biology the tools and approaches necessary for achieving a better understanding of life and ecosystems. Microorganisms are ideal candidates for systems biology research because they are relatively easy to manipulate and because they play critical roles in health, environment, agriculture, and energy production. Potential applications of systems microbiology research range from improvements in the management of bacterial infections to the development of commercial-scale microbial hydrogen generation. A number of technical challenges must be met to realize the potential of systems microbiology. Development of a new, comprehensive systems microbiology database that would be available to the entire research community was identified as the single most critical need. Other challenges include difficulties in measuring single-cell parameters, limitations in identifying and measuring metabolites and other products, the inability to cultivate diverse microbes, limits on data accessibility, computational limitations associated with data integration, the lack of sufficient functional gene annotations, needs for quantitative proteomics, and the inapplicability of current high throughput methods to all areas of systems microbiology. Difficulties have also been encountered in acquiring the necessary data, assuring the quality of that data, and in making data available to the community in a useful format. Problems with data quality assurance and data availability could be partially offset by launching a dedicated systems microbiology database. To be of greatest value to the field, a database should include systems data from all levels of analysis, including sequences, microarray data, proteomics data, metabolite measurements, data on protein-protein or protein-nucleic interactions, carbohydrate and small RNA profiles, information on cell surface markers, and appropriate supporting data. Regular updates of these databases and adherence to agreed upon data format standards are critical to the success of these resources. It was recommended that educational requirements for undergraduate and graduate students in microbiology be amended to better prepare the next generation of researchers for the quantitative requirements of applying systems microbiology methods in their work. Systems microbiology research is too complex to be the sole property of any single academic discipline. The contributions of microbiologists, computer scientists, control theorists, biostatisticians, and others are all required to move the field forward. Since research in systems microbiology demands the contributions of a diverse array of professionals, collaboration across disciplines and national borders should be strongly encouraged by research bodies and funding agencies. Although the details of systems microbiology research are probably not of interest to the average individual, the potential applications and benefits of these types of investigations should be conveyed to the lay public.« less

  7. PREFACE: 9th International Fröhlich's Symposium: Electrodynamic Activity of Living Cells (Including Microtubule Coherent Modes and Cancer Cell Physics)

    NASA Astrophysics Data System (ADS)

    Cifra, Michal; Pokorný, Jirí; Kucera, Ondrej

    2011-12-01

    This volume contains papers presented at the International Fröhlich's Symposium entitled 'Electrodynamic Activity of Living Cells' (1-3 July 2011, Prague, Czech Republic). The Symposium was the 9th meeting devoted to physical processes in living matter organized in Prague since 1987. The hypothesis of oscillation systems in living cells featured by non-linear interaction between elastic and electrical polarization fields, non-linear interactions between the system and the heat bath leading to energy downconversion along the frequency scale, energy condensation in the lowest frequency mode and creation of a coherent state was formulated by H Fröhlich, founder of the theory of dielectric materials. He assumed that biological activity is based not only on biochemical but also on biophysical mechanisms and that their disturbances form basic links along the cancer transformation pathway. Fröhlich outlined general ideas of non-linear physical processes in biological systems. The downconversion and the elastic-polarization interactions should be connected in a unified theory and the solution based on comprehensive non-linear characteristics. Biochemical and genetic research of biological systems are highly developed and have disclosed a variety of cellular and subcellular structures, chemical reactions, molecular information transfer, and genetic code sequences - including their pathological development. Nevertheless, the cancer problem is still a big challenge. Warburg's discovery of suppressed oxidative metabolism in mitochondria in cancer cells suggested the essential role of physical mechanisms (but his discovery has remained without impact on cancer research and on the study of physical properties of biological systems for a long time). Mitochondria, the power plants of the cell, have several areas of activity-oxidative energy production is connected with the formation of a strong static electric field around them, water ordering, and liberation of non-utilized energy to their surroundings. Mitochondrial function connected with water ordering and excitation of oscillations in microtubules may play a central role in biological activity, in particular in transport, organization, interactions, and information transfer. Mitochondrial disfunction results in disturbances of the generated electrodynamic field with bad consequences in biological activity and the creation of pathological states. A special issue of the biological activity concerns the brain function (consciousness is not yet adequately understood). Experimental investigation using nanotechnology would supply yet unknown data and parameters of physical mechanisms in living systems. Extremely weak biological signals have to be separated from technical noise under conditions of possible non-linear mutual interactions. Some authors questioned the validity of the Fröhlich hypothesis. Foster and Baish (J. Biol. Phys. 26 2000, 255) neglected water ordering and concluded that strong damping by water viscosity effects prevents the formation of a coherent state. Reimers et al (PNAS 106 2009, 4219) and McKemmish et al (Phys. Rev. E 80 2009, 021912-1) omitted non-linear elastic-electrical polarization interactions and analyzed a linearized model of downconversion with strong damping that cannot represent the Fröhlich system. Fröhlich assumed a high quality non-linear system with energy supply. Some methods used for analysis of linear systems (for instance the method of superposition) are not valid in non-linear systems. For this reason also experimental analysis based on subtraction of the noise from the measured signal spectrum is not a simple question. There is another special issue concerning biological activity. The living state and in particular consciousness are very often connected with an idea of a non-material and non-measurable entity entering the biological system from outside. There is a splendid harmony and order in nature. Science should disclose measurable mechanisms of the harmony and order. But human knowledge about the electrodynamic and electromagnetic fields in biological systems is still at a low level. The Symposium continued in the series of international scientific meetings devoted to physical processes in living cells organized in Prague. The first meeting was entitled 'Biophysical Aspects of Cancer' (6-9 July 1987). On this occasion the Anglo-German physicist H Fröhlich presented a lecture 'Coherence in Biology'. The next meeting which was devoted to the Fröhlich coherent systems, information transfer, and neural activity was in 1993. The role of the Fröhlich coherence in the neural activity was included in the meeting 'Biophysical Aspects of Coherence' in 1995 too. The subsequent symposia were entitled 'Electromagnetic Fields in Biological Systems' (1998), 'Electromagnetic Aspects of Selforganization in Biology' (2000), 'Endogenous Physical Fields in Biology' (2002), 'Coherence and Electromagnetic Fields in Biological Systems' (2005), and 'Biophysical Aspects of Cancer - Electromagnetic Mechanisms' (2008). In 2008 a novel project for research of convergence of physics and oncology was triggered in the USA by the National Cancer Institute and the Institute of Public Health. This volume contains the a large number of the papers presented at the Symposium. The ideas presented at the Symposium might have impact on the future research of physical processes and mechanisms in biological systems. Experimental research may provide a background for understanding the neglected part of biological activity and reveal the physical mechanisms of the cancer transformation pathway. The Symposium and this volume were prepared by a scientific team whose members were M Cifra, D Havelka, A Jandová, F Jelínek, O Kucera, M Nedbalová, and F Šrobár. Jirí Pokorný A list of committees, sponsors, the list of talks and some photographs from the conference can be found in the PDF file.

  8. Is the whole the sum of its parts? Agent-based modelling of wastewater treatment systems.

    PubMed

    Schuler, A J; Majed, N; Bucci, V; Hellweger, F L; Tu, Y; Gu, A Z

    2011-01-01

    Agent-based models (ABMS) simulate individual units within a system, such as the bacteria in a biological wastewater treatment system. This paper outlines past, current and potential future applications of ABMs to wastewater treatment. ABMs track heterogeneities within microbial populations, and this has been demonstrated to yield different predictions of bulk behaviors than the conventional, "lumped" approaches for enhanced biological phosphorus removal (EBPR) completely mixed reactors systems. Current work included the application of the ABM approach to bacterial adaptation/evolution, using the model system of individual EBPR bacteria that are allowed to evolve a kinetic parameter (maximum glycogen storage) in a competitive environment. The ABM approach was successfully implemented to a simple anaerobic-aerobic system and it was found the differing initial states converged to the same optimal solution under uncertain hydraulic residence times associated with completely mixed hydraulics. In another study, an ABM was developed and applied to simulate the heterogeneity in intracellular polymer storage compounds, including polyphosphate (PP), in functional microbial populations in enhanced biological phosphorus removal (EBPR) process. The simulation results were compared to the experimental measurements of single-cell abundance of PP in polyphosphate accumulating organisms (PAOs), performed using Raman microscopy. The model-predicted heterogeneity was generally consistent with observations, and it was used to investigate the relative contribution of external (different life histories) and internal (biological) mechanisms leading to heterogeneity. In the future, ABMs could be combined with computational fluid dynamics (CFD) models to understand incomplete mixing, more intracellular states and mechanisms can be incorporated, and additional experimental verification is needed.

  9. Overview of plasma technology used in medicine

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2013-02-01

    Plasma Medicine is a growing field that is having an impact in several important areas in therapeutic patient care, combining plasma physics, biology, and clinical medicine. Historically, plasmas in medicine were used in electrosurgery for cautery and non-contact hemostasis. Presently, non-thermal plasmas have attained widespread use in medicine due to their effectiveness and compatibility with biological systems. The paper will give a general overview of how low temperature, non-equilibrium, gas plasmas operate, both from physics and biology perspectives. Plasma is commonly described as the fourth state of matter and is typically comprised of charged species, active molecules and atoms, as well as a source of UV and photons. The most active areas of plasma technology applications are in wound treatment; tissue regeneration; inactivation of pathogens, including biofilms; treating skin diseases; and sterilization. There are several means of generating plasmas for use in medical applications, including plasma jets, dielectric barrier discharges, capacitively or inductively coupled discharges, or microplasmas. These systems overcome the former constraints of high vacuum, high power requirements and bulky systems, into systems that use room air and other gases and liquids at low temperature, low power, and hand-held operation at atmospheric pressure. Systems will be discussed using a variety of energy sources: pulsed DC, AC, microwave and radiofrequency, as well as the range of frequency, pulse duration, and gas combinations in an air environment. The ionic clouds and reactive species will be covered in terms of effects on biological systems. Lastly, several commercial products will be overviewed in light of the technology utilized, health care problems being solved, and clinical trial results.

  10. Restriction/modification polypeptides, polynucleotides, and methods

    DOEpatents

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  11. System as metaphor in the psychology and biology of shame.

    PubMed

    Maunder, R

    1996-01-01

    Biological theories of brain and psychological theories of mind are two systems of explanation that seem related to one another. The nature of the relationship is problematic and constitutes the age-old mind-body problem. The most prominent solutions currently are variations of materialism. While psychological theories can be consistent with materialism, there remains a difficulty in comprehending nonphysical (social, psychological) causes of physical effects. This difficulty is an obstacle to integration in psychiatry, where we routinely assume that illnesses that include or depend on biological dysfunction are caused multifactorially by causal agents such as perceived parental warmth, parental loss, stressful life events, genetics, and personality (Hammen et al. 1992; Kendler et al. 1993). Unity theory adopts the stance that neurobiological theories and psychological theories are essentially disparate explanations of the same psychobiological events; thus the relationship of mind to brain is one of shared reference (Goodman 1991; Maunder 1995). In Goodman's model the gap between biological and psychological systems is not bridgeable. Different conceptual categories refer to the same referents but cannot interact with each other. Stepping into the breach, systems theory has been presented as offering a language that can bridge the gap between psychological and biological theories of causation (Schwartz 1981; Weiner 1989). Thus, there is a controversy about the applicability of systems theory for integration in psychiatry.

  12. Multiscale Hy3S: hybrid stochastic simulation for supercomputers.

    PubMed

    Salis, Howard; Sotiropoulos, Vassilios; Kaznessis, Yiannis N

    2006-02-24

    Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users create biological systems and analyze data. We demonstrate the accuracy and efficiency of Hy3S with examples, including a large-scale system benchmark and a complex bistable biochemical network with positive feedback. The software itself is open-sourced under the GPL license and is modular, allowing users to modify it for their own purposes. Hy3S is a powerful suite of simulation programs for simulating the stochastic dynamics of networks of biochemical reactions. Its first public version enables computational biologists to more efficiently investigate the dynamics of realistic biological systems.

  13. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 497

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention.

  14. Some Applications of Piece-Wise Smooth Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Janovská, Drahoslava; Hanus, Tomáš; Biák, Martin

    2010-09-01

    The Filippov systems theory is applied to selected problems from biology and chemical engineering, namely we explore and simulate Bazykin's ecological model, an ideal closed gas-liquid system including its dimensionless formulation. The last investigated system is a CSTR with an outfall and the CSTR with a reactor volume control.

  15. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.

    PubMed

    Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio

    2010-03-26

    Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.

  16. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  17. Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    PubMed Central

    Bhat, Nisar A.; Riar, Amritbir; Ramesh, Aketi; Iqbal, Sanjeeda; Sharma, Mahaveer P.; Sharma, Sanjay K.; Bhullar, Gurbir S.

    2017-01-01

    Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers. PMID:28928758

  18. Mammalian Synthetic Biology: Engineering Biological Systems.

    PubMed

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  19. Mirror me: Imitative responses in adults with autism.

    PubMed

    Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander

    2016-02-01

    Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum disorder participants and 20 healthy controls matched for age, gender and education. Participants performed simple finger-lifting movements in response to (1) biological finger and non-biological dot movement stimuli, (2) acoustic stimuli and (3) combined visual-acoustic stimuli with different contextual (compatible/incompatible) and temporal (simultaneous/asynchronous) relation. Mixed model analyses revealed slower reaction times in autism spectrum disorder. Both groups responded faster to biological compared to non-biological stimuli (Experiment 1) implying intact processing advantage for biological stimuli in autism spectrum disorder. In Experiment 3, both groups had similar 'interference effects' when stimuli were presented simultaneously. However, autism spectrum disorder participants had abnormally slow responses particularly when incompatible stimuli were presented consecutively. Our results suggest imitative control deficits rather than global imitative system impairments. © The Author(s) 2015.

  20. Biocompatible Capsules and Methods of Making

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor)

    2017-01-01

    Embodiments of the invention include capsules for containing medical implants and delivery systems for release of active biological substances into a host body. Delivery systems comprise a capsule comprising an interior enclosed by walls, and a source of active biological substances enclosed within the capsule interior, wherein the active biological substances are free to diffuse across the capsule walls. The capsule walls comprise a continuous mesh of biocompatible fibers and a seal region where two capsule walls overlap. The interior of the capsule is substantially isolated from the medium surrounding the capsule, except for diffusion of at least one species of molecule between the capsule interior and the ambient medium, and prevents cell migration into or out of the capsule. Methods for preparing and using the capsules and delivery systems are provided.

  1. Integration of systems biology with organs-on-chips to humanize therapeutic development

    NASA Astrophysics Data System (ADS)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  2. An integrative approach to inferring biologically meaningful gene modules.

    PubMed

    Cho, Ji-Hoon; Wang, Kai; Galas, David J

    2011-07-26

    The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  3. How to integrate biological research into society and exclude errors in biomedical publications? Progress in theoretical and systems biology releases pressure on experimental research.

    PubMed

    Volkov, Vadim

    2014-01-01

    This brief opinion proposes measures to increase efficiency and exclude errors in biomedical research under the existing dynamic situation. Rapid changes in biology began with the description of the three dimensional structure of DNA 60 years ago; today biology has progressed by interacting with computer science and nanoscience together with the introduction of robotic stations for the acquisition of large-scale arrays of data. These changes have had an increasing influence on the entire research and scientific community. Future advance demands short-term measures to ensure error-proof and efficient development. They can include the fast publishing of negative results, publishing detailed methodical papers and excluding a strict connection between career progression and publication activity, especially for younger researchers. Further development of theoretical and systems biology together with the use of multiple experimental methods for biological experiments could also be helpful in the context of years and decades. With regards to the links between science and society, it is reasonable to compare both these systems, to find and describe specific features for biology and to integrate it into the existing stream of social life and financial fluxes. It will increase the level of scientific research and have mutual positive effects for both biology and society. Several examples are given for further discussion.

  4. Aerospace medicine and biology: A continuing bibliography with indexes, supplement 97

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Each entry consists of a standard citation accompanied by its abstract.

  5. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 94)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Each entry consists of a standard citation accompanied by its abstract.

  6. Aerospace medicine and biology: A continuing bibliography with indexes, supplement 96

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Each entry consists of a standard citation accompanied by its abstract.

  7. Aerospace medicine and biology: A continuing bibliography with indexes, supplement

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Each entry consists of a standard citation accompanied by its abstract.

  8. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 100)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. Reference describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Each entry consists of a standard citation accompanied by its abstract.

  9. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems.

    PubMed

    Watson, Andrew D

    2006-10-01

    Lipids are water-insoluble molecules that have a wide variety of functions within cells, including: 1) maintenance of electrochemical gradients; 2) subcellular partitioning; 3) first- and second-messenger cell signaling; 4) energy storage; and 5) protein trafficking and membrane anchoring. The physiological importance of lipids is illustrated by the numerous diseases to which lipid abnormalities contribute, including atherosclerosis, diabetes, obesity, and Alzheimer's disease. Lipidomics, a branch of metabolomics, is a systems-based study of all lipids, the molecules with which they interact, and their function within the cell. Recent advances in soft-ionization mass spectrometry, combined with established separation techniques, have allowed the rapid and sensitive detection of a variety of lipid species with minimal sample preparation. A "lipid profile" from a crude lipid extract is a mass spectrum of the composition and abundance of the lipids it contains, which can be used to monitor changes over time and in response to particular stimuli. Lipidomics, integrated with genomics, proteomics, and metabolomics, will contribute toward understanding how lipids function in a biological system and will provide a powerful tool for elucidating the mechanism of lipid-based disease, for biomarker screening, and for monitoring pharmacologic therapy.

  10. THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...

    EPA Pesticide Factsheets

    CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc

  11. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.

    PubMed

    Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A

    2015-12-01

    Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

  12. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  13. Improvements in algal lipid production: a systems biology and gene editing approach.

    PubMed

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  14. Results of the Alternative Water Processor Test, A Novel Technology for Exploration Wastewater Remediation

    NASA Technical Reports Server (NTRS)

    Vega, Leticia; Meyer, Caitlin

    2016-01-01

    Biologically-based water recovery systems are a regenerative, low energy alternative to physiochemical processes to reclaim water from wastewater. This paper summarizes the results of the Alternative Water Processor (AWP) test conducted over one year. The AWP recovered 90% of water from four crewmembers using (4) membrane aerated bioreactors (MABRs) to remove carbon and nitrogen from an exploration mission wastewater, including urine, hygiene, laundry and humidity condensate. Downstream, a coupled forward and reverse osmosis system removed large organics and inorganic salts from the biological system effluent. The system exceeded the overall objectives of the test by recovering 90% of the influent wastewater processed and a 29% reduction of consumables from the current state of the art water recovery system on the International Space Station (ISS). However the biological system fell short of its test goals, failing to remove 75% and 90% of the influent ammonium and organic carbon, respectively. Despite not meeting its test goals, the BWP demonstrated the feasibility of an attached-growth biological system for simultaneous nitrification and denitrification, an innovative, volume and consumable-saving design that doesn't require toxic pretreatment. This paper will explain the reasons for this and will discuss steps to optimize each subsystem to increase effluent quality from the MABRs and the FOST to advance the system.

  15. Results of the Alternative Water Processor Test, A Novel Technology for Exploration Wastewater Remediation

    NASA Technical Reports Server (NTRS)

    Vega, Leticia; Meyer, Caitlin

    2015-01-01

    Biologically-based water recovery systems are a regenerative, low energy alternative to physiochemical processes to reclaim water from wastewater. This paper summarizes the results of the Alternative Water Processor (AWP) test conducted over one year. The AWP recovered 90% of water from four crewmembers using (4) membrane aerated bioreactors (MABRs) to remove carbon and nitrogen from an exploration mission wastewater, including urine, hygiene, laundry and humidity condensate. Downstream, a coupled forward and reverse osmosis system removed large organics and inorganic salts from the biological system effluent. The system exceeded the overall objectives of the test by recovering 90% of the influent wastewater processed and a 29% reduction of consumables from the current state of the art water recovery system on the International Space Station (ISS). However the biological system fell short of its test goals, failing to remove 75% and 90% of the influent ammonium and organic carbon, respectively. Despite not meeting its test goals, the BWP demonstrated the feasibility of an attachedgrowth biological system for simultaneous nitrification and denitrification, an innovative, volume and consumable-saving design that doesn't require toxic pretreatment. This paper will explain the reasons for this and will discuss steps to optimize each subsystem to increase effluent quality from the MABRs and the FOST to advance the system.

  16. Parameter Calculation Technique for the Waste Treatment Facilities Using Naturally-Aerated Blocks in the Bog Ecosystems

    NASA Astrophysics Data System (ADS)

    Akhmed-Ogly, K. V.; Savichev, O. G.; Tokarenko, O. G.; Pasechnik, E. Yu; Reshetko, M. V.; Nalivajko, N. G.; Vlasova, M. V.

    2014-08-01

    Technique for the domestic wastewater treatment in the small residential areas and oil and gas facilities of the natural and man-made systems including a settling tank for mechanical treatment and a biological pond with peat substrate and bog vegetation for biological treatment has been substantiated. Technique for parameters calculation of the similar natural and man-made systems has been developed. It was proven that effective treatment of wastewater can be performed in Siberia all year round.

  17. Rituximab treatment in primary angiitis of the central nervous system.

    PubMed

    Patel, Shreeya; Ross, Laura; Oon, Shereen; Nikpour, Mandana

    2018-06-01

    Primary angiitis of the central nervous system (PACNS) is a rare autoimmune vasculitis affecting the brain and spinal cord. Treatment with biological agents has revolutionised the treatment of many rheumatic conditions but there is scant literature regarding the use of biological agents in PACNS. We present three cases of PACNS treated with rituximab, including two cases of relapsed disease, and a literature review suggesting a role for rituximab in this condition. © 2018 Royal Australasian College of Physicians.

  18. Biological satellite scientific devices

    NASA Astrophysics Data System (ADS)

    Perepech, B. L.; Rumiantsev, V. P.; Galkin, V. M.; Shakhvorostov, S. V.; Rvachev, S. S.

    1991-02-01

    The paper describes the NA SBS 9 systems developed for the ninth Cosmos-2044 biological test mission. The NA SBS 9 life support systems designed for monkeys and rats follow standard design of BIOS-Vivarium and BIOS-Primate units. The main features of NA SBS 9 include the use of a recently developed HF physiological data recorder Skat-3; the incorporation into BIOS-Primate of two units intended for biorhythmic studies (the BBI-Zh system for studying beetles and the VITALOG developed by NASA for studies on monkeys); and a new version of BIOS-Primate system incorporating a capacitance-link and an inductance-link temperature transmitters and a brain tissue oxygen tension control channel.

  19. Systems biology and livestock production.

    PubMed

    Headon, D

    2013-12-01

    The mapping of complete sets of genes, transcripts and proteins from many organisms has prompted the development of new '-omic' technologies for collecting and analysing very large amounts of data. Now that the tools to generate and interrogate such complete data sets are widely used, much of the focus of biological research has begun to turn towards understanding systems as a whole, rather than studying their components in isolation. This very broadly defined systems approach is being deployed across a range of problems and scales of organisation, including many aspects of the animal sciences. Here I review selected examples of this systems approach as applied to poultry and livestock production, product quality and welfare.

  20. Interdisciplinary education - a predator-prey model for developing a skill set in mathematics, biology and technology

    NASA Astrophysics Data System (ADS)

    van der Hoff, Quay

    2017-08-01

    The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator-prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.

  1. Eugene – A Domain Specific Language for Specifying and Constraining Synthetic Biological Parts, Devices, and Systems

    PubMed Central

    Bilitchenko, Lesia; Liu, Adam; Cheung, Sherine; Weeding, Emma; Xia, Bing; Leguia, Mariana; Anderson, J. Christopher; Densmore, Douglas

    2011-01-01

    Background Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. Results We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. Conclusions Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly. PMID:21559524

  2. Software Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1988

    1988-01-01

    Reviews five software packages for use with school age children. Includes "Science Toolkit Module 2: Earthquake Lab"; "Adaptations and Identification"; "Geoworld"; "Body Systems II Series: The Blood System: A Liquid of Life," all for Apple II, and "Science Courseware: Life Science/Biology" for…

  3. The intestinal microbiome and skeletal fitness: connecting bugs and bones

    PubMed Central

    Charles, Julia F.; Ermann, Joerg; Aliprantis, Antonios O.

    2015-01-01

    Recent advances have dramatically increased our understanding of how organ systems interact. This has been especially true for immunology and bone biology, where the term “osteoimmunology” was coined to capture this relationship. The importance of the microbiome to the immune system has also emerged as a driver of health and disease. It makes sense therefore to ask the question: how does the intestinal microbiome influence bone biology and does dysbiosis promote bone disease? Surprisingly, few studies have analyzed this connection. A broader interpretation of this question reveals many mechanisms whereby the microbiome may affect bone cells. These include effects of the microbiome on immune cells, including myeloid progenitors and Th17 cells, as well as steroid hormones, fatty acids, serotonin and vitamin D. As mechanistic interactions of the microbiome and skeletal system are revealed within and without the immune system, novel strategies to optimize skeletal fitness may emerge. PMID:25840106

  4. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  5. The Biological and Chemical Oceanography Data Management Office

    NASA Astrophysics Data System (ADS)

    Allison, M. D.; Chandler, C. L.; Groman, R. C.; Wiebe, P. H.; Glover, D. M.; Gegg, S. R.

    2011-12-01

    Oceanography and marine ecosystem research are inherently interdisciplinary fields of study that generate and require access to a wide variety of measurements. In late 2006 the Biological and Chemical Oceanography Sections of the National Science Foundation (NSF) Geosciences Directorate Division of Ocean Sciences (OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO). In late 2010 additional funding was contributed to support management of research data from the NSF Office of Polar Programs Antarctic Organisms & Ecosystems Program. The BCO-DMO is recognized in the 2011 Division of Ocean Sciences Sample and Data Policy as one of several program specific data offices that support NSF OCE funded researchers. BCO-DMO staff members offer data management support throughout the project life cycle to investigators from large national programs and medium-sized collaborative research projects, as well as researchers from single investigator awards. The office manages and serves all types of oceanographic data and information generated during the research process and contributed by the originating investigators. BCO-DMO has built a data system that includes the legacy data from several large ocean research programs (e.g. United States Joint Global Ocean Flux Study and United States GLOBal Ocean ECosystems Dynamics), to which data have been contributed from recently granted NSF OCE and OPP awards. The BCO-DMO data system can accommodate many different types of data including: in situ and experimental biological, chemical, and physical measurements; modeling results and synthesis data products. The system enables reuse of oceanographic data for new research endeavors, supports synthesis and modeling activities, provides availability of "real data" for K-12 and college level use, and provides decision-support field data for policy-relevant investigations. We will present an overview of the data management system capabilities including: map-based and text-based data discovery and access systems; recent enhancements to data search tools; data export and download utilities; and strategic use of controlled vocabularies to facilitate data integration and to improve data system interoperability.

  6. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith.

    PubMed

    Schuerger, Andrew C; Ming, Douglas W; Newsom, Horton E; Ferl, Robert J; McKay, Christopher P

    2002-01-01

    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  7. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Ming, Douglas W.; Newsom, Horton E.; Ferl, Robert J.; McKay, Christopher P.

    2002-01-01

    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  8. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  9. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    NASA Astrophysics Data System (ADS)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  10. RNA Systems Biology for Cancer: From Diagnosis to Therapy.

    PubMed

    Amirkhah, Raheleh; Farazmand, Ali; Wolkenhauer, Olaf; Schmitz, Ulf

    2016-01-01

    It is due to the advances in high-throughput omics data generation that RNA species have re-entered the focus of biomedical research. International collaborate efforts, like the ENCODE and GENCODE projects, have spawned thousands of previously unknown functional non-coding RNAs (ncRNAs) with various but primarily regulatory roles. Many of these are linked to the emergence and progression of human diseases. In particular, interdisciplinary studies integrating bioinformatics, systems biology, and biotechnological approaches have successfully characterized the role of ncRNAs in different human cancers. These efforts led to the identification of a new tool-kit for cancer diagnosis, monitoring, and treatment, which is now starting to enter and impact on clinical practice. This chapter is to elaborate on the state of the art in RNA systems biology, including a review and perspective on clinical applications toward an integrative RNA systems medicine approach. The focus is on the role of ncRNAs in cancer.

  11. Chemical Probes for Molecular Imaging and Detection of Hydrogen Sulfide and Reactive Sulfur Species in Biological Systems

    PubMed Central

    2014-01-01

    Hydrogen sulfide (H2S), a gaseous species produced by both bacteria and higher eukaryotic organisms, including mammalian vertebrates, has attracted attention in recent years for its contributions to human health and disease. H2S has been proposed as a cytoprotectant and gasotransmitter in many tissue types, including mediating vascular tone in blood vessels as well as neuromodulation in the brain. The molecular mechanisms dictating how H2S affects cellular signaling and other physiological events remain insufficiently understood. Furthermore, the involvement of H2S in metal-binding interactions and formation of related RSS such as sulfane sulfur may contribute to other distinct signaling pathways. Owing to its widespread biological roles and unique chemical properties, H2S is an appealing target for chemical biology approaches to elucidate its production, trafficking, and downstream function. In this context, reaction-based fluorescent probes offer a versatile set of screening tools to visualize H2S pools in living systems. Three main strategies used in molecular probe development for H2S detection include azide and nitro group reduction, nucleophilic attack, and CuS precipitation. Each of these approaches exploit the strong nucleophilicity and reducing potency of H2S to achieve selectivity over other biothiols. In addition, a variety of methods have been developed for the detection of other reactive sulfur species (RSS), including sulfite and bisulfite, as well as sulfane sulfur species and related modifications such as S-nitrosothiols. Access to this growing chemical toolbox of new molecular probes for H2S and related RSS sets the stage for applying these developing technologies to probe reactive sulfur biology in living systems. PMID:25474627

  12. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  13. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  14. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 368)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 305 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Sep. 1992. The subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  15. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1978-01-01

    Attempts are made to provide a total design of a Microbial Load Monitor (MLM) system flight engineering model. Activities include assembly and testing of Sample Receiving and Card Loading Devices (SRCLDs), operator related software, and testing of biological samples in the MLM. Progress was made in assembling SRCLDs with minimal leaks and which operate reliably in the Sample Loading System. Seven operator commands are used to control various aspects of the MLM such as calibrating and reading the incubating reading head, setting the clock and reading time, and status of Card. Testing of the instrument, both in hardware and biologically, was performed. Hardware testing concentrated on SRCLDs. Biological testing covered 66 clinical and seeded samples. Tentative thresholds were set and media performance listed.

  16. Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues.

    PubMed

    Duan, Xiaojie; Lieber, Charles M

    2013-10-01

    High spatiotemporal resolution interfaces between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. Herein, we summarize recent progress in the development and application of novel nanoscale devices for intracellular electrical recording of action potentials and the effort of merging electronic and biological systems seamlessly in three dimensions by using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large-scale, high spatial resolution, and three-dimensional neural activity mapping are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  18. Geographic distribution and regional impacts of Oxyops vitiosa (Coleoptera: Curculionidae) and Boreioglycaspis melaleucae (Hemiptera: Psyllidae), biological control agents of the invasive tree Melaleuca quinquenervia

    USDA-ARS?s Scientific Manuscript database

    The invasive tree Melaleuca quinquenervia (Cav.) Blake is widely distributed throughout peninsular Florida, USA and poses a significant threat to species diversity in the wetland systems of the Everglades. Mitigation of this threat includes the areawide release campaign of the biological control age...

  19. Organizing Community-Based Data Standards: Lessons from Developing a Successful Open Standard in Systems Biology

    NASA Astrophysics Data System (ADS)

    Hucka, M.

    2015-09-01

    In common with many fields, including astronomy, a vast number of software tools for computational modeling and simulation are available today in systems biology. This wealth of resources is a boon to researchers, but it also presents interoperability problems. Despite working with different software tools, researchers want to disseminate their work widely as well as reuse and extend the models of other researchers. This situation led in the year 2000 to an effort to create a tool-independent, machine-readable file format for representing models: SBML, the Systems Biology Markup Language. SBML has since become the de facto standard for its purpose. Its success and general approach has inspired and influenced other community-oriented standardization efforts in systems biology. Open standards are essential for the progress of science in all fields, but it is often difficult for academic researchers to organize successful community-based standards. I draw on personal experiences from the development of SBML and summarize some of the lessons learned, in the hope that this may be useful to other groups seeking to develop open standards in a community-oriented fashion.

  20. A Tricky Trait: Applying the Fruits of the “Function Debate” in the Philosophy of Biology to the “Venom Debate” in the Science of Toxinology

    PubMed Central

    Jackson, Timothy N. W.; Fry, Bryan G.

    2016-01-01

    The “function debate” in the philosophy of biology and the “venom debate” in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between “venomous” and “non-venomous” species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology. PMID:27618098

  1. Chemical regulators of plant hormones and their applications in basic research and agriculture.

    PubMed

    Jiang, Kai; Asami, Tadao

    2018-04-20

    Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.

  2. CEBS object model for systems biology data, SysBio-OM.

    PubMed

    Xirasagar, Sandhya; Gustafson, Scott; Merrick, B Alex; Tomer, Kenneth B; Stasiewicz, Stanley; Chan, Denny D; Yost, Kenneth J; Yates, John R; Sumner, Susan; Xiao, Nianqing; Waters, Michael D

    2004-09-01

    To promote a systems biology approach to understanding the biological effects of environmental stressors, the Chemical Effects in Biological Systems (CEBS) knowledge base is being developed to house data from multiple complex data streams in a systems friendly manner that will accommodate extensive querying from users. Unified data representation via a single object model will greatly aid in integrating data storage and management, and facilitate reuse of software to analyze and display data resulting from diverse differential expression or differential profile technologies. Data streams include, but are not limited to, gene expression analysis (transcriptomics), protein expression and protein-protein interaction analysis (proteomics) and changes in low molecular weight metabolite levels (metabolomics). To enable the integration of microarray gene expression, proteomics and metabolomics data in the CEBS system, we designed an object model, Systems Biology Object Model (SysBio-OM). The model is comprehensive and leverages other open source efforts, namely the MicroArray Gene Expression Object Model (MAGE-OM) and the Proteomics Experiment Data Repository (PEDRo) object model. SysBio-OM is designed by extending MAGE-OM to represent protein expression data elements (including those from PEDRo), protein-protein interaction and metabolomics data. SysBio-OM promotes the standardization of data representation and data quality by facilitating the capture of the minimum annotation required for an experiment. Such standardization refines the accuracy of data mining and interpretation. The open source SysBio-OM model, which can be implemented on varied computing platforms is presented here. A universal modeling language depiction of the entire SysBio-OM is available at http://cebs.niehs.nih.gov/SysBioOM/. The Rational Rose object model package is distributed under an open source license that permits unrestricted academic and commercial use and is available at http://cebs.niehs.nih.gov/cebsdownloads. The database and interface are being built to implement the model and will be available for public use at http://cebs.niehs.nih.gov.

  3. Positive affect and psychobiological processes

    PubMed Central

    Dockray, Samantha; Steptoe, Andrew

    2010-01-01

    Positive affect has been associated with favourable health outcomes, and it is likely that several biological processes mediate the effects of positive mood on physical health. There is converging evidence that positive affect activates the neuroendocrine, autonomic and immune systems in distinct and functionally meaningful ways. Cortisol, both total output and the awakening response, has consistently been shown to be lower among individuals with higher levels of positive affect. The beneficial effects of positive mood on cardiovascular function, including heart rate and blood pressure, and the immune system have also been described. The influence of positive affect on these psychobiological processes are independent of negative affect, suggesting that positive affect may have characteristic biological correlates. The duration and conceptualisation of positive affect may be important considerations in understanding how different biological systems are activated in association with positive affect. The association of positive affect and psychobiological processes has been established, and these biological correlates may be partly responsible for the protective effects of positive affect on health outcomes. PMID:20097225

  4. Life sciences and space research XXIV(1) - Gravitational biology; Proceedings of Symposia 10 and 13 of the Topical Meeting of the Interdisciplinary Scientific Commission F (Meetings F1 and F2) of the COSPAR 28th Plenary Meeting, The Hague, Netherlands, June 25-July 6, 1990

    NASA Technical Reports Server (NTRS)

    Young, R. S. (Editor); Cogoli, A. (Editor); Planel, H. (Editor); Ubbels, G. A. (Editor); Sievers, A. (Editor); Oser, H. (Editor); Horneck, G. (Editor); Wagner, H. (Editor)

    1992-01-01

    Topics presented include an introduction to theories and models of biological response to gravity, gravity effects on biological systems, the function of calcium in plant graviperception, developmental biology on unmanned spacecraft, and the effect of microgravity on the development of plant protoplasts flown on Biocosmos 9. Also presented are the mechanism by which an asymmetric distribution of plant growth hormone is attained, the perception of gravity by plants, an animal research facility for Space Station Freedom, the long-term effects of microgravity and possible countermeasures, and an experimental system for determining the influence of microgravity on B lymphocyte activation and cell fusion.

  5. Evolutionary game theory for physical and biological scientists. II. Population dynamics equations can be associated with interpretations

    PubMed Central

    Liao, David; Tlsty, Thea D.

    2014-01-01

    The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely ‘empirical’ equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752

  6. Generation and characterization of biological aerosols for laser measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system hasmore » been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.« less

  7. Aerospace Medicine and Biology: A continuing bibliography, supplement 216

    NASA Technical Reports Server (NTRS)

    1981-01-01

    One hundred twenty reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1981 are listed. Topics include: sanitary problems; pharmacology; toxicology; safety and survival; life support systems; exobiology; and personnel factors.

  8. Safety of High Speed Guided Ground Transportation Systems : Review of Existing EMF Guidelines, Standards and Regulations

    DOT National Transportation Integrated Search

    1993-08-01

    To assess the state of knowledge about anticipated electric and magnetic field (EMF) exposures from electrical transportation systems, including electrically powered rail and magnetically levitated (maglev), research concerning biological effects of ...

  9. Priorities and developments of sensors, samplers and methods for key marine biological observations.

    NASA Astrophysics Data System (ADS)

    Simmons, Samantha; Chavez, Francisco; Pearlman, Jay

    2016-04-01

    Over the last two decades or more, physical oceanography has seen a significant growth in in-situ sensors and platforms including fixed point and cable observatories, Argo floats, gliders and AUVs to supplement satellites for creating a 3-D view of the time-varying global ocean temperature and salinity structures. There are important developments recently for biogeochemists for monitoring nitrate, chemical contaminants, oxygen and pH that can now be added to these autonomous systems. Biologists are still lagging. Given the importance of biology to ocean health and the future earth, and the present reliance on humans and ships for observing species and abundance, it is paramount that new biological sensor systems be developed. Some promising sensor systems based on, but not limited to acoustic, chemical, genomic or imaging techniques, can sense from microbes to whales, are on the horizon. These techniques can be applied in situ with either real time or recorded data and can be captured and returned to the laboratory using the autonomous systems. The number of samples is limiting, requiring adaptive and smart systems. Two steps are envisioned to meeting the challenges. The first is to identify the priority biological variables to focus observation requirements and planning. The second is to address new sensors that can fill the gaps in current capabilities for biological observations. This abstract will review recent efforts to identify core biological variables for the US Integrated Ocean Observing System and address new sensors and innovations for observing these variables, particularly focused on availability and maturity of sensors.

  10. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    PubMed Central

    2012-01-01

    Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Summary Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine. PMID:23088629

  11. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system.

    PubMed

    Bell, Iris R; Koithan, Mary

    2012-10-22

    This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create "top-down" nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism's allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine.

  12. A cumulative index to a continuing bibliography on aerospace medicine and biology, January 1972

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Each entry consists of a standard citation accompanied by its abstract.

  13. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  14. Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)

    2004-01-01

    These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.

  15. The potential role of aerobic biological waste treatment in regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Shuler, M. L.; Nafis, D.; Sze, E.

    1981-01-01

    The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.

  16. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    PubMed

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. USSR Space Life Sciences Digest, issue 3

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  18. The Biology of the Glutamatergic System and Potential Role in Migraine

    PubMed Central

    Gasparini, C. F.; Griffiths, L. R.

    2013-01-01

    Migraine is a common genetically linked neurovascular disorder. Approximately ∼12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ∼3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people’s health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment. PMID:23675283

  19. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements.

    PubMed

    Sivaprakasam, Vasanthi; Lin, Horn-Bond; Huston, Alan L; Eversole, Jay D

    2011-03-28

    A two-wavelength laser-induced fluorescence (LIF) instrument has been developed and used to characterize individual biological aerosol particles, including biological warfare (BW) agent surrogates. Fluorescence in discrete spectral bands from widely different species, and also from similar species under different growth conditions were measured and compared. The two-wavelength excitation approach was found to increase discrimination among several biological materials, and especially with respect to diesel exhaust particles, a common interferent for LIF BW detection systems. The spectral characteristics of a variety of biological materials and ambient air components have been studied as a function of aerosol particle size and incident fluence.

  20. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.

    PubMed

    Kildegaard, Helene Faustrup; Baycin-Hizal, Deniz; Lewis, Nathan E; Betenbaugh, Michael J

    2013-12-01

    Chinese hamster ovary (CHO) cells are the primary factories for biopharmaceuticals because of their capacity to correctly fold and post-translationally modify recombinant proteins compatible with humans. New opportunities are arising to enhance these cell factories, especially since the CHO-K1 cell line was recently sequenced. Now, the CHO systems biology era is underway. Critical 'omics data sets, including proteomics, transcriptomics, metabolomics, fluxomics, and glycomics, are emerging, allowing the elucidation of the molecular basis of CHO cell physiology. The incorporation of these data sets into mathematical models that describe CHO phenotypes will provide crucial biotechnology insights. As 'omics technologies and computational systems biology mature, genome-scale approaches will lead to major innovations in cell line development and metabolic engineering, thereby improving protein production and bioprocessing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. USSR Space Life Sciences Digest, issue 6

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  2. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration.

    PubMed

    Sauro, Herbert M; Hucka, Michael; Finney, Andrew; Wellock, Cameron; Bolouri, Hamid; Doyle, John; Kitano, Hiroaki

    2003-01-01

    Researchers in quantitative systems biology make use of a large number of different software packages for modelling, analysis, visualization, and general data manipulation. In this paper, we describe the Systems Biology Workbench (SBW), a software framework that allows heterogeneous application components--written in diverse programming languages and running on different platforms--to communicate and use each others' capabilities via a fast binary encoded-message system. Our goal was to create a simple, high performance, opensource software infrastructure which is easy to implement and understand. SBW enables applications (potentially running on separate, distributed computers) to communicate via a simple network protocol. The interfaces to the system are encapsulated in client-side libraries that we provide for different programming languages. We describe in this paper the SBW architecture, a selection of current modules, including Jarnac, JDesigner, and SBWMeta-tool, and the close integration of SBW into BioSPICE, which enables both frameworks to share tools and compliment and strengthen each others capabilities.

  3. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.

    PubMed

    Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J

    2017-07-01

    Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.

  4. Biological Life Support Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP2 includes short reports on: (1) Crew Regenerative Life Support in Long Duration Space Missions; (2) Bioconversion Systems for Food and Water on Long Term Space Missions; (3) Novel Laboratory Approaches to Multi-purpose Aquatic Biogenerative Closed-Loop Food Production Systems; and (4) Artificial Neural Network Derived Plant Growth Models.

  5. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.

  6. Dupuytren's: a systems biology disease

    PubMed Central

    2011-01-01

    Dupuytren's disease (DD) is an ill-defined fibroproliferative disorder of the palm of the hands leading to digital contracture. DD commonly occurs in individuals of northern European extraction. Cellular components and processes associated with DD pathogenesis include altered gene and protein expression of cytokines, growth factors, adhesion molecules, and extracellular matrix components. Histology has shown increased but varying levels of particular types of collagen, myofibroblasts and myoglobin proteins in DD tissue. Free radicals and localised ischaemia have been suggested to trigger the proliferation of DD tissue. Although the existing available biological information on DD may contain potentially valuable (though largely uninterpreted) information, the precise aetiology of DD remains unknown. Systems biology combines mechanistic modelling with quantitative experimentation in studies of networks and better understanding of the interaction of multiple components in disease processes. Adopting systems biology may be the ideal approach for future research in order to improve understanding of complex diseases of multifactorial origin. In this review, we propose that DD is a disease of several networks rather than of a single gene, and show that this accounts for the experimental observations obtained to date from a variety of sources. We outline how DD may be investigated more effectively by employing a systems biology approach that considers the disease network as a whole rather than focusing on any specific single molecule. PMID:21943049

  7. Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems

    PubMed Central

    Carroll, Scott P

    2011-01-01

    Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes. PMID:25567967

  8. EDITORIAL: Physical Biology

    NASA Astrophysics Data System (ADS)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular tutorial `An introduction to cell motility for the physical scientist' by D A Fletcher and J A Theriot. Physical Biology offers a number of benefits to the author including free publication (no page or color charges), free multimedia enhancements, rapid publication and a large international readership. To ensure that Physical Biology is truly interdisciplinary and accessible to readers across a broad range of fields, the journal ultilizes a style editor. This unique service makes the journal indispensible to biologists and physicists alike. The feedback from both readers and authors on the use of style editing has been positive: `it is unusual in my experience for a journal to provide such guidance and it augurs well for Physical Biology's role in bridging the gap between the physical and biological sciences' S S Andrews, Lawrence Berkeley Laboratory, USA. You are invited to join the growing list of authors by submitting your work to this new, cutting-edge and rigorously peer-reviewed journal.

  9. A standard-enabled workflow for synthetic biology.

    PubMed

    Myers, Chris J; Beal, Jacob; Gorochowski, Thomas E; Kuwahara, Hiroyuki; Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Göksel; Nguyen, Tramy; Oberortner, Ernst; Samineni, Meher; Wipat, Anil; Zhang, Michael; Zundel, Zach

    2017-06-15

    A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Meeting report from the fourth meeting of the Computational Modeling in Biology Network (COMBINE)

    PubMed Central

    Waltemath, Dagmar; Bergmann, Frank T.; Chaouiya, Claudine; Czauderna, Tobias; Gleeson, Padraig; Goble, Carole; Golebiewski, Martin; Hucka, Michael; Juty, Nick; Krebs, Olga; Le Novère, Nicolas; Mi, Huaiyu; Moraru, Ion I.; Myers, Chris J.; Nickerson, David; Olivier, Brett G.; Rodriguez, Nicolas; Schreiber, Falk; Smith, Lucian; Zhang, Fengkai; Bonnet, Eric

    2014-01-01

    The Computational Modeling in Biology Network (COMBINE) is an initiative to coordinate the development of community standards and formats in computational systems biology and related fields. This report summarizes the topics and activities of the fourth edition of the annual COMBINE meeting, held in Paris during September 16-20 2013, and attended by a total of 96 people. This edition pioneered a first day devoted to modeling approaches in biology, which attracted a broad audience of scientists thanks to a panel of renowned speakers. During subsequent days, discussions were held on many subjects including the introduction of new features in the various COMBINE standards, new software tools that use the standards, and outreach efforts. Significant emphasis went into work on extensions of the SBML format, and also into community-building. This year’s edition once again demonstrated that the COMBINE community is thriving, and still manages to help coordinate activities between different standards in computational systems biology.

  11. Life Support System Technologies for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2007-01-01

    The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.

  12. An integrative approach to inferring biologically meaningful gene modules

    PubMed Central

    2011-01-01

    Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level. PMID:21791051

  13. Radiation-Related Treatment Effects across the Age Spectrum: Differences and Similarities or What The Old and Young Can Learn From Each Other

    PubMed Central

    Krasin, Matthew J.; Constine, Louis S.; Friedman, Debra; Marks, Lawrence B.

    2010-01-01

    Radiation related effects in children and adults limit the delivery of effective radiation doses and result in long-term morbidity affecting function and quality of life. Improvements in our understanding of the etiology and biology of these effects, including the influence of clinical variables, dosimetric factors, and the underlying biologic processes has made treatment safer and more efficacious. However, the approach to studying and understanding these effects differs between children and adults. By using the pulmonary and skeletal organ systems as examples, comparisons are made across the age spectrum for radiation related effects including pneumonitis, pulmonary fibrosis, osteonecrosis and fracture. Methods for dosimetric analysis, incorporation of imaging and biology as well a length of follow-up are compared, contrasted and discussed for both organ systems in children and adults. Better understanding of each age specific approach and how it differs may improve our ability to study late effects of radiation across the ages PMID:19959028

  14. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Qualitative modeling of normal blood coagulation and its pathological states using stochastic activity networks.

    PubMed

    Mounts, W M; Liebman, M N

    1997-07-01

    We have developed a method for representing biological pathways and simulating their behavior based on the use of stochastic activity networks (SANs). SANs, an extension of the original Petri net, have been used traditionally to model flow systems including data-communications networks and manufacturing processes. We apply the methodology to the blood coagulation cascade, a biological flow system, and present the representation method as well as results of simulation studies based on published experimental data. In addition to describing the dynamic model, we also present the results of its utilization to perform simulations of clinical states including hemophilia's A and B as well as sensitivity analysis of individual factors and their impact on thrombin production.

  16. USSR space life sciences digest, issue 27

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 30 journal papers or book chapters published in Russian and of 2 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, botany, cardiovascular and respiratory systems, endocrinology, enzymology, exobiology, habitability and environmental effects, hematology, immunology, metabolism, musculoskeletal system, neurophysiology, radiobiology, and space medicine. A Soviet book review of a British handbook of aviation medicine and a description of the work of the division on aviation and space medicine of the Moscow Physiological Society are also included.

  17. Functionalized carbon nanotubes for potential medicinal applications.

    PubMed

    Zhang, Yi; Bai, Yuhong; Yan, Bing

    2010-06-01

    Functionalized carbon nanotubes display unique properties that enable a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. High aspect ratio, unique optical property and the likeness as small molecule make carbon nanotubes an unusual allotrope of element carbon. After functionalization, carbon nanotubes display potentials for a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. (c) 2010 Elsevier Ltd. All rights reserved.

  18. New horizons in Biophysics

    PubMed Central

    2011-01-01

    This editorial celebrates the re-launch of PMC Biophysics previously published by PhysMath Central, in its new format as BMC Biophysics published by BioMed Central with an expanded scope and Editorial Board. BMC Biophysics will fill its own niche in the BMC series alongside complementary companion journals including BMC Bioinformatics, BMC Medical Physics, BMC Structural Biology and BMC Systems Biology. PMID:21595996

  19. 1998 Army Modernization Plan

    DTIC Science & Technology

    1998-01-01

    Biological (CB) Protective Duty Uniform (STO) • Biometrics (SRO) • Nanoscience (SRO) • Millimeter Wave Material and Dissemination Technology... Biometrics and Nanoscience SROs will enable the development of advanced NBC detection and characterization systems, including the exploitation of biologically...Requirements Trailers • Procure HEMAT Trailers Figure K-23 K-19 //;<?. U.S. Army 1997Modernization Plan This final fleet assessment, made against the

  20. Planetary exploration in the time of astrobiology: Protecting against biological contamination

    PubMed Central

    Rummel, John D.

    2001-01-01

    These are intriguing times in the exploration of other solar-system bodies. Continuing discoveries about life on Earth and the return of data suggesting the presence of liquid water environments on or under the surfaces of other planets and moons have combined to suggest the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds. Current plans for the exploration of the solar system include constraints intended to prevent biological contamination from being spread by solar-system exploration missions. PMID:11226203

  1. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  2. Networking Omic Data to Envisage Systems Biological Regulation.

    PubMed

    Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae

    To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.

  3. Genome-scale biological models for industrial microbial systems.

    PubMed

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  4. Biological Stress Systems, Adverse Life Events, and the Improvement of Chronic Multisite Musculoskeletal Pain Across a 6-Year Follow-Up.

    PubMed

    Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; de Geus, Eco J C N; Dekker, Joost; Penninx, Brenda W J H

    2017-02-01

    Dysfunction of biological stress systems and adverse life events, independently and in interaction, have been hypothesized to predict chronic pain persistence. Conversely, these factors may hamper the improvement of chronic pain. Longitudinal evidence is currently lacking. We examined whether: 1) function of biological stress systems, 2) adverse life events, and 3) their combination predict the improvement of chronic multisite musculoskeletal pain. Subjects of the Netherlands Study of Depression and Anxiety (NESDA) with chronic multisite musculoskeletal pain at baseline (N = 665) were followed-up 2, 4, and 6 years later. The Chronic Pain Grade Questionnaire was used to determine improvement (not meeting the criteria) of chronic multisite musculoskeletal pain at follow-up. Baseline assessment of biological stress systems included function of hypothalamic-pituitary-adrenal axis (1-hour cortisol awakening response, evening level, and post dexamethasone level), the immune system (basal and lipopolysaccharide-stimulated inflammatory markers), the autonomic nervous system (heart rate, pre-ejection period, SD of the normal-to-normal interval, and respiratory sinus arrhythmia). The number of adverse life events were assessed at baseline and 2-year follow-up using the List of Threatening Events Questionnaire. We showed that hypothalamic-pituitary-adrenal axis, immune system, and autonomic nervous system functioning and adverse life events were not associated with the improvement of chronic multisite musculoskeletal pain, either as a main effect or in interaction. This longitudinal study could not confirm that biological stress system dysfunction and adverse life events affect the course of chronic multisite musculoskeletal pain. Biological stress systems and adverse life events are not associated with the improvement of chronic multisite musculoskeletal pain over 6 years of follow-up. Other determinants should thus be considered in future research to identify in which persons pain symptoms will improve. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. Nanoparticle interface to biology: applications in probing and modulating biological processes.

    PubMed

    Kah, James Chen Yong; Yeo, Eugenia Li Ling; Koh, Wee Ling; Poinard, Barbara Elodie Ariane; Neo, Dawn Jing Hui

    2013-01-01

    Nanomaterials can be considered as "pseudo" subcellular entities that are similar to endogenous biomolecules because of their size and ability to interact with other biomolecules. The interaction between nanoparticles and biomolecules gives rise to the nano-bio interface between a nanoparticle and its biological environment. This is often defined in terms of the biomolecules that are present on the surface of the nanoparticles. The nano-bio interface alters the surface characteristics and is what the biological system sees and interacts with. The nanoparticle can thus be viewed as a "scaffold" to which molecules are attached. Intelligent design of this nano-bio interface is therefore crucial to the functionality of nanoscale systems in biology. In this review, we discuss the most common nano-bio interfaces formed from molecules including DNA, polymers, proteins, and antibodies, and discuss their applications in probing and modulating biological processes. We focus our discussion on the nano-bio interface formed on gold nanoparticles as our nanoparticle "scaffold" of interest in part because of our research interest as well as their unique physicochemical properties. While not exhaustive, this review provides a good overview of the latest advances in the use of gold nanomaterial interface to probe and modulate biological processes.

  6. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  7. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.

    PubMed

    Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2018-01-01

    One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Biological Moleculars: Have Most of Our Problems Already Been Solved?

    NASA Technical Reports Server (NTRS)

    Downey, James P.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Evolution has resulted in biological machinery that engineers have great reason to envy and at present can only poorly mimic. This is not just a curiosity as biological systems perform many functions that are desired industrial processes. Examples include photosynthesis, chemosynthesis, energy storage, low temperature chemical conversion, reproducible manufacture of chemical compounds, etc. The bases of biological machinery are the proteins and nucleic acids that comprise living organisms. Each molecule functions as a part of a biological machine. In many cases the molecule can be properly regarded as a stand alone machine of its own. Concepts and methods for harnessing the power of biological molecules exist but are often overlooked in the industrial world. Some are old and appear crude but are quite effective, e.g. the fermentation of grains and fruits. Currently, there is a revolution in progress regarding the harnessing biological processes. These include techniques such as genetic manipulation via polymerase chain reaction, forced evolution also known as evolution in a test tube, determination of molecular structure, and combinatorial chemistry. The following is a brief discussion on how these processes are performed and how they may relate to industrial and aerospace processes.

  9. Bacteria as computers making computers

    PubMed Central

    Danchin, Antoine

    2009-01-01

    Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments. PMID:19016882

  10. Bacteria as computers making computers.

    PubMed

    Danchin, Antoine

    2009-01-01

    Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments.

  11. TUTORIAL: Validating biorobotic models

    NASA Astrophysics Data System (ADS)

    Webb, Barbara

    2006-09-01

    Some issues in neuroscience can be addressed by building robot models of biological sensorimotor systems. What we can conclude from building models or simulations, however, is determined by a number of factors in addition to the central hypothesis we intend to test. These include the way in which the hypothesis is represented and implemented in simulation, how the simulation output is interpreted, how it is compared to the behaviour of the biological system, and the conditions under which it is tested. These issues will be illustrated by discussing a series of robot models of cricket phonotaxis behaviour. .

  12. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  13. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  14. Functional Amyloids in Reproduction.

    PubMed

    Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A

    2017-06-29

    Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.

  15. The Hydra model - a model for what?

    PubMed

    Gierer, Alfred

    2012-01-01

    The introductory personal remarks refer to my motivations for choosing research projects, and for moving from physics to molecular biology and then to development, with Hydra as a model system. Historically, Trembley's discovery of Hydra regeneration in 1744 was the beginning of developmental biology as we understand it, with passionate debates about preformation versus de novo generation, mechanisms versus organisms. In fact, seemingly conflicting bottom-up and top-down concepts are both required in combination to understand development. In modern terms, this means analysing the molecules involved, as well as searching for physical principles underlying development within systems of molecules, cells and tissues. During the last decade, molecular biology has provided surprising and impressive evidence that the same types of molecules and molecular systems are involved in pattern formation in a wide range of organisms, including coelenterates like Hydra, and thus appear to have been "invented" early in evolution. Likewise, the features of certain systems, especially those of developmental regulation, are found in many different organisms. This includes the generation of spatial structures by the interplay of self-enhancing activation and "lateral" inhibitory effects of wider range, which is a main topic of my essay. Hydra regeneration is a particularly clear model for the formation of defined patterns within initially near-uniform tissues. In conclusion, this essay emphasizes the analysis of development in terms of physical laws, including the application of mathematics, and insists that Hydra was, and will continue to be, a rewarding model for understanding general features of embryogenesis and regeneration.

  16. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  17. Proceedings of the workshop "Development of biological decision support systems for resource managers": Denver, Colorado, October 27-29, 1998

    USGS Publications Warehouse

    Getter, James; D'Erchia, Terry D.; Root, Ralph; Getter, James; D'Erchia, Terry D.; Root, Ralph

    1999-01-01

    The format for this 3-day workshop (27-29 October 1998) included plenary presentations by USGS Biological Resources Division (BRD) and U.S. Fish and Wildlife Service per onnel who u e and develop decision support systems (DSS); breakout ses ions addressing DSS technical information aspect , outreach/ customer requirements, and future perspectives; and a DSS Steering Committee meeting to evaluate work hop goals and to provide guidance for fu ture efforts. Steering committee action item developed from workshop inputs were to ( I) develop a "DSS framework" document for u e in biological research. (2) develop a "proof of concept" DSS based upon the framework document, and (3) integrate decision support ystem into BRD program elements.

  18. Modeling multisystem biological risk in young adults: The Coronary Artery Risk Development in Young Adults Study.

    PubMed

    Seeman, Teresa; Gruenewald, Tara; Karlamangla, Arun; Sidney, Steve; Liu, Kiang; McEwen, Bruce; Schwartz, Joseph

    2010-01-01

    Although much prior research has focused on identifying the roles of major regulatory systems in health risks, the concept of allostatic load (AL) focuses on the importance of a more multisystems view of health risks. How best to operationalize allostatic load, however, remains the subject of some debate. We sought to test a hypothesized metafactor model of allostatic load composed of a number of biological system factors, and to investigate model invariance across sex and ethnicity. Biological data from 782 men and women, aged 32-47, from the Oakland, CA and Chicago, IL sites of the Coronary Artery Risk Development in Young Adults Study (CARDIA) were collected as part of the Year 15exam in 2000. These include measures of blood pressure, metabolic parameters (glucose, insulin, lipid profiles, and waist circumference), markers of inflammation (interleukin-6, C-reactive protein, and fibrinogen), heart rate variability, sympathetic nervous system activity (12-hr urinary norepinephrine and epinephrine) and hypothalamic-pituitary-adrenal axis activity (diurnal salivary free cortisol). A "metafactor" model of AL as an aggregate measure of six underlying latent biological subfactors was found to fit the data, with the metafactor structure capturing 84% of variance of all pairwise associations among biological subsystems. There was little evidence of model variance across sex and/or ethnicity. These analyses extend work operationalizing AL as a multisystems index of biological dysregulation, providing initial support for a model of AL as a metaconstruct of inter-relationships among multiple biological regulatory systems, that varies little across sex or ethnicity.

  19. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    NASA Astrophysics Data System (ADS)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  20. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  1. Food metabolomics: from farm to human.

    PubMed

    Kim, Sooah; Kim, Jungyeon; Yun, Eun Ju; Kim, Kyoung Heon

    2016-02-01

    Metabolomics, one of the latest components in the suite of systems biology, has been used to understand the metabolism and physiology of living systems, including microorganisms, plants, animals and humans. Food metabolomics can be defined as the application of metabolomics in food systems, including food resources, food processing and diet for humans. The study of food metabolomics has increased gradually in the recent years, because food systems are directly related to nutrition and human health. This review describes the recent trends and applications of metabolomics to food systems, from farm to human, including food resource production, industrial food processing and food intake by humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. POTENTIAL OF BIOLOGICAL MONITORING SYSTEMS TO DETECT TOXICITY IN A FINISHED MATRIX

    EPA Science Inventory

    Distribution systems of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as drinking water. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic contamination events ...

  3. Challenges and Rewards on the Road to Translational Systems Biology in Acute Illness: Four Case Reports from Interdisciplinary Teams

    PubMed Central

    An, Gary; Hunt, C. Anthony; Clermont, Gilles; Neugebauer, Edmund; Vodovotz, Yoram

    2007-01-01

    Introduction Translational systems biology approaches can be distinguished from mainstream systems biology in that their goal is to drive novel therapies and streamline clinical trials in critical illness. One systems biology approach, dynamic mathematical modeling (DMM), is increasingly used in dealing with the complexity of the inflammatory response and organ dysfunction. The use of DMM often requires a broadening of research methods and a multidisciplinary team approach that includes bioscientists, mathematicians, engineers, and computer scientists. However, the development of these groups must overcome domain-specific barriers to communication and understanding. Methods We present four case studies of successful translational, interdisciplinary systems biology efforts, which differ by organizational level from an individual to an entire research community. Results Case 1 is a single investigator involved in DMM of the acute inflammatory response at Cook County Hospital, in which extensive translational progress was made using agent-based models of inflammation and organ damage. Case 2 is a community-level effort from the University of Witten-Herdecke in Cologne, whose efforts have led to the formation of the Society for Complexity in Acute Illness. Case 3 is an institution-based group, the Biosystems Group at the University of California, San Francisco, whose work has included a focus on a common lexicon for DMM. Case 4 is an institution-based, trans-disciplinary research group (the Center for Inflammation and Regenerative Modeling at the University of Pittsburgh, whose modeling work has led to internal education efforts, grant support, and commercialization. Conclusion A transdisciplinary approach, which involves team interaction in an iterative fashion to address ambiguity and is supported by educational initiatives, is likely to be necessary for DMM in acute illness. Community-wide organizations such as the Society of Complexity in Acute Illness (SCAI) must strive to facilitate the implementation of DMM in sepsis/trauma research into the research community as a whole. PMID:17548029

  4. Aerospace Medicine and Biology. A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.

  5. Aerospace medicine and biology. A continuing bibliography with indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-03-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.

  6. Back to the biology in systems biology: what can we learn from biomolecular networks?

    PubMed

    Huang, Sui

    2004-02-01

    Genome-scale molecular networks, including protein interaction and gene regulatory networks, have taken centre stage in the investigation of the burgeoning disciplines of systems biology and biocomplexity. What do networks tell us? Some see in networks simply the comprehensive, detailed description of all cellular pathways, others seek in networks simple, higher-order qualities that emerge from the collective action of the individual pathways. This paper discusses networks from an encompassing category of thinking that will hopefully help readers to bridge the gap between these polarised viewpoints. Systems biology so far has emphasised the characterisation of large pathway maps. Now one has to ask: where is the actual biology in 'systems biology'? As structures midway between genome and phenome, and by serving as an 'extended genotype' or an 'elementary phenotype', molecular networks open a new window to the study of evolution and gene function in complex living systems. For the study of evolution, features in network topology offer a novel starting point for addressing the old debate on the relative contributions of natural selection versus intrinsic constraints to a particular trait. To study the function of genes, it is necessary not only to see them in the context of gene networks, but also to reach beyond describing network topology and to embrace the global dynamics of networks that will reveal higher-order, collective behaviour of the interacting genes. This will pave the way to understanding how the complexity of genome-wide molecular networks collapses to produce a robust whole-cell behaviour that manifests as tightly-regulated switching between distinct cell fates - the basis for multicellular life.

  7. Instrument Would Detect and Collect Biological Aerosols

    NASA Technical Reports Server (NTRS)

    Savoy, Steve; Mayo, Mike

    2006-01-01

    A proposed compact, portable instrument would sample micron-sized airborne particles, would discriminate between biological ones (e.g., bacteria) and nonbiological ones (e.g., dust particles), and would collect the detected biological particles for further analysis. The instrument is intended to satisfy a growing need for means of rapid, inexpensive collection of bioaerosols in a variety of indoor and outdoor settings. Purposes that could be served by such collection include detecting airborne pathogens inside buildings and their ventilation systems, measuring concentrations of airborne biological contaminants around municipal waste-processing facilities, monitoring airborne effluents from suspected biowarfare facilities, and warning of the presence of airborne biowarfare agents

  8. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 492

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  9. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering aremore » now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."« less

  10. Cigarette smoking and the pathogenesis of systemic lupus erythematosus.

    PubMed

    Speyer, Cameron B; Costenbader, Karen H

    2018-06-01

    Systemic lupus erythematosus (SLE) is a multi-system inflammatory autoimmune disease of incompletely understood etiology. It is thought that environmental exposures 'trigger' or accelerate the disease in genetically-predisposed individuals. Areas covered: Substantial epidemiological evidence exists to support the association between cigarette smoking and the risk of incident SLE. Recent evidence points to current smoking as the specific risk factor, with decreasing risk 5 years after smoking cessation, and the greatest risk for disease characterized by the presence of SLE-specific autoantibodies. Research has begun to search for possible explanations for the temporal nature of the relationship between current smoking and autoantibody positive-SLE. Here we review potential biologic mechanisms linking smoking and SLE risk, including effects upon T and B cells, inflammatory cytokines, oxidative stress, and the formation of short-lived DNA adducts. Expert commentary: The directions for future research in this field include studies of gene-environment interactions, epigenetics, metabolomics and putative biologic mechanisms.

  11. Stress psychobiology in the context of addiction medicine: from drugs of abuse to behavioral addictions.

    PubMed

    Lemieux, Andrine; al'Absi, Mustafa

    2016-01-01

    In this chapter, we briefly review the basic biology of psychological stress and the stress response. We propose that psychological stress and the neurobiology of the stress response play in substance use initiation, maintenance, and relapse. The proposed mechanisms for this include, on the one hand, the complex interactions between biological mediators of the stress response and the dopaminergic reward system and, on the other hand, mediators of the stress response and other systems crucial in moderating key addiction-related behaviors such as endogenous opioids, the sympathetic-adrenal-medullary system, and endocannabinoids. Exciting new avenues of study including genomics, sex as a moderator of the stress response, and behavioral addictions (gambling, hypersexuality, dysfunctional internet use, and food as an addictive substance) are also briefly presented within the context of stress as a moderator of the addictive process. © 2016 Elsevier B.V. All rights reserved.

  12. Preparation of Murine Submandibular Salivary Gland for Upright Intravital Microscopy.

    PubMed

    Ficht, Xenia; Thelen, Flavian; Stolp, Bettina; Stein, Jens V

    2018-05-07

    The submandibular salivary gland (SMG) is one of the three major salivary glands, and is of interest for many different fields of biological research, including cell biology, oncology, dentistry, and immunology. The SMG is an exocrine gland comprised of secretory epithelial cells, myofibroblasts, endothelial cells, nerves, and extracellular matrix. Dynamic cellular processes in the rat and mouse SMG have previously been imaged, mostly using inverted multi-photon microscope systems. Here, we describe a straightforward protocol for the surgical preparation and stabilization of the murine SMG in anesthetized mice for in vivo imaging with upright multi-photon microscope systems. We present representative intravital image sets of endogenous and adoptively transferred fluorescent cells, including the labeling of blood vessels or salivary ducts and second harmonic generation to visualize fibrillar collagen. In sum, our protocol allows for surgical preparation of mouse salivary glands in upright microscopy systems, which are commonly used for intravital imaging in the field of immunology.

  13. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data.

    PubMed

    Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O

    2015-08-25

    Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.

  14. International neuroblastoma staging system stage 1 neuroblastoma: a prospective study and literature review.

    PubMed

    Kushner, B H; Cheung, N K; LaQuaglia, M P; Ambros, P F; Ambros, I M; Bonilla, M A; Ladanyi, M; Gerald, W L

    1996-07-01

    To gain insight into the management of non-metastatic neuroblastoma by examining clinical and biologic features of International Neuroblastoma Staging System (INSS) stage 1 tumors. Patients were staged by both the INSS and the Evans staging system and were evaluated for biologic prognostic factors. Patients with INSS stage 1 received no cytotoxic therapy. The literature was reviewed for clinical and biologic data about INSS stage 1. We evaluated 10 consecutive patients (median age, 17.5 months) with INSS stage 1; all remain disease-free (median follow-up duration, > 5 years). Tumors were in the abdomen (n = 6), chest (n = 3), or pelvis (n = 1). Neuroblastoma involved margins of resection in six tumors. Poor-prognostic biologic findings included tumor-cell diploidy (n = 2) and unfavorable Shimada histopathology (n = 2). Two patients were to receive chemotherapy for, respectively, a tumor deemed unresectable and a tumor classified as Evans stage III; second opinions resulted in surgical management alone in each case. Published reports confirm that some INSS stage 1 patients (1) are at risk for overtreatment, and (2) have poor-prognostic biologic findings yet do well. Surgery alone suffices for INSS stage 1 neuroblastoma, even if biologic prognostic factors are unfavorable, microscopic disease remains after surgery, and tumor size is suggestive of "advanced-stage" status in other staging systems. Attempts to resect regionally confined neuroblastomas should take precedence over immediate use of cytotoxic therapy; otherwise, some patients may receive chemotherapy or radiotherapy unnecessarily.

  15. Bone healing in 2016

    PubMed Central

    Buza, John A.; Einhorn, Thomas

    2016-01-01

    Summary Delayed fracture healing and nonunion occurs in up to 5–10% of all fractures, and can present a challenging clinical scenario for the treating physician. Methods for the enhancement of skeletal repair may benefit patients that are at risk of, or have experienced, delayed healing or nonunion. These methods can be categorized into either physical stimulation therapies or biological therapies. Physical stimulation therapies include electrical stimulation, low-intensity pulsed ultrasonography, or extracorporeal shock wave therapy. Biological therapies can be further classified into local or systemic therapy based on the method of delivery. Local methods include autologous bone marrow, autologous bone graft, fibroblast growth factor-2, platelet-rich plasma, platelet-derived growth factor, and bone morphogenetic proteins. Systemic therapies include parathyroid hormone and bisphosphonates. This article reviews the current applications and supporting evidence for the use of these therapies in the enhancement of fracture healing. PMID:27920804

  16. NASA's plans for life sciences research facilities on a Space Station

    NASA Technical Reports Server (NTRS)

    Arno, R.; Heinrich, M.; Mascy, A.

    1984-01-01

    A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

  17. The Frontlines of Medicine Project: a proposal for the standardized communication of emergency department data for public health uses including syndromic surveillance for biological and chemical terrorism.

    PubMed

    Barthell, Edward N; Cordell, William H; Moorhead, John C; Handler, Jonathan; Feied, Craig; Smith, Mark S; Cochrane, Dennis G; Felton, Christopher W; Collins, Michael A

    2002-04-01

    The Frontlines of Medicine Project is a collaborative effort of emergency medicine (including emergency medical services and clinical toxicology), public health, emergency government, law enforcement, and informatics. This collaboration proposes to develop a nonproprietary, "open systems" approach for reporting emergency department patient data. The common element is a standard approach to sending messages from individual EDs to regional oversight entities that could then analyze the data received. ED encounter data could be used for various public health initiatives, including syndromic surveillance for chemical and biological terrorism. The interlinking of these regional systems could also permit public health surveillance at a national level based on ED patient encounter data. Advancements in the Internet and Web-based technologies could allow the deployment of these standardized tools in a rapid time frame.

  18. Division of Biological and Medical Research annual technical report 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1983-05-01

    This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the geneticmore » effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.« less

  19. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Sarah R.; Rodemeyer, Michael; Garfinkel, Michele S.

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods formore » genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic engineering techniques will leave many engineered plants without any pre-market regulatory review. Second, the number and diversity of engineered microbes for commercial use will increase in the near future, challenging EPA’s resources, expertise, and perhaps authority to regulate them. For each of these challenges, the report sets out a series of options, including an analysis of the advantages and disadvantages of each option from a variety of perspectives, for policy makers to consider. Policy responses will depend on the trade-offs chosen among competing considerations. This report, funded by the Department of Energy with additional funds from the Alfred P. Sloan Foundation, is the result of a two-year process that included interviews, commissioned background papers, discussions, and two workshops that sought input from a wide range of experts, including U.S. federal agency regulators, legal and science policy experts, representatives from the biotechnology indus¬try, and non-governmental organiza¬tions. This cross-section of views informed this report, but the conclusions are solely those of the authors. An Executive Summary, full Report, and background papers are available at: http://www.jcvi.org/cms/research/projects/synthetic-biology-and-the-us-biotechnology-regulatory-system/overview/« less

  20. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes NASA SP-7O11 lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

Top