Science.gov

Sample records for biological control agent

  1. Biological control agents elevate hantavirus by subsidizing deer mouse populations.

    PubMed

    Pearson, Dean E; Callaway, Ragan M

    2006-04-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted knapweed (Centaurea maculosa) control, to indirectly elevate Sin Nombre hantavirus by providing food subsidies to populations of deer mice (Peromyscus maniculatus), the primary reservoir for the virus. We show that seropositive deer mice (mice testing positive for hantavirus) were over three times more abundant in the presence of the biocontrol food subsidy. Elevating densities of seropositive mice may increase risk of hantavirus infection in humans and significantly alter hantavirus ecology. Host specificity alone does not ensure safe biological control. To minimize indirect risks to non-target species, biological control agents must suppress pest populations enough to reduce their own numbers.

  2. Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains

    PubMed Central

    Tian, Ye; Tan, Yanglan; Liu, Na; Liao, Yucai; Sun, Changpo; Wang, Shuangxia; Wu, Aibo

    2016-01-01

    Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety. PMID:27064760

  3. Biological control agents: from field to market, problems, and challenges.

    PubMed

    Velivelli, Siva L S; De Vos, Paul; Kromann, Peter; Declerck, Stephane; Prestwich, Barbara D

    2014-10-01

    Global food security is vulnerable due to massive growth of the human population, changes in global climate, the emergence of novel/more virulent pathogens, and demands from increasingly discerning consumers for chemical-free, sustainably produced food products. Bacterium-based biological control agents (BCAs), if used as part of an integrated management system, may satisfy the above demands. We focus on the advantages, limitations, problems, and challenges involved in such strategies.

  4. Hybrid vigor in the biological control agent, Longitarsus jacobaeae.

    PubMed

    Szűcs, Marianna; Eigenbrode, Sanford D; Schwarzländer, Mark; Schaffner, Urs

    2012-07-01

    Hybridization is an important evolutionary mechanism that can increase the fitness and adaptive potential of populations. A growing body of evidence supports its importance as a key factor contributing to rapid evolution in invasive species, but the effects of hybridization have rarely been assessed in intentionally introduced biological control agents. We investigated hybrids between a Swiss and an Italian population of the beetle, Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, by reciprocally crossing individuals in the laboratory. Phenological traits of F1 and F2 hybrid lineages showed intermediate values relative to their parental populations, with some maternal influence. Fitness of the F2 generation, measured as lifetime fecundity, was higher than that of the Italian parent in one of the lineages and higher than that of either parent in the other hybrid lineage. The increased fecundity of hybrids may benefit tansy ragwort biological control by increasing the establishment success and facilitating a more rapid population buildup in the early generations. Even though the long-term consequences of hybridization in this and other systems are hard to predict, intentional hybridization may be a useful tool in biological control strategies as it would promote similar microevolutionary processes operating in numerous targeted invasive species.

  5. Hybrid vigor in the biological control agent, Longitarsus jacobaeae

    PubMed Central

    Szűcs, Marianna; Eigenbrode, Sanford D; Schwarzländer, Mark; Schaffner, Urs

    2012-01-01

    Hybridization is an important evolutionary mechanism that can increase the fitness and adaptive potential of populations. A growing body of evidence supports its importance as a key factor contributing to rapid evolution in invasive species, but the effects of hybridization have rarely been assessed in intentionally introduced biological control agents. We investigated hybrids between a Swiss and an Italian population of the beetle, Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, by reciprocally crossing individuals in the laboratory. Phenological traits of F1 and F2 hybrid lineages showed intermediate values relative to their parental populations, with some maternal influence. Fitness of the F2 generation, measured as lifetime fecundity, was higher than that of the Italian parent in one of the lineages and higher than that of either parent in the other hybrid lineage. The increased fecundity of hybrids may benefit tansy ragwort biological control by increasing the establishment success and facilitating a more rapid population buildup in the early generations. Even though the long-term consequences of hybridization in this and other systems are hard to predict, intentional hybridization may be a useful tool in biological control strategies as it would promote similar microevolutionary processes operating in numerous targeted invasive species. PMID:22949924

  6. Nomuraea rileyi as biological control agents of Rhipicephalus microplus tick.

    PubMed

    Perinotto, W M S; Terra, A L M; Angelo, I C; Fernandes, É K K; Golo, P S; Camargo, M G; Bittencourt, V R E P

    2012-10-01

    Nomuraea rileyi, a fungus pathogenic to insects, has been widely used for biological control of agricultural pests in Brazil. This study investigates the effects of N. rileyi, isolates Nr 138, Nr 151, and Nr 177, to eggs, larvae, and engorged females of Rhipicephalus microplus tick. Specimens were immersed in 1 ml of conidial suspension for 3 min, whereas the control group was immersed in 0.01% Tween 80 water solution. The isolate Nr 138 controlled 67.37% of ticks when the highest conidial concentration was used, 10(8) conidia ml(-1). The isolate Nr 177 significantly reduced the percentage of hatch of larvae from eggs treated with 10(8) conidia ml(-1). Conversely, the isolate Nr 151 was not virulent to eggs, larvae, or adults. Variability in virulence was observed among the N. rileyi isolates investigated in the current study-Nr 138 was more virulent to engorged females, while Nr 177 was more virulent to unfed larvae. Although N. rileyi proved to be virulent to several stages of R. microplus, the results obtained in this study indicate that N. rileyi does not appear to be a remarkable biological control agent for R. microplus.

  7. Insect pathogens as biological control agents: Back to the future.

    PubMed

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  8. Leaf microbiota of strawberries as affected by biological control agents.

    PubMed

    Sylla, Justine; Alsanius, Beatrix W; Krüger, Erika; Reineke, Annette; Strohmeier, Stephan; Wohanka, Walter

    2013-10-01

    The increasing use of biological control agents (BCAs) against Botrytis cinerea in strawberry raises the question of whether there are any undesirable impacts of foliar applications of BCAs on nontarget microorganisms in the phyllosphere. Therefore, our objective was to investigate this issue within a field study. Strawberry plants were repeatedly sprayed with three BCAs-namely, RhizoVital 42 fl. (Bacillus amyloliquefaciens FZB42), Trianum-P (Trichoderma harzianum T22), and Naturalis (Beauveria bassiana ATCC 74040)-to suppress Botrytis cinerea infections. Microbial communities of differentially treated leaves were analyzed using plate counts and pyrosequencing and compared with the microbial community of nontreated leaves. Plate count results indicate that the applied Bacillus and Trichoderma spp. survived in the strawberry phyllosphere throughout the strawberry season. However, no significant impacts on the leaf microbiota could be detected by this culture-dependent technique. Pyrosequencing of internal transcribed spacer ribosomal RNA and 16S RNA sequences revealed a change in fungal composition and diversity at class level after the introduction of T. harzianum T22 to the phyllosphere, whereas the bacterial composition and diversity was not affected by either this Trichoderma preparation or the other two BCAs. Our results suggest that pyrosequencing represents a useful method for studying microbial interactions in the phyllosphere.

  9. High-throughput assay for optimising microbial biological control agent production and delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  10. Anti-tick biological control agents: assessment and future perspectives

    USGS Publications Warehouse

    Samish, M.; Ginsberg, H.S.; Glazer, I.; Bowman, Alan. S.; Nuttall, Patricia A.

    2008-01-01

    Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.

  11. Insect pathogens as biological control agents: back to the future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past 15 years a number of successes and setbacks have taken place regarding development and use of microbial control agents. In this Forum paper we present current information on development, use and future directions of entomopathogenic virus, bacteria, fungi and nematodes as components of i...

  12. Impact of release rates on the effectiveness of augmentative biological control agents.

    PubMed

    Crowder, David W

    2007-01-01

    To access the effect of augmentative biological control agents, 31 articles were reviewed that investigated the impact of release rates of 35 augmentative biological control agents on the control of 42 arthropod pests. In 64% of the cases, the release rate of the biological control agent did not significantly affect the density or mortality of the pest insect. Results where similar when parasitoids or predators were utilized as the natural enemy. Within any order of natural enemy, there were more cases where release rates did not affect augmentative biological control than cases where release rates were significant. There were more cases in which release rates did not affect augmentative biological control when pests were from the orders Hemiptera, Acari, or Diptera, but not with pests from the order Lepidoptera. In most cases, there was an optimal release rate that produced effective control of a pest species. This was especially true when predators were used as a biological control agent. Increasing the release rate above the optimal rate did not improve control of the pest and thus would be economically detrimental. Lower release rates were of ten optimal when biological control was used in conjunction with insecticides. In many cases, the timing and method of biological control applications were more significant factors impacting the effectiveness of biological control than the release rate. Additional factors that may limit the relative impact of release rates include natural enemy fecundity, establishment rates, prey availability, dispersal, and cannibalism.

  13. Impact of Release Rates on the Effectiveness of Augmentative Biological Control Agents

    PubMed Central

    Crowder, David W.

    2007-01-01

    To access the effect of augmentative biological control agents, 31 articles were reviewed that investigated the impact of release rates of 35 augmentative biological control agents on the control of 42 arthropod pests. In 64% of the cases, the release rate of the biological control agent did not significantly affect the density or mortality of the pest insect. Results where similar when parasitoidsor predators were utilized as the natural enemy. Within any order of natural enemy, there were more cases where release rates did not affect augmentative biological control than cases where release rates were significant. There were more cases in which release rates did not affect augmentative biological control when pests were from the orders Hemiptera, Acari, or Diptera, but not with pests from the order Lepidoptera. In most cases, there was an optimal release rate that produced effective control of a pest species. This was especially true when predators were used as a biological control agent. Increasing the release rate above the optimal rate did not improve control of the pest and thus would be economically detrimental. Lower release rates were of ten optimal when biological control was used in conjunction with insecticides. In many cases, the timing and method of biological control applications were more significant factors impacting the effectiveness of biological control than the release rate. Additional factors that may limit the relative impact of release rates include natural enemy fecundity, establishment rates, prey availability, dispersal, and cannibalism. PMID:20307240

  14. Biological warfare agents.

    PubMed

    Pohanka, Miroslav; Kuca, Kamil

    2010-01-01

    Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.

  15. Beyond efficacy: Challenges in the selection of safe bacterial biological control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The search for new biological control agents often begins with screening in vitro for activity against target pathogens, followed by greenhouse or field assays. Physiological, biochemical, and phylogenetic analyses frequently are not undertaken until much later, after considerable investment already...

  16. Indirect ecological effects in invaded landscapes: Spillover and spillback from biological control agents to native analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control remains an effective option for managing large-scale weed problems in natural areas. The predation or parasitism of biological control agents by other species present in the introduced range (biotic resistance) is well studied and is often cited as the cause for a lack of establis...

  17. Plant-mediated interactions: considerations for agent selection in weed biological control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-mediated indirect interactions among herbivores (arthropods and pathogens) are common and extensively reported in the ecological literature. However, they are not well-documented with respect to weed biological control. Such interactions between biological control agents can have net positive...

  18. Current levels of suppression of waterhyacinth in Florida by classical biological control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterhyacinth, Eichhornia crassipes, has been a global target for classical biological control efforts for decades. In Florida, herbicides are the primary tactic employed, usually without regard for the activities of the three biological control agents introduced intentionally during the 1970's, na...

  19. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents.

    PubMed

    Card, Stuart; Johnson, Linda; Teasdale, Suliana; Caradus, John

    2016-08-01

    Endophytes associate with the majority of plant species found in natural and managed ecosystems. They are regarded as extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Fossil records of endophytes date back more than 400 million years, implicating these microorganisms in host plant adaptation to habitat transitions. However, it is only recently that endophytes, and their bioactive products, have received meaningful attention from the scientific community. The benefits some endophytes can confer on their hosts include plant growth promotion and survival through the inhibition of pathogenic microorganisms and invertebrate pests, the removal of soil contaminants, improved tolerance of low fertility soils, and increased tolerance of extreme temperatures and low water availability. Endophytes are extremely diverse and can exhibit many different biological behaviours. Not all endophyte technologies have been successfully commercialised. Of interest in the development of the next generation of plant protection products is how much of this is due to the biology of the particular endophytic microorganism. In this review, we highlight selected case studies of endophytes and discuss their lifestyles and behavioural traits, and discuss how these factors contribute towards their effectiveness as biological control agents.

  20. Biology and preliminary host range assessment of two potential kudzu biological control agents.

    PubMed

    Frye, Matthew J; Hough-Goldstein, Judith; Sun, Jiang-Hua

    2007-12-01

    Two insect species from China, Gonioctena tredecimmaculata (Jacoby) (Coleoptera: Chrysomelidae) and Ornatalcides (Mesalcidodes) trifidus (Pascoe) (Coleoptera: Curculionidae), were studied in quarantine in the United States as potential biological control agents for kudzu, Pueraria montana variety lobata (Willd.) Maesen and S. Almeida. Adults of G. tredecimmaculata were ovoviviparous and reproduced throughout the summer, producing offspring that had an obligate adult diapause. In no-choice tests, adult and larval G. tredecimmaculata rejected most of the plant species tested, but consumed foliage and completed their life cycle on soybean (Glycine max L. Merr.) and on a native woodland plant, hog-peanut (Amphicarpaea bracteata L. Fernald), which are in the same subtribe as kudzu (Glycininae). Insects showed similar responses to field- and greenhouse-grown soybean and kudzu foliage, despite measurable differences in leaf traits: field-grown foliage of both plants had greater leaf toughness, higher total carbon content, higher trichome density, and lower water content than greenhouse foliage. O. trifidus adults also rejected most of the plants tested but fed on and severely damaged potted soybean and hog-peanut plants in addition to kudzu. Further tests in China are needed to determine whether these species will accept nontarget host plants under open-field conditions.

  1. Control of Dermatomycoses by Physical, Chemical and Biological Agents.

    DTIC Science & Technology

    1981-02-28

    to the radical cure of dermatomycoses and the control of ringworm infections in comiunal life is to develop effective methods that kill dermatophytic...strongly believe that neither radical cure nor the control of ringworm infections in communal life would be possible unless effective methods for killing...drups for the treatment of ringworm infections or for the sterilization of materials contaiminated with dermatophytes should take into consideration

  2. Control of Dermatomycoses by Physical, Chemical and Biological Agents.

    DTIC Science & Technology

    1978-10-31

    evidence listed below have led us to believe that the key to the radical cure of derma tomycoses and the control of ringworm infections in communal life...the control of ringworm infections in communal life would be possibl e unless effective methods for killing arthrospores are made available for...workers in the past have explored the pathogenic or Immunological roles of arthrospores In ringworm Infec- tions . We believe that If arthrospores

  3. Field Studies and Laboratory Bearing of Arzama densa Walker, A Biological Control Agent against Waterhyacinth.

    DTIC Science & Technology

    1980-12-01

    WLK.. A BIOLOGICAL CONTROL AGENT AGAINST WATERHYACINTH PART I: INTRODUCTION 1. Waterhyacinth, Eichhornia crassipes (Mart.) Solms, is a perennial... crassipes Solms) in the Nile System, Egypt," Aquatic Bot. 1:243-252. Bock, J. H. 1966. "An Ecological Study of Eichhornia crassipes with Special...biological organisms combined with other types of control methods. 2 141 REFERENCES Batanouny, K. H. and El-Fiky, A. M. 1975. "The Waterhyacinth ( Eichhornia

  4. Microsporidia Biological Control Agents and Pathogens of Beneficial Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsporidian infections of insects are generally chronic, causing subtle pathologies of reduced fecundity and shorter lifespans. The lack of acute infections that cause rapid mortality, make microsporida ill-suited as biopesticides for arthropod control. Instead, they are considered to be more use...

  5. Biology of the galling wasp, Tetramesa romana, a biological control agent of giant reed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biology of the gall-forming wasp, Tetramesa romana Walker (Hymenoptera: Eurytomidae), from southern France and Spain was studied for biological control of giant reed (Arundo donax L.), an exotic and invasive riparian weed in the U.S. Females developed eggs parthenogenetically and deposited them...

  6. Enhancement of biological control agents for use against forest insect pests and diseases through biotechnology

    NASA Technical Reports Server (NTRS)

    Slavicek, James M.

    1991-01-01

    Research and development efforts in our research group are focused on the generation of more efficacious biological control agents through the techniques of biotechnology for use against forest insect pests and diseases. Effective biological controls for the gypsy moth and for tree fungal wilt pathogens are under development. The successful use of Gypchek, a formulation of the Lymantria dispar nuclear polyhedrosis virus (LdNPV), in gypsy moth control programs has generated considerable interest in that agent. As a consequence of its specificity, LdPNV has negligible adverse ecological impacts compared to most gypsy moth control agents. However, LdNPV is not competitive with other control agents in terms of cost and efficacy. We are investigating several parameters of LdNPV replication and polyhedra production in order to enhance viral potency and efficacy thus mitigating the current disadvantages of LdNPV for gypsy moth control, and have identified LdNPV variants that will facilitate these efforts. Tree endophytic bacteria that synthesize antifungal compounds were identified and an antibiotic compound from one of these bacteria was characterized. The feasibility of developing tree endophytes as biological control agents for tree vascular fungal pathogens is being investigated.

  7. Population regulation of a classical biological control agent: larval density dependence in Neochetina eichhorniae (Coleoptera: Curculionidae), a biological control agent of water hyacinth Eichhornia crassipes.

    PubMed

    Wilson, J R U; Rees, M; Ajuonu, O

    2006-04-01

    The release of classical biological control agents has reduced the economic, environmental and social problems caused by water hyacinth, Eichhornia crassipes; however, additional control measures are needed in some locations. Water hyacinth plants were treated with different densities of eggs of the weevil Neochetina eichhorniae Warner, one of the main control agents, under different nutrient regimes in a controlled experiment. Plants were destructively sampled and the development of N. eichhorniae was assessed. The survival of first and second instars declined as larval density increased. Plant nutrient status did not directly affect the mortality rate of larvae, but at higher nutrient concentrations larvae developed faster and were larger at a given developmental stage. It is argued that the density dependence operating in N. eichhorniae occurs through an interaction between young larvae and leaf longevity. Consequently, events which disrupt water hyacinth leaf dynamics, e.g. frost or foliar herbicides, will have a disproportionately large effect on the control agents and may reduce the level of control of the host.

  8. Host range of the inadvertent biological control agent Caloptilia triadicae: an invasive herbivore of Chinese tallowtree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An inadvertent biological control agent of the invasive weed Chinese tallowtree (Triadica sebifera) first appeared in North America in 2004. Identified as a Caloptilia triadicae, this leaf miner was found damaging T. sebifera saplings. In Gainesville, FL we exposed naturalized populations of C. tria...

  9. Trichogramma spp. (Hymenoptera: Trichogrammatidae) as biological control agents in the Philippines: history and current practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichogramma parasitoids have long been recognized as important and viable biological control agents against lepidopteran pests of rice, corn and sugarcane in the Philippines. We describe the history of research and use of Trichogramma spp. in the Philippines in three main areas: 1) field surveys – ...

  10. Evaluation of Serangium parcesetosum (Coleoptera: Coccinellidae) as a biological control agent of the silverleaf whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coccinellid predator from India, Serangium parcesetosum Sicard, was studied as a potential biological control agent of the silverleaf whitefly, Bemisia argentifolii Bellows & Perring [also known as the sweetpotato whitefly, B. tahaci (Gennadius) Biotype B]. Studies were performed on prey prefere...

  11. Microarray Analysis and Mutagenesis of the Biological Control Agent Pseudomonas fluorescens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological control agent Pseudomonas fluorescens Pf-5 suppresses seedling emergence diseases caused by soilborne fungi and Oomycetes. Pf-5 produces at least ten secondary metabolites. These include hydrogen cyanide, pyrrolnitrin, pyoluteorin and 2,4-diacetylphloroglucinol, which have known funct...

  12. Use of pupal parasitoids as biological control agents of filth flies on equine facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), (Diptera: Muscidae), are common pests on horse farms. The use of pupal parasitoids as biological control agents for filth flies is becoming more popular on equine facilities; however, there is a lack of information on the e...

  13. Establishment of the armored scale, Rhizaspidiotus donacis, a biological control agent of Arundo donax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The armored scale biological control agent, Rhizaspidiotus donacis (Leonardi) (Hemiptera; Diaspididae) has established populations on the invasive weed, Arundo donax L. (Poaceae; Arundinoideae) in Del Rio (Val Verde, Co.) and in field plots at the USDA-APHIS-PPQ-Moore Airbase, Edinburg (Hidalgo Co.)...

  14. Pre-release efficacy test of the prospective biological control agent Arytinnis hakani on the invasive weed Genista monspessulana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In weed biological control, conducting a pre-release efficacy test can help ascertain if prospective biological control agents will be capable of controlling the target plant. Currently, the phloem-feeding psyllid, Arytinnis hakani, is being evaluated as a prospective agent for the exotic invasive w...

  15. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France

    PubMed Central

    Malausa, Thibaut; Delaunay, Mathilde; Fleisch, Alexandre; Groussier-Bout, Géraldine; Warot, Sylvie; Crochard, Didier; Guerrieri, Emilio; Delvare, Gérard; Pellizzari, Giuseppina; Kaydan, M. Bora; Al-Khateeb, Nadia; Germain, Jean-François; Brancaccio, Lisa; Le Goff, Isabelle; Bessac, Melissa; Ris, Nicolas; Kreiter, Philippe

    2016-01-01

    Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids. PMID:27362639

  16. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    PubMed

    Malausa, Thibaut; Delaunay, Mathilde; Fleisch, Alexandre; Groussier-Bout, Géraldine; Warot, Sylvie; Crochard, Didier; Guerrieri, Emilio; Delvare, Gérard; Pellizzari, Giuseppina; Kaydan, M Bora; Al-Khateeb, Nadia; Germain, Jean-François; Brancaccio, Lisa; Le Goff, Isabelle; Bessac, Melissa; Ris, Nicolas; Kreiter, Philippe

    2016-01-01

    Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.

  17. Detecting biological warfare agents.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2005-10-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array.

  18. Detecting Biological Warfare Agents

    PubMed Central

    Song, Linan; Ahn, Soohyoun

    2005-01-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712

  19. Canada thistle biological control agents on two South Dakota wildlife refuges

    USGS Publications Warehouse

    Reed, C.C.; Larson, D.L.; Larson, J.L.

    2006-01-01

    We monitored populations of Canada thistle biocontrol agents Cassida rubiginosa, Ceutorhynchus litura, Larinus (= Hadroplantus) planus, Urophora cardui, Orellia (= Terellia) ruficauda, and Rhinocyllus conicus on Canada thistle (Cirsium arvense) at two national wildlife refuges in South Dakota from 1999 through 2003. C. litura, U. cardui, O. ruficauda, and R. conicus were present on both refuges. Agent populations were low except for C. litura, which was present in up to 90% of stems in some plots. C. litura infestation did not reduce thistle flowering, stem length, or over-winter survival. There was no change in thistle stem numbers over the study period and no difference in stem numbers in areas of high C. litura populations compared to areas of low C. litura populations. Our results suggest that insect biological control agents are inadequate for reduction of Canada thistle in southern South Dakota.

  20. Biological warfare agents.

    PubMed

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-07-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  1. Prospects for the use of biological control agents against Anoplophora in Europe.

    PubMed

    Brabbs, Thomas; Collins, Debbie; Hérard, Franck; Maspero, Matteo; Eyre, Dominic

    2015-01-01

    This review summarises the literature on the biological control of Anoplophora spp. (Coleoptera: Cerambycidae) and discusses its potential for use in Europe. Entomopathogenic fungi: Beauveria brongniartii Petch (Hypocreales: Cordycipitaceae) has already been developed into a commercial product in Japan, and fungal infection results in high mortality rates. Parasitic nematodes: Steinernema feltiae Filipjev (Rhabditida: Steinernematidae) and Steinernema carpocapsae Weiser have potential for use as biopesticides as an alternative to chemical treatments. Parasitoids: a parasitoid of Anoplophora chinensis Forster, Aprostocetus anoplophorae Delvare (Hymenoptera: Eulophidae), was discovered in Italy in 2002 and has been shown to be capable of parasitising up to 72% of A. chinensis eggs; some native European parasitoid species (e.g. Spathius erythrocephalus) also have potential to be used as biological control agents. Predators: two woodpecker (Piciformis: Picidae) species that are native to Europe, Dendrocopos major Beicki and Picus canus Gmelin, have been shown to be effective at controlling Anoplophora glabripennis Motschulsky in Chinese forests. The removal and destruction of infested and potentially infested trees is the main eradication strategy for Anoplophora spp. in Europe, but biological control agents could be used in the future to complement other management strategies, especially in locations where eradication is no longer possible.

  2. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    USGS Publications Warehouse

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  3. Lepidopterans as Potential Agents for the Biological Control of the Invasive Plant, Miconia calvescens

    PubMed Central

    Morais, Elisangela G.F.; Picanço, Marcelo C.; Semeão, Altair A.; Barreto, Robert W.; Rosado, Jander F.; Martins, Julio C.

    2012-01-01

    This work investigated eight species of Lepidoptera associated with Miconia calvescens DC. (Myrtales: Melastomataceae) in Brazil, including six defoliators, Salbia lotanalis Druce (Lepidoptera: Pyralidae), Druentia inscita Schaus (Mimallonidae), Antiblemma leucocyma Hampson (Noctuidae), three Limacodidae species, a fruit borer Carposina cardinata Meyrick (Carposinidae), and a damager of flowers Pleuroprucha rudimentaria Guenée (Geometridae). Based on host specificity and the damage caused to plants, S. lotanalis and D. inscita are the most promising species for biological control of M. calvescens. Furthermore, if C. cardinata and P. rudimentaria have host specificity in future tests, these caterpillars could also be considered as appropriate biocontrol agents. PMID:22938203

  4. Host plant oviposition preference of Ceratapion basicorne (Coleoptera:Apionidae), a potential biological control agent of yellow starthistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ceratapion basicorne (Coleoptera: Apionidae) is a weevil native to Europe and western Asia that is being evaluated as a prospective classical biological control agent of Centaurea solstitialis (yellow starthistle) in the United States. Choice oviposition experiments were conducted under laboratory ...

  5. Opportunities for improving risk communication during the permitting process for entomophagous biological control agents: A review of current systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns about potentially irreversible non-target impacts from the importation and release of entomophagous biological control agents (BCAs) have resulted in increasingly stringent import requirements by National Plant Protection Organizations. Despite numerous scientific publications on the poten...

  6. Cyprinid herpesvirus 3 and its evolutionary future as a biological control agent for carp in Australia.

    PubMed

    McColl, Kenneth A; Sunarto, Agus; Holmes, Edward C

    2016-12-08

    Biological invasions are a major threat to global biodiversity. Australia has experienced many invasive species, with the common carp (Cyprinus carpio L.) a prominent example. Cyprinid herpesvirus 3 (CyHV-3) has been proposed as a biological control (biocontrol) agent for invasive carp in Australia. Safety and efficacy are critical factors in assessing the suitability of biocontrol agents, and extensive host-specificity testing suggests that CyHV-3 is safe. Efficacy depends on the relationship between virus transmissibility and virulence. Based on observations from natural outbreaks, as well as the biology of virus-host interactions, we hypothesize that (i) close contact between carp provides the most efficient transmission of virus, (ii) transmission occurs at regular aggregations of carp that favour recrudescence of latent virus, and (iii) the initially high virulence of CyHV-3 will decline following its release in Australia. We also suggest that the evolution of carp resistance to CyHV-3 will likely necessitate the future release of progressively more virulent strains of CyHV-3, and/or an additional broad-scale measure(s) to complement the effect of the virus. If the release of CyHV-3 does go ahead, longitudinal studies are required to track the evolution of a virus-host relationship from its inception, and particularly the complex interplay between transmission, virulence and host resistance.

  7. Multiple year effects of a biological control agent (Diorhabda carinulata) on Tamarix (saltcedar) ecosystem exchanges of carbon dioxide and water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of Tamarix spp. (saltcedar) with Diorhabda carinulata (the northern tamarisk beetle) is currently underway in several western states U.S.A. through historical releases and the natural migration of this insect. Given the widespread dispersal of this biological control agent and its...

  8. Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents

    PubMed Central

    Zepeda-Paulo, Francisca A; Ortiz-Martínez, Sebastián A; Figueroa, Christian C; Lavandero, Blas

    2013-01-01

    The use of alternative hosts imposes divergent selection pressures on parasitoid populations. In response to selective pressures, these populations may follow different evolutionary trajectories. Divergent natural selection could promote local host adaptation in populations, translating into direct benefits for biological control, thereby increasing their effectiveness on the target host. Alternatively, adaptive phenotypic plasticity could be favored over local adaptation in temporal and spatially heterogeneous environments. We investigated the existence of local host adaptation in Aphidius ervi, an important biological control agent, by examining different traits related to infectivity (preference) and virulence (a proxy of parasitoid fitness) on different aphid-host species. The results showed significant differences in parasitoid infectivity on their natal host compared with the non-natal hosts. However, parasitoids showed a similar high fitness on both natal and non-natal hosts, thus supporting a lack of host adaptation in these introduced parasitoid populations. Our results highlight the role of phenotypic plasticity in fitness-related traits of parasitoids, enabling them to maximize fitness on alternative hosts. This could be used to increase the effectiveness of biological control. In addition, A. ervi females showed significant differences in infectivity and virulence across the tested host range, thus suggesting a possible host phylogeny effect for those traits. PMID:24062806

  9. Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents.

    PubMed

    Zepeda-Paulo, Francisca A; Ortiz-Martínez, Sebastián A; Figueroa, Christian C; Lavandero, Blas

    2013-09-01

    The use of alternative hosts imposes divergent selection pressures on parasitoid populations. In response to selective pressures, these populations may follow different evolutionary trajectories. Divergent natural selection could promote local host adaptation in populations, translating into direct benefits for biological control, thereby increasing their effectiveness on the target host. Alternatively, adaptive phenotypic plasticity could be favored over local adaptation in temporal and spatially heterogeneous environments. We investigated the existence of local host adaptation in Aphidius ervi, an important biological control agent, by examining different traits related to infectivity (preference) and virulence (a proxy of parasitoid fitness) on different aphid-host species. The results showed significant differences in parasitoid infectivity on their natal host compared with the non-natal hosts. However, parasitoids showed a similar high fitness on both natal and non-natal hosts, thus supporting a lack of host adaptation in these introduced parasitoid populations. Our results highlight the role of phenotypic plasticity in fitness-related traits of parasitoids, enabling them to maximize fitness on alternative hosts. This could be used to increase the effectiveness of biological control. In addition, A. ervi females showed significant differences in infectivity and virulence across the tested host range, thus suggesting a possible host phylogeny effect for those traits.

  10. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus.

    PubMed

    Hung, Phung Manh; Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-09-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 µg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen.

  11. Biology, host specificity tests, and risk assessment of the sawfly Heteroperreyia hubrichi, a potential biological control agent of Schinus terebinthifolius in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. Heteroperreyia hubrichi Malaise (Hymenoptera: Pergidae), a foliage feeding sawfly of Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), was studied to assess its suitability as a classical biological control agent of this invasive weed in Hawaii. Nochoice host-specificity tests we...

  12. Ecological host-range of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of Dioscorea bulbifera L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open-field host-specificity testing assesses the host-range of a biological control agent in a setting that permits the agent to use its full complement of host-seeking behaviors. This form of testing, particularly when it includes a no-choice phase in which the target weed is killed, may provide th...

  13. Post-introduction evolution in the biological control agent Longitarsus jacobaeae (Coleoptera: Chrysomelidae)

    PubMed Central

    Szűcs, Marianna; Schaffner, Urs; Price, William J; Schwarzländer, Mark

    2012-01-01

    Rapid evolution has rarely been assessed in biological control systems despite the similarity with biological invasions, which are widely used as model systems. We assessed post-introduction climatic adaptation in a population of Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, which originated from a low-elevation site in Italy and was introduced in the USA to a high-elevation site (Mt. Hood, Oregon) in the early 1980s. Life-history characteristics of beetle populations from Mt. Hood, from two low-elevation sites in Oregon (Italian origin) and from a high-elevation site from Switzerland were compared in common gardens. The performance of low- and high-elevation populations at a low- and a high-elevation site was evaluated using reciprocal transplants. The results revealed significant changes in aestival diapause and shifts in phenology in the Mt. Hood population, compared with the low-elevation populations. We found increased performance of the Mt. Hood population in its home environment compared with the low-elevation populations that it originated from. The results indicate that the beetles at Mt. Hood have adapted to the cooler conditions by life-history changes that conform to predictions based on theory and the phenology of the cold-adapted Swiss beetles. PMID:23346230

  14. Spillover of a biological control agent (Chrysolina quadrigemina) onto native St. Johnswort (Hypericum punctatum)

    PubMed Central

    Cook-Patton, Susan C.; Agrawal, Anurag A.

    2016-01-01

    Biological control agents may have unintended effects on native biota, particularly species that are closely related to the target invader. Here, we explored how Chrysolina quadrigemina, a beetle introduced to control the invasive weed Hypericum perforatum, impacts native H. punctatum in Tompkins County, New York, USA. Using a suite of complementary field surveys and experimental manipulations, we examined beetle preference for native and exotic Hypericum species and whether beetle herbivory influences the spatial distribution of H. punctatum. We found that the introduced beetle readily consumes native H. punctatum in addition to its intended target, and that H. punctatum at our field sites generally occurs along forest edges despite higher performance of experimental plants in more open habitats. However, we found no evidence that the beetle limits H. punctatum to forest edge habitats. PMID:27069816

  15. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    PubMed

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  16. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus.

    PubMed

    Fernandes, Everton K K; Angelo, Isabele C; Rangel, Drauzio E N; Bahiense, Thiago C; Moraes, Aurea M L; Roberts, Donald W; Bittencourt, Vânia R E P

    2011-12-15

    Entomopathogenic fungi have been investigated worldwide as promising biological control agents of the cattle tick Rhipicephalus microplus. The current study evaluates the virulence of several fungal isolates to R. microplus larva in the laboratory as part of an effort to identify isolates with promise for effective biocontrol of R. microplus in the field. Sixty fungal isolates, encompassing 5 Beauveria spp. and 1 Engyodontium albus (=Beauveria alba), were included in this study. In addition to bioassays, the isolates were characterized morphologically and investigated as to their potential for conidial mass production. These findings were correlated with previous reports on the same fungal isolates of their natural UV-B tolerance (Fernandes et al., 2007), thermotolerance and cold activity (Fernandes et al., 2008), and genotypes (Fernandes et al., 2009). R. microplus larvae obtained from artificially infested calves were less susceptible to Beauveria bassiana infection than ticks acquired from naturally infested cattle from a different location. Isolates CG 464, CG 500 and CG 206 were among the most virulent Beauveria isolates tested in this study. All fungal isolates presented morphological features consistent with their species descriptions. Of the 53 B. bassiana isolates, five (CG 481, CG 484, CG 206, CG 235 and CG 487) had characteristics that qualified them as promising candidates for biological control agents of R. microplus, viz., mean LC(50) between 10(7) and 10(8)conidiaml(-1); produced 5000 conidia or more on 60mm(2) surface area of PDAY medium; and, in comparison to untreated (control) conidia, had the best conidial tolerances to UV-B (7.04 kJ m(-2)) and heat (45°C, 2h) of 50% or higher, and conidial cold (5°C, 15d) activity (mycelial growth) higher than 60%. The current study of 60 Beauveria spp. isolates, therefore, singles out a few (five) with high potential for controlling ticks under field conditions.

  17. A review of recent patents on macroorganisms as biological control agents.

    PubMed

    Sáenz-de-Cabezón, Francisco Javier; Zalom, Frank G; López-Olguín, Jesús Francisco

    2010-01-01

    The indiscriminate use of synthetic pesticides has brought undesired problems to human health, agriculture, and the environment. Integrated Pest Management (IPM) and Biological Control (BC) programs, which are based on minimum use of pesticides, are seen as alternative, more ecological solutions to the unintended problems associated with pesticide use. These programs combine the introduction, augmentation, and/or conservation of pest natural enemies, with other protection tools. Although patents and the process of commercialization of microorganisms has been the subject of various reviews, macroorganisms used for pest and disease control have stimulated less comprehensive analyses. From our review of patents, there has been an enormous increase in the number of macroorganism-related patents registered in the last two decades. Private companies own 65% of all these patents. Rearing methods and crop protection strategies are the main intellectual property patented, with parasitoid wasps and predatory mites being the primary Biological Control Agent (BCA) focus of patents. Among countries, Japan was the first country with these types of patents, followed by the United States, Canada and China. Increasing concern for pesticide risks by governments and the public is seen as the main impetus for change in "traditional" crop protection practices and for investment in other more ecological products like BCAs.

  18. Metarhizium anisopliae as a biological control agent against Hyalomma anatolicum (Acari: Ixodidae).

    PubMed

    Suleiman, Elham A; Shigidi, M T; Hassan, S M

    2013-12-15

    In the Sudan, ticks and Tick-borne Diseases (TBDs) with subsequent costs of control and treatment are causing substantial economic loss. Control of ticks is mainly by chemical insecticides. The rising environmental hazards and problem of resistance has motivated research on biological agents as alternative methods of control. The present study aims at controlling livestock ticks using fungi for their unique mode of action besides their ability to adhere to the cuticle, to germinate and penetrate enzymatically. The study was conducted to evaluate the fungus Metarhizium anisopliae for tick control as an alternative mean to chemical acaricides. Pathogenicity of the fungus was tested on different developmental stages of the tick Hyalomma anatolicum. The fungus induced high mortality to flat immature stages. It, also, affected reproductive potential of the females. Egg laid, hatching percent, fertility and moulting percent of immature stages were significantly (p < or = 0.05) reduced. It was, also, shown that the fungus had ability to adhere to the cuticle and penetrate the integument of the tick. Conidia of the fungus were isolated from their internal tissues. This phenomenon is important in considering fungi as bioinsecticides. Infection of eggs laid by treated engorged female ticks, with the fungus might demonstrate suggesting transovarian transmission. The use of M. anisopliae to control ticks is discussed.

  19. Pathogenicity of biological control agents for livestock ectoparasites: a simulation analysis.

    PubMed

    Rose, H; Wall, R

    2009-12-01

    The management of arthropod ectoparasites of livestock currently relies largely on the use of neurotoxic chemicals. However, concerns over the development of resistance, as well as operator and environmental contamination, have stimulated research into alternative approaches to their control, including the use of biological pathogens. The search for suitable pathogens often focuses on identifying the most highly virulent agents for application. However, practical issues such as the ability of a pathogen to penetrate to the skin through hair or wool, tolerance of high skin surface temperatures and high residual activity may mean that the most virulent pathogens are not necessarily the most appropriate for commercial application. Here, a simulation model is constructed and used to highlight a range of key features which characterize suitable pathogens for such application. Sensitivity analysis shows that even a relatively low probability of infection following contact between infectious and susceptible individuals may give acceptable control, providing it is counterbalanced by higher survival of both infected and infectious parasite hosts in order to allow the rate of transmission to exceed the threshold required to suppress parasite population growth. The model highlights the need for studies attempting to identify sustainable biocontrol agents to explore the use of pathogens which have a range of the characteristics that contribute to overall pathogenicity, but which are also most compatible with practical application systems.

  20. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control.

    PubMed

    Rigling, Daniel; Prospero, Simone

    2017-01-31

    Chestnut blight, caused by Cryphonectria parasitica, is a devastating disease infecting American and European chestnut trees. The pathogen is native to East Asia and was spread to other continents via infected chestnut plants. This review summarizes the current state of research on this pathogen with a special emphasis on its interaction with a hyperparasitic mycovirus that acts as a biological control agent of chestnut blight. Taxonomy: Cryphonectria parasitica (Murr.) Barr. is a Sordariomycete (ascomycete) fungus in the family Cryphonetriaceae (Order Diaporthales). Closely related species that can also be found on chestnut include Cryphonectria radicalis, Cryphonectria naterciae, and Cryphonectria japonica. Host range: Major hosts are species in the genus Castanea (Fam. Fagaceae), particularly the American chestnut (C. dentata), the European chestnut (C. sativa), the Chinese chestnut (C. mollissima), and the Japanese chestnut (C. crenata). Minor, incidental hosts include oaks (Quercus spp.), maples (Acer spp.), European hornbeam (Carpinus betulus L.), and American chinkapin (Castanea pumila). Disease symptoms: C. parasitica causes perennial necrotic lesions (so-called cankers) on the bark of stems and branches of susceptible host trees, eventually leading to wilting of the plant part distal to the infection. Chestnut blight cankers are characterized by the presence of mycelial fans and fruiting bodies of the pathogen. Below the canker the tree may react by producing epicormic shoots. Non-lethal, superficial or callusing cankers on susceptible host trees are usually associated with mycovirus-induced hypovirulence. Disease control: After the introduction of C. parasitica into a new area, eradication efforts by cutting and burning the infected plants/trees have mostly failed. In Europe, the mycovirus Cryphonectria hypovirus 1 (CHV-1) acts as a successful biological control agent of chestnut blight by causing so-called hypovirulence. CHV-1 infects C. parasitica and

  1. Can we forecast the effects of climate change on entomophagous biological control agents?

    PubMed

    Aguilar-Fenollosa, Ernestina; Jacas, Josep A

    2014-06-01

    The worldwide climate has been changing rapidly over the past decades. Air temperatures have been increasing in most regions and will probably continue to rise for most of the present century, regardless of any mitigation policy put in place. Although increased herbivory from enhanced biomass production and changes in plant quality are generally accepted as a consequence of global warming, the eventual status of any pest species will mostly depend on the relative effects of climate change on its own versus its natural enemies' complex. Because a bottom-up amplification effect often occurs in trophic webs subjected to any kind of disturbance, natural enemies are expected to suffer the effects of climate change to a greater extent than their phytophagous hosts/preys. A deeper understanding of the genotypic diversity of the populations of natural enemies and their target pests will allow an informed reaction to climate change. New strategies for the selection of exotic natural enemies and their release and establishment will have to be adopted. Conservation biological control will probably become the keystone for the successful management of these biological control agents.

  2. Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh.

    PubMed

    Rahman, M M; Ali, M E; Khan, A A; Akanda, A M; Uddin, Md Kamal; Hashim, U; Abd Hamid, S B

    2012-01-01

    A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5-62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.

  3. Purpureocillium lilacinum, potential agent for biological control of the leaf-cutting ant Acromyrmex lundii.

    PubMed

    Goffré, D; Folgarait, P J

    2015-09-01

    Many leaf-cutter ant species are well known pests in Latin America, including species of the genera Acromyrmex and Atta. An environmentally friendly strategy to reduce the number of leafcutter ants and avoid indiscriminate use of chemical pesticides is biological control. In this work we evaluated the effectiveness of a strain of the entomopathogen Purpureocillium lilacinum, against worker ants from six Acromyrmex lundii field colonies, after immersions in pure suspensions at a concentration of 1×10(6)conidiaml(-1). Survival of ants treated with P. lilacinum was significantly lower than that recorded in controls, and median lethal time (LT50) was 6-7days. P. lilacinum was responsible for 85.6% (80.6-89.7) of the mortality in inoculated ants, in which we found that the percentage of other entomopathogens that naturally infected ants decreased also, suggesting a good competitive capability of the fungus. Horizontal transmission to non-inoculated ants was also evidenced, given that 58.5% (41.9-64.2) of them died because of P. lilacinum. Moreover, we tested pathogenicity for three concentrations of this strain (1.0×10(4), 10(6) and 10(8)conidiaml(-1)) and found a significantly faster mortality of ants and greater median percentage of infection at 10(8)conidiaml(-1) of P. lilacinum. CL50 value was 2.8×10(5)conidiaml(-1). We thus propose the use of P. lilacinum as a biological control agent of leafcutter ants in crops and plantations.

  4. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes

    PubMed Central

    Manzanilla-López, Rosa H.; Esteves, Ivania; Finetti-Sialer, Mariella M.; Hirsch, Penny R.; Ward, Elaine; Devonshire, Jean; Hidalgo-Díaz, Leopoldo

    2013-01-01

    The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this biological control agent. We cover different aspects and key components of the complex plant-fungus-nematode tri-trophic interaction, an interaction that needs to be addressed to ensure the efficient use of P. chlamydosporia as a biopesticide as part of an integrated pest management approach. PMID:23589653

  5. Biological Control in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Batra, Suzanne W. T.

    1982-01-01

    Living organisms are used as biological pest control agents in (i) classical biological control, primarily for permanent control of introduced perennial weed pests or introduced pests of perennial crops; (ii) augmentative biological control, for temporary control of native or introduced pests of annual crops grown in monoculture; and (iii) conservative or natural control, in which the agroecosystem is managed to maximize the effect of native or introduced biological control agents. The effectiveness of biological control can be improved if it is based on adequate ecological information and theory, and if it is integrated with other pest management practices.

  6. Diamondback moth in Ukraine: current status and potential for use biological control agents.

    PubMed

    Likar, Y; Stefanovska, T

    2009-01-01

    The Diamondback moth (DBM), Plutella xillostella (Linnaeus) (Lepidoptera: Plutellidae) is the insect pest damaging cabbage in Ukraine, especially in the Southern region. Biology, damage, population dynamics of diamondback moth and effect of natural enemies on the level of infestation of this pest by parasitoids and pathogens were studied in 2004-2007 in the laboratory and field conditions. Obtained results show that in general the pest has 2-3 generations, although up to 5-6 can evolve in the South. Fecundity and life longevity of Diamondback were studied on white cabbage, red cabbage, broccoli, cauliflower and two basic weeds: shepherd's purse and wild mustard. The host plant affects fecundity and life span of the diamondback moth. Fecundity differs significantly and is highest with white cabbage. Fauna of Diamondback moth parasitoids is quite rich. All stages are affected by numerous parasitoids and predators. Around 22 parasitoid species were recorded during the study. Overall parasitism ranged from 18% to 60% varying essentially between the areas. Apanteles (Cotesia) sp., Diadegma sp., Trichogramma sp. were most common in all areas. Steinernema sp., entomopathogenic nematodes are found to be natural enemies of diamondback moth. The range of natural enemies contributes significantly to the control of Diamondback moth. Conservation and augmentation of natural enemies should be used in IPM systems in order to control diamondback moth on cabbage. Entomopathogenic nematodes are prominent biocontrol agents.

  7. Fitness and field performance of a mass-reared biological control agent, Rhinoncomimus latipes (Coleoptera: Curculionidae).

    PubMed

    Hough-Goldstein, J; Stout, A R; Schoenstein, J A

    2014-08-01

    Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), a biological control agent of mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, has been mass reared with no infusion of new genetic material for 8-9 yr (at least 24-36 generations), while insects from the same genetic stock have been subject to field conditions in North America for that same period of time. Our main objective was to compare the laboratory population with the field population (and in 1 yr with a Chinese field population) to determine whether genetic changes had occurred, especially ones that may reduce the effectiveness of the laboratory population when released in the field. The laboratory insects laid more eggs and had reduced survival compared with field weevils in several comparisons, and had reduced responsiveness to cues that induce reproductive diapause. Exposure to older plants had the greatest effect on induction of reproductive diapause in both laboratory and field weevils, with effects of daylength and temperature less pronounced. At least a portion of the laboratory weevil population overwintered successfully. Results suggest that it is not necessary to add wild-type genetic material to the rearing colony at this time.

  8. Studies on potential biological control agents of immature mosquitoes in sewage wastewater in southern California.

    PubMed

    Mian, L S; Mulla, M S; Wilson, B A

    1986-09-01

    Three biological control agents, a copepod, Mesocyclops leuckarti pilosa, and two fish, Cyprinodon macularius and Poecilia reticulata, were evaluated for their survival in secondary sewage effluent (SSE) and predation potential on mosquito larvae. Results showed that the survival of M. l. pilosa was not significantly affected in SSE or SSE diluted (50%) with water. In predation tests, the copepod consumed from 50 to 90% of the 1st-instar larvae of Culex quinquefasciatus in 24 to 72 hr and P. reticulata fed on almost all stages (egg to pupa) of the test mosquitoes. Survivorship of P. reticulata and C. macularius in SSE was not significantly affected by SSE under both greenhouse and sewage aquaculture conditions. Poecilia reticulata was distributed towards the influent end and C. macularius towards the effluent end of the aquaculture ponds, indicating the former species can tolerate higher levels of pollution which exists at the influent end of the pond. However, low water temperature and dissolved oxygen may be detrimental to these fish species in sewage aquacultural systems.

  9. Food source affects the expression of vitellogenin and fecundity of a biological control agent, Neoseiulus cucumeris.

    PubMed

    Zhao, Yunlong; Li, Dunsong; Zhang, Min; Chen, Wei; Zhang, Guren

    2014-07-01

    Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) is one of the most widely used and important biological control agents for thrips and other small pests worldwide. In the present study, we cloned two cDNAs of vitellogenins (Vgs, NcVg1 and NcVg2) and analyzed the effect of food source on the expression of both Vgs and fecundity in female adults. NcVgs showed higher sequence similarity to Vgs from Parasitiformes. Both neighbor-joining and maximum likelihood methods for phylogenetic analysis of NcVgs yielded similar topologies and showed that the Parasitiformes except Haemaphysalis longicornis segregated into a single clade that was separated into two subclades including one of both Vgs from N. cucumeris. Both transcripts, NcVg1 and NcVg2 revealed similar trends during developmental periods and reached the maximum level at the pre-oviposition period. When fed with different food sources, both NcVg1 and NcVg2 of female adults demonstrated a significant difference (P < 0.05) during the pre-oviposition period. Meanwhile, a positive correlation between the expression of Vgs and fecundity was observed. Therefore, the nutrients provided by the food sources affected fecundity resulting in differential expression of Vgs. Vitellogenin expression can be used as a molecular marker of fecundity of N. cucumeris.

  10. Impact of the Spatial Heterogeneity of the Spermosphere and Rhizosphere on Performance of Bacterial Biological Control Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spermosphere and rhizosphere environments are the critical interfaces where many plant-microbe and microbe-microbe interactions occurs that lead to plant disease and the suppression of plant disease by bacterial and other biological control agents. We discuss the spatial heterogeneity of the ph...

  11. Life history and host range of Oxydia vesulia transpeneus, an unsuitable biological control agent of Brazilian peppertree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suitability of Oxydia vesulia (Cramer) (Lepidoptera: Geometridae) was assessed as a potential biological control agent of the invasive weed Brazilian Peppertree Schinus terebinthifolia. Larvae were collected in Brazil feeding on the plant in its native range and colonized in quarantine where lif...

  12. Development of an inundative, aerial release technique for the Arundo wasp, biological control agent of the invasive Arundo donax L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A box aerial release system (BARS) has been developed for the mass release of Tetramesa romana Walker, a biological control agent of Arundo donax, an invasive weed of waterways and riparian areas in the Southwestern U.S. and Mexico. Since A. donax infests lengthy stretches of remote areas inaccessi...

  13. Phenology and temperature-dependent development of Ceutorhynchus assimilis, a potential biological control agent for Lepidium draba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heart-podded hoary cress (Lepidium draba) is an alien weed that has invaded rangeland in the northwestern USA. A host race (i;e; host-specific biotype) of the weevil, Ceutorhynchus assimilis, is being evaluated as a prospective biological control agent. This biotype is only known from southern Eur...

  14. Potential biological control agents for management of cogongrass [Imperata cylindrica 15 (Cyperales: Poaceae)] in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  15. Are three colonies of Neostromboceros albicomus, a candidate biological control agent for Lygodium microphyllum, the same host biotype?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three colonies of Neostromboceros albicomus, a candidate biological control agent of Lygodium microphyllum, were barcoded using the D2 expansion domain, to determine which of two biotypes they represented. The first colony, collected in 2005 & 2007, was used for the initial host range testing. Colon...

  16. Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland

    PubMed Central

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten

    2016-01-01

    We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture. PMID:27795260

  17. Reevaluating establishment and potential hybridization of different biotypes of the biological control agent Longitarsus jacobaeae using molecular tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of past and current biological control programs using molecular tools can clarify establishment success of agent biotypes, and can contribute to our understanding of best practice for natural enemy importations. The flea beetle, Longitarsus jacobaeae has been quite successful at controlli...

  18. Status of Waterhyacinth/Hydrilla Infestations and Associated Biological Control Agents in Lower Rio Grande Valley Cooperating Irrigation Districts

    DTIC Science & Technology

    2000-09-01

    During September 1999, surveys to quantify plant infestations and insect biological control agents of both Eichhornia crassipes and Hydrilla...from site to site and ranged from 3 kg/cu m to about 21 kg/cu m. Both Neochetina eichhorniae and N. bruchi were commonly collected from all

  19. Biology and host range of Heterapoderopsis bicallosicollis; a potential biological control agent for Chinese tallow Triadica sebifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...

  20. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    NASA Astrophysics Data System (ADS)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    pepton agar, the composts and their water extracts were checked towards their ability to inhibit growth of F. oxysporum. It was shown that three composts - CD, FPM and RD - possessed suppressiveness towards the model phytopathogen. From these three wastes, 28 bacterial and fungal strains were isolated and, in their turn, checked towards their ability to inhibit F. oxysporum. It was demonstrated that five of the isolated strains are highly suppressive to model test-object (the growth area of F. oxysporum did not exceed 30%), six of the stains were moderate suppressive (the growth area of F. oxysporum ranged from 35% to 60%), and other strains did not cause negative effects for the model phytopathogen. Further, we will check the composts and the isolated strains using the model system "soil - tomato plant - phytopathogen". As a result, effective composts and strains will be recommended as agents for biological control of fungal diseases in the region. Besides, the structure of bacterial and fungal community of the composts with suppressive properties will be assessed using 454-pyrosequencing.

  1. Utilization of an introduced weed biological control agent by a native parasitoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A native parasitoid, Kalopolynema ema (Schauff and Grissell) (Hymenoptera, Mymaridae), that usually parasitizes the eggs of Megamelus davisi VanDuzee (Hemiptera, Delphacidae), has begun utilizing a new host, Megamelus scutellaris (Berg) (Hemiptera, Delphacidae), the introduced biological control age...

  2. Prospects for the use of biological control agents against Anoplophora in Europe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarises the literature on the biological control of Anoplophora spp. (Coleoptera: Cerambycidae) and discusses its potential for use in Europe. Entomopathogenic fungi: Beauveria brongniartii Petch (Hypocreales: Cordycipitaceae) has already been developed into a commercial product in Ja...

  3. Early-season flood enhances native biological control agents in Wisconsin cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control is predicated on the concept that crop plants are protected when predators suppress herbivore populations. However, many factors, including concurrent crop protection strategies, may modify the effectiveness of a predator in a given agroecosystem. In Wisconsin commercial cranberry...

  4. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... chemical herbicides, mowing, cultural control, and the use of biological control organisms. The use of herbicides, while effective, is limited to relatively accessible sites and control is only temporary. Broadcast applications of herbicides could also have adverse impacts on nontarget vegetation if...

  5. Metabolic behavior of bacterial biological control agents in soil and plant rhizospheres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control provides an attractive alternative to chemical pesticides for the control of plant diseases. To date, however, few biocontrol products have been developed successfully at the commercial level. This stems largely from variability in disease control performance that is often obser...

  6. Are Entomopathogenic Nematodes Effective Biological Control Agents Against the Carob Moth, Ectomyelois ceratoniae?

    PubMed

    Memari, Zahra; Karimi, Javad; Kamali, Shokoofeh; Goldansaz, Seyed Hossein; Hosseini, Mojtaba

    2016-12-01

    The carob moth (Ectomyelois ceratoniae) is the key pest of pomegranate, which causes a significant percentage of losses in pomegranate orchards and warehouses of Iran annually. The pest larvae are characterized by displaying a cryptic behavior within the fruit, which avoids most routine control techniques, especially chemical method. The low efficiency of traditional measurements and also the rich species diversity of natural enemies within the infested fruits highlight the necessity of exploring effective control methods, especially environmental friendly approaches. Entomopathogenic nematodes (EPNs) are a group of biological control agents that actively search for the host, including those in a cryptic habitat like the carob moth larvae within infested fruits. Here, we assumed that treatment of the infested and dropped fruits with EPNs may provide new insight into the management of the carob moth. Three species of EPNs, Steinernema feltiae, S. carpocapsae, and Heterorhabditis bacteriophora were selected and used in a series of in vitro and in vivo experiments. In preliminary assays, the EPNs species were used with different concentrations of infective juveniles (IJs) (0, 1, 5, 10, 25, and 50 IJ/larvae) in 2-cm diam. plates. The mortality rates of the laboratory tests were 79.75% and 76.5% for S. feltiae and S. carpocapsae, corresponded to LC50 value of 2.02 IJ/larva for S. feltiae and 2.05 IJ/larva for S. carpocapsae. On the contrary, H. bacteriophora demonstrated low virulence on the pest larvae in petri tests with a LC50 = 426.92 IJ/larva. Hence, both Steinernema species were selected for subsequent experiments. The penetration rate for S. feltiae and S. carpocapsae into the hemocoel of the pest was 43% and 31%, respectively, and the corresponding reproduction rate was 15,452 IJ/larva for S. feltiae and 18,456 IJ/larva for S. carpocapsae. The gathered data from those in vitro tests were used for a field assay. Different concentrations (5, 10, 50, 100, and 160

  7. Predicting the host range of Nystalea ebalea: secondary plant chemistry and host selection by a surrogate biological control agent of Schinus terebinthifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The safety of weed biological control depends upon the selection and utilization of the target weed by the agent while causing minimal harm to non-target species. Selection of weed species by biological control agents is determined by the presence of behavioral cues, generally host secondary plant c...

  8. Predicting spillover risk to non-target plants pre-release: Bikasha collaris a potential biological control agent of Chinese tallowtree (Triadica sebifera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quarantine host range tests accurately predict direct risk of biological control agents to non-target species. However, a well-known indirect effect of biological control of weeds releases is spillover damage to non-target species. Spillover damage may occur when the population of agents achieves ou...

  9. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents.

    PubMed

    Enya, Junichiro; Shinohara, Hirosuke; Yoshida, Shigenobu; Tsukiboshi, Takao; Negishi, Hiromitsu; Suyama, Kazuo; Tsushima, Seiya

    2007-05-01

    Culturable leaf-associated bacteria inhabiting a plant have been considered as promising biological control agent (BCA) candidates because they can survive on the plant. We investigated the relationship between bacterial groups of culturable leaf-associated bacteria on greenhouse- and field-grown tomato leaves and their antifungal activities against tomato diseases in vitro and in vivo. In addition, the isolated bacteria were analyzed for N-acyl-homoserine lactone (AHL) and indole-3-acetic acid (IAA) production, which have been reported to associate with bacterial colonization, and resistance to a tomato alkaloid (alpha-tomatine). Leaf washings and subsequent leaf macerates were used to estimate the population size of epiphytic and more internal bacteria. Bacterial population sizes on leaves at the same position increased as the leaves aged under both greenhouse and field conditions. Field-grown tomatoes had significantly larger population sizes than greenhouse-grown tomatoes. Analysis of 16S rRNA gene (rDNA) sequencing using 887 culturable leaf-associated bacteria revealed a predominance of the Bacillus and Pseudomonas culturable leaf-associated bacterial groups on greenhouse- and field-grown tomatoes, respectively. Curtobacterium and Sphingomonas were frequently recovered from both locations. From the 2138 bacterial strains tested, we selected several strains having in vitro antifungal activity against three fungal pathogens of tomato: Botrytis cinerea, Fulvia fulva, and Alternaria solani. Among bacterial strains with strong in vitro antifungal activities, Bacillus and Pantoea tended to show strong antifungal activities, whereas Curtobacterium and Sphingomonas were not effective. The results indicated the differences in antifungal activity among predominant bacterial groups. Analysis of alpha-tomatine resistance revealed that most bacterial strains in the dominant groups exhibited moderate or high resistance to alpha-tomatine in growth medium. Furthermore, some

  10. Does phylogeny explain the host choice behaviour of potential biological control agents for Brassicaceae weeds?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four invasive Brassicaceae are currently being studied for biological control at the CABI Centre in Switzerland. A phylogenetic approach to host testing has so far been hampered by the fact that the evolutionary relationships of taxa within the Brassicaceae were unclear. Recently, a new phylogeny of...

  11. Life cycle of Puccinia crupinae, a candidate fungal biological control agent for Crupina vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crupina vulgaris (Common crupina, Asteraceae) is an introduced weed pest in the western United States. An isolate of the rust fungus Puccinia crupinae from the Greece is currently under evaluation as a candidate for biological control of C. crupina in a Biosafety Level 3 (BL-3) containment greenhou...

  12. Diapause in Abrostola asclepiadis (Lepidoptera: Noctuidae) may make for an ineffective weed biological control agent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pale and black swallow-wort (Vincetoxicum rossicum and V. nigrum; Apocynaceae, subfamily Asclepiadoideae) are perennial vines from Europe that are invasive in various terrestrial habitats in the northeastern USA and southeastern Canada. A classical weed biological control program has been in develop...

  13. Nucler Polyhedrosis Virus as a Biological Control Agent for Malacosoma americanum (Lepidoptera: Lasiocampidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to damaging trees, the eastern tent caterpillar, (Malacosoma americanum (F.)) is implicated in early fetal loss and late-term abortion in horses. In a field study, we evaluated the potential biological control of eastern tent caterpillar using eastern tent caterpillar nuclear polyhedros...

  14. Are Entomopathogenic Nematodes Effective Biological Control Agents Against the Carob Moth, Ectomyelois ceratoniae?

    PubMed Central

    Memari, Zahra; Karimi, Javad; Kamali, Shokoofeh; Goldansaz, Seyed Hossein; Hosseini, Mojtaba

    2016-01-01

    The carob moth (Ectomyelois ceratoniae) is the key pest of pomegranate, which causes a significant percentage of losses in pomegranate orchards and warehouses of Iran annually. The pest larvae are characterized by displaying a cryptic behavior within the fruit, which avoids most routine control techniques, especially chemical method. The low efficiency of traditional measurements and also the rich species diversity of natural enemies within the infested fruits highlight the necessity of exploring effective control methods, especially environmental friendly approaches. Entomopathogenic nematodes (EPNs) are a group of biological control agents that actively search for the host, including those in a cryptic habitat like the carob moth larvae within infested fruits. Here, we assumed that treatment of the infested and dropped fruits with EPNs may provide new insight into the management of the carob moth. Three species of EPNs, Steinernema feltiae, S. carpocapsae, and Heterorhabditis bacteriophora were selected and used in a series of in vitro and in vivo experiments. In preliminary assays, the EPNs species were used with different concentrations of infective juveniles (IJs) (0, 1, 5, 10, 25, and 50 IJ/larvae) in 2-cm diam. plates. The mortality rates of the laboratory tests were 79.75% and 76.5% for S. feltiae and S. carpocapsae, corresponded to LC50 value of 2.02 IJ/larva for S. feltiae and 2.05 IJ/larva for S. carpocapsae. On the contrary, H. bacteriophora demonstrated low virulence on the pest larvae in petri tests with a LC50 = 426.92 IJ/larva. Hence, both Steinernema species were selected for subsequent experiments. The penetration rate for S. feltiae and S. carpocapsae into the hemocoel of the pest was 43% and 31%, respectively, and the corresponding reproduction rate was 15,452 IJ/larva for S. feltiae and 18,456 IJ/larva for S. carpocapsae. The gathered data from those in vitro tests were used for a field assay. Different concentrations (5, 10, 50, 100, and 160

  15. Two in one: cryptic species discovered in biological control agent populations using molecular data and crossbreeding experiments.

    PubMed

    Paterson, Iain D; Mangan, Rosie; Downie, Douglas A; Coetzee, Julie A; Hill, Martin P; Burke, Ashley M; Downey, Paul O; Henry, Thomas J; Compton, Stephe G

    2016-09-01

    There are many examples of cryptic species that have been identified through DNA-barcoding or other genetic techniques. There are, however, very few confirmations of cryptic species being reproductively isolated. This study presents one of the few cases of cryptic species that has been confirmed to be reproductively isolated and therefore true species according to the biological species concept. The cryptic species are of special interest because they were discovered within biological control agent populations. Two geographically isolated populations of Eccritotarsus catarinensis (Carvalho) [Hemiptera: Miridae], a biological control agent for the invasive aquatic macrophyte, water hyacinth, Eichhornia crassipes (Mart.) Solms [Pontederiaceae], in South Africa, were sampled from the native range of the species in South America. Morphological characteristics indicated that both populations were the same species according to the current taxonomy, but subsequent DNA analysis and breeding experiments revealed that the two populations are reproductively isolated. Crossbreeding experiments resulted in very few hybrid offspring when individuals were forced to interbreed with individuals of the other population, and no hybrid offspring were recorded when a choice of mate from either population was offered. The data indicate that the two populations are cryptic species that are reproductively incompatible. Subtle but reliable diagnostic characteristics were then identified to distinguish between the two species which would have been considered intraspecific variation without the data from the genetics and interbreeding experiments. These findings suggest that all consignments of biological control agents from allopatric populations should be screened for cryptic species using genetic techniques and that the importation of multiple consignments of the same species for biological control should be conducted with caution.

  16. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato.

    PubMed

    Ben Khedher, Saoussen; Kilani-Feki, Olfa; Dammak, Mouna; Jabnoun-Khiareddine, Hayfa; Daami-Remadi, Mejda; Tounsi, Slim

    2015-12-01

    The aim of this study is to evaluate the efficacy of the strain Bacillus subtilis V26, a local isolate from the Tunisian soil, to control potato black scurf caused by Rhizoctonia solani. The in vitro antifungal activity of V26 significantly inhibited R. solani growth compared to the untreated control. Microscopic observations revealed that V26 caused considerable morphological deformations of the fungal hyphae such as vacuolation, protoplast leakage and mycelia crack. The most effective control was achieved when strain V26 was applied 24h prior to inoculation (protective activity) in potato slices. The antagonistic bacterium V26 induced significant suppression of root canker and black scurf tuber colonization compared to untreated controls with a decrease in incidence disease of 63% and 81%, respectively, and promoted plant growth under greenhouse conditions on potato plants. Therefore, B. subtilis V26 has a great potential to be commercialized as a biocontrol agent against R. solani on potato crops.

  17. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.

  18. Climate warming increases biological control agent impact on a non-target species

    PubMed Central

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  19. Factors affecting the flight capacity of Tetrastichus planipennisi (Hymenoptera: Eulophidae), a classical biological control agent of Agrilus planipennis (Coleoptera: Buprestidae).

    PubMed

    Fahrner, Samuel J; Lelito, Jonathan P; Blaedow, Karen; Heimpel, George E; Aukema, Brian H

    2014-12-01

    The dispersal characteristics of a biological control agent can have direct implications on the ability of that agent to control populations of a target host. Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is a parasitic wasp native to eastern Asia that has been introduced into the United States as part of a classical biological control program against the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). We used computer-monitored flight mills to investigate the role of age, feeding status, mating status, and size on the flight capacity of female T. planipennisi over a 24-h period. We also compared flight capacity between sexes. Flight distance of female T. planipennisi representative of populations released in the biological control program averaged 1.26 km in 24 h with a maximum flight of just over 7 km. Median flight distance, however, was 422 m. The flight capacity of females fed a honey-water solution was 41× that of females provided only water, who flew very little. Larger females were capable of flying farther distances, but age did not affect the flight capacity of females up to 70 d posteclosion. Females dispersed 6× farther than did their smaller, male counterparts. The implications of our findings to host-parasitoid interactions and release protocols for distributing T. planipennisi are discussed.

  20. Ongoing ecological speciation in Cotesia sesamiae, a biological control agent of cereal stem borers

    PubMed Central

    Kaiser, Laure; Le Ru, Bruno Pierre; Kaoula, Ferial; Paillusson, Corentin; Capdevielle-Dulac, Claire; Obonyo, Julius Ochieng; Herniou, Elisabeth A; Jancek, Severine; Branca, Antoine; Calatayud, Paul-André; Silvain, Jean-François; Dupas, Stephane

    2015-01-01

    To develop efficient and safe biological control, we need to reliably identify natural enemy species, determine their host range, and understand the mechanisms that drive host range evolution. We investigated these points in Cotesia sesamiae, an African parasitic wasp of cereal stem borers. Phylogenetic analyses of 74 individual wasps, based on six mitochondrial and nuclear genes, revealed three lineages. We then investigated the ecological status (host plant and host insect ranges in the field, and host insect suitability tests) and the biological status (cross-mating tests) of the three lineages. We found that one highly supported lineage showed all the hallmarks of a cryptic species. It is associated with one host insect, Sesamia nonagrioides, and is reproductively isolated from the other two lineages by pre- and postmating barriers. The other two lineages had a more variable phylogenetic support, depending on the set of genes; they exhibited an overlapping and diversified range of host species and are not reproductively isolated from one another. We discuss the ecological conditions and mechanisms that likely generated this ongoing speciation and the relevance of this new specialist taxon in the genus Cotesia for biological control. PMID:26366198

  1. Ongoing ecological speciation in Cotesia sesamiae, a biological control agent of cereal stem borers.

    PubMed

    Kaiser, Laure; Le Ru, Bruno Pierre; Kaoula, Ferial; Paillusson, Corentin; Capdevielle-Dulac, Claire; Obonyo, Julius Ochieng; Herniou, Elisabeth A; Jancek, Severine; Branca, Antoine; Calatayud, Paul-André; Silvain, Jean-François; Dupas, Stephane

    2015-09-01

    To develop efficient and safe biological control, we need to reliably identify natural enemy species, determine their host range, and understand the mechanisms that drive host range evolution. We investigated these points in Cotesia sesamiae, an African parasitic wasp of cereal stem borers. Phylogenetic analyses of 74 individual wasps, based on six mitochondrial and nuclear genes, revealed three lineages. We then investigated the ecological status (host plant and host insect ranges in the field, and host insect suitability tests) and the biological status (cross-mating tests) of the three lineages. We found that one highly supported lineage showed all the hallmarks of a cryptic species. It is associated with one host insect, Sesamia nonagrioides, and is reproductively isolated from the other two lineages by pre- and postmating barriers. The other two lineages had a more variable phylogenetic support, depending on the set of genes; they exhibited an overlapping and diversified range of host species and are not reproductively isolated from one another. We discuss the ecological conditions and mechanisms that likely generated this ongoing speciation and the relevance of this new specialist taxon in the genus Cotesia for biological control.

  2. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae).

    PubMed

    Yang, Chunxiao; Pan, Huipeng; Noland, Jeffrey Edward; Zhang, Deyong; Zhang, Zhanhong; Liu, Yong; Zhou, Xuguo

    2015-12-10

    Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying gene expression across various biological processes, of which requires a set of suited reference genes to normalize the expression data. Coleomegilla maculata (Coleoptera: Coccinellidae), is one of the most extensively used biological control agents in the field to manage arthropod pest species. In this study, expression profiles of 16 housekeeping genes selected from C. maculata were cloned and investigated. The performance of these candidates as endogenous controls under specific experimental conditions was evaluated by dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt method. In addition, RefFinder, a comprehensive platform integrating all the above-mentioned algorithms, ranked the overall stability of these candidate genes. As a result, various sets of suitable reference genes were recommended specifically for experiments involving different tissues, developmental stages, sex, and C. maculate larvae treated with dietary double stranded RNA. This study represents the critical first step to establish a standardized RT-qPCR protocol for the functional genomics research in a ladybeetle C. maculate. Furthermore, it lays the foundation for conducting ecological risk assessment of RNAi-based gene silencing biotechnologies on non-target organisms; in this case, a key predatory biological control agent.

  3. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae)

    PubMed Central

    Yang, Chunxiao; Pan, Huipeng; Noland, Jeffrey Edward; Zhang, Deyong; Zhang, Zhanhong; Liu, Yong; Zhou, Xuguo

    2015-01-01

    Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying gene expression across various biological processes, of which requires a set of suited reference genes to normalize the expression data. Coleomegilla maculata (Coleoptera: Coccinellidae), is one of the most extensively used biological control agents in the field to manage arthropod pest species. In this study, expression profiles of 16 housekeeping genes selected from C. maculata were cloned and investigated. The performance of these candidates as endogenous controls under specific experimental conditions was evaluated by dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt method. In addition, RefFinder, a comprehensive platform integrating all the above-mentioned algorithms, ranked the overall stability of these candidate genes. As a result, various sets of suitable reference genes were recommended specifically for experiments involving different tissues, developmental stages, sex, and C. maculate larvae treated with dietary double stranded RNA. This study represents the critical first step to establish a standardized RT-qPCR protocol for the functional genomics research in a ladybeetle C. maculate. Furthermore, it lays the foundation for conducting ecological risk assessment of RNAi-based gene silencing biotechnologies on non-target organisms; in this case, a key predatory biological control agent. PMID:26656102

  4. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae).

    PubMed

    Sorensen, Mary A; Parker, David R; Trumble, John T

    2009-02-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.

  5. [Biological agents for controlling the density of blood-sucking black flies (Diptera: Simuliidae) in the north of Armenia].

    PubMed

    Kaplich, V M; Voĭtka, D V; Markosian, L S; Ganushkina, L A; Arutiunova, M V; Vardanian, N S

    2013-01-01

    Biological agents were found to have high larvicidal activity against Simuliidae of two Bacillus thuringiensis spp. israelensis strains. To reduce the number of the pre-imago stages of black flies, the biological agent BLP-2477 should be used as most effective from an environmental point of view.

  6. Agent-Based Models and Optimal Control in Biology: A Discrete Approach

    DTIC Science & Technology

    2012-01-01

    for example, we may choose to aggregate a herd of antelope into one agent: the location of this agent would thus represent the average location of each...individual in the herd. We can even represent certain antelope dying off and others being born by altering the size of the agent (e.g., as the... antelope herd interacts with an aggregated prey agent such as cheetahs or lions, the size of each may expand or contract accordingly). Of course, such

  7. Optimization and Control of Agent-Based Models in Biology: A Perspective.

    PubMed

    An, G; Fitzpatrick, B G; Christley, S; Federico, P; Kanarek, A; Neilan, R Miller; Oremland, M; Salinas, R; Laubenbacher, R; Lenhart, S

    2017-01-01

    Agent-based models (ABMs) have become an increasingly important mode of inquiry for the life sciences. They are particularly valuable for systems that are not understood well enough to build an equation-based model. These advantages, however, are counterbalanced by the difficulty of analyzing and using ABMs, due to the lack of the type of mathematical tools available for more traditional models, which leaves simulation as the primary approach. As models become large, simulation becomes challenging. This paper proposes a novel approach to two mathematical aspects of ABMs, optimization and control, and it presents a few first steps outlining how one might carry out this approach. Rather than viewing the ABM as a model, it is to be viewed as a surrogate for the actual system. For a given optimization or control problem (which may change over time), the surrogate system is modeled instead, using data from the ABM and a modeling framework for which ready-made mathematical tools exist, such as differential equations, or for which control strategies can explored more easily. Once the optimization problem is solved for the model of the surrogate, it is then lifted to the surrogate and tested. The final step is to lift the optimization solution from the surrogate system to the actual system. This program is illustrated with published work, using two relatively simple ABMs as a demonstration, Sugarscape and a consumer-resource ABM. Specific techniques discussed include dimension reduction and approximation of an ABM by difference equations as well systems of PDEs, related to certain specific control objectives. This demonstration illustrates the very challenging mathematical problems that need to be solved before this approach can be realistically applied to complex and large ABMs, current and future. The paper outlines a research program to address them.

  8. First report of an egg parasitoid reared from Neomusotima conspurcatalis (Lepidoptera: Crambidae) a biological control agent of Lygodium microphyllum (Schizaeales: Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neomusotima conspurcatalis (Lepidoptera: Crambidae) was first released in Florida as a biological control agent of Lygodium microphyllum (Polypodiales: Lygodiaceae), Old World climbing fern, in 2008. The first egg parasitoid, a Trichogramma sp. (Hymenoptera: Trichogrammatidae), was reared from N. co...

  9. Area-wide biological control of disease vectors and agents affecting wildlife.

    PubMed

    Reichard, R E

    2002-04-01

    Two examples of area-wide programmes, employing the sterile insect technique (SIT), which have eradicated a parasite and a disease vector common to domestic and wild animals are described. New World screwworm (NWS), Cochliomyia hominivorax, caused significant morbidity and mortality of livestock and wild mammals in tropical and subtropical areas of America before eradication was achieved in North America using the SIT and other components of an integrated pest management (IPM) programme. Movement of wild as well as domestic animals from an area which is infested with screwworm to a free area requires prophylactic treatment. Tsetse fly-borne trypanosomosis has an immense influence on the distribution of people and livestock in Africa. The immunotolerance of wildlife to the parasites is an important factor in maintaining some areas livestock free as wildlife refuges. Slaughter has ceased of wild hoofstock species considered to be disease reservoirs for control purposes. The SIT, combined with other IPM measures, has resulted in the eradication of the tsetse fly and trypanosomosis from Zanzibar. Other programmes in Africa are underway. Microbial 'biopesticides' have also been employed successfully against plant insect pests and some vectors of human disease. It seems likely that for the immediate future, wildlife may benefit from area-wide biological control programmes, intended mainly to protect humans and/or domestic animals.

  10. Evaluation of the fungus Beauveria bassiana as a potential biological control agent against phlebotomine sand flies in Colombian coffee plantations.

    PubMed

    Reithinger, R; Davies, C R; Cadena, H; Alexander, B

    1997-09-01

    In Colombia, the entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) is widely used to control the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae) in coffee plantations. Recent studies suggested that this fungus is also pathogenic to several important vectors of disease, including Phlebotomus papatasi and Lutzomyia longipalpis (Diptera: Psychodidae). The present study evaluated the use of B. bassiana as a potential biological control agent against phlebotomine sand flies in Colombian coffee plantations. Histopathologic examination indicates that B. bassiana is unable to infect sand flies under natural conditions, although dead sand flies were shown to be readily infected. In addition, laboratory bioassays where flies were exposed to the fungus applied onto coffee plants (though not filter paper) showed lower mean survival times than the control.

  11. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures?

    PubMed

    Li, Shu; Tan, Xiaoling; Desneux, Nicolas; Benelli, Giovanni; Zhao, Jing; Li, Xinhai; Zhang, Fan; Gao, Xiwu; Wang, Su

    2015-08-03

    Predator-prey interactions form the core of biological control of arthropod pests. Which tools can be used to monitor and collect carnivorous arthropods in natural habitats and targeted crops? Eco-friendly and effective field lures are urgently needed. In this research, we carried out olfactometer experiments assess innate positive chemotaxis to pollen of seven crop and banker plant by two important predatory biological control agents: the coccinellid Propylea japonica (Thunberg) and the anthocorid Orius sauteri (Poppius). We compared the attractiveness of pollens from crops and banker plants to that of common prey homogenates (aphids and thrips, respectively). Attractiveness of the tested odor sources was checked via field trapping experiments conducted in organic apple orchards and by release-recapture assays in organic greenhouse tomato crops. Maize and canola pollen were attractive to both P. japonica and O. sauteri, in laboratory and field assays. P. japonica was highly attracted by balm mint pollen, whereas O. sauteri was attracted by alfalfa pollen. Our results encourage the use of pollen from crops and banker plants as low-cost and eco-friendly attractors to enhance the monitoring and attraction of arthropod predators in biological control programs.

  12. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures?

    PubMed Central

    Li, Shu; Tan, Xiaoling; Desneux, Nicolas; Benelli, Giovanni; Zhao, Jing; Li, Xinhai; Zhang, Fan; Gao, Xiwu; Wang, Su

    2015-01-01

    Predator-prey interactions form the core of biological control of arthropod pests. Which tools can be used to monitor and collect carnivorous arthropods in natural habitats and targeted crops? Eco-friendly and effective field lures are urgently needed. In this research, we carried out olfactometer experiments assess innate positive chemotaxis to pollen of seven crop and banker plant by two important predatory biological control agents: the coccinellid Propylea japonica (Thunberg) and the anthocorid Orius sauteri (Poppius). We compared the attractiveness of pollens from crops and banker plants to that of common prey homogenates (aphids and thrips, respectively). Attractiveness of the tested odor sources was checked via field trapping experiments conducted in organic apple orchards and by release-recapture assays in organic greenhouse tomato crops. Maize and canola pollen were attractive to both P. japonica and O. sauteri, in laboratory and field assays. P. japonica was highly attracted by balm mint pollen, whereas O. sauteri was attracted by alfalfa pollen. Our results encourage the use of pollen from crops and banker plants as low-cost and eco-friendly attractors to enhance the monitoring and attraction of arthropod predators in biological control programs. PMID:26235136

  13. Quality assessment of selected commercially available whitefly and aphid biological control agents in the United States.

    PubMed

    Vasquez, Gissella M; Orr, David B; Baker, James R

    2004-06-01

    This study assessed the quality of three commercially available natural enemies used for pest management in greenhouses: the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae), the aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae), and the aphid predatory midge Aphidoletes aphidimlyza (Rondani) (Diptera: Cecidomyiidae). Shipment packaging was consistent for all natural enemies. However, there was high variability in delivery punctuality, product cost, and product information provided by each of the six selected companies. Product quantity, percentage of emergence upon arrival, percentage of total emergence, percentage of females, and percentage of flying insects were assessed using International Organization for Biological Control (IOBC) recommended procedures. The parameters with greatest variability between companies were percentage of emergence upon arrival (0.9-10.5%) and percentage of flying insects (35.4-85.0%) for E. formnosa; product quantity (623.3-833.8 aphid mummies), percentage of emergence upon arrival (6.1-41.2%) and percentage of females (51.1-54.8%) for A. colemani; and percentage of emergence upon arrival (0.0-7.7%) and percentage of females (54.6-76.2%) for A. aphlidimyza. Results are discussed in terms of the value to consumers and compared with IOBC standards.

  14. Biochemistry of Anhydrobiosis in Beddingia siricidicola, a Biological Control Agent of Sirex noctilio

    PubMed Central

    Lacey, Michael J.; Bedding, Robin A.

    2015-01-01

    Proto-anhydrobiosis of the nematode, Beddingia siricidicola, was achieved by incubation in polyethylene glycol or various concentrations up to 4 M of glycerol. The associated changes in the levels of glycerol, unbound proline, trehalose, lipids, and glycogen were determined by alkylation strategies, followed by gas chromatography or gas chromatography/mass spectrometry. The level of glycerol reached 8.9% of dry weight, proline 2.4% of dry weight, and trehalose 8.0% of dry weight within B. siricidicola that were incubated in 1.5 M glycerol over 6 d, while glycerol reached 17.9% of dry weight after incubation for the same period in 4 M glycerol. Movement was thereby reduced but the nematodes from 1.5 M glycerol revived after a few minutes upon rehydrating and they were able to avoid osmotic damage by rapidly excreting the glycerol, much of it being expelled within the first hour. The potential for storage and transport of this nematode for the biological control of the pine-killing wasp, Sirex noctilio, was greatly improved when nematode suspensions were maintained in 1.5 M glycerol under refrigeration. PMID:26170473

  15. Differences in seasonal variation between two biotypes of Megamelus scutellaris (Hemiptera: Delphacidae), a biological control agent for Eichhornia crassipes in Florida.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate matching between the native and adventive ranges of insects used for biological control is a generally accepted strategy for both increasing the likelihood of establishing an agent, as well as improving its overall performance, thereby maximizing the potential utility of an agent across the...

  16. The importance of molecular tools in classical biological control of weeds: Two case studies with yellow starthistle candidate biological agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular analyses may play a primary role in the process of host-specificity evaluation at species and population levels; here are reported two examples of their application with new candidate biocontrol agents for yellow starthistle (YST). Ceratapion basicorne is a root-crown boring weevil that sh...

  17. Species-Specific Detection of Mycosphaerella polygoni-cuspidati as a Biological Control Agent for Fallopia japonica by PCR Assay.

    PubMed

    Kurose, Daisuke; Furuya, Naruto; Saeki, Tetsuya; Tsuchiya, Kenichi; Tsushima, Seiya; Seier, Marion K

    2016-10-01

    The ascomycete fungus Mycosphaerella polygoni-cuspidati has been undergoing evaluation as a potential classical biological control agent for the invasive weed Fallopia japonica (Japanese knotweed), which has become troublesome in Europe and North America. In advance of the potential release of a biocontrol agent into a new environment, it is crucial to develop an effective monitoring system to enable the evaluation of agent establishment and dispersal within the target host population, as well as any potential attacks on non-target species. Therefore, a primer pair was designed for direct, rapid, and specific detection of the Japanese knotweed pathogen M. polygoni-cuspidati based on the sequences of the internal transcribed spacer regions including the 5.8S rDNA. A PCR product of approximately 298 bp was obtained only when the DNA extracted from mycelial fragments of M. polygoni-cuspidati was used. The lower limit of detection of the PCR method was 100 fg of genomic DNA. Using the specific primer pair, M. polygoni-cuspidati could be detected from both naturally and artificially infected Japanese knotweed plants. No amplification was observed for other Mycosphaerella spp. or fungal endophytes isolated from F. japonica. The designed primer pair is thus effective for the specific detection of M. polygoni-cuspidati in planta.

  18. Biologic Agents in Inflammatory Eye Disease

    PubMed Central

    Posarelli, Chiara; Arapi, Ilir; Figus, Michele; Neri, Piergiorgio

    2011-01-01

    Non-infectious uveitis is a potentially sight threatening disease. Along the years, several therapeutic strategies have been proposed as a means to its treatment, including local and systemic steroids, immunosuppressives and more recently, biologic agents. The introduction of biologics can be defined as a new era: biologic therapies provide new options for patients with refractory and sight threatening inflammatory disorders. The availability of such novel treatment modalities has markedly improved the therapy of uveitis and considerably increased the possibility of long-term remissions. This article provides a review of current literature on biologic agents, such as tumor necrosis factor blockers, anti-interleukins and other related biologics, such as interferon alpha, for the treatment of uveitis. Several reports describe the efficacy of biologics in controlling a large number of refractory uveitides, suggesting a central role in managing ocular inflammatory diseases. However, there is still lack of randomized controlled trials to validate most of their applications. Biologics are promising drugs for the treatment of uveitis, showing a favorable safety and efficacy profile. On the other hand, lack of evidence from randomized controlled studies limits our understanding as to when commence treatment, which agent to choose, and how long to continue therapy. In addition, high cost and the potential for serious and unpredictable complications have very often limited their use in uveitis refractory to traditional immunosuppressive therapy. PMID:22454752

  19. Biologic agents in inflammatory eye disease.

    PubMed

    Posarelli, Chiara; Arapi, Ilir; Figus, Michele; Neri, Piergiorgio

    2011-10-01

    Non-infectious uveitis is a potentially sight threatening disease. Along the years, several therapeutic strategies have been proposed as a means to its treatment, including local and systemic steroids, immunosuppressives and more recently, biologic agents. The introduction of biologics can be defined as a new era: biologic therapies provide new options for patients with refractory and sight threatening inflammatory disorders. The availability of such novel treatment modalities has markedly improved the therapy of uveitis and considerably increased the possibility of long-term remissions. This article provides a review of current literature on biologic agents, such as tumor necrosis factor blockers, anti-interleukins and other related biologics, such as interferon alpha, for the treatment of uveitis. Several reports describe the efficacy of biologics in controlling a large number of refractory uveitides, suggesting a central role in managing ocular inflammatory diseases. However, there is still lack of randomized controlled trials to validate most of their applications. Biologics are promising drugs for the treatment of uveitis, showing a favorable safety and efficacy profile. On the other hand, lack of evidence from randomized controlled studies limits our understanding as to when commence treatment, which agent to choose, and how long to continue therapy. In addition, high cost and the potential for serious and unpredictable complications have very often limited their use in uveitis refractory to traditional immunosuppressive therapy.

  20. Agent-based modelling in synthetic biology

    PubMed Central

    2016-01-01

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. PMID:27903820

  1. Heterapoderopsis bicallosicollis (Coleoptera: Attelabidae): A Potential Biological Control Agent for Triadeca sebifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to China, Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae), is an invasive plant in the southeastern United States of America. The leaf-rolling weevil, Apoderus bicallosicollis Voss is a common herbivore attacking the plant in China. To evaluate its potential as a biological contr...

  2. Differential performance of tropical soda apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats.

    PubMed

    Diaz, Rodrigo; Aguirre, Carlos; Wheeler, Gregory S; Lapointe, Stephen L; Rosskopf, Erin; Overholt, William A

    2011-12-01

    The leaf feeding beetle Gratiana boliviana Spaeth has been released since 2003 in the southeastern United States for biological control of tropical soda apple, Solanum viarum Dunal. In Florida, G. boliviana can be found on tropical soda apple growing in open pastures as well as in shady wooded areas. The objectives of this study were to determine the effect of light intensity on the performance of tropical soda apple and G. boliviana under greenhouse conditions, and to determine the abundance and mortality of G. boliviana in open and shaded habitats. Leaves growing in the shade were less tough, had higher water and nitrogen content, lower soluble sugars, and less dense and smaller glandular trichomes compared with leaves growing in the open. Plants grew slightly taller and wider under shaded conditions but total biomass was significantly reduced compared with plants grown in the open. In the greenhouse, G. boliviana had higher immature survival, greater folivory, larger adult size, and higher fecundity when reared on shaded plants compared with open plants. Sampling of field populations revealed that the overall abundance of G. boliviana was lower but leaf feeding damage was higher in shaded habitats compared with the open habitats. The percentage of eggs surviving to adult was greater in shaded compared with open habitats. The abundance of predators was higher in the open pasture and was positively correlated with the abundance of G. boliviana. These results indicate that not only plant quality but also habitat structure are important to the performance of weed biological control agents.

  3. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    PubMed

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi.

  4. The aggregation pheromone of Diorhabda elongata, a biological control agent of saltcedar (Tamarix spp.): identification of two behaviorally active components.

    PubMed

    Cossé, Allard A; Bartelt, Robert J; Zilkowski, Bruce W; Bean, Daniel W; Petroski, Richard J

    2005-03-01

    The leaf beetle Diorhabda elongata Brullé (Coleoptera: Chrysomelidae) has been introduced as a biological control agent for saltcedars, Tamarix spp., an exotic, invasive weedy tree in the western United State. Gas chromatographic (GC) analysis of volatiles collected from feeding male or female beetles, or saltcedar foliage alone, showed two components produced almost exclusively by males. These compounds elicited responses from antennae of male and female beetles in GC-electroantennographic detection (EAD) analyses. The compounds were identified as (2E,4Z)-2,4-heptadienal (1) and (2E,4Z)-2,4-heptadien-1-ol (2) by GC-mass spectrometry (MS), and confirmed with authentic standards. The two compounds were also detected at trace levels from feeding females and foliage controls, but the amounts from feeding males were 8-40 times higher, typically 55-125 ng per day per male. The amounts of 1 and 2 in collections from females did not differ significantly from amounts collected from control foliage. In field trials, 2 as a single component was as attractive as a 1:1 blend of 1 and 2. Compound 1 as a single component was more attractive than controls, but much less attractive than 2 or the blend. Males and females were attracted in about equal numbers, indicating that this is an aggregation pheromone.

  5. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture.

    PubMed

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S; Viterbo, Ada; Yarden, Oded

    2011-08-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents.

  6. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    PubMed Central

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  7. Screening Spanish isolates of steinernematid nematodes for use as biological control agents through laboratory and greenhouse microcosm studies.

    PubMed

    Campos-Herrera, Raquel; Gutiérrez, Carmen

    2009-02-01

    Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC(90) to kill larvae in two days was 220, 753 and 4178 IJs/cm(2) for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC(90) for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications.

  8. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.

    PubMed Central

    Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

    1997-01-01

    Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205

  9. Livestock as a potential biological control agent for an invasive wetland plant

    PubMed Central

    Mozdzer, Thomas; Angelini, Christine; Brundage, Jennifer E.; Esselink, Peter; Bakker, Jan P.; Gedan, Keryn B.; van de Koppel, Johan; Baldwin, Andrew H.

    2014-01-01

    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species. PMID:25276502

  10. Evaluation of mortality factors using life table analysis of Gratiana boliviana, a biological control agent of tropical soda apple in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple (TSA), Solanum viarum Dunal (Solanaceae), has invaded many pastures and natural areas in Florida. The biological control agent Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) is providing adequate control of TSA stands in South and Central Florida. However, poor or no es...

  11. Leptotrachelus dorsalis (F.) (Coleoptera: Carabidae): A candidate biological control agent of the sugarcane borer in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the registration and wide-spread use of insect growth regulators (e.g. tebufenozide and novaluron) for control of sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae) in Louisiana, larvae of the ground beetle, Leptotrachelus dorsalis (F.) (Coleoptera: Carabidae) have become appar...

  12. Duddingtonia flagrans, Monacrosporium thaumasium and Pochonia chlamydosporia as possible biological control agents of Oxyuris equi and Austroxyuris finlaysoni.

    PubMed

    Braga, F R; Araújo, J V; Silva, A R; Araujo, J M; Carvalho, R O; Campos, A K; Tavela, A O; Ferreira, S R; Frassy, L N; Alves, C D F

    2010-03-01

    The action of four fungal isolates of the species Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34a) and Pochonia chlamydosporia (VC1 and VC4) on eggs of Oxyuris equi and Austroxyuris finlaysoni was evaluated in two assays (A and B). Eggs of O. equi (Test A) and A. finlaysoni (Test B) were plated on Petri dishes with 2% water-agar with grown fungal isolates and control without fungus. After 5, 10 and 15 days, 100 eggs were collected and classified according to the following parameters: type 1 effect, physiological and biochemical effect without morphological damage to the eggshell; type 2 effect, lytic effect with morphological alteration of the eggshell and embryo; and type 3 effect, lytic effect with morphological alteration of the eggshell and embryo, hyphal penetration and internal egg colonization. Pochonia chlamydosporia isolates VC1 and VC4 showed ovicidal activity for type 1, 2 and 3 effects on eggs of O. equi and eggs of A. finlaysoni. In vitro assays A and B showed that P. chlamydosporia had a negative influence on eggs of O. equi and A. finlaysoni and can be considered as a potential biological control agent of nematodes.

  13. Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11

    PubMed Central

    Qian, Guoliang; Xu, Feifei; Venturi, Vittorio; Du, Liangcheng; Liu, Fengquan

    2014-01-01

    Lysobacter enzymogenes is a ubiquitous plant-associated and environmentally friendly bacterium emerging as a novel biological control agent of plant disease. This bacterium produces diverse antifungal factors, such as lytic enzymes and a secondary metabolite (heat-stable antifungal factor, HSAF) having antifungal activity with novel structure and mode of action. The regulatory mechanism for biosynthesis of antifungal factors is largely unknown in L. enzymogenes. The solo LuxR proteins have been shown to be widespread, playing important roles in plant-associated bacteria. Here, we cloned and studied a solo LuxR protein, LesR from L. enzymogenes strain OH11. Overexpression, but not deletion of lesR significantly impaired HSAF biosynthesis levels and antimicrobial activities but did not show visible effect on production of major lytic enzymes. Overexpression of lesR also led to remarkably accelerated cell aggregation and induced production of a melanin-like pigment in L. enzymogenes; these two phenotyes are mediated by diffusible factor cell-cell signaling system of L. enzymogenes. The C-terminus helix-turn-helix domain was shown to be critical for several lesR-controlled functions. Overall, our study provides the first example of the roles and mechanisms of a solo LuxR protein in a plant-associated L. enzymogenes. PMID:24111575

  14. Laboratory and field experimental evaluation of host plant specificity of Aceria solstitialis, a prospective biological control agent of yellow starthistle.

    PubMed

    Stoeva, Atanaska; Harizanova, Vili; de Lillo, Enrico; Cristofaro, Massimo; Smith, Lincoln

    2012-01-01

    Centaurea solstitialis (yellow starthistle, Asteraceae) is an invasive annual weed in the western USA that is native to the Mediterranean Region and is a target for classical biological control. Aceria solstitialis is an eriophyid mite that has been found exclusively in association with Ce. solstitialis in Italy, Greece, Turkey and Bulgaria. The mite feeds on leaf tissue and damages bolting plants, causing stunting, witch's broom and incomplete flower development. Field experiments and laboratory no-choice and two-way choice experiments were conducted to assess host plant specificity of the mite in Bulgaria. Mites showed the highest degree of host specificity in the field and lowest in the no-choice experiments. In the field, highest densities of mites occurred on Ce. solstitialis and Ce. cyanus (bachelor's button), and either no mites or trace numbers occurred on the other test plants: Ce. diffusa (diffuse knapweed), Carthamus tinctorius (safflower) and Cynara scolymus (artichoke). In no-choice experiments, mites persisted for 60 days on Ce. diffusa, Ce. cyanus, Ce. solstitialis, Ca. tinctorius and Cy. scolymus, whereas in two-way choice experiments mites persisted on 25% of Cy. scolymus plants for 60 days and did not persist on Ca. tinctorius beyond 40 days. The eight other species of plants that were tested in the laboratory were less suitable for the mite. These results suggest that although A. solstitialis can persist on some nontarget plants for as long as 60 days in the laboratory, it appears to be much more specific under natural conditions, and warrants further evaluation as a prospective biological control agent.

  15. Generalist-feeding subterranean mites as potential biological control agents of immature corn rootworms.

    PubMed

    Prischmann, Deirdre A; Knutson, Eric M; Dashiell, Kenton E; Lundgren, Jonathan G

    2011-11-01

    Predatory mites are important components of subterranean food webs and may help regulate densities of agricultural pests, including western corn rootworms (Chrysomelidae: Diabrotica virgifera virgifera). Implementing conservation and/or classical biocontrol tactics could enhance densities of specialist or generalist predatory mites and lead to pest suppression, but first relevant mite species must be identified and their predatory capabilities evaluated. We conducted lab assays to quantify consumption of immature rootworms and oviposition rates of various mite species. Our study indicates that rootworms are a sub-optimal food source for the mite taxa tested. However, all mite species fed upon rootworms to some degree, although consumption by nematophagous Eviphis ostrinus was extremely low. Predators consumed more rootworm larvae than eggs, and mite size was correlated with prey consumption, with larger predators eating more prey. Four mite taxa (Gaeolaelaps sp., S. miles, Gl. americana, and G. aculeifer) had detrimental effects on survival of rootworm larvae, and the latter two species also had negative impacts on densities of pest eggs. Although it is unlikely that any of these mite species by itself has a major impact on rootworm control, the community of generalist soil-dwelling mites may play an important role in regulating immature rootworm populations in the field.

  16. Graph and circuit theory connectivity models of conservation biological control agents.

    PubMed

    Koh, Insu; Rowe, Helen I; Holland, Jeffrey D

    2013-10-01

    The control of agricultural pests is an important ecosystem service provided by predacious insects. In Midwestern USA, areas of remnant tallgrass prairie and prairie restorations may serve as relatively undisturbed sources of natural predators, and smaller areas of non-crop habitats such as seminatural areas and conservation plantings (CP) may serve as stepping stones across landscapes dominated by intensive agriculture. However, little is known about the flow of beneficial insects across large habitat networks. We measured abundance of soybean aphids and predators in 15 CP and adjacent soybean fields. We tested two hypotheses: (1) landscape connectivity enhances the flow of beneficial insects; and (2) prairies act as a source of sustaining populations of beneficial insects in well-connected habitats, by using adaptations of graph and circuit theory, respectively. For graph connectivity, incoming fluxes to the 15 CP from connected habitats were measured using an area- and distance-weighted flux metric with a range of negative exponential dispersal kernels. Distance was weighted by the percentage of seminatural area within ellipse-shaped landscapes, the shape of which was determined with correlated random walks. For circuit connectivity, effective conductance from the prairie to the individual 15 CP was measured by regarding the flux as conductance in a circuit. We used these two connectivity measures to predict the abundance of natural enemies in the selected sites. The most abundant predators were Anthocoridae, followed by exotic Coccinellidae, and native Coccinellidae. Predator abundances were explained well by aphid abundance. However, only native Coccinellidae were influenced by the flux and conductance. Interestingly, exotic Coccinellidae were negatively related to the flux, and native Coccinellidae were highly influenced by the interaction between exotic Coccinellidae and aphids. Our area- and distance-weighted flux and the conductance variables showed better

  17. An evaluation of the rust fungus Gymnoconia nitensas a potential biological control agent for alien Rubus species in Hawaii

    USGS Publications Warehouse

    Gardner, D.E.; Hodges, C.S.; Killgore, E.; Anderson, R.C.

    1997-01-01

    The rust fungus Gymnoconia nitens infects blackberry (Rubus argutus) systemically in regions of the continental United States, producing bright yellow–orange masses of spores on newly developing floricanes during springtime. In tests to determine the suitability of this rust as a biological control agent for R. penetransin Hawaii, a species now thought to be conspecific with R. argutus,rooted cuttings of the Hawaiian plants were grown at North Carolina State University, inoculated, and observed. Other introduced weedy Rubus spp. in Hawaii, including R. ellipticus, R. rosifolius, and R. glaucus,as well as the two endemic species R. hawaiensis and R. macraei,also were inoculated. No species of Rubusare of commercial importance in Hawaii, but the protection of the native species, of which R. macraei is rare, was of utmost concern. The native Hawaiian species did not survive well in North Carolina in this study, however. Later availability of a plant pathogen containment laboratory in Hawaii enabled similar tests to be conducted at that facility. In addition to the above species, R. spectabilis (salmonberry), a species native to the Pacific Northwest with which the Hawaiian Rubus spp. are thought to share a common ancestor, was inoculated in Hawaii. Infection with G. nitens under natural field conditions becomes apparent only when sporulation occurs on floricanes the second year following infection. However, experimental inoculation led to early responses of chlorotic leaf flecking and puckering, leaf and stem contortion, and stem gall formation, indicating the sensitivity of R. penetrans (=R. argutus), R. hawaiensis, and R. macraei to this rust. Apparent systemic infection also resulted in sporulation on one plant of R. macraei. Ability to attack the endemic species suggests that G. nitens would not be suitable for release in Hawaii as a biological control agent, at least on the islands with populations of the native species.

  18. Biology and reproductive parameters of the brown lygodium moth, Neomusotima conspurcatalis--a new biological control agent of Old World climbing fern in Florida.

    PubMed

    Boughton, Anthony J; Pemberton, Robert W

    2012-04-01

    Neomusotima conspurcatalis Warren was first released in Florida as a weed biological control agent against Old World climbing fern in 2008, and readily established large field populations. A related biocontrol agent, Austromusotima camptozonale, had previously failed to establish despite several years of releases. Life history studies were conducted to determine whether aspects of the reproductive biology of N. conspurcatalis might account for these different outcomes. At 26.5°C, development from egg to adult averaged 22.2 ± 0.1 d, with 75% of larvae emerging as adults. The sex ratio averaged 1:0.8 (♂:♀), with both sexes emerging at the same time. Female moths typically mated once, on the first night after emergence, and began oviposition the next night. Females laid half their eggs on the first night and lived an average of 10.7 ± 0.8 d. Individual females maintained in cages with a male-biased sex ratio (3♂:1♀) produced significantly more larvae over their lifetime (140 ± 6.6 larvae) than individual females maintained at a ratio of 1♂:1♀ (111 ± 9.1 larvae). Sexual selection, either through 'male-male competition' or 'female choice' was likely responsible for this result, because there were no significant differences in mating frequency, duration of ovipositional period or female longevity to otherwise explain the difference. Two-fold greater lifetime reproductive output (average 127 ± 6.3 larvae) and deposition of half this output on the first night of oviposition, likely contributed to rapid field establishment of N. conspurcatalis compared with A. camptozonale.

  19. The efficacy of spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario.

    PubMed

    Jones, Terri; Scott-Dupree, Cynthia; Harris, Ron; Shipp, Les; Harris, Brenda

    2005-02-01

    Insecticides are the most commonly used tactic to control western flower thrips (WFT), Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), on greenhouse cucumber. However, WFT has developed resistance to several of the insecticides presently in use. In addition, some of these insecticides adversely affect greenhouse biological control agents used to control WFT, resulting in subsequent pest resurgence. Therefore, there is a need to identify novel insecticides with unique modes of action for use in integrated pest management (IPM) programs to effectively control WFT with minimal impact on associated biological control agents. In laboratory bioassays conducted in 2001, immature and adult WFT and three associated greenhouse biological control agents: Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae), Orius insidiosus Say (Hemiptera: Anthocoridae) and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) were exposed to direct, direct/residual, and residual contact applications of the novel biopesticide, spinosad (Conserve 120 SC), and the industry standard for whitefly control, endosulfan (Thiodan 50 WP). In all three types of assay, spinosad was effective against immature and adult WFT life stages. It showed low toxicity to A. cucumeris, moderate toxicity to O. insidiosus and high toxicity to E formosa. Greenhouse studies involving exposure of immature and adult WFT and adult biological control agents to cucumber leaves sprayed previously with spinosad supported the laboratory data. Spinosad showed low toxicity to A. cucumeris exposed to leaves 1 day after treatment (DAT), moderate toxicity to O. insidiosus 1 and 8 DAT, and high toxicity to E. formosa up to 28 DAT. These data, along with spinosad's unique mode of action, suggest it would be a valuable reduced-risk control agent for greenhouse cucumber IPM programs.

  20. Pre-release assessment of Gadirtha inexacta a proposed biological control agent of Chinese tallow (Triadica sebifera) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to China, Chinese tallow, Triadica sebifera (Euphorbiaceae) is an aggressive woody invader in the southeastern United States. The noctuid, Gadirtha inexacta, is a multivoltine herbivore attacking this plant in China. To evaluate its potential as a biological control agent in the United States...

  1. Pseudacteon spp. (Diptera: Phoridae) biological control agents of Solenopsis spp. (Hymenoptera: Formicidae) in Louisiana: statewide distribution and Kneallhazia solenopsae (Microsporidia: Thelohaniidae) prevalence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phorid flies, Pseudacteon spp. (Diptera: Phoridae), have been released in the United States since 1996 as biological control agents for imported fire ant, Solenopsis invicta Buren, Solenopsis richteri Forel, and their hybrid (Hymenoptera: Formicidae), management. A statewide survey was conducted in ...

  2. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  3. Seasonality and movement of adventive populations of the arundo wasp (Hymenoptera: Eurytomidae), a biological control agent of giant reed in the Lower Rio Grande Basin in south Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The arundo wasp, Tetramesa romana, has been permitted as a biological control agent for the invasive perennial grass, Arundo donax. Evidence of adventive populations of the arundo wasp in the Lower Rio Grande Basin was confirmed with a spatio-temporal survey spanning more than 350 river miles. A ...

  4. Pre-release assessment of impact on Arundo donax by the candidate biological control agents, Tetramesa romana (Hymenoptera: Eurytomidae) and Rhizaspidiotus donacis (Homoptera: Diaspididae) under quarantine conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impact by two potential biological control agents, Tetramesa romana Walker and Rhizaspidiotus donacis (Leonardi), on the invasive weed, giant reed, Arundo donax L., was assessed in a quarantine greenhouse before release. Tetramesa romana alone and T. romana plus R. donacis significantly damaged A. ...

  5. Post-establishment assessment of host plant specificity of Arytainilla spartiophila (Hemiptera: Psyllidae), an adventive biological control agent of Scotch broom, Cytisus scoparius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scotch broom, Cytisus scoparius (Fabaceae), is a shrub native to Europe that is invasive in the USA, New Zealand and Australia. The psyllid Arytainilla spartiophila has been purposely introduced to Australia and New Zealand as a biological control agent of C. scoparius, but is an accidental introduc...

  6. A new species of Gadirtha Walker (Nolidae: Collomeninae): a proposed biological control agent of Chinese tallow (Triadica sebifera (L.) Small) (Euphorbiaceae) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gadirtha fusca, new species, is described from Hong Kong. Adult, male and female genitalia, larva, and pupa are described, illustrated, and compared with Gadirtha impingens Walker. Species is a possible biological control agent for Chinese tallow (Triadica sebifera (L.) Small, Euphorbiaceae) in the ...

  7. Population establishment of and promising early results with the brown lygodium moth, Neomusotima conspurcatalis - a candidate biological control agent of Old World climbing fern, Lygodium microphyllum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Old World climbing fern, Lygodium microphyllum is one of the most serious invasive, weeds affecting southern and central Florida. Management of this weed using traditional strategies has proved difficult and expensive, with limited long-term success. In early 2008, a new biological control agent cal...

  8. Dispersal and establishment of new populations of the biological control agent Floracarus perrepae (Acariformes: Eriophyidae) on Old World climbing fern, Lygodium microphyllum (Polypodiales: Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mite Floracarus perrepae, a biological control agent of Lygodium microphyllum, Old World climbing fern, was released in south Florida from 2008 to 2010 but did not readily establish in the field. The original release sites were resurveyed in 2013 and the mite has established within Jonathan Dick...

  9. Description of a new species of Anagyrus Howard (Hymenoptera: Chalcidoidea: Encyrtidae), a promising biological control agent of the invasive Madeira mealybug, Phenacoccus madeirensis Green (Hemiptera: Sternorrhyncha: Pseudococcidae).

    PubMed

    Rameshkumar, A; Noyes, J S; Poorani, J; Chong, J H

    2013-01-01

    Anagyrus amnestos sp. n. (Hymenoptera: Encyrtidae), a promising parasitoid of the invasive Madeira mealybug, Phenacoccus madeirensis Green (Hemiptera: Pseudococcidae), is described based on material collected from India. This parasitoid was identified as Anagyrus sp. nov. nr. sinope Noyes & Menezes in recent literature, and was initially collected in Georgia, USA. It was found to be a specific parasitoid of the Madeira mealybug and its biological attributes and potential as a biological control agent of this pest were studied. In what appears to be a case of fortuitous introduction, we detected this parasitoid in large numbers on Madeira mealybugs from the southern Indian state of Karnataka, where the mealybug is a recently introduced invasive pest. In view of its economic importance as a potential biological control agent of the Madeira mealybug, it is formally described and illustrated here. Comparative accounts of the new species vis-a-vis its close relatives in India and the Americas are provided.

  10. Intraguild predation and competitive displacement between Nesidiocoris tenuis and Dicyphus maroccanus, 2 biological control agents in tomato pests.

    PubMed

    Salas Gervassio, Nadia G; Pérez-Hedo, Meritxell; Luna, María G; Urbaneja, Alberto

    2016-05-26

    Dicyphus maroccanus Wagner and Nesidiocoris tenuis Reuter (Hemiptera: Miridae) are 2 biological control agents in tomatoes. Through the crop seasons, a natural shift in the occurrence of both mirids in favor of N. tenuis has been observed at the end of the cropping cycle in eastern Spain. To better optimize their conservation, the reasons for the observed change, such as intraguild interactions (IGP) or the influence of environmental conditions, are worth elucidating. To do this, we first studied the IGP of adult females on heterospecific nymphs in the laboratory. We next studied exploitative competition between adults and nymphs of each species when feeding on Ephestia kueniella Zeller (Lepidoptera: Pyralidae) eggs in the laboratory. Finally, to analyze the competitive displacement between both mirids, we conducted a semifield experiment in which both predators were released together. All experiments were conducted at 2 temperature regimes (20 and 25°C). Adult-to-nymph intraguild interactions occurred only at 25 ºC at very low levels, showing that N. tenuis attacked and consumed a greater proportion of heterospecific nymphs. Nesidiocoris tenuis was a better competitor than D. maroccanus when feeding on the shared prey in the presence of its heterospecific nymph at 25 ºC. In semifield conditions, N. tenuis showed a competitive advantage over D. maroccanus at both temperatures. We conclude that there is not direct interference between both species, however, N. tenuis has a greater ability to outcompete, since it is best adapted to higher temperatures and it is able to remove food sources for D. maroccanus.

  11. Cultural and chemical pest control methods alter habitat suitability for biological control agents: An example from Wisconsin commercial cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated pest control program requires an in-depth understanding of the compatibility of all control strategies used. In Wisconsin commercial cranberry production, early-season control strategies may include either a broad-spectrum insecticide application or a corresponding spring flood, along ...

  12. Native natural enemies of native woodborers: Potential as biological control agents for the Asian longhorned beetle, Anoplophora glabripennis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian Longhorned Beetle, Anoplophora glabripennis (ALB), is among high risk invasive species that recently invaded the U.S. from China. ALB has attacked 25 deciduous tree species in 13 genera in N.A., most notable seven maple species. Biological control represents an alternative approach for control...

  13. Egg Parasitoids from Pakistan as possible classical biological control agents of the invasive pest, Bagrada hilaris (Heteroptera: Pentatomidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly invasive pest stink bug, Bagrada hilaris, threatens the cole crop industry and certain ornamentals in the U.S. Without its co-evolved natural enemies, it is likely to spread from the Southwest U.S. to the east coast, requiring millions more dollars to control it. If key biological control ...

  14. The Phylogenetic Relationships of Introduced Aphelinus (Hymenoptera: aphelinidae), Biological Control Agents of the Russian Wheat Aphid (Homoptera: aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species of Aphelinus have been introduced to the United States from the Old World for biological control of the Russian wheat aphid, Diuraphis noxia (Modvilko). Reproductive incompatibility has been observed among populations collected from different geographic areas. We examined whether or ...

  15. Preliminary host range assessment of Asian Chrysochus spp. (Coleoptera: Chrysomelidae), potential biological control agents of Vincetoxicum spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The European herbaceous perennials pale swallow-wort (Vincetoxicum rossicum) and black swallow-wort (V. nigrum; Apocynaceae, subfamily Asclepiadoideae) have been the subject of classical biological control efforts, due to their invasion of various natural areas and managed habitats in the northeaste...

  16. Differential performance of tropical soda apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaf feeding beetle Gratiana boliviana Spaeth has been released since 2003 in the southeastern United States for biological control of tropical soda apple, Solanum viarum Dunal. In Florida, G. boliviana can be found on tropical soda apple growing in open pastures as well as in shady wooded areas...

  17. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  18. The release and unsuccessful establishment of the Melaleuca biological control agent Fergusonina turneri and its mutualistic nematode Fergusobia quinquenerviae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian tree Melaleuca quinquenervia (Cav.) S.T. Blake is an invasive weed in wetland systems of Florida, USA. A biological control program targeting M. quinquenervia resulted in the simultaneous release of the gall-fly Fergusonina turneri Taylor and the nematode Fergusobia quinquenerviae Dav...

  19. Phylogeny and genetic diversity of flea beetles (Aphthona sp.) introduced to North America as biological control agents for leafy spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A molecular phylogeny is presented for the five main species of Aphthona flea beetles that were introduced to North America in conjunction with the leafy spurge biological control program. The mitochondrial genome was examined using PCR-RFLP of a 9000 bp segment and nucleotide sequencing of a 575 bp...

  20. Laboratory and field experimental evaluation of host plant specificity of Aceria solstitialis, a prospective biological control agent of yellow starthistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow starthistle (Centaurea solstitialis) is an invasive annual weed in the western USA that is native to the Mediterranean Region and is a target for classical biological control. Aceria solstitialis is an eriophyid mite that has been found exclusively in association with yellow starthistle in I...

  1. A new species of Gadirtha Walker (Nolidae, Eligminae): a proposed biological control agent of Chinese tallow (Triadica sebifera (L.) Small) (Euphorbiaceae) in the United States.

    PubMed

    Pogue, Michael G

    2014-01-01

    Gadirtha fusca sp. n., is described from Guangxi Province, China. Gadirtha fusca differs in forewing color and pattern, male and female genitalia, and in larval pattern from all other species of Gadirtha. Gadirtha fusca has been evaluated as a potential biological control agent for Chinese tallow (Triadica sebifera (L.) Small, Euphorbiaceae) in the southeastern United States. Adult, male and female genitalia, larva, and pupa are described, illustrated, and compared with Gadirtha impingens Walker.

  2. Geographic distribution and regional impacts of Oxyops vitiosa (Coleoptera: Curculionidae) and Boreioglycaspis melaleucae (Hemiptera: Psyllidae), biological control agents of the invasive tree Melaleuca quinquenervia.

    PubMed

    Balentine, K M; Pratt, P D; Dray, F A; Rayamajhi, M B; Center, T D

    2009-08-01

    The invasive tree Melaleuca quinquenervia (Cav.) Blake is widely distributed throughout peninsular Florida and poses a significant threat to species diversity in the wetland systems of the Everglades. Mitigation of this threat includes the areawide release campaign of the biological control agents Oxyops vitiosa Pascoe and Boreioglycaspis melaleucae Moore. We summarize the results of this release effort and quantify the resulting geographic distribution of the herbivores as well as their regional impact on the target weed. A combined total of 3.3 million individual Melaleuca biological control agents have been redistributed to 407 locations and among 15 Florida counties. Surveys of the invaded area indicate that the geographic distribution of O. vitiosa encompasses 71% of the Melaleuca infestation. Although released 5 yr later, the distribution of B. melaleuca is slightly greater than its predecessor, with a range including 78% of the sampled Melaleuca stands. Melaleuca stands outside both biological control agents' distributions occurred primarily in the northern extremes of the tree's range. Strong positive association between herbivore species was observed, with the same density of both species occurring in 162 stands and no evidence of interspecific competition. Soil type also influenced the incidence of biological control agents and the distribution of their impacts. The odds of encountering O. vitiosa or B. melaleucae in cells dominated by sandy soils were 2.2 and 2.9 times more likely than those predominated by organically rich soils. As a result, a greater level of damage from both herbivores was observed for stands growing on sandy versus organic-rich soils.

  3. Biology and host range of Tecmessa elegans (Lepidoptera:Notodontidae) a leaf-feeding moth evaluated as a potential biological control agent for Schinus terebinthifolius (Sapindales: Anacardiaceae) in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During surveys for natural enemies that could potentially be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper) which is invasive in the USA, the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the ...

  4. Native range assessment of classical biological control agents: impact of inundative releases as pre-introduction evaluation.

    PubMed

    Jenner, W H; Mason, P G; Cappuccino, N; Kuhlmann, U

    2010-08-01

    Diadromus pulchellus Wesmael (Hymenoptera: Ichneumonidae) is a pupal parasitoid under consideration for introduction into Canada for the control of the invasive leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae). Since study of the parasitoid outside of quarantine was not permitted in Canada at the time of this project, we assessed its efficacy via field trials in its native range in central Europe. This was done by simulating introductory releases that would eventually take place in Canada when a permit for release is obtained. In 2007 and 2008, experimental leek plots were artificially infested with pest larvae to mimic the higher pest densities common in Canada. Based on a preliminary experiment showing that leek moth pupae were suitable for parasitism up to 5-6 days after pupation, D. pulchellus adults were mass-released into the field plots when the first host cocoons were observed. The laboratory-reared agents reproduced successfully in all trials and radically reduced leek moth survival. Taking into account background parasitism caused by naturally occurring D. pulchellus, the released agents parasitized at least 15.8%, 43.9%, 48.1% and 58.8% of the available hosts in the four release trials. When this significant contribution to leek moth mortality is added to previously published life tables, in which pupal parasitism was absent, the total pupal mortality increases from 60.1% to 76.7%. This study demonstrates how field trials involving environmental manipulation in an agent's native range can yield predictions of the agent's field efficacy once introduced into a novel area.

  5. Vaccines against biologic agents: uses and developments.

    PubMed

    Ales, Noel C; Katial, Rohit K

    2004-03-01

    Although the Geneva protocol that prohibits the use of chemical and biologic weapons was ratified in 1925, many countries failed to accept this protocol: others stipulated retaliation, and some, like the United States, did not ratify the protocol for decades. This delay allowed the continued development of chemical and biologic agents. Members of the health care community are responsible for determining the best way to protect society from the potentially devastating effects of these biologic agents. Ideally,these diseases would be prevented from ever developing into systemic illnesses. In the past, vaccination has been a successful means of eradicating disease. Vaccines remain a hopeful therapy for the future, but time is short,and there are many obstacles.Information regarding bioterrorism agents and their treatments comes mainly from dated data or from in vitro or animal studies that may not apply to human treatment and disease. Additionally, the current threat of bioterrorism does not allow enough time for accurate, well-designed,controlled studies in humans before the release of investigational vaccines. Furthermore, some human studies would not be safe or ethical. Finally,many members of society suffer from illnesses that would put them at high risk to receive prophylactic vaccination. It is therefore naive to believe that vaccines would be the ultimate protection from these agents. In addition to vaccine development, there must be concurrent investigations into disease management and treatment. Even in instances in which vaccination is known to be an effective means of disease protection. biologic agents may be presented in a manner that renders vaccines ineffective. Virulent strains of organisms may be used, more than one organism may be used in tandem to increase virulence, and strains may be selected for antibiotic and vaccine resistance. Genetically engineered strains may use virulence factors other than those targeted in vaccines, and high

  6. Biological control of ticks

    USGS Publications Warehouse

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  7. History of chemical and biological warfare agents.

    PubMed

    Szinicz, L

    2005-10-30

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents.

  8. Method For Detecting Biological Agents

    DOEpatents

    Chen, Liaohai; McBranch, Duncan W.; Wang, Hsing-Lin; Whitten, David G.

    2005-12-27

    A sensor is provided including a polymer capable of having an alterable measurable property from the group of luminescence and electrical conductivity, the polymer having an intermediate combination of a recognition element, a tethering element and a property-altering element bound thereto and capable of altering the measurable property, the intermediate combination adapted for subsequent separation from the polymer upon exposure to an agent having an affinity for binding to the recognition element whereupon the separation of the intermediate combination from the polymer results in a detectable change in the alterable measurable property, and, detecting said detectable change in the alterable measurable property.

  9. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers.

    PubMed

    Muirhead, Kate A; Murphy, Nicholas P; Sallam, Nader; Donnellan, Stephen C; Austin, Andrew D

    2012-06-01

    The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The

  10. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold, by Pseudomonas species on canola petals.

    PubMed

    Behnam, S; Ahmadzadeh, M; Sharifi Tehrani, A; Hedjaroude, Gh A; Farzaneh, M

    2007-01-01

    Sclerotinia sclerotiorum is an important pathogen on canola. Due to the public concern over pesticide use, alternative methods of disease control, such as biological control, should be considered. Several bacterial strains were isolated from canola and soja plants. Inhibition of S. sclerotiorum by bacterial strains in vitro was assayed on PDA medium in dual culture test. Eight Pseudomonas sp. strains (PB-3, PB-4, PB-5, PB-6, PB-7, PB-8, PB-10 and PB-11) caused inhibition zone against 5. sclerotiorum hyphal growth. The biocontrol potential of the bacteria was tested in a plant assay. Disease suppression was investigated using a petal inoculation technique. Canola petals were pretreated with bacteria, and then inoculated with 5. sclerotiorum ascospores 24 h later. Greenhouse experiment showed that application of Pseudomonas sp. strains (1 x 10(8) cfu ml(-1)) effectively suppressed S. sclerotiorum (1 x 10(5) ascospores ml(-1)) on petals and all of them achieved significant (P<0.01) disease suppression. Fourteen days after inoculation, strain PB-3 had 88/7% disease control and strain PB-4 had 69/9% disease control. Result from all studies indicates PB-3 to be effective biocontrol against S. sclerotiorum of canola. PB-3, PB-4, PB-7, PB-8, PB-10 and PB-11 were identified as Pseudomonas fluorescens biovar III. PB-5 and PB-6 was identified as Pseudomonas fluorescens biovar II. Strains PB-3, PB-4, PB-6, PB-10 and PB-11 produced protease and HCN. Strain PB-5 produce protease; no HCN.

  11. Isolation of Secondary Metabolites from the Soil-Derived Fungus Clonostachys rosea YRS-06, a Biological Control Agent, and Evaluation of Antibacterial Activity.

    PubMed

    Zhai, Ming-Ming; Qi, Feng-Ming; Li, Jie; Jiang, Chun-Xiao; Hou, Yue; Shi, Yan-Ping; Di, Duo-Long; Zhang, Ji-Wen; Wu, Quan-Xiang

    2016-03-23

    The fungus Clonostachys rosea is widely distributed all over the world. The destructive force of this fungus, as a biological control agent, is very strong to lots of plant pathogenic fungi. As part of the ongoing search for antibiotics from fungi obtained from soil samples, the secondary metabolites of C. rosea YRS-06 were investigated. Through efficient bioassay-guided isolation, three new bisorbicillinoids possessing open-ended cage structures, tetrahydrotrichodimer ether (1) and dihydrotrichodimer ether A and B (2 and 3), and 12 known compounds were obtained. Their structures were determined via extensive NMR, HR-ESI-MS, and CD spectroscopic analyses and X-ray diffraction data. Compounds 1-3 are rare bisorbicillinoids with a γ-pyrone moiety. The biological properties of 1-15 were evaluated against six different Gram-positive and Gram-negative bacteria. Bisorbicillinoids, 2-5, and TMC-151 C and E, 14 and 15, showed potent antibacterial activity.

  12. Impact of biological control agents on fusaric acid secreted from Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen in Gladiolus grandiflorus corms.

    PubMed

    Nosir, Walid; McDonald, Jim; Woodward, Steve

    2011-01-01

    Fusaric acid (FA) (5-n-butylpuridine 2-carboxyl acid), a highly toxic secondary metabolite produced by Fusarium oxysporum strains, plays a significant role in disease development. The abilities of three F. oxysporum f. sp. gladioli (Massey) Snyder and Hansen isolates (G010; 649-91; and 160-57) to produce FA in infected Gladiolus corm tissues was evaluated in vitro in relation to the presence of two biological control agents, Trichoderma harzianum T22, and Aneurinobacillus migulanus. Pathogenicity tests were used to differentiate between the abilities of the F. oxysporum strains to secrete FA. FA was identified using LC/MS and quantified using HPLC. Isolate G010 was significantly more virulent (P < 0.01) on Gladiolus grandiflorus corms; it secretes 1.8 μM FA/g fresh weight corm into inoculated Gladiolus. Moreover, G010 was the only isolate that produced FA among the three examined isolates. There was a correlation between the corm lesion area and the FA secretion ability of F. oxysporum f. sp. gladioli (P < 0.001; r (2) = 0.96). No FA was detected in PDA cultures of F.oxysporum f. sp. gladioli isolates. The presence of T. harzianum T22 appeared to prevent FA secretion into the corms. In the presence of A. migulanus, however, the amount of FA secreted into the corm tissues increased. These results support the use of T. harzianum as an effective biological control agent against F. oxysporum f. sp. gladioli.

  13. Biological Warfare Agents, Toxins, Vectors and Pests as Biological Terrorism Agents

    DTIC Science & Technology

    2003-07-01

    virus Omsk fever virus Human pathogens ( bacteria , rickettsiae , protozoa and fungi) as biological terrorism agents: Bacteria / Rickettsia 1...Bacillus anthracis 2. Yersinia pestis 3. Francisella tularensis 4. Rickettsia prowazekii 5. Rickettsia rickettsii 6. Bulkholderia (Pseudomonas) mallei...assessment according to criteria for selecting pathogens as biological terrorism agents. Table 1b. Human pathogens ( bacteria , rickettsiae , protozoa

  14. An evaluation of the wilt-causing bacterium Ralstonia solanacearum as a potential biological control agent for the alien Kahili ginger (Hedychium gardnerianum) in Hawaiian forests

    USGS Publications Warehouse

    1999-01-01

    Kahili ginger (Hedychium gardnerianum) is an invasive weed in tropical forests in Hawaii and elsewhere. Bacterial wilt caused by the ginger strain of Ralstonia(=Pseudomonas) solanacearum systemically infects edible ginger (Zingiber officinale) and ornamental gingers (Hedychium spp.), causing wilt in infected plants. The suitability of R. solanacearum as a biological control agent for kahili ginger was investigated by inoculating seedlings and rooted cuttings of native forest plants, ornamental ginger, and solanaceous species to confirm host specificity. Inoculation via stem injection or root wounding with a bacterial–water suspension was followed by observation for 8 weeks. Inoculations on H. gardnerianum were then carried out in ohia-lehua (Metrosideros polymorpha) wet forests of Hawaii Volcanoes National Park to determine the bacterium's efficacy in the field. No native forest or solanaceous species developed wilt or other symptoms during the study. The bacterium caused limited infection near the inoculation site on H. coronarium, Z. zerumbet, Heliconia latispatha, and Musa sapientum. However, infection did not become systemic in any of these species, and normal growth resumed following appearance of initial symptoms. All inoculated H. gardnerianum plants developed irreversible chlorosis and severe wilting 3–4 weeks following inoculation. Systemic infection also caused death and decay of rhizomes. Most plants were completely dead 16–20 weeks following inoculation. The destructiveness of the ginger strain of R. solanacearum to edible ginger has raised questions regarding its use for biological control. However, because locations of kahili ginger infestations are often remote, the risk of contaminating edible ginger plantings is unlikely. The ability of this bacterium to cause severe disease in H. gardnerianum in the field, together with its lack of virulence in other ginger species, contributes to its potential as a biological control agent.

  15. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetle (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge {Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  16. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge (Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed, but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  17. Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent for tamarisk (Tamarix spp.).

    PubMed

    Bean, Daniel W; Wang, Tammy; Bartelt, Robert J; Zilkowski, Bruce W

    2007-06-01

    The tamarisk leaf beetle, Diorhabda elongata Brullé deserticola Chen, was collected in northwestern China and has been released in the western United States to control tamarisk (Tamarix spp.). Characteristics of diapause and reproductive development in D. elongata were examined to improve management as a biocontrol agent. Under long days, 16:8 (L:D) h, males began to emit aggregation pheromone within 2-3 d of adult emergence, mating occurred, and females oviposited within 7 d of adult emergence. Under short days, 12:12 (L:D) h, males did not emit pheromone, mating did not occur, and both males and females entered reproductive diapause marked by inconspicuous gonads and hypertrophied fat body. Ovaries of diapausing females lacked vitellogenic oocytes, and the ovarioles were clear and narrow, whereas reproductive females had enlarged ovaries with two to three yellow oocytes per ovariole. Diapausing males had thin, transparent accessory glands and ejaculatory ducts, whereas reproductive males had thick white accessory glands and white opaque ejaculatory ducts. Sensitivity to diapause-inducing photoperiods extended into the adult stage. Reproductive females ceased oviposition, resorbed oocytes, and entered diapause when switched from long to short days. Diapause-destined insects ceased feeding and entered the leaf litter 10-20 d after adult emergence, whereas reproductive insects remained on the plants and fed for at least 30 d. Reproductive insects exhibited dispersal behaviors, such as attempted flights, whereas diapause-destined insects did not show dispersal behaviors. Information gained from these studies will be used to better manage populations in the field and to improve rearing and storage in the laboratory.

  18. Introduction, establishment, and potential geographic range of Carmenta sp. nr ithacae (Lepidoptera: Sesiidae), a biological control agent for Parthenium hysterophorus (Asteraceae) in Australia.

    PubMed

    Dhileepan, K; Trevino, M; Vitelli, M P; Senaratne, K A D Wilmot; McClay, A S; McFadyen, R E

    2012-04-01

    Parthenium (Parthenium hysterophorus L.), a major weed causing economic, environmental, and human and animal health problems in Australia and several countries in Asia, Africa, and the Pacific, has been a target for biological control in Australia since the mid-1970s. Nine species of insects and two rust fungi have been introduced as biological control agents into Australia. These include Carmenta sp. nr ithacae, a root feeding agent from Mexico. The larvae of C. sp. nr ithacae bore through the stem-base into the root where they feed on the cortical tissue of the taproot. During 1998-2002, 2,816 larval-infested plants and 387 adults were released at 31 sites across Queensland, Australia. Evidence of field establishment was first observed in two of the release sites in central Queensland in 2004. Annual surveys at these sites and nonrelease sites during 2006-2011 showed wide variations in the incidence and abundance of C. sp. nr ithacae between years and sites. Surveys at three of the nine release sites in northern Queensland and 16 of the 22 release sites in central Queensland confirmed the field establishment of C. sp. nr ithacae in four release sites and four nonrelease sites, all in central Queensland. No field establishment was evident in the inland region or in northern Queensland. A CLIMEX model based on the native range distribution of C. sp. nr ithacae predicts that areas east of the dividing range along the coast are more suitable for field establishment than inland areas. Future efforts to redistribute this agent should be restricted to areas identified as climatically favorable by the CLIMEX model.

  19. Cyprinid herpesvirus 3 as a potential biological control agent for carp (Cyprinus carpio) in Australia: susceptibility of non-target species.

    PubMed

    McColl, K A; Sunarto, A; Slater, J; Bell, K; Asmus, M; Fulton, W; Hall, K; Brown, P; Gilligan, D; Hoad, J; Williams, L M; Crane, M St J

    2016-12-27

    Carp (Cyprinus carpio L.) is a pest species in Australian waterways, and cyprinid herpesvirus 3 (CyHV-3) is being considered as a potential biological control (biocontrol) agent. An important consideration for any such agent is its target specificity. In this study, the susceptibility to CyHV-3 of a range of non-target species (NTS) was tested. The NTS were as follows: 13 native Australian, and one introduced, fish species; a lamprey species; a crustacean; two native amphibian species (tadpole and mature stages); two native reptilian species; chickens; and laboratory mice. Animals were exposed to 100-1000 times the approximate minimum amount of CyHV-3 required to cause disease in carp by intraperitoneal and/or bath challenge, and then examined clinically each day over the course of 28 days post-challenge. There were no clinical signs, mortalities or histological evidence consistent with a viral infection in a wide taxonomic range of NTS. Furthermore, there was no molecular evidence of infection with CyHV-3, and, in particular, all RT-PCRs for viral mRNA were negative. As a consequence, the results encourage further investigation of CyHV-3 as a potential biocontrol agent that is specific for carp.

  20. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  1. Efforts to establish a biological control agent against incipient infestations of Old World climbing fern in southwest Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When available, field-adapted insects should be selected for colonization and redistribution, because they appear to offer better prospects for establishment than lab-reared insects. Small founder populations of monophagous biocontrol agents that depend on a patchy, rare host plant are susceptible t...

  2. Biological agents: weapons of warfare and bioterrorism.

    PubMed

    Broussard, L A

    2001-12-01

    The use of microorganisms as agents of biological warfare is considered inevitable for several reasons, including ease of production and dispersion, delayed onset, ability to cause high rates of morbidity and mortality, and difficulty in diagnosis. Biological agents that have been identified as posing the greatest threat are variola major (smallpox), Bacillus anthracis (anthrax), Yersinia pestis (plague), Clostridium botulinum toxin (botulism), Francisella tularensis (tularaemia), filoviruses (Ebola hemorrrhagic fever and Marburg hemorrhagic fever), and arenaviruses Lassa (Lassa fever) and Junin (Argentine hemorrhagic fever). The pathogenesis, clinical manifestations, diagnosis, and treatment of these agents are discussed. Rapid identification and diagnosis using molecular diagnostic techniques such as PCR is an essential element in the establishment of coordinated laboratory response systems and is the focus of current research and development. Molecular techniques for detection and identification of these organisms are reviewed.

  3. Influence of seed head-attacking biological control agents on spotted knapweed reproductive potential in western Montana over a 30-year period.

    PubMed

    Story, Jim M; Smith, Lincoln; Corn, Janelle G; White, Linda J

    2008-04-01

    Five insect biological control agents that attack flower heads of spotted knapweed, Centaurea stoebe L. subsp. micranthos (Gugler) Hayek, became established in western Montana between 1973 and 1992. In a controlled field experiment in 2006, seed-head insects reduced spotted knapweed seed production per seed head by 84.4%. The seed production at two sites in western Montana where these biological control agents were well established was 91.6-93.8% lower in 2004-2005 than 1974-1975, whereas the number of seed heads per square meter was 70.7% lower, and the reproductive potential (seeds/m(2)) was 95.9-99.0% lower. The average seed bank in 2005 at four sites containing robust spotted knapweed populations was 281 seeds/m(2) compared with 19 seeds/m(2) at four sites where knapweed density has declined. Seed bank densities were much higher at sites in central Montana (4,218 seeds/m(2)), where the insects have been established for a shorter period. Urophora affinis Frauenfeld was the most abundant species at eight study sites, infesting 66.7% of the seed heads, followed by a 47.3% infestation by Larinus minutus Gyllenhal and L. obtusus Gyllenhal. From 1974 to 1985, Urophora spp. apparently reduced the number of seeds per seed head by 34.5-46.9%; the addition of Larinus spp. further reduced seed numbers 84.2-90.5% by 2005. Path analysis indicated that both Larinus spp. and U. affinis contributed significantly to reduction of seed production over the 30-yr period. Spotted knapweed density may not decrease significantly until the seed bank falls below a critical threshold.

  4. The effect of the combination of two biological control agents, Mirabilis jalapa and Bacillus thuringiensis, to Spodoptera litura's immune response and their mortality

    NASA Astrophysics Data System (ADS)

    Maulina, Dina; Anggraeni, Tjandra

    2014-03-01

    Biological control provides a safer alternative to reduce the population of agricultural pest. Mirabilis jalapa is one of many promising biopesticides which contains chemical substances that have a feeding deterrent property against insects. This biopesticide may not kill insect directly but will weaken their overall physiological condition. In this study, we investigated the immune response of common pestSpodoptera litura after exposure of M. jalapa extract. We also used Bacillus thuringiensis (Bt) delta endotoxin (LC50) on 3 hours after exposure of M. jalapa extract to see the synergism properties of both biopesticide agents. Microscopic observation revealed that at least 5 types of haemocyte were found in S. litura. In control group, plasmatocyte were found at 59.98%, prohaemocyte 20.73%, granullar cell 12.74%, oenocytoid 3.33% and spherule cell 3.20%. These proportion was differ significantly in the treatment group. Exposure to 0.1% and 0.2%(w/v) of M. jalapa extract increased the total number of haemocytes as much as 38.08% and 64.15% respectively. In contrast, exposure to 0.4% and 0.8%(w/v) reduced the number of haemocytes to 37.02% and 51.04% respectively. In term of phagocytic activity, the proportion of phagocytosing cells were 47.62% in control group, and in 0.1% and 0.2% (w/v) M. jalapa treatment group the proportion decreased to 28% and 26.88% respectively. In the concentration of 0.4% and 0.8%, phagocytic activity did not occur. Addition of biological agents Bt (LC50 concentration) to see mortality 3 hours after M. jalapa application did not show significant differences. S. litura mortality rate were found only 50%; this suggests that the combination of M. jalapa and Bt biopesticides in 3-hour intervals within 24 hours showed no increase in mortality.

  5. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease

    PubMed Central

    2005-01-01

    The basidiomycete fungus Crinipellis perniciosa (Stahel) Singer is the causal agent of Witches' Broom Disease of Cacao (Theobroma cacao L.) which is the main factor limiting cacao production in the Americas. Pod losses of up to 90% are experienced in affected areas as evidenced by the 50% drop in production in Bahia province, Brazil following the arrival of the C. perniciosa in the area in 1989. The disease has proven particularly difficult to control and many farmers in affected areas have given up cacao cultivation. In order to evaluate the potential of endophytes as a biological control agent of this phytopathogen, the endophytic fungal community of resistant and susceptible cacao plants as well as affected branches was studied between 2001 and 2002. The fungal community was identified by morphological traits and rDNA sequencing as belonging to the genera Acremonium, Blastomyces, Botryosphaeria, Cladosporium, Colletotrichum, Cordyceps, Diaporthe, Fusarium, Geotrichum, Gibberella, Gliocladium, Lasiodiplodia, Monilochoetes, Nectria, Pestalotiopsis, Phomopsis, Pleurotus, Pseudofusarium, Rhizopycnis, Syncephalastrum, Trichoderma, Verticillium and Xylaria. These fungi were evaluated both in vitro and in vivo by their ability to inhibit C. perniciosa. Among these, some were identified as potential antagonists, but only one fungus (Gliocladium catenulatum) reduced the incidence of Witches' Broom Disease in cacao seedlings to 70%. PMID:15951847

  6. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease.

    PubMed

    Rubini, Marciano R; Silva-Ribeiro, Rute T; Pomella, Alan W V; Maki, Cristina S; Araújo, Welington L; Dos Santos, Deise R; Azevedo, João L

    2005-01-01

    The basidiomycete fungus Crinipellis perniciosa (Stahel) Singer is the causal agent of Witches' Broom Disease of Cacao (Theobromacacao L.) which is the main factor limiting cacao production in the Americas. Pod losses of up to 90% are experienced in affected areas as evidenced by the 50% drop in production in Bahia province, Brazil following the arrival of the C. perniciosa in the area in 1989. The disease has proven particularly difficult to control and many farmers in affected areas have given up cacao cultivation. In order to evaluate the potential of endophytes as a biological control agent of this phytopathogen, the endophytic fungal community of resistant and susceptible cacao plants as well as affected branches was studied between 2001 and 2002. The fungal community was identified by morphological traits and rDNA sequencing as belonging to the genera Acremonium, Blastomyces, Botryosphaeria, Cladosporium, Colletotrichum, Cordyceps, Diaporthe, Fusarium, Geotrichum, Gibberella, Gliocladium, Lasiodiplodia, Monilochoetes, Nectria, Pestalotiopsis, Phomopsis, Pleurotus, Pseudofusarium, Rhizopycnis, Syncephalastrum, Trichoderma, Verticillium and Xylaria. These fungi were evaluated both in vitro and in vivo by their ability to inhibit C. perniciosa. Among these, some were identified as potential antagonists, but only one fungus (Gliocladium catenulatum) reduced the incidence of Witches' Broom Disease in cacao seedlings to 70%.

  7. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  8. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  9. Assessing the cytotoxic and mutagenic effects of secondary metabolites produced by several fungal biological control agents with the Ames assay and the VITOTOX(®) test.

    PubMed

    Kouvelis, Vassili N; Wang, Chengshu; Skrobek, Anke; Pappas, Katherine M; Typas, Milton A; Butt, Tariq M

    2011-05-18

    The potential genotoxic effects of several pure secondary metabolites produced by fungi used as biological control agents (BCAs) were studied with the Ames Salmonella/microsome mutagenicity assay and the Vitotox test, with and without metabolic activation. A complete set of Salmonella tester strains was used to avoid false negative results. To detect possible mutagenic and/or cytotoxic effects of fungal secondary metabolites due to synergistic action, crude extracts and fungal cell extracts of the BCAs were also examined. Although the sensitivity of the methods varied depending on the metabolite used, clearly no genotoxicity was observed in all cases. The results of the two assays are discussed in the light of being used in a complementary fashion for a convincing risk-assessment evaluation of fungal BCAs and their secondary metabolites.

  10. Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting.

    PubMed

    Atkins, S D; Clark, I M; Sosnowska, D; Hirsch, P R; Kerry, B R

    2003-08-01

    Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.

  11. Current status of the biological control agent Neomusotima conspurcatalis (Lepidoptera: Crambidae) on Lygodium microphyllum (Polypodiales: Lygodiaceae) in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The brown Lygodium defoliating moth, Neomusotima conspurcatalis, was released beginning in 2008 to control Old World climbing fern. It readily established in Jonathan Dickinson State Park, but at other sites populations remained at low densities or were locally extirpated. In 2012 and 2013, we rec...

  12. Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.).

    PubMed

    Bean, Dan W; Dalin, Peter; Dudley, Tom L

    2012-07-01

    In classical weed biological control, small collections of arthropods are made from one or a few sites in the native range of the target plant and are introduced to suppress the plant where it has become invasive, often across a wide geographic range. Ecological mismatches in the new range are likely, and success using the biocontrol agent may depend on postrelease evolution of beneficial life history traits. In this study, we measure the evolution of critical day length for diapause induction (day length at which 50% of the population enters dormancy), in a beetle (Diorhabda carinulata) introduced into North America from China to control an exotic shrub, Tamarix spp. Beetle populations were sampled from four sites in North America 7 years after introduction, and critical day length was shown to have declined, forming a cline over a latitudinal gradient At one field site, decreased critical day length was correlated with 16 additional days of reproductive activity, resulting in a closer match between beetle life history and the phenology of Tamarix. These findings indicate an enhanced efficacy and an increasingly wider range for D. carinulata in Tamarix control.

  13. Screening of Trichoderma Isolates as a Biological Control Agent against Ceratocystis paradoxa Causing Pineapple Disease of Sugarcane

    PubMed Central

    Rahman, M. A.; Alam, M. F.

    2009-01-01

    In this study, dual culture, poison agar, and direct methods were used to assess the ability of Trichoderma virens IMI-392430, T. pseudokoningii IMI-392431, T. harzianum IMI-392432, T. harzianum IMI-392433, and T. harzianum IMI-392434 to control Ceratocystis paradoxa, which causes the pineapple disease of sugarcane. The highest percentage inhibition of radial growth (PIRG) values were observed with T. harzianum IMI-392432 using two dual culture methods, 63.80% in Method I and 80.82% in Method II. The minimum colony overgrowth time was observed with T. harzianum IMI-392432 and the maximum was observed with T. pseudokoningii IMI-392431. Different concentrations of different day-old metabolites of Trichoderma isolates were tested against mycelial growth of C. paradoxa. The highest PIRG (84.685%) exhibited at 80% concentration of 30-day-old metabolites of T. harzianum IMI-392432 using the modified bilayer poison agar method. In the direct assay method the maximum mycelial growth weight (PIGW) was observed at the same concentration and the same day-old metabolites of T. harzianum IMI-392432. This study showed that Trichoderma isolates have a good antagonistic effect on C. paradoxa mycelial growth and T. harzianum IMI-392432 has the most potential to control the pineapple disease pathogen. PMID:23983548

  14. Biological agents targeting beyond TNF-alpha

    PubMed Central

    Sharma, Rashmi; Sharma, Chaman Lal; Mahajan, Annil

    2008-01-01

    Biological agents represent an important addition to the therapies for immuno-inflammatory conditions and have a great impact on the disease course and quality of life of these patients. However, recent reports of serious infections like tuberculosis, demyelinating and neurodegenerative diseases, pancytopenia, cardiovascular diseases, etc. after anti-TNF therapy raised questions on their safety. Hence, focus is shifted towards drugs targeting cytokine checkpoints in the inflammatory cascades beyond TNF-α. Existing therapeutic targets include the biological agents acting as antagonists of various inflammatory cytokines (Anakinra, Tocilizumab, Atlizumab) and modulators of CD80 or CD86-CD28 co-stimulatory signal (Abatacept), CD2 receptors on T-cells (Alefacept), CD11a, subunit of leukocyte function-associated antigen 1 (Efalizumab), vitronectin receptor and CD20 antigen on pre-B, immature and mature B cells (Rituximab). With the introduction of these novel molecules the future for immunomodulatory intervention in rheumatology, asthma, crohn's disease, septic shock etc. looks very promising. These novel therapeutic agents could truly give a new hope to the clinician to modify the disease and achieve tangible improvements in the lives of the patients. PMID:19742267

  15. Comparative evaluation of fecundity and survivorship of six copepod (Copepoda: Cyclopidae) species, in relation to selection of candidate biological control agents against Aedes aegypti.

    PubMed

    Phong, Tran Vu; Tuno, Nobuko; Kawada, Hitoshi; Takagi, Masahiro

    2008-03-01

    The fecundity and survival of 6 copepod species were assessed under laboratory conditions in order to choose the best candidates to control the aquatic stages of dengue mosquitoes in the field. Females of all the 6 species (Mesocyclops aspericornis, Mesocyclops pehpeiensis, Mesocyclops woutersi, Mesocyclops thermocyclopoides, Mesocyclops ogunnus, and Megacyclops viridis) mated more than once. Multiple mating resulted in increased egg production. The reproductive ability and longevity varied among the species, and M. aspericornis had the highest values. The lowest values were observed in M. thermocyclopoides. Multiple mating of males of M. aspericornis was also observed. The paternal fecundity decreased with each additional mating. There was no difference in the paternal fecundity between the males that mated at low and high female frequencies. The sperm stored in the M. aspericornis females remained viable for 30 days after storage under moist conditions at 25 degrees C or 15 degrees C. This feature in M. aspericornis represents an additional positive factor indicating that this species is a good biological agent for controlling mosquito larvae, especially in domestic water containers that may dry intermittently.

  16. Babybot: a biologically inspired developing robotic agent

    NASA Astrophysics Data System (ADS)

    Metta, Giorgio; Panerai, Francesco M.; Sandini, Giulio

    2000-10-01

    The study of development, either artificial or biological, can highlight the mechanisms underlying learning and adaptive behavior. We shall argue whether developmental studies might provide a different and potentially interesting perspective either on how to build an artificial adaptive agent, or on understanding how the brain solves sensory, motor, and cognitive tasks. It is our opinion that the acquisition of the proper behavior might indeed be facilitated because within an ecological context, the agent, its adaptive structure and the environment dynamically interact thus constraining the otherwise difficult learning problem. In very general terms we shall describe the proposed approach and supporting biological related facts. In order to further analyze these aspects from the modeling point of view, we shall demonstrate how a twelve degrees of freedom baby humanoid robot acquires orienting and reaching behaviors, and what advantages the proposed framework might offer. In particular, the experimental setup consists of five degrees-of-freedom (dof) robot head, and an off-the-shelf six dof robot manipulator, both mounted on a rotating base: i.e. the torso. From the sensory point of view, the robot is equipped with two space-variant cameras, an inertial sensor simulating the vestibular system, and proprioceptive information through motor encoders. The biological parallel is exploited at many implementation levels. It is worth mentioning, for example, the space- variant eyes, exploiting foveal and peripheral vision in a single arrangement, the inertial sensor providing efficient image stabilization (vestibulo-ocular reflex).

  17. Lack of negative effects of the biological control agent Duddingtonia flagrans on soil nematodes and other nematophagous fungi.

    PubMed

    Saumell, C A; Fernández, A S; Echevarria, F; Gonçalves, I; Iglesias, L; Sagües, M F; Rodríguez, E M

    2016-11-01

    The possible environmental effects of the massive use of Duddingtonia flagrans for controlling sheep nematodes were evaluated in two regions. Non-supplemented faeces and faeces from sheep supplemented with D. flagrans were deposited three times on pasture plots and samples were collected 7 and 14 days post-deposition. Samples were cultured in agar-water (2%) with Panagrellus spp. to recover D. flagrans and other nematophagous fungi, and soil nematodes were extracted using Baermann funnels and counted. No significant differences in the populations of soil nematodes and fungi colonizing sheep faeces (P > 0.05) were observed between supplemented and non-supplemented groups, except in one sample. The topsoil in contact with the faeces was sampled 1-4 months post-deposition, revealing that, with one exception, D. flagrans did not persist in soil beyond 2 months post-deposition. Duddingtonia flagrans does not affect faecal colonization by other fungi and soil nematodes and, once deployed on pasture, does not survive for long periods in the environment.

  18. Potential of Entomopathogenic Fungi as Biological Control Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With Chemical Insecticides.

    PubMed

    Duarte, R T; Gonçalves, K C; Espinosa, D J L; Moreira, L F; De Bortoli, S A; Humber, R A; Polanczyk, R A

    2016-04-01

    The objectives were to evaluate the efficiency of entomopathogenic fungi against Plutella xylostella (L.) and the compatibility of the most virulent isolates with some of the insecticides registered for use on cabbage crops. Pathogenicity tests used isolates of Beauveria bassiana, Metarhizium rileyi, Isaria fumosorosea, Isaria sinclairii, and Lecanicillium muscarium standardized at a concentration of 10(7) conidia/ml. Cabbage leaf discs were immersed in these suspensions, and after evaporation of the excess water, were placed 10 second-instar larvae of P. xylostella, totaling 10 leaf discs per treatment. Mortality was assessed 7 d after treatment, and the isolates that caused mortality>80% were used to estimate LC50 and LT50. The compatibilities of the most virulent isolates and the insecticides were tested from the mixture of these into the culture medium, and after solidifying, the medium was inoculated with an aliquot of the isolated suspension. The following parameters were evaluated: growth of the colony, number and viability of conidia after 7 d. The isolated IBCB01, IBCB18, IBCB66, and IBCB87 of B. bassiana, LCMAP101 of M. rileyi, and ARSEF7973 of I. sinclairii caused mortality between 80 and 100%, with LC50 and LT50 between 2.504 to 6.775×10(4) conidia/ml and 52.22 to 112.13 h, respectively. The active ingredients thiamethoxam and azadirachtin were compatible with the entomopathogenic fungi. The results suggest that the use of these isolates is an important alternative in the pesticidal management of P. xylostella, with the possible exception of the associated use of chemical controls using the active ingredients thiamethoxam or azadirachtin.

  19. Insecticides and Biological Control

    ERIC Educational Resources Information Center

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  20. Riot Control Agents

    MedlinePlus

    ... CDC.gov . Specific Hazards Bioterrorism A-Z Anthrax (Bacillus anthracis) Arenaviruses Treatment & Infection Control Specimen Submission & Lab Testing Education & Training Related Bioterrorism Resources Bacillus anthracis (Anthrax) Botulism (Clostridium botulinum toxin) Brucella species ( ...

  1. Spatial prediction of habitat overlap of introduced and native thistles to identify potential areas of nontarget activity of biological control agents.

    PubMed

    Wiggins, G J; Grant, J F; Lambdin, P L; Ranney, Jack W; Wilkerson, J B; van Manen, F T

    2010-12-01

    Nontarget feeding of Rhinocyllus conicus Fröelich and Trichosirocalus horridus (Panzer) on native North American thistles in the genus Cirsium has been documented. Some species of these native thistles have shown greater infestation levels of R. conicus in populations that are in close proximity to the target plant species, Carduus nutans L. In 2005 a study was initiated to identify areas of potential nontarget feeding by R. conicus and T. horridus on thistle species by predicting habitats of two known introduced hosts [C. nutans and Cirsium vulgare (Savi) Tenore] and two native species [Cirsium carolinianum (Walter) Fernald and Schubert and C. discolor (Muhlenberg ex Willdenow) Sprengel] using Mahalanobis distance (D(2)). Cumulative frequency graphs showed that the D(2) models for all four plant species effectively identified site conditions that contribute to the presence of the respective species. Poisson regression showed an association between D(2) values and plant counts at field-test sites for C. nutans and C. carolinianum. However, negative binomial regression detected no association between D(2) values and plant counts for C. discolor or C. vulgare. Chi-square analysis indicated associations between both weevil species and sites where C. vulgare and Carduus nutans were found, but not between the weevil and native thistle species. Habitats of C. nutans and Cirsium carolinianum overlapped in ≈12% of the study area. Data-based habitat models may provide a powerful tool for land managers and scientists to monitor native plant populations for nontarget feeding by introduced biological control agents.

  2. Assessment of the Environmental Fate of the Biological Control Agent of Fire Blight, Pseudomonas fluorescens EPS62e, on Apple by Culture and Real-Time PCR Methods

    PubMed Central

    Pujol, Marta; Badosa, Esther; Manceau, Charles; Montesinos, Emilio

    2006-01-01

    The colonization of apple blossoms and leaves by Pseudomonas fluorescens EPS62e was monitored in greenhouse and field trials using cultivable cell counting and real-time PCR. The real-time PCR provided a specific quantitative method for the detection of strain EPS62e. The detection level was around 102 cells g (fresh weight)−1 and the standard curve was linear within a 5-log range. EPS62e actively colonized flowers reaching values from 107 to 108 cells per blossom. In apple flowers, no significant differences were observed between population levels obtained by real-time PCR and plating, suggesting that viable but nonculturable (VBNC) cells and residual nondegraded DNA were not present. In contrast, on apple leaves, where cultivable populations of EPS62e decreased with time, significant differences were observed between real-time PCR and plating. These differences indicate the presence of VBNC cells or nondegraded DNA after cell death. Therefore, the EPS62e population was under optimal conditions during the colonization of flowers but it was stressed and poorly survived on leaves. It was concluded that for monitoring this biological control agent, the combined use of cultivable cell count and real-time PCR is necessary. PMID:16597940

  3. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

    PubMed Central

    Chandrasekaran, Murugesan; Subramanian, Dharaneedharan; Yoon, Ee; Kwon, Taehoon; Chun, Se-Chul

    2016-01-01

    Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from −2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression. PMID:27298597

  4. Pre-release efficacy assessment of the leaf-mining moth Digitivalva delaireae (Lepidoptera: Glyphipterigidae), a potential biological control agent for Cape-ivy, Delairea odorata (Asteraceae), in western North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaf-mining moth Digitivalva delaireae Gaedike & Kruger (Lepidoptera: Glyphipterigidae) is a potential biological control agent for the invasive vine Cape-ivy, Delairea odorata Lemaire (Asteraceae), in western North America, where two morphological varieties (stipulate and exstipulate) of Cape-i...

  5. Prediction of the geographic distribution of the psyllid, Arytinnis hakani (Hemoptera, Psyllidae), a prospective biological control agent of Genista monspessulana, based on the effect of temperature on development, fecundity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The psyllid, Arytinnis hakani, is a prospective biological control agent of Genista monspessulana (French broom), an invasive shrub originating from western Europe. It is a multivoltine species that is not known to diapause. The insect is established in Australia, where it appears to cause heavy d...

  6. Mass-rearing of the stem-galling wasp Tetramesa romana, a biological control agent of the invasive weed Arundo donax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass-rearing is not often used in biological weed control, despite the wealth of biological information available for insects that have been approved for field release, the utility of the inundative release approach using large numbers of insects to maximize establishment and impact, and the critica...

  7. Optimization of Graphene Sensors to Detect Biological Warfare Agents

    DTIC Science & Technology

    2014-03-27

    OPTIMIZATION OF GRAPHENE BIOSENSORS TO DETECT BIOLOGICAL WARFARE AGENTS THESIS MARCH 2014 Matthew J. Quinton, Major, USAF AFIT...M-42 OPTIMIZATION OF GRAPHENE BIOSENSORS TO DETECT BIOLOGICAL WARFARE AGENTS THESIS Presented to the Faculty Department of Engineering...WARFARE AGENTS Matthew J. Quinton, BS, MS Major, USAF Approved: //Signed//___________________________ 3/14/2014

  8. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential

    PubMed Central

    Chen, Z. X.; Dickson, D. W.

    1998-01-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years. PMID:19274225

  9. Commercializing Biological Control

    ERIC Educational Resources Information Center

    LeLeu, K. L.; Young, M. A.

    1973-01-01

    Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

  10. Fundamental host range of Pseudophilothrips ichini s.l. (Thysanoptera: Phlaeothripidae): a candidate biological control agent of Schinus terebinthifolius (Sapindales: Anacardiaceae) in the United States.

    PubMed

    Cuda, J P; Medal, J C; Gillmore, J L; Habeck, D H; Pedrosa-Macedo, J H

    2009-12-01

    Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) is a non-native perennial woody plant that is one of the most invasive weeds in Florida, Hawaii, and more recently California and Texas. This plant was introduced into Florida from South America as a landscape ornamental in the late 19th century, eventually escaped cultivation, and now dominates entire ecosystems in south-central Florida. Recent DNA studies have confirmed two separate introductions of S. terebinthifolius in Florida, and there is evidence of hybridization. A thrips, Pseudophilothrips ichini s.l. (Hood) (Thysanoptera: Phlaeothripidae), is commonly found attacking shoots and flowers of S. terebinthifolius in Brazil. Immatures and occasionally adults form large aggregations on young terminal growth (stems and leaves) of the plant. Feeding damage by P. ichini s.l. frequently kills new shoots, which reduces vigor and restricts growth of S. terebinthifolius. Greenhouse and laboratory host range tests with 46 plant species in 18 families and 10 orders were conducted in Paraná, Brazil, and Florida. Results of no-choice, paired-choice, and multiple-choice tests indicated that P. ichini s.l. is capable of reproducing only on S. terebinthifolius and possibly Schinus molle L., an ornamental introduced into California from Peru that has escaped cultivation and is considered invasive. Our results showed that P. ichini s.l. posed minimal risk to mature S. molle plants or the Florida native Metopium toxiferum L. Krug and Urb. In May 2007, the federal interagency Technical Advisory Group for Biological Control Agents of Weeds (TAG) concluded P. ichini s.l. was sufficiently host specific to recommend its release from quarantine.

  11. Hyphae-colonizing Burkholderia sp.--a new source of biological control agents against sheath blight disease (Rhizoctonia solani AG1-IA) in rice.

    PubMed

    Cuong, Nguyen Duc; Nicolaisen, Mette Haubjerg; Sørensen, Jan; Olsson, Stefan

    2011-08-01

    Sheath blight infection of rice by Rhizoctonia solani Kühn AG1-IA often results in serious yield losses in intensive rice cultivation. Biological control agents (BCAs) have previously been isolated but poor efficiency is often observed when applied under field conditions. This study compares a traditional dual-culture plate assay and a new water-surface microcosm assay for isolation of antagonistic soil bacteria. In the water-surface microcosm assay, floating pathogen mycelium is used as a source for isolation of hyphae-colonizing soil bacteria (HCSB), which are subsequently screened for antagonism. Ten antagonistic soil bacteria (ASB) isolated from a variety of Vietnamese rice soils using dual-culture plates were found to be affiliated with Bacillus based on 16S rRNA gene sequencing. However, all the ASB isolates grew poorly and showed no antagonism in the water-surface microcosm assay. In contrast, 11 (out of 13) HCSB isolates affiliated with Burkholderia sp. all grew well by colonizing the hyphae in the microcosms. Two of the Burkholderia sp. isolates, assigned to B. vietnamiensis based on recA gene sequencing, strongly inhibited fungal growth in both the dual-culture and water-surface microcosm assays; HCSB isolates affiliated to other species or species groups showed limited or no inhibition of R. solani in the microcosms. Our results suggest that HCSB obtained from floating pathogen hyphae can be a new source for isolation of efficient BCAs against R. solani, as the isolation assay mimics the natural habitat for fungal-bacterial interaction in the fields.

  12. Clinical laboratories, the select agent program, and biological surety (biosurety).

    PubMed

    Pastel, Ross H; Demmin, Gretchen; Severson, Grant; Torres-Cruz, Rafael; Trevino, Jorge; Kelly, John; Arrison, Jay; Christman, Joy

    2006-06-01

    The threat of bioterrorism has led to increased concerns over the availability of biological select agents and toxins (BSAT). Congress has implemented several public laws that have led to the development of federal regulations by the Centers for Disease Control and Prevention (CDC) and the US Department of Agriculture. The CDC regulation 42 CFR 73 has a direct impact on all clinical laboratories that may at some time identify BSAT in a clinical specimen. The Department of Defense has imposed a more stringent layer of regulation called biological surety (biosurety) on top of the requirements of 42 CFR 73 for military laboratories that possess BSAT. However,42 CFR 73 falls into the framework of biosurety. Both sets of regulations have four pillars (safety, physical security, agent account-ability, and personnel reliability) that are built on a foundation of training and covered by a roof of management (operations and plans).

  13. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  14. Preliminary evaluation of the parasitoid wasp, Collyria catoptron, as a potential biological control agent against the wheat stem sawfly, Cephus cinctus, in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat stem sawfly, Cephus cinctus (Hymenoptera:Cephidae) is the major pest of wheat in the northern Great Plains of North America. The development of management tools, such as biological control, to complement traditional resistance breeding approaches will be critical to the successful control ...

  15. Molecular comparison of cattle fever ticks from native and introduced ranges with insights into optimal search areas for classical biological control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical biological control using specialist parasitoids, predators and/or nematodes from the native ranges of cattle fever ticks could complement existing control strategies for this livestock pest in the transboundary region between Mexico and Texas. DNA fingerprinting tools were used to compare ...

  16. Spatial occurrence and hatch of field eggs of the tadpole shrimp Triops newberryi (Notostraca: Triopsidae), a potential biological control agent of immature mosquitoes.

    PubMed

    Su, Tianyun; Mulla, Mir S

    2002-06-01

    The tadpole shrimp (TPS), Triops newberryi (Packard) (Notostraca: Triopsidae) is a potential biological control agent for immature mosquitoes breeding in ephemeral habitats. The occurrence of TPS eggs in soil and their hatch were investigated in 11 flood-irrigated date gardens in the Coachella Valley of southern California in 1999. Each garden was sampled several times after the rows were recently irrigated. All these date gardens harbored from very few to a large number of eggs in the soil. Overall, the average density of total eggs on ranches with clay loam soil was significantly higher than that on ranches with silt loam soil. The average densities of total eggs were significantly lower on the ranches that were disked compared to those on the ranches that were undisked before sampling. Two types of eggs were found and designated as "fresh" (yellowish to brownish) and "old" (blackish) eggs. This is the first time that these dimorphic eggs have been reported. The density of fresh eggs was lower than that of old eggs in most soil samples. The date gardens with high egg densities were sampled for determination of vertical occurrence, where soil was sampled up to 38.5 cm deep. Fresh eggs were recovered from soil in depths up to 25.6 cm, but the densities progressively declined with depth. The old eggs, however, were recovered from all soil depths studied, and there was no obvious relationship between soil depth and their density. This pattern of vertical occurrence of TPS eggs is the result of frequent disking for weed control and fruit harvest. Hatch of TPS eggs in surface soil samples ranged from 0 to 7.2 per 100 g dried soil. Hatch of viable eggs had an inverse relationship with soil depth. No TPS hatched out from the soil samples taken deeper than 15.4 cm. Fresh and old eggs distinguished by color were subjected to hatching tests. Fresh eggs exhibited high hatch, with hatching rates of 35.5-45.0% and 40.2-60.3% for the 1st and 1st plus the 2nd hydrations

  17. Biomaterials for mediation of chemical and biological warfare agents.

    PubMed

    Russell, Alan J; Berberich, Jason A; Drevon, Geraldine F; Koepsel, Richard R

    2003-01-01

    Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings.

  18. Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents.

    PubMed

    Benelli, Giovanni; Rajeswary, Mohan; Govindarajan, Marimuthu

    2016-12-05

    Essential oils (EOs) from plants may be alternative sources of molecules toxic against mosquito vectors of public health relevance. Most of researches in this field focused on EOs as larvicides or ovicides, while limited efforts focused on the exploitation of EOs as oviposition deterrents. In the present study, the larvicidal and oviposition deterrent activity of Syzygium lanceolatum leaf EO was evaluated against six mosquito species, Anopheles stephensi, An. subpictus, Aedes aegypti, Ae. albopictus, Culex quinquefasciatus, and Cx. tritaeniorhynchus. The chemical composition of the S. lanceolatum EO was analyzed by GC-MS analysis, showing the presence of phenyl propanal, β-caryophyllene, α-humulene, and caryophyllene oxide as major constituents. S. lanceolatum EO showed high acute toxicity on An. stephensi (LC50 = 51.20 μg/ml), Ae. aegypti (LC50 = 55.11 μg/ml), Cx. quinquefasciatus (LC50 = 60.01 μg/ml), An. subpictus (LC50 = 61.34 μg/ml), Ae. albopictus (LC50 = 66.71 μg/ml), and Cx. tritaeniorhynchus (LC50 = 72.24 μg/ml) larvae. Furthermore, the EO was effective as oviposition deterrent against the six tested mosquito species, with OAI on An. stephensi, An. subpictus, Ae. aegypti, Ae. albopictus, Cx. quinquefasciatus, and Cx. tritaeniorhynchus reaching -0.83, -0.81, -0.84, -0.83, -0.84, and -0.86, respectively. The toxicity of S. lanceolatum EO against several biological control agents of mosquitoes, including water bugs (Anisops bouvieri and Diplonychus indicus) and fishes (Gambusia affinis and Poecilia reticulata), was extremely low, with LC50 ranging between 4148 and 15,762 μg/ml. Overall, our results pointed out the promising potential of the S. lanceolatum leaf EO as a source of environmental-friendly oviposition deterrents and larvicides effective against a wide number of mosquito species of importance for parasitology.

  19. Releases, distribution and abundance of Gratiana boliviana (Coleoptera:Chrysomelidae), a biological control agent of tropical soda apple (Solanum viarum, Solanaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biological control program against tropical soda apple (TSA) (Solanum viarum Dunal (Solanaceae)) released 176,643 Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) in Florida from 2003 to 2008. The spatial distribution of releases was clustered with more beetles released in south/central Flor...

  20. The interactions of Tropical soda apple mosaic tobamovirus and Gratiana boliviana (Coleoptera: Chrysomelidae), an introduced biological control agent of tropical soda apple (Solanum viarum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple (Solanum viarum Dunal (Solanaceae) (TSA) is a South American invasive plant of rangelands, pastures and natural areas in Florida. A chrysomelid beetle from South America, Gratiana boliviana Spaeth, has been released at >300 locations in Florida for biological control of TSA sinc...

  1. The interactions of Tropical soda apple mosaic tobamovirus and Gratiana boliviana (Coleoptera: Chrysomelidae), an introduced biological control agent of tropical soda apple (Solanum viarum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple (Solanum viarum Dunal (Solanaceae) (TSA) is a South American invasive plant of rangelands, pastures and natural areas in Florida. A chrysomelid beetle from South America, Gratiana boliviana Spaeth, has been released at >300 locations in Florida for biological control of TSA since...

  2. Colletotrichum gloeosporioides, causing anthracnose of mile-a-minute (Persicaria perfoliata) in Turkey, is a potential biological control agent of this weed in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mile-a-minute (Persicaria perfoliata (L.) H. Gross; family Polygonaceae) is an exotic annual barbed vine that has invaded the northeastern USA, Mississippi, and Oregon. In July of 2010, in a search for potential biological control pathogens, diseased P. perfoliata plants were found along the Firtina...

  3. Regarding the role of new host associations in the success of Cactoblastis cactorum as both a biological control agent and invasive species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key theoretical basis for using classic biological control against invasive alien species (IAS) has been the enemy release hypothesis (ERH), which suggests that the increased vigor and invasiveness of IAS in the introduced range is strongly influenced by their release from co-evolved natural enemi...

  4. Geographic distribution and regional impacts of Oxyops vitiosa (Coleoptera: Curculionidae) and Boreioglycaspis melaleucae (Hemiptera: Psyllidae), biological control agents of the invasive tree Melaleuca quinquenervia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive tree Melaleuca quinquenervia (Cav.) Blake is widely distributed throughout peninsular Florida, USA and poses a significant threat to species diversity in the wetland systems of the Everglades. Mitigation of this threat includes the areawide release campaign of the biological control age...

  5. Effect of water deficit on generation time and reproduction of the gall wasp, Tetramesa romana, a biological control agent of giant reed (Arundo donax)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit stress can reduce the reproductive performance of galling insects, but its effects on a galling insect introduced for biological control of a perennial grass weed have not previously been examined. The effects of water deficit were examined for the wasp Tetramesa romana Walker (Hymeno...

  6. Effect of nitrogen fertilization on growth of Arundo donax and on rearing of a biological control agent, the shoot gall-forming wasp Tetramesa romana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen augmentation often leads to increased feeding and/or reproduction by herbivorous insects, but little is known about the effects on insects that gall grasses. The shoot tip-galling wasp Tetramesa romana has been released for biological control of the giant grass arundo (Arundo donax) in the...

  7. Open-field host specificity test of Gratiana boliviana (Coleoptera:Chrysomelidae), a biological control agent of Tropical Soda Apple (Solanaceae) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An open-field experiment was conducted to asses the suitability of the South American leaf feeding beetle Gratiana boliviana Spaeth for biological control of Solanum viarum Dunal in the USA. An open-field test with eggplant, Solanum melongena L., was conducted on the campus of the University of Buen...

  8. Laboratory host range testing of Neomusotima conspurcatalis (Lepidoptera: Crambidae) - a potential biological control agent of the invasive weed, Old World climbing fern, Lygodium microphyllum (Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Old World climbing fern, Lygodium microphyllum, is a serious invasive weed in south Florida. Development of biological control is vital for sustainable management of L. microphyllum. Neomusotima conspurcatalis was discovered in Hong Kong in 1997 and was subsequently found causing feeding damage on L...

  9. Laboratory host range of Austromusotima camptozonale (Lepidoptera: Crambidae), a potential biological control agent of Old World climbing fern, Lygodium microphyllum (Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Old World climbing fern, Lygodium microphyllum, is one of the most serious invasive weeds impacting south Florida and development of biological control is crucial for sustainable management. Larvae of a small moth, Austromusotima camptozonale, were discovered defoliating L. microphyllum in Australia...

  10. Establishment, population increase, spread, and ecological host range of Lophodiplosis trifida (Diptera: Cecidomyiidae), a biological control agent of the invasive tree Melaleuca quinquenervia (Myrtales:Myrtaceae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian tree Melaleuca quinquenervia (Cav.) Blake is an invasive weed in wetland systems of Florida, USA. A biological control program targeting M. quinquenervia has culminated in the release of the gall forming midge Lophodiplosis trifida Gagné (Cecidomyiidae). Populations of the introduced ...

  11. Ecological Compatibility of GM Crops and Biological Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  12. Susceptibility of the leaf-eating beetle, Galerucella calmariensis, a biological control agent for purple loosestrife (Lythrum salcaria), to three mosquito control larvicides

    USGS Publications Warehouse

    Lowe, T.P.; Hershberger, T.D.

    2004-01-01

    We evaluated the susceptibility of Galerucella calmariensis, a species used to control purple loosestrife (Lythrum salicaria), to three mosquito control larvicides. Larvae and adults were fed loosestrife cuttings dipped in Abate? (3.75 g?L-1) was reduced significantly and survival was significantly lower among larvae and adults eating cuttings dipped in Abate (>0.17 g?L-1 and >2.27 g?L-1, respectively). Hatching success of eggs dipped in Altosid (>2.52 g?L-1) was reduced significantly. With exposure to Altosid, larval survival to pupation and adult emergence was reduced significantly at concentrations of >2.92 g?L-1 and >0.63 g?L-1, respectively. Altosid (>0.23 g?L-1) also delayed the onset of pupation and adult emergence among larvae that survived to pupate. Larvae that survived with exposure to Altosid (>1.72 g?L-1) grew to 70% larger than those exposed to lower concentrations. Pupal survival was unaffected with exposure to Abate and Altosid and adult survival was unaffected with exposure to Altosid. Bacillus thuringiensis var israeliensis did not adversely affect any life stage of G. calmariensis. The mean Abate concentration on cuttings exposed to operational spraying was in the range that reduced egg hatchability and adult survival but was higher than concentrations that caused complete mortality of larvae. The mean Altosid concentration on cuttings exposed to operational spraying was in the range that reduced hatching success in eggs and delayed pupation and adult emergence of larvae.

  13. [Main direction of harmonization of Russian and international requirements on providing of biological safety when handling pathogenic biological agents].

    PubMed

    Dobrokhotskiĭ, O N; Diatlov, A I

    2013-01-01

    The actuality of harmonization of Russian and international requirements when handling with pathogenic biological agents (PBA) is caused by the need to ensure biological security on the basis of control of biorisks. One of the basic conditions for harmonization is development and implementation of the Russian standard for biorisk management based on international standard CWA 15793:2008.

  14. Biological control and sustainable food production.

    PubMed

    Bale, J S; van Lenteren, J C; Bigler, F

    2008-02-27

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentative control has been successfully applied against a range of open-field and greenhouse pests, and conservation biological control schemes have been developed with indigenous predators and parasitoids. The cost-benefit ratio for classical biological control is highly favourable (1:250) and for augmentative control is similar to that of insecticides (1:2-1:5), with much lower development costs. Over the past 120 years, more than 5000 introductions of approximately 2000 non-native control agents have been made against arthropod pests in 196 countries or islands with remarkably few environmental problems. Biological control is a key component of a 'systems approach' to integrated pest management, to counteract insecticide-resistant pests, withdrawal of chemicals and minimize the usage of pesticides. Current studies indicate that genetically modified insect-resistant Bt crops may have no adverse effects on the activity or function of predators or parasitoids used in biological control. The introduction of rational approaches for the environmental risk assessment of non-native control agents is an essential step in the wider application of biological control, but future success is strongly dependent on a greater level of investment in research and development by governments and related organizations that are committed to a reduced reliance on chemical control.

  15. Use of Biologic Agents in Ocular Manifestations of Rheumatic Disease

    PubMed Central

    Kraus, Courtney L.; Culican, Susan M.

    2012-01-01

    Biologic agents have dramatically shifted the treatment paradigm for rheumatic disease. Use of these agents can decrease disease burden, allow the patient to be weaned from corticosteroids, and reduce the likelihood of relapse. Eye disease associated with rheumatic conditions may present with a wide range of signs and symptoms. This coexisting pathology should not be overlooked and should be considered a reason for initiation or continuation of biologic therapy. Additionally, many of the ocular manifestations of rheumatic disease respond preferentially to specific targeting molecules. This paper summarizes the available studies on the use, efficacy, and safety of biologic agents in the treatment of ocular manifestations of rheumatic disease. PMID:22229035

  16. Biologic agents for anterior cruciate ligament healing: A systematic review

    PubMed Central

    Di Matteo, Berardo; Loibl, Markus; Andriolo, Luca; Filardo, Giuseppe; Zellner, Johannes; Koch, Matthias; Angele, Peter

    2016-01-01

    AIM To systematically review the currently available literature concerning the application of biologic agents such as platelet-rich plasma (PRP) and stem cells to promote anterior cruciate ligament (ACL) healing. METHODS A systematic review of the literature was performed on the use of biologic agents (i.e., PRP or stem cells) to favor ACL healing during reconstruction or repair. The following inclusion criteria for relevant articles were used: Clinical reports of any level of evidence, written in English language, on the use of PRP or stem cells during ACL reconstruction/repair. Exclusion criteria were articles written in other languages, reviews, or studies analyzing other applications of PRP/stem cells in knee surgery not related to promoting ACL healing. RESULTS The database search identified 394 records that were screened. A total of 23 studies were included in the final analysis: In one paper stem cells were applied for ACL healing, in one paper there was a concomitant application of PRP and stem cells, whereas in the remaining 21 papers PRP was used. Based on the ACL injury pattern, two papers investigated biologic agents in ACL partial tears whereas 21 papers in ACL reconstruction. Looking at the quality of the available literature, 17 out of 21 studies dealing with ACL reconstruction were randomized controlled trials. Both studies on ACL repair were case series. CONCLUSION There is a paucity of clinical trials investigating the role of stem cells in promoting ACL healing both in case of partial and complete tears. The role of PRP is still controversial and the only advantage emerging from the literature is related to a better graft maturation over time, without documenting beneficial effects in terms of clinical outcome, bone-graft integration and prevention of bony tunnel enlargement. PMID:27672573

  17. Establishment, population increase, spread, and ecological host range of Lophodiplosis trifida (Diptera: Cecidomyiidae), a biological control agent of the invasive tree Melaleuca quinquenervia (Myrtales: Myrtaceae).

    PubMed

    Pratt, P D; Rayamajhi, M B; Tipping, P W; Center, T D; Wright, S A; Purcell, M

    2013-10-01

    The Australian tree Melaleuca quinquenervia (Cavanilles) Blake is an invasive weed in wetland systems of Florida. A biological control program targeting M. quinquenervia has resulted in the release of the gall forming midge Lophodiplosis trifida Gagné (Diptera: Cecidomyiidae). Populations of the introduced herbivore readily established at all 24 release sites across the weed's range in Florida, and there was no evidence that founding colony size (100, 2,000, or 6,000 adults) influenced herbivore establishment or local population growth rates. Landscape level spread of L. trifida from release sites averaged nearly 6 km/yr, ranging as high as 14.4 km/yr. Prerelease host range testing predicted that L. trifida oviposits indiscriminately on test plant species but does not complete development on any of the test species, including congeners present in Florida. To test the predictability of these host range tests, L. trifida was released in a common garden consisting of 18 test plant species that were interplanted with M. quinquenervia. Plant species postulated to be at risk experienced no gall development by L. trifida while intermingled M. quinquenervia trees supported 704.8 (± 158.5) galls per plant. Historically, many introduced Cecidomyiidae have limited effect on plant performance of target weeds because of recruitment of native parasitoids that disrupt biological control efficacy. In contrast to this trend, there has been no evidence to date that parasitoids are exploiting L. trifida in Florida.

  18. Comparison of larval development and overwintering stages of the spotted knapweed biological control agents Agapeta zoegana (Lepidoptera: Tortricidae) and Cyphocleonus achates (Coleoptera: Curculionidae) in Montana versus Eastern Europe.

    PubMed

    Corn, Janelle G; Story, Jim M; White, Linda J

    2009-08-01

    Larval development of insects introduced for biological control of invasive weeds may be constrained if the new climate is more extreme than in their native range. We surveyed larval development in Agapeta zoegana L. and Cyphocleonus achates (Fahraeus), two species of biological control insects introduced from eastern Europe against spotted knapweed in western North America. We dissected spotted knapweed roots collected from five sites in western Montana over 6 yr either in late fall or early spring and measured larval head capsule size to determine the overwintering instar stage. Development of A. zoegana was estimated equally well with late fall or early spring root collections, but C. achates rate of development may be underestimated using fall samples. The larvae of neither species entered diapause in as advanced an instar in western Montana as reported for their native range. Most A. zoegana larvae reached the third (26%) or fourth (20%) instar at diapause, with only 15% reaching sixth instars, as they typically do in their native Eurasia. Almost all (94%) C. achates overwintered as first instars, with most of the remaining (4%) being eggs, some of which were viable in the spring. Only a small number (2%) of C. achates larvae overwintered as second instars, the common overwintering stage in their native range. Slower development may explain, in part, why A. zoegana only has one generation per year in Montana compared with two to three generations per year in Europe.

  19. Biological studies and field observations in Europe of Lasioptera donacis potential biological control agent of giant reed, Arundo donax, an invasive weed of the Rio Grande Basin of Texas and Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed, Arundo donax L. (Poaceae; Arundinoideae), is a clonal reed grass that is native from the western Mediterranean to India and invasive in North America and other arid temperate/subtropical parts of the world, including the Rio Grande Basin of Texas and Mexico. A biological control of gian...

  20. Potential Military Chemical/Biological Agents and Compounds

    DTIC Science & Technology

    2005-01-01

    toxins, bioregulators, or prions. (1) Pathogens. Pathogens are disease-producing microorganisms,6 such as bacteria , rickettsiae , or viruses...disability. Potential biological antipersonnel agents include toxins, bacteria , rickettsiae , viruses, and toxins. (2) Antianimal. Biological...microorganisms such as pathogens (which include disease-causing bacteria , rickettsiae , and viruses) and toxins. NOTES: 1. See Table IV-1 (page IV-2) for the

  1. Comparison and Analysis of Biological Agent Category Lists Based On Biosafety and Biodefense

    PubMed Central

    Tian, Deqiao; Zheng, Tao

    2014-01-01

    Biological agents pose a serious threat to human health, economic development, social stability and even national security. The classification of biological agents is a basic requirement for both biosafety and biodefense. We compared and analyzed the Biological Agent Laboratory Biosafety Category list and the defining criteria according to the World Health Organization (WHO), the National Institutes of Health (NIH), the European Union (EU) and China. We also compared and analyzed the Biological Agent Biodefense Category list and the defining criteria according to the Centers for Disease Control and Prevention (CDC) of the United States, the EU and Russia. The results show some inconsistencies among or between the two types of category lists and criteria. We suggest that the classification of biological agents based on laboratory biosafety should reduce the number of inconsistencies and contradictions. Developing countries should also produce lists of biological agents to direct their development of biodefense capabilities.To develop a suitable biological agent list should also strengthen international collaboration and cooperation. PMID:24979754

  2. Fluorescence cross section measurements of biological agent simulants

    SciTech Connect

    Stephens, J.R.

    1996-11-01

    Fluorescence is a powerful technique that has potential uses in detection and characterization of biological aerosols both in the battlefield and in civilian environments. Fluorescence techniques can be used with ultraviolet (UV) light detection and ranging (LIDAR) equipment to detect biological aerosol clouds at a distance, to provide early warning of a biological attack, and to track an potentially noxious cloud. Fluorescence can also be used for detection in a point sensor to monitor biological materials and to distinguish agents from benign aerosols. This work is part of a continuing program by the Army`s Chemical and Biological Defense Command to characterized the optical properties of biological agents. Reported here are ultraviolet fluorescence measurements of Bacillus megaterium and Bacillus Globigii aerosols suspended in an electrodynamic particle trap. Fluorescence spectra of a common atmospheric aerosol, pine pollen, are also presented.

  3. Solid-water detoxifying reagents for chemical and biological agents

    DOEpatents

    Hoffman, Dennis M.; Chiu, Ing Lap

    2006-04-18

    Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.

  4. A decontamination study of simulated chemical and biological agents

    SciTech Connect

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  5. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  6. PilG is Involved in the Regulation of Twitching Motility and Antifungal Antibiotic Biosynthesis in the Biological Control Agent Lysobacter enzymogenes.

    PubMed

    Zhou, Xue; Qian, Guoliang; Chen, Yuan; Du, Liangcheng; Liu, Fengquan; Yuen, Gary Y

    2015-10-01

    Lysobacter enzymogenes strain C3 is a gliding bacterium which produces the antifungal secondary metabolite heat-stable antifungal factor (HSAF) and type IV pilus (T4P) as important mechanisms in biological control activity against fungal pathogens. To date, the regulators that control HSAF biosynthesis and T4P-dependent twitching motility in L. enzymogenes are poorly explored. In the present study, we addressed the role of pilG in the regulation of these two traits in L. enzymogenes. PilG of L. enzymogenes was found to be a response regulator, commonly known as a component of a two-component transduction system. Mutation of pilG in strain C3 abolished its ability to display spreading colony phenotype and cell movement at the colony margin, which is indicative of twitching motility; hence, PilG positively regulates twitching motility in L. enzymogenes. Mutation of pilG also enhanced HSAF production and the transcription of its key biosynthetic gene hsaf pks/nrps, suggesting that PilG plays a negative regulatory role in HSAF biosynthesis. This finding represents the first demonstration of the regulator PilG having a role in secondary metabolite biosynthesis in bacteria. Collectively, our results suggest that key ecological functions (HSAF production and twitching motility) in L. enzymogenes strain C3 are regulated in opposite directions by the same regulatory protein, PilG.

  7. El control biologico de plagas(Biological control of pests)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work some ecological principles that drive applied biocontrol and agent selection are discussed. Subjects such as specificity evaluations, host shifts and species invasiveness are analyzed under the light of ecological theory. The main assertions are: 1. biological control is a safe and bene...

  8. Muscavirus (MdSGHV) disease dynamics in house fly populations--how is this virus transmitted and has it potential as a biological control agent?

    PubMed

    Lietze, Verena-Ulrike; Keesling, James E; Lee, Jo Ann; Vallejo, Celeste R; Geden, Christopher J; Boucias, Drion G

    2013-03-01

    The newly classified family Hytrosaviridae comprises several double-stranded DNA viruses that have been isolated from various dipteran species. These viruses cause characteristic salivary gland hypertrophy and suppress gonad development in their hosts. One member, Muscavirus or MdSGHV, exclusively infects adult house flies (Musca domestica) and, owing to its massive reproduction in and release from the salivary glands, is believed to be transmitted orally among feeding flies. However, results from recent experiments suggest that additional transmission routes likely are involved in the maintenance of MdSGHV in field populations of its host. Firstly, several hours before newly emerged feral flies begin feeding activities, the fully formed peritrophic matrix (PM) constitutes an effective barrier against oral infection. Secondly, flies are highly susceptible to topical virus treatments and intrahemocoelic injections. Thirdly, disease transmission is higher when flies are maintained in groups with infected conspecifics than when flies have access to virus-contaminated food. We hypothesize that interactions between flies may lead to cuticular damage, thereby providing an avenue to viral particles for direct access to the hemocoel. Based on our current knowledge, two options seem plausible for developing Muscavirus as a sterilizing agent to control house fly populations: The virus may either be formulated with PM-disrupting materials to facilitate oral infection from a feeding bait system, or amended with abrasive materials to enhance infection through a damaged cuticle after topical aerosol applications.

  9. Chemistry and Biology of Macrolide Antiparasitic Agents

    PubMed Central

    Lee, Younjoo; Choi, Jun Yong; Fu, Hong; Harvey, Colin; Ravindran, Sandeep; Roush, William R.; Boothroyd, John C.; Khosla, Chaitan

    2011-01-01

    Macrolide antibacterial agents inhibit parasite proliferation by targeting the apicoplast ribosome. Motivated by the long-term goal of identifying antiparasitic macrolides that lack antibacterial activity, we have systematically analyzed the structure-activity relationships among erythromycin analogues and have also investigated the mechanism of action of selected compounds. Two lead compounds, N-benzyl-azithromycin (11) and N-phenylpropyl-azithromycin (30), were identified with significantly higher antiparasitic activity and lower antibacterial activity than erythromycin or azithromycin. Molecular modeling based on the co-crystal structure of azithromycin bound to the bacterial ribosome suggested that a substituent at the N-9 position of desmethyl-azithromycin could improve selectivity due to species-specific interactions with the ribosomal L22 protein. Like other macrolides, these lead compounds display a strong “delayed death phenotype”; however, their early effects on T. gondii replication are more pronounced. PMID:21428405

  10. Parasitoids attacking larvae of a recently introduced weed biological control agent, Neomusotima conspurcatalis Warren (Lepidoptera: Crambidae): key to species, natural history, and integrative taxonomy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extent to which introduced weed biocontrol agents are subject to attack by generalist natural enemies within the area of introduction is believed to be an important determinant of program success. We monitored larval populations of a recently introduced weed biocontrol agent, Neomusotima conspur...

  11. An Exercise in Biological Control.

    ERIC Educational Resources Information Center

    Lennox, John; Duke, Michael

    1997-01-01

    Discusses the history of the use of pesticides and biological control. Introduces the concept of biological control as illustrated in the use of the entomopathogenic bacterium Bacillus thuringiensis and highlights laboratory demonstrations of Koch's postulates. Includes an exercise that offers the student and teacher several integrated learning…

  12. Detection of Invertebrate Suppressive Soils, and Identification of a Possible Biological Control Agent for Meloidogyne Nematodes Using High Resolution Rhizosphere Microbial Community Analysis

    PubMed Central

    Bell, Nigel L.; Adam, Katharine H.; Jones, Rhys J.; Johnson, Richard D.; Mtandavari, Yeukai F.; Burch, Gabriela; Cave, Vanessa; Cameron, Catherine; Maclean, Paul; Popay, Alison J.; Fleetwood, Damien

    2016-01-01

    White clover (Trifolium repens) is the key legume component of New Zealand pastoral agriculture due to the high quality feed and nitrogen inputs it provides. Invertebrate pests constrain white clover growth and this study investigated rhizosphere-associated fungal controls for two of these pests and attempts to disentangle the underpinning mechanisms. The degree of suppressiveness of 10 soils, in a latitudinal gradient down New Zealand, to added Meloidogyne hapla and Costelytra zealandica scarab larvae was measured in untreated soil. Most of the soils showed no suppressive activity against these pests but two showed activity against M. hapla and two against C. zealandica. Rhizosphere fungi responsible for pest suppressive responses were elucidated via next-generation sequencing. In the M. hapla-suppressive soils nematode-trapping Orbiliomycetes fungi were present in significantly greater abundance than non-suppressive soils and their abundance increased further with addition of M. hapla. A comparison of plant growth and the rhizosphere fungal community between untreated and irradiated soil was carried out on 5 of the 10 soils using Pyronota as the scarab larvae. Soil irradiation either: reduced (by 60–70%); increased (16×) or made no difference to white clover growth across the five soils tested, illustrating the range of microbial impacts on plant production. In one of the M. hapla suppressive soils irradiation resulted in a significant increase in nematode galling suggesting that Orbiliomycetes fungi were indeed responsible for the suppressive effect. Lack of consistent changes in soil macronutrients and pH post-irradiation suggest these were not responsible for plant or invertebrate responses. The use of next generation sequencing in controlled pot trials has allowed identification of a potential biological control organism and bioindicator for M. hapla suppression. PMID:28082997

  13. Open-field host specificity test of Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple (Solanaceae) in the United States

    SciTech Connect

    Gandolfo, D.; McKay, F.; Medal, J.C.; Cuda, J.P.

    2007-03-15

    An open-field experiment was conducted to assess the suitability of the South American leaf feeding beetle Gratiana boliviana Spaeth for biological control of Solanum viarum Dunal in the USA. An open-field test with eggplant, Solanum melongena L., was conducted on the campus of the University of Buenos Aires, Argentina, and a S. viarum control plot was established 40 km from the campus. One hundred adult beetles were released in each plot at the beginning of the experiment during the vegetative stage of the plants, and forty additional beetles were released in the S. melongena plot at the flowering stage. All the plants in each plot were checked twice a week and the number of adults, immatures, and eggs recorded. Results showed almost a complete rejection of eggplant by G. boliviana. No noticeable feeding damage was ever recorded on eggplant. The experiment was ended when the eggplants started to senesce or were severely damaged by whiteflies and spider mites. The results of this open-field experiment corroborate previous quarantine/laboratory host-specificity tests indicating that a host range expansion of G. boliviana to include eggplant is highly unlikely. Gratiana boliviana was approved for field release in May 2003 in the USA. To date, no non-target effects have been observed either on eggplant or native species of Solanum. (author) [Spanish] Una prueba de campo fue conducida para evaluar la especificidad del escarabajo suramericano defoliador Gratiana boliviana Spaeth para control biologico de Solanum viarum Dunal en los Estados Unidos. La prueba con berenjena se realizo en el campo experimental de la Universidad de Buenos Aires, Argentina, y una parcela control con S. viarum fue establecida a 40 km. Cien escarabajos adultos fueron liberados en cada parcela al inicio del experimento durante la fase vegetativa, y cuarenta escarabajos adicionales fueron liberados en la parcela de berenjena durante la floracion. Todas las plantas en cada parcela fueron

  14. Host-plant variety and not climate determines the establishment and performance of Aceria lantanae (Eriophyidae), a biological control agent of Lantana camara in South Africa.

    PubMed

    Mukwevho, Ludzula; Simelane, David; Olckers, Terence

    2017-02-28

    The flower-galling mite Aceria lantanae (Cook) (Trombidiformes: Eriophyidae) was released for the biological control of Lantana camara L. (Verbenaceae) in South Africa in 2007, but has displayed variable and patchy establishment throughout the weed's range. Surveys were undertaken in 2013-2014, both seasonally and during the mite's peak infestation periods, to determine the influence of climatic factors on its performance. Although there were seasonal differences in the percentages of mite-infested inflorescences, these did not differ significantly between altitudinal zones. There were also no significant relationships between the percentages of mite-infested inflorescences and either of annual rainfall, temperature or relative humidity. A field inoculation trial revealed significant differences between 10 common South African L. camara varieties in their susceptibility to A. lantanae. Only three varieties displayed appreciable susceptibility (50-61% of inflorescences infested), whereas six displayed only slight to moderate susceptibility (8-21%) and one displayed a lack of susceptibility (no infestation). These data support the contention that differential varietal susceptibility and not climate is responsible for the variable performance of A. lantanae on L. camara in South Africa. Complementing the current biotype of A. lantanae, originally sourced from Florida (USA), with other biotypes from different L. camara genotypes in Central and South America could increase the mite's impact on the weed.

  15. Field-cage evaluation of parasitism, development, and overwintering of two recently introduced biological control agents of the emerald ash borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field-cages were used to evaluate the abilities of Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae), biocontrol agents of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), to parasitize, develop and overwinter following three late-sea...

  16. Morphology of the female reproductive system and physiological age-grading of Megamelus scutellaris (Hemiptera: Delphacidae), a biological control agent of water hyacinth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphology of the female reproductive system in Megamelus scutellaris Berg (Hemiptera:Delphacidae), a biocontrol agent of Eichhornia crassipes (Mart.) Solms, was examined using standard light microscopy techniques. Ovaries extracted from individuals dissected in phosphate buffered saline were ex...

  17. Massive Multi-Agent Systems Control

    NASA Technical Reports Server (NTRS)

    Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki

    2004-01-01

    In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.

  18. Decontamination of biological warfare agents by a microwave plasma torch

    SciTech Connect

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393 l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  19. Decontamination of biological warfare agents by a microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  20. Air monitoring and detection of chemical and biological agents

    SciTech Connect

    Leonelli, J.; Althouse, M.L.

    1999-06-01

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held November 2--3, 1998 in Boston, Massachusetts. Topics of discussion include the following: system simulations, atmospheric modeling, and performance prediction studies of chemical warfare remote sensing technologies; ultraviolet laser-induced fluorescence and aerosol detection methods for remote sensing of biological warfare agents; passive detection methods for remote detection of chemical warfare agents; and lidar-based system performance assessments, demonstrations, and new concepts for chemical warfare/biological warfare detection.

  1. Sensitive and Rapid Identification of Biological Threat Agents

    DTIC Science & Technology

    1999-12-01

    suitcase, complete with reagents and HIGGINS et al.: RAPID IDENTIFICATION OF BIOLOGICAL THREAT AGENTS 135 1 U z X o Q UJ O O Q OQ U m < u...BIOLOGICAL THREAT AGENTS 137 MW MW 1 ABCDEFGHIPCNC2 WB *~ 1 PL SRM Z FIGURE 3. Comparison of IsoCode® paper for preparing vegetative cells...FRIEDLANDER, D.J. MCCLAIN, D.L. HOOVER, W.R. BRYNE , J.A. PAVLIN, G.W. CHRISTOPHER & E.M. EITZEN, JR. 1997. Clinical recogni- tion and management of

  2. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus.

    PubMed

    Biondi, Antonio; Desneux, Nicolas; Siscaro, Gaetano; Zappalà, Lucia

    2012-05-01

    The generalist predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is a key natural enemy of various arthropods in agricultural and natural ecosystems. Releases of this predator are frequently carried out, and it is included in the Integrated Pest Management (IPM) programs of several crops. The accurate assessment of the compatibility of various pesticides with predator activity is key for the success of this strategy. We assessed acute and sublethal toxicity of 14 pesticides on O. laevigatus adults under laboratory conditions. Pesticides commonly used in either conventional or organic farming were selected for the study, including six biopesticides, three synthetic insecticides, two sulfur compounds and three adjuvants. To assess the pesticides' residual persistence, the predator was exposed for 3d to pesticide residues on tomato sprouts that had been treated 1 h, 7 d or 14 d prior to the assay. The percentage of mortality and the sublethal effects on predator reproductive capacity were summarized in a reduction coefficient (E(x)) and the pesticides were classified according to the IOBC (International Organization for Biological Control) toxicity categories. The results showed that the pesticides greatly differed in their toxicity, both in terms of lethal and sub lethal effects, as well as in their persistence. In particular, abamectin was the most noxious and persistent, and was classified as harmful up to 14 d after the treatment, causing almost 100% mortality. Spinosad, emamectin, metaflumizone were moderately harmful until 7 d after the treatment, while the other pesticides were slightly harmful or harmless. The results, based on the combination of assessment of acute mortality, predator reproductive capacity pesticides residual and pesticides residual persistence, stress the need of using complementary bioassays (e.g. assessment of lethal and sublethal effects) to carefully select the pesticides to be used in IPM programs and appropriately time the

  3. Oxidizer gels for detoxification of chemical and biological agents

    DOEpatents

    Hoffman, Dennis M.; McGuire, Raymond R.

    2002-01-01

    A gel composition containing oxidizing agents and thickening or gelling agents is used to detoxify chemical and biological agents by application directly to a contaminated area. The gelling agent is a colloidal material, such as silica, alumina, or alumino-silicate clays, which forms a viscous gel that does not flow when applied to tilted or contoured surfaces. Aqueous or organic solutions of oxidizing agents can be readily gelled with less than about 30% colloidal material. Gel preparation is simple and suitable for field implementation, as the gels can be prepared at the site of decontamination and applied quickly and uniformly over an area by a sprayer. After decontamination, the residue can be washed away or vacuumed up for disposal.

  4. COST ESTIMATES FOR PROVIDING BIOLOGICAL AGENT PROTECTION TO FALLOUT SHELTERS,

    DTIC Science & Technology

    CIVIL DEFENSE , SHELTERS , BIOLOGICAL WARFARE, DECONTAMINATION, COOLING AND VENTILATING EQUIPMENT, AIR FILTERS, BUILDINGS, UNDERGROUND STRUCTURES, CONTROLLED ATMOSPHERES, PRESSURE, CONSTRUCTION, FEASIBILITY STUDIES.

  5. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  6. Biologic response of local hemostatic agents used in endodontic microsurgery

    PubMed Central

    Jang, Youngjune; Kim, Hyeon; Roh, Byoung-Duck

    2014-01-01

    Appropriate use of local hemostatic agent is one of the important factors on the prognosis of endodontic microsurgery. However, most investigations to date focus on the hemostatic efficacy of the agents, whereas their biologic characteristics have not received enough attention. The purpose of this paper was to review the biologic response of local hemostatic agents, and to provide clinical guidelines on their use during endodontic microsurgery. Electronic database (PUBMED) was screened to search related studies from 1980 to 2013, and 8 clinical studies and 18 animal studies were identified. Among the materials used in these studies, most widely-investigated and used materials, epinephrine, ferric sulfate (FS) and calcium sulfate (CS), were thoroughly discussed. Influence of these materials on local tissue and systemic condition, such as inflammatory and foreign body reaction, local ischemia, dyspigmentation, delayed or enhanced bone and soft tissue healing, and potential cardiovascular complications were assessed. Additionally, biological property of their carrier materials, cotton pellet and absorbable collagen, were also discussed. Clinicians should be aware of the biologic properties of local hemostatic agents and their carrier materials, and should pay attention to the potential complications when using them in endodontic microsurgery. PMID:24790919

  7. The Biological Control of the Malaria Vector

    PubMed Central

    Kamareddine, Layla

    2012-01-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  8. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  9. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  10. Quality control of decontaminating agents.

    PubMed

    Arancegui, N; Cabanillas, M; Martinez, A; Funosas, E; Maestri, L; Hermida Lucena, P

    1999-01-01

    The present study evaluates the efficiency of the following decontaminating agents for the multiresistant, locally circulating bacterium Pseudomonas aeruginosa: glutaraldehyde 2%--makes A and B-, glutaraldehyde-formaldehyde; povidone-iodine-makes A, B and C-; sodium hypochloride; chloroxylenol--makes A and B-; and lapire chloride. The 9027 ATCC strain was used as a standard. A modification of the method of Kelsey and Sykes (1) was used to evaluate decontaminating efficiency. Highly satisfactory results were obtained with glutaraldehide 2% A and B, glutaraldehyde-formaldehyde and sodium hypochlorite. The results for povidone-iodine A, B and C were satisfactory but were unsatisfactory for chloroxylenol and lapirium chloride.

  11. Rhizaspidiotus Donacis (Hemiptera, Diaspididae) Licensed Agent for control. First Results of Biological Monitoring Plan of Giant Reed in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field research studies in Spain conducted to determine the biology of the arundo scale, Rhizaspidiotus donacis, were consistent with laboratory studies conducted in the U.S. Although field data from Spain indicate that the arundo scale can significantly impact giant reed, Arundo donax, additional ti...

  12. The host range and impact of Bikasha collaris (Coleoptera: Chrysomelidae), a promising candidate agent for biological control of Chinese tallow, Triadica sebifera (Euphorbiaceae) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to China, the Chinese tallow, Triadica sebifera (Euphorbiaceae) is an aggressive woody invader in the southeastern United States. The flea beetle, Bikasha collaris (Coleoptera: Chrysomelidae), is a common herbivore attacking this plant in China. To evaluate its potential as a biological contr...

  13. A medicoeconomic review of early intervention with biologic agents in the treatment of inflammatory bowel diseases

    PubMed Central

    Odes, Shmuel; Greenberg, Dan

    2014-01-01

    The treatment of inflammatory bowel disease with standard therapy fails to control the disease in many patients. Biologic therapy has an increasing role in altering the natural history of Crohn’s disease and ulcerative colitis, and is improving patient prognosis. However, indications for treatment and issues with drug costs and value for money remain unclear. Also, when to perform early intervention with biologic agents is at present unclear. We performed an extensive literature search and review to address these issues. The biologics provide better care for many patients. The choice of biologic agent, the indications for its use, the switch between agents, and the considerations of cost are outlined, with a view to guiding the treating physician in managing these cases. Outstanding issues and anticipated future developments are defined. PMID:25336980

  14. Disinfection of biological agents in the field using a mobile ...

    EPA Pesticide Factsheets

    Report The Army’s Net Zero Initiative is an energy-conservation program that focuses on energy as well as water and waste usage procedures. All Net Zero projects are geared toward helping the military installation or community become more sustainable and resilient, with an emphasis on taking a systems approach. Net Zero projects must advance the state of the science and are focused on three general topic areas: water, energy, and waste, and the nexuses among them. This project examined the inactivation and/or removal of biological contaminants in dirty wash water using a portable ozone-UV AOP process. The strain of E. coli used in these experiments is not a biological warfare agent, but acts as a surrogate for certain of the vegetative biological agents such as the enterohemorrhagic strain designated E. coli 0157:H7.

  15. Agent-based models in translational systems biology

    PubMed Central

    An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram

    2013-01-01

    Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989

  16. Prospects for biological control of rodent populations*

    PubMed Central

    Wodzicki, Kazimierz

    1973-01-01

    Pathogens and predatory animals are the main agents used for the biological control of rodents. The pathogens that have been used are of the genus Salmonella; none is rodent-specific and all can cause severe infection in man and domestic animals. Furthermore, rodents frequently develop immunity to, and become carriers of, these organisms, and there is little to commend their use, except in lightly populated areas where control is infrequently applied. The relationships of five predator species with their rodent prey have been examined. The monitor lizard, mongoose, and ferret were for different reasons found to be unsatisfactory, and there is not yet sufficient evidence to warrant further releases of the Japanese weasel. Domestic and feral cats control rodents well in some situations but only after some other agent has removed a large part of the rodent population. PMID:4587482

  17. Biological warfare agents as threats to potable water.

    PubMed Central

    Burrows, W D; Renner, S E

    1999-01-01

    Nearly all known biological warfare agents are intended for aerosol application. Although less effective as potable water threats, many are potentially capable of inflicting heavy casualties when ingested. Significant loss of mission capability can be anticipated even when complete recovery is possible. Properly maintained field army water purification equipment can counter this threat, but personnel responsible for the operation and maintenance of the equipment may be most at risk of exposure. Municipal water treatment facilities would be measurably less effective. Some replicating (infectious) agents and a few biotoxins are inactivated by chlorine disinfection; for others chlorine is ineffective or of unknown efficacy. This report assesses the state of our knowledge of agents as potable water threats and contemplates the consequences of intentional or collateral contamination of potable water supplies by 18 replicating agents and 9 biotoxins known or likely to be weaponized or otherwise used as threats. PMID:10585901

  18. Agent-Based Cooperative Control

    DTIC Science & Technology

    2005-12-01

    518. [91] A. Robertson, G. Inalhan, J. P. How, “ Formation control strategies for a separated spacecraft interferometer,” in Proc. of the 1999...100] M. Tillerson and J. P. How, “Advanced guidance algorithms for spacecraft formation -keeping,” in Proc. of the 2002 American Control Conference...based nonlinear control theory. Potential Field Addresses: issues of desired interaction such as coordination, formation , and collision

  19. Biological pest control in Mexico.

    PubMed

    Williams, Trevor; Arredondo-Bernal, Hugo C; Rodríguez-del-Bosque, Luis A

    2013-01-01

    Mexico is a megadiverse country that forms part of the Mesoamerican biological corridor that connects North and South America. Mexico's biogeographical situation places it at risk from invasive exotic insect pests that enter from the United States, Central America, or the Caribbean. In this review we analyze the factors that contributed to some highly successful past programs involving classical biological control and/or the sterile insect technique (SIT). The present situation is then examined with reference to biological control, including SIT programs, targeted at seven major pests, with varying degrees of success. Finally, we analyze the current threats facing Mexico's agriculture industry from invasive pests that have recently entered the country or are about to do so. We conclude that despite a number of shortcomings, Mexico is better set to develop biological control-based pest control programs, particularly on an area-wide basis, than many other Latin American countries are. Classical and augmentative biological control and SIT-based programs are likely to provide effective and sustainable options for control of native and exotic pests, particularly when integrated into technology packages that meet farmers' needs across the great diversity of production systems in Mexico.

  20. Herbivory, Predation, and Biological Control.

    ERIC Educational Resources Information Center

    Murphy, Terence M.; And Others

    1992-01-01

    Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…

  1. Autoantibodies in biological agent naive patients with psoriatic arthritis

    PubMed Central

    Johnson, S; Schentag, C; Gladman, D

    2005-01-01

    Objective: To investigate the prevalence of autoantibodies in biological agent naive patients with psoriatic arthritis (PsA). Methods: 94 consecutive, prospectively collected, biological agent naive patients with PsA at the University of Toronto PsA clinic underwent clinical and laboratory assessment. Disease activity was assessed by the number of actively inflamed joints, and the Psoriasis Activity and Severity Index (PASI) score. Antinuclear antibodies (ANA), rheumatoid factor (RF), double stranded DNA (dsDNA), Ro, La, Smith, and RNP were tested. Descriptive statistics and non-parametric tests were used to analyse the data. Results: 44/94 (47%) patients with PsA were ANA positive (⩾1/40); 13/94 (14%) had a clinically significant titre of ⩾1/80. Three per cent had dsDNA antibodies, 2% had RF and anti-Ro antibodies, 1% had anti-RNP antibodies, and none had anti-La or anti-Smith antibodies. Conclusions: The background prevalence of ANA ⩾1/80 in patients with PsA was 14%, with very few patients having specific lupus antibodies. This should serve as a baseline figure for the frequency of autoantibodies in biological agent naive patients with PsA for studies of the use of anti-TNFα agents. PMID:15834057

  2. An industry perspective on the use of "atoxigenic" strains of Aspergillus flavus as biological control agents and the significance of cyclopiazonic acid.

    PubMed

    King, Eileen D; Bobby Bassi, Albeit B; Ross, David C; Druebbisch, Bernd

    2011-08-01

    Several nonaflatoxigenic strains of Aspergillus flavus have been registered in the United States to reduce aflatoxin accumulation in maize and other crops, but there may be unintended negative consequences if these strains produce cyclopiazonic acid (CPA). AF36, a nonaflatoxigenic, CPA-producing strain has been shown to produce CPA in treated maize and peanuts. Alternative strains, including Afla-Guard® brand biocontrol agent and K49, do not produce CPA and can reduce both aflatoxin and CPA in treated crops. Chronic toxicity of CPA has not been studied, and recent animal studies show significant harmful effects from short-term exposure to CPA at low doses. Grower and industry confidence in this approach must be preserved through transparency.

  3. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    SciTech Connect

    Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

  4. FIPA agent based network distributed control system

    SciTech Connect

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  5. Effects of nutritional factors and soil addition on growth, longevity and fecundity of the tadpole shrimp Triops newberryi (Notostraca: Triopsidae), a potential biological control agent of immature mosquitoes.

    PubMed

    Su, T; Mulla, M S

    2001-06-01

    The notostracan tadpole shrimp (TPS) Triops newberryi Packard has potential to be used as a biocontrol agent of immature mosquitoes. Eggs, nymphal or adult shrimps are considered to be the stages for field introduction. To yield good growth of the shrimp and high production of shrimp eggs under artificial conditions, nutritional requirements of TPS for growth, survival and fecundity need to be elucidated. In the laboratory, we evaluated various nutritional and edaphic regimens, such as soil alone, mosquito larvae or rabbit pellets alone and various combinations of these three components for culturing. These factors influenced the growth, longevity and egg production profoundly. It was shown that the simulated natural conditions, i.e. full combination of all three factors, yielded the largest TPS with longest survival and highest egg production, followed by the combinations of any two components. Any single component, soil, mosquito larvae, or rabbit pellets, did not result in good growth, survival and egg production. By formulating optimal rearing substrates, this species of TPS will yield large numbers of all stages for experimentation and field introductions. Under optimal conditions, they mature in 7-8 days and survive for about one month. Each TPS is capable of producing up to 1,000 eggs during its lifetime. These studies developed nutritional regimens for TPS mass culturing procedures, where the eggs, nymphal and adult TPS can be mass cultured for field introduction and stocking in mosquito developmental sites.

  6. Biologic Agents for Periodontal Regeneration and Implant Site Development

    PubMed Central

    Suárez-López del Amo, Fernando; Monje, Alberto; Padial-Molina, Miguel; Tang, ZhiHui; Wang, Hom-Lay

    2015-01-01

    The advancement of molecular mediators or biologic agents has increased tremendously during the last decade in periodontology and dental implantology. Implant site development and reconstruction of the lost periodontium represent main fields in which these molecular mediators have been employed and investigated. Different growth factors trigger different reactions in the tissues of the periodontium at various cellular levels. Proliferation, migration, and differentiation constitute the main target areas of these molecular mediators. It was the purpose of this comprehensive review to describe the origin and rationale, evidence, and the most current understanding of the following biologic agents: Recombinant Human Platelet-Derived Growth Factor-BB (rhPDGF-BB), Enamel Matrix Derivate (EMD), Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF), Recombinant Human Fibroblast Growth Factor-2 (rhFGF-2), Bone Morphogenic Proteins (BMPs, BMP-2 and BMP-7), Teriparatide PTH, and Growth Differential Factor-5 (GDF-5). PMID:26509173

  7. Potential of a strain of the entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) as a biological control agent against western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five Beauveria bassiana strains were evaluated for control of western flower thrips. Strain RSB was the most virulent, causing 69-96% mortality at concentrations of 1×104 – 1×107 conidia mL-1, 10 days after inoculation of first instars. In greenhouse trials, RSB applied to broccoli foliage signifi...

  8. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  9. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.).

    PubMed

    Bean, Daniel W; Dudley, Tom L; Keller, Julie C

    2007-02-01

    The leaf beetle Diorhabda elongata Brullé subspecies deserticola Chen, collected in northwestern China, has been released in the western United States to control tamarisk (Tamarix spp.). While beetle establishment and saltcedar defoliation have been noted at northern study sites, this species has not established at latitudes south of the 38th parallel. Critical daylength for diapause induction was measured in the laboratory and ranged between 14 h 50 min to 15 h 08 min, depending on temperature, and adults were shown to cease reproduction and enter diapause at daylengths of 14 h 30 min or less. Critical daylength in the field was measured at approximately 14 h 39 min and occurred 13 d before 50% of the population reached diapause. South of 36 degrees 20' N, the longest days of the year are shorter than 14 h 39 min, making the beetles univoltine in the southern United States. North of 36 degrees 20' N, a window of reproductive activity opens 13 d after the critical daylength is reached in the spring and closes 13 d after it is passed in the summer, allowing at least a partial second summer generation. It is predicted that south of the 38th parallel, premature diapause will increase mortality and disrupt synchrony between the life cycle of the beetle and host plant availability. This could hinder establishment and help explain the failure of this population south of the 38th parallel, providing a rationale for testing other populations of D. elongata in the southern range of Tamarix in North America.

  10. Control theory meets synthetic biology.

    PubMed

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.

  11. Control theory meets synthetic biology

    PubMed Central

    2016-01-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  12. Prediction of the geographic distribution of the psyllid, Arytinnis hakani (Homoptera: Psyllidae), a prospective biological control agent of Genista monspessulana, based on the effect of temperature on development, fecundity, and survival.

    PubMed

    Smith, Lincoln

    2014-10-01

    The psyllid, Arytinnis hakani (Loginova), is a prospective biological control agent of Genista monspessulana (French broom), an invasive shrub originating from western Europe. It is a multivoltine species that is not known to diapause. The insect is established in Australia, where it appears to cause heavy defoliation and mortality of the target weed, except at warm sunny sites. This suggests that bright light or high temperatures may hamper the agent. We measured the effect of temperature on development rate, survival, and fecundity of the psyllid to determine its suitable temperature range. Intrinsic rate of increase was highest near 22°C, and there was no population growth at the extremes of 5°C and 26°C. Net reproductive rate was highest at 16.5°C. Fecundity was highest at 22°C, and decreased to half at 16°C and at 27°C. Adult female longevity decreased with increasing temperature over the range studied. Nymphal survivorship was highest at 16°C and dropped to 0% at 5°C and 26°C. Eggs were able to complete development in 83 d at 5°C, but with only 20% survivorship versus 78-95% survivorship at higher temperatures. For populations with a stable age distribution, only 2-3% of the population is in the adult stage. Climate modeling using CLIMEX indicated that the geographic distribution of the psyllid is constrained by high temperature stress in Australia. The psyllid is predicted to be suitable in coastal California but not in the Sierra foothills.

  13. Rapid biological agent identification by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.; Elliott, Susan; Sperry, Jay F.

    1999-11-01

    The Chemical Weapons Convention prohibits the development, production, stockpiling, and use of warfare agents (chemical and biological), and requires their destruction. Yet their use persists and has been included in the terrorist's arsenal. Currently, a number of analytical methods are being developed to perform rapid measurements of trace agents to ensure treaty compliance, as well as safe environments for military personal and the public at large. We have been investigating the ability of surface-enhanced Raman spectroscopy to detect bacterial nucleic acid-base pairs with sufficient sensitivity and selectivity to eliminate the need for enumeration used in polymerase chain reactions and culture growth, required by other measurement techniques. The design of a small volume, fiber optic coupled, electrolytic sample cell is presented along with analysis of DNA and RNA separated from non-toxic bacteria.

  14. 75 FR 39437 - Optimizing the Security of Biological Select Agents and Toxins in the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Executive Order 13546--Optimizing the Security of Biological Select Agents and Toxins in the United States... July 2, 2010 Optimizing the Security of Biological Select Agents and Toxins in the United States By the... and productive scientific enterprise that utilizes biological select agents and toxins (BSAT)...

  15. Surfactant-Based Chemical and Biological Agent Decontaminating Solution Development

    DTIC Science & Technology

    2003-11-19

    10^8 4 PAA in uEm 10^8 8 (1) C10 Amine oxide (2) di-C10 Amine oxide ! Peracetic Acid (PAA) Found to Be an Effective Disinfectant Decon Conf 11-03...Utilize as Environmentally Green Reactant for Both Chemical and Biological Agents – Some Peracids Available in Neat Form ( Peracetic acid ) and In-Situ...Formulation Components – Peroxygen Compounds and Catalysts Oxidation of Calmagite Dye by Peracetic Acid TAML FeMB Catalyst 0 20 40 60 80 100 120 0 2 4 6

  16. Micro-radiography of biological samples with medical contrast agents

    NASA Astrophysics Data System (ADS)

    Dammer, J.; Weyda, F.; Benes, J.; Sopko, V.; Gelbic, I.

    2013-12-01

    Micro-radiography is an imaging technique that uses X-rays to study the internal structures of objects. This fast and easy imaging tool is based on differential X-ray attenuation by various tissues and structures within biological samples. The experimental setup described is based on the semiconductor pixel X-ray detector Medipix2 and X-ray micro-focus tube. Our micro-radiographic system has been recently used not only for the examination of internal structures of various arthropods and other biological objects but also for tracing some processes in selected model species (we used living larvae of mosquito Culex quinquefasciatus). Low concentrations of iodine, lanthanum or gold particles were used as a tracer (contrast agent). Such contrast agents increase the absorption of X-rays and allow a better visibility of internal structures of model organisms (especially the various cavities, pores, etc.). In addition, the movement of tracers in selected timing experiments demonstrates some physiological functions of digestive and excretory system.

  17. Strain-specific SCAR markers for the detection of Trichoderma harzianum AS12-2, a biological control agent against Rhizoctonia solani, the causal agent of rice sheath blight.

    PubMed

    Naeimi, S; Kocsubé, S; Antal, Zsuzsanna; Okhovvat, S M; Javan-Nikkhah, M; Vágvölgyi, C; Kredics, L

    2011-03-01

    In order to identify a specific marker for T. harzianum AS12-2, a strain capable of controlling rice sheath blight caused by Rhizoctonia solani, UP-PCR was performed using five universal primers (UP) both separately and in pairwise combinations. The application of two UP primers resulted in the amplification of unique fragments from the genomic DNA of T. harzianum AS12-2, clearly distinguishing it from other Trichoderma strains. The unique fragments had no significant sequence homology with any other known sequence available in databases. Based on the sequences of the unique fragments, 14 oligonucleotide primers were designed. Two primer sets amplified a fragment of expected size from the DNA of strain T. harzianum AS12-2 but not from any other examined strains belonging to T. harzianum, to other Trichoderma species assayed, or to other common fungi present in paddy fields of Mazandaran province, Iran. In conclusion, SCAR (sequence characterized amplified regions) markers were successfully identified and rapid, reliable tools were provided for the detection of an effective biocontrol Trichoderma strain, which can facilitate studies of its population dynamics and establishment after release into the natural environment.

  18. [Perception of risk of biological agents among a group of health workers].

    PubMed

    Cardoni, F; Ceccarelli, L; Simonazzi, S

    2012-01-01

    In the context of "direct" or "indirect" patient care, residual risk of biological agents exposure constitute a hazard for health and safety, that cross and affects all health care workers. For the development and implementation of effective "prevention and control" actions, even against nosocomial infections, it is nevertheless most important to acquire objective information on the level of risk perception demonstrated by relevant staff for assistance. The aim of this contribution was therefore to study the attitudes and behaviours of health sector workers in relation to the specific "biological agents risk". The survey was carried out in a italian hospital, and 25 in the study adhered responsible for the safety and 219 nurses, identified as exposed to biological agents (244 subjects), who were given a specially designed questionnaire. The results of the study, which will be described in detail, has helped to identify critical issues related to the management of "biological agents risk", and at the same time to set up a program for improvement of prevention and protection, aimed at a substantial reduction of the same risk factor.

  19. Biological soil crusts: a fundamental organizing agent in global drylands

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the

  20. The use of contrast agent for imaging biological samples

    NASA Astrophysics Data System (ADS)

    Dammer, J.; Weyda, F.; Sopko, V.; Jakubek, J.

    2011-01-01

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1μm, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  1. Biological Control Strategies for Mosquito Vectors of Arboviruses

    PubMed Central

    Huang, Yan-Jang S.; Higgs, Stephen; Vanlandingham, Dana L.

    2017-01-01

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses. PMID:28208639

  2. Inactivation of biological agents using neutral oxone-chloride solutions.

    PubMed

    Delcomyn, Carrie A; Bushway, Karen E; Henley, Michael V

    2006-04-15

    Bleach solutions containing the active ingredient hypochlorite (OCl-) serve as powerful biological disinfectants but are highly caustic and present a significant compatibility issue when applied to contaminated equipment or terrain. A neutral, bicarbonate-buffered aqueous solution of Oxone (2K2HSO5.KHSO4.K2SO4) and sodium chloride that rapidly generates hypochlorite and hypochlorous acid (HOCl) in situ was evaluated as a new alternative to bleach for the inactivation of biological agents. The solution produced a free chlorine (HOCl + OCl-) concentration of 3.3 g/L and achieved > or =5.8-log inactivation of spores of Bacillus atrophaeus, Bacillus thuringiensis, Aspergillus niger, and Escherichia coli vegetative cells in 1 min at 22 degrees C. Seawaterwas an effective substitute for solid sodium chloride and inactivated 5 to 8 logs of each organism in 10 min over temperatures ranging from -5 degrees C to 55 degrees C. Sporicidal effectiveness increased as free chlorine concentrations shifted from OCl- to HOCl. Neutrally buffered Oxone-chloride and Oxone-seawater solutions are mitigation alternatives for biologically contaminated equipment and environments that would otherwise be decontaminated using caustic bleach solutions.

  3. Update on the use of systemic biologic agents in the treatment of noninfectious uveitis

    PubMed Central

    Pasadhika, Sirichai; Rosenbaum, James T

    2014-01-01

    Uveitis is one of the leading causes of blindness worldwide. Noninfectious uveitis may be associated with other systemic conditions, such as human leukocyte antigen B27-related spondyloarthropathies, inflammatory bowel disease, juvenile idiopathic arthritis, Behçet’s disease, and sarcoidosis. Conventional therapy with corticosteroids and immunosuppressive agents (such as methotrexate, azathioprine, mycophenolate mofetil, and cyclosporine) may not be sufficient to control ocular inflammation or prevent non-ophthalmic complications in refractory patients. Off-label use of biologic response modifiers has been studied as primary and secondary therapeutic agents. They are very useful when conventional immunosuppressive therapy has failed or has been poorly tolerated, or to treat concomitant ophthalmic and systemic inflammation that might benefit from these medications. Biologic therapy, primarily infliximab, and adalimumab, have been shown to be rapidly effective for the treatment of various subtypes of refractory uveitis and retinal vasculitis, especially Behçet’s disease-related eye conditions and the uveitis associated with juvenile idiopathic arthritis. Other agents such as golimumab, abatacept, canakinumab, gevokizumab, tocilizumab, and alemtuzumab may have great future promise for the treatment of uveitis. It has been shown that with proper monitoring, biologic therapy can significantly improve quality of life in patients with uveitis, particularly those with concurrent systemic symptoms. However, given high cost as well as the limited long-term safety data, we do not routinely recommend biologics as first-line therapy for noninfectious uveitis in most patients. These agents should be used with caution by experienced clinicians. The present work aims to provide a broad and updated review of the current and in-development systemic biologic agents for the treatment of noninfectious uveitis. PMID:24600203

  4. Engineered plant biomass particles coated with biological agents

    DOEpatents

    Dooley, James H.; Lanning, David N.

    2014-06-24

    Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  5. 1,3,4-oxadiazole derivatives as potential biological agents.

    PubMed

    Sun, Juan; Makawana, Jigar A; Zhu, Hai-Liang

    2013-10-01

    The synthesis of novel compound libraries along with screening is a rapid and effective approach for the discovery of potential chemical agents, and it becomes an important method in pharmaceutical chemistry research. 1,3,4- oxadiazole derivatives as the typical heterocyclic compounds, exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel 1,3,4-oxadiazoles derivatives with antimicrobial, antitumor or antiviral activities during the past decade. In this review, we discussed the synthetic development of 1,3,4-oxadiazoles derivatives, and also the relevant bioactivity and their prospects as the potential chemical drugs.

  6. Identification of biological agents using surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Paxon, Tracy L.; Duthie, R. Scott; Renko, Casey; Burns, Andrew A.; Lesaicherre, Marie L.; Mondello, Frank J.

    2011-05-01

    GE Global Research Center, in collaboration with Morpho Detection, Inc. has developed an assay scheme for the identification of biological agents using Surface Enhanced Raman Scattering (SERS). Specifically, unique spectroscopic signatures are generated using SERS tags consisting of individual glass-encapsulated gold nanoparticles and surfacebound reporter molecules. These SERS tags are modified with a capture moiety specific to the antigen of interest, and serve as a spectroscopic label in a bead-based sandwich assay. Assays are being developed for a variety of pathogens and this paper will focus on aspects of assay development, optimization, stabilization and validation. Results on the development of an assay to detect Ricin toxin will be presented, and preliminary feasibility studies for the detection of additional pathogens will be discussed.

  7. Technological advancements for the detection of and protection against biological and chemical warfare agents.

    PubMed

    Eubanks, Lisa M; Dickerson, Tobin J; Janda, Kim D

    2007-03-01

    There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.

  8. System integration and development for biological warfare agent surveillance

    NASA Astrophysics Data System (ADS)

    Mark, Jacob A.; Green, Lance D.; Deshpande, Alina; White, P. Scott

    2007-04-01

    A wide variety of technical needs exist for surveillance, monitoring, identifying, or detecting pathogens with potential use as biological terrorism or warfare agents. Because the needs vary greatly among diverse applications, tailored systems are needed that meet performance, information, and cost requirements. A systems perspective allows developers to identify chokepoints for each application, and focus R&D investments on the limiting factors. Surveillance and detection systems are comprised of three primary components: information (markers), chemistries (assays), and instrumentation for "readout". Careful consideration of these components within the context of each application will allow for increases in efficiency and performance not generally realized when researchers focus on a single component in isolation. In fact, many application requirements can be met with simple novel combinations of existing technologies, without the need for huge investments in basic research. Here we discuss some of the key parameters for surveillance, detection, and identification of biothreat agents, and provide examples of focused development that addresses key bottlenecks, and greatly improve system performance.

  9. Controlled annotations for systems biology.

    PubMed

    Juty, Nick; Laibe, Camille; Le Novère, Nicolas

    2013-01-01

    The aim of this chapter is to provide sufficient information to enable a reader, new to the subject of Systems Biology, to create and use effectively controlled annotations, using resolvable Identifiers.org Uniform Resource Identifiers (URIs). The text details the underlying requirements that have led to the development of such an identification scheme and infrastructure, the principles that underpin its syntax and the benefits derived through its use. It also places into context the relationship with other standardization efforts, how it differs from other pre-existing identification schemes, recent improvements to the system, as well as those that are planned in the future. Throughout, the reader is provided with explicit examples of use and directed to supplementary information where necessary.

  10. Chemiluminescence assay for the detection of biological warfare agents

    SciTech Connect

    Langry, K; Horn, J

    1999-11-05

    A chemiluminescent homogeneous immunoassay and a hand-size multiassay reader are described that could be used for detecting biological materials. The special feature of the assay is that it employs two different antibodies that each bind to a unique epitope on the same antigen. Each group of epitope-specific antibodies has linked to it an enzyme of a proximal-enzyme pair. One enzyme of the pair utilizes a substrate in high concentration to produce a second substrate required by the second enzyme. This new substrate enables the second enzyme to function. The reaction of the second enzyme is configured to produce light. This chemiluminescence is detected with a charge-coupled device (CCD) camera. The proximal pair enzymes must be in close proximity to one another to allow the second enzyme to react with the product of the first enzyme. This only occurs when the enzyme-linked antibodies are attached to the antigen, whether antigen is a single protein with multiple epitopes or the surface of a cell with a variety of different antigens. As a result of their juxtaposition, the enzymes produce light only in the presence of the biological material. A brief description is given as to how this assay could be utilized in a personal bio-agent detector system.

  11. Halloysite clay nanotubes for controlled delivery of chemically active agents

    NASA Astrophysics Data System (ADS)

    Abdullayev, Elshard

    In this work we explored the capabilities of halloysite nanotubes as capsules for encapsulation and controlled delivery of the chemically and biologically active substances. Halloysite is a two-layered aluminosilicate which has a predominantly hollow tubular structure in the submicron range and is chemically similar to kaolinite [1, 2]. In the first section of this work, we analyzed the structure of the halloysite nanotubes as well as its capability to encapsulate and deliver biologically and chemically active agents, similarities and differences between release characteristics of different agents and how these differences relate with their chemical structure. Models were used to describe the release characteristics of the active agents. Study of the interaction between loaded agents and halloysite nanotubes provides better understanding of the release characteristics of the loaded agents and how halloysite can be implemented for technological and medical applications. The second part of the work deals with self-healing coatings produced on the basis of halloysite nanotubes loaded with corrosion inhibitors. Self-healing coatings are one of the effective methods to protect metals from corrosion and deterioration. The difference between self-healing coatings and the usual coatings is the ability of the first to recover after the formation of the damages due to external or internal stresses. High efficiency of the self- healing coatings produced by halloysite nanotubes were demonstrated on 110 Copper alloys and 2024 aluminum alloys. Controlled delivery of the corrosion inhibitors with additional encapsulation of the halloysite nanotubes by synthesizing stoppers at tube endings was also demonstrated. Additional encapsulation of the halloysite nanotubes may be necessary when slow release of the loaded agents is required or rapid convection of the liquid in the surrounding environment takes place (since this may cause rapid release of the loaded agents without additional

  12. A method for biological control of a complex phytoadaptogen.

    PubMed

    Bocharova, O A; Lyzhenkova, M A; Kurennaya, O N; Knyazhev, V A

    2003-12-01

    We propose a method for standardization of complex adaptogen-containing preparations. The method is based on acceleration of baking yeast strain growth on energy-depleted medium in the presence of the test agent. This method allows simple quantitative biological control of phytoadaptogens and comparison of adaptogenic activity of mono- and complex preparations.

  13. Successful biological control of tropical soda apple in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple, Solanum viarum, is a small shrub native to tropical regions of Brazil, Paraguay, and Argentina. This weed was first found in Florida in 1988. In May 2003, a leaf feeding beetle, Gratiana boliviana, from South America was released in Florida as a biological control agent of tro...

  14. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  15. Biology-Inspired Autonomous Control

    DTIC Science & Technology

    2011-08-31

    understanding the mechanisms of biological flight through collaboration with various experimental biology academic research laboratories around the world ...around the world . The research focus addressed two broad, complementary research areas: autonomous systems concepts inspired by the behavior and...freedom to do so”.2 This definition characterizes the most obvious feature of biological flight: flying organisms exploit real- world aerial

  16. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

    SciTech Connect

    Hybl, John D.; Tysk, Shane M.; Berry, Shaun R.; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors.However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  17. Persistence with biologic agents for the treatment of rheumatoid arthritis in Japan

    PubMed Central

    Mahlich, Jörg; Sruamsiri, Rosarin

    2016-01-01

    Background To assess persistence rates of biologic agents for the treatment of rheumatoid arthritis in Japan. Methods Based on Japanese claims data of 16,214 patients between 2012 and 2014, 6-, 12-, and 18-month persistence rates of different biologic agents were calculated. Determinants of persistence were assessed by means of a multivariate Cox proportional hazard model controlling for age, sex, and comorbidities. A sensitivity analysis was performed with different definitions of persistence and parametric survival analysis. Results Overall persistence rates in Japan are high and reach 86% after 1 year in the entire sample. The persistence rate for the biologic-naïve subpopulation is above 95%. Persistence is higher for older patients (hazard ratio 0.60 [95% confidence interval 0.40–0.91] for >75 years compared to ≤60 years) and lower for patients with a high comorbidity score (hazard ratio 1.33; 95% confidence interval 1.03–1.70 for Charlson Comorbidity Index score 3–5 compared to ≤2). We found a high variation of persistence between different drugs. Conclusion Japanese rheumatoid arthritis patients have a high persistence rate of biologic treatments. However, multiple factors affect the persistence rate of Japanese patients, including age, comorbidities, and patient type. Naïve patients tend to have a higher persistence rate than continuing biologic patients. PMID:27540283

  18. [Biology of non-conventional transmissible agents or prions].

    PubMed

    Dormont, D

    1998-02-01

    Transmissible subacute spongiform encephalopathies (TSE) are a group of human and animal diseases which includes Creutzfeldt-Jakob disease, Gerstmann-Straüssler-Scheinker syndrome (GSS), Kuru, fatal familial insomnia (FFI), scrapie in sheep and goat, mink and feline transmissible encephalopathy, chronic wasting disease, and bovine spongiforme encephalopathy (BSE). TSE are transmissible among individuals of the same species and some of different species. These diseases stem from a specific category of agents that have biological and physiochemical characteristics unlike other micro-organisms; they are known as transmissible spongiform encephalopathy agent (TSA), prions, or virinos. So far, despite considerable progress made in the molecular biology toward the understanding of neurological injury, the nature of the TSA/prions remains unknown. TSE are characterised by the pathognomic accumulation, within the central nervous system of the infected individual, of a normal protein from the host organism, the PrP (prion protein). Differences between the PrP isolated from normal individuals (PrP-c) and PrP isolated from infected individuals (PrP-res) have been investigated. There are no differences in the sequence in amino acids, and the secondary structure seems identical, but since normal PrP is totally degraded by proteinase K pathological PrP resists to enzymatic digestion. One can therefore describe two PrP isoforms: a normal isoform, the PrP-c (c for cellular), sensitive to proteinase K and present in the normal individual and in the infected patients or animals: and a pathological isoform, the PrP-res, resistant to proteinase K and present in amount proportional to the infectivity in the brains of infected individuals. The presence of TSA/prions is detectable in the spleens of infected animals early after inoculation; it is then present in the CNS following a period not exceeding a half of the total length of the experimental disease. In the CNS, PrP-res is the

  19. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    PubMed

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.

  20. Chemical Biology Strategies for Biofilm Control.

    PubMed

    Yang, Liang; Givskov, Michael

    2015-08-01

    Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

  1. Automated 10-channel capillary chip immunodetector for biological agents detection.

    PubMed

    Yacoub-George, Erwin; Hell, Waltraud; Meixner, Leonhard; Wenninger, Franz; Bock, Karlheinz; Lindner, Petra; Wolf, Hans; Kloth, Tanja; Feller, Klaus A

    2007-02-15

    The automated 10-channel capillary chip immunodetector (10K-IDWG) is a prototype, which has been developed for automatically operated biological agents (BA) point detection. The current technology uses a chemiluminescence capillary immunoassay (EIA) technique in combination with integrated microfluidics and allows the highly sensitive and rapid detection and preliminary identification of multiple BA in aqueous solutions in the laboratory. The chemiluminescence capillary EIA are performed within a disposable capillary chip containing 10 fused-silica capillaries arranged in parallel coated with selected capture antibodies. A multianode-photomultiplier array is used to detect chemiluminescence intensity in each capillary. Reservoirs for reagents and buffers and a waste disposal reservoir are integrated. This paper describes the technology of the 10K-IDWG and its evaluation with three different BA, the toxin staphylococcal enterotoxin B (SEB), the bacterial analyte Escherichia coli (E. coli) O157:H7 as a model for bacterial pathogens, and the bacteriophage M13 as a model for virus pathogens. The 10K-IDWG is able to detect the above mentioned three BA in an aqueous sample within 29 min (single analyte-detection and multiplexing). Limits of detection (LOD) are 0.1 ng/ml for SEB, 10(4)cfu/ml for E. coli O157:H7, and 5x10(5) pfu/ml for M13. Cross reactivities between the three assays were not observed.

  2. Biology and Water Pollution Control.

    ERIC Educational Resources Information Center

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  3. Evaluation of Persistence of Biological Agents in Landfill ...

    EPA Pesticide Factsheets

    Report This study was performed using surrogate test agents similar to BW agents, following the well-established hypothesis that, though the diversity of viral contaminants may be quite large, a limited list of viral surrogates can be chosen that qualitatively represent the likely BW threat agents of interest.

  4. Biological control and nutrition: food for thought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical pesticides are used frequently to combat arthropod pests that plague crops; however, these compounds come with potential risks to the environment and human health. Research efforts have focused on using natural agents as an alternative to these chemical insecticides. These biological contro...

  5. Tests of Level A Suits - Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary

    DTIC Science & Technology

    1998-06-01

    Tests of Level A Suits – Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary Richard B. Belmonte...AND SUBTITLE Test Results of Level A Suits – Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary 5. FUNDING...words) Twelve Level A protective suits were tested for GB and HD permeation swatch testing using modified procedures of TOP

  6. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    SciTech Connect

    William S. Winters

    2002-02-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied.

  7. Diabetes insipidus as a complication of Wegener's granulomatosis and its treatment with biologic agents.

    PubMed

    Cunnington, Joanna Rosalind; Jois, Ramesh; Zammit, Ivan; Scott, David; Isaacs, John

    2009-01-01

    Wegener's granulomatosis of the pituitary gland resulting in diabetes insipidus is a rare complication of the disease. Standard treatment for Wegener's granulomatosis involves a combination of prednisolone and cylophosphamide, however biologic agents are now being used in refractory cases. We report three cases of patients with diabetes insipidus as a complication of Wegener's granulomatosis who were treated with biologic agents. All three cases showed clinical response to treatment with biologic agents including rituximab and alemtuzumab and two cases demonstrated improvement in pituitary gland abnormalities by MRI. Clinicians should be aware that diabetes insipidus can present as a complication of Wegener's granulomatosis and that biologic therapies may be effective in refractory cases.

  8. Tests of Level B Suits - Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary

    DTIC Science & Technology

    1999-04-01

    Tests of Level B Suits – Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary Robert S. Lindsay April...Final; Jan 98 – Jun 98 4. TITLE AND SUBTITLE Tests of Level B Suits – Protection Against Chemical and Biological Warfare Agents and Simulants...Occupational Safety and Health Level B∗ suit designs were tested to assess their capability to protect in a chemical warfare agent

  9. Small-Scale Terrorist Attacks Using Chemical and Biological Agents: An Assessment Framework and Preliminary Comparisons

    DTIC Science & Technology

    2004-05-20

    Warfare Agents, op. cit.; and the Health Canada Material Safety Data Sheet - Infectious Substances for Rickettsia rickettsii , found online at [http...cns.miis.edu/research/cbw/possess.htm]. Biological Agent Comparison Potential biological agents include the many bacteria and viruses that induce...barriers to their acquisition, regardless of the legality of such a transfer. In contrast, salmonella bacteria would be easy to obtain from natural

  10. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.

    PubMed

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K; Sharma, Ramesh C

    2013-08-01

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ~5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly.

  11. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR

    NASA Astrophysics Data System (ADS)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K.; Sharma, Ramesh C.

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ˜5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly.

  12. The biology of small, introduced populations, with special reference to biological control

    PubMed Central

    Fauvergue, Xavier; Vercken, Elodie; Malausa, Thibaut; Hufbauer, Ruth A

    2012-01-01

    Populations are introduced into novel environments in different contexts, one being the biological control of pests. Despite intense efforts, less than half introduced biological control agents establish. Among the possible approaches to improve biological control, one is to better understand the processes that underpin introductions and contribute to ecological and evolutionary success. In this perspective, we first review the demographic and genetic processes at play in small populations, be they stochastic or deterministic. We discuss the theoretical outcomes of these different processes with respect to individual fitness, population growth rate, and establishment probability. Predicted outcomes differ subtly in some cases, but enough so that the evaluating results of introductions have the potential to reveal which processes play important roles in introduced populations. Second, we attempt to link the theory we have discussed with empirical data from biological control introductions. A main result is that there are few available data, but we nonetheless report on an increasing number of well-designed, theory-driven, experimental approaches. Combining demography and genetics from both theoretical and empirical perspectives highlights novel and exciting avenues for research on the biology of small, introduced populations, and great potential for improving both our understanding and practice of biological control. PMID:22949919

  13. Functionality of a Bacillus cereus biological agent in response to physiological variables encountered in aquaculture.

    PubMed

    Lalloo, Rajesh; Maharajh, Dheepak; Görgens, Johann; Gardiner, Neil

    2008-05-01

    The potential of a Bacillus cereus isolate (NRRL 100132) as a biological agent for aquaculture has been demonstrated in vitro and in vivo. The functionality of this isolate across a range of physiological conditions, including salinity, pH and temperature, based on rearing of high-value ornamental Cyprinus carpio, was investigated. Temperature had a significant influence on germination, specific growth rate and increase in cell number of B. cereus in shake-flask cultures, whilst salinity and pH did not have a measurable effect on growth. Controlled studies in bioreactors and modelling of the data to the Arrhenius function indicated the existence of high and low growth temperature domains. The rates of pathogenic Aeromonas hydrophila suppression and decrease in waste ion concentrations (ammonium, nitrite, nitrate and phosphate) were translated into a linear predictive indicator of efficacy of the B. cereus isolate at different temperatures. The present study confirmed the robustness of the B. cereus isolate (NRRL 100132) as a putative biological agent for aquaculture and further demonstrated a novel method for the assessment of in vitro biological efficacy as a function of temperature.

  14. Use of biologic agents in combination with other therapies for the treatment of psoriasis.

    PubMed

    Cather, Jennifer C; Crowley, Jeffrey J

    2014-12-01

    Psoriasis is a chronic inflammatory skin disorder, which is associated with a significant negative impact on a patient's quality of life. Traditional therapies for psoriasis are often not able to meet desired treatment goals, and high-dose and/or long-term use is associated with toxicities that can result in end-organ damage. An improved understanding of the involvement of cytokines in the etiology of psoriasis has led to the development of biologic agents targeting tumor necrosis factor (TNF)-α and interleukins (ILs)-12/23. While biologic agents have improved treatment outcomes, they are not effective in all individuals with psoriasis. The combination of biologic agents with traditional therapies may provide improved therapeutic options for patients who inadequately respond to a single drug or when efficacy may be increased with supplementation of another treatment. In addition, combination therapy may reduce safety concerns and cumulative toxicity, as lower doses of individual agents may be efficacious when used together. This article reviews the current evidence available on the efficacy and safety of combining biologic agents with systemic therapies (methotrexate, cyclosporine, or retinoids) or with phototherapy, and the combination of biologic agents themselves. Guidance is provided to help physicians identify situations and the characteristics of patients who would benefit from combination therapy with a biologic agent. Finally, the potential clinical impact of biologic therapies in development (e.g., those targeting IL-17A, IL-17RA, or IL-23 alone) is analyzed.

  15. Tapir: the Evolution of an Agent Control Language

    DTIC Science & Technology

    2002-01-01

    Tapir : the Evolution of an Agent Control Language Gary W. King University of Massachusetts 140 Governor’s Lane Amherst, MA 01003 gwking@cs.umass.edu...Governor’s Lane Amherst, MA 01003 westy@cs.umass.edu ABSTRACT Tapir is a general purpose, semi-declarative agent control language that extends and...enhances the Hierarchical Agent Control (HAC) architecture [1]. Tapir incorporates the lessons learned from de- veloping HAC and makes it easier and

  16. Remote chemical biological and explosive agent detection using a robot-based Raman detector

    NASA Astrophysics Data System (ADS)

    Gardner, Charles W.; Wentworth, Rachel; Treado, Patrick J.; Batavia, Parag; Gilbert, Gary

    2008-04-01

    Current practice for the detection of chemical, biological and explosive (CBE) agent contamination on environmental surfaces requires a human to don protective gear, manually take a sample and then package it for subsequent laboratory analysis. Ground robotics now provides an operator-safe way to make these critical measurements. We describe the development of a robot-deployed surface detection system for CBE agents that does not require the use of antibodies or DNA primers. The detector is based on Raman spectroscopy, a reagentless technique that has the ability to simultaneously identify multiple chemical and biological hazards. Preliminary testing showed the ability to identify CBE simulants in 10 minutes or less. In an operator-blind study, this detector was able to correctly identify the presence of trace explosive on weathered automobile body panels. This detector was successfully integrated on a highly agile robot platform capable of both high speed and rough terrain operation. The detector is mounted to the end of five-axis arm that allows precise interrogation of the environmental surfaces. The robot, arm and Raman detector are JAUS compliant, and are controlled via a radio link from a single operator control unit. Results from the integration testing and from limited field trials are presented.

  17. Agent Based Velocity Control of Highway Systems

    DTIC Science & Technology

    1997-09-01

    the vector of behavior functions, C" is the behavior modification function for the i-th agent, and ai is the command action issued by the i-th agent...in a Lie-Taylor series [10]. In particular, we can express the change in the behavior modification functions C" due to the flow over the interval...the model formulated in expression (13). At time t and at point p G M the behavior modification function of agent i is given by: Crip, t) = Cf (p

  18. Conserving and enhancing biological control of nematodes.

    PubMed

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  19. Conserving and Enhancing Biological Control of Nematodes

    PubMed Central

    Timper, Patricia

    2014-01-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  20. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets [I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas [2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study [3] has been

  1. Biological control of saltcedar (Tamarix spp.) by saltcedar leaf beetles (Diorhabda spp.): effects on small mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of introduced saltcedar (Tamarix spp.) throughout many riparian systems across the western United States motivated the introduction of biological control agents that are specific to saltcedar, saltcedar leaf beetles (Diorhabda carinulata, D. elongata; Chrysomelidae). I monitored small mam...

  2. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  3. Radiation-Neutralization of Stored Biological Warfare Agents with Low-Yield Nuclear Warheads

    SciTech Connect

    Kruger, H.

    2000-08-21

    MCNP Monte Carlo radiation transport computations were performed exploring the capability of low-yield nuclear fusion and fission warheads to neutralize biological warfare agents with the radiation dose deposited in the agent by the prompt neutron output. The calculations were done for various typical storage configurations on the ground in the open air or in a warehouse building. This application of nuclear weapons is motivated by the observation that, for some military scenarios, the nuclear collateral effects area is much smaller than the area covered with unacceptable concentrations of biological agent dispersed by the use of conventional high explosive warheads. These calculations show that biological agents can be radiation-neutralized by low-yield nuclear warheads over areas that are sufficiently large to be useful for military strikes. This report provides the calculated doses within the stored agent for various ground ranges and heights-of-burst.

  4. Automated multi-objective calibration of biological agent-based simulations.

    PubMed

    Read, Mark N; Alden, Kieran; Rose, Louis M; Timmis, Jon

    2016-09-01

    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate

  5. Controlling the motion of a group of mobile agents

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Osipov, G. V.

    2016-03-01

    We propose a method of controlling an ensemble of mobile agents with variable coupling topology that is based on the principles of phase synchronization in a system of regular and chaotic oscillators. Results of modeling of the controlled motion of mobile agents in systems with serial, parallel, and strictly preset motion are presented.

  6. Small-Scale Terrorist Attacks Using Chemical and Biological Agents: An Assessment Framework and Preliminary Comparisons

    DTIC Science & Technology

    2004-06-23

    Rickettsia rickettsii , found online at [http://www.hc-sc.gc.ca/pphb-dgspsp/msds-ftss/msds129e.html]. w Information on Escherichia coli O157:H7 is...research/cbw/possess.htm]. Biological Agent Comparison Potential biological agents include the many bacteria and viruses that induce disease in human...their acquisition, regardless of the legality of such a transfer. In contrast, salmonella bacteria would be easy to obtain from natural sources and

  7. Portable Raman instrument for rapid biological agent detection and identification

    NASA Astrophysics Data System (ADS)

    Lesaicherre, Marie L.; Paxon, Tracy L.; Mondello, Frank J.; Burrell, Michael C.; Linsebigler, Amy

    2009-05-01

    The rapid and sensitive identification of biological species is a critical need for the 1st responder and military communities. Raman spectroscopy is a powerful tool for substance identification that has gained popularity with the respective communities due to the increasing availability of portable Raman spectrometers. Attempts to use Raman spectroscopy for the direct identification of biological pathogens has been hindered by the complexity of the generated Raman spectrum. We report here the use of a sandwich immunoassay containing antibody modified magnetic beads to capture and concentrate target analytes in solution and Surface Enhanced Raman Spectroscopy (SERS) tags conjugated with these same antibodies for specific detection. Using this approach, the biological complexity of a microorganism can be translated into chemical simplicity and Raman can be used for the identification of biological pathogens. The developed assay has a low limit of detection due to the SERS effect, robust to commonly found white powders interferants, and stable at room temperature over extended period of time. This assay is being implemented into a user-friendly interface to be used in conjunction with the GE Homeland Protection StreetLab MobileTM Raman instrument for rapid, field deployable chemical and biological identification.

  8. AFECS. Multi-Agent Framework for Experiment Control Systems

    SciTech Connect

    Vardan Gyurjyan; David Abbott; William Heyes; Edward Jastrzembski; Carl Timmer; Elliott Wolin

    2008-01-23

    AFECS is a pure Java based software framework for designing and implementing distributed control systems. AFECS creates a control system environment as a collection of software agents behaving as finite state machines. These agents can represent real entities, such as hardware devices, software tasks, or control subsystems. A special control oriented ontology language (COOL), based on RDFS (Resource Definition Framework Schema) is provided for control system description as well as for agent communication. AFECS agents can be distributed over a variety of platforms. Agents communicate with their associated physical components using range of communication protocols, including tcl-DP, cMsg (publish-subscribe communication system developed at Jefferson Lab), SNMP (simple network management protocol), EPICS channel access protocol and JDBC.

  9. Decontamination of chemical and biological warfare agents with a single multi-functional material.

    PubMed

    Amitai, Gabi; Murata, Hironobu; Andersen, Jill D; Koepsel, Richard R; Russell, Alan J

    2010-05-01

    We report the synthesis of new polymers based on a dimethylacrylamide-methacrylate (DMAA-MA) co-polymer backbone that support both chemical and biological agent decontamination. Polyurethanes containing the redox enzymes glucose oxidase and horseradish peroxidase can convert halide ions into active halogens and exert striking bactericidal activity against gram positive and gram negative bacteria. New materials combining those biopolymers with a family of N-alkyl 4-pyridinium aldoxime (4-PAM) halide-acrylate co-polymers offer both nucleophilic activity for the detoxification of organophosphorus nerve agents and internal sources of halide ions for generation of biocidal activity. Generation of free bromine and iodine was observed in the combined material resulting in bactericidal activity of the enzymatically formed free halogens that caused complete kill of E. coli (>6 log units reduction) within 1 h at 37 degrees C. Detoxification of diisopropylfluorophosphate (DFP) by the polyDMAA MA-4-PAM iodide component was dose-dependent reaching 85% within 30 min. A subset of 4-PAM-halide co-polymers was designed to serve as a controlled release reservoir for N-hydroxyethyl 4-PAM (HE 4-PAM) molecules that reactivate nerve agent-inhibited acetylcholinesterase (AChE). Release rates for HE 4-PAM were consistent with hydrolysis of the HE 4-PAM from the polymer backbone. The HE 4-PAM that was released from the polymer reactivated DFP-inhibited AChE at a similar rate to the oxime antidote 4-PAM.

  10. Robot control with biological cells.

    PubMed

    Tsuda, Soichiro; Zauner, Klaus-Peter; Gunji, Yukio-Pegio

    2007-02-01

    At present there exists a large gap in size, performance, adaptability and robustness between natural and artificial information processors for performing coherent perception-action tasks under real-time constraints. Even the simplest organisms have an enviable capability of coping with an unknown dynamic environment. Robots, in contrast, are still clumsy if confronted with such complexity. This paper presents a bio-hybrid architecture developed for exploring an alternate approach to the control of autonomous robots. Circuits prepared from amoeboid plasmodia of the slime mold Physarum polycephalum are interfaced with an omnidirectional hexapod robot. Sensory signals from the macro-physical environment of the robot are transduced to cellular scale and processed using the unique micro-physical features of intracellular information processing. Conversely, the response form the cellular computation is amplified to yield a macroscopic output action in the environment mediated through the robot's actuators.

  11. Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification

    DTIC Science & Technology

    2009-01-01

    introduced for gas sensing [1-3,5-7], the principle allows virtually the sensing of any chemical or physical agent. In the case of gas sensing, the...Dept. of Experimental Physics , Dom ter 9, Szeged, H-6720, Hungary (email: gingl@physx.u-szeged.hu). C.G. Granqvist is with Uppsala University, Angstrom...corresponding classical sensing scheme cannot be used. ii) Rule of thumb: The usual sensor signal, which is the average value of a physical quantity, has

  12. Biological control of livestock pests : Parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), are common pests on livestock, poultry, and equine facilities. Biological control of filth flies with pupal parasitoids can be used in conjunction with other control methods as part of an integrated fly management program. ...

  13. Biological Activities of Fusarochromanone: a Potent Anti-cancer Agent

    DTIC Science & Technology

    2014-09-03

    anti-angiogenic properties of FC101, we used the MS1 mouse microvascular endo- thelial cell line, which was selected for its high VEGFR2 expression...and Physics , LSU Shreveport, One University Place, Shreveport, LA 71115, USA. 2Department of Biological Science, LSU Shreveport, Shreveport, USA

  14. Combination therapy of biologics with traditional agents in psoriasis.

    PubMed

    Guenther, Lyn C

    2011-06-01

    Although biologics are very efficacious as monotherapy in patients with psoriasis, combination treatment with traditional systemic and topical therapies may increase the speed of onset and enhance efficacy without significant additional toxicity. In contrast, in psoriatic arthritis, the addition of methotrexate to anti-tumour necrosis factor-alpha therapy does not enhance efficacy in either the skin or joints.

  15. Integrating the Agents of Bioterrorism into the General Biology Curriculum: II. Mode of Action of the Biological Agents.

    ERIC Educational Resources Information Center

    Pommerville, Jeffrey C.

    2003-01-01

    Integrates bioterrorism into the science curriculum and explains actions against serious agents such as anthrax, plague, smallpox, botulinum toxin, and ricin toxin. Uses the learning cycle as the instructional tool which is student-centered and has three phases that include exploring, explaining, and extending. (Contains 24 references.) (YDS)

  16. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    EPA Science Inventory

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  17. Controlled ecological life support system - biological problems

    NASA Technical Reports Server (NTRS)

    Moore, B., III (Editor); Macelroy, R. D. (Editor)

    1982-01-01

    The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate.

  18. Biologically Hazardous Agents at Work and Efforts to Protect Workers' Health: A Review of Recent Reports

    PubMed Central

    Rim, Kyung-Taek; Lim, Cheol-Hong

    2014-01-01

    Because information on biological agents in the workplace is lacking, biological hazard analyses at the workplace to securely recognize the harmful factors with biological basis are desperately needed. This review concentrates on literatures published after 2010 that attempted to detect biological hazards to humans, especially workers, and the efforts to protect them against these factors. It is important to improve the current understanding of the health hazards caused by biological factors at the workplace. In addition, this review briefly describes these factors and provides some examples of their adverse health effects. It also reviews risk assessments, protection with personal protective equipment, prevention with training of workers, regulations, as well as vaccinations. PMID:25180133

  19. Effect of Atmospheric Background Aerosols on Biological Agent Detectors

    DTIC Science & Technology

    2007-06-01

    Advanced Research Projects Agency, DARPA Chemical and Biological Sensor Standards Study. 32 Massachusetts Institute of Technology (MIT) Laboratory, JBPDS...the Research Program on BW Detection, Space General, AD480357, 1966. (U) The goal of this project was to examine the effects of background...that relied on detection of chemiluminescence resulting from a chemical reaction UNCLASSIFIED 8 UNCLASSIFIED with luminal and porphyrin4. During

  20. [A short history of anti-rheumatic therapy--VII. Biological agents].

    PubMed

    Pasero, G; Marson, P; Gatto, B

    2011-11-09

    The introduction of biological agents has been a major turning-point in the treatment of rheumatic diseases, particularly in rheumatoid arthritis. This review describes the principle milestones that have led, through the knowledge of the structure and functions of nucleic acids, to the development of production techniques of the three major families of biological agents: proteins, monoclonal antibodies and fusion proteins. A brief history has also been traced of the cytokines most involved in the pathogenesis of inflammatory rheumatic diseases (IL-1 and TNF) and the steps which have led to the use of the main biological drugs in rheumatology: anakinra, infliximab, adalimumab, etanercept and rituximab.

  1. Multispectral analysis of biological agents to implement a quick tool for stand-off biological detection

    NASA Astrophysics Data System (ADS)

    Carestia, M.; Pizzoferrato, R.; Lungaroni, M.; Gabriele, J.; Ludovici, G. M.; Cenciarelli, O.; Gelfusa, M.; Murari, A.; Malizia, A.; Gaudio, P.

    2015-10-01

    With the aim of identifying an approach to exploit the differences in the fluorescence signatures of biological agents BAs, we have investigated the response of some BAs simulants to a set of different excitation wavelengths in the UV spectral range (i.e. 266, 273, 280, 300, 340, 355 nm). Our preliminary results on bacterial spores and vegetative forms, dispersed in water, showed that the differences in the fluorescence spectra can be enhanced, and more easily revealed, by using different excitation wavelengths. Specifically, the photo luminescence (PL) spectra coming from different species of Bacillus, in the form of spores (used as simulants of Bacillus anthracis), show significant differences under excitation at all the wavelengths, with slightly larger differences at 300, 340, 355 nm. On the other hand, the vegetative forms of two Bacillus species, did not show any appreciable difference, i.e. the PL spectra are virtually identical, for the excitation wavelengths of 266, 273, 280 nm. Conversely, small yet appreciable difference appear at 300, 340, 355 nm. Finally, large difference appear between the spore and the vegetative form of each species at all the wavelengths, with slightly larger variations at 300, 340, 355 nm. Together, these preliminary results support the hypothesis that a multi-wavelength approach could be used to improve the sensitivity and specificity of UV-LIF based BAs detection systems. The second step of this work concerns the application of a Support Vector Regression (SVR) method, as evaluated in our previous work to define a methodology for the setup of a multispectral database for the stand-off detection of BAs.

  2. The biology of the combretastatins as tumour vascular targeting agents

    PubMed Central

    TOZER, GILLIAN M; KANTHOU, CHRYSO; PARKINS, CHARLES S; HILL, SALLY A

    2002-01-01

    The tumour vasculature is an attractive target for therapy. Combretastatin A-4 (CA-4) and A-1 (CA-1) are tubulin binding agents, structurally related to colchicine, which induce vascular-mediated tumour necrosis in animal models. CA-1 and CA-4 were isolated from the African bush willow, Combretum caffrum, and several synthetic analogues are also now available, such as the Aventis Pharma compound, AVE8062. More soluble, phosphated, forms of CA-4 (CA-4-P) and CA-1 (CA-1-P) are commonly used for in vitro and in vivo studies. These are cleaved to the natural forms by endogenous phosphatases and are taken up into cells. The lead compound, CA-4-P, is currently in clinical trial as a tumour vascular targeting agent. In animal models, CA-4-P causes a prolonged and extensive shut-down of blood flow in established tumour blood vessels, with much less effect in normal tissues. This paper reviews the current understanding of the mechanism of action of the combretastatins and their therapeutic potential. PMID:12059907

  3. Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear.

    PubMed

    Stockwell, V O; Johnson, K B; Sugar, D; Loper, J E

    2011-01-01

    Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.

  4. Adaptive containment control of nonlinear multi-agent systems with non-identical agents

    NASA Astrophysics Data System (ADS)

    Haghshenas, Hamed; Badamchizadeh, Mohammad Ali; Baradarannia, Mahdi

    2015-08-01

    This paper addresses the containment control problem for a group of non-identical agents, where the dynamics of agents are supposed to be nonlinear with unknown parameters and parameterised by some functions. In controller design approach for each follower, adaptive control and Lyapunov theory are utilised as the main control strategies to guarantee the convergence of all non-identical followers to the dynamic convex hull formed by the leaders. The design of distributed adaptive controllers is based on the exchange of neighbourhood errors among the agents. For analysis of containment control problem, a new formulation has been developed using M-matrices. The validity of theoretical results are demonstrated through an example.

  5. Toward a systems- and control-oriented agent framework.

    PubMed

    Fregene, Kingsley; Kennedy, Diane C; Wang, David W L

    2005-10-01

    This paper develops a systems- and control-oriented intelligent agent framework called the hybrid intelligent control agent (HICA), as well as its composition into specific kinds of multiagent systems. HICA is essentially developed around a hybrid control system core so that knowledge-based planning and coordination can be integrated with verified hybrid control primitives to achieve the coordinated control of multiple multimode dynamical systems. The scheme is applied to the control of teams of unmanned air and ground vehicles engaged in a pursuit-evasion war game. Results are demonstrated in simulation.

  6. Access Control for Agent-based Computing: A Distributed Approach.

    ERIC Educational Resources Information Center

    Antonopoulos, Nick; Koukoumpetsos, Kyriakos; Shafarenko, Alex

    2001-01-01

    Discusses the mobile software agent paradigm that provides a foundation for the development of high performance distributed applications and presents a simple, distributed access control architecture based on the concept of distributed, active authorization entities (lock cells), any combination of which can be referenced by an agent to provide…

  7. Terahertz signatures of biological-warfare-agent simulants

    NASA Astrophysics Data System (ADS)

    Globus, Tatiana; Woolard, Dwight L.; Khromova, Tatyana; Partasarathy, Ramakrishnan; Majewski, Alexander; Abreu, Rene; Hesler, Jeffrey L.; Pan, Shing-Kuo; Ediss, Geoff

    2004-09-01

    This work presents spectroscopic characterization results for biological simulant materials measured in the terahertz gap. Signature data have been collected between 3 cm-1 and 10 cm-1 for toxin Ovalbumin, bacteria Erwinia herbicola, Bacillus Subtilis lyophilized cells and RNA MS2 phage, BioGene. Measurements were conducted on a modified Bruker FTIR spectrometer equipped with the noise source developed in the NRAL. The noise source provides two orders of magnitude higher power in comparison with a conventional mercury lamp. Photometric characterization of the instrument performance demonstrates that the expected error for sample characterization inside the interval from 3 to 9.5 cm-1 is less then 1%.

  8. Synthesis, biological evaluation of chrysin derivatives as potential immunosuppressive agents.

    PubMed

    Lv, Peng-Cheng; Cai, Tian-Tian; Qian, Yong; Sun, Juan; Zhu, Hai-Liang

    2011-01-01

    A series of novel chrysin derivatives was firstly synthesized and evaluated on their immunosuppressive activity in the search for potential immunosuppressive agents. Among them, compounds 5c displayed the most potent immunosuppressive inhibitory activity with IC(50) of 0.78 μM, which was comparable to that of cyclosporin A (IC(50) = 0.06 μM). The preliminary mechanism of compound 5c inhibition effects was also detected by flow cytometry (FCM), and the compound exerted immunosuppressive activity via inducing the apoptosis of activated lymph node cells in a dose dependent manner. Furthermore, the estimated LD(50) (in mg/kg) in vivo of compound 5c is 738.2, which indicated that compound 5c was low toxic.

  9. Biological Activity of Coumarin Derivatives as Anti-Leishmanial Agents

    PubMed Central

    Mandlik, Vineetha; Patil, Sohan; Bopanna, Ramanamurthy; Basu, Sudipta; Singh, Shailza

    2016-01-01

    Cutaneous leishmaniasis affects nearly 0.7 to 1.3 million people annually. Treatment of this disease is difficult due to lack of appropriate medication and the growing problem of drug resistance. Natural compounds such as coumarins serve as complementary therapeutic agents in addition to the current treatment modalities. In this study, we have performed an in-silico screening of the coumarin derivatives and their anti-leishmanial properties has been explored both in-vitro and in-vivo. One of the compounds (compound 2) exhibited leishmanicidal activity and to further study its properties, nanoliposomal formulation of the compound was developed. Treatment of cutaneous lesions in BALB/c mice with compound 2 showed significantly reduced lesion size as compared to the untreated mice (p<0.05) suggesting that compound 2 may possess anti-leishmanial properties. PMID:27768694

  10. The biology and chemistry of antifungal agents: a review.

    PubMed

    Kathiravan, Muthu K; Salake, Amol B; Chothe, Aparna S; Dudhe, Prashik B; Watode, Rahul P; Mukta, Maheshwar S; Gadhwe, Sandeep

    2012-10-01

    In recent years their has been an increased use of antifungal agents and has resulted in the development of resistance to drugs. Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates. Different types of mechanisms contribute to the development of resistance to antifungals. This has given raise to search for a new heterocycle with distinct action or multitargeted combination therapy. This review addresses the areas such as the underlying mechanisms, eight different targets such as ergosterol synthesis, chitin synthesis, ergosterol disruptors, glucan synthesis, squalene epoxidase, nucleic acid synthesis, protein synthesis, microtubules synthesis. The clinically employed drugs along with the current research work going on worldwide on different heterocycles are discussed. In recent advances various heterocycles including imidazole, benzimidazole etc., twenty three scaffolds and their lead identification are discussed.

  11. Pathogen refuge: a key to understanding biological control.

    PubMed

    Johnson, Kenneth B

    2010-01-01

    Pathogen refuge is the idea that some potentially infectious pathogen propagules are not susceptible to the influence of an antagonistic microbial agent. The existence of a refuge can be attributable to one or more factors, including temporal, spatial, structural, and probabilistic, or to the pathogen's evolved ability to acquire antagonist-free space prior to ingress into a plant host. Within a specific pathosystem, refuge size can be estimated in experiments by measuring the proportion of pathogen propagules that remain infective as a function of the amount of antagonist introduced to the system. Refuge size is influenced by qualities of specific antagonists and by environment but less so by the quantity of antagonist. Consequently, most efforts to improve and optimize biological control are in essence efforts to reduce refuge size. Antagonist mixtures, optimal timing of antagonist introductions, integrated biological and chemical control, environmental optimization, and the utilization of disarmed pathogens as antagonists are strategies with potential to minimize a pathogen refuge.

  12. Oxidative decontamination of chemical and biological warfare agents using L-Gel.

    PubMed

    Raber, Ellen; McGuire, Raymond

    2002-08-05

    A decontamination method has been developed using a single reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. The new reagent, "L-Gel", consists of an aqueous solution of a mild commercial oxidizer, Oxone, together with a commercial fumed silica gelling agent, Cab-O-Sil EH-5. L-Gel is non-toxic, environmentally friendly, relatively non-corrosive, maximizes contact time because of its thixotropic nature, clings to walls and ceilings, and does not harm carpets or painted surfaces. The new reagent also addresses the most demanding requirements for decontamination in the civilian sector, including availability, low maintenance, ease of application and deployment by a variety of dispersal mechanisms, minimal training and acceptable expense. Experiments to test the effectiveness of L-Gel were conducted at Lawrence Livermore National Laboratory and independently at four other locations. L-Gel was tested against all classes of chemical warfare agents and against various biological warfare agent surrogates, including spore-forming bacteria and non-virulent strains of real biological agents. Testing showed that L-Gel is as effective against chemical agents and biological materials, including spores, as the best military decontaminants.

  13. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.

    PubMed

    Lebedev, Albert T

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10(-21)), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  14. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  15. Biology & control of Anopheles culicifacies Giles 1901

    PubMed Central

    Sharma, V.P.; Dev, V.

    2015-01-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  16. Airborne exposure limits for chemical and biological warfare agents: is everything set and clear?

    PubMed

    Sabelnikov, Alex; Zhukov, Vladimir; Kempf, C Ruth

    2006-08-01

    Emergency response strategies (guidelines) for biological, chemical, nuclear, or radiological terrorist events should be based on scientifically established exposure limits for all the agents or materials involved. In the case of a radiological terrorist event, emergency response guidelines (ERG) have been worked out. In the case of a terrorist event with the use of chemical warfare (CW) agents the situation is not that clear, though the new guidelines and clean-up values are being generated based on re-evaluation of toxicological and risk data. For biological warfare (BW) agents, such guidelines do not yet exist. In this paper the current status of airborne exposure limits (AELs) for chemical and biological warfare (CBW) agents are reviewed. Particular emphasis is put on BW agents that lack such data. An efficient, temporary solution to bridge the gap in experimental infectious data and to set provisional AELs for BW agents is suggested. It is based on mathematically generated risks of infection for BW agents grouped by their alleged ID50 values in three categories: with low, intermediate and high ID50 values.

  17. Biological Control of Nematodes with Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of nematodes is receiving increased attention as environmental considerations with the use of nematicides have increased in importance and their high cost prohibits use on many crops. In addition, nematode resistant cultivars are not available for many crops and resistance that i...

  18. Adaptive method with intercessory feedback control for an intelligent agent

    DOEpatents

    Goldsmith, Steven Y.

    2004-06-22

    An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.

  19. Probiotics as control agents in aquaculture

    NASA Astrophysics Data System (ADS)

    Geovanny D, Gómez R.; Balcázar, José Luis; Ma, Shen

    2007-01-01

    Infectious diseases constitute a limiting factor in the development of the aquaculture production, and control has solely concentrated on the use of antibiotics. However, the massive use of antibiotics for the control of diseases has been questioned by acquisition of antibiotic resistance and the need of alternative is of prime importance. Probiotics, live microorganisms administered in adequate amounts that confer a healthy effect on the host, are emerging as significant microbial food supplements in the field of prophylaxis.

  20. MURI: Optimal Quantum Dynamic Discrimination of Chemical and Biological Agents

    DTIC Science & Technology

    2008-06-12

    NDT ) technique is used for solving the control equations. The NDT is shown to be successful in reducing the computational expense in the large-scale...where the entire mechanism was determined in one stroke . The improvement comes from the use of less complex modulation schemes, which leads to fewer

  1. Synthesis and biological evaluation of acridine derivatives as antimalarial agents.

    PubMed

    Yu, Xiao-Min; Ramiandrasoa, Florence; Guetzoyan, Lucie; Pradines, Bruno; Quintino, Edgar; Gadelle, Daniele; Forterre, Patrick; Cresteil, Thierry; Mahy, Jean-Pierre; Pethe, Stéphanie

    2012-04-01

    New N-alkylaminoacridine derivatives attached to nitrogen heterocycles were synthesized, and their antimalarial potency was examined. They were tested in vitro against the growth of Plasmodium falciparum, including chloroquine (CQ)-susceptible and CQ-resistant strains. This biological evaluation has shown that the presence of a heterocyclic ring significantly increases the activity against P. falciparum. The best compound shows a nanomolar IC(50) value toward parasite proliferation on both CQ-susceptible and CQ-resistant strains. The antimalarial activity of these new acridine derivatives can be explained by the two mechanisms studied in this work. First, we showed the capacity of these compounds to inhibit heme biocrystallization, a detoxification process specific to the parasite and essential for its survival. Second, in our search for alternative targets, we evaluated the in vitro inhibitory activity of these compounds toward Sulfolobus shibatae topoisomerase VI-mediated DNA relaxation. The preliminary results obtained reveal that all tested compounds are potent DNA intercalators, and significantly inhibit the activity of S. shibatae topoisomerase VI at concentrations ranging between 2.0 and 2.5 μM.

  2. Phytotoxicity assessment for potential biological control of leafy spurge by soilborne microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge (Euphorbia esula-virgata), a native of Eurasia, is a serious invasive weed of western grasslands of North America. It is very difficult and cost-prohibitive to control with herbicides; control by insect biological control agents and cultural practices are minimally effective in suppress...

  3. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  4. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  5. Biological Agent Detection in Food With an Array Biosensor

    DTIC Science & Technology

    2003-07-01

    Salmonella 8 CAMPYLOBACTER DETECTION ASSAY Due to concerns about the stability of Campylobacter jejuni solutions prepared and stored prior to se...Time studies were carried out. Fresh Campylobacter jejuni solutions were prepared, at each oncentration, on day 1 of the study in PBSTB or PBSTB + 10...a positive control at 60 µg/mL Campylobacter jejuni , repared on the day of the assay, was also run in one of the channels. Campylobacter jejuni oncentrations

  6. Inactivation of Aerosolized Biological Agents using Filled Nanocomposite Materials

    DTIC Science & Technology

    2013-02-01

    indicated that dry heat generates abasic sites in DNA at least in part through depurination, which SASPs protects against , and α¯β¯ spores are less...the efficiency with which SASPs protects DNA against apurinic damage makes repair enzymes such as Nfo in part dispensable. Although associations...Do N95 respirators provide 95% protection level against airborne viruses and how adequate are surgical masks? Amer. J. Infect. Control 34: 51-57

  7. Method and apparatus for the gas phase decontamination of chemical and biological agents

    DOEpatents

    O'Neill, Hugh J.; Brubaker, Kenneth L.

    2003-10-07

    An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.

  8. Efficacy of biological agents administered as monotherapy in rheumatoid arthritis: a Bayesian mixed-treatment comparison analysis

    PubMed Central

    Migliore, Alberto; Bizzi, Emanuele; Egan, Colin Gerard; Bernardi, Mauro; Petrella, Lea

    2015-01-01

    Background Biological agents provide an important therapeutic alternative for rheumatoid arthritis patients refractory to conventional disease-modifying antirheumatic drugs. Few head-to-head comparative trials are available. Purpose The aim of this meta-analysis was to compare the relative efficacy of different biologic agents indicated for use as monotherapy in rheumatoid arthritis. Methods A systemic literature search was performed on electronic databases to identify articles reporting double-blind randomized controlled trials investigating the efficacy of biologic agents indicated for monotherapy. Efficacy was assessed using American College of Rheumatology (ACR) 20, 50, and 70 criteria at 16–24 weeks. Relative efficacy was estimated using Bayesian mixed-treatment comparison models. Outcome measures were expressed as odds ratio and 95% credible intervals. Results Ten randomized controlled trials were selected for data extraction and analysis. Mixed-treatment comparison analysis revealed that tocilizumab offered 100% probability of being the best treatment for inducing an ACR20 response versus placebo, methotrexate, adalimumab, or etanercept. Likewise, for ACR50 and ACR70 outcome responses, tocilizumab had a 99.8% or 98.7% probability of being the best treatment, respectively, compared to other treatments or placebo. Tocilizumab increased the relative probability of being the best treatment (vs methotrexate) by 3.2-fold (odds ratio: 2.1–3.89) for all ACR outcomes. Conclusion Tocilizumab offered the greatest possibility of obtaining an ACR20, ACR50, and ACR70 outcome vs other monotherapies or placebo. PMID:26366085

  9. Is there potential for therapeutic drug monitoring of biologic agents in rheumatoid arthritis?

    PubMed

    Bastida, Carla; Ruíz, Virginia; Pascal, Mariona; Yagüe, Jordi; Sanmartí, Raimon; Soy, Dolors

    2016-12-19

    The use of biologics has significantly changed the management of rheumatoid arthritis over the last decade, becoming the cornerstone treatment for many patients. The current therapeutic arsenal consists of just under 10 biologic agents, with four different mechanisms of action. Several studies have demonstrated a large interindividual pharmacokinetic variability, which translates to unpredictability in clinical response among individuals. The present review focuses on the pharmacokinetics and pharmacodynamics of biologic agents approved for rheumatoid arthritis. The literature relating to their concentration-effect relationship and the use of pharmacokinetic-pharmacodynamic modelling to optimize drug regimens is analysed. Due to the scarcity and complexity of these studies, the current dosing strategy is based on clinical indexes/aspects. In general, dose individualization for biologics should be implemented increasingly in clinical practice as there is a direct benefit for treated rheumatoid arthritis patients. Moreover, there is an indirect benefit in terms of cost-effectiveness.

  10. Adherence to guidelines in the use of biological agents to treat psoriasis in Brazil

    PubMed Central

    Silveira, Miriam Sanches do Nascimento; de Camargo, Iara Alves; Osorio-de-Castro, Claudia Garcia Serpa; Barberato-Filho, Silvio; Del Fiol, Fernando de Sá; Guyatt, Gordon; de Camargo, Mayara Costa; Lopes, Luciane Cruz

    2014-01-01

    Objective In São Paolo, Brazil, patients can appeal to the courts, registering law suits against the government claiming the need for biological agents for treatment of psoriasis. If the lawsuits are successful, which is usually the case, the government then pays for the biologic agent. The extent to which the management of such patients, after gaining access to government payment for their biologic agents, adheres to authoritative guidelines, is uncertain. Methods We identified patients through records of the State Health Secretariat of São Paulo from 2004 to 2011. We consulted guidelines from five countries and chose as standards only those recommendations that the guidelines uniformly endorsed. Pharmacy records provided data regarding biological use. Guidelines not only recommended biological agents only in patients with severe psoriasis who had failed to respond to topical and systemic therapies (eg, ciclosporin and methotrexate) but also yearly monitoring of blood counts and liver function. Results Of 218 patients identified in the database, 3 did not meet eligibility criteria and 12 declined participation. Of the 203 patients interviewed, 91 were still using biological medicine; we established adherence to laboratory monitoring in these patients. In the total sample, management failed to meet standards of prior use of topical and systemic medication in 169 (83.2%) patients. Of the 91 patients using biological medicine at the time of the survey, 23 (25.2%) did not undergo appropriate laboratory tests. Conclusions Important discrepancies exist between clinical practice and the recommendations of guidelines in the management of plaintiffs using biological drugs to treat psoriasis. PMID:24598304

  11. Host specificity in biological control: insights from opportunistic pathogens

    PubMed Central

    Brodeur, Jacques

    2012-01-01

    Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922

  12. Cardiometabolic risk in psoriasis: differential effects of biologic agents

    PubMed Central

    Kaplan, Mariana J

    2008-01-01

    Psoriasis is associated to an increased risk of cardiovascular (CV) complications. Overall, the pathogenic mechanisms involved in premature CV complications in psoriasis appear to be complex and multifactorial, with traditional and nontraditional risk factors possibly contributing to the increased risk. Based on what is known about the pathogenesis of psoriasis and extrapolating the current knowledge on CV complications in other inflammatory diseases, studies are needed to investigate if appropriate control of the inflammatory, immunologic and metabolic disturbances present in psoriasis can prevent the development of this potentially lethal complication. It is clear that there is a great need for heightened awareness of the increased risk for vascular damage in patients with psoriasis. It is also crucial to closely monitor patients with psoriasis for CV risk factors including obesity, hypertension, diabetes, and hyperlipidemia. Whether treatment regimens that effectively manage systemic inflammation will lead to prevention of CV complications in psoriasis needs to be investigated. Clearly, studies should focus on establishing the exact mechanisms that determine CV risk in psoriasis so that appropriate preventive strategies and treatment guidelines can be established. PMID:19337536

  13. Synthesis and biological evaluation of pyrazolopyrimidines as potential antibacterial agents.

    PubMed

    Goshu, Gashaw M; Ghose, Debarati; Bain, Joy M; Pierce, Phillip G; Begley, Darren W; Hewitt, Stephen N; Udell, Hannah S; Myler, Peter J; Meganathan, R; Hagen, Timothy J

    2015-12-15

    The fragment FOL7185 (compound 17) was found to be a hit against IspD and IspE enzymes isolated from bacteria, and a series of analogs containing the pyrazolopyrimidine core were synthesized. The majority of these compounds inhibited the growth of Burkholderia thailandensis (Bt) and Pseudomonas aeruginosa (Pa) in the Kirby–Bauer disk diffusion susceptibility test. Compound 29 shows inhibitory activity at 0.1 mM (32.2 lg/mL), which is comparable to the control compound kanamycin (48.5 lg/mL). Compound 29 also shows inhibitory activity at 0.5 mM against kanamycin resistant P. aeruginosa. Saturation transfer difference NMR (STD-NMR) screening of these compounds against BtIspD and BtIspE indicated that most of these compounds significantly interact with BtIspE, suggesting that the compounds may inhibit the growth of Bt by disrupting isoprenoid biosynthesis. Ligand epitope mapping of compound 29 with BtIspE indicated that hydrogens on 2,4-dichlorophenyl group have higher proximity to the surface of the enzyme than hydrogens on the pyrazolopyrimidine ring.

  14. Illusory versus genuine control in agent-based games

    NASA Astrophysics Data System (ADS)

    Satinover, J. B.; Sornette, D.

    2009-02-01

    In the Minority, Majority and Dollar Games (MG, MAJG, G) agents compete for rewards, acting in accord with the previously best-performing of their strategies. Different aspects/kinds of real-world markets are modelled by these games. In the MG, agents compete for scarce resources; in the MAJG agents imitate the group to exploit a trend; in the G agents attempt to predict and benefit both from trends and changes in the direction of a market. It has been previously shown that in the MG for a reasonable number of preliminary time steps preceding equilibrium (Time Horizon MG, THMG), agents’ attempt to optimize their gains by active strategy selection is “illusory”: the hypothetical gains of their strategies is greater on average than agents’ actual average gains. Furthermore, if a small proportion of agents deliberately choose and act in accord with their seemingly worst performing strategy, these outperform all other agents on average, and even attain mean positive gain, otherwise rare for agents in the MG. This latter phenomenon raises the question as to how well the optimization procedure works in the THMAJG and THG. We demonstrate that the illusion of control is absent in THMAJG and THG. This provides further clarification of the kinds of situations subject to genuine control, and those not, in set-ups a priori defined to emphasize the importance of optimization.

  15. Steam injection profile control agent and process

    SciTech Connect

    Shu, P.

    1992-04-14

    This patent describes a method for controlling a formation's profile where temperatures higher than 400 degrees F. are encountered in a substantially silica or sand containing formation, it comprises: injecting an aqueous solution of an alkali metal silicate into a zone of higher permeability; injecting a solvent solution containing a calcium salt in an amount sufficient to react with the alkali metal silicate as the solvent solution flows a front evenly through the zone thereby forming a calcium silicate cement which binds silica containing particles in the zone while decreasing the permeability of the zone and retaining a desired permeability of the higher permeability zone; and initiating a thermal oil recovery method in a zone of lesser permeability within the formation and removing hydrocarbonaceous fluids therefrom where the recovery method causes the formation to be heated to a temperature in excess of about 400 degrees F.

  16. [Incorporation of controlling dengue by community health agent].

    PubMed

    Cazola, Luiza Helena de Oliveira; Tamaki, Edson Mamoru; Pontes, Elenir Rose Jardim Cury

    2014-01-01

    The purpose of this study was to identify self-perceived differences in the work processes of community health agents (CHA) in two counties of Mato Grosso do Sul, regarding dengue control and Family Health Strategy (FHS) activities. Structured interviews were applied to 57 CHA. The subjects had similar sociodemographic characteristics. Agents in Rio Verde de Mato Grosso county, who performed only FHS tasks, failed to complete essential data of the Form A. In São Gabriel do Oeste county, CHA currently perform tasks pertaining to dengue fever control, previously conducted by Endemic Disease Control Agents (now abolished), while in Rio Verde de Mato Grosso county, dengue control remained assigned to the latter group. In São Gabriel do Oeste county, CHA did not view the double workload of two programs as affecting their professional productivity. The pooling of tasks from the two programs proved to be feasible, with no detrimental effects on performance.

  17. Initial impacts and field validation of host range for Boreioglycaspis melaleucae Moore (Hemiptera: Psyllidae),a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) Blake (Myrtales: Myrtaceae: Leptosp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasion of south Florida wetlands by the Australian paperbark tree (“melaleuca”), Melaleuca quinquenervia (Cav.) S.T. Blake (melaleuca) has caused adverse economic and environmental impacts. The tree’s biological attributes along with favorable ambient biophysical conditions combine to complicate ...

  18. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  20. Weight Control: Attitudes of Dieters and Change Agents.

    ERIC Educational Resources Information Center

    Parham, Ellen S.; And Others

    1991-01-01

    Survey explores attitudes toward weight loss/weight control among 2 groups of change agents--40 dietitians and 42 fitness instructors--and among 96 people trying to lose weight. Significant differences were found in terms of importance in weight control of diet, drugs, exercise, religion, and will power; in importance of being of normal weight;…

  1. Biological Concepts. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This manual contains the textual material for a three-lesson unit which introduces students to the basic concepts applicable to all biological treatment systems. The general topic areas addressed in the lessons are: (1) the microorganisms found in biological systems; (2) the factors that affect the growth and health of biological systems; and (3)…

  2. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  3. A support vector machine approach to the automatic identification of fluorescence spectra emitted by biological agents

    NASA Astrophysics Data System (ADS)

    Gelfusa, M.; Murari, A.; Lungaroni, M.; Malizia, A.; Parracino, S.; Peluso, E.; Cenciarelli, O.; Carestia, M.; Pizzoferrato, R.; Vega, J.; Gaudio, P.

    2016-10-01

    Two of the major new concerns of modern societies are biosecurity and biosafety. Several biological agents (BAs) such as toxins, bacteria, viruses, fungi and parasites are able to cause damage to living systems either humans, animals or plants. Optical techniques, in particular LIght Detection And Ranging (LIDAR), based on the transmission of laser pulses and analysis of the return signals, can be successfully applied to monitoring the release of biological agents into the atmosphere. It is well known that most of biological agents tend to emit specific fluorescence spectra, which in principle allow their detection and identification, if excited by light of the appropriate wavelength. For these reasons, the detection of the UVLight Induced Fluorescence (UV-LIF) emitted by BAs is particularly promising. On the other hand, the stand-off detection of BAs poses a series of challenging issues; one of the most severe is the automatic discrimination between various agents which emit very similar fluorescence spectra. In this paper, a new data analysis method, based on a combination of advanced filtering techniques and Support Vector Machines, is described. The proposed approach covers all the aspects of the data analysis process, from filtering and denoising to automatic recognition of the agents. A systematic series of numerical tests has been performed to assess the potential and limits of the proposed methodology. The first investigations of experimental data have already given very encouraging results.

  4. From Here to Autonomicity: Self-Managing Agents and the Biological Metaphors that Inspire Them

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    We seek inspiration for self-managing systems from (obviously, pre-existing) biological mechanisms. Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward for integrating and designing reliable systems, while agent technologies have been identified as a key enabler for engineering autonomicity in systems. This paper looks at other biological metaphors such as reflex and healing, heart- beat monitors, pulse monitors and apoptosis for assisting in the realization of autonomicity.

  5. Performance of Traditional and Molecular Methods for Detecting Biological Agents in Drinking Water

    EPA Science Inventory

    USGS Report - To reduce the impact from a possible bioterrorist attack on drinking-water supplies, analytical methods are needed to rapidly detect the presence of biological agents in water. To this end, 13 drinking-water samples were collected at 9 water-treatment plants in Ohio...

  6. Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Stokes, David L.; Wabuyele, Musundi B.; Griffin, Guy D.; Vass, Arpad A.; Vo-Dinh, Tuan

    2004-07-01

    Surface-enhanced Raman scattering (SERS) spectra of chemical agent simulants such as dimethyl methylphonate (DMMP), pinacolyl methylphosphonate (PMP), diethyl phosphoramidate (DEPA), and 2-chloroethyl ethylsulfide (CEES), and biological agent simulants such as bacillus globigii (BG), erwinia herbicola (EH), and bacillus thuringiensis (BT) were obtained from silver oxide film-deposited substrates. Thin AgO films ranging in thickness from 50 nm to 250 nm were produced by chemical bath deposition onto glass slides. Further Raman intensity enhancements were noticed in UV irradiated surfaces due to photo-induced Ag nanocluster formation, which may provide a possible route to producing highly useful plasmonic sensors for the detection of chemical and biological agents upon visible light illumination.

  7. Novel fluorescence-based integrated sensor for chemical and biological agent detection

    NASA Astrophysics Data System (ADS)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.; Fagan, Steve; Krouse, Justin; Hutchinson, Kira D.

    2004-12-01

    There is a renewed interest in the development of chemical and biological agent sensors due to the increased threat of weapons deployment by terrorist organizations and rogue states. Optically based sensors address the needs of military and homeland security forces in that they are reliable, rapidly deployed, and can provide continuous monitoring with little to no operator involvement. Nomadics has developed optically based chemical weapons sensors that utilize reactive fluorescent chromophores initially developed by Professor Tim Swager at MIT. The chromophores provide unprecedented sensitivity and selectivity toward toxic industrial chemicals and certain chemical weapon agents. The selectivity is based upon the reactivity of the G-class nerve agents (phosphorylation of acetylcholinesterase enzyme) that makes them toxic. Because the sensor recognizes the reactivity of strong electrophiles and not molecular weight, chemical affinity or ionizability, our system detects a specific class of reactive agents and will be able to detect newly developed or modified agents that are not currently known. We have recently extended this work to pursue a combined chemical/biological agent sensor system incorporating technologies based upon novel deep ultraviolet (UV) light emitting diodes (LEDs) developed out of the DARPA Semiconductor UV Optical Sources (SUVOS) program.

  8. Implications of Rheumatic Disease and Biological Response-Modifying Agents in Plastic Surgery.

    PubMed

    Tsai, David M; Borah, Gregory L

    2015-12-01

    The preoperative evaluation for any reconstructive or aesthetic procedure requires a detailed history of existing medical conditions and current home medications. The prevalence of rheumatic diseases such as rheumatoid arthritis, gout, and psoriasis is high, but the impact of these chronic illnesses on surgical outcome and the side effects of the powerful medications used for treatment are often underappreciated. In this review, the authors highlight key perioperative considerations specific to rheumatologic diseases and their associated pharmacologic therapies. In particular, the authors discuss the perioperative management of biological response-modifying agents, which have largely become the new standard of therapy for many rheumatic diseases. The literature reveals three key perioperative concerns with biological therapy for rheumatic disease: infection, wound healing delays, and disease flare. However, data on specific perioperative complications are lacking, and it remains controversial whether withholding biological therapy before surgery is of benefit. The risk of these adverse events is influenced by several factors: age, sex, class of biological agent, duration of exposure, dosage, onset and severity of disease, and type of surgical procedure. Overall, it remains best to develop an individualized plan. In younger patients with recent onset of biological therapy, it is reasonable to withhold therapy based on 3 to 5 half-lives of the specific agent. In older patients with a substantial history of rheumatic disease, the decision to discontinue therapy must be weighed and decided carefully in conjunction with the rheumatologist.

  9. Development of biosensors for the detection of biological warfare agents: its issues and challenges.

    PubMed

    Kumar, Harish; Rani, Renu

    2013-01-01

    This review discusses current development in biosensors for the detection of biological warfare agents (BWAs). BWAs include bacteria, virus and toxins that are added deliberately into air water and food to spread terrorism and cause disease or death. The rapid and unambiguous detection and identification of BWAs with early warning signals for detecting possible biological attack is a major challenge for government agencies particularly military and health. The detection devices--biosensors--can be classified (according to their physicochemical transducers) into four types: electrochemical, nucleic acid, optical and piezoelectric. Advantages and limitations of biosensors are discussed in this review followed by an assessment of the current state of development of different types of biosensors. The research and development in biosensors for biological warfare agent detection is of great interest for the public as well as for governments.

  10. Predator in First: A prophylactic biological control strategy for management of multiple pests of pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of biocontrol agents is critical for success of biological control strategies. Predator-In-First (PIF) is a prophylactic control strategy that aims to establish predators before the appearance of pests in an agro-ecosystem. Predator-In-First uses the characteristics of generalist p...

  11. Biological control of Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae), a submersed aquatic macrophyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survey and testing of potential Hydrilla verticillata L.f. Royle biological control agents has been conducted in China from 2006 to the present. Several new species of insects have been discovered and tested to determine their suitability for release in the US to control this invasive weed. The beet...

  12. Biological Agents

    MedlinePlus

    ... they are found in water, soil, plants, and animals. Because many microbes reproduce rapidly and require minimal resources for survival, they are a potential danger in a wide variety of occupational settings. This ...

  13. Biological Agents

    EPA Pesticide Factsheets

    These chemicals or organisms increase the rate at which microorganisms break down complex compounds into simpler products (biodegredation). Two bioremediation technologies currently being used for oil spill cleanups are fertilization and seeding.

  14. Corrosion control under a multi-agent approach

    SciTech Connect

    Ramos, M.P.; Paraiso, E.C.; Correa, L.A.D.

    1996-10-01

    The last years have shown the great importance of monitoring techniques applied to corrosion control in process industries. These techniques depend strongly on systems for data acquisition, data treatment/analysis and automatic control. This monitoring task can be improved by the application of modern computer based solutions as intelligent systems. This paper presents the foundation of Distributed Artificial Intelligence and Multi-Agent Systems applied to corrosion control as well as presents the researches and developments of a community of expert systems (agents) for corrosion control in a crude unit environment of a petroleum refinery. The main difference between this approach and the control based on only one expert system is that in a multi-agent system several expert systems are developed each one to take care of a small part of the process. It allows the user to develop a better control of these process parts. The use of multi-agent systems also allow some independence of proprietary communication protocols.

  15. Design and Control of Large Collections of Learning Agents

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian

    2001-01-01

    The intelligent control of multiple autonomous agents is an important yet difficult task. Previous methods used to address this problem have proved to be either too brittle, too hard to use, or not scalable to large systems. The 'Collective Intelligence' project at NASA/Ames provides an elegant, machine-learning approach to address these problems. This approach mathematically defines some essential properties that a reward system should have to promote coordinated behavior among reinforcement learners. This work has focused on creating additional key properties and algorithms within the mathematics of the Collective Intelligence framework. One of the additions will allow agents to learn more quickly, in a more coordinated manner. The other will let agents learn with less knowledge of their environment. These additions will allow the framework to be applied more easily, to a much larger domain of multi-agent problems.

  16. Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents.

    PubMed

    Herron, Maggie; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J; Abbott, Nicholas L

    2016-10-03

    We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga(3+) (antibiofilm agent)- and Ag(+) (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga(3+) and Ag(+) from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga(3+) and Ag(+) can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.

  17. Chemical and biological approaches for mycotoxin control: a review.

    PubMed

    Edlayne, Gonçalez; Simone, Aquino; Felicio, Joana D

    2009-06-01

    Mycotoxins are metabolites and toxic substances produced by certain filamentous fungi that frequently contaminate food and agriculture commodities, which cause disease in animals or man. The toxigenic fungi belong to mainly three genera: Aspergillus, Penicillium and Fusarium. Examples of mycotoxins of greatest public health and agroeconomic significance include aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins, patulin and ergot alkaloids. Commodities susceptible to direct contamination with mycotoxins include nuts, oilseeds and grains. Chemical and biological treatments have been attempted to minimize the risk of mycotoxins contamination or eliminate the fungi of food and feeds. One way to prevent or interfere with fungal growth and mycotoxin production is by use of synthetic or natural agents. Bacteria have been studied to control the mycotoxins production and fungal growth in food. Plant genotypes resistant to infection by toxigenic fungi have been also studied. This review will approach same patented methods applied to degrade, prevent and control of mycotoxins in food and feeds.

  18. Host range testing and biology of Abia sericea (Cimbicidae), a candidate for biological control of invasive teasels (Dipsacus spp.) in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive teasels (Dipsacus spp., Dipsacaceae) are widespread in the USA, being present in 43 states and listed as noxious in five. The cimbicid sawfly Abia sericea (L.) is under evaluation as a potential agent for biological control of teasels. The host range, biology, and life history of this ins...

  19. Biological control of Fusarium moniliforme in maize.

    PubMed Central

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-01-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703

  20. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  1. Rotating Biological Contractors (RBC's). Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This two-lesson unit on rotating biological contactors (RBC's) is designed to be used with students who have had some experience in wastewater treatment and a basic understanding of biological treatment. The first lesson provides information on the concepts and components of RBC treatment systems. The second lesson focuses on design operation and…

  2. Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents.

    PubMed

    Ivnitski, Dmitri; O'Neil, Daniel J; Gattuso, Anthony; Schlicht, Roger; Calidonna, Michael; Fisher, Rodney

    2003-10-01

    Biological warfare agents are the most problematic of the weapons of mass destruction and terror. Both civilian and military sources predict that over the next decade the threat from proliferation of these agents will increase significantly. In this review we summarize the state of the art in detection and identification of biological threat agents based on PCR technology with emphasis on the new technology of microarrays. The advantages and limitations of real-time PCR technology and a review of the literature as it applies to pathogen and virus detection are presented. The paper covers a number of issues related to the challenges facing biological threat agent detection technologies and identifies critical components that must be overcome for the emergence of reliable PCR-based DNA technologies as bioterrorism countermeasures and for environmental applications. The review evaluates various system components developed for an integrated DNA microchip and the potential applications of the next generation of fully automated DNA analyzers with integrated sample preparation and biosensing elements. The article also reviews promising devices and technologies that are near to being, or have been, commercialized.

  3. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  4. pH control in biological systems using calcium carbonate.

    PubMed

    Salek, S S; van Turnhout, A G; Kleerebezem, R; van Loosdrecht, M C M

    2015-05-01

    Due to its abundance, calcium carbonate (CaCO3) has high potentials as a source of alkalinity for biotechnological applications. The application of CaCO3 in biological systems as neutralizing agent is, however, limited due to potential difficulties in controlling the pH. The objective of the present study was to determine the dominant processes that control the pH in an acid-forming microbial process in the presence of CaCO3. To achieve that, a mathematical model was made with a minimum set of kinetically controlled and equilibrium reactions that was able to reproduce the experimental data of a batch fermentation experiment using finely powdered CaCO3. In the model, thermodynamic equilibrium was assumed for all speciation, complexation and precipitation reactions whereas, rate limited reactions were included for the biological fatty acid production, the mass transfer of CO2 from the liquid phase to the gas phase and the convective transport of CO2 out of the gas phase. The estimated pH-pattern strongly resembled the measured pH, suggesting that the chosen set of kinetically controlled and equilibrium reactions were establishing the experimental pH. A detailed analysis of the reaction system with the aid of the model revealed that the pH establishment was most sensitive to four factors: the mass transfer rate of CO2 to the gas phase, the biological acid production rate, the partial pressure of CO2 and the Ca(+2) concentration in the solution. Individual influences of these factors on the pH were investigated by extrapolating the model to a continuously stirred-tank reactor (CSTR) case. This case study indicates how the pH of a commonly used continuous biotechnological process could be manipulated and adjusted by altering these four factors. Achieving a better insight of the processes controlling the pH of a biological system using CaCO3 as its neutralizing agent can result in broader applications of CaCO3 in biotechnological industries.

  5. Intensified agriculture favors evolved resistance to biological control.

    PubMed

    Tomasetto, Federico; Tylianakis, Jason M; Reale, Marco; Wratten, Steve; Goldson, Stephen L

    2017-03-13

    Increased regulation of chemical pesticides and rapid evolution of pesticide resistance have increased calls for sustainable pest management. Biological control offers sustainable pest suppression, partly because evolution of resistance to predators and parasitoids is prevented by several factors (e.g., spatial or temporal refuges from attacks, reciprocal evolution by control agents, and contrasting selection pressures from other enemy species). However, evolution of resistance may become more probable as agricultural intensification reduces the availability of refuges and diversity of enemy species, or if control agents have genetic barriers to evolution. Here we use 21 y of field data from 196 sites across New Zealand to show that parasitism of a key pasture pest (Listronotus bonariensis; Argentine stem weevil) by an introduced parasitoid (Microctonus hyperodae) was initially nationally successful but then declined by 44% (leading to pasture damage of c. 160 million New Zealand dollars per annum). This decline was not attributable to parasitoid numbers released, elevation, or local climatic variables at sample locations. Rather, in all locations the decline began 7 y (14 host generations) following parasitoid introduction, despite releases being staggered across locations in different years. Finally, we demonstrate experimentally that declining parasitism rates occurred in ryegrass Lolium perenne, which is grown nationwide in high-intensity was significantly less than in adjacent plots of a less-common pasture grass (Lolium multiflorum), indicating that resistance to parasitism is host plant-dependent. We conclude that low plant and enemy biodiversity in intensive large-scale agriculture may facilitate the evolution of host resistance by pests and threaten the long-term viability of biological control.

  6. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  7. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    PubMed Central

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088

  8. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    PubMed

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  9. DNA capture elements for rapid detection and identification of biological agents

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan L.; Parker, Jill E.; Holwitt, Eric A.; Vivekananda, Jeeva

    2004-08-01

    DNA capture elements (DCEs; aptamers) are artificial DNA sequences, from a random pool of sequences, selected for their specific binding to potential biological warfare agents. These sequences were selected by an affinity method using filters to which the target agent was attached and the DNA isolated and amplified by polymerase chain reaction (PCR) in an iterative, increasingly stringent, process. Reporter molecules were attached to the finished sequences. To date, we have made DCEs to Bacillus anthracis spores, Shiga toxin, Venezuelan Equine Encephalitis (VEE) virus, and Francisella tularensis. These DCEs have demonstrated specificity and sensitivity equal to or better than antibody.

  10. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    PubMed

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  11. The clearance of viruses and transmissible spongiform encephalopathy agents from biologicals.

    PubMed

    Farshid, Mahmood; Taffs, Rolf E; Scott, Dorothy; Asher, David M; Brorson, Kurt

    2005-10-01

    The viral and transmissible spongiform encephalopathy (TSE) safety of therapeutics of biological origin (biologicals) is greatly influenced by the nature and degree of variability of the source material and by the mode of purification. Plasma-derived and recombinant DNA products currently have good viral safety records, but challenges remain. In general, large enveloped viruses are easier to remove from biologicals than small 'naked' viruses. Monoclonal antibodies and recombinant DNA biopharmaceuticals are derived from relatively homogeneous source materials and purified by multistep schemes that are robust and amenable to scientific analysis and engineering improvement. Viral clearance is more challenging for blood and cell products, as they are complex and labile. Source selection (e.g. country of origin, deferral for CJD risk factors) currently occupies the front line for ensuring that biologicals are free of TSE agents, but robust methods for their clearance from products are under development.

  12. An Intelligent Control for the Distributed Flexible Network Photovoltaic System using Autonomous Control and Agent

    NASA Astrophysics Data System (ADS)

    Park, Sangsoo; Miura, Yushi; Ise, Toshifumi

    This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.

  13. Portuguese guidelines for the use of biological agents in rheumatoid arthritis - March 2010 update.

    PubMed

    Fonseca, João Eurico; Canhão, Helena; Reis, Paulo; Santos, Maria José; Branco, Jaime; Quintal, Alberto; Malcata, Armando; Araújo, Domingos; Ventura, Francisco; Figueiredo, Guilherme; da Silva, José Canas; Patto, José Vaz; de Queiroz, Mário Viana; Santos, Rui André; Neto, Adriano José; de Matos, Alves de; Rodrigues, Ana; Mourão, Ana Filipa; Ribeiro, Ana Sofia; Cravo, Ana Rita; Barcelos, Anabela; Cardoso, Anabela; Vilar, António; Braña, Arecili; Faustino, Augusto; Silva, Candida; Godinho, Fátima; Cunha, Inês; Costa, José António; Gomes, José António Melo; Pinto, José António Araújo; da Silva, J A Pereira; Miranda, Luís Cunha; Inês, Luís; Santos, Luís Maurício; Cruz, Margarida; Salvador, Maria João; Ferreira, Maria Júlia; Rial, Maria; Bernardes, Miguel; Bogas, Mónica; Araújo, Paula; Machado, Pedro; Pinto, Patrícia; de Melo, Rui Gomes; Cortes, Sara; Alcino, Sérgio; Capela, Susana

    2010-01-01

    The authors present the revised version of the Portuguese Society of Rheumatology (SPR) guidelines for the treatment of rheumatoid arthritis (RA) with biological therapies. In these guidelines the criteria for introduction and maintenance of biological agents are discussed as well as the contraindications and procedures in the case of non-responders. Biological treatment should be considered in RA patients with a disease activity score 28 (DAS 28) superior to 3.2 despite treatment with 20mg/week of methotrexate (MTX) for at least 3 months or, if such treatment is not possible, after 6 months of other conventional disease modifying drug or combination therapy. A DAS 28 score between 2.6 and 3.2 with a significant functional or radiological deterioration under treatment with conventional regimens could also constitute an indication for biological treatment. The treatment goal should be remission or, if that is not achievable, at least a low disease activity, characterized by a DAS28 lower than 3.2, without significative functional or radiological worsening. The response criteria, at the end of the first 3 months of treatment, are a decrease of 0.6 in the DAS28 score. After 6 months of treatment response criteria is defined as a decrease of more than 1.2 in the DAS28 score. Non-responders, in accordance to the Rheumatologist's clinical opinion, should try a switch to another biological agent (tumour necrosis factor antagonist, abatacept, rituximab or tocilizumab).

  14. Towards the implementation of a spectral database for the detection of biological warfare agents

    NASA Astrophysics Data System (ADS)

    Carestia, M.; Pizzoferrato, R.; Gelfusa, M.; Cenciarelli, O.; D'Amico, F.; Malizia, A.; Scarpellini, D.; Murari, A.; Vega, J.; Gaudio, P.

    2014-10-01

    The deliberate use of biological warfare agents (BWA) and other pathogens can jeopardize the safety of population, fauna and flora, and represents a concrete concern from the military and civil perspective. At present, the only commercially available tools for fast warning of a biological attack can perform point detection and require active or passive sampling collection. The development of a stand-off detection system would be extremely valuable to minimize the risk and the possible consequences of the release of biological aerosols in the atmosphere. Biological samples can be analyzed by means of several optical techniques, covering a broad region of the electromagnetic spectrum. Strong evidence proved that the informative content of fluorescence spectra could provide good preliminary discrimination among those agents and it can also be obtained through stand-off measurements. Such a system necessitates a database and a mathematical method for the discrimination of the spectral signatures. In this work, we collected fluorescence emission spectra of the main BWA simulants, to implement a spectral signature database and apply the Universal Multi Event Locator (UMEL) statistical method. Our preliminary analysis, conducted in laboratory conditions with a standard UV lamp source, considers the main experimental setups influencing the fluorescence signature of some of the most commonly used BWA simulants. Our work represents a first step towards the implementation of a spectral database and a laser-based biological stand-off detection and identification technique.

  15. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole).

  16. Fusing terrain and goals: agent control in urban environments

    NASA Astrophysics Data System (ADS)

    Kaptan, Varol; Gelenbe, Erol

    2006-04-01

    The changing face of contemporary military conflicts has forced a major shift of focus in tactical planning and evaluation from the classical Cold War battlefield to an asymmetric guerrilla-type warfare in densely populated urban areas. The new arena of conflict presents unique operational difficulties due to factors like complex mobility restrictions and the necessity to preserve civilian lives and infrastructure. In this paper we present a novel method for autonomous agent control in an urban environment. Our approach is based on fusing terrain information and agent goals for the purpose of transforming the problem of navigation in a complex environment with many obstacles into the easier problem of navigation in a virtual obstacle-free space. The main advantage of our approach is its ability to act as an adapter layer for a number of efficient agent control techniques which normally show poor performance when applied to an environment with many complex obstacles. Because of the very low computational and space complexity at runtime, our method is also particularly well suited for simulation or control of a huge number of agents (military as well as civilian) in a complex urban environment where traditional path-planning may be too expensive or where a just-in-time decision with hard real-time constraints is required.

  17. Export controls and biological weapons: new roles, new challenges.

    PubMed

    Roberts, B

    1998-01-01

    This article considers the value of export controls in reducing the threat of biological weapons. It concludes that export control through export licensing is an essential element in the overall strategy to limit the spread of biological weapons. Modifications to existing export control systems can maximize the usefulness of export controls for limiting the threat of biological warfare and bioterrorism. Export controls are useful only within a broader strategy that includes both an arms control dimension and military defensive preparedness.

  18. Microbial Pest Control Agents: Are they a specific and safe tool for insect pest management?

    PubMed

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-03-14

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully bioinsecticide used in the world in the integrated pest management programs. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity.

  19. Project Summary: Biology-Inspired Autonomous Control

    DTIC Science & Technology

    2011-02-01

    the mechanisms of biological flight through collaboration with various experimental biology academic research laboratories around the world . This...experimental biology academic research laboratories around the world . This exploration of biological flight includes behavior, vision and other...7] A. Vargas, R. Mittal, and H. Dong, “A computational study of the aerodynamic performance of a dragonfly wing section ingliding flight

  20. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis.

    PubMed

    Giacoppo, Juliana O S; Mancini, Daiana T; Guimarães, Ana P; Gonçalves, Arlan S; da Cunha, Elaine F F; França, Tanos C C; Ramalho, Teodorico C

    2015-02-16

    In the present work, we applied docking and molecular dynamics techniques to study 11 compounds inside the enzymes dihydrofolate reductase (DHFR) from the biological warfare agent Bacillus anthracis (BaDHFR) and Homo sapiens sapiens (HssDHFR). Six of these compounds were selected for a study with the mutant BaF96IDHFR. Our results corroborated with experimental data and allowed the proposition of a new molecule with potential activity and better selectivity for BaDHFR.

  1. Dermoscopic hemorrhagic dots: an early predictor of response of psoriasis to biologic agents

    PubMed Central

    Lallas, Aimilios; Argenziano, Giuseppe; Zalaudek, Iris; Apalla, Zoe; Ardigo, Marco; Chellini, Patricia; Cordeiro, Natalia; Guimaraes, Mariana; Kyrgidis, Athanassios; Lazaridou, Elizabeth; Longo, Caterina; Moscarella, Elvira; Papadimitriou, Ilias; Pellacani, Giovanni; Sotiriou, Elena; Vakirlis, Efstratios; Ioannides, Dimitrios

    2016-01-01

    Background Biologic agents are routinely used in the treatment of severe psoriasis. The evaluation of treatment response is mainly based on the physician’s global clinical assessment. Objective To investigate whether dermoscopy might enhance the assessment of response of psoriasis to treatment with biologic agents. Methods Patients with severe psoriasis scheduled to receive a biologic agent were enrolled in the study. A target lesion from each patient was clinically and dermoscopically documented at baseline and after one, two and six months. The clinical response was evaluated by the recruiting clinicians at all visits, while dermoscopic images were evaluated by two independent investigators, blinded to the clinical information. Chi Square test was used for cross-tabulation comparisons, while odds ratios, 95% confidence intervals and p values were calculated using univariate logistic regression. Results Overall, there was a significant correlation between clinical response and vessel distribution at all time points: a regular vessel distribution correlated with no response, a clustered distribution with partial response, and the dermoscopic absence of vessels with complete response. The presence of dermoscopic hemorrhagic dots was a potent predictor of favorable clinical response at the subsequent visit at all time points. Among lesions initially clinically responding and later recurring, 87.5% displayed dermoscopic dotted vessels despite the macroscopic remission. Conclusion Dermoscopy might be a useful additional tool for evaluating the response of psoriatic patients to biologic agents. Hemorrhagic dots represent an early predictor of clinical response, while the persistence or reappearance of dotted vessels might predict clinical persistence or recurrence, respectively. PMID:27867739

  2. Plasmodium Genus Assay Transition to the Joint Biological Agent Identification and Diagnostic System (JBAIDS)

    DTIC Science & Technology

    2012-07-12

    Support of the Joint Biological Agent Identification and Diagnosis System (JBAIDS): Malaria (Plasmodium/JBAIDS)." Follow-on RDT&E efforts...candidates for transfer to microarray-based analytic systems. A Material Transfer Agreement (MTA) with Idaho Technology , Inc. for transfer to microarray...protecting the health of soldiers. Malaria is ranked first among the top 40 diseases in the DoD global risk-severity index and recognized as a military

  3. An overview of biological markers of exposure to chemical warfare agents.

    PubMed

    Black, Robin M

    2008-01-01

    An overview is given of biological markers of exposure to chemical warfare agents. Metabolites, protein, and/or DNA adducts have been identified for most nerve agents and vesicants and validated in experimental animals or in a small number of human exposures. For several agents, metabolites derived from hydrolysis are unsatisfactory biomarkers of exposure because of background levels in the human population. These are assumed to result from environmental exposure to commercial products that contain these hydrolysis products or chemicals that are metabolized to them. In these cases, metabolites derived from glutathione pathways, or covalent adducts with proteins or DNA, provide more definitive biomarkers. Biomarkers for cyanide and phosgene are unsatisfactory as indicators of chemical warfare exposure because of other sources of these chemicals or their metabolites.

  4. Chromatographic immunoassays: strategies and recent developments in the analysis of drugs and biological agents

    PubMed Central

    Matsuda, Ryan; Rodriguez, Elliott; Suresh, Doddavenkatanna; Hage, David S

    2015-01-01

    A chromatographic immunoassay is a technique in which an antibody or antibody-related agent is used as part of a chromatographic system for the isolation or measurement of a specific target. Various binding agents, detection methods, supports and assay formats have been developed for this group of methods, and applications have been reported that range from drugs, hormones and herbicides to peptides, proteins and bacteria. This review discusses the general principles and applications of chromatographic immunoassays, with an emphasis being given to methods and formats that have been developed for the analysis of drugs and biological agents. The relative advantages or limitations of each format are discussed. Recent developments and research in this field, as well as possible future directions, are also considered. PMID:26571109

  5. Product Distribution Theory for Control of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Lee, Chia Fan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.

  6. Development of an integrated system for rapid detection of biological agents

    NASA Astrophysics Data System (ADS)

    Terazono, Hideyuki; Takei, Hiroyuki; Hayashi, Masahito; Hattori, Akihiro; Yasuda, Kenji

    2010-04-01

    Weaponized biological agents are as great a threat as nuclear or chemical weapons. They must be detected at the earliest stage to prevent diffusion because once these agents are dispersed into the air, the rapidly decreasing concentration makes detection more of a challenge. Polymerase chain reaction (PCR) is a common method to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA molecules. A few DNA molecules are rapidly amplified by PCR into billions of copies. While PCR is a powerful technique and is capable of countering new threats relatively easily, it is plagued by the number of processes necessary. Therefore, we have developed an integrated PCR system for rapid detection of biological agents captured from the air. Each processing function is performed by a dedicated module, and reduction in the process time has been made the top priority, without loss in the signal/noise ratio of the total system. Agents can be identified within 15 min from capture. A fully automated operation protects operators from exposure to potentially highly lethal samples.

  7. A Perspective on Vascular Disrupting Agents that Interact with Tubulin: Preclinical Tumor Imaging and Biological Assessment#

    PubMed Central

    Mason, Ralph P.; Zhao, Dawen; Liu, Li; Trawick, Mary Lynn; Pinney, Kevin G.

    2011-01-01

    The tumor microenvironment provides a rich source of potential targets for selective therapeutic intervention with properly designed anticancer agents. Significant physiological differences exist between the microvessels that nourish tumors and those that supply healthy tissue. Selective drug-mediated damage of these tortuous and chaotic microvessels starves a tumor of necessary nutrients and oxygen and eventually leads to massive tumor necrosis. Vascular targeting strategies in oncology are divided into two separate groups: angiogenesis inhibiting agents (AIAs) and vascular disrupting agents (VDAs). The mechanisms of action between these two classes of compounds are profoundly distinct. The AIAs inhibit the actual formation of new vessels, while the VDAs damage and/or destroy existing tumor vasculature. One subset of small-molecule VDAs functions by inhibiting the assembly of tubulin into microtubules, thus causing morphology changes to the endothelial cells lining the tumor vasculature, triggered by a cascade of cell signaling events. Ultimately this results in catastrophic damage to the vessels feeding the tumor. The rapid emergence and subsequent development of the VDA field over the past decade has led to the establishment of a synergistic combination of preclinical state-of-the-art tumor imaging and biological evaluation strategies that are often indicative of future clinical efficacy for a given VDA. This review focuses on an integration of the appropriate biochemical and biological tools necessary to assess (preclinically) new small-molecule, tubulin active VDAs for their potential to be clinically effective anticancer agents. PMID:21321746

  8. Dynamical Systems and Control Theory Inspired by Molecular Biology

    DTIC Science & Technology

    2014-10-02

    AFRL-OSR-VA-TR-2014-0282 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY Eduardo Sontag RUTGERS THE STATE UNIVERSITY OF NEW JERSEY...Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY AFOSR FA9550-11-1-0247...is to develop new concepts, theory, and algorithms for control and signal processing using ideas inspired by molecular systems biology. Cell biology

  9. Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of Biological Phosphorus Removal

    PubMed Central

    Peterson, S. Brook; Warnecke, Falk; Madejska, Julita; McMahon, Katherine D.; Hugenholtz, Philip

    2008-01-01

    Summary Members of the uncultured bacterial genus Candidatus Accumulibacter are capable of intracellular accumulation of inorganic phosphate (Pi) in activated sludge wastewater treatment plants (WWTPs) performing enhanced biological phosphorus removal (EBPR), but were also recently shown to inhabit freshwater and estuarine sediments. Additionally, metagenomic sequencing of two bioreactor cultures enriched in Candidatus Accumulibacter, but housed on separate continents, revealed the potential for global dispersal of particular Candidatus Accumulibacter strains, that we hypothesize is facilitated by the ability of Candidatus Accumulibacter to persist in environmental habitats. In the current study, we used sequencing of a phylogenetic marker, the ppk1 gene, to characterize Candidatus Accumulibacter populations in diverse environments, at varying distances from WWTPs. We discovered several new lineages of Candidatus Accumulibacter which had not previously been detected in WWTPs, and also uncovered new diversity and structure within previously detected lineages. Habitat characteristics were found to be a key determinant of Candidatus Accumulibacter lineage distribution, while, as predicted, geographic distance played little role in limiting dispersal on a regional scale. However, on a local scale, enrichment of particular Candidatus Accumulibacter lineages in WWTP appeared to impact local environmental populations. These results provide evidence of ecological differences among Candidatus Accumulibacter lineages. PMID:18643843

  10. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  11. Resilient distributed control in the presence of misbehaving agents in networked control systems.

    PubMed

    Zeng, Wente; Chow, Mo-Yuen

    2014-11-01

    In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.

  12. Assessing the safety of biologic agents in patients with rheumatoid arthritis.

    PubMed

    Rubbert-Roth, Andrea

    2012-07-01

    Biologic treatments--including five TNF-α inhibitors, the IL-1 receptor antagonist anakinra, the IL-6 receptor inhibitor tocilizumab, the selective inhibitor of T-cell co-stimulation abatacept and the B-cell-directed mAb rituximab--have provided effective therapeutic options for patients with RA with inadequate response to conventional DMARDs. However, the fact that these agents are immune modulators has raised safety concerns, prompting careful evaluation in clinical trials and intensive post-marketing surveillance. Serious infections may arise, and diagnosis may be delayed by an atypical spectrum of signs and symptoms. Patients may experience reactivation of latent tuberculosis, hepatitis B or C or opportunistic infections. RA is a risk factor for cancer, and biologic therapy may modestly increase the risk of lymphoma and some solid tumours beyond background. During biologic therapy, demyelinating disorders of the CNS have been noted, and pre-existing disease manifestations may be aggravated. Hepatic transaminase levels may increase, although these elevations are usually mild to moderate, transient and without clinical consequence. Hyperlipidaemia, which is responsive to lipid-lowering therapy, may develop, and patients with congestive heart failure may experience symptom exacerbation. Safe use of biologic agents requires thorough risk assessment of potential candidates for treatment and careful monitoring during and after therapy.

  13. Allee effects in tritrophic food chains: some insights in pest biological control.

    PubMed

    Costa, Michel Iskin da S; Dos Anjos, Lucas

    2016-12-01

    Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies.

  14. Population pharmacokinetic-pharmacodynamic modeling of biological agents: when modeling meets reality.

    PubMed

    Mould, Diane R; Frame, Bill

    2010-09-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of many biological agents (biologics) have inherent complexities requiring specialized approaches to develop reliable, unbiased models. Three cases are covered: preponderance of zero values, nonresponder subpopulations, and adaptive dosing. Engineered biologics exhibit high affinity for target receptors. Biologics can saturate receptors, abolishing free receptor levels for protracted periods. Consequently, the distribution of observations can be heavy at, and near, the boundary. A 2-part model (ie, a truncated δ log-normal distribution) may be appropriate. Mixture models identify subpopulations based on bimodal or multimodal distributions of η values. With biologics, PD may be compromised because of lack of receptors, or the PD may be affected because of other events resulting in erratic excursions. Nonresponders exhibit a random walk-around placebo trajectory, resulting in high residual variability. The distributions of etas are often badly skewed or polymodal. An indescribable mixture model separates subjects who are nonresponders, providing diagnostic pharmacologic information on the drug. Many biologics use PD-based adaptive dosing. During model development, data used for model development include adaptive dosing. For simulation, adaptive dosing must be implemented. Failure to account for dose adjustments results in biased or inflated prediction intervals because subjects in the simulated data undergo inappropriate dose adjustments.

  15. Evolutionary interactions between the invasive tallow tree and herbivores: implications for biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding interactions between insect agents and host plants is critical for forecasting their impact before the insects are introduced, and for improving our knowledge of the mechanisms driving success or failure in biological weed control. As invasive plants may undergo rapid adaptive evolutio...

  16. Biological control of tropical soda apple (Solanaceae) in Florida: Post-release evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaf feeding beetle Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) was released as a biological control agent against tropical soda apple (TSA) (Solanum viarum Dunal (Solanaceae)) in Sumter County, FL in 2006. Evaluation of beetle feeding damage to TSA plants and changes in the beetle po...

  17. Employing spatial information technologies to monitor biological control of saltcedar in West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The saltcedar leaf beetle (Diorhadha spp.) has shown promise as a biocontrol agent for saltcedar (Tamarix spp.) invasions in the United States. In Texas, natural resource managers need assistance in monitoring biological control of invasive saltcedars. This study describes application of a medium fo...

  18. Status of biological control projects on terrestrial invasive alien weeds in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  19. Successful establishment of epiphytotics of Puccinia punctiformis for biological control of Cirsium arvense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canada thistle (Cirsium arvense, CT) is one of the worst weeds in temperate areas of the world. The rust fungus Puccinia punctiformis was first proposed as a biological control agent for CT in 1893. The rust causes systemic disease, is specific to CT, and is in all countries where CT is found. Despi...

  20. Russian olive – a suitable target for classical biological control in North America?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Projects to develop biological control solutions against invasive plants are mid- to long-term endeavours that require considerable financial support over several years. Discussions of concerns and potential conflicts of interests often occur when biocontrol agents are first being proposed for rele...

  1. Biology and rearing of Cleruchoides noackae (Hymenoptera: Mymaridae), an egg parasitoid for the biological control of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae).

    PubMed

    Mutitu, Eston K; Garnas, Jeffrey R; Hurley, Brett P; Wingfield, Michael J; Harney, Marlene; Bush, Samantha J; Slippers, Bernard

    2013-10-01

    Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) is a solitary egg parasitoid of Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae). The parasitoid was first described in 2009 and its biology and rearing are poorly understood. A key obstacle to the use of C. noackae as a biological control agent has been the ability to consistently rear it under quarantine conditions. This study reports on a series of experiments conducted in quarantine to rear C. noackae and to examine the effects of diet on longevity, per capita reproduction, and progeny sex ratio, as well as to determine development time, and preference and suitability of host eggs of different ages. When supplemented with honey solution, the longevity of C. noackae females increased significantly by 2.4 d and that of males by 1.7 d, relative to the unfed adults. Mean per capita reproduction for the honey-fed wasps was 7.7 offspring per female, with progeny sex ratio slightly skewed toward males. Mean percentage parasitism was 32.2%. C. noackae was capable of parasitizing and completing development from oviposition to adult eclosion within 15.7 d in host eggs between 0 and 5 d old. The ability of C. noackae to parasitize a wide range of host egg ages increases the period of vulnerability of T. peregrinus to attack, increasing its potential efficacy as a biological control agent. The methods and results reported here represent a crucial step in the ongoing efforts to develop this potential biological control system.

  2. Advanced Algorithms for Rapidly Reconstructing Clandestine Releases of Biological Agents in Urban Areas

    SciTech Connect

    Shinn, J.H.; Hall, C.H.; Neher, L.A.; Wilder, F.J.; Gouveia, D.W.; Layton, D.W.; Daniels, J.I.

    2000-02-25

    As the United States plays a greater role in the 21st Century as global peacekeeper and international defender of human rights and democratic principles, there is an increasing likelihood that it will become the focus of acts of terrorism. Such acts of terrorism--sometimes described as ''asymmetric''--could involve the threat or use of weapons of mass destruction (WMD), particularly those considered unconventional, which include ones designed to release chemical or biological agents. In fact, biological agents are of great concern because, as noted by D.A. Henderson of the Center for Civilian Biodefense Studies at Johns Hopkins University in Baltimore, MD, ''... with shortages of hospital space, vaccines, antibiotics, there would be chaos.'' (Williams, 2000). Unfortunately, potential aggressor nations, terrorist groups, and even individuals, can, for a modest cost and effort, develop covert capabilities for manufacturing, transporting, and offensively using biological weapons of mass destruction. Furthermore, there is evidence to indicate that terrorist increasingly are targeting civilian populations--in order to inflict indiscriminate casualties--as well as other more traditional targets such as symbolic buildings or organizations (see Tucker, 1999), which suggest that introducing rapid treatment after a biological event may be more practical than concentrating on prevention (see Siegrist, 1999), especially because sensors are unlikely to be placed in all major urban areas to detect even an atmospheric biological release. For these reasons, and because symptoms for the majority of those effected may not occur or be directly identified for several days, early identification of a covert undetected biological event (CUBE) will contribute to timely medical intervention, which can save many lives.

  3. Communication and Distributed Control in Multi-Agent Systems

    DTIC Science & Technology

    2011-08-01

    Algorithms” (in Proceedings of the Eleventh International Joint Conference on Artificial Intelligence) [8] Zetule, F. (2008) “Multi-Agent Systems...front-to-rear axis respectively (see Figure 1). Each MAV’s controller is implemented through a feed -forward neural network. The information the...have been tested (see the resume in Table I). Those are various feed -forward network’s topologies, relying or not on a hidden layer, and receiving in

  4. Optimal control in microgrid using multi-agent reinforcement learning.

    PubMed

    Li, Fu-Dong; Wu, Min; He, Yong; Chen, Xin

    2012-11-01

    This paper presents an improved reinforcement learning method to minimize electricity costs on the premise of satisfying the power balance and generation limit of units in a microgrid with grid-connected mode. Firstly, the microgrid control requirements are analyzed and the objective function of optimal control for microgrid is proposed. Then, a state variable "Average Electricity Price Trend" which is used to express the most possible transitions of the system is developed so as to reduce the complexity and randomicity of the microgrid, and a multi-agent architecture including agents, state variables, action variables and reward function is formulated. Furthermore, dynamic hierarchical reinforcement learning, based on change rate of key state variable, is established to carry out optimal policy exploration. The analysis shows that the proposed method is beneficial to handle the problem of "curse of dimensionality" and speed up learning in the unknown large-scale world. Finally, the simulation results under JADE (Java Agent Development Framework) demonstrate the validity of the presented method in optimal control for a microgrid with grid-connected mode.

  5. Escherichia coli biosensors for environmental, food industry and biological warfare agent detection

    NASA Astrophysics Data System (ADS)

    Allil, R. C. S. B.; Werneck, M. M.; da Silva-Neto, J. L.; Miguel, M. A. L.; Rodrigues, D. M. C.; Wandermur, G. L.; Rambauske, D. C.

    2013-06-01

    This work has the objective to research and develop a plastic optical fiber biosensor based taper and mPOF LPG techniques to detect Escherichia coli by measurements of index of refraction. Generally, cell detection is crucial in microbiological analysis of clinical, food, water or environmental samples. However, methods current employed are time consuming, taking at least 72 hours in order to produce reliable responses as they depend on sample collection and cell culture in controlled conditions. The delay in obtaining the results of the analysis can result in contamination of a great number of consumers. Plastic Optical Fiber (POF) biosensors consist in a viable alternative for rapid and inexpensive scheme for cells detection. A study the sensitivity of these sensors for microbiological detection, fiber Tapers and Long Period Grating (LPG) both in poly-methyl-methacrylate (PMMA) were realized as possible candidates to take part of a biosensor system to detect Escherichia coli in water samples. In this work we adopted the immunocapture technique, which consists of quantifying bacteria in a liquid sample, attract-ing and fixing the bacteria on the surface of the polymer optical fiber, by the antigen-antibody reaction. The results were obtained by optical setup that consists in a side of the fiber a LED coupled to a photodetector through a POF with the taper in the middle of it. On the other side of the POF a photodetector receives this light producting a photocurrent. The output voltage is fed into the microcontroller A/D input port and its output data is sent via USB to a LabView software running in a microcomputer. The results showed the possibility of the POF in biosensor application capable to detect E. coli for environmental and food industry and for detecting and identifying biological-warfare agents using a very rapid response sensor, applicable to field detection prototypes.

  6. Control Architecture for Robotic Agent Command and Sensing

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel

    2008-01-01

    Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to

  7. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  8. Design, Synthesis and Biological Evaluation of WC-9 Analogues as Antiparasitic Agents

    PubMed Central

    Elicio, Pablo D.; Chao, María N.; Galizzi, Melina; Li, Catherine; Szajnman, Sergio H.; Docampo, Roberto; Moreno, Silvia N. J.; Rodriguez, Juan B.

    2013-01-01

    As a part of our project pointed at the search of new safe chemotherapeutic and chemoprophylactic agents against parasitic diseases, several compounds structurally related to 4-phenoxyphenoxyethyl thiocyanate (WC-9), which were modified at the terminal aromatic ring, were designed, synthesized and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible of American trypanosomiasis (Chagas disease) and Toxoplasma gondii, the etiological agent of toxoplasmosis. Most of the synthetic analogues exhibited similar antiparasitic activity being slightly more potent than the reference compound WC-9. For example, the nitro derivative 13 showed an ED50 value of 5.2 μM. Interestingly, the regioisomer of WC-9, compound 36 showed similar inhibitory action than WC-9 indicating that para-phenyl substitution pattern is not necessarily required for biological activity. The biological evaluation against T. gondii was also very promising. The ED50 values corresponding for 13, 36 and 37 were at the very low micromolar level against tachyzoites of T. gondii. PMID:24090919

  9. Assessment of disinfectants in explosive destruction system for biological agent destruction : LDRD final report FY04.

    SciTech Connect

    Simmons, Blake Alexander; Didlake, John E. Jr.; Bradshaw, Robert W.; Crooker, Paul J.; Buffleben, George M.

    2005-01-01

    Treatment systems that can neutralize biological agents are needed to mitigate risks from novel and legacy biohazards. Tests with Bacillus thuringiensis and Bacillus steurothemophilus spores were performed in a 190-liter, 1-112 lb TNT equivalent rated Explosive Destruction System (EDS) system to evaluate its capability to treat and destroy biological agents. Five tests were conducted using three different agents to kill the spores. The EDS was operated in steam autoclave, gas fumigation and liquid decontamination modes. The first three tests used EDS as an autoclave, which uses pressurized steam to kill the spores. Autoclaving was performed at 130-140 deg C for up to 2-hours. Tests with chlorine dioxide at 750 ppm concentration for 1 hour and 10% (vol) aqueous chlorine bleach solution for 1 hour were also performed. All tests resulted in complete neutralization of the bacterial spores based on no bacterial growth in post-treatment incubations. Explosively opening a glass container to expose the bacterial spores for treatment with steam was demonstrated and could easily be done for chlorine dioxide gas or liquid bleach.

  10. Portuguese guidelines for the use of biological agents in rheumatoid arthritis - October 2011 update.

    PubMed

    Fonseca, João Eurico; Bernardes, Miguel; Canhão, Helena; Santos, Maria José; Quintal, Alberto; Malcata, Armando; Neto, Adriano; Cordeiro, Ana; Rodrigues, Ana; Mourão, Ana Filipa; Ribeiro, Ana Sofia; Cravo, Ana Rita; Barcelos, Anabela; Cardoso, Anabela; Vilar, António; Braña, Arecili; Faustino, Augusto; Silva, Candida; Duarte, Cátia; Araújo, Domingos; Nour, Dolores; Sousa, Elsa; Simões, Eugénia; Godinho, Fátima; Brandão, Filipe; Ventura, Francisco; Sequeira, Graça; Figueiredo, Guilherme; Cunha, Inês; Matos, J Alves; Branco, Jaime; Ramos, João; Costa, José António; Gomes, José António; Pinto, José; Silva, José Canas; Silva, J A; Patto, José Vaz; Costa, Lúcia; Miranda, Luís Cunha; Inês, Luís; Santos, Luís Maurício; Cruz, Margarida; Salvador, Maria João; Ferreira, Maria Júlia; Rial, Maria; Queiroz, Mário Viana; Bogas, Mónica; Araújo, Paula; Reis, Paulo; Abreu, Pedro; Machado, Pedro; Pinto, Patrícia; André, Rui; Melo, Rui; Garcês, Sandra; Cortes, Sara; Alcino, Sérgio; Ramiro, Sofia; Capela, Susana

    2011-01-01

    The authors present the revised version of the Portuguese Society of Rheumatology (SPR) guidelines for the treatment of Rheumatoid Arthritis (RA) with biological therapies. In these guidelines the criteria for introduction and maintenance of biological agents are discussed as well as the contraindications and procedures in the case of nonresponders. Biological treatment (with a tumour necrosis factor antagonist, abatacept or tocilizumab) should be considered in RA patients with a disease activity score 28 (DAS 28) equal to or greater than 3.2 despite treatment with at least 20mg-weekly-dose of methotrexate (MTX) for at least 3 months or, if such treatment is not possible, after 3 months of other conventional disease modifying drug or combination therapy. A DAS 28 score between 2.6 and 3.2 with a significant functional or radiological deterioration under treatment with conventional regimens could also constitute an indication for biological treatment. The treatment goal should be remission or, if that is not achievable, at least a low disease activity, defined by a DAS28 lower than 3.2, without significative functional or radiological worsening. The response criteria, at the end of the first 3 months of treatment, are a decrease of at least 0.6 in the DAS28 score. After 6 months of treatment res­ponse criteria is defined as a decrease greater than 1.2 in the DAS28 score. Non-responders, in accordance to the Rheumatologist’s clinical opinion, should try a switch to another biological agent (tumour necrosis factor antagonist, abatacept, rituximab or tocilizumab).

  11. Decontamination of biological agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies.

  12. Resilient Control System Execution Agent (ReCoSEA)

    SciTech Connect

    Craig G. Rieger; Kris Villez

    2012-08-01

    In an increasingly networked world, critical infrastructure systems suffer from two types of vulnerability. The first is the traditionally recognized problem of monitoring the systems for faults and failures, recognizing and analyzing data, and responding with real understanding to the problems of the system. Increasingly complex systems create the opportunity for single points of failure to cascade when inaccurate assessment of system health increases response time or leads to faulty analysis of the problems involved. A second problem involves vulnerability to cyber intrusion, in which bad actors can mask system deterioration or present false data about system status. A resilient system will protect stability, efficiency, and security. To ensure these three states, the system must react to changing conditions within the system with coordination: no one component of the system can be allowed to react to problems without real consideration of the effects of that action on other components within the system. Systems with multi-agent design typically have three layers of action, a management layer, a coordination layer, and an execution layer. A resilient multi-agent system will emphasize functions of the execution layer, which has the responsibility of initiating actions, monitoring, analyzing, and controlling its own processes, while feeding information back to the higher levels of management and coordination. The design concept of a resilient control system execution agent (ReCoSEA) grows out of these underpinnings, and through the use of computational intelligence techniques, this paper suggests an associated design methodology.

  13. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects.

    PubMed

    Solano, Francisco; Briganti, Stefania; Picardo, Mauro; Ghanem, Ghanem

    2006-12-01

    An overview of agents causing hypopigmentation in human skin is presented. The review is organized to put forward groups of biological and chemical agents. Their mechanisms of action cover (i) tyrosinase inhibition, maturation and enhancement of its degradation; (ii) Mitf inhibition; (iii) downregulation of MC1R activity; (iv) interference with melanosome maturation and transfer; (v) melanocyte loss, desquamation and chemical peeling. Tyrosinase inhibition is the most common approach to achieve skin hypopigmentation as this enzyme catalyses the rate-limiting step of pigmentation. Despite the large number of tyrosinase inhibitors in vitro, only a few are able to induce effects in clinical trials. The gap between in-vitro and in-vivo studies suggests that innovative strategies are needed for validating their efficacy and safety. Successful treatments need the combination of two or more agents acting on different mechanisms to achieve a synergistic effect. In addition to tyrosinase inhibition, other parameters related to cytotoxicity, solubility, cutaneous absorption, penetration and stability of the agents should be considered. The screening test system is also very important as keratinocytes play an active role in modulating melanogenesis within melanocytes. Mammalian skin or at least keratinocytes/melanocytes co-cultures should be preferred rather than pure melanocyte cultures or soluble tyrosinase.

  14. Detection of nerve agents and biological molecules using embedded piezoresistive microcantilever sensors.

    NASA Astrophysics Data System (ADS)

    Porter, Timothy; Vail, Tim; Wooley, Amanda

    2008-03-01

    Embedded piezoresistive microcantilever (EPM) sensors have been used in the detection of a variety of analyte species. EPM sensors utilize a tiny piezoresistive microcantilever partially embedded into a sensing material to produce a sensing element that is compact, simple, resistant to movement and shock, and suitable for remote sensing applications. In the current project, we have used sensing materials comprised of an immobilizing polymer functionalized with either target enzymes or antibodies to detect two biological agents, bacillus globigi (BG) and Diisopropyl fluorophosphate (DFP). DFP is an organophosphate used as a simulant for organophosphate nerve agents, while BG is a large bacterial spore used as a simulant for other bacterial spores such as bacillus anthracis. Sensing results are presented for both types of EPM sensors.

  15. Design, synthesis, and biological evaluation of anti-EV71 agents.

    PubMed

    Li, Peng; Yang, Bailing; Hao, Fei; Wang, Ping; He, Haiying; Huang, Lei; Zhang, Xuan; Zhang, Shengbin; Peng, Xuanjia; Yin, Ke; Hu, Jiao; Chen, Xinsheng; Gu, Zhengxian; Wang, Li; Shen, Liang; Hu, Guoping; Li, Ning; Li, Jian; Chen, Shuhui; Xiao, Wei; Wang, Zhenzhong; Guo, Qingming; Chang, Xiujuan; Zhang, Lanjun; Cai, Qixu; Lin, Tianwei

    2016-07-15

    Enterovirus 71 (EV71) is a major causative agent of hand, foot and mouth disease (HFMD), which can spread its infections to the central nervous and other systems with severe consequences. In this article, design, chemical synthesis, and biological evaluation of various anti-EV71 agents which incorporate Michael acceptors are described. Further SAR study demonstrated that lactone type of Michael acceptor provided a new lead of anti-EV71 drug candidates with high anti-EV71 activity in cell-based assay and enhanced mouse plasma stability. One of the most potent compounds (2K, cell-based anti-EV71 EC50=0.028μM), showed acceptable stability profile towards mouse plasma, which resulted into promising pharmacokinetics in mouse via IP administration.

  16. Effects of Biologic Agents in Patients with Rheumatoid Arthritis and Amyloidosis Treated with Hemodialysis

    PubMed Central

    Kuroda, Takeshi; Tanabe, Naohito; Nozawa, Yukiko; Sato, Hiroe; Nakatsue, Takeshi; Kobayashi, Daisuke; Wada, Yoko; Saeki, Takako; Nakano, Masaaki; Narita, Ichiei

    2016-01-01

    Objective Our objective was to examine the safety and effects of therapy with biologics on the prognosis of rheumatoid arthritis (RA) patients with reactive amyloid A (AA) amyloidosis on hemodialysis (HD). Methods Twenty-eight patients with an established diagnosis of reactive AA amyloidosis participated in the study. The survival was calculated from the date of HD initiation until the time of death, or up to end of June 2015 for the patients who were still alive. HD initiation was according to the program of HD initiation for systemic amyloidosis patients associated with RA. Results Ten patients had been treated with biologics before HD initiation for a mean of 28.2 months (biologic group), while 18 had not (non-biologic group). HD was initiated in patients with similar characteristics except for the tender joint count, swollen joint count, and disease activity score (DAS)28-C-reactive protein (CRP). History of biologics showed that etanercept was frequently used for 8 patients as the first biologic. There was no significant difference in the mortality rate according to a Kaplan-Meier analysis (p=0.939) and or associated risk of death in an age-adjusted Cox proportional hazards model (p=0.758) between both groups. Infections were significantly more frequent causes of death in the biologic group than in the non-biologic group (p=0.021). However, treatment with biologics improved the DAS28-CRP score (p=0.004). Conclusion Under the limited conditions of AA amyloidosis treated with HD, the use of biologics might affect infection and thus may not improve the prognosis. Strict infection control is necessary for the use of biologics with HD to improve the prognosis. PMID:27725536

  17. Optically controlled collisions of biological objects

    NASA Astrophysics Data System (ADS)

    Davies, Benjamin J.; Kishore, Rani; Mammen, Mathai; Helmerson, Kristian; Choi, Seok-Ki; Phillips, William D.; Whitesides, George M.

    1998-04-01

    We have developed a new assay in which two mesoscale particles are caused to collide using two independently controlled optical tweezers. This assay involves the measurement of the adhesion probability following a collision. Since the relative orientation, impact parameter (i.e., distance of closest approach), and collision velocity of the particles, as well as the components of the solution, are all under the user's control, this assay can mimic a wide range of biologically relevant collisions. We illustrate the utility of our assay by evaluating the adhesion probability of a single erythrocyte (red blood cell) to an influenza virus-coated microsphere, in the presence of sialic acid-bearing inhibitors of adhesion. This probability as a function of inhibitor concentration yields a measure of the effectiveness of the inhibitor for blocking viral adhesion. Most of the inhibition constants obtained using the tweezers agree well with those obtained from other techniques, although the inhibition constants for the best of the inhibitors were beyond the limited resolution of conventional assays. They were readily evaluated using our tweezers-based assay, however, and prove to be the most potent inhibitors of adhesion between influenza virus and erythrocytes ever measured. Further studies are underway to investigate the effect of collision velocity on the adhesion probability, with the eventual goal of understanding the various mechanisms of inhibition (direct competition for viral binding sites versus steric stabilization). Analysis of these data also provide evidence that the density of binding sites may be a crucial parameter in the application of this assay and polymeric inhibition in general.

  18. LANL organic analysis detection capabilities for chemical and biological warfare agents

    SciTech Connect

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  19. Biological agents: investigation into leprosy and other infectious diseases before indication*

    PubMed Central

    Antônio, João Roberto; Soubhia, Rosa Maria Cordeiro; Paschoal, Vania Del Arco; Amarante, Carolina Forte; Travolo, Ana Regina Franchi

    2013-01-01

    Biological agents are widely used for various immune-mediated diseases, with remarkable effectiveness in the treatment of rheumatoid arthritis (RA), psoriasis, psoriatic arthritis, ankylosing spondylitis and Crohn's disease. However, attention needs to be drawn to the adverse effects of these therapies and the risk of reactivating underlying granulomatous infectious diseases such as tuberculosis, leprosy, syphilis, leishmaniasis, among others. The objective of this paper is to describe a case of leprosy in a patient with RA using anti-TNF alfa, demonstrating the need for systematic investigation of skin lesions suggestive of leprosy in patients who require rheumatoid arthritis therapeutic treatment, especially in endemic regions like Brazil. PMID:24346871

  20. Immunoassays for Identification of Biological Agents in Sample Unknowns: NATO SlBCA Exercise VI

    DTIC Science & Technology

    2005-12-01

    I• * Dufr+ D Rý sarch aid Rpecherche e1 developpement Svlýlrrnl CaIanada pour la deeonse Canada DEFENCE DEFENSE Immunoassays for Identification of...Biological Agents in Sample Unknowns: NATO SIBCA Exercise VI H.G. Thompson and R.E. Fulton DRDC Suffield D ,,T-iUT O!M STA7’! !r;1T A AiyrVw for P 7 s c...in Sample Unknowns: NATO SIBCA Exercise VI H.G. Thompson and R.E. Fulton Defence R& D Canada - Suffield Defence R& D Canada - Suffield Technical

  1. Biological agent detection since Desert Storm--from theory to practice. Research report

    SciTech Connect

    Shockley, L.J.

    1997-04-16

    Proliferation of weapons of mass destruction, especially biological warfare (BW) weapons, continues apace in today`s world, both by nation states and terrorist groups. This paper details the progress made in BW agent detection in the six years since the Gulf War. With two new systems, we have the technology to provide the combatant commander with a credible bio-detection array. What we have failed to do in the near term is to supply the requisite force structure in the Active Component to make the technology work for the commander.

  2. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    NASA Astrophysics Data System (ADS)

    Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar

    2016-10-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.

  3. Synthesis and biological evaluation of α,β-unsaturated lactones as potent immunosuppressive agents.

    PubMed

    Lee, Sun-Mi; Lee, Won-Gil; Kim, Young-Chul; Kim, Yong-Chul; Ko, Hyojin

    2011-10-01

    Compounds having α,β-unsaturated lactones display a variety of biological activities. Many research groups have tested both natural and unnatural α,β-unsaturated lactones for as-yet undiscovered biological properties. We synthesized α,β-unsaturated lactones with various substituents at the δ-position and studied their immunosuppressive effects, that is, the inhibition of Interleukin-2 (IL-2) production. Among the compounds synthesized, the benzofuran-substituted α,β-unsaturated lactone 4h showed the best inhibitory activity toward IL-2 production in Jurkat e6-1 T lymphocytes (IC(50)=66.9 nM) without cytotoxicity at 10 μM. The results indicated that 4h may be useful as a potent immunosuppressive agent, as well as in IL-2-related studies.

  4. Autonomous Detection of Aerosolized Biological Agents by Multiplexed Immunoassay with PCR Confirmation

    SciTech Connect

    Hindson, B J; McBride, M T; Makarewicz, A J; Henderer, B D; Setlur, U S; Smith, S M; Gutierrez, D M; Metz, T R; Nasarabadi, S L; Venkateswaran, K S; Farrow, S W; Colston, Jr., B W; Dzenitis, J M

    2004-05-27

    The autonomous pathogen detection system (APDS) is an automated, podium-sized instrument that continuously monitors the air for biological threat agents (bacteria, viruses, and toxins). The system has been developed to warn of a biological attack in critical or high-traffic facilities and at special events. The APDS performs continuous aerosol collection, sample preparation, and detection using multiplexed immunoassay followed by confirmatory PCR using real-time TaqMan assays. We have integrated completely reusable flow-through devices that perform DNA extraction and PCR amplification. The fully integrated system was challenged with aerosolized Bacillus anthracis, Yersinia pestis, Bacillus globigii and botulinum toxoid. By coupling highly selective antibody and DNA based assays, the probability of an APDS reporting a false positive is extremely low.

  5. Test Results of Level A Suits to Challenge by Chemical and Biological Warfare Agents and Simulants: Summary Report

    DTIC Science & Technology

    1998-06-01

    Agent Permeation of GB and HD Through 25-Mil Chemical Protective Glove 30 3.3 System Test (Aerosol Simulant) 3.3.1 System Test (Aerosol Simulant... Chemical Protective Glove GB Permeation 176 Appendix Q: Commander Brigade F91 Table Q - 3: Commander Brigade F91: System Test (Vapor Simulant) Results No...capability to protect in a chemical agent or biological agent environment. Each

  6. Effective Coordination of Multiple Intelligent Agents for Command and Control

    DTIC Science & Technology

    2003-09-01

    Multi - Agent System (MAS) in which heterogeneous agents engage in relations with the support of distributed infrastructure services. The goal of RETSINA project has been to provide the necessary infrastructure and agent types to allow an open system of agents whose interactions are facilitated rather than managed by infrastructure components. Another goal has been to create autonomous software agents functioning robustly in distributed environments, agents that are reusable in different application contexts, and that respond intelligently to changes in their

  7. Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2006-02-15

    We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.

  8. New treatment strategy including biological agents in patients with systemic lupus erythematosus.

    PubMed

    Leszczyński, Piotr; Pawlak-Buś, Katarzyna

    2013-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous disease, in which B lymphocyte activation and chronic inflammation play the key role. Both the disease itself and its treatment cause damage to multiple organs and systems. So far, despite intensive treatment, disease remission has been achieved in few patients, and the ratio of organ complications has increased significantly. This is caused by a long‑term glucocorticoid therapy with a relatively rare use of immunosuppressive drugs. With a new treatment strategy and modern immunotherapy, it is possible to reduce the mortality rate, limit multiple‑organ damage, thereby significantly improving the quality of life and prognosis of patients with SLE. The "treat‑to‑target" strategy enables targeted treatment resulting in a long‑term symptom remission. It is based on an intensive immunosuppressive treatment with simultaneous reduction of glucocorticoid doses, and limiting their use solely to exacerbations in disease activity. The current idea for treatment is also the conscious use of the beneficial potential of background SLE treatment including antimalarial agents and standard immunosuppressive therapy. With the first biological agent approved for SLE treatment, the new age of therapy has dawned. Biologics offer new prospects and possibilities to induce clinical and immunological remission of SLE.

  9. Axinellamines as Broad-Spectrum Antibacterial Agents: Scalable Synthesis and Biology

    PubMed Central

    2015-01-01

    Antibiotic-resistant bacteria present an ongoing challenge to both chemists and biologists as they seek novel compounds and modes of action to out-maneuver continually evolving resistance pathways, especially against Gram-negative strains. The dimeric pyrrole–imidazole alkaloids represent a unique marine natural product class with diverse primary biological activity and chemical architecture. This full account traces the strategy used to develop a second-generation route to key spirocycle 9, culminating in a practical synthesis of the axinellamines and enabling their discovery as broad-spectrum antibacterial agents, with promising activity against both Gram-positive and Gram-negative bacteria. While their detailed mode of antibacterial action remains unclear, the axinellamines appear to cause secondary membrane destabilization and impart an aberrant cellular morphology consistent with the inhibition of normal septum formation. This study serves as a rare example of a natural product initially reported to be devoid of biological activity surfacing as an active antibacterial agent with an intriguing mode of action. PMID:25328977

  10. Hydrogen Sulfide (H2S) Releasing Agents: Chemistry and Biological Applications

    PubMed Central

    Zhao, Yu; Biggs, Tyler D.

    2014-01-01

    Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in the field. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of current available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson’s reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed. PMID:25019301

  11. Axinellamines as broad-spectrum antibacterial agents: scalable synthesis and biology.

    PubMed

    Rodriguez, Rodrigo A; Barrios Steed, Danielle; Kawamata, Yu; Su, Shun; Smith, Peter A; Steed, Tyler C; Romesberg, Floyd E; Baran, Phil S

    2014-10-29

    Antibiotic-resistant bacteria present an ongoing challenge to both chemists and biologists as they seek novel compounds and modes of action to out-maneuver continually evolving resistance pathways, especially against Gram-negative strains. The dimeric pyrrole-imidazole alkaloids represent a unique marine natural product class with diverse primary biological activity and chemical architecture. This full account traces the strategy used to develop a second-generation route to key spirocycle 9, culminating in a practical synthesis of the axinellamines and enabling their discovery as broad-spectrum antibacterial agents, with promising activity against both Gram-positive and Gram-negative bacteria. While their detailed mode of antibacterial action remains unclear, the axinellamines appear to cause secondary membrane destabilization and impart an aberrant cellular morphology consistent with the inhibition of normal septum formation. This study serves as a rare example of a natural product initially reported to be devoid of biological activity surfacing as an active antibacterial agent with an intriguing mode of action.

  12. A mathematical framework for agent based models of complex biological networks.

    PubMed

    Hinkelmann, Franziska; Murrugarra, David; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2011-07-01

    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models, it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis. This mathematical framework can also accommodate other model types such as Boolean networks and the more general logical models, as well as Petri nets.

  13. Basic analytical methods for identification of erythropoiesis-stimulating agents in doping control

    NASA Astrophysics Data System (ADS)

    Postnikov, P. V.; Krotov, G. I.; Efimova, Yu A.; Rodchenkov, G. M.

    2016-02-01

    The design of new erythropoiesis-stimulating agents for clinical use necessitates constant development of methods for detecting the abuse of these substances, which are prohibited under the World Anti-Doping Code and are included in the World Anti-Doping Agency (WADA) prohibited list. This review integrates and describes systematically the published data on the key methods currently used by WADA-accredited anti-doping laboratories around the world to detect the abuse of erythropoiesis-stimulating agents, including direct methods (various polyacrylamide gel electrophoresis techniques, enzyme-linked immunosorbent assay, membrane enzyme immunoassay and mass spectrometry) and indirect methods (athlete biological passport). Particular attention is given to promising approaches and investigations that can be used to control prohibited erythropoietins in the near future. The bibliography includes 122 references.

  14. Controlled vocabularies and semantics in systems biology.

    PubMed

    Courtot, Mélanie; Juty, Nick; Knüpfer, Christian; Waltemath, Dagmar; Zhukova, Anna; Dräger, Andreas; Dumontier, Michel; Finney, Andrew; Golebiewski, Martin; Hastings, Janna; Hoops, Stefan; Keating, Sarah; Kell, Douglas B; Kerrien, Samuel; Lawson, James; Lister, Allyson; Lu, James; Machne, Rainer; Mendes, Pedro; Pocock, Matthew; Rodriguez, Nicolas; Villeger, Alice; Wilkinson, Darren J; Wimalaratne, Sarala; Laibe, Camille; Hucka, Michael; Le Novère, Nicolas

    2011-10-25

    The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. Model structures, simulation descriptions and numerical results can be encoded in structured formats, but there is an increasing need to provide an additional semantic layer. Semantic information adds meaning to components of structured descriptions to help identify and interpret them unambiguously. Ontologies are one of the tools frequently used for this purpose. We describe here three ontologies created specifically to address the needs of the systems biology community. The Systems Biology Ontology (SBO) provides semantic information about the model components. The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of systems biology models, their characterization and interrelationships. The Terminology for the Description of Dynamics (TEDDY) categorizes dynamical features of the simulation results and general systems behavior. The provision of semantic information extends a model's longevity and facilitates its reuse. It provides useful insight into the biology of modeled processes, and may be used to make informed decisions on subsequent simulation experiments.

  15. Homeostasis control of building environment using sensor agent robot

    NASA Astrophysics Data System (ADS)

    Nagahama, Eri; Mita, Akira

    2012-04-01

    A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.

  16. Degradation of biological weapons agents in the environment: implications for terrorism response.

    PubMed

    Stuart, Amy L; Wilkening, Dean A

    2005-04-15

    We investigate the impact on effective terrorism response of the viability degradation of biological weapons agents in the environment. We briefly review the scientific understanding and modeling of agent environmental viability degradation. In general, agent susceptibility to viability loss is greatest for vegetative bacteria, intermediate for viruses, and least for bacterial spores. Survival is greatest in soil and progressively decreases in the following environments: textiles, water, hard surfaces, and air. There is little detailed understanding of loss mechanisms. We analyze the time behavior and sensitivity of four mathematical models that are used to represent environmental viability degradation (the exponential, probability, and first- and second-order catastrophic decay models). The models behave similarly at short times (<30 min for our example case) but diverge to significantly different values at intermediate to long times. Hence, for a release event in which the majority of atmospheric exposure or deposition occurs oververy short times, the current response models likely provide a good representation of the hazard. For longer time phenomena, including decontamination, the current model capabilities are likely insufficient. Finally, we implement each model in a simple numerical integration of anthrax dispersion, viability degradation, and dose response. Decay models spanning the current knowledge of airborne degradation result in vastly different predicted hazard areas. This confounds attempts to determine necessary medical and decontamination measures. Hence,the current level of understanding and representation of environmental viability degradation in response models is inadequate to inform appropriate emergency response measures.

  17. Biological and environmental hazards associated with exposure to chemical warfare agents: arsenicals.

    PubMed

    Li, Changzhao; Srivastava, Ritesh K; Athar, Mohammad

    2016-08-01

    Arsenicals are highly reactive inorganic and organic derivatives of arsenic. These chemicals are very toxic and produce both acute and chronic tissue damage. On the basis of these observations, and considering the low cost and simple methods of their bulk syntheses, these agents were thought to be appropriate for chemical warfare. Among these, the best-known agent that was synthesized and weaponized during World War I (WWI) is Lewisite. Exposure to Lewisite causes painful inflammatory and blistering responses in the skin, lung, and eye. These chemicals also manifest systemic tissue injury following their cutaneous exposure. Although largely discontinued after WWI, stockpiles are still known to exist in the former Soviet Union, Germany, Italy, the United States, and Asia. Thus, access by terrorists or accidental exposure could be highly dangerous for humans and the environment. This review summarizes studies that describe the biological, pathophysiological, toxicological, and environmental effects of exposure to arsenicals, with a major focus on cutaneous injury. Studies related to the development of novel molecular pathobiology-based antidotes against these agents are also described.

  18. Application of protein arraytubes to bacteria, toxin, and biological warfare agent detection.

    PubMed

    Ehricht, Ralf; Adelhelm, Karin; Monecke, Stefan; Huelseweh, Birgit

    2009-01-01

    Microarray technology enables the fast and parallel analysis of a multitude of biologically relevant parameters. Not only nucleic acid-based tests, but also peptide, antigen, and antibody assays using different formats of microarrays evolved within the last decade. They offer the possibility to measure interactions in a miniaturised, economic, automated, and qualitative or quantitative way providing insights into the cellular machinery of diverse organisms. Examples of applications in research and diagnostics are, e.g., O-typing of pathogenic Escherichia coli, detection of bacterial toxins and other biological warfare agents (BW agents) from a variety of different samples, screening of complex antibody libraries, and epitope mapping. Conventional O- and H-serotyping methods can now be substituted by procedures applying DNA oligonucleotide and antibody-based microarrays. For simultaneous and sensitive detection of BW agents microarray-based tests are available, which include not only relevant viruses and bacteria, but also toxins. This application is not only restricted to the security and military sector but it can also be used in the fields of medical diagnostics or public health to detect, e.g., staphylococcal enterotoxins in food or clinical samples. Furthermore, the same technology could be used to detect antibodies against enterotoxins in human sera using a competitive assay. Protein and peptide microarrays can also be used for characterisation of antibodies. On one hand, peptide microarrays allow detailed epitope mapping. On the other hand, a set of different antibodies recognising the same antigen can be spotted as a microarray and labelled as detection antibodies. This approach makes it possible to test every combination, allowing to find the optimal pair of detection/capture antibody.

  19. Detection of aerosolized biological agents by immunoassay followed by autonomous PCR confirmation

    SciTech Connect

    Dzenitis, J M; Hindson, B J; McBride, M T; Makarewicz, A J; Henderer, B D; Sathyam, U S; Smith, S M; Gutierrez, D M; Metz, T R; Venkateswaran, K S; Colston, B W; Farrow, S W

    2003-12-15

    An Autonomous Pathogen Detection System (APDS) unit is an automated, podium-sized system that monitors the air for all three biological threat agents (bacteria, viruses, and toxins). The system has been developed under the auspices of the U. S. Department of Energy and Department of Homeland Security by the University of California, Lawrence Livermore National Laboratory (LLNL) to protect people in critical or high-traffic facilities and at special events. The system performs continuous aerosol collection, sample preparation, and multiplexed biological tests using advanced immunoassays as the primary screen. Over ten agents are assayed at once, and results are reported hourly. R&D work this year focused on incorporating polymerase chain-reaction (PCR) techniques for detecting DNA as confirmation of immunoassay positives. The primary objective of the Dugway testing was to demonstrate the APDS with immunoassay identification and PCR confirmation of bacteria. A secondary objective was to demonstrate immunoassay identification of a protein toxoid (denatured toxin) aerosol release. A total of 12 agent trials were conducted over 14 days of testing, for a total of four work weeks at Dugway. Both testing objectives were achieved with multiple releases and clear identifications. The APDS was shown to be effective for identifying aerosolized Bacillus anthracis, Yersinia pestis, Bacillus globigii, and botulinum toxoid. The two areas for improvement were operational as opposed to hardware-related. The first was slowing the PCR thermal cycling to achieve stronger signals, which was demonstrated during the later phases of testing. The second area is to improve the parameters for autonomous PCR triggering; this is one of the focuses of the upcoming year's work.

  20. Homeostasis 6: nurses as external control agents in rheumatoid arthritis.

    PubMed

    Clancy, John; McVicar, Andrew; Mooney, Janice

    All disorders involve a disturbance of cellular and hence chemical function in the body. Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory disease that usually attacks synovial joints and surrounding ligaments, muscles and their tendons and blood vessels. This article applies the concept of health professionals operating as external agents of homeostatic control (Clancy and McVicar, 20011a; 2011b) to RA and to the care of affected patients, using a case scenario to illustrate attempts to minimize homeostatic imbalances. After reading the article, nurses should be able to understand: how the principles of homeostatic theory apply to skeletomuscular function, in particular to synovial joint function; the skeletomuscular homeostatic role in movement; and that homeostatic failure of reduced mobility, as in RA, is a result of nature-nurture interaction; that illness arises from a cellular, hence chemical, homeostatic imbalance(s) (Clancy and McVicar, 2011a; 2011b; 2011c; 2011d; 2011e). RA is considered a cellular (B-lymphocyte) hence chemical (autoantibody) imbalance that causes the homeostatic imbalances (inflammatory pain, reduced mobility, reduced activities of daily living) associated with the condition. Health professionals are able at act as external agents of homeostatic control to only a limited extent when caring for people with RA because, as with any progressive disorder, they will only be managing signs and symptoms to improve patients' quality of life.