Science.gov

Sample records for biological filtration limits

  1. The cell biology of renal filtration

    PubMed Central

    Quaggin, Susan E.

    2015-01-01

    The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction. PMID:25918223

  2. Limits of computational biology.

    PubMed

    Bray, Dennis

    2015-01-01

    Are we close to a complete inventory of living processes so that we might expect in the near future to reproduce every essential aspect necessary for life? Or are there mechanisms and processes in cells and organisms that are presently inaccessible to us? Here I argue that a close examination of a particularly well-understood system--that of Escherichia coli chemotaxis--shows we are still a long way from a complete description. There is a level of molecular uncertainty, particularly that responsible for fine-tuning and adaptation to myriad external conditions, which we presently cannot resolve or reproduce on a computer. Moreover, the same uncertainty exists for any process in any organism and is especially pronounced and important in higher animals such as humans. Embryonic development, tissue homeostasis, immune recognition, memory formation, and survival in the real world, all depend on vast numbers of subtle variations in cell chemistry most of which are presently unknown or only poorly characterized. Overcoming these limitations will require us to not only accumulate large quantities of highly detailed data but also develop new computational methods able to recapitulate the massively parallel processing of living cells.

  3. Limits of computational biology

    PubMed Central

    Bray, Dennis

    2015-01-01

    Abstract Are we close to a complete inventory of living processes so that we might expect in the near future to reproduce every essential aspect necessary for life? Or are there mechanisms and processes in cells and organisms that are presently inaccessible to us? Here I argue that a close examination of a particularly well-understood system— that of Escherichia coli chemotaxis— shows we are still a long way from a complete description. There is a level of molecular uncertainty, particularly that responsible for fine-tuning and adaptation to myriad external conditions, which we presently cannot resolve or reproduce on a computer. Moreover, the same uncertainty exists for any process in any organism and is especially pronounced and important in higher animals such as humans. Embryonic development, tissue homeostasis, immune recognition, memory formation, and survival in the real world, all depend on vast numbers of subtle variations in cell chemistry most of which are presently unknown or only poorly characterized. Overcoming these limitations will require us to not only accumulate large quantities of highly detailed data but also develop new computational methods able to recapitulate the massively parallel processing of living cells. PMID:25318467

  4. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents.

    PubMed

    Reungoat, J; Escher, B I; Macova, M; Argaud, F X; Gernjak, W; Keller, J

    2012-03-01

    This study investigates the fate of trace organic chemicals (TrOCs) in three full-scale reclamation plants using ozonation followed by biological activated carbon (BAC) filtration to treat wastewater treatment plant effluents. Chemical analysis was used to quantify a wide range of TrOCs and combined with bioanalytical tools to assess non-specific toxicity (Microtox assay) and estrogenicity (E-SCREEN assay). Limited dissolved organic carbon (DOC) removal (<10%) was observed in the ozonation stages showing that oxidation leads to the formation of transformation products rather than mineralization. The quantified TrOCs were removed to a degree highly dependent on the compounds' structures and the specific ozone dose (mg(O3) mg(DOC)(-1)). Non-specific toxicity was reduced by 31-39%, demonstrating that the mixture of remaining parent compounds and their transformation products as well as newly formed oxidation by-products had an overall lower toxic potential than the mixture of parent compounds. Estrogenicity was reduced by more than 87% indicating that the transformation products of the estrogenic chemicals lost their specific toxicity potential. The subsequent BAC filtration removed between 20 and 50% of the DOC depending on the plant configuration, likely due to biodegradation of organic matter. The filtration was also able to reduce the concentrations of most of the remaining TrOCs by up to 99%, and reduce non-specific toxicity by 33-54%. Overall, the combination of ozonation and BAC filtration can achieve removals of 50% for DOC and more than 90% for a wide range of TrOCs as well as a reduction of 70% of non-specific toxicity and more than 95% of estrogenicity. This process combination is therefore suggested as an effective barrier to reduce the discharge of TrOCs into the environment or their presence in water recycling schemes.

  5. Review series: The cell biology of renal filtration.

    PubMed

    Scott, Rizaldy P; Quaggin, Susan E

    2015-04-27

    The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.

  6. Oxidation of Ammonia in Source Water Using Biological Filtration (slides)

    EPA Science Inventory

    Drinking water utilities are challenged with a variety of contamination issues from both the source water and the distribution system. Source water issues include biological contaminants such as bacteria and viruses as well as inorganic contaminants such as arsenic, barium, and ...

  7. Towards integrated operation of membrane bioreactors: effects of aeration on biological and filtration performance.

    PubMed

    Dalmau, M; Monclús, H; Gabarrón, S; Rodriguez-Roda, I; Comas, J

    2014-11-01

    Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5 mg O2 L(-1) and a membrane specific aeration demand (SADm) of 1 m h(-1), where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1 m h(-1) doubled the values of transmembrane pressure, without recovery after achieving the initial conditions.

  8. Biologically active carbon filtration for haloacetic acid removal from swimming pool water.

    PubMed

    Tang, Hao L; Xie, Yuefeng F

    2016-01-15

    A biologically activate carbon (BAC) filter was continuously operated on site for the treatment of haloacetic acids (HAAs) in an outdoor swimming pool at an average empty bed contact time (EBCT) of 5.8 min. Results showed that BAC filtration was a viable technology for direct removal of HAAs from the pool water with a nominal efficiency of 57.7% by the filter while the chlorine residuals were 1.71 ± 0.90 mg/L during the study. THMs and TOC were not removed and thus were not considered as indicators of the effectiveness of BAC filtration. Increased EBCT in the range of 4.5 and 6.4 min led to improved HAA removal performance, which could be best fit by a logarithmic regression model. BAC filtration also affected the HAA speciation by removing more dichloroacetic acid (DCAA) than trichloroacetic acid (TCAA), resulting in a lower ratio of DCAA/TCAA in the filtered effluent. However, the observation of an overall constant ratio could be attributable to a complex formation and degradation mechanism occurring in swimming pools. PMID:26398451

  9. Biologically active carbon filtration for haloacetic acid removal from swimming pool water.

    PubMed

    Tang, Hao L; Xie, Yuefeng F

    2016-01-15

    A biologically activate carbon (BAC) filter was continuously operated on site for the treatment of haloacetic acids (HAAs) in an outdoor swimming pool at an average empty bed contact time (EBCT) of 5.8 min. Results showed that BAC filtration was a viable technology for direct removal of HAAs from the pool water with a nominal efficiency of 57.7% by the filter while the chlorine residuals were 1.71 ± 0.90 mg/L during the study. THMs and TOC were not removed and thus were not considered as indicators of the effectiveness of BAC filtration. Increased EBCT in the range of 4.5 and 6.4 min led to improved HAA removal performance, which could be best fit by a logarithmic regression model. BAC filtration also affected the HAA speciation by removing more dichloroacetic acid (DCAA) than trichloroacetic acid (TCAA), resulting in a lower ratio of DCAA/TCAA in the filtered effluent. However, the observation of an overall constant ratio could be attributable to a complex formation and degradation mechanism occurring in swimming pools.

  10. Impact of biological filtrations for organic micropollutants and polyfluoroalkyl substances removal from secondary effluent.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-08-01

    The impact of biological activated carbon (BAC), sand filtration (SF) and biological aerated filter (BAF) for removal of the selected organic micropollutants and polyfluoroalkyl substances (PFASs) from secondary effluent was studied. BAC led to greater removal of dissolved organic carbon (43%) than BAF (30%) which in turn was greater than SF (24%). All biological filtration systems could effectively remove most of the selected organic micropollutants, and there was a greater removal of these micropollutants by BAC (76-98%) than BAF (70-92%) or SF (68-90%). It was found that all treatment was effective for removal of the hydrophobic (log D > 3.2) and readily biodegradable organic micropollutants. The major mechanism for the removal of these molecules was biodegradation by the micro-organism and sorption by the biofilm. Compared to organic micropollutants removal, there was a lower removal of PFASs by all treatments, and BAF and SF had a considerably lower removal than BAC treatment. The better removal for all molecule types by BAC was due to additional adsorption capacity by the activated carbon. This study demonstrated that the BAC process was most effective in removing organic micropollutants present in the secondary effluent. PMID:26695189

  11. DIFFERENTIATION OF EXOTOXIN AND OTHER BIOLOGICALLY ACTIVE SUBSTANCES IN PSEUDOMONAS PSEUDOMALLEI FILTRATES.

    PubMed

    HECKLY, R J

    1964-12-01

    Heckly, Robert J. (University of California, Berkeley). Differentiation of exotoxin and other biologically active substances in Pseudomonas pseudomallei filtrates. J. Bacteriol. 88:1730-1736. 1964.-Denaturing agents such as phenol, formaldehyde, and urea reduced lethal toxicity and proteolytic activity of partially purified preparations from Pseudomonas pseudomallei at about the same rate. Neither toxin nor enzyme was stable at pH 11, when the solution was adjusted with sodium hydroxide, but there was a slight difference in their rates of inactivation. However, under certain conditions, ammonium hydroxide destroyed most of the enzymatic activity with only a slight effect on lethality. Conversely, toxin was less stable in acid solutions than was the enzyme. Thus, treatment with ammonium hydroxide or acetic acid yielded preparations with either a low or a high enzyme-to-toxin ratio, indicating that lethality was not dependent on enzyme activity. Although proteolysis of any one of the essential factors in the blood coagulation system can inhibit clotting of blood, the potent anticoagulant activity of culture filtrates was not associated with its proteolytic activity, but was directly correlated with lethal toxicity. It is of considerable interest that the necrotoxicity was, however, associated with enzymatic activity and not with lethality. Serological reactivity of the enzyme, as well as its proteolytic activity, was altered by ammonium hydroxide. Similarly, antigenicity and toxicity of the lethal toxin were reduced by acidification. Each acid- or alkali-treated preparation produced a single precipitin line in double diffusion in agar when reacted with antisera produced by injection of crude filtrate. Partially purified preparations, having both lethal and enzymatic activity, produced two lines, one identifiable with the enzyme preparation, and one with the toxin. Furthermore, specific precipitation with the respective antisera removed either enzyme or toxin from

  12. New conductive copolymer membranes via track-etched PC templates for biological media ultra-filtration

    NASA Astrophysics Data System (ADS)

    Berthelot, T.; Baudin, C.; Balanzat, E.; Clochard, M.-C.

    2007-12-01

    New microstructurated copolymer membranes have been synthesized using a track-etched polycarbonate (PC) matrix. These membranes proved to be an important device in the field of ultra-filtration and synthetic membranes. These novel structures were obtained by irradiating at various angles (+30°, -30°). Such architecture is expected to improve not only the exchange properties but also, the behaviour under high flow pressure during their use as nanofiltration membranes. Membrane functionalization was performed with an amino acid as a simple biological model. Transmission and ATR-FTIR spectroscopies show that the doping state of copolymer dramatically influences the amino acid coupling rate. UV-vis spectroscopy indicates that the copolymer may be self-doped.

  13. Use of direct current argon plasma as a detector in gel filtration chromatography of biological fluids

    NASA Astrophysics Data System (ADS)

    Gardiner, P. E.; Brätter, P.; Negretti, Virginia E.; Schulze, G.

    A direct-current argon plasma spectrometer has been interfaced with a gel filtration chromatography column to serve as a multi-element-specific detector. This analytical system was used to speciate protein-bound copper, iron, and zinc in serum and intravenous infusion fluids. The operating parameters of the direct current argon plasma including instrumental drift, detection limits, effect of background levels on the calibration graphs. and accuracy were optimized. Calibrations had to be repeated every hour to compensate for instrumental drift. The detection limits of this system (3.2, 3.9 and 9.3 μg l -1 for copper, iron and zinc, respectively) are adequate for the determination of most species containing those elements in the column effluent.

  14. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration.

    PubMed

    Reungoat, J; Macova, M; Escher, B I; Carswell, S; Mueller, J F; Keller, J

    2010-01-01

    Pharmaceutical compounds are found in secondary treated effluents up to microg L(-1) levels and therefore discharged into surface waters. Since the long term effects of these compounds on the environment and human health are, to date, largely unknown, implementation of advanced treatment of wastewaters is envisaged to reduce their discharge. This is of particular relevance where surface waters are used as drinking water sources and when considering indirect potable reuse. This study aimed at assessing the removal of organic micropollutants and the concurrent reduction of their biological activity in a full scale reclamation plant treating secondary effluent. The treatment consists of 6 stages: denitrification, pre-ozonation, coagulation/flocculation/dissolved air flotation and filtration (DAFF), main ozonation, activated carbon filtration and final ozonation for disinfection. For that purpose, representative 24-hour composite samples were collected after each stage. The occurrence of 85 compounds was monitored by LC/MS-MS. A battery of 6 bioassays was also used as a complementary tool to evaluate non-specific toxicity and 5 specific toxic modes of action. Results show that, among the 54 micropollutants quantified in the influent water, 50 were removed to below their limit of quantification representing more than 90% of concentration reduction. Biological activity was reduced, depending on the specific response that was assessed, from a minimum of 62% (AhR response) to more than 99% (estrogenicity). The key processes responsible for the plant's performances were the coagulation/flocculation/DAFF, main ozonation and activated carbon filtration. The effect of these 3 processes varied from one compound or bioassay to another but their combination was almost totally responsible for the overall observed reduction. Bioassays yielded complementary information, e.g. estrogenic compounds were not detected in the secondary effluent by chemical analysis, but the samples had an

  15. Biological measurement beyond the quantum limit

    NASA Astrophysics Data System (ADS)

    Taylor, Michael A.; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A.; Bowen, Warwick P.

    2013-03-01

    Dynamic biological measurements require low light levels to avoid damaging the specimen. With this constraint on optical power, quantum noise fundamentally limits the measurement sensitivity. This limit can only be surpassed by extracting more information per photon by using quantum correlations. Here, we experimentally demonstrate that the quantum shot noise limit can be overcome for measurements of living systems. Quantum-correlated light with amplitude noise squeezed 75% below the vacuum level is used to perform microrheology experiments within Saccharomyces cerevisiae yeast cells. Naturally occurring lipid granules are tracked in real time as they diffuse through the cytoplasm, and the quantum noise limit is surpassed by 42%. The laser-based microparticle tracking technique used is compatible with non-classical light and is immune to low-frequency noise, leading the way to achieving a broad range of quantum-enhanced measurements in biology.

  16. On the Limitations of Biological Knowledge

    PubMed Central

    Dougherty, Edward R; Shmulevich, Ilya

    2012-01-01

    Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that epistemology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of scientific knowledge; others are contingent, depending on the present state of knowledge, including technology. Understanding limitations facilitates scientific research because one can then recognize when one is confronted by a limitation, as opposed to simply being unable to solve a problem within the existing bounds of possibility. In the hope that the role of limiting factors can be brought more clearly into focus and discussed, we consider several sources of limitation as they apply to biological knowledge: mathematical complexity, experimental constraints, validation, knowledge discovery, and human intellectual capacity. PMID:23633917

  17. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal.

  18. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    SciTech Connect

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  19. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration.

    PubMed

    Macova, M; Escher, B I; Reungoat, J; Carswell, S; Chue, K Lee; Keller, J; Mueller, J F

    2010-01-01

    A bioanalytical test battery was used to monitor the removal efficiency of organic micropollutants during advanced wastewater treatment in the South Caboolture Water Reclamation Plant, Queensland, Australia. This plant treats effluent from a conventional sewage treatment plant for industrial water reuse. The aqueous samples were enriched using solid-phase extraction to separate some organic micropollutants of interest from metals, nutrients and matrix components. The bioassays were chosen to provide information on groups of chemicals with a common mode of toxic action. Therefore they can be considered as sum indicators to detect certain relevant groups of chemicals, not as the most ecologically or human health relevant endpoints. The baseline toxicity was quantified with the bioluminescence inhibition test using the marine bacterium Vibrio fischeri. The specific modes of toxic action that were targeted with five additional bioassays included aspects of estrogenicity, dioxin-like activity, genotoxicity, neurotoxicity, and phytotoxicity. While the accompanying publication discusses the treatment steps in more detail by drawing from the results of chemical analysis as well as the bioanalytical results, here we focus on the applicability and limitations of using bioassays for the purpose of determining the treatment efficacy of advanced water treatment and for water quality assessment in general. Results are reported in toxic equivalent concentrations (TEQ), that is, the concentration of a reference compound required to elicit the same response as the unknown and unidentified mixture of micropollutants actually present. TEQ proved to be useful and easily communicable despite some limitations and uncertainties in their derivation based on the mixture toxicity theory. The results obtained were reproducible, robust and sensitive. The TEQ in the influent ranged in the same order of magnitude as typically seen in effluents of conventional sewage treatment plants. In the

  20. Biological Chitin-MOF Composites with Hierarchical Pore Systems for Air-Filtration Applications.

    PubMed

    Wisser, Dorothea; Wisser, Florian M; Raschke, Silvia; Klein, Nicole; Leistner, Matthias; Grothe, Julia; Brunner, Eike; Kaskel, Stefan

    2015-10-19

    Metal-organic frameworks (MOFs) are promising materials for gas-separation and air-filtration applications. However, for these applications, MOF crystallites need to be incorporated in robust and manageable support materials. We used chitin-based networks from a marine sponge as a non-toxic, biodegradable, and low-weight support material for MOF deposition. The structural properties of the material favor predominant nucleation of the MOF crystallites at the inside of the hollow fibers. This composite has a hierarchical pore system with surface areas up to 800 m(2)  g(-1) and pore volumes of 3.6 cm(3)  g(-1) , allowing good transport kinetics and a very high loading of the active material. Ammonia break-through experiments highlight the accessibility of the MOF crystallites and the adsorption potential of the composite indicating their high potential for filtration applications for toxic industrial gases.

  1. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    PubMed

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China. PMID:25509094

  2. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    PubMed

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  3. BIOLOGICAL FILTRATION FOR THE NITRIFICATION OF EXCESSIVE LEVELS OF FREE AMMONIA

    EPA Science Inventory

    Ammonia in source waters can cause water treatment and distribution system problems. Research on the presence of ammonia in drinking water distribution systems for example has suggested some correlation between excess ammonia and increased biological activity (Servais, 1995; Wilc...

  4. Development of a New Limiting-Antigen Avidity Dot Immuno-Gold Filtration Assay for HIV-1 Incidence.

    PubMed

    Gao, Zhiyun; Yan, Hao; Feng, Xia; Wu, Lijin; Qiu, Maofeng; Xing, Wenge; Zhang, Guiyun; Zhang, Zhi; Jiang, Yan

    2016-01-01

    Several laboratory assays on cross-sectional specimens for detecting recent HIV infections were developed, but these assays could not be applied in resource-limited and high HIV-incidence areas. This study describes the development of a rapid assay that can simultaneously detect the presence of HIV-1 antibodies of current and/or recent infection. The dot immuno-gold filtration assay (DIGFA) was used to detect recent infection on the principle of antibody avidity changes between recent and long-term infections. The dot immuno-gold silver staining filtration assay (DIGSSA) increases the sensitivity and accuracy of antibody detection by adding a silver staining step to the DIGFA. In the meantime the digital results were produced by the scanner for ambiguous specimens. Further, HIV-1 routine diagnostic antibody was detected simultaneously for improving practicability. The performance of the assays was then assessed through five serum panels with known serological statuses and seroconversion dates. The proportion of false recent infection (PFR) of the DIGSSA was obtained. Through the optimization of basic parameters for DIGSSA, six specimens were all classified correctly. DIGSSA demonstrated good repeatability and high sensitivity. The agreement of DIGSSA with the BED assay was 92.10% (κ = 0.65) and 95.36% with the LAg-Avidity assay (κ = 0.75). Moreover, the gray values of DIGSSA correlated well with BED ODn (R2 = 0.9397) and LAg-Avidity ODn (R2 = 0.9549). The PFR of DIGSSA was 2.73%, which was lower than that of the BED assay but higher than that of the LAg-Avidity assay. The DIGSSA can feasibly be applied to detect HIV infection and estimate HIV incidence. PMID:27513563

  5. Development of a New Limiting-Antigen Avidity Dot Immuno-Gold Filtration Assay for HIV-1 Incidence

    PubMed Central

    Feng, Xia; Wu, Lijin; Qiu, Maofeng; Xing, Wenge; Zhang, Guiyun; Zhang, Zhi; Jiang, Yan

    2016-01-01

    Several laboratory assays on cross-sectional specimens for detecting recent HIV infections were developed, but these assays could not be applied in resource-limited and high HIV-incidence areas. This study describes the development of a rapid assay that can simultaneously detect the presence of HIV-1 antibodies of current and/or recent infection. The dot immuno-gold filtration assay (DIGFA) was used to detect recent infection on the principle of antibody avidity changes between recent and long-term infections. The dot immuno-gold silver staining filtration assay (DIGSSA) increases the sensitivity and accuracy of antibody detection by adding a silver staining step to the DIGFA. In the meantime the digital results were produced by the scanner for ambiguous specimens. Further, HIV-1 routine diagnostic antibody was detected simultaneously for improving practicability. The performance of the assays was then assessed through five serum panels with known serological statuses and seroconversion dates. The proportion of false recent infection (PFR) of the DIGSSA was obtained. Through the optimization of basic parameters for DIGSSA, six specimens were all classified correctly. DIGSSA demonstrated good repeatability and high sensitivity. The agreement of DIGSSA with the BED assay was 92.10% (κ = 0.65) and 95.36% with the LAg-Avidity assay (κ = 0.75). Moreover, the gray values of DIGSSA correlated well with BED ODn (R2 = 0.9397) and LAg-Avidity ODn (R2 = 0.9549). The PFR of DIGSSA was 2.73%, which was lower than that of the BED assay but higher than that of the LAg-Avidity assay. The DIGSSA can feasibly be applied to detect HIV infection and estimate HIV incidence. PMID:27513563

  6. Removal of micropollutants in WWTP effluent by biological assisted membrane carbon filtration (BioMAC).

    PubMed

    Weemaes, M; Fink, G; Lachmund, C; Magdeburg, A; Stalter, D; Thoeye, C; De Gueldre, G; Van De Steene, B

    2011-01-01

    In the frame of the European FP6 project Neptune, a combination of biological activated carbon with ultrafiltration (BioMAC) was investigated for micropollutant, pathogen and ecotoxicity removal. One pilot scale set-up and two lab-scale set-ups, of which in one set-up the granular activated carbon (GAC) was replaced by sand, were followed up during a period of 11 months. It was found that a combination of GAC and ultrafiltration led to an almost complete removal of antibiotics and a high removal (>80%) of most of the investigated acidic pharmaceuticals and iodinated contrast media. The duration of the tests did however not allow to conclude that the biological activation was able to extend the lifetime of the GAC. Furthermore, a significant decrease in estrogenic and anti-androgenic activity could be illustrated. The set-up in which GAC was replaced by sand showed a considerably lower removal efficiency for micropollutants, especially for antibiotics but no influence on steroid activity. PMID:21245556

  7. Coal cinder filtration as pretreatment with biological processes to treat pharmaceutical wastewater.

    PubMed

    Zheng, Wei; Li, Xiao-ming; Hao, Zhi-ming; Wang, Dong-bo; Yang, Qi; Zeng, Guang-ming

    2010-01-01

    This study aims at coupling coal cinder filter with biological process to improve pharmaceutical wastewater quality and reduce the disposal cost. In the coal cinder filter, the removal efficiencies of COD, BOD(5), SS and color were 90+/-2%, 72+/-2%, 95+/-2% and 80+/-2%, respectively. The results attribute to the big specific surface area and strong adsorption ability. Coal cinder filter removes a large portion of the pollutants in the influent wastewater, which would strongly stable the effluent waste water quality, and reduce the load of follow-up biological treatment process. The average removal efficiencies for COD, BOD(5), SS and color of the combined process were about 99.7+/-3%, 98.2+/-4%, 98.5+/-3% and 96.3+/-2%, respectively, with the average effluent quality of COD 16+/-1 mg/L, BOD(5) 11+/-1 mg/L, SS 10+/-0.6 mg/L and color 22+/-1 (multiple), which are consistent with the national requirements of the waste pollutants for pharmaceutical industry of chinese traditional medicine discharge standard (GB 21906-2008). The results indicated that the combined procedure could offer an attractive solution for pharmaceutical wastewater treatment with considerable low cost.

  8. Filtration Fundamentals.

    ERIC Educational Resources Information Center

    Ward, Ken; Hunsaker, Scot

    1997-01-01

    Examines how choice of commercial swimming-pool filtration systems is driven by the project-specific needs of the pools. Also highlighted are definitions of specific terms used when discussing filtration systems. Questions that pool designers can answer to make filtration-system purchasing decisions are listed. (GR)

  9. Water Filtration

    ERIC Educational Resources Information Center

    Jacobsen, Erica K.

    2004-01-01

    A water filtration column is devised by students using a two-liter plastic bottle containing gravel, sand, and activated charcoal, to test the filtration potential of the column. Results indicate that the filtration column eliminates many of the contaminating materials, but does not kill bacteria.

  10. Performance of an AnMBR pilot plant treating high-strength lipid wastewater: biological and filtration processes.

    PubMed

    Ramos, C; García, A; Diez, V

    2014-12-15

    The performance of an anaerobic membrane bioreactor (AnMBR) treating wastewater with high levels of oil and grease content from a snacks factory is studied and its effectiveness is demonstrated. The relation between the reversible and the irreversible fouling rate and the fouling propensity of the fatty matter were evaluated under a subcritical flux of 7.9 and 8.3 L/m(2) h. Low Oil and Grease (O&G) concentrations of 500 mg/L produced an irreversible fouling rate of only 0.09 mbar/d, while the fouling rate was between 0.96 and 3.95 mbar/d for an average O&G concentration of 6 g/L. In spite of the significant increase in filtration resistance from 0.31 to 6.08 × 10(12) m(-1) after 40 days of continuous operation, the critical flux level hardly decreased from 11.1 to 9.7 L/(m(2) h). With regard to the biological process, after a start-up period with an organic loading rate (OLR) of below 2 kg COD/(m(3) d), the system was able to treat wastewater between 4.6 and 36 g O&G/L and the system remained stable for OLR at around 17 kg COD/(m(3) d) for 2.8 d, without inhibitory signals. Acclimated sludge quickly reached maximum methane production and digested substrate with high oil and grease content, observing an increase in palmitic acid the first days and constant levels of propionic acid while fatty acids were in the medium.

  11. How to accommodate women with mobility limitations in biological studies.

    PubMed

    Walker, Janiece L; Tovar, Marlene; Harrison, Tracie C; Wommack, Joel

    2015-01-01

    People with disabilities should be routinely included in research studies if there is no specific reason for their exclusion. Regardless, they may be inadvertently excluded because of the procedures of the study. By conducting a community-based biological study with women aging with mobility limitations, these authors gained further understanding of their accommodation needs during research participation. The women aging with mobility limitations offered specific physical, cultural, or environmental needs that could have influenced the methods, procedures, and possible outcomes involved when conducting a biological study with this community living population. The authors and participants identified methodological challenges for women with mobility impairments within three key areas: recruitment procedures, laboratory procedures, and community-based data collection. The authors propose possible solutions to these identified challenges. It is our hope that this will begin a larger dialogue on how to routinely accommodate people with disabilities in biological research studies.

  12. Biological conversion of synthesis gas. Limiting conditions/scale-up

    SciTech Connect

    Basu, R.; Klasson, K.T.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    The purpose of this research is to develop a technically and economically feasible process for biologically producing H(sub 2) from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: 1. Culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; 2. Mass transfer and kinetic studies in which equations necessary for process design are developed; 3. Bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; 4. Evaluation of biological synthetic gas conversion under limiting conditions in preparation for industrial demonstration studies; 5. Process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and 6. Economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses.

  13. Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: assessment on biological activity and filtration performance.

    PubMed

    Mota, Vera Tainá; Santos, Fábio S; Amaral, Míriam C S

    2013-10-01

    A two-stage submerged anaerobic membrane bioreactor (2-SAnMBR) was designed for the treatment of sugarcane vinasse. For start-up, the flow rate was reduced whenever VFA levels reached critical levels in the methanogenic reactor. After acclimation, the system was operated under a continuous flow. Separation of the stages was observed during the entire period of operation. VFA, COD and DOC levels of raw effluent, acidified effluent and permeate averaged 2141, 3525 and 61 mg VFA L(-1) (as acetic acid), 15727, 11512 and 488 mg COD L(-1), and, 3544, 3533 and 178 mg DOC L(-1), respectively. Overall COD and DOC removal efficiencies of 96.9±0.7% and 95.0±1.1%, respectively, were reached. Methane content of the biogas from the acidogenic and methanogenic reactors ranged 0.1-4.6% and 60.1-70.1%, respectively. Removable fouling strongly affected filtration performance and cake layer formation accounted for most of filtration resistance. Membrane resistance was related to presence of protein-like substances and carbohydrates. PMID:23958682

  14. Monitoring biological diversity: strategies, tools, limitations, and challenges

    USGS Publications Warehouse

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  15. The use and limits of scientific names in biological informatics

    PubMed Central

    Remsen, David

    2016-01-01

    Abstract Scientific names serve to label biodiversity information: information related to species. Names, and their underlying taxonomic definitions, however, are unstable and ambiguous. This negatively impacts the utility of names as identifiers and as effective indexing tools in biological informatics where names are commonly utilized for searching, retrieving and integrating information about species. Semiotics provides a general model for describing the relationship between taxon names and taxon concepts. It distinguishes syntactics, which governs relationships among names, from semantics, which represents the relations between those labels and the taxa to which they refer. In the semiotic context, changes in semantics (i.e., taxonomic circumscription) do not consistently result in a corresponding and reflective change in syntax. Further, when syntactic changes do occur, they may be in response to semantic changes or in response to syntactic rules. This lack of consistency in the cardinal relationship between names and taxa places limits on how scientific names may be used in biological informatics in initially anchoring, and in the subsequent retrieval and integration, of relevant biodiversity information. Precision and recall are two measures of relevance. In biological taxonomy, recall is negatively impacted by changes or ambiguity in syntax while precision is negatively impacted when there are changes or ambiguity in semantics. Because changes in syntax are not correlated with changes in semantics, scientific names may be used, singly or conflated into synonymous sets, to improve recall in pattern recognition or search and retrieval. Names cannot be used, however, to improve precision. This is because changes in syntax do not uniquely identify changes in circumscription. These observations place limits on the utility of scientific names within biological informatics applications that rely on names as identifiers for taxa. Taxonomic systems and services used

  16. The use and limits of scientific names in biological informatics.

    PubMed

    Remsen, David

    2016-01-01

    Scientific names serve to label biodiversity information: information related to species. Names, and their underlying taxonomic definitions, however, are unstable and ambiguous. This negatively impacts the utility of names as identifiers and as effective indexing tools in biological informatics where names are commonly utilized for searching, retrieving and integrating information about species. Semiotics provides a general model for describing the relationship between taxon names and taxon concepts. It distinguishes syntactics, which governs relationships among names, from semantics, which represents the relations between those labels and the taxa to which they refer. In the semiotic context, changes in semantics (i.e., taxonomic circumscription) do not consistently result in a corresponding and reflective change in syntax. Further, when syntactic changes do occur, they may be in response to semantic changes or in response to syntactic rules. This lack of consistency in the cardinal relationship between names and taxa places limits on how scientific names may be used in biological informatics in initially anchoring, and in the subsequent retrieval and integration, of relevant biodiversity information. Precision and recall are two measures of relevance. In biological taxonomy, recall is negatively impacted by changes or ambiguity in syntax while precision is negatively impacted when there are changes or ambiguity in semantics. Because changes in syntax are not correlated with changes in semantics, scientific names may be used, singly or conflated into synonymous sets, to improve recall in pattern recognition or search and retrieval. Names cannot be used, however, to improve precision. This is because changes in syntax do not uniquely identify changes in circumscription. These observations place limits on the utility of scientific names within biological informatics applications that rely on names as identifiers for taxa. Taxonomic systems and services used to

  17. The use and limits of scientific names in biological informatics.

    PubMed

    Remsen, David

    2016-01-01

    Scientific names serve to label biodiversity information: information related to species. Names, and their underlying taxonomic definitions, however, are unstable and ambiguous. This negatively impacts the utility of names as identifiers and as effective indexing tools in biological informatics where names are commonly utilized for searching, retrieving and integrating information about species. Semiotics provides a general model for describing the relationship between taxon names and taxon concepts. It distinguishes syntactics, which governs relationships among names, from semantics, which represents the relations between those labels and the taxa to which they refer. In the semiotic context, changes in semantics (i.e., taxonomic circumscription) do not consistently result in a corresponding and reflective change in syntax. Further, when syntactic changes do occur, they may be in response to semantic changes or in response to syntactic rules. This lack of consistency in the cardinal relationship between names and taxa places limits on how scientific names may be used in biological informatics in initially anchoring, and in the subsequent retrieval and integration, of relevant biodiversity information. Precision and recall are two measures of relevance. In biological taxonomy, recall is negatively impacted by changes or ambiguity in syntax while precision is negatively impacted when there are changes or ambiguity in semantics. Because changes in syntax are not correlated with changes in semantics, scientific names may be used, singly or conflated into synonymous sets, to improve recall in pattern recognition or search and retrieval. Names cannot be used, however, to improve precision. This is because changes in syntax do not uniquely identify changes in circumscription. These observations place limits on the utility of scientific names within biological informatics applications that rely on names as identifiers for taxa. Taxonomic systems and services used to

  18. Standard Preparations, Limits of Potency, and Dating Period Limitations for Biological Products. Direct final rule.

    PubMed

    2016-05-01

    The Food and Drug Administration (FDA or Agency or we) is amending the general biological products standards relating to dating periods and also removing certain standards relating to standard preparations and limits of potency. FDA is taking this action to update outdated requirements, and accommodate new and evolving technology and testing capabilities, without diminishing public health protections. This action is part of FDA's retrospective review of its regulations in response to an Executive order. FDA is issuing these amendments directly as a final rule because the Agency believes they are noncontroversial and FDA anticipates no significant adverse comments. PMID:27192727

  19. Isolation, characterization, and biological properties of a tuberculin-active peptidoglycan isolated from the culture filtrate of Mycobacterium tuberculosis.

    PubMed

    Gupta, K C; Landi, S

    1980-02-01

    A water-soluble tuberculin-active peptidoglycan (TAPG) with a molecular weight of ca. 28,000 to 30,000 was isolated from the culture filtrate of Mycobacterium tuberculosis. TAPG was approximately four to five times more potent than tuberculin purified protein derivative S in guinea pigs sensitized with M. tuberculosis or M. bovis (freeze-dried BCG). It showed little or no cross-reactivity at a dose of 0.1 to 0.4 microgram in guinea pigs sensitized with M. kansasii, M. scrofulaceum, M. intracellulare, or M. avium. TAPG did not show any adjuvant activity when injected in guinea pigs in a water-in-oil emulsion containing ovalbumin. TAPG, in Freund incomplete adjuvant, proved to be an effective immunogen for inducing delayed hypersensitivity in guinea pigs. Chemical analysis of TAPG showed that it contains proline, glutamic acid, alanine, diaminopimelic acid, tyrosine, threonine, glucosamine, and the reducing sugars, arabinose and galactose. In immunoelectrophoretic studies with reference M. tuberculosis H37Rv antiserum, TAPG did not show any precipitin bands.

  20. Biological markers in older people at risk of mobility limitations.

    PubMed

    Lippi, Giuseppe; Sanchis-Gomar, Fabian; Montagnana, Martina

    2014-01-01

    Due to the progressive ageing of the worldwide population, prevention and treatment of late-life dysfunctions, including functional decline and mobility limitations, represent leading targets of scientists and clinicians, but are also receiving growing attention from governments and healthcare systems. The early identification of elderly patients more prone to physical decline represents a crucial step for establishing preventive measures. Although functional capacity can easily be assessed, the use of additional criteria that anticipate the onset of mobility limitations seems much more advantageous. The most challenging issues in the identification of biological markers for assessing the risk of functional decline in the elderly originates from the complex and multifaceted pathogenesis of sarcopenia and the resulting physiological decrement, so that bridging the gap between basic research and clinical practice may appear intricate. Nevertheless, several lines of evidence now confirm the existence of negative associations between functional mobility and values of hemoglobin, total and HDL-cholesterol, vitamin D, testosterone, adiponectin and antioxidants such carotenoids, vitamin C and E, selenium and magnesium, whereas positive associations have been reported with the values of uric acid, white blood cells, plasma and blood viscosity, erythrocyte sedimentation rate (ESR), triglycerides, homocysteine, plasma glucose, glycated hemoglobin (HbA1c), markers of renal functions (i.e., creatine and cystatin C), insulin-like growth factor-1 (IGF-1), as well as several inflammatory (e.g., C reactive protein, Intereleukin-6, Interleukin- 1 receptor antagonist), hemostatic (e.g., fibrinogen, Von Willebrand Factor, factors VIII and IX) and oxidative (oxidized lipoproteins, 8-oxo-7,8-2'-deoxyguanosine, protein carbonylation) biomarkers. In the foreseeable future, proteomic studies might predictably help identify novel associations between putative biomarkers and functional

  1. Terminating pre-ozonation prior to biological activated carbon filtration results in increased formation of nitrogenous disinfection by-products upon subsequent chlorination.

    PubMed

    Chu, Wenhai; Li, Changjun; Gao, Naiyun; Templeton, Michael R; Zhang, Yanshen

    2015-02-01

    Previous research demonstrated that ozone dosed before biological activated carbon (BAC) filtration reduces the formation of disinfection by-products (DBPs) upon subsequent chlorination. The current work aimed to evaluate the impact of terminating this pre-ozonation on the ability of the BAC to remove the precursors of N-DBPs. More N-DBP precursors passed into the post-BAC water when the pre-ozonation was terminated, resulting in greater formation of N-DBPs when the water was subsequently chlorinated, compared to a parallel BAC filter when the pre-ozonation was run continuously. Moreover, the N-DBP formation potential was significantly increased in the effluent of the BAC filter after terminating pre-ozonation, compared with the influent of the BAC filter (i.e. the effluent from the sand filter). Therefore, while selectively switching pre-ozonation on/off may have cost and other operational benefits for water suppliers, these should be weighed against the increased formation of N-DBPs and potential associated health risks.

  2. 42 CFR 410.29 - Limitations on drugs and biologicals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... drug product's medical need. (21 CFR 310.6 contains an explanation of the efficacy review program.) (c) Any drug product that is identical, related, or similar, as defined in 21 CFR 310.6, to a drug product... factors, and except for EPO, any drug or biological that can be self-administered. (b) Any drug...

  3. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    PubMed

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist.

  4. Pig manure treatment and purification by filtration.

    PubMed

    Makara, A; Kowalski, Z

    2015-09-15

    This study aimed to develop a new, complex pig manure treatment and filtration process. The final scheme, called the AMAK process, comprised the following successive steps: mineralization with mineral acids, alkalization with lime milk, superphosphate addition, a second alkalization, thermal treatment, and pressure filtration. The proposed method produced a filtrate with 95%, 80%, and 96% reductions in chemical oxygen demand, nitrogen content, and phosphorus content, respectively. An advantage of the proposed method was that it incorporated a crystalline phase into the solid organic part of the manure, which enabled high filtration rates (>1000 kg m(-2) h(-1)) and efficient separation. The process also eliminated odor emissions from the filtrate and sediment. The treated filtrate could be used to irrigate crops or it could be further treated in conventional biological wastewater treatment plants. The sediment could be used for producing mineral-organic fertilizer. The AMAK process is inexpensive, and it requires low investment costs. PMID:26197426

  5. Underwater linear polarization: physical limitations to biological functions.

    PubMed

    Shashar, Nadav; Johnsen, Sönke; Lerner, Amit; Sabbah, Shai; Chiao, Chuan-Chin; Mäthger, Lydia M; Hanlon, Roger T

    2011-03-12

    Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200-400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70-80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range.

  6. Underwater linear polarization: physical limitations to biological functions

    PubMed Central

    Shashar, Nadav; Johnsen, Sönke; Lerner, Amit; Sabbah, Shai; Chiao, Chuan-Chin; Mäthger, Lydia M.; Hanlon, Roger T.

    2011-01-01

    Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200–400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70–80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range. PMID:21282168

  7. Ecological Limits to Terrestrial Biological Carbon Dioxide Removal

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Smith, L. J.; Mishra, U.; Sanchez, D.; Williams, J.

    2014-12-01

    Many climate change mitigation scenarios include terrestrial atmospheric carbon dioxide removal (BCDR) or carbon neutral bioenergy production through bioenergy with carbon capture and storage (BECS) or afforestation/reforestation. Very high sequestration potentials for these strategies have been reported, and we evaluate the potential ecological limits (e.g., land and resource requirements) to implementation at the 1 Pg C y-1 scale relevant to climate change mitigation for U.S. and global scenarios. We estimate that removing 1 Pg C y-1 via tropical afforestation would require at least 7×106 ha y-1 of land, 0.09 Tg y-1 of nitrogen, and 0.2 Tg y-1 of phosphorous, and would increase evapotranspiration from those lands by almost 50%. Because of improved carbon capture technologies, we are updating (and reducing) our previous estimates for switchgrass BECS (previous estimate was 2×108 ha land and 20 Tg y-1 of nitrogen (20 % of global fertilizer nitrogen production)). Miscanthus could meet the same biomass production with much lower N demand. Moreover, transitioning the U.S land currently under corn- ethanol production to no-till perennial grasses for bioenergy would meet U.S. needs and have additional environmental benefits (such as improved wildlife habitat and soil restoration). Thus, there are both signficant ecological limits to BCDR as well as potential ecological benefits, depending on implementation.

  8. Current limitations of the Athlete's Biological Passport use in sports.

    PubMed

    Sanchis-Gomar, Fabian; Martinez-Bello, Vladimir E; Gomez-Cabrera, Mari Carmen; Viña, Jose

    2011-09-01

    The Athletes Biological Passport (ABP) has received both criticisms and support during this year. In a recent issue of The Lancet, Michael Wozny considered that the use of the ABP makes it more difficult to take banned substances and that it was successfully used against the Italian elite cyclist Franco Pellizotti. After that, Italy's anti-doping tribunal considered that there was not enough evidence to prove manipulation of his own blood profile in Pellizotti's case. However, the UCI appealed to the Court of Arbitration for Sport (CAS) that sanctioned Pellizotti with a suspension of 2 years. Since its implementation, some problems have emerged. From 2010 to date, a large number of reports regarding the stability of the blood variables used to determine the ABP have been published, showing mixed results. This study considers that there is a risk of misinterpreting the physiological variations of the hematological parameters determined by the anti-doping authorities in the ABP. The analytical variability due to exercise training and competitions and/or to different metabolic energy demands, hypoxia treatments, etc. could lead to an increase in false-positives when using the ABP with the dramatic consequences that they might cause in major sports events like the forthcoming London Olympic Games. Moreover, the ABP characteristics, procedures, thresholds, or individual determination of reference ranges, abnormal out-comes, strikes, "how the profile differs from what is expected in clean athletes" should be clearly stated and explained in a new public technical document to avoid misunderstandings and to promote transparency. PMID:21619474

  9. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    SciTech Connect

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  10. [Detection of rubella specific IgM on gel filtration through Sephadex G 200: use of dithiothreitol and limits with MnCl2-heparine pretreatment (author's transl)].

    PubMed

    Freymuth, F; Daon, F; Vergnaud, M; Valdazo, A

    1979-01-01

    The detection of rubella haemagglutination inhibiting antibody, in the IgM fraction of the serum, on gel filtration through Sephadex G 200, needs precautions to exclude false results. Treatment with dithiothreitol is a satisfactory method for confirming the content of rubella IgM antibody. The failure of MnCl2-heparin pretreatment to remove non specific inhibitors of rubella hemagglutinin is unfrequent (7/108) and so do be repeated. Rarely (1/108) aggregated IgG fractionates with IgM and yield false positive results. PMID:475077

  11. Rotary filtration system

    DOEpatents

    Herman, David T.; Maxwell, David N.

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  12. Integrated pore blockage-cake filtration model for crossflow filtration

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Russell, Renee L.; Shimskey, Rick W.; Smith, Harry D.; Peterson, Reid A.

    2011-07-01

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  13. Limits in the evolution of biological form: a theoretical morphologic perspective.

    PubMed

    McGhee, George R

    2015-12-01

    Limits in the evolution of biological form can be empirically demonstrated by using theoretical morphospace analyses, and actual analytic examples are given for univalved ammonoid shell form, bivalved brachiopod shell form and helical bryozoan colony form. Limits in the evolution of form in these animal groups can be shown to be due to functional and developmental constraints on possible evolutionary trajectories in morphospace. Future evolutionary-limit research is needed to analyse the possible existence of temporal constraint in the evolution of biological form on Earth, and in the search for the possible existence of functional alien life forms on Titan and Triton that are developmentally impossible for Earth life.

  14. Limits in the evolution of biological form: a theoretical morphologic perspective.

    PubMed

    McGhee, George R

    2015-12-01

    Limits in the evolution of biological form can be empirically demonstrated by using theoretical morphospace analyses, and actual analytic examples are given for univalved ammonoid shell form, bivalved brachiopod shell form and helical bryozoan colony form. Limits in the evolution of form in these animal groups can be shown to be due to functional and developmental constraints on possible evolutionary trajectories in morphospace. Future evolutionary-limit research is needed to analyse the possible existence of temporal constraint in the evolution of biological form on Earth, and in the search for the possible existence of functional alien life forms on Titan and Triton that are developmentally impossible for Earth life. PMID:26640645

  15. 21. Overflow pipe in filtration bed. Located at each corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Overflow pipe in filtration bed. Located at each corner of the bed, the pipes drain off any excess water and maintain a limit on water depth. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  16. Application of pharmacokinetics to derive biological exposure indexes from threshold limit values

    SciTech Connect

    Leung, H.W.; Paustenbach, D.J.

    1988-09-01

    The importance of incorporating the fundamental concepts of pharmacokinetics into biological monitoring program that involve the collection of various body fluid and tissue specimens is discussed. The application of these principles to establish biological exposures indexes bioequivalent to airborne exposure limits is described. Specific illustrative examples involving acetone, aniline, benzene, carbon tetrachloride, dieldrin, ethylbenzene, hexane, lead, methylene chloride, pentachlorophenol, phenol, styrene, toluene and xylene are presented.

  17. ITP Filtrate Benzene Removal Alternatives

    SciTech Connect

    Dworjanyn, L.O.

    1993-05-21

    Existing ITP filtrate hold tanks may provide sufficient capacity and residence time to strip dissolved benzene from the incoming filtrate using nitrogen sparging in the bottom of the old tanks. This is based on equilibrium supported by late Wash test data using aged washed slurry. Theoretical considerations indicate that benzene stripping will be more difficult from the ITP unwashed high salt filtrates due to reduced mass transfer. Therefore experimental sparging data is needed to quantify the theoretical effects.Foaming limits which dictate allowable sparging rate will also have to be established. Sparging in the hold tanks will require installation of sintered metal spargers, and possibly stirrers and foam monitoring/disengagement equipment. The most critical sparging needs are at the start of the precipitation/concentration cycle, when the filtrate flux rate is the highest,and at the end of wash cycle where Henry`s equilibrium constant falls off,requiring more gas to sparge the dissolved benzene. With adequate recycle (for proper distribution) or sparging in the old tanks, the 30 inch column could be used for the complete ITP process. A courser packing would reduce back pressure while enabling benzene stripping. The Late Wash Tests indicate adequate benzene stripping even at reduced gas flow. This will require experimental verification under ITP conditions. Using the 30 in. column vs 18 in. during the wash cycle will enhance stripping without need for additional sparging provided the minimum flow requirements are met.

  18. 7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST, SHOWING PUMP NO. 1 AND METERING EQUIPMENT - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  19. 8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING SOUTHWEST, SHOWING MEZZANINE WITH FILTER TANKS AT REAR - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  20. Complex dynamics in biological systems arising from multiple limit cycle bifurcation.

    PubMed

    Yu, P; Lin, W

    2016-01-01

    In this paper, we study complex dynamical behaviour in biological systems due to multiple limit cycles bifurcation. We use simple epidemic and predator-prey models to show exact routes to new types of bistability, that is, bistability between equilibrium and periodic oscillation, and bistability between two oscillations, which may more realistically describe the real situations. Bifurcation theory and normal form theory are applied to investigate the multiple limit cycles bifurcating from Hopf critical point.

  1. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    ERIC Educational Resources Information Center

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored…

  2. Filtration Understanding: FY10 Testing Results and Filtration Model Update

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Burns, Carolyn A.; Peterson, Reid A.; Russell, Renee L.; Schonewill, Philip P.; Shimskey, Rick W.

    2011-04-04

    This document completes the requirements of Milestone 2-4, Final Report of FY10 Testing, discussed in the scope of work outlined in the EM31 task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to improve filtration and cleaning efficiencies, thereby increasing process throughput and reducing the Na demand (through acid neutralization). Developing the cleaning/backpulsing requirements will produce much more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby significantly increasing throughput by limiting cleaning cycles. The scope of this work is to develop the understanding of filter fouling to allow developing this cleaning/backpulsing strategy.

  3. Magnetic-seeding filtration

    SciTech Connect

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  4. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    PubMed Central

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students’ written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors’ and nonmajors’ written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of “near-perfect” agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations. PMID:22135372

  5. Phosphorus limitation controls rates of biological N2-fixation in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Dynarski, K. A.; Wieder, R.; Vile, M. A.

    2013-12-01

    N2-fixation, once thought to occur at negligible rates in pristine boreal peatlands, has recently been demonstrated to be the dominant input of nitrogen (N) to these ecosystems. The controls of biological N2-fixation in pristine boreal peatlands are not well understood, but limitation of the nutrients molybdenum (Mo) and phosphorus (P) may play a key role. Because the enzyme nitrogenase requires molybdenum-containing cofactors to function, biological N2-fixation may be limited by the trace metal molybdenum. Recent studies have shown that Mo limits nitrogen fixation rates in tropical soils. P availability may also be important in regulating N2-fixation rates; N2-fixation is a P-intensive process because the nitrogenase enzyme is rich in P, and P is likely to be the most limiting nutrient to boreal peatland productivity, next to N. In this study, we examined the role of Mo and P limitation in controlling rates of biological N2-fixation in boreal peatlands. We applied Mo and P nutrient amendments equivalent to 5 mg m-2 yr-1and 10 kg ha-1 yr-1 respectively, both alone and in combination, to fifteen 0.36 m2 plots in a pristine Alberta fen throughout the summer 2013 growing season. We periodically assessed N2-fixation rates in Sphagnum angustifolium moss samples using the acetylene reduction assay with subsequent calibration using 15N2. We found a significant overall treatment effect (F3,44=15.62, p<0.0001). A posteriori analysis using Tukey's HSD indicates that N2-fixation rates were significantly higher in plots receiving P additions relative to control plots. However, Mo additions had no effect on N2-fixation rates. These results indicate that P, not Mo, availability is dominant in controlling rates of biological N2-fixation in boreal peatland ecosystems.

  6. Trends in medical filtration.

    PubMed

    Hogan, Brendan

    2002-06-01

    Advances in materials, mould tooling and control systems are offering the industry greater design choices in filtration as well as the potential to reduce manufacturing costs. This article describes what is possible.

  7. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  8. Water Filtration Products

    NASA Technical Reports Server (NTRS)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  9. Monosodium Titanate Sludge Filtration

    SciTech Connect

    Dworjanyn, L.O.

    2000-11-07

    Good filterability of tetraphenylborate (TPB) slurry is attributed to the hydrophobic nature of crystalline organic TPB that forms a firm but porous filter cake, allowing salt solution to pass through without unduly compressing the cake. Addition of inorganic sludge or monosodium titanate (MST) has an adverse effect on filtration, but the overall filtration rate with TPB is satisfactory. Poor cross-flow filtration performance for the Salt Disposition Alternatives requiring MST filtration is attributed primarily to the difficulty in filtering the residual inorganic sludge rich in iron and aluminum precipitates. Ferric hydrolysis products and colloids form a bulky and sticky filter cake significantly reducing filtration rate. Similarly poor filtration rates were observed in the BNFL ferric/ferrous precipitation process, necessitating a change to permanganate precipitation. This report, based on a few sludge settling observations, does not resolve the MST/Sludge filterability issue. However, it does identify the need for a change in emphasis from cross-flow optimization to understanding and controlling the chemistry and physics of alkaline inorganic particle suspensions and filterability. Promising potential exists to identify or develop surfactants or flocculants to enhance filterability of SRS sludge and monosodium titanate. Additional work is needed to provide a basic understanding of the nature of caustic sludge filter cake formation.

  10. Demonstrating Compliance with Stringent Nitrogen Limits Using a Biological Nutrient Removal Process in California's Central Valley.

    PubMed

    Merlo, Rion; Witzgall, Bob; Yu, William; Ohlinger, Kurt; Ramberg, Steve; De Las Casas, Carla; Henneman, Seppi; Parker, Denny

    2015-12-01

    The Sacramento Regional County Sanitation District (District) must be compliant with stringent nitrogen limits by 2021 that the existing treatment facilities cannot meet. An 11-month pilot study was conducted to confirm that these limits could be met with an air activated sludge biological nutrient removal (BNR) process. The pilot BNR treated an average flow of 946 m(3)/d and demonstrated that it could reliably meet the ammonia limit, but that external carbon addition may be necessary to satisfy the nitrate limit. The BNR process performed well throughout the 11 months of operation with good settleability, minimal nocardioform content, and high quality secondary effluent. The BNR process was operated at a minimum pH of 6.4 with no noticeable impact to nitrification rates. Increased secondary sludge production was observed during rainfall events and is attributed to a change in wastewater influent characteristics.

  11. Waste water filtration enhancement

    SciTech Connect

    Martin, H.L.

    1989-01-01

    Removal of submicron particles from process solutions and waste water is now economically achievable using a new Tyvek{reg sign} media in conventional filtration equipment. This new product greatly enhances filtration and allows use of the much improved filter aids and polymers which were recently developed. It has reduced operating costs and ensures a clean effluent discharge to the environment. This significant technical development is especially important to those who discharge to a small stream with low 7Q10 flow and must soon routinely pass the Toxicity tests that are being required by many States for NPDES permit renewal. The Savannah River Plant produces special nuclear materials for the US Government. Aluminum forming and metal finishing operations in M-Area, that manufacture fuel and target assemblies for the nuclear reactors, discharge to a waste water treatment facility using BAT hydroxide precipitation and filtration. The new Tyvek{reg sign} media and filter aids have achieved 55% less solids in the filtrate discharged to Tims Branch Creek, 15% less hazardous waste (dry filter cake), 150%-370% more filtration capacity, 74% lower materials purchase cost, 10% lower total M-Area manufacturing cost, and have improved safety. Performance with the improved polymers is now being evaluated.

  12. Detecting regime shifts in marine systems with limited biological data: An example from southeast Australia

    NASA Astrophysics Data System (ADS)

    Litzow, Michael A.; Hobday, Alistair J.; Frusher, Stewart D.; Dann, Peter; Tuck, Geoffrey N.

    2016-02-01

    The ability to detect ecological regime shifts in a data-limited setting was investigated, using southeast Australian ecosystems as a model. Community variability was summarized for 1968-2008 with the first two principal components (PCs) of recruitment estimates for six fish stocks and reproductive parameters for four seabird species; regional climate was summarized for 1953-2008 with the first two PCs for three parameters (sea surface temperature [SST], sea surface salinity, surface nitrate) measured at two stations; and basin-scale climate variability was summarized for 1950-2012 with mean South Pacific SST and the first two PCs of detrended South Pacific SST. The first two biology PCs explained 45% of total community variability. The first two PCs of basin-scale SST showed abrupt shifts similar to "regime" behavior observed in other ocean basins, and the first PC of basin-scale SST showed significant covariation with the first PC of regional climate. Together, these results are consistent with the strong community variability and decadal-scale red noise climatic variability associated with Northern Hemisphere regime shifts. However, statistical model selection showed that the first two PCs of regional climate and the first PC of biology time series all exhibited linear change, rather than abrupt shifts. This result is consistent with previous studies documenting rapid linear change in the climate and biology of southeast Australian shelf ecosystems, and we conclude that there is no evidence for regime shift behavior in the region's ecology. However, analysis of a large set of previously-published biological time series from the North Pacific (n = 64) suggests that studies using fewer than ∼30 biological time series, such as this one, may be unable to detect regime shifts. Thus we conclude that the nature of ecological variability in the region cannot be determined with available data. The development of additional long-term biological observations is needed

  13. Water Filtration Using Plant Xylem

    PubMed Central

    Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings. PMID:24587134

  14. Water filtration using plant xylem.

    PubMed

    Boutilier, Michael S H; Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3) of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  15. Airborne exposure limits for chemical and biological warfare agents: is everything set and clear?

    PubMed

    Sabelnikov, Alex; Zhukov, Vladimir; Kempf, C Ruth

    2006-08-01

    Emergency response strategies (guidelines) for biological, chemical, nuclear, or radiological terrorist events should be based on scientifically established exposure limits for all the agents or materials involved. In the case of a radiological terrorist event, emergency response guidelines (ERG) have been worked out. In the case of a terrorist event with the use of chemical warfare (CW) agents the situation is not that clear, though the new guidelines and clean-up values are being generated based on re-evaluation of toxicological and risk data. For biological warfare (BW) agents, such guidelines do not yet exist. In this paper the current status of airborne exposure limits (AELs) for chemical and biological warfare (CBW) agents are reviewed. Particular emphasis is put on BW agents that lack such data. An efficient, temporary solution to bridge the gap in experimental infectious data and to set provisional AELs for BW agents is suggested. It is based on mathematically generated risks of infection for BW agents grouped by their alleged ID50 values in three categories: with low, intermediate and high ID50 values.

  16. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  17. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  18. Microfluidic colloid filtration.

    PubMed

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J C; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today's water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a "cake layer"--often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  19. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  20. Filtration by eyelashes

    NASA Astrophysics Data System (ADS)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  1. Magnetic-seeding filtration

    SciTech Connect

    Depaoli, D.

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  2. Tracing the limits of organic micropollutant removal in biological wastewater treatment.

    PubMed

    Falås, Per; Wick, Arne; Castronovo, Sandro; Habermacher, Jonathan; Ternes, Thomas A; Joss, Adriano

    2016-05-15

    Removal of organic micropollutants was investigated in 15 diverse biological reactors through short and long-term experiments. Short-term batch experiments were performed with activated sludge from three parallel sequencing batch reactors (25, 40, and 80 d solid retention time, SRT) fed with synthetic wastewater without micropollutants for one year. Despite the minimal micropollutant exposure, the synthetic wastewater sludges were able to degrade several micropollutants present in municipal wastewater. The degradation occurred immediately after spiking (1-5 μg/L), showed no strong or systematic correlation to the sludge age, and proceeded at rates comparable to those of municipal wastewater sludges. Thus, the results from the batch experiments indicate that degradation of organic micropollutants in biological wastewater treatment is quite insensitive to SRT increases from 25 to 80 days, and not necessarily induced by exposure to micropollutants. Long-term experiments with municipal wastewater were performed to assess the potential for extended biological micropollutant removal under different redox conditions and substrate concentrations (carbon and nitrogen). A total of 31 organic micropollutants were monitored through influent-effluent sampling of twelve municipal wastewater reactors. In accordance with the results from the sludges grown on synthetic wastewater, several compounds such as bezafibrate, atenolol and acyclovir were significantly removed in the activated sludge processes fed with municipal wastewater. Complementary removal of two compounds, diuron and diclofenac, was achieved in an oxic biofilm treatment. A few aerobically persistent micropollutants such as venlafaxine, diatrizoate and tramadol were removed under anaerobic conditions, but a large number of micropollutants persisted in all biological treatments. Collectively, these results indicate that certain improvements in biological micropollutant removal can be achieved by combining different

  3. Tracing the limits of organic micropollutant removal in biological wastewater treatment.

    PubMed

    Falås, Per; Wick, Arne; Castronovo, Sandro; Habermacher, Jonathan; Ternes, Thomas A; Joss, Adriano

    2016-05-15

    Removal of organic micropollutants was investigated in 15 diverse biological reactors through short and long-term experiments. Short-term batch experiments were performed with activated sludge from three parallel sequencing batch reactors (25, 40, and 80 d solid retention time, SRT) fed with synthetic wastewater without micropollutants for one year. Despite the minimal micropollutant exposure, the synthetic wastewater sludges were able to degrade several micropollutants present in municipal wastewater. The degradation occurred immediately after spiking (1-5 μg/L), showed no strong or systematic correlation to the sludge age, and proceeded at rates comparable to those of municipal wastewater sludges. Thus, the results from the batch experiments indicate that degradation of organic micropollutants in biological wastewater treatment is quite insensitive to SRT increases from 25 to 80 days, and not necessarily induced by exposure to micropollutants. Long-term experiments with municipal wastewater were performed to assess the potential for extended biological micropollutant removal under different redox conditions and substrate concentrations (carbon and nitrogen). A total of 31 organic micropollutants were monitored through influent-effluent sampling of twelve municipal wastewater reactors. In accordance with the results from the sludges grown on synthetic wastewater, several compounds such as bezafibrate, atenolol and acyclovir were significantly removed in the activated sludge processes fed with municipal wastewater. Complementary removal of two compounds, diuron and diclofenac, was achieved in an oxic biofilm treatment. A few aerobically persistent micropollutants such as venlafaxine, diatrizoate and tramadol were removed under anaerobic conditions, but a large number of micropollutants persisted in all biological treatments. Collectively, these results indicate that certain improvements in biological micropollutant removal can be achieved by combining different

  4. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  5. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    PubMed

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation.

  6. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    PubMed

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation. PMID:25116500

  7. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting.

    PubMed

    DeBord, D Gayle; Burgoon, Lyle; Edwards, Stephen W; Haber, Lynne T; Kanitz, M Helen; Kuempel, Eileen; Thomas, Russell S; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely.

  8. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting

    PubMed Central

    DeBord, D. Gayle; Burgoon, Lyle; Edwards, Stephen W.; Haber, Lynne T.; Kanitz, M. Helen; Kuempel, Eileen; Thomas, Russell S.; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments.( 1 ) This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identi-fication of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely. PMID:26132979

  9. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting.

    PubMed

    DeBord, D Gayle; Burgoon, Lyle; Edwards, Stephen W; Haber, Lynne T; Kanitz, M Helen; Kuempel, Eileen; Thomas, Russell S; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely. PMID:26132979

  10. Filtration of A Hanford AN-104 Sample

    SciTech Connect

    Poirier, MichaelR

    2004-03-01

    The Savannah River Technology Center (SRTC) conducted ultrafiltration tests with samples from the Hanford Site's AN-104 tank. The test objectives were to measure filter flux during dewatering and the removal of soluble species during washing. The filtration tests were conducted with the Cells Unit Filter (CUF) currently installed in Cell 16 of the SRTC High Activity Caves. Following filtration, personnel performed inhibited water washing to remove soluble species. Because of the limited volume of concentrated slurry, the washing was performed with a volumetric flask rather than a crossflow filter.Following the washing, personnel chemically cleaned the filter with 1 M nitric acid and periodically measured the clean water flux.

  11. Filtration of a Hanford AN-104 Sample

    SciTech Connect

    POIRIER, MICHAEL

    2004-04-19

    The Savannah River Technology Center (SRTC) conducted ultrafiltration tests with samples from the Hanford Site's 241-AN-104 tank. The test objectives were to measure filter flux during dewatering and the removal of soluble species during washing. The filtration tests were conducted with the Cells Unit Filter (CUF) currently installed in Cell 16 of the SRTC High Activity Caves. Following filtration, personnel performed inhibited water washing to remove soluble species. Because of the limited volume of concentrated slurry, the washing was performed with a volumetric flask rather than a crossflow filter. Following the washing, personnel chemically cleaned the filter with 1 M nitric acid and periodically measured the clean water flux.

  12. Dynamic filtration of invert-emulsion muds

    SciTech Connect

    Jiao, D.; Sharma, M.M. )

    1993-09-01

    Dynamic-filtration experiments conducted on oil-based muds show that the dynamic-filtration rate is much higher than API filtration rates. The use of water-wet solids results in very poor-quality external mudcakes and high fluid-loss rates. Better external mudcakes are formed by mixing equal parts organophilic clay and mud. Filtration-loss-control additives (asphalt mineral pitches) do not reduce the equilibrium filtration rate, but do reduce spurt loss and limit solids invasion. In brine-saturated rocks, the invasion rate for oil-based muds is significantly smaller than for water-based muds because capillary pressure prevents the oil phase from entering the core in oil-based muds. Oil-based mudcakes are softer and more shear-sensitive than water-based mudcakes. Scanning electron microscope (SEM) photomicrographs indicate that oil-based mudcakes consist of individual water droplets coated with clay particles. This cake structure gives rise to the low permeability and shear sensitivity of oil-based muds.

  13. Liquid filtration simulation

    SciTech Connect

    Corey, I.; Bergman, W.

    1996-06-01

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  14. Membrane filtration of food suspensions.

    PubMed Central

    Sharpe, A N; Peterkin, P I; Dudas, I

    1979-01-01

    Factors affecting the membrane filtration of food suspensions were studied for 58 foods and 13 membrane filters. Lot number within a brand, pore size (0.45 or 0.8 micrometer), and time elapsed before filtration had little effect on filterability. Brand of membrane filter, flow direction, pressure differential, age (microbiological quality) of the food, duration of the blending process, temperature, and concentration of food in the suspension had significant and often predictable effects. Preparation of suspensions by Stomacher (relative to rotary blender) addition of surfactant (particularly at elevated temperature) and prior incubation with proteases sometimes had dramatic effects of filterability. In contrast to popular opinion, foods can be membrane filtered in quantities pertinent to the maximums used in conventional plating procedures. Removal of growth inhibitors and food debris is possible by using membrane filters. Lowering of the limits of detection of microorganisms by concentration on membrane filters can be considered feasible for many foods. The data are particularly relevant to the use of hydrophobic grid-membrane filters (which are capable of enumerating up to 9 X 10(4) organisms per filter) in instrumented methods of food microbiological analysis. Images PMID:760637

  15. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or...

  16. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or...

  17. Apparatus and process to eliminate diffusional limitations in a membrane biological reactor by pressure cycling

    DOEpatents

    Efthymiou, George S.; Shuler, Michael L.

    1989-08-29

    An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.

  18. Design and development of a rheometer for biological fluids of limited availability

    NASA Astrophysics Data System (ADS)

    Scorza, A.; Battista, L.; Silvestri, S.; Sciuto, S. A.

    2014-10-01

    From studies on the dynamic characterization of human bones, it is noticed that reference data on the viscous behavior of the bone marrow are quite poor. Dependently from marrow limited availability and its opacity, we have not been able to retrieve a tool of appropriate characteristics able to measure bone marrow viscosity. Therefore, principal techniques for the viscosity measurement have been preliminarily examined, and a device suitable for viscosity measurements of biological fluids has been realized. In particular, a rotational rheometer has been developed: it is a coaxial cylinders system, where the fluid flows dragged by the inner cylinder. The device is an absolute rheometer, that is, particularly useful as nowadays it is not known the classification of the bone as far as it concerns its viscous behavior. In this work a preliminary evaluation of the metrological characteristics of the measurement system has been carried out and its main metrological performances have been evaluated.

  19. Removal of Cryptosporidium parvum in bank filtration systems

    NASA Astrophysics Data System (ADS)

    Harter, T.; Atwill, E. R.; Hou, L. L.

    2003-04-01

    The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Many surface water systems therefore depend on filtration systems, including bank filtration systems, for the removal of the pathogenic oocysts. To better understand the effectiveness, e.g., of bank filtration systems, we have implemented a series of columns studies under various environmental conditions (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough of C. parvum in pulsed injections of the oocyst through sand columns, although the model does not account for the significant tailing that occurs in C. parvum transport. Application of colloid filtration theory to bank filtration system is further limited by the intrinsic heterogeneity of the geologic systems used for bank filtration. We couple filtration theory with a stochastic subsurface transport approach and with percolation theory to account for the effects of intrinsic heterogeneity. We find that a 1-log removal can be achieved even under relatively adverse conditions (low collision efficiency, high velocity) if 85% - 90% of the sedimentary hydrofacies located within the bank filtration system or of the coarsest known hydrofacies connecting the riverbed with the extraction system has a grain-size distribution with a 10% passing diameter equal to 1 mm. One millimeter is a standard sieve size in sediment analysis.

  20. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  1. A two-way interface between limited Systems Biology Markup Language and R

    PubMed Central

    Radivoyevitch, Tomas

    2004-01-01

    Background Systems Biology Markup Language (SBML) is gaining broad usage as a standard for representing dynamical systems as data structures. The open source statistical programming environment R is widely used by biostatisticians involved in microarray analyses. An interface between SBML and R does not exist, though one might be useful to R users interested in SBML, and SBML users interested in R. Results A model structure that parallels SBML to a limited degree is defined in R. An interface between this structure and SBML is provided through two function definitions: write.SBML() which maps this R model structure to SBML level 2, and read.SBML() which maps a limited range of SBML level 2 files back to R. A published model of purine metabolism is provided in this SBML-like format and used to test the interface. The model reproduces published time course responses before and after its mapping through SBML. Conclusions List infrastructure preexisting in R makes it well-suited for manipulating SBML models. Further developments of this SBML-R interface seem to be warranted. PMID:15585059

  2. Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    USGS Publications Warehouse

    Wilson, John R.U.; Gairifo, Carla; Gibson, Michelle R.; Arianoutsou, Margarita; Bakar, Baki B.; Baret, Stephane; Celesti-Grapow, Laura; DiTomaso, Joseph M.; Dufour-Dror, Jean-Marc; Kueffer, Christoph; Kull, Christian A.; Hoffman, John H.; Impson, Fiona A.C.; Loope, Lloyd L.; Marchante, Elizabete; Harchante, Helia; Moore, Joslin L.; Murphy, Daniel J.; Tassin, Jacques; Witt, Arne; Zenni, Rafael D.; Richardson, David M.

    2011-01-01

    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new

  3. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    PubMed Central

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the U.S. Environmental Protection Agency (EPA) has set a limit of 10 micrograms per liter (10 μg/L) in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry and educators at the local, state, national and international levels to: (1) Establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) Work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry and others; (3) Develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) Develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods, and (5) Develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  4. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    PubMed

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  5. Dynamic optical filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  6. Dynamic Optical Filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  7. Magnetic flocculation and filtration

    SciTech Connect

    Yiacoumi, Sotira; Chin, Ching-Ju; Yin, Tung-Yu; Tsouris, C., DePaoli, D.W.; Chattin, M.R.; Spurrier, M.

    1996-10-01

    A model is available in predicting flocculation frequencies between particles of various properties under the influence of a magnetic field. This model provides a basic understanding of fundamental phenomena, such as particle-particle and particle-collector interactions, occurring in HGMF (high gradient magnetic field), and will be extended to describe experimental data of particle flocculation and filtration and predict the performance of high- gradient magnetic filters. It is also expected that this model will eventually lead to a tool for design and optimization of magnetic filters for environmental, metallurgical, biochemical, and other applications.

  8. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  9. Magnetic-seeding filtration

    SciTech Connect

    DePaoli, D.W.; Tsouris, C.; Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  10. Evidence for micronutrient limitation of biological soil crusts: Importance to arid-lands restoration

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Davidson, D.W.; Phillips, S.L.

    2005-01-01

    Desertification is a global problem, costly to national economies and human societies. Restoration of biological soil crusts (BSCs) may have an important role to play in the reversal of desertification due to their ability to decrease erosion and enhance soil fertility. To determine if there is evidence that lower fertility may hinder BSC recolonization, we investigated the hypothesis that BSC abundance is driven by soil nutrient concentrations. At a regional scale (north and central Colorado Plateau, USA), moss and lichen cover and richness are correlated with a complex water-nutrient availability gradient and have approximately six-fold higher cover and approximately two-fold higher species richness on sandy soils than on shale-derived soils. At a microscale, mosses and lichens are overrepresented in microhabitats under the north sides of shrub canopies, where water and nutrients are more available. At two spatial scales, and at the individual species and community levels, our data are consistent with the hypothesis that distributions of BSC organisms are determined largely by soil fertility. The micronutrients Mn and Zn figured prominently and consistently in the various analyses, strongly suggesting that these elements are previously unstudied limiting factors in BSC development. Structural-equation modeling of our data is most consistent with the hypothesis of causal relationships between the availability of micronutrients and the abundance of the two major nitrogen (N) fixers of BSCs. Specifically, higher Mn availability may determine greater Collema tenax abundance, and both Mn and Zn may limit Collema coccophorum; alternative causal hypotheses were less consistent with the data. We propose experimental trials of micronutrient addition to promote the restoration of BSC function on disturbed lands. Arid lands, where BSCs are most prevalent, cover ???40% of the terrestrial surface of the earth; thus the information gathered in this study is potentially useful

  11. A Convenient Dichotomy: Critical Eyes on the Limits to Biological Knowledge

    ERIC Educational Resources Information Center

    Milne, Catherine

    2011-01-01

    In "The Secret Identity of a Biology Textbook: straight and naturally sexed," Jesse Bazzul and Heather Sykes conduct a case study of a biology textbook as an oppressive instructional material. Using queer theory they explore how the text of the biology textbook produces "truths" about sex, gender, and sexuality. Their analysis is complemented by…

  12. Limitation of Finite Element Analysis of Poroelastic Behavior of Biological Tissues Undergoing Rapid Loading

    PubMed Central

    Stokes, Ian A.; Chegini, Salman; Ferguson, Stephen J.; Gardner-Morse, Mack G.; Iatridis, James C.; Laible, Jeffrey P.

    2010-01-01

    The finite element method is used in biomechanics to provide numerical solutions to simulations of structures having complex geometry and spatially differing material properties. Time-varying load deformation behaviors can result from solid viscoelasticity as well as viscous fluid flow through porous materials. Finite element poroelastic analysis of rapidly loaded slow-draining materials may be ill-conditioned, but this problem is not widely known in the biomechanics field. It appears as instabilities in the calculation of interstitial fluid pressures, especially near boundaries and between different materials. Accurate solutions can require impractical compromises between mesh size and time steps. This article investigates the constraints imposed by this problem on tissues representative of the intervertebral disc, subjected to moderate physiological rates of deformation. Two test cylindrical structures were found to require over 104 linear displacement-constant pressure elements to avoid serious oscillations in calculated fluid pressure. Fewer Taylor–Hood (quadratic displacement–linear pressure elements) were required, but with complementary increases in computational costs. The Vermeer–Verruijt criterion for 1D mesh size provided guidelines for 3D mesh sizes for given time steps. Pressure instabilities may impose limitations on the use of the finite element method for simulating fluid transport behaviors of biological soft tissues at moderately rapid physiological loading rates. PMID:20306136

  13. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    PubMed

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    2016-01-01

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse.

  14. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    PubMed

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    2016-01-01

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse. PMID:27508363

  15. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined... diatomaceous earth filtration you are not required to meet the combined filter effluent turbidity limits...

  16. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined... diatomaceous earth filtration you are not required to meet the combined filter effluent turbidity limits...

  17. Filtration: Principles and practices. 2. edition

    SciTech Connect

    Matteson, M.J.; Orr, C.

    1998-12-31

    This new book is the most authoritative and comprehensive guide to essential, state-of-the-art data. It provides the very latest theoretical and practical data on filtration for gas and liquids. The 2nd edition has been revised and updated to include several new chapters which detail filtration in the mineral industry, high-efficiency air filtration, cartridge filters, and ultrafiltration. The contents include: Gas filtration theory; Liquid-filtration theory; Filter media; Industrial gas filtration; Filtration pretreatment; Filtration in the chemical process industry; Ultrafiltration; Filtration in the mineral industry; Filtration in heating, ventilating, and air conditioning; Cartridge filtration; High-efficiency air filtration; Analytical applications of filtration; and Filter evaluation and testing.

  18. Filtration in industrial hygiene.

    PubMed

    Brown, R C

    2001-01-01

    Filters used in industrial hygiene are of two basic types, corresponding with the two basic airborne hazards: particulate and vapor. They are as different in their construction as they are in their purpose, and each gives negligible protection against the other hazard. By use of the correct type, adequate filtration efficiency can usually be achieved. Most particulate filters are made from fibers, and finer fibers result in higher efficiency. Filters can capture particles much smaller than the fiber diameter, as a result of diffusional motion of the airborne particles and, in the case of filters that hold a permanent electric charge, electrostatic attraction. Most vapor filters are made from granules of activated carbon, which have an extremely large effective surface area, where molecules of contaminant are adsorbed. The performance of all filters tends to alter as the filter material becomes loaded. Electrically neutral particulate filters become more efficient but at the expense of increased resistance to airflow. Particulate filters that act by electric forces may become less efficient, and are often less inclined to clog. Vapor filters usually have a high initial efficiency, but the penetration of vapor increases as the filters become saturated with adsorbed vapor, and the performance of these filters is normally expressed in terms of their lifetime rather than their efficiency. It is important that the choice of a filter should be made with close reference to the situation in which it is to be used, and optimum respiratory protection should be sought, rather than maximum filtration efficiency. Special problems of filters are illustrated by some case histories, and finally the use of filters as size selectors for dust samplers is briefly described. PMID:11669390

  19. Animal performance and stress: responses and tolerance limits at different levels of biological organisation.

    PubMed

    Kassahn, Karin S; Crozier, Ross H; Pörtner, Hans O; Caley, M Julian

    2009-05-01

    Recent advances in molecular biology and the use of DNA microarrays for gene expression profiling are providing new insights into the animal stress response, particularly the effects of stress on gene regulation. However, interpretation of the complex transcriptional changes that occur during stress still poses many challenges because the relationship between changes at the transcriptional level and other levels of biological organisation is not well understood. To confront these challenges, a conceptual model linking physiological and transcriptional responses to stress would be helpful. Here, we provide the basis for one such model by synthesising data from organismal, endocrine, cellular, molecular, and genomic studies. We show using available examples from ectothermic vertebrates that reduced oxygen levels and oxidative stress are common to many stress conditions and that the responses to different types of stress, such as environmental, handling and confinement stress, often converge at the challenge of dealing with oxygen imbalance and oxidative stress. As a result, a common set of stress responses exists that is largely independent of the type of stressor applied. These common responses include the repair of DNA and protein damage, cell cycle arrest or apoptosis, changes in cellular metabolism that reflect the transition from a state of cellular growth to one of cellular repair, the release of stress hormones, changes in mitochondrial densities and properties, changes in oxygen transport capacities and changes in cardio-respiratory function. Changes at the transcriptional level recapitulate these common responses, with many stress-responsive genes functioning in cell cycle control, regulation of transcription, protein turnover, metabolism, and cellular repair. These common transcriptional responses to stress appear coordinated by only a limited number of stress-inducible and redox-sensitive transcription factors and signal transduction pathways, such as the

  20. A PERSPECTIVE OF RIVERBANK FILTRATION

    EPA Science Inventory

    Riverbank filtration is a process in which pumping of wells located along riverbanks induce a portion of the river water to flow toward the pumping wells. The process has many similarities to the slow sand filtration process. River water contaminants are attenuated due to a combi...

  1. Using information and communication technology (ICT) to the maximum: learning and teaching biology with limited digital technologies

    NASA Astrophysics Data System (ADS)

    Van Rooy, Wilhelmina S.

    2012-04-01

    Background: The ubiquity, availability and exponential growth of digital information and communication technology (ICT) creates unique opportunities for learning and teaching in the senior secondary school biology curriculum. Digital technologies make it possible for emerging disciplinary knowledge and understanding of biological processes previously too small, large, slow or fast to be taught. Indeed, much of bioscience can now be effectively taught via digital technology, since its representational and symbolic forms are in digital formats. Purpose: This paper is part of a larger Australian study dealing with the technologies and modalities of learning biology in secondary schools. Sample: The classroom practices of three experienced biology teachers, working in a range of NSW secondary schools, are compared and contrasted to illustrate how the challenges of limited technologies are confronted to seamlessly integrate what is available into a number of molecular genetics lessons to enhance student learning. Design and method: The data are qualitative and the analysis is based on video classroom observations and semi-structured teacher interviews. Results: Findings indicate that if professional development opportunities are provided where the pedagogy of learning and teaching of both the relevant biology and its digital representations are available, then teachers see the immediate pedagogic benefit to student learning. In particular, teachers use ICT for challenging genetic concepts despite limited computer hardware and software availability. Conclusion: Experienced teachers incorporate ICT, however limited, in order to improve the quality of student learning.

  2. A convenient dichotomy: critical eyes on the limits to biological knowledge

    NASA Astrophysics Data System (ADS)

    Milne, Catherine

    2011-06-01

    In The Secret Identity of a Biology Textbook: straight and naturally sexed, Jesse Bazzul and Heather Sykes conduct a case study of a biology textbook as an oppressive instructional material. Using queer theory they explore how the text of the biology textbook produces "truths" about sex, gender, and sexuality. Their analysis is complemented by the Forum papers by Jay Lemke and Francis Broadway who broaden the analysis examining the way that what counts as knowledge in science is a political decision while also encouraging authors, including Bazzul and Sykes, to also look critically at their own theoretical lenses. In this paper I pull together their ideas while exploring cultural contexts for a more nuanced representation of biological knowledge and the politics of what it means to know science.

  3. Role of porosity in filtration. 12: Filtration with sedimentation

    SciTech Connect

    Tiller, F.M.; Hsyung, N.B.; Cong, D.Z.

    1995-05-01

    Filtration on horizontal surfaces facing upward is accompanied by sedimentation. Materials balances that are based solely on the volume of filtrate and neglect sedimentation flux lead to an understatement of the solids deposited in the cake and potentially large errors in calculated values of the average specific resistance {alpha}{sub av} neglecting sedimentation was 3.75 times greater than the value including the effect of sedimentation. In addition to errors due to neglect of sedimentation, CATSCAN studies show that the slurry concentration above the cake increases with time, contrary to usual assumptions. In a manner similar to batch sedimentation in a closed cylinder, characteristics of constant composition arose from the cake surface. Approximate predictions based on a combination of traditional sedimentation and filtration theory were in accord with the CATSCAN data. Existing filtration theory must be substantially modified to account for the effect of sedimentation.

  4. Filtration kinetics of chitosan separation by electrofiltration.

    PubMed

    Gözke, Gözde; Kirschhöfer, Frank; Heissler, Stefan; Trutnau, Mirko; Brenner-Weiss, Gerald; Ondruschka, Jelka; Obst, Ursula; Posten, Clemens

    2012-02-01

    Downstream processing of chitosan requires several technological steps that contribute to the total production costs. Precipitation and especially evaporation are energy-consuming processes, resulting in higher costs and limiting industrial scale production. This study investigated the filtration kinetics of chitosan derived from cell walls of fungi and from exoskeletons of arthropods by electrofiltration, an alternative method, thus reducing the downstream processing steps and costs. Experiments with different voltages and pressures were conducted in order to demonstrate the effect of both parameters on filtration kinetics. The concentration of the biopolymer was obtained by the average factor of 40 by applying an electric field of 4 V/mm and pressure of 4 bars. A series of analytical experiments demonstrated the lack of structural and functional changes in chitosan molecules after electrofiltration. These results, combined with the reduction of energy and processing time, define the investigated method as a promising downstream step in the chitosan production technology.

  5. Filtration Combustion in Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard

    1999-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS, a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized, as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS. Nevertheless, the two applications have much in common, so that what is learned in one application can be used to advantage in the other. We have

  6. Health Benefits of Particle Filtration

    SciTech Connect

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  7. Health Benefits of Particle Filtration

    SciTech Connect

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  8. Links between topology of the transition graph and limit cycles in a two-dimensional piecewise affine biological model.

    PubMed

    Abou-Jaoudé, Wassim; Chaves, Madalena; Gouzé, Jean-Luc

    2014-12-01

    A class of piecewise affine differential (PWA) models, initially proposed by Glass and Kauffman (in J Theor Biol 39:103-129, 1973), has been widely used for the modelling and the analysis of biological switch-like systems, such as genetic or neural networks. Its mathematical tractability facilitates the qualitative analysis of dynamical behaviors, in particular periodic phenomena which are of prime importance in biology. Notably, a discrete qualitative description of the dynamics, called the transition graph, can be directly associated to this class of PWA systems. Here we present a study of periodic behaviours (i.e. limit cycles) in a class of two-dimensional piecewise affine biological models. Using concavity and continuity properties of Poincaré maps, we derive structural principles linking the topology of the transition graph to the existence, number and stability of limit cycles. These results notably extend previous works on the investigation of structural principles to the case of unequal and regulated decay rates for the 2-dimensional case. Some numerical examples corresponding to minimal models of biological oscillators are treated to illustrate the use of these structural principles.

  9. Tailoring wall permeabilities for enhanced filtration

    NASA Astrophysics Data System (ADS)

    Herterich, J. G.; Vella, D.; Field, R. W.; Hankins, N. P.; Griffiths, I. M.

    2015-05-01

    The build-up of contaminants at the wall of cross-flow membrane filtration systems can be detrimental to the operation of such systems because of, amongst other things, the osmotic backflow it may induce. In this paper, we propose a strategy to avoid the negative effects of backflow due to osmosis by using 2D channels bounded by walls with a combination of permeable and impermeable segments. We show that preventing flow through the final portion of the channel can increase the efficiency of filtration and we determine the optimal fraction occupied by the permeable wall that maximizes efficiency. Our analysis uses a combination of numerical techniques and asymptotic analysis in the limit of low wall permeabilities. Finally, we consider how the energy cost of filtration depends on the Péclet number and show that the energy cost per unit of filtered water may be minimized by appropriately choosing both the Péclet number and the permeable-region fraction.

  10. Purification of Carbon Nanotubes by Magnetic Filtration

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Luzzi, D. E.

    2004-03-01

    Great effort has been expended in the development of methods to purify raw carbon nanotube materials by chemical treatment, washing, mechanical filtration or heat treatment in a vacuum or oxidative environment. These techniques are limited by incomplete removal of catalyst nanoparticles and by damage to the nanotubes that often results. Incomplete removal is due to the very nature of the catalyst nanoparticles which are often encapsulated inside a protective amorphous carbon or graphitic coating. We have applied magnetic filtration as a means to effectively remove the ferromagnetic catalyst nanoparticles achieving reductions of >90% by weight. In this method, SWNT solution is filtered through a column containing Fe or Ni beads in the presence of a magnetic field, by which the catalyst is attracted to the beads. We present the efficacy of various purification schemes using magnetic filtration alone, or combined with chemical-based or annealing-based oxidative treatments. The quality of the nanotube materials is quantitatively assessed using Raman spectroscopy, thermo-gravimetric analysis and electron microscopy.

  11. STUDY OF WATER QUALITY IMPROVEMENTS DURING RIVERBANK FILTRATION AT THREE MIDWESTERN UNITED STATES DRINKING WATER UTILITIES

    EPA Science Inventory

    Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration...

  12. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. (American Society of Naturalists Address).

    PubMed

    Losos, Jonathan B

    2011-06-01

    The past 30 years have seen a revolution in comparative biology. Before that time, systematics was not at the forefront of the biological sciences, and few scientists considered phylogenetic relationships when investigating evolutionary questions. By contrast, systematic biology is now one of the most vigorous disciplines in biology, and the use of phylogenies not only is requisite in macroevolutionary studies but also has been applied to a wide range of topics and fields that no one could possibly have envisioned 30 years ago. My message is simple: phylogenies are fundamental to comparative biology, but they are not the be-all and end-all. Phylogenies are powerful tools for understanding the past, but like any tool, they have their limitations. In addition, phylogenies are much more informative about pattern than they are about process. The best way to fully understand the past-both pattern and process-is to integrate phylogenies with other types of historical data as well as with direct studies of evolutionary process.

  13. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.; Halow, J.S.

    1995-12-01

    Successful development of advanced coal-fired power conversion systems often require reliable and efficient cleanup devices which can remove particulate and gaseous pollutants from high-temperature high-pressure gas streams. A novel filtration concept for particulate cleanup has been developed at the Morgantown Energy Technology Center (METC) of the U.S. Department of Energy. The filtration system consists of a fine metal screen filter immersed in a fluidized bed of granular material. As the gas stream passes through the fluidized bed, a layer of the bed granular material is entrained and deposited at the screen surface. This material provides a natural granular filter to separate fine particles from the gas stream passing through the bed. Since the filtering media is the granular material supplied by the fluidized bed, the filter is not subjected to blinding like candle filters. Because only the inflowing gas, not fine particle cohesive forces, maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer is stabilized, it remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limits the thickness of the granular layer on the filter leading to a self-cleaning attribute of the filter. This paper presents work since then on a continuous filtration system. The continuous filtration testing system consisted of a filter, a two-dimensional fluidized-bed, a continuous powder feeder, a laser-based in-line particle counting, sizing, and velocimeter (PCSV), and a continuous solids feeding/bed material withdrawal system. The two-dimensional, transparent fluidized-bed allowed clear observation of the general fluidized state of the granular material and the conditions under which fines are captured by the granular layer.

  14. The biological universe: the twentieth-century extraterrestrial life debate and the limits of science

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does `biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts toanswer these often asked questions form one of the most interesting chapters in the history of science and culture, and The Biological Universe is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a `biophysical cosmology' that seeks confirmation no less than physical views of the universe.

  15. Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: the case of 2-propanol and acetone.

    PubMed

    Huizer, Daan; Huijbregts, Mark A J; van Rooij, Joost G M; Ragas, Ad M J

    2014-08-01

    The coherence between occupational exposure limits (OELs) and their corresponding biological limit values (BLVs) was evaluated for 2-propanol and acetone. A generic human PBPK model was used to predict internal concentrations after inhalation exposure at the level of the OEL. The fraction of workers with predicted internal concentrations lower than the BLV, i.e. the 'false negatives', was taken as a measure for incoherence. The impact of variability and uncertainty in input parameters was separated by means of nested Monte Carlo simulation. Depending on the exposure scenario considered, the median fraction of the population for which the limit values were incoherent ranged from 2% to 45%. Parameter importance analysis showed that body weight was the main factor contributing to interindividual variability in blood and urine concentrations and that the metabolic parameters Vmax and Km were the most important sources of uncertainty. This study demonstrates that the OELs and BLVs for 2-propanol and acetone are not fully coherent, i.e. enforcement of BLVs may result in OELs being violated. In order to assess the acceptability of this "incoherence", a maximum population fraction at risk of exceeding the OEL should be specified as well as a minimum level of certainty in predicting this fraction.

  16. Biological imaging beyond the diffraction limit by saturated excitation (SAX) microscopy

    NASA Astrophysics Data System (ADS)

    Yamanaka, M.; Kawano, S.; Fujita, K.; Smith, N. I.; Kawata, S.

    2009-02-01

    We present an alternative high-resolution fluorescence imaging technique, saturated excitation (SAX) microscopy, for observations of biological samples. In the technique, we saturate the population of fluorescence molecules at the excited state with high excitation intensity. Under this condition, the fluorescence intensity is no longer proportional to the excitation intensity and the relation of the fluorescence and excitation intensity shows strong nonlinearity. In the centre of laser focus, the nonlinear responses induced by the saturation appear notably because of higher excitation intensity. By detecting fluorescence signals from the saturated area, we can push the spatial resolution beyond the diffraction barrier in three dimensions. SAX microscopy can be realized with a simple optics, where a laser intensity modulation sisytem and a lock-in amplifier are simply added to a conventional confocal microscope system. Using the SAX microscope, we demonstrated high-resolution imaging of a biological sample by observing mitochondria in HeLa cells. We also examined the nonlinear response of commercially available dyes under saturated excitation conditions.

  17. Features of saturates mixture filtration in porous medium

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Maikov, I. L.; Molchanov, D. A.; Torchinsky, V. M.; Zaichenko, V. M.

    2015-11-01

    Consideration is given to the filtration process of the two-phase multicomponent mixture in the porous. It is shown that “mixture-porous medium” system becomes self- oscillating one during filtration process under special conditions when there is a region of retrograde condensation on the phase diagram of the mixture. A mathematical model of the hydrocarbon mixtures filtration process of the methane series has been developed and a computer program for calculating hydrodynamic and thermodynamic characteristics of this process under isothermal conditions with phase transitions has been created. Consideration is given to the basic mechanisms influencing the filtration dynamics. Limits of the model applicability are discussed. Condition range for occurring self-oscillatory properties in “mixture-porous medium” system is determined by medium permeability, viscosity of the mixture, initial and boundary filtration conditions. Experimental filtration research of mixtures “methane-n-butane”, “methane-propane-butane”, “methane-pentane” under the thermodynamic conditions corresponding retrograde condensation region on the phase diagram have shown validity of this model. It is argued that any multicomponent mixture having a retrograde condensation region on the phase diagram appears as self-oscillating system under right conditions.

  18. Filtration: An investment in IAQ

    SciTech Connect

    Burroughs, H.E.B.

    1997-08-01

    Air filtration is a forgotten component in the resiliency engineering equation. This under-utilized asset is becoming more understandable and user-friendly, bringing about giant strides in application technology in commercial buildings for IAQ resiliency. Filtration and air cleaning are highly developed and well-established technologies in industrial and specialized application areas. These include a variety of clean room applications as well as a wide array of highly sophisticated industrial needs for varying degrees and types of cleansed air sources. Application areas include pharmaceutical, health care, process control, and electronic protection, to name a few. Yet filtration generally remains an under-utilized technology in the field of indoor environmental quality in commercial buildings. Although source control is clearly the preferred technique for controlling air contaminants, air cleaning can provide a spectrum of valuable and cost-effective tactics to achieve and maintain an acceptable indoor environment.

  19. Long-term performance of filtration layer

    NASA Astrophysics Data System (ADS)

    Radfar, A.; Rockaway, T. D.

    2013-12-01

    Permeable pavements are commonly employed to capture and divert stormwater before it enters the stormwater or sewer conveyance systems. During a storm event, runoff water passes through the permeable pavement surface, enters a storage gallery and finally exfiltrates into the surrounding soil. Thus, the ability of the system to store an appropriate volume of runoff water is an important consideration for stormwater control design. Traditionally, crushed stone or other porous material has been used to provide the necessary interstitial void space to store the runoff water. Unfortunately, over time the available void space within the storage gallery is reduced due to settlement, biological growth and sediment accumulation. This gradual reduction in void space reduces the long-term effectiveness of these stormwater controls by limiting its ability to store and pass runoff water. This study examined the long-term performance of the storage gallery layer with respect to its ability to both store and pass runoff water. As the porosity within the storage gallery decreased, it was anticipated that volumetric water content within the gallery would increase and that time necessary to drain the gallery would increase as well. The effects of the gallery porosity were assessed over a one-year study using both laboratory experimentation and monitoring data from naturally occurring rain events. Changes in gallery porosity were first assessed by correlating monitoring piezometer data with surface infiltration testing; building a relation between know volume of poured water being used for the test and the associated pressure head at the base of the gallery. As a known volume of water enters the system, volume change in the gallery directly correlate to increases in pressure head. Second, the time required for water to permeate through pavers and gallery layer to trigger the TDRs in the filtration layer and the time to drain it from the crushed stone were calculated and compared by

  20. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    PubMed

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent

  1. Filtration Combustion in Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard J.

    2001-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous

  2. The biological universe. The twentieth century extraterrestrial life debate and the limits of science.

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does 'biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts to answer these often asked questions form one of the most interesting chapters in the history of science and culture, and this is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, the author shows how the concept of extraterrestrial intelligence is a world view of its own, a 'biophysical cosmology' that seeks confirmation no less than physical views of the universe.

  3. Using molecular biology to study mycorrhizal fungal community ecology: Limits and perspectives

    PubMed Central

    Chagnon, Pierre-Luc; Bainard, Luke D

    2015-01-01

    Molecular tools have progressively replaced morphological approaches to characterize microbial communities in nature. Arbuscular mycorrhizal (AM) fungi are no exception to this rule. Yet, one challenge posed by these symbionts is that they colonize simultaneously both plant roots and soil, which complicates their detection and quantification. In most studies conducted to date, AM fungal communities have been characterized from roots only, soil only or spores only. Here, we discuss the pitfalls associated to drawing ecological inferences using such datasets. We also conclude by arguing that molecular biology will contribute most to advance knowledge in AM fungal ecology if it is integrated into broader perspectives taking into account the natural history of these organisms. This calls for a better merging of molecular and morphological approaches, and the establishment of intensive, long-term research programs. PMID:26251887

  4. Using molecular biology to study mycorrhizal fungal community ecology: Limits and perspectives.

    PubMed

    Chagnon, Pierre-Luc; Bainard, Luke D

    2015-01-01

    Molecular tools have progressively replaced morphological approaches to characterize microbial communities in nature. Arbuscular mycorrhizal (AM) fungi are no exception to this rule. Yet, one challenge posed by these symbionts is that they colonize simultaneously both plant roots and soil, which complicates their detection and quantification. In most studies conducted to date, AM fungal communities have been characterized from roots only, soil only or spores only. Here, we discuss the pitfalls associated to drawing ecological inferences using such datasets. We also conclude by arguing that molecular biology will contribute most to advance knowledge in AM fungal ecology if it is integrated into broader perspectives taking into account the natural history of these organisms. This calls for a better merging of molecular and morphological approaches, and the establishment of intensive, long-term research programs.

  5. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation.

    PubMed

    Courtens, Emilie N P; Boon, Nico; De Clippeleir, Haydée; Berckmoes, Karla; Mosquera, Mariela; Seuntjens, Dries; Vlaeminck, Siegfried E

    2014-03-01

    With oxygen supply playing a crucial role in an oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor (RBC), its controlling factors were investigated in this study. Disc rotation speeds (1.8 and 3.6rpm) showed no influence on the process performance of a lab-scale RBC, although abiotic experiments showed a significant effect on the oxygenation capacity. Estimations of the biological oxygen uptake rate revealed that 85-89% of the oxygen was absorbed by the microorganisms during the air exposure of the discs. Indeed, increasing the disc immersion (50 to 75-80%) could significantly suppress undesired nitratation, on the short and long term. The presented results demonstrated that nitratation could be controlled by the immersion level and revealed that oxygen control in an OLAND RBC should be predominantly based on the atmospheric exposure percentage of the discs.

  6. Wound modulation after filtration surgery.

    PubMed

    Seibold, Leonard K; Sherwood, Mark B; Kahook, Malik Y

    2012-11-01

    Filtration surgery is the standard invasive procedure for the management of intraocular pressure in advanced glaucoma. The key to a successful outcome is to modulate the normal wound healing cascade that leads to closure of the newly created aqueous outflow pathway. Antifibrotic agents such as mitomycin C and 5-fluorouracil have been increasingly used to modulate the wound healing process and increase surgical success. Although these agents have proven efficacy, they also increase the risk of complications. Efforts have centered on the identification of novel agents and techniques that can influence wound modulation without these complications. We detail new agents and methods under investigation to control wound healing after filtration surgery. PMID:23068975

  7. Filtrates and Residues: Gel Filtration--An Innovative Separation Technique.

    ERIC Educational Resources Information Center

    Blumenfeld, Fred; Gardner, James

    1985-01-01

    Gel filtration is a form of liquid chromatography that separates molecules primarily on the basis of their size. Advantages of using this technique, theoretical aspects, and experiments (including procedures used) are discussed. Several questions for students to answer (with answers) are also provided. (JN)

  8. Size limitation on zebra mussels consumed by freshwater drum may preclude the effectiveness of drum as a biological controller

    USGS Publications Warehouse

    French, John R. P.; Love, Joy G.

    1995-01-01

    The septa lengths of bivalve shells were used to estimate shell lengths of the largest zebra mussels (Dreissena polymorpha) crushed and consumed by freshwater drum (Aplodinotus grunniens) to determine if size limitation could preclude the effectiveness of drum as a biological controller of the zebra mussel. We examined gut samples of drum (273 to 542 mm long) collected from western Lake Erie in 1991, found the largest mussel (shell length = 21.4 mm) in the 11th largest drum (TL = 405 mm), and observed a reduction of mussel size in larger drum. The lack of a relationship between mussel size and drum size for larger specimens suggests that either drum prefer smaller mussels or the gape between the upper and lower pharyngeal teeth restricts drum feeding to zebra mussels of limited size. Although drum may reduce zebra mussel populations, because of the apparent size limitation of prey it is unlikely that drum would be fully effective as a biological controller; thus, this fish should not be introduced beyond its native range for that purpose.

  9. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge

    PubMed Central

    Mathis, Carole; Dulize, Rémi H. J.; Ivanov, Nikolai V.; Alexopoulos, Leonidas; Jeremy Rice, J.; Peitsch, Manuel C.; Stolovitzky, Gustavo; Meyer, Pablo; Hoeng, Julia

    2015-01-01

    Motivation: Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and ‘translating’ those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species. Contact

  10. Highly variable spread rates in replicated biological invasions: fundamental limits to predictability.

    PubMed

    Melbourne, Brett A; Hastings, Alan

    2009-09-18

    Although mean rates of spread for invasive species have been intensively studied, variance in spread rates has been neglected. Variance in spread rates can be driven exogenously by environmental variability or endogenously by demographic or genetic stochasticity in reproduction, survival, and dispersal. Endogenous variability is likely to be important in spread but has not been studied empirically. We show that endogenously generated variance in spread rates is remarkably high between replicated invasions of the flour beetle Tribolium castaneum in laboratory microcosms. The observed variation between replicate invasions cannot be explained by demographic stochasticity alone, which indicates inherent limitations to predictability in even the simplest ecological settings.

  11. Removal of pathogens using riverbank filtration

    NASA Astrophysics Data System (ADS)

    Cote, M. M.; Emelko, M. B.; Thomson, N. R.

    2003-04-01

    .~parvum, Giardia lamblia and proposed surrogates such as B.~subtilis, detailed characterization of site hydrogeology, geochemistry, and water quality (MPA, particles, TOC, ionic strength) are underway. Particle counts are being measured in the bank filtrate to compare particle breakthrough with breakthrough of B.~subtilis spores. Particle counting has been suggested by some regulatory bodies as a real-time measure of in situ filtration performance; however, particle counting is a limited tool for assessing the efficacy of pathogen removal by in situ filtration because it is incapable of identifying discrete particles and can fail to detect microorganisms with refraction indexes close to that of water. Preliminary B.~subtilis removal data from the full scale RBF well and preliminary site characterization, particle count, and B.~subtilis removal data from the RBF test site are presented.

  12. Health benefits of particle filtration

    EPA Science Inventory

    This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...

  13. Filtration combustion: Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  14. MICROBIOLOGICAL REMOVAL BY FILTRATION PROCESSES

    EPA Science Inventory

    Filtration ws originally used to remove contaminants that affect the appearance, odor, and taste of drinking water. Later it was demonstrated that bacteria in drinking water were causative agents of disease. Water treatment technology improved with the addition of disinfection, c...

  15. Improving IAQ Via Air Filtration.

    ERIC Educational Resources Information Center

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  16. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  17. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  18. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  19. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  20. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are

  1. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    PubMed

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection.

  2. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    PubMed

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection. PMID:26149748

  3. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella.

    PubMed

    Mollaei, M; Izadi, H; Šimek, P; Koštál, V

    2016-08-01

    Pistachio twig borer, Kermania pistaciella is an important pest of pistachio trees. It has an univoltine life-cycle and its larvae tunnel and feed inside pistachio twigs for almost 10 months each year. The last larval instars overwinter inside the twigs. Survival/mortality associated with low temperatures during overwintering stage is currently unknown. We found that overwintering larvae of the Rafsanjan (Iran) population of K. pistaciella rely on maintaining a stably high supercooling capacity throughout the cold season. Their supercooling points (SCPs) ranged between -19.4 and -22.7°C from October to February. Larvae were able to survive 24 h exposures to -15°C anytime during the cold season. During December and January, larvae were undergoing quiescence type of dormancy caused probably by low ambient temperatures and/or changes in host tree physiology (tree dormancy). Larvae attain highest cold tolerance (high survival at -20°C) during dormancy, which offers them sufficient protection against geographically and ecologically relevant cold spells. High cold tolerance during dormancy was not associated with accumulation of any low-molecular mass cryoprotective substances. The SCP sets the limit of cold tolerance in pistachio twig borer, meaning that high mortality of overwintering populations can be expected only in the regions or years where or when the temperatures fall below the average larval SCP (i.e., below -20°C). Partial mortality can be expected also when temperatures repeatedly drop close to the SCP on a diurnal basis.

  4. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella.

    PubMed

    Mollaei, M; Izadi, H; Šimek, P; Koštál, V

    2016-08-01

    Pistachio twig borer, Kermania pistaciella is an important pest of pistachio trees. It has an univoltine life-cycle and its larvae tunnel and feed inside pistachio twigs for almost 10 months each year. The last larval instars overwinter inside the twigs. Survival/mortality associated with low temperatures during overwintering stage is currently unknown. We found that overwintering larvae of the Rafsanjan (Iran) population of K. pistaciella rely on maintaining a stably high supercooling capacity throughout the cold season. Their supercooling points (SCPs) ranged between -19.4 and -22.7°C from October to February. Larvae were able to survive 24 h exposures to -15°C anytime during the cold season. During December and January, larvae were undergoing quiescence type of dormancy caused probably by low ambient temperatures and/or changes in host tree physiology (tree dormancy). Larvae attain highest cold tolerance (high survival at -20°C) during dormancy, which offers them sufficient protection against geographically and ecologically relevant cold spells. High cold tolerance during dormancy was not associated with accumulation of any low-molecular mass cryoprotective substances. The SCP sets the limit of cold tolerance in pistachio twig borer, meaning that high mortality of overwintering populations can be expected only in the regions or years where or when the temperatures fall below the average larval SCP (i.e., below -20°C). Partial mortality can be expected also when temperatures repeatedly drop close to the SCP on a diurnal basis. PMID:27063868

  5. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics

    PubMed Central

    Maas, Sybren L.N.; de Vrij, Jeroen; van der Vlist, Els J.; Geragousian, Biaina; van Bloois, Louis; Mastrobattista, Enrico; Schiffelers, Raymond M.; Wauben, Marca H.M.; Broekman, Marike L.D.; Nolte-'t Hoen, Esther N.M.

    2015-01-01

    Nano-sized extracelullar vesicles (EVs) released by various cell types play important roles in a plethora of (patho)physiological processes and are increasingly recognized as biomarkers for disease. In addition, engineered EV and EV-inspired liposomes hold great potential as drug delivery systems. Major technologies developed for high-throughput analysis of individual EV include nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (tRPS) and high-resolution flow cytometry (hFC). Currently, there is a need for comparative studies on the available technologies to improve standardization of vesicle analysis in diagnostic or therapeutic settings. We investigated the possibilities, limitations and comparability of NTA, tRPS and hFC for analysis of tumor cell-derived EVs and synthetic mimics (i.e. differently sized liposomes). NTA and tRPS instrument settings were identified that significantly affected the quantification of these particles. Furthermore, we detailed the differences in absolute quantification of EVs and liposomes using the three technologies. This study increases our understanding of possibilities and pitfalls of NTA, tRPS and hFC, which will benefit standardized and large-scale clinical application of (engineered) EVs and EV-mimics in the future. PMID:25555362

  6. Breakthrough of cyanobacteria in bank filtration.

    PubMed

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p < 0.00001). A strong correlation was observed between the cyanobacterial concentrations in the lake water and in the well water as measured by the phycocyanin probe (p < 0.001, 0.73 ≤ r(2) ≤ 0.94). Log removals from bank filtration estimated from taxonomic counts ranged from 0.96 ± (0.5) and varied according to the species of cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p < 0.05) than larger cells. Travel times from the lakes to the wells were estimated as 2 days for Lake B and 10 days for Lake A. Cyanobacterial species in the wells were most closely related to species found in Lake B. Thus, a travel time of less than 1 week permitted the breakthrough of cyanobacteria to wells. Winter samples demonstrated that cyanobacteria accumulate within bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins.

  7. Breakthrough of cyanobacteria in bank filtration.

    PubMed

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p < 0.00001). A strong correlation was observed between the cyanobacterial concentrations in the lake water and in the well water as measured by the phycocyanin probe (p < 0.001, 0.73 ≤ r(2) ≤ 0.94). Log removals from bank filtration estimated from taxonomic counts ranged from 0.96 ± (0.5) and varied according to the species of cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p < 0.05) than larger cells. Travel times from the lakes to the wells were estimated as 2 days for Lake B and 10 days for Lake A. Cyanobacterial species in the wells were most closely related to species found in Lake B. Thus, a travel time of less than 1 week permitted the breakthrough of cyanobacteria to wells. Winter samples demonstrated that cyanobacteria accumulate within bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins. PMID:27343842

  8. Removal of Brettanomyces bruxellensis from red wine using membrane filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While sulfites help limit growth of the spoilage yeast, Brettanomyces, SO2 has been reported to decrease cell size, thereby potentially decreasing the porosities of filtration membranes required for removal. B. bruxellensis strains B1b and F3 were inoculated into red wines and after 12 days, half th...

  9. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... using the following equation: LRV = LOG10(Cf)−LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  10. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... using the following equation: LRV = LOG10(Cf)−LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  11. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... using the following equation: LRV = LOG10(Cf)−LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  12. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... using the following equation: LRV = LOG10(Cf)−LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  13. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... using the following equation: LRV = LOG10(Cf)−LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  14. Influence of different mesh filter module configurations on effluent quality and long-term filtration performance.

    PubMed

    Loderer, Christian; Wörle, Anna; Fuchs, Werner

    2012-04-01

    Recently, a new type of wastewater treatment system became the focus of scientific research: the mesh filter activated sludge system. It is a modification of the membrane bioreactor (MBR), in which a membrane filtration process serves for sludge separation. The main difference is that a mesh filter is used instead of the membrane. The effluent is not of the same excellent quality as with membrane bioreactors due to the much lager pore sizes of the mesh. Nevertheless, it still resembles the quality of currently used standard treatment system, the activated sludge process. The new process shows high future potential as an alternative where a small footprint of these plants is required (3 times lower footprint than conventional activated sludge systems because of neglecting the secondary clarifier and reducing the biological stage). However, so far only limited information on this innovative process is available. In this study, the effect of different pore sizes and different mesh module configurations on the effluent quality was investigated varying the parameters cross-flow velocity (CFV) and flux rate. Furthermore the long-term filtration performance was studied in a pilot reactor system and results were compared to the full-scale conventional activated sludge process established at the same site. The results demonstrate that the configuration of the filter module has little impact on effluent quality and is only of importance with regard to engineering aspects. Most important for a successful operation are the hydrodynamic conditions within the filter module. The statement "the higher the pore size the higher the effluent turbidity" was verified. Excellent effluent quality with suspended solids between 5 and 15 mg L(-1) and high biological elimination rates (chemical oxygen demand (COD) 90-95%, biological oxygen demand (BOD5) 94-98%, total nitrogen (TN) 70-80%, and ammonium nitrogen (NH(4)-N) 95-99%) were achieved and also compared to those of conventional

  15. Influence of different mesh filter module configurations on effluent quality and long-term filtration performance.

    PubMed

    Loderer, Christian; Wörle, Anna; Fuchs, Werner

    2012-04-01

    Recently, a new type of wastewater treatment system became the focus of scientific research: the mesh filter activated sludge system. It is a modification of the membrane bioreactor (MBR), in which a membrane filtration process serves for sludge separation. The main difference is that a mesh filter is used instead of the membrane. The effluent is not of the same excellent quality as with membrane bioreactors due to the much lager pore sizes of the mesh. Nevertheless, it still resembles the quality of currently used standard treatment system, the activated sludge process. The new process shows high future potential as an alternative where a small footprint of these plants is required (3 times lower footprint than conventional activated sludge systems because of neglecting the secondary clarifier and reducing the biological stage). However, so far only limited information on this innovative process is available. In this study, the effect of different pore sizes and different mesh module configurations on the effluent quality was investigated varying the parameters cross-flow velocity (CFV) and flux rate. Furthermore the long-term filtration performance was studied in a pilot reactor system and results were compared to the full-scale conventional activated sludge process established at the same site. The results demonstrate that the configuration of the filter module has little impact on effluent quality and is only of importance with regard to engineering aspects. Most important for a successful operation are the hydrodynamic conditions within the filter module. The statement "the higher the pore size the higher the effluent turbidity" was verified. Excellent effluent quality with suspended solids between 5 and 15 mg L(-1) and high biological elimination rates (chemical oxygen demand (COD) 90-95%, biological oxygen demand (BOD5) 94-98%, total nitrogen (TN) 70-80%, and ammonium nitrogen (NH(4)-N) 95-99%) were achieved and also compared to those of conventional

  16. Investigation of Microgranular Adsorptive Filtration System

    NASA Astrophysics Data System (ADS)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  17. Validation of sterilizing grade filtration.

    PubMed

    Jornitz, M W; Meltzer, T H

    2003-01-01

    Validation consideration of sterilizing grade filters, namely 0.2 micron, changed when FDA voiced concerns about the validity of Bacterial Challenge tests performed in the past. Such validation exercises are nowadays considered to be filter qualification. Filter validation requires more thorough analysis, especially Bacterial Challenge testing with the actual drug product under process conditions. To do so, viability testing is a necessity to determine the Bacterial Challenge test methodology. Additionally to these two compulsory tests, other evaluations like extractable, adsorption and chemical compatibility tests should be considered. PDA Technical Report # 26, Sterilizing Filtration of Liquids, describes all parameters and aspects required for the comprehensive validation of filters. The report is a most helpful tool for validation of liquid filters used in the biopharmaceutical industry. It sets the cornerstones of validation requirements and other filtration considerations. PMID:14620854

  18. High Temperature Particle Filtration Technology

    SciTech Connect

    Besmann, T.M.

    2001-11-13

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment.

  19. Tailoring Supramolecular Nanofibers for Air Filtration Applications.

    PubMed

    Weiss, Daniel; Skrybeck, Dominik; Misslitz, Holger; Nardini, David; Kern, Alexander; Kreger, Klaus; Schmidt, Hans-Werner

    2016-06-15

    The demand of new materials and processes for nanofiber fabrication to enhance the performance of air filters is steadily increasing. Typical approaches to obtain nanofibers are based on top-down processes such as melt blowing, centrifugal spinning, and electrospinning of polymer materials. However, fabrication of polymer nanofibers is limited with respect to either a sufficiently high throughput or the smallest achievable fiber diameter. This study reports comprehensively on a fast and simple bottom-up process to prepare supramolecular nanofibers in situ inside viscose/polyester microfiber nonwovens. Here, selected small molecules of the materials class of 1,3,5-benzenetrisamides are employed. The microfiber-nanofiber composites exhibit a homogeneous nanofiber distribution and morphology throughout the entire nonwoven scaffold. Small changes in molecular structure and processing solvent have a strong influence on the final nanofiber diameter and diameter distribution and, consequently, on the filtration performance. Choosing proper processing conditions, microfiber-nanofiber composites with surprisingly high filtration efficiencies of particulate matter are obtained. In addition, the microfiber-nanofiber composite integrity at elevated temperatures was determined and revealed that the morphology of supramolecular nanofibers is maintained compared to that of the utilized polymer nonwoven. PMID:27183242

  20. Centrifugal membrane filtration -- Task 9

    SciTech Connect

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  1. Hot gas filtration technical issues

    SciTech Connect

    Pontius, D.H.

    1995-11-01

    The primary objective of this research has been to provide an understanding of factors pertinent to the development of an effective filtration system for removing particles from high-temperature, high-pressure gas streams in advanced power generation systems under development by the Department of Energy. Information used to define the filtration system issues was compiled from the Morgantown Energy Technology Center (METC) Contractors Conferences, specific tasks assigned to Southern Research Institute, meetings with METC personnel and contractors, and other conferences and workshops organized by METC. Initial research and pilot scale installations have shown that there are some potential problem areas. Thick ash deposits have formed, bridging from passive surfaces to the filter material and between filter candles. A great number of ceramic filters have broken in various experimental and demonstration devices, especially during long-term testing. This paper reviews particulate characteristics (effects on filtration processes, conventional fly ash, gasifier char, PFBC ash, and detailed studies of PFBC ash) and ceramic filter materials (general issues, thermal stress, clay-bonded SiC filter materials, and monolithic ceramic materials).

  2. Cake Filtration in Viscoelastic Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Surý, Alexander; Machač, Ivan

    2009-07-01

    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  3. [Biological control of Lymnaea truncatula Müller in Haute-Vienne, France. Apropos of several factors limiting its application].

    PubMed

    Rondelaud, D

    1981-01-01

    The author analyzes the positive and negative results of a year of biological control by predation on 49 stations of Lymnaea truncatula in Haute-Vienne, France. The negative results can be explained by the effects of 6 natural factors: 1--the rainfall over the habitats during the first 10 days of the experimentation. The rate of natural mortality and predation of L. truncatula is reduced at values above 8 mm rainfall. The predatory snails leave the sodden soil and do not consume L. truncatula; 2--the presence of stone blocks on the habitat. These blocks constitute shelters for L. truncatula; 3--the quality of the plant cover. Rushes and graminaceae preferentially must be used; 4--the previous treatment of the habitat by a molluscicide (copper sulphate) just before the application of biological control. The predators preferentially consume the more poisoned L. truncatula and forsake the more healthy snails; 5--the presence of phoretic acaridae on the predators which die; 6--the behaviour of sheep on the habitats situated on pastures with steep slopes. Their repeated passages cause the squashing of the predators. The proposed solutions are discussed in the limits of the region of experimentation.

  4. Coronary heart disease, chronic inflammation, and pathogenic social hierarchy: a biological limit to possible reductions in morbidity and mortality.

    PubMed Central

    Wallace, Rodrick; Wallace, Deborah; Wallace, Robert G.

    2004-01-01

    We suggest that a particular form of social hierarchy, which we characterize as "pathogenic", can, from the earliest stages of life, exert a formal analog to evolutionary selection pressure, literally writing a permanent developmental image of itself upon immune function as chronic vascular inflammation and its consequences. The staged nature of resulting disease emerges "naturally" as a rough analog to punctuated equilibrium in evolutionary theory, although selection pressure is a passive filter rather than an active agent, like structured psychosocial stress. Exposure differs according to the social constructs of race, class, and ethnicity, accounting in large measure for observed population-level differences in rates of coronary heart disease across industrialized societies. American Apartheid, which enmeshes both majority and minority communities in a social construct of pathogenic hierarchy, appears to present a severe biological limit to continuing declines in coronary heart disease for powerful as well as subordinate subgroups: "Culture"--to use the words of the evolutionary anthropologist Robert Boyd--"is as much a part of human biology as the enamel on our teeth". PMID:15160975

  5. Relation Between Filtration and Soil Consolidation Theories

    NASA Astrophysics Data System (ADS)

    Strzelecki, Tomasz; Strzelecki, Michał

    2015-03-01

    This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot's and Terzaghi's soil consolidation models, which has a bearing on the use of the methods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equations should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through a porous medium and an interpretation of the filtration model effective parameters in this case are presented.

  6. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  7. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  8. Nonwoven filtration mat production by electrospinning method

    NASA Astrophysics Data System (ADS)

    Lackowski, M.; Krupa, A.; Jaworek, A.

    2011-06-01

    The filtration of nanoparticles and submicron particles is an important problem in industry and health protection. One of the methods which can be used to solve this problem is to use nonwoven nanofibrous filters. The process of producing filtration mats of different thickness by electrospinning is presented in the paper. The experimental results on filtration properties of nanofibrous filter mat, including the efficiency of removal of cigarette smoke particles from a gas are also presented.

  9. Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  10. Pathogen filtration to control plant disease outbreak in greenhouse production

    NASA Astrophysics Data System (ADS)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    the Pythium infection than fungicide application, and nutrient limitation in crops was observed under filtration by activated carbon. Overall, our results suggests that filtration of irrigation water can be effective in reducing crop disease outbreaks, while decreasing the use of fungicides and thus promoting the crop and environmental health.

  11. Biological effects of weak blast waves and safety limits for internal organ injury in the human body.

    PubMed

    Yang, Z; Wang, Z; Tang, C; Ying, Y

    1996-03-01

    One hundred and seventeen adult sheep of both sexes, each weighing 15.2-42.4 kg, were used for this study. The purpose of this study was to investigate the relationship of the physical parameters of the waves to internal organ injury by exposing sheep to weak blast waves in TNT (trinitrotoluene) explosions, biological shock tube, and gun muzzle blasts. The results showed that the organ most sensitive to the TNT explosion was the lungs, whereas the upper respiratory tract was most sensitive to muzzle blast waves. The injury thresholds of overpressure were 29.0, 29.5, and 41.2 kPa for upper respiratory tract, lungs, and gastrointestinal tract respectively at a single exposure. Repeated exposure to 60 blasts reduced the injury threshold of the internal organs. The injury thresholds for upper respiratory tract, lungs, and gastrointestinal tract were 21.0, 18.0, and 40.4 kPa, respectively. The duration of overpressure of weak blast waves was 2.4-4.2 milliseconds, which did not significantly affect the severity of injury. The safety limits of weak blast waves to internal organ injury of human body were as follows: Ps = 37-3Ln.Tc.N/4(Tc.N < or = 1000) and Ps = 20.4(Tc.N > 1000). The results suggest that repeated exposures decrease the injury threshold of the internal organs. The safety limits proposed could protect 90% of the exposed population against internal organ injury caused by weak blast waves. PMID:8606431

  12. Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering.

    PubMed

    McQualter, Richard B; Bellasio, Chandra; Gebbie, Leigh K; Petrasovits, Lars A; Palfreyman, Robin W; Hodson, Mark P; Plan, Manuel R; Blackman, Deborah M; Brumbley, Stevens M; Nielsen, Lars K

    2016-02-01

    In planta production of the bioplastic polyhydroxybutyrate (PHB) is one important way in which plant biotechnology can address environmental problems and emerging issues related to peak oil. However, high biomass C4 plants such as maize, switch grass and sugarcane develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels in leaves increase. In this study, we explore limitations to PHB accumulation in sugarcane chloroplasts using a systems biology approach, coupled with a metabolic model of C4 photosynthesis. Decreased assimilation was evident in high PHB-producing sugarcane plants, which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle decrease in the C/N ratio was found which was not associated with a decrease in total protein content. An increase in amino acids used for nitrogen recapture was also observed. Based on the accumulation of substrates of ATP-dependent reactions, we hypothesized ATP starvation in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. The disruption in ATP supply in bundle sheath cells appears to be linked to the physical presence of the PHB polymer which may disrupt photosynthesis by scattering photosynthetically active radiation and/or physically disrupting thylakoid membranes.

  13. Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy

    USGS Publications Warehouse

    Meibom, A.; Stage, M.; Wooden, J.; Constantz, B.R.; Dunbar, R.B.; Owen, A.; Grumet, N.; Bacon, C.R.; Chamberlain, C.P.

    2003-01-01

    In thermodynamic equilibrium with sea water the Sr/Ca ratio of aragonite varies predictably with temperature and the Sr/Ca ratio in coral have thus become a frequently used proxy for past Sea Surface Temperature (SST). However, biological effects can offset the Sr/Ca ratio from its equilibrium value. We report high spatial resolution ion microprobe analyses of well defined skeletal elements in the reef-building coral Porites lutea that reveal distinct monthly oscillations in the Sr/Ca ratio, with an amplitude in excess of ten percent. The extreme Sr/Ca variations, which we propose result from metabolic changes synchronous with the lunar cycle, introduce variability in Sr/Ca measurements based on conventional sampling techniques well beyond the analytical precision. These variations can limit the accuracy of Sr/Ca paleothermometry by conventional sampling techniques to about 2??C. Our results may help explain the notorious difficulties involved in obtaining an accurate and consistent calibration of the Sr/Ca vs. SST relationship.

  14. Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering.

    PubMed

    McQualter, Richard B; Bellasio, Chandra; Gebbie, Leigh K; Petrasovits, Lars A; Palfreyman, Robin W; Hodson, Mark P; Plan, Manuel R; Blackman, Deborah M; Brumbley, Stevens M; Nielsen, Lars K

    2016-02-01

    In planta production of the bioplastic polyhydroxybutyrate (PHB) is one important way in which plant biotechnology can address environmental problems and emerging issues related to peak oil. However, high biomass C4 plants such as maize, switch grass and sugarcane develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels in leaves increase. In this study, we explore limitations to PHB accumulation in sugarcane chloroplasts using a systems biology approach, coupled with a metabolic model of C4 photosynthesis. Decreased assimilation was evident in high PHB-producing sugarcane plants, which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle decrease in the C/N ratio was found which was not associated with a decrease in total protein content. An increase in amino acids used for nitrogen recapture was also observed. Based on the accumulation of substrates of ATP-dependent reactions, we hypothesized ATP starvation in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. The disruption in ATP supply in bundle sheath cells appears to be linked to the physical presence of the PHB polymer which may disrupt photosynthesis by scattering photosynthetically active radiation and/or physically disrupting thylakoid membranes. PMID:26015295

  15. Benchtop isolation and characterization of functional exosomes by sequential filtration.

    PubMed

    Heinemann, Mitja L; Ilmer, Matthias; Silva, Leslie P; Hawke, David H; Recio, Alejandro; Vorontsova, Maria A; Alt, Eckhard; Vykoukal, Jody

    2014-12-01

    Early and minimally invasive detection of malignant events or other pathologies is of utmost importance in the pursuit of improved patient care and outcomes. Recent evidence indicates that exosomes and extracellular vesicles in serum and body fluids can contain nucleic acid, protein, and other biomarkers. Accordingly, there is great interest in applying these clinically as prognostic, predictive, pharmacodynamic, and early detection indicators. Nevertheless, existing exosome isolation methods can be time-consuming, require specialized equipment, and/or present other inefficiencies regarding purity, reproducibility and assay cost. We have developed a straightforward, three-step protocol for exosome isolation of cell culture supernatants or large volumes of biofluid based on sequential steps of dead-end pre-filtration, tangential flow filtration (TFF), and low-pressure track-etched membrane filtration that we introduce here. Our approach yields exosome preparations of high purity and defined size distribution and facilitates depletion of free protein and other low-molecular-weight species, extracellular vesicles larger than 100nm, and cell debris. Samples of exosomes prepared using the approach were verified morphologically by nanoparticle tracking analysis and electron microscopy, and mass spectrometry analyses confirmed the presence of previously reported exosome-associated proteins. In addition to being easy-to-implement, sequential filtration yields exosomes of high purity and, importantly, functional integrity as a result of the relatively low-magnitude manipulation forces employed during isolation. This answers an unmet need for preparation of minimally manipulated exosomes for investigations into exosome function and basic biology. Further, the strategy is amenable to translation for clinical exosome isolations because of its speed, automatability, scalability, and specificity for isolating exosomes from complex biological samples. PMID:25458527

  16. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface...

  17. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface...

  18. Biological nutrient removal with limited organic matter using a novel anaerobic–anoxic/oxic multi-phased activated sludge process

    PubMed Central

    Naseer, Rusul; Abualhail, Saad; Xiwu, Lu

    2012-01-01

    An anaerobic–anoxic/oxic (A2/O) multi-phased biological process called “phased isolation tank step feed technology (PITSF)” was developed to force the oscillation of organic and nutrient concentrations in process reactors. PITSF can be operated safely with a limited carbon source in terms of low carbon requirements and aeration costs whereas NAR was achieved over 95% in the last aerobic zone through a combination of short HRT and low DO levels. PCR assay was used for XAB quantification to correlate XAB numbers with nutrient removal. PCR assays showed, high NAR was achieved at XAB population 5.2 × 108 cells/g MLVSS in response to complete and partial nitrification process. It was exhibited that low DO with short HRT promoted XAB growth. Simultaneous nitrification and denitrification (SND) via nitrate were observed obviously, SND rate was between 69–72%, at a low DO level of 0.5 mg/l in the first aerobic tank during main phases and the removal efficiency of TN, NH4+-N, COD, TP was 84.7 .97, 88.3 and 96% respectively. The removal efficiencies of TN, NH4+-N, and TP at low C/N ratio and DO level were 84.2, 98.5 and 96.9% respectively which were approximately equal to the complete nitrification–denitrification with the addition of external carbon sources at a normal DO level of (1.5–2.5 mg/l). PMID:23961214

  19. Tertiary filtration in small wastewater treatment plants.

    PubMed

    Naddeo, V; Belgiorno, V

    2007-01-01

    Tertiary filtration can be proposed in small wastewater treatment plants with impact on protected water bodies. Rotating disk filters may be adopted, in respect to conventional sand filters, when low availability of space and low investment costs are the prevailing conditions. The overall objective of this research was to evaluate the filtration efficiency of rotating disk filters; to compare effectiveness with traditional sand filters; to analyse thoroughly the importance of particle size distribution in wastewater tertiary filtration. In the experimental activity, conventional wastewater quality parameters were investigated and particle size distribution (PSD) was characterized to discuss the filter effectiveness. The effect of design and operation parameters of tertiary filters were discussed related to particle removal curves derived from particles counts. Analysis of particle size distribution can be very useful to help comprehension of filtration processes, design of filtration treatments and to decide the best measures to improve filter performance.

  20. Using Information and Communication Technology (ICT) to the Maximum: Learning and Teaching Biology with Limited Digital Technologies

    ERIC Educational Resources Information Center

    Van Rooy, Wilhelmina S.

    2012-01-01

    Background: The ubiquity, availability and exponential growth of digital information and communication technology (ICT) creates unique opportunities for learning and teaching in the senior secondary school biology curriculum. Digital technologies make it possible for emerging disciplinary knowledge and understanding of biological processes…

  1. Derivation of total filtration thickness for diagnostic x-ray source assembly

    NASA Astrophysics Data System (ADS)

    Sekimoto, Michiharu; Katoh, Yoh

    2016-08-01

    The method defined by the IEC 60522 for determining the inherent filtration of an x-ray source device is applicable only for a limited range of tube voltage. Because the users cannot legally remove the x-ray movable diaphragm of the x-ray source device, total filtration, which is the sum of the additional filtration diaphragm movable for specific filtration and x-ray, cannot be measured. We develop a method for simply obtaining the total filtration for different tube voltage values. Total filtration can be estimated from a ratio R‧ of the air kerma Kx+T\\prime , which is measured with an Al plate with thickness T, and Kx\\prime measured without an Al plate. The conditions of the target material of the x-ray source device are then entered into the Report 78 Spectrum Processor to calculate the air kerma K x and K x+T for Al thicknesses x and (x  +  T), respectively, to obtain R. The minimum value of x, which is the difference between the R and R‧, is the total filtration of the x-ray source device. The total filtration calculated using the industrial x-ray source device was within  ±1% in the 40–120 kV range. This method can calculate the total filtration using air kerma measurements with and without the Al plate. Therefore, the load on the x-ray tube can be reduced, and preparation of multiple Al plates is not necessary. Furthermore, for the 40–120 kV tube voltage range, the user can easily measure the total filtration.

  2. Derivation of total filtration thickness for diagnostic x-ray source assembly.

    PubMed

    Sekimoto, Michiharu; Katoh, Yoh

    2016-08-21

    The method defined by the IEC 60522 for determining the inherent filtration of an x-ray source device is applicable only for a limited range of tube voltage. Because the users cannot legally remove the x-ray movable diaphragm of the x-ray source device, total filtration, which is the sum of the additional filtration diaphragm movable for specific filtration and x-ray, cannot be measured. We develop a method for simply obtaining the total filtration for different tube voltage values. Total filtration can be estimated from a ratio R' of the air kerma [Formula: see text], which is measured with an Al plate with thickness T, and [Formula: see text] measured without an Al plate. The conditions of the target material of the x-ray source device are then entered into the Report 78 Spectrum Processor to calculate the air kerma K x and K x+T for Al thicknesses x and (x  +  T), respectively, to obtain R. The minimum value of x, which is the difference between the R and R', is the total filtration of the x-ray source device. The total filtration calculated using the industrial x-ray source device was within  ±1% in the 40-120 kV range. This method can calculate the total filtration using air kerma measurements with and without the Al plate. Therefore, the load on the x-ray tube can be reduced, and preparation of multiple Al plates is not necessary. Furthermore, for the 40-120 kV tube voltage range, the user can easily measure the total filtration.

  3. 10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  4. 12. View west of access bridge to top of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View west of access bridge to top of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  5. 14. View of damage to southeast corner of filtration building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of damage to southeast corner of filtration building. Note construction of concrete over brick. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  6. 32. Piping under central corridor of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Piping under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. 8. Detail view of southwest corner of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view of southwest corner of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  8. 13. View of west entrance to central corridor of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of west entrance to central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  9. 7. View east of southeast corner of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View east of southeast corner of filtration bed building. Laboratory building is at center left of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  10. 4. View south of rear of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View south of rear of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  11. 31. Piping under central corridor of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Piping under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  12. 11. View of east entry to central corridor of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of east entry to central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  13. 1. Perspective view southwest of filtration bed with earth mounded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective view southwest of filtration bed with earth mounded over facility. Armory Street appears in the foreground. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  14. Vulnerability of bank filtration systems to climate change.

    PubMed

    Sprenger, C; Lorenzen, G; Hülshoff, I; Grützmacher, G; Ronghang, M; Pekdeger, A

    2011-01-15

    Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important.

  15. Modeling of compressible cake filtration

    SciTech Connect

    Abbound, N.M. . Dept. of Civil Engineering); Corapcioglu, M.Y. . Dept. of Civil Engineering)

    1993-10-15

    The transport of suspended solid particles in a liquid through porous media has importance from the viewpoint of engineering practice and industrial applications. Deposition of solid particles on a filter cloth or on a pervious porous medium forms the filter cakes. Following a literature survey, a governing equation for the cake thickness is obtained by considering an instantaneous material balance. In addition to the conservation of mass equations for the liquid, and for suspended and captured solid particles, functional relations among porosity, permeability, and pressure are obtained from literature and solved simultaneously. Later, numerical solutions for cake porosity, pore pressure, cake permeability, velocity of solid particles, concentration of suspended solid particles, and net rate of deposition are obtained. At each instant of time, the porosity decreases throughout the cake from the surface to the filter septum where it has the smallest value. As the cake thickness increases, the trends in pressure variation are similar to data obtained by other researchers. This comparison shows the validity of the theory and the associated solution presented. A sensitivity analysis shows higher pressure values at the filter septum for a less pervious membrane. Finally, a reduction in compressibility parameter provides a thicker cake, causes more particles to be captured inside the cake, and reduces the volumetric filtrate rate. The increase of solid velocity with the reduction in compressibility parameter shows that more rigid cakes compress less.

  16. Filtrating forms of soil bacteria

    NASA Astrophysics Data System (ADS)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  17. GPS Data Filtration Method for Drive Cycle Analysis Applications

    SciTech Connect

    Duran, A.; Earleywine, M.

    2013-02-01

    When employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the raw data samples, such as sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which limit the quality of field data for use in downstream applications. Unaddressed, these errors significantly impact the reliability of source data and limit the effectiveness of traditional drive-cycle analysis approaches and vehicle simulation software. Without reliable speed and time information, the validity of derived metrics for drive cycles, such as acceleration, power, and distance, become questionable. This study explores some of the common sources of error present in raw onboard GPS data and presents a detailed filtering process designed to correct for these issues. Test data from both light and medium/heavy duty applications are examined to illustrate the effectiveness of the proposed filtration process across the range of vehicle vocations. Graphical comparisons of raw and filtered cycles are presented, and statistical analyses are performed to determine the effects of the proposed filtration process on raw data. Finally, an evaluation of the overall benefits of data filtration on raw GPS data and present potential areas for continued research is presented.

  18. Estimating Glomerular Filtration Rate in Older People

    PubMed Central

    Fusco, Sergio; Corica, Francesco; Marino, Antonio; Maggio, Marcello; Mari, Vincenzo; Corsonello, Andrea

    2014-01-01

    We aimed at reviewing age-related changes in kidney structure and function, methods for estimating kidney function, and impact of reduced kidney function on geriatric outcomes, as well as the reliability and applicability of equations for estimating glomerular filtration rate (eGFR) in older patients. CKD is associated with different comorbidities and adverse outcomes such as disability and premature death in older populations. Creatinine clearance and other methods for estimating kidney function are not easy to apply in older subjects. Thus, an accurate and reliable method for calculating eGFR would be highly desirable for early detection and management of CKD in this vulnerable population. Equations based on serum creatinine, age, race, and gender have been widely used. However, these equations have their own limitations, and no equation seems better than the other ones in older people. New equations specifically developed for use in older populations, especially those based on serum cystatin C, hold promises. However, further studies are needed to definitely accept them as the reference method to estimate kidney function in older patients in the clinical setting. PMID:24772439

  19. Clinostats and centrifuges: Their use, value, and limitations in gravitational biological research; Symposium, Washington, Oct. 19, 1991, Report

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor); Todd, Paul (Editor); Powers, Janet V. (Editor)

    1992-01-01

    The present volume addresses physical phenomena and effects associated with clinostat and centrifuge operations as well as their physiological effects. Particular attention is given to the simulation of the gravity conditions on the ground, the internal dynamics of slowly rotating biological systems, and qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. Also discussed are the development and use of centrifuges in gravitational biology, the use of centrifuges in plant gravitational biology and a comparison of ground-based and flight experiment results, the ability of clinostat to mimic the effect of microgravity on plant cells and organs, and the impact of altered gravity conditions on early EGF-induced signal transduction in human epidermal A431 cells.

  20. Filtration in coal liquefaction - Influence of filtration conditions in non-hydrogenated systems

    NASA Astrophysics Data System (ADS)

    Clarke, J. W.; Rantell, T. D.

    1980-01-01

    A series of experiments has been carried out to study the effects of filtration conditions upon the rate of filtration of non-hydrogenated coal digests. The results show the dependence of cake resistivity on both the filtration temperature and pressure. Filter cakes were found to be compressible, resulting in smaller increases in rate with increasing pressure than with incompressible cakes. The filtration temperature determines the packing of residual solids in the cake which in turn affects the cake resistivity. An empirical relation has been derived between filtration temperature and resistivity. With increasing temperature there is an increase in filtration rate due to the reduced viscosity, but a reduction owing to a higher packing density of solids in the filter cake.

  1. New developments in slow sand filtration

    SciTech Connect

    Fox, K.R.

    1993-01-01

    Recent regulations promulgated by the U.S. Environmental Protection Agency (EPA), including the Surface Water Treatment Rule, have helped to renew the interest in the use of slow sand filtration (SSF) for treating surface waters for small communities. Slow sand filtration is not a new process, but is one that has been used to treat water effectively since the early 1800's. Interest in slow sand filtration in the United States has increased dramatically in the past thirteen years. New analytical techniques, such as particle counting, improved turbidity, improved growth media for microbiological analysis, and advanced techniques for measuring organic constituents allowed for more detailed studies than were possible in the early 1900's. The new work led to the publication of design manuals and task committee reports describing slow sand filtration in detail.

  2. Dust filtration in hot coal gas

    SciTech Connect

    Schreurs, H.C.E.

    1995-12-31

    Cleaning up coal gas at high temperatures means a fundamental change to the complete system of an Integrated Coal Gasification Combined Cycle. Coal ash is one of the components that asks for a complete different kind of treating. Several types of dust filtration are available for cleaning up hot coal gas. Several difficulties arise when cleaning up hot coal gas for dust. The paper will deal with the possibilities of the dust cleaning (place, technics), the difficulties (material, efficiencies, residue handling) and the cleaning conditions. It will given an overview of the boundary conditions of dust filtration with respect to slag and ash formation in the gasifier and the coal gas treatment and use after the filtration. Evaluation will show the development path for hot dust filtration, divided into several steps for correct risk analysis. Both former system and feasibility studies on hot gas clean up and ongoing studies and research, all conducted under Novem-assignment, will be reported on.

  3. Modeling the filtration ability of stockpiled filtering facepiece

    NASA Astrophysics Data System (ADS)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  4. Improving hot gas filtration behavior in PFBC power plants

    SciTech Connect

    Romeo, L.M.; Gil, A.; Cortes, C.

    1999-07-01

    According to a previous paper, a laboratory-scale cold flow model of the hot gas filtration system in Escatron PFBC power plant has been built. The main objectives were to establish the validity of the scaling laws for cyclone separator systems (cyclone and dipleg) and to perform detailed room temperature studies in a rapid and cost effective manner. In Escatron PFBC power plant, the hot gas filtration equipment is a two-stage process performed in nine streams between the fluidized bed and the gas turbine. Due to the unsteadiness in the dipleg and the suction nozzle, and the effect of sintered deposit, the cyclone performance is modified. The performances of cyclone separator system and suction nozzle diplegs are scarcely reported in the open literature. This paper presents the results of a detailed research in which some important conclusions of well known studies about cyclones are verified. Also remarkable is the increase in cyclone efficiency and decrease in pressure drop when the solid load to the cyclone is increased. The possibility to check the fouling by means of pressure drop has not been previously addressed. Finally, the influences of gas input velocity to the cyclone, the transport gas to the ash conveying lines, the solid load and the cyclone fouling have been analyzed. This study has allowed characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements as the two suction nozzle dipleg, pointing out important conclusions for the filtration process in PFBC power plants.

  5. 6. Detail view northeast of rear of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail view northeast of rear of filtration bed building. Note monitor roof with clerestory windows over central corridor between filtration beds at center right of photograph. Laboratory building is at center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  6. 5. View northeast of rear of filtration bed building. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View northeast of rear of filtration bed building. Note monitor roof with clerestory windows over central corridor between filtration beds at center right of photograph. Laboratory building is at extreme center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. 10. View west of east entry to filtration beds. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View west of east entry to filtration beds. Note monitor roof and clerestory windows over central corridor. Laboratory building is sited over the center of the filtration bed building at extreme left center of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  8. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined... diatomaceous earth filtration you are not required to meet the combined filter effluent turbidity limits...

  9. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined... diatomaceous earth filtration you are not required to meet the combined filter effluent turbidity limits...

  10. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined... diatomaceous earth filtration you are not required to meet the combined filter effluent turbidity limits...

  11. DISINFECTION BY-PRODUCT CONTROL THROUGH BIOLOGICAL FILTRATION

    EPA Science Inventory

    Disinfection by-product (DBP) control through biofiltration is defined as the removal of DBP precursor mateterial (PM) by bacteria attached to the filte nedia. The PM consists of dissolved organic matter (DOM) and is utilized by the filter bacteria as a substrate for cell mainten...

  12. Novel procedures accurately measure drilling mud dynamic filtration

    SciTech Connect

    Chenevert, M.E.; Al-Abri, S. ); Jin, L. )

    1994-04-25

    New equipment and test procedures can determine dynamic mud cake properties such as equilibrium cake thickness, porosity, permeability, compressibility, and erosion resistance. The following were developed to study dynamic filtration: a dynamic filtration cell; a recommended filtration medium; a mud cake thickness device; mud cake porosity determination method; calculation methods for shear rate determination beneath a rotating cone; determination of equilibrium cake thickness, erosion resistance, and compressibility; and preferred filtration display techniques. The article describes the equipment, test procedures, and typical filtration results.

  13. COMPARATIVE EVALUATION OF R3f GARNET BEAD FILTRATION AND MULTIMEDIA FILTRATION SYSTEMS; FINAL REPORT

    EPA Science Inventory

    This report summarizes the results of tests conducted to date at the EPA T&E Facility on the R3f filtration system utilizing fine beads (such as garnet beads or glass beads) and a conventional multimedia filtration system. Both systems have been designed and built by Enprotec, a...

  14. Filtration performance of microporous ceramic supports.

    PubMed

    Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed

    2008-04-24

    The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).

  15. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  16. The Fundamental Limit and Origin of Complexity in Biological Systems: A New Model for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.; Amoroso, Paul J.

    2004-08-01

    Generally unicellular prokaryotes are considered the most fundamental form of living system. Many researchers include viruses since they commandeer cellular machinery in their replication; while others insist viruses are merely complex infective proteins. New biological principles are introduced suggesting that even the prion, the infectious protein responsible for transmissible spongiform encephalopathies, qualifies as the most fundamental form of life; and remains in general concordance with the six-point definition of living systems put forth by Humberto Maturana and his colleagues in their original characterization of living organisms as a class of complex self-organized autopoietic systems in 1974.

  17. Limitations of an optimum sustainable population or potential biological removal approach for conserving marine mammals: Pacific walrus case study.

    PubMed

    Robards, Martin D; Burns, John J; Meek, Chanda L; Watson, Annette

    2009-10-01

    Decision rules are the agreed-upon points at which specific management interventions are initiated. For marine mammal management under the U.S. Marine Mammal Protection Act (MMPA), decision rules are usually based on either a numeric population or biological-removal approach. However, for walrus and other ice-associated pinnipeds, the inability to reliably assess population numbers or biological removals highlights a significant gap in the MMPA, particularly when the Arctic environment is rapidly changing. We describe the MMPA's ecosystem-based management goals, and why managers have bypassed these goals in favor of an approach that depends upon numerical population assessment. We then revisit the statute's primary goals in light of current knowledge about the Pacific walrus ecosystem and new developments in environmental governance. We argue that to monitor and respond to changes in the walrus ecosystem, decision rules should be based on scientific criteria that depend less on the currently-impractical goal of accurately enumerating population size and trends, or removals from that population. Rather, managers should base decisions on ecological needs and observed ecological changes. To implement this approach would require an amendment to the MMPA that supports filling the gap in management with achievable decision rules. Alternatively, walrus and other ice-associated pinnipeds will remain largely unmanaged during a period of profound environmental change. PMID:19783356

  18. Limitations of an optimum sustainable population or potential biological removal approach for conserving marine mammals: Pacific walrus case study.

    PubMed

    Robards, Martin D; Burns, John J; Meek, Chanda L; Watson, Annette

    2009-10-01

    Decision rules are the agreed-upon points at which specific management interventions are initiated. For marine mammal management under the U.S. Marine Mammal Protection Act (MMPA), decision rules are usually based on either a numeric population or biological-removal approach. However, for walrus and other ice-associated pinnipeds, the inability to reliably assess population numbers or biological removals highlights a significant gap in the MMPA, particularly when the Arctic environment is rapidly changing. We describe the MMPA's ecosystem-based management goals, and why managers have bypassed these goals in favor of an approach that depends upon numerical population assessment. We then revisit the statute's primary goals in light of current knowledge about the Pacific walrus ecosystem and new developments in environmental governance. We argue that to monitor and respond to changes in the walrus ecosystem, decision rules should be based on scientific criteria that depend less on the currently-impractical goal of accurately enumerating population size and trends, or removals from that population. Rather, managers should base decisions on ecological needs and observed ecological changes. To implement this approach would require an amendment to the MMPA that supports filling the gap in management with achievable decision rules. Alternatively, walrus and other ice-associated pinnipeds will remain largely unmanaged during a period of profound environmental change.

  19. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    SciTech Connect

    Shehabi, Arman; Ganguly, Srirupa; Gundel, Lara A.; Horvath, Arpad; Kirchstetter, Thomas W.; Lunden, Melissa M.; Tschudi, William; Gadgil, Ashok J.; Nazaroff, William W

    2009-06-05

    Economizer use in data centers is an energy efficiency strategy that could significantly limit electricity demand in this rapidly growing economic sector. Widespread economizer implementation, however, has been hindered by potential equipment reliability concerns associated with exposing information technology equipment to particulate matter of outdoor origin. This study explores the feasibility of using economizers in data centers to save energy while controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at an operating northern California data center equipped with an economizer under varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to levels when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh any increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design.

  20. To be or not IP? Exploring limits within patent law for the constitutionalization of intellectual property rights and the governance of synthetic biology in human health.

    PubMed

    Schneider, Ingrid

    2012-01-01

    The article explores limits within patent law for the constitutionalization of Intellectual Property Rights and the governance of synthetic biology in human health. To this end, it starts by explaining the inherent rationales of two fundamental limits within European patent law, namely (1) the boundary between discovery and invention (Art. 52 EPC); (2) the ordre public and public policy clause (Art. 53 (a) EPC). Both these exclusions from patent eligibility bear a normative function but rely on opposing inherent logics, functions, and regulatory aims. While in the first type of logics, "enabling access for all" is the guiding principle, in the second, converse logics, no one should have access to the technological knowledge in question. The second part contends that decisions on whether and how to grant patents in synthetic biology are not independent from institutional frameworks: The arena in which synthetic biology patenting will be dealt with will be decisive for whether and how boundaries will be deployed. From a political science perspective, the administrative, legislative and judicial arena can be distinguished. If synthetic biology will be negotiated in the legislative arena, in particular in the European Parliament, the probabilities will be higher that either the discovery clause or the ordre public clause will be applied. In contrast, patent offices and courts have, at least in the past decades, employed a narrow interpretation of these absolute exemptions from patentability and hardly ever used them. The third part asserts that metaphoric framing of synthetic biology is another crucial factor for patentability questions. Semantic framing may relate to the articulation and mobilization of consent or dissent, and thus public acceptance of synthetic biology. Whether applications of synthetic biology are conceived as "natural" or "synthetic" DNA may have an influence on whether patenting might become contested as "patenting life" or accepted as novel, and

  1. Classical biological control of invasive teasels (Dipsacus spp.) and other weeds in areas of limited or restricted weed management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive teasels (Dipsacus spp.) are considered noxious in five states and listed as invasive in more than a dozen others, despite having little effect on agriculture. They are problematic in areas of limited weed management such as along highways and railroads and in ditches, wetlands and parks. A ...

  2. The potential and limitations of linking biological monitoring data and restoration needs of urbanized waterways: a case study.

    PubMed

    Kemp, Stanley

    2014-06-01

    The implementation of effective strategies to mitigate the impacts of urbanization on waterways represents a major global challenge. Monitoring data plays an important role in the formulation of these strategies. Using monitoring and historical data compiled from around an urban area (Baltimore, USA), this paper is an assessment of the potential and limitations of the use of fish assemblage monitoring data in watershed restoration. A discriminant analysis between assemblages from urban and reference sites was used to determine faunal components which have been reduced or eliminated from Baltimore area waterways. This analysis produced a strong discrimination between fish assemblages from urban and reference sites. Species primarily associated with reference sites varied taxonomically and ecologically, were generally classified as pollution intolerant, and were native. Species associated with urbanized sites were also native, varied taxonomically and ecologically, and were mixed in pollution tolerance. One factor linking most species associated with reference sites was spawning mode (lithophilic). Spawning habitat limitations may be the mechanism through which these species have been reduced in the urbanized faunas. While this presents a strong general hypothesis, information regarding the specific habitat requirements and responses to urbanization of these species is limited. This represents a limitation to producing effective restoration strategies based on exact goals and targets. Without these, determining the type and number of restoration activities required to restore ecological communities remains problematic.

  3. A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site

    SciTech Connect

    Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2010-12-01

    This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

  4. Parasites as Biological Tags for Stock Discrimination of Beaked Redfish (Sebastes mentella): Parasite Infra-Communities vs. Limited Resolution of Cytochrome Markers.

    PubMed

    Klapper, Regina; Kochmann, Judith; O'Hara, Robert B; Karl, Horst; Kuhn, Thomas

    2016-01-01

    The use of parasites as biological tags for discrimination of fish stocks has become a commonly used approach in fisheries management. Metazoan parasite community analysis and anisakid nematode population genetics based on a mitochondrial cytochrome marker were applied in order to assess the usefulness of the two parasitological methods for stock discrimination of beaked redfish Sebastes mentella of three fishing grounds in the North East Atlantic. Multivariate, model-based approaches demonstrated that the metazoan parasite fauna of beaked redfish from East Greenland differed from Tampen, northern North Sea, and Bear Island, Barents Sea. A joint model (latent variable model) was used to estimate the effects of covariates on parasite species and identified four parasite species as main source of differences among fishing grounds; namely Chondracanthus nodosus, Anisakis simplex s.s., Hysterothylacium aduncum, and Bothriocephalus scorpii. Due to its high abundance and differences between fishing grounds, Anisakis simplex s.s. was considered as a major biological tag for host stock differentiation. Whilst the sole examination of Anisakis simplex s.s. on a population genetic level is only of limited use, anisakid nematodes (in particular, A. simplex s.s.) can serve as biological tags on a parasite community level. This study confirmed the use of multivariate analyses as a tool to evaluate parasite infra-communities and to identify parasite species that might serve as biological tags. The present study suggests that S. mentella in the northern North Sea and Barents Sea is not sub-structured.

  5. Parasites as Biological Tags for Stock Discrimination of Beaked Redfish (Sebastes mentella): Parasite Infra-Communities vs. Limited Resolution of Cytochrome Markers

    PubMed Central

    Klapper, Regina; Kochmann, Judith; O’Hara, Robert B.; Karl, Horst; Kuhn, Thomas

    2016-01-01

    The use of parasites as biological tags for discrimination of fish stocks has become a commonly used approach in fisheries management. Metazoan parasite community analysis and anisakid nematode population genetics based on a mitochondrial cytochrome marker were applied in order to assess the usefulness of the two parasitological methods for stock discrimination of beaked redfish Sebastes mentella of three fishing grounds in the North East Atlantic. Multivariate, model-based approaches demonstrated that the metazoan parasite fauna of beaked redfish from East Greenland differed from Tampen, northern North Sea, and Bear Island, Barents Sea. A joint model (latent variable model) was used to estimate the effects of covariates on parasite species and identified four parasite species as main source of differences among fishing grounds; namely Chondracanthus nodosus, Anisakis simplex s.s., Hysterothylacium aduncum, and Bothriocephalus scorpii. Due to its high abundance and differences between fishing grounds, Anisakis simplex s.s. was considered as a major biological tag for host stock differentiation. Whilst the sole examination of Anisakis simplex s.s. on a population genetic level is only of limited use, anisakid nematodes (in particular, A. simplex s.s.) can serve as biological tags on a parasite community level. This study confirmed the use of multivariate analyses as a tool to evaluate parasite infra-communities and to identify parasite species that might serve as biological tags. The present study suggests that S. mentella in the northern North Sea and Barents Sea is not sub-structured. PMID:27104735

  6. Parasites as Biological Tags for Stock Discrimination of Beaked Redfish (Sebastes mentella): Parasite Infra-Communities vs. Limited Resolution of Cytochrome Markers.

    PubMed

    Klapper, Regina; Kochmann, Judith; O'Hara, Robert B; Karl, Horst; Kuhn, Thomas

    2016-01-01

    The use of parasites as biological tags for discrimination of fish stocks has become a commonly used approach in fisheries management. Metazoan parasite community analysis and anisakid nematode population genetics based on a mitochondrial cytochrome marker were applied in order to assess the usefulness of the two parasitological methods for stock discrimination of beaked redfish Sebastes mentella of three fishing grounds in the North East Atlantic. Multivariate, model-based approaches demonstrated that the metazoan parasite fauna of beaked redfish from East Greenland differed from Tampen, northern North Sea, and Bear Island, Barents Sea. A joint model (latent variable model) was used to estimate the effects of covariates on parasite species and identified four parasite species as main source of differences among fishing grounds; namely Chondracanthus nodosus, Anisakis simplex s.s., Hysterothylacium aduncum, and Bothriocephalus scorpii. Due to its high abundance and differences between fishing grounds, Anisakis simplex s.s. was considered as a major biological tag for host stock differentiation. Whilst the sole examination of Anisakis simplex s.s. on a population genetic level is only of limited use, anisakid nematodes (in particular, A. simplex s.s.) can serve as biological tags on a parasite community level. This study confirmed the use of multivariate analyses as a tool to evaluate parasite infra-communities and to identify parasite species that might serve as biological tags. The present study suggests that S. mentella in the northern North Sea and Barents Sea is not sub-structured. PMID:27104735

  7. CROSSFLOW FILTRATION: EM-31, WP-2.3.6

    SciTech Connect

    Duignan, M.; Nash, C.; Poirier, M.

    2011-02-01

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several

  8. The Glomerular Filtration Barrier: Components and Crosstalk

    PubMed Central

    Menon, Madhav C.; Chuang, Peter Y.; He, Cijiang John

    2012-01-01

    The glomerular filtration barrier is a highly specialized blood filtration interface that displays a high conductance to small and midsized solutes in plasma but retains relative impermeability to macromolecules. Its integrity is maintained by physicochemical and signalling interplay among its three core constituents—the glomerular endothelial cell, the basement membrane and visceral epithelial cell (podocyte). Understanding the pathomechanisms of inherited and acquired human diseases as well as experimental injury models of this barrier have helped to unravel this interdependence. Key among the consequences of interference with the integrity of the glomerular filtration barrier is the appearance of significant amounts of proteins in the urine. Proteinuria correlates with kidney disease progression and cardiovascular mortality. With specific reference to proteinuria in human and animal disease phenotypes, the following review explores the roles of the endothelial cell, glomerular basement membrane, and the podocyte and attempts to highlight examples of essential crosstalk within this barrier. PMID:22934182

  9. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China

  10. Quantifying oil filtration effects on bearing life

    NASA Technical Reports Server (NTRS)

    Needelman, William M.; Zaretsky, Erwin V.

    1991-01-01

    Rolling-element bearing life is influenced by the number, size, and material properties of particles entering the Hertzian contact of the rolling element and raceway. In general, rolling-element bearing life increases with increasing level of oil filtration. Based upon test results, two equations are presented which allow for the adjustment of bearing L(sub 10) or catalog life based upon oil filter rating. It is recommended that where no oil filtration is used catalog life be reduced by 50 percent.

  11. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  12. High-efficiency filtration meets IAQ goals

    SciTech Connect

    Aaronson, E.L. ); Fencl, F. )

    1994-12-01

    This article describes multi-stage filtration system which provided initial cost savings and is expected to save even more in energy costs while fulfilling IAQ requirements. The use of high-efficiency filtration has enabled the city of Kansas City, Mo., to save an estimated $500,000 in initial HVAC system costs for its Bartle Hall expansion project, which is currently under construction. Once operational, the new HVAC system, with its high-efficiency filters, is expected to save thousands of dollars per week more in energy costs while also delivering superior indoor air quality (IAQ).

  13. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO2): Is There a Biological Stoichiometry of Soil Microbes?

    PubMed Central

    Hartman, Wyatt H.; Richardson, Curtis J.

    2013-01-01

    Background Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils. Methodology/Principal Findings To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability. Conclusions/Significance Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may

  14. A simple biological marker to differentiate the types of Herpes Simplex Viruses in resource-limited settings.

    PubMed

    Akter, T; Tabassum, S; Nessa, A; Jahan, M

    2012-04-01

    Herpes simplex viruses (HSV) multiply readily on the chorioallantoic membrane (CAM) of embryonated hen's egg and produce easily visible foci or pocks on this membrane. In the present study, pocks produced by the two antigenic types of HSV (1 & 2) were compared to evaluate the effectiveness of typing HSV isolates by pock size on CAMs. A total of 57 HSV isolates from both non-genital and genital samples were typed by the pock size produced on the CAMs of fertile hen's eggs. Twenty two HSV isolates yielded visible pocks on CAM, of which 9 (40.9%) produced small pocks, while 13 (59.1%) produced large pocks. All pocks produced on CAM were confirmed by antigenic typing by the Direct Fluorescent Antibody (DFA) method. HSV isolates which produced small pocks were in complete (100%) concordance with HSV type-1, while those producing larger pocks were in full (100%) concordance with HSV type-2. Thus, the pock size on CAM of embryonated fertile hen's egg may be used as a simple and relatively inexpensive biological marker for the differentiation of HSV types 1 & 2.

  15. A computational functional genomics based self-limiting self-concentration mechanism of cell specialization as a biological role of jumping genes.

    PubMed

    Lötsch, Jörn; Ultsch, Alfred

    2016-01-01

    Specialization is ubiquitous in biological systems and its manifold mechanisms are active research topics. Although clearly adaptive, the way in which specialization of cells is realized remains incompletely understood as it requires the reshaping of a cell's genome to favor particular biological processes in the competition on a cell's functional capacity. Here, a self-specialization mechanism is identified as a possible biological role of jumping genes, in particular LINE-1 retrotransposition. The mechanism is self-limiting and consistent with its evolutionary preservation despite its likely gene-breaking effects. The scenario we studied was the need for a cell to process a longer exposition to an extraordinary situation, for example continuous exposure to the nociceptive input or the intake of addictive drugs. Both situations may evolve toward chronification. The mechanism involves competition within a gene set in which a subset of genes cooperating in particular biological processes. The subset carries a piece of information, consisting of the LINE-1 sequence, about the destruction of their functional competitor genes which are not involved in that process. During gene transcription, an active copy of LINE-1 is co-transcribed. At a certain low probability, a subsequently transcribed and thus actually exposed gene can be rendered nonfunctional by LINE-1 retrotransposition in a relevant gene part. As retrotransposition needs time it is unlikely that LINE-1 retrotranspose into its own carrier gene. This reshapes the cell genome toward self-specializing of those biological processes that are carried out with a high number of LINE-1 containing genes. Self-termination of the mechanism is achieved by allowing LINE-1 to also occasionally jump into the coding region of itself, thus destroying the information about competitor destruction by successively decreasing the number of LINE-1 until the mechanism ceases. Employing a computational functional genomics approach, we

  16. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbidity level of representative samples of a system's filtered water must be less than or equal to 0.5 NTU....74 (a)(1) and (c)(1). (2) The turbidity level of representative samples of a system's filtered water... filtration, the turbidity level of representative samples of a system's filtered water must be less than...

  17. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... turbidity level of representative samples of a system's filtered water must be less than or equal to 0.5 NTU....74 (a)(1) and (c)(1). (2) The turbidity level of representative samples of a system's filtered water... filtration, the turbidity level of representative samples of a system's filtered water must be less than...

  18. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... turbidity level of representative samples of a system's filtered water must be less than or equal to 0.5 NTU....74 (a)(1) and (c)(1). (2) The turbidity level of representative samples of a system's filtered water... filtration, the turbidity level of representative samples of a system's filtered water must be less than...

  19. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  20. Design parameters for rotating cylindrical filtration.

    PubMed

    Schwille, John A; Mitra, Deepanjan; Lueptow, Richard M

    2002-07-15

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. PMID:12238523

  1. Gel Filtration Chromatography: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; Schonbeck, Niels D.

    1984-01-01

    Describes a rapid, visual demonstration of protein separation by gel filtration chromatography. The procedure separates two highly colored proteins of different molecular weights on a Sephadex G-75 in 45 minutes. This time includes packing the column as well. Background information, reagents needed, procedures used, and results obtained are…

  2. Contamination control through filtration of microorganisms

    NASA Technical Reports Server (NTRS)

    Stabekis, P. D.; Lyle, R. G.

    1972-01-01

    A description is given of the various kinds of gas and liquid filters used in decontamination and sterilization procedures. Also discussed are filtration mechanisms, characteristics of filter materials, and the factors affecting filter performance. Summaries are included for filter testing and evaluation techniques and the possible application of the filters to spacecraft sterilization.

  3. Design parameters for rotating cylindrical filtration.

    PubMed

    Schwille, John A; Mitra, Deepanjan; Lueptow, Richard M

    2002-07-15

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions.

  4. Plasma discharge self-cleaning filtration system

    DOEpatents

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  5. DEMONSTRATION BULLETIN: MEMBRANE FILTRATION - SBP TECHNOLOGIES, INC.

    EPA Science Inventory

    SBP Technologies Inc. (SBP) has developed a membrane-based separation technology that can reduce the volume of contaminated groundwater requiring treatment. The SBP Filtration Unit consists of porous, sintered, stainless steel tubes arranged in a shell-and-tube module configurati...

  6. Can Interactions Between an Omnivorous Hemipteran and an Egg Parasitoid Limit the Level of Biological Control for the Tomato Pinworm?

    PubMed

    Cabello, Tomas; Bonfil, Francisco; Gallego, Juan R; Fernandez, Francisco J; Gamez, Manuel; Garay, Jozsef

    2015-02-01

    Relationships between the omnivorous predator Nesidiocoris tenuis (Reuter) and the egg parasitoid Trichogramma achaeae Nagaraja and Nagarkatti were studied in the laboratory (no-choice and choice assays, and functional responses) and in a greenhouse experiment. Both natural enemies are utilized in the biological control of tomato pinworm on greenhouse-grown tomato crops. Three different food items were offered to the predator: nonparasitized prey, prey parasitized for less than 4 d by T. achaeae, and prey parasitized for more than 4 d by the parasitoid. There were significant differences in consumption of food types, with highest consumption for nonparasitized prey, followed by parasitized (<4 d) and then parasitized (>4 d), both in no-choice and choice trials. At the same time, the predator causes a significant mortality in the prey (over 80%) regardless of previous parasitism, resulting in a very coincidental intraguild predation detrimental to the parasitoid. It has also been observed that there was a change in the functional response by the predator from Type II in presence of nonparasitized prey to Type I when there was a combination of parasitized and nonparasitized prey. This represents an increase of instantaneous search rate (a') and a decrease of handling time (Th), which indicates a change in feeding behavior on the two prey types. Under greenhouse conditions, the intraguild predation reduced the percentage of parasitism by T. achaeae in just over 20%. However, when both natural enemies were present, a better control of pest Tuta absoluta (Meyrick) was achieved than in the case of application of any of them alone. PMID:26308802

  7. Can Interactions Between an Omnivorous Hemipteran and an Egg Parasitoid Limit the Level of Biological Control for the Tomato Pinworm?

    PubMed

    Cabello, Tomas; Bonfil, Francisco; Gallego, Juan R; Fernandez, Francisco J; Gamez, Manuel; Garay, Jozsef

    2015-02-01

    Relationships between the omnivorous predator Nesidiocoris tenuis (Reuter) and the egg parasitoid Trichogramma achaeae Nagaraja and Nagarkatti were studied in the laboratory (no-choice and choice assays, and functional responses) and in a greenhouse experiment. Both natural enemies are utilized in the biological control of tomato pinworm on greenhouse-grown tomato crops. Three different food items were offered to the predator: nonparasitized prey, prey parasitized for less than 4 d by T. achaeae, and prey parasitized for more than 4 d by the parasitoid. There were significant differences in consumption of food types, with highest consumption for nonparasitized prey, followed by parasitized (<4 d) and then parasitized (>4 d), both in no-choice and choice trials. At the same time, the predator causes a significant mortality in the prey (over 80%) regardless of previous parasitism, resulting in a very coincidental intraguild predation detrimental to the parasitoid. It has also been observed that there was a change in the functional response by the predator from Type II in presence of nonparasitized prey to Type I when there was a combination of parasitized and nonparasitized prey. This represents an increase of instantaneous search rate (a') and a decrease of handling time (Th), which indicates a change in feeding behavior on the two prey types. Under greenhouse conditions, the intraguild predation reduced the percentage of parasitism by T. achaeae in just over 20%. However, when both natural enemies were present, a better control of pest Tuta absoluta (Meyrick) was achieved than in the case of application of any of them alone.

  8. Multimerization of cRGD peptides by click chemistry: synthetic strategies, chemical limitations, and influence on biological properties.

    PubMed

    Wängler, Carmen; Maschauer, Simone; Prante, Olaf; Schäfer, Martin; Schirrmacher, Ralf; Bartenstein, Peter; Eisenhut, Michael; Wängler, Björn

    2010-10-18

    Integrin α(ν)β(3) is overexpressed on endothelial cells of growing vessels as well as on several tumor types, and so integrin-binding radiolabeled cyclic RGD pentapeptides have attracted increasing interest for in vivo imaging of α(ν)β(3) integrin expression by positron emission tomography (PET). Of the cRGD derivatives available for imaging applications, systems comprising multiple cRGD moieties have recently been shown to exhibit highly favorable properties in relation to monomers. To assess the synthetic limits of the cRGD-multimerization approach and thus the maximum multimer size achievable by using different efficient conjugation reactions, we prepared a variety of multimers that were further investigated in vitro with regard to their avidities to integrin α(ν)β(3.) The synthesized peptide multimers containing increasing numbers of cRGD moieties on PAMAM dendrimer scaffolds were prepared by different click chemistry coupling strategies. A cRGD hexadecimer was the largest construct that could be synthesized under optimized reaction conditions, thus identifying the current synthetic limitations for cRGD multimerization. The obtained multimeric systems were conjugated to a new DOTA-based chelator developed for the derivatization of sterically demanding structures and successfully labeled with (68)Ga for a potential in vivo application. The evaluated multimers showed very high avidities-increasing with the number of cRGD moieties-in in vitro studies on immobilized α(ν)β(3) integrin and U87MG cells, of up to 131- and 124-fold, respectively, relative to the underivatized monomer. PMID:20827791

  9. Evaluation of Flocculation and Filtration Procedures Applied to WSRC Sludge: A Report from B. Yarar, Colorado School of Mines

    SciTech Connect

    Poirier, M.R.

    2001-06-04

    This report, addresses fundamentals of flocculation processes shedding light on why WSRC researchers have not been able to report the discovery of a successful flocculant and acceptable filtration rates. It also underscores the importance of applying an optimized flocculation-testing regime, which has not been adopted by these researchers. The final part of the report proposes a research scheme which should lead to a successful choice of flocculants, filtration aids (surfactants) and a filtration regime, as well recommendations for work that should be carried out to make up for the deficiencies of the limited WSRC work where a better performance should be the outcome.

  10. Effect of flood-induced chemical load on filtrate quality at bank filtration sites

    USGS Publications Warehouse

    Ray, C.; Soong, T.W.; Lian, Y.Q.; Roadcap, G.S.

    2002-01-01

    was interesting to note that doubling the pumpage of this collector well would bring in more ground water from the aquifer (with no atrazine) and thus have a lower concentration of atrazine in the filtrate. For highly conductive banks, it is possible to find some atrazine at a vertical well for a sustained pumpage rate of 0.0125 m3/s if the effect of sorption is neglected. However, with equilibrium sorption, the concentration would be below the detection limit. On the other hand, if a collector well of capacity 0.0875 m3/s is used at the place of the vertical well with highly conductive banks, atrazine concentration in the filtrate would be about 80% of river water even assuming equilibrium sorption and a half-life of 7.5 weeks. Remediation of river water contamination of the aquifer using 'scavenger' wells between the river and the pumping well(s) was not a feasible option due to the contact of the aquifer with a highly conductive bank at the site. However, moving the existing pumping well(s) 100 m upstream would have negligible impact from the bank-stored water. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Effect of flood-induced chemical load on filtrate quality at bank filtration sites

    NASA Astrophysics Data System (ADS)

    Ray, C.; Soong, T. W.; Lian, Y. Q.; Roadcap, G. S.

    2002-09-01

    . It was interesting to note that doubling the pumpage of this collector well would bring in more ground water from the aquifer (with no atrazine) and thus have a lower concentration of atrazine in the filtrate. For highly conductive banks, it is possible to find some atrazine at a vertical well for a sustained pumpage rate of 0.0125 m 3/s if the effect of sorption is neglected. However, with equilibrium sorption, the concentration would be below the detection limit. On the other hand, if a collector well of capacity 0.0875 m 3/s is used at the place of the vertical well with highly conductive banks, atrazine concentration in the filtrate would be about 80% of river water even assuming equilibrium sorption and a half-life of 7.5 weeks. Remediation of river water contamination of the aquifer using 'scavenger' wells between the river and the pumping well(s) was not a feasible option due to the contact of the aquifer with a highly conductive bank at the site. However, moving the existing pumping well(s) 100 m upstream would have negligible impact from the bank-stored water.

  12. 11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  13. 9. VIEW OF UPPER LEVEL OF FILTRATION ROOM SHOWING TANKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF UPPER LEVEL OF FILTRATION ROOM SHOWING TANKS AND CONTROL VALVES, LOOKING NORTH - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  14. 12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  15. 7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ROOM, REGULATES DISTRIBUTION OF WATER, CONTROLS POWER HOUSES. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  16. 3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF THE FILTRATION APPARATUS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  17. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  18. 15. View west of central corridor between filtration beds which ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View west of central corridor between filtration beds which are located to the left and right of the photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. 30. Valves under central corridor of filtration bed building. Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Valves under central corridor of filtration bed building. Main flood valves is at left and crossover valve is a right. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. 3. View southeast of northwest corner of filtration bed. Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View southeast of northwest corner of filtration bed. Laboratory building is at center right of photograph. East rock appears directly behind the laboratory building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. 16. View west from center of central corridor between filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View west from center of central corridor between filtration beds which are located to the left and right of the photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  2. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  3. 22. Float located adjacent to entry stair in filtration bed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  4. 2. View east of filtration bed building. Access bridge to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View east of filtration bed building. Access bridge to earth covering over reinforced concrete roof is at center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  5. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    NASA Astrophysics Data System (ADS)

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  6. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    PubMed Central

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  7. Filtration of bioaerosols using a granular metallic filter with micrometer-sized collectors

    SciTech Connect

    Damit, Brian E; Bischoff, Brian L; Phelps, Tommy Joe; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    Several experimental studies with granular bed filters composed of micrometer-sized spherical or sintered metallic granules have demonstrated their use in aerosol filtration. However, the effectiveness of these metallic membrane filters against bioaerosols has not been established. In this work, the filtration efficiency and filter quality of these filters against airborne B. subtilis endospore and MS2 virus were determined as a function of face velocity and loading time. In experiments, a physical removal efficiency greater than 99.9% and a viable removal efficiency of greater than 5-log were observed for both bacterial spore and viral aerosols. A lower face velocity produced both higher collection efficiency and filter quality for virus but was not statistically significant for spore filtration. Although the filter had high filtration efficiency of the test bioaerosols, the filter's high pressure drop resulted in a low filter quality (0.25-0.75 kPa- 1). Overall, filters with micrometer-sized collectors capture bioaerosols effectively but their applications in aerosol filtration may be limited by their high pressure drop.

  8. Diatomite releases silica during spirit filtration.

    PubMed

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures.

  9. Cellular proliferation after experimental glaucoma filtration surgery

    SciTech Connect

    Jampel, H.D.; McGuigan, L.J.; Dunkelberger, G.R.; L'Hernault, N.L.; Quigley, H.A.

    1988-01-01

    We used light microscopic autoradiography to determine the time course of cellular incorporation of tritiated thymidine (a correlate of cell division) following glaucoma filtration surgery in seven eyes of four cynomolgus monkeys with experimental glaucoma. Incorporation of tritiated thymidine was detected as early as 24 hours postoperatively. Peak incorporation occurred five days postoperatively and had returned to baseline levels by day 11. Cells incorporating tritiated thymidine included keratocytes, episcleral cells, corneal and capillary endothelial cells, and conjunctival and corneal epithelial cells. Transmission electron microscopy was correlated with the autoradiographic results to demonstrate that fibroblasts were dividing on the corneoscleral margin. These findings have potential clinical implications for the use of antiproliferative agents after filtration surgery.

  10. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  11. Optimal filtration of the atmospheric parameters profiles

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Glazov, G. N.; Igonin, G. M.

    1986-01-01

    The idea of optimal Marcovian filtration of fluctuating profiles from lidar signals is developed but as applied to a double-frequency sounding which allows the use of large cross sections of elastic scattering and correct separation of the contributions due to aerosol and Rayleigh scatterings from the total lidar return. The filtration efficiency is shown under different conditions of sounding using a computer model. The accuracy of restituted profiles (temperature, pressure, density) is determined by the elements of a posteriori matrix K. The results obtained allow the determination of the lidar power required for providing the necessary accuracy of restitution of the atmospheric parameter profiles at chosen wavelengths of sounding in the ultraviolet and visible range.

  12. Carbide sludge management in acetylene producing plants by using vacuum filtration.

    PubMed

    Ramasamy, Palanisamy; Periathamby, Agamuthu; Ibrahim, Shaliza

    2002-12-01

    Carbide sludge (10.4-11.5 tonnes day(-1)) is generated from the reaction of calcium carbide (900 kg) and water (6,000 L) in the production of acetylene (2,400 m3), in three selected acetylene manufacturing plants. The sludge (of pH 12.2 and containing Cu, Pb, Fe, Mn, Ni and Zn ions whose concentrations exceed the Department of Environment limits for industrial wastewater) was treated by vacuum filtration as a substitute for the ponding system, which is environmentally less acceptable. A similar system by flocculation was also developed. The filtration system represents an improvement over the ponding method, as shown by a pH of 7 for the clear filtrate; the solid cake, which contains 98% of the metals, can be conveniently disposed at an integrated scheduled waste treatment centre.

  13. Influence of polarization filtration on the information readout from pulsating blood vessels

    PubMed Central

    Sidorov, Igor S.; Volynsky, Maxim A.; Kamshilin, Alexei A.

    2016-01-01

    Imaging photoplethysmography (IPPG) is a recently developed technique for noncontact assessment of cardiovascular function. However, its wide use is limited by low signal-to-noise ratio due to motion artifacts. The aim of this work is to estimate the polarization-filtration impact on discriminating artifacts in IPPG measurements. Experiments were carried out in-vivo by almost simultaneous illumination of subject’s palm with polarized and non-polarized light during video recording of 41 subjects. It was found that the light-polarization filtration efficiently reduces motion artifacts compared to the non-polarized illumination while the pulsation amplitude measured at the heartbeat frequency remains unaffected. The polarization filtration improves reliability of IPPG system in non-contact monitoring of subject’s heart rate and its variability. PMID:27446683

  14. Circulating tumor cell isolation: the assets of filtration methods with polycarbonate track-etched filters

    PubMed Central

    Dolfus, Claire; Piton, Nicolas; Toure, Emmanuel

    2015-01-01

    Circulating tumor cells (CTCs) arise from primary or secondary tumors and enter the bloodstream by active or passive intravasation. Given the low number of CTCs, enrichment is necessary for detection. Filtration methods are based on selection of CTCs by size using a filter with 6.5 to 8 µm pores. After coloration, collected CTCs are evaluated according to morphological criteria. Immunophenotyping and fluorescence in situ hybridization techniques may be used. Selected CTCs can also be cultivated in vitro to provide more material. Analysis of genomic mutations is difficult because it requires adapted techniques due to limited DNA materials. Filtration-selected CTCs have shown prognostic value in many studies but multicentric validating trials are mandatory to strengthen this assessment. Other clinical applications are promising such as follow-up, therapy response prediction and diagnosis. Microfluidic emerging systems could optimize filtration-selected CTCs by increasing selection accuracy. PMID:26543334

  15. Influence of polarization filtration on the information readout from pulsating blood vessels.

    PubMed

    Sidorov, Igor S; Volynsky, Maxim A; Kamshilin, Alexei A

    2016-07-01

    Imaging photoplethysmography (IPPG) is a recently developed technique for noncontact assessment of cardiovascular function. However, its wide use is limited by low signal-to-noise ratio due to motion artifacts. The aim of this work is to estimate the polarization-filtration impact on discriminating artifacts in IPPG measurements. Experiments were carried out in-vivo by almost simultaneous illumination of subject's palm with polarized and non-polarized light during video recording of 41 subjects. It was found that the light-polarization filtration efficiently reduces motion artifacts compared to the non-polarized illumination while the pulsation amplitude measured at the heartbeat frequency remains unaffected. The polarization filtration improves reliability of IPPG system in non-contact monitoring of subject's heart rate and its variability. PMID:27446683

  16. Circulating tumor cell isolation: the assets of filtration methods with polycarbonate track-etched filters.

    PubMed

    Dolfus, Claire; Piton, Nicolas; Toure, Emmanuel; Sabourin, Jean-Christophe

    2015-10-01

    Circulating tumor cells (CTCs) arise from primary or secondary tumors and enter the bloodstream by active or passive intravasation. Given the low number of CTCs, enrichment is necessary for detection. Filtration methods are based on selection of CTCs by size using a filter with 6.5 to 8 µm pores. After coloration, collected CTCs are evaluated according to morphological criteria. Immunophenotyping and fluorescence in situ hybridization techniques may be used. Selected CTCs can also be cultivated in vitro to provide more material. Analysis of genomic mutations is difficult because it requires adapted techniques due to limited DNA materials. Filtration-selected CTCs have shown prognostic value in many studies but multicentric validating trials are mandatory to strengthen this assessment. Other clinical applications are promising such as follow-up, therapy response prediction and diagnosis. Microfluidic emerging systems could optimize filtration-selected CTCs by increasing selection accuracy.

  17. Acoustic filtration and sedimentation of soot particles

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Ezekoye, O. A.

    Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1-2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone.

  18. Filtration behavior of slurries with varying compressibilities

    SciTech Connect

    Massuda, M.; Bridger, K.; Harvey, M.; Tiller, F.M.

    1988-10-01

    A novel filtration apparatus allows simultaneous measurements of filtrate volume, hydraulic pressure and cake thickness using slurry volumes on the order of 100 cm/sup 3/. Differences in interparticle interactions were studied by varying the barium chloride concentration of 0.38-..mu..m polystyrene latex and filtering at pressures between 2 and 100 psi. Cakes formed from these slurries are highly compressible for concentrations between 0.01M and 0.10M, moderately compressible for the 0.005M concentration, and incompressible for the 0.001M concentration. Plots of filtrate volume versus cake thickness were linear for the incompressible cakes, whereas the compressible cakes showed significant deviations, which were pressure dependent. The pressure distribution for the incompressible cake was found to be essentially linear as predicted from the resistance plots assuming constant ..cap alpha.. and epsilon. For the highly compressible cakes, most of the pressure drop appears to occur near the cake/medium interface with only small changes occurring at the top of the cake.

  19. In-Water Hull Cleaning & Filtration System

    NASA Astrophysics Data System (ADS)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  20. Characterization of Filtration Scale-Up Performance

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

    2009-03-09

    The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite

  1. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.

    PubMed

    Yuan, Heyang; He, Zhen

    2015-11-01

    Bioelectrochemical systems (BES) represent an energy-efficient approach for wastewater treatment, but the effluent still requires further treatment for direct discharge or reuse. Integrating membrane filtration in BES can achieve high-quality effluents with additional benefits. Three types of filtration membranes, dynamic membrane, ultrafiltration membrane and forward osmosis membrane that are grouped based on pore size, have been studied for integration in BES. The integration can be accomplished either in an internal or an external configuration. In an internal configuration, membranes can act as a separator between the electrodes, or be immersed in the anode/cathode chamber as a filtration component. The external configuration allows BES and membrane module to be operated independently. Given much progress and interest in the integration of membrane filtration into BES, this paper has reviewed the past studies, described various integration methods, discussed the advantages and limitations of each integration, and presented challenges for future development.

  2. Experimental error filtration for quantum communication over highly noisy channels.

    PubMed

    Lamoureux, L-P; Brainis, E; Cerf, N J; Emplit, Ph; Haelterman, M; Massar, S

    2005-06-17

    Error filtration is a method for encoding the quantum state of a single particle into a higher dimensional Hilbert space in such a way that it becomes less sensitive to noise. We have realized a fiber optics demonstration of this method and illustrated its potentialities by carrying out the optical part of a quantum key distribution scheme over a line whose phase noise is too high for a standard implementation of BB84 to be secure. By filtering out the noise, a bit error rate of 15.3% +/- 0.1%, which is beyond the security limit, can be reduced to 10.6% +/- 0.1%, thereby guaranteeing the cryptographic security. PMID:16090449

  3. Development of an Indexing Media Filtration System for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  4. Development of an Indexing Media Filtration System for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles including skin flakes, hair and clothing fibers, other biological matter, and particulate matter derived from material and equipment wear. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. These features may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reducegravity flight tests data will be presented.

  5. Novel water filtration of saline water in the outermost layer of mangrove roots

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-01

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  6. Novel water filtration of saline water in the outermost layer of mangrove roots.

    PubMed

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-01-01

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method. PMID:26846878

  7. Novel water filtration of saline water in the outermost layer of mangrove roots.

    PubMed

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-01-01

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  8. Novel water filtration of saline water in the outermost layer of mangrove roots

    PubMed Central

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-01-01

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method. PMID:26846878

  9. Identification of novel proteins in culture filtrates of Mycobacterium bovis bacillus Calmette-Guérin in the isoelectric point range 6-11.

    PubMed

    Florio, Walter; Batoni, Giovanna; Esin, Semih; Bottai, Daria; Maisetta, Giuseppantonio; Pardini, Manuela; Campa, Mario

    2003-05-01

    Two-dimensional gel electrophoresis and mass spectrometry were used to identify proteins in the isoelectric point range 6-11 in culture filtrates of Mycobacterium bovis bacillus Calmette-Guérin (BCG). Twelve proteins were identified, three of which had not been described previously. The expression of the identified proteins was comparatively analyzed in culture filtrates of BCG in different growth phases and culture conditions. For some of these proteins, the relative protein abundance in the different culture filtrate preparations was significantly different. The differential expression of the identified proteins is discussed in relation to their putative localization and/or biological function.

  10. Electrospinning of nanofibers for filtration media

    NASA Astrophysics Data System (ADS)

    Park, Hyoungjun

    Since particulate impurity is regarded as the primary cause of lung diseases, purification of air has been a crucial issue. Filtration is the most conventional method to obtain clean air, whereby particulate matter is collected on a fibrous media. The use of fibrous filters is prevalent because of their high filtration efficiency and low pressure drop. Fibrous filters were fabricated via the electrospinning process which can be used to produce continuous submicron-diameter sized fibers. Polyacrylonitrile (PAN) nanofibers with a mean fiber diameter of 224 nm were electrospun to form fibermats. Filtration tests on fibermats of PAN were conducted to confirm that filters of thinner fibers result in higher collection efficiencies and lower pressure drops than that of thicker fibers as predicted by the theoretical filtration mechanism. Results showed that electrospun PAN nanofibermats had a superior quality factor of 0.067+/-0 compared to 0.031+/-0.001 by the current state-of-the-art microfiber-based high particulate air (HEPA) filtration media. The verified theory implies that nanofibermats of other types of materials could also be considered as promising filtration media since filtration performance is independent of the material used. As materials for advanced next-generation filtration media, ceramics are favored over polymeric materials due to their robustness against environmental factors such as ultraviolet rays, abrasive particles, and high temperature all of which degrade and damage the fibrous structure. Amidst various ceramic materials, the anatase phase of TiO2 was selected due to its mechanical property and versatility as a photocatalyst and microwave-absorbing material. Anatase TiO2 fibers were fabricated by electrospinning followed by heat treatment at 500°C for 3 hours. However, early precipitation or gelation of the organic solvent-based TiO2 sol posed a practical challenge in the sample preparation. In order to enhance stability of the precursor sol, a

  11. Comparison of Garnet Bead Media Filtration and Multimedia Filtration for Turbidity and Microbial Pathogen Removal

    EPA Science Inventory

    U.S. Environmental Protection Agency’s (EPA’s) National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio is evaluating drinking water filtration systems to determine their capability to meet the requirements of the Long-Term 2 Enhanced Surface Water Treatment Rule ...

  12. METC CFD simulations of hot gas filtration

    SciTech Connect

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  13. Filtration of respired gases: theoretical aspects.

    PubMed

    Thiessen, Ron J

    2006-06-01

    The filtration of aerosols and the behavior of aerosolized particles are less intuitive and more complex than commonly indicated in the medical literature, but once the basic principles are presented, they are not difficult to understand or apply. Particles with diameters close to the most penetrating particle size are clearly the particles of greatest concern, interest, and value in considering the performance of different filtration devices, and this size has been identified as the standard particle size for testing respirators and breathing system filters. Although almost every level of health care now mandates the N95 (NIOSH rating) as the minimum rating for medical respirators, there is no such mandate regarding minimum efficiencies of breathing system filters. At least in North America, it still falls to each individual purchaser to ensure that these standardized tests are performed, because manufacturers adhere to these standards only on a voluntary basis. Government regulations similar to NIOSH 42 CFR 84 are needed for breathing system filters and should include a rating system such as N95, N99, or N100. For breathing system filters, the BFE and VFE tests are misleading and should be abandoned (or even better, banned) in favor of internationally recognized sodium chloride tests. Until then, manufacturers will be hesitant to abandon their BFE and VFE data, which give the appearance of vastly better performance than does the sodium chloride test. PMID:16828690

  14. Water quality monitoring in membrane filtration systems.

    PubMed

    Abogrean, Elhadi M; Boerlage, Siobhan F E; Kennedy, Maria D; El-Azizi, Ibrahim M; Galjaard, Gilbert; Schippers, Jan S

    2003-03-01

    We report on an experimental study of UF membrane fouling by colloidal particles. Deposition colloidal particles during membrane filtration causes a decline in permeate flux. Membrane flux is monitored on a laboratory scale, crossflow employing UF membranes. The existing modified fouling index (MFI) uses a microfilter membrane as a quick test of feed water quality. The MFI is based on cake filtration, and thus, a model can be developed for flux decline predication. However, this MFI is not sensitive to the presence of smaller particles. Therefore, more recently MFI using ultrafiltration membranes (MFI-UF) was developed. This research investigates various critical aspects of the MFI-UF test for use as a water quality indicator; stability of the MFI-UF over time, linearity of the index with particulate concentration, and reproducibility (1) of the test (reusability of a UF module) and (2) module manufacture. Pressure dependence of the MFI-UF was also examined. The aforementioned criteria were examined using a polyacrylonitrile module with 13,000 molecular weight cutoff for low fouling (tap and process water). The MFI-UF was stable over time and directly related to colloidal concentration. The MFI-UF test was reproducible for one module with repeated testing; reproducible module manufacture was found for 80% of the test modules.

  15. Granular media filtration: old process, new thoughts.

    PubMed

    Lawler, D F; Nason, J A

    2006-01-01

    The design of granular media filters has evolved over many years so that modern filters have larger media sizes and higher filtration velocities than in earlier times. The fundamental understanding of filtration has also improved over time, with current models that account reasonably for all characteristics of the media, the suspension and the filter operation. The methodology for design, however, has not kept pace with these improvements; current designs are based on pilot plants, past experience, or a simple guideline (the ratio of the bed depth to media grain size). We propose that design should be based universally on a characteristic removal length, with the provision of a bed depth that is some multiple of that characteristic length. This characteristic removal length is calculated using the most recent (and most complete) fundamental model and is based on the particle size with the minimum removal efficiency in a filter. The multiple of the characteristic length that yields the required bed depth has been calibrated to existing, successful filters.

  16. Granular media filtration: old process, new thoughts.

    PubMed

    Lawler, D F; Nason, J A

    2006-01-01

    The design of granular media filters has evolved over many years so that modern filters have larger media sizes and higher filtration velocities than in earlier times. The fundamental understanding of filtration has also improved over time, with current models that account reasonably for all characteristics of the media, the suspension and the filter operation. The methodology for design, however, has not kept pace with these improvements; current designs are based on pilot plants, past experience, or a simple guideline (the ratio of the bed depth to media grain size). We propose that design should be based universally on a characteristic removal length, with the provision of a bed depth that is some multiple of that characteristic length. This characteristic removal length is calculated using the most recent (and most complete) fundamental model and is based on the particle size with the minimum removal efficiency in a filter. The multiple of the characteristic length that yields the required bed depth has been calibrated to existing, successful filters. PMID:16752758

  17. Approximate theory for radial filtration/consolidation

    SciTech Connect

    Tiller, F.M.; Kirby, J.M.; Nguyen, H.L.

    1996-10-01

    Approximate solutions are developed for filtration and subsequent consolidation of compactible cakes on a cylindrical filter element. Darcy`s flow equation is coupled with equations for equilibrium stress under the conditions of plane strain and axial symmetry for radial flow inwards. The solutions are based on power function forms involving the relationships of the solidosity {epsilon}{sub s} (volume fraction of solids) and the permeability K to the solids effective stress p{sub s}. The solutions allow determination of the various parameters in the power functions and the ratio k{sub 0} of the lateral to radial effective stress (earth stress ratio). Measurements were made of liquid and effective pressures, flow rates, and cake thickness versus time. Experimental data are presented for a series of tests in a radial filtration cell with a central filter element. Slurries prepared from two materials (Microwate, which is mainly SrSO{sub 4}, and kaolin) were used in the experiments. Transient deposition of filter cakes was followed by static (i.e., no flow) conditions in the cake. The no-flow condition was accomplished by introducing bentonite which produced a nearly impermeable layer with negligible flow. Measurement of the pressure at the cake surface and the transmitted pressure on the central element permitted calculation of k{sub 0}.

  18. [Biological weapons].

    PubMed

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage.

  19. Assessment of the microbial removal capabilities of riverbank filtration

    NASA Astrophysics Data System (ADS)

    Partinoudi, V.; Collins, M.; Margolin, A.; Brannaka, L.

    2003-04-01

    Riverbank filtrate includes both groundwater and river water that has percolated through the banks or bed of a river to an extraction well. One of the primary objectives of this study was to assess the microbial removal capabilities of riverbank filtration (RBF) independent of any groundwater dilution, i.e. a worse case scenario. A total of five sites were chosen: the Pembroke Waterworks (NH), the Milford State Fish Hatchery (NH), Jackson (NH) (where an infiltration gallery exists), Louisville Water Company (KY), and Cedar Rapids (IA). This study has been monitoring total coliforms, E.coli and aerobic spore forming bacteria amongst other water quality parameters over the past twelve months. Male specific (MS2) and somatic coliphage viruses were also monitored intensively for two weeks, using a single agar overlay and a two-step enrichment method, in December 2002 in Louisville, KY and in Cedar Rapids, IA. This intensive coliphage monitoring was followed by the collection of samples for special analysis of enteric viruses (Adenovirus type 40 and 41, Astrovirus, Poliovirus, Coxsackie virus, Rotavirus and Echovirus). The virus samples were analyzed using the ICC-nPCR method, due to its high specificity and sensitivity. Typical river water total coliforms, E.coli and aerobic spore forming bacteria concentrations ranged between 43-145000 CFU/100mL, 0-24192 CFU/100mL and 83-1997 CFU/100mL, respectively. All three of these microbial concentrations were below detection limits (<1CFU/100mL) in the riverbank filtration extraction well water, even after eliminating the “dilution” effects with groundwater. The male specific and the somatic coliphages ranged between 328-491 PFU/25mL and 3-21 PFU/25mL, respectively, in the river water. The concentration of the male specific coliphages was reduced by as much as 77% by the riverbank passage whereas the concentrations of the somatic coliphages were reduced by 100%. In summary the sites evaluated in this study indicated the

  20. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or direct filtration must conduct continuous monitoring of turbidity for each individual filter using... the manufacturer. Systems must record the results of individual filter monitoring every 15 minutes....

  1. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    SciTech Connect

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  2. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    PubMed

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water.

  3. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Quan, Xie; Liu, Yanming; Chen, Shuo

    2016-01-01

    Membrane filtration provides an effective solution for removing pollutants from water but is limited by serious membrane fouling. In this work, an effective approach was used to mitigate membrane fouling by integrating membrane filtration with electropolarization using an electroconductive nanocarbon-based membrane. The electropolarized membrane (EM) by alternating square-wave potentials between +1.0 V and -1.0 V with a pulse width of 60 s exhibited a permeate flux 8.1 times as high as that without electropolarization for filtering feed water containing bacteria, which confirms the ability of the EM to achieve biofouling mitigation. Moreover, the permeate flux of EM was 1.5 times as high as that without electropolarization when filtrating natural organic matter (NOM) from water, and demonstrated good performance in organic fouling mitigation with EM. Furthermore, the EM was also effective for complex fouling mitigation in filtering water containing coexisting bacteria and NOM, and presented an increased flux rate 1.9 times as high as that without electropolarization. The superior fouling mitigation performance of EM was attributed to the synergistic effects of electrostatic repulsion, electrochemical oxidation and electrokinetic behaviors. This work opens an effective avenue for membrane fouling mitigation of water-treatment membrane filtration systems.

  4. Development of a novel bag-mediated filtration system for environmental recovery of poliovirus.

    PubMed

    Fagnant, Christine Susan; Beck, Nicola Koren; Yang, Ming-Fong; Barnes, Kilala Sayisha; Boyle, David S; Meschke, John Scott

    2014-12-01

    Poliovirus (PV) is on the verge of global eradication. Due to asymptomatic shedding, eradication certification requires environmental and clinical surveillance. Current environmental surveillance methods involve collection and processing of 400-mL to 1-L grab samples by a two-phase separation method, where sample volume limits detection sensitivity. Filtration of larger sample volumes facilitates increased detection sensitivity. This study describes development of a pumpless in-field filtration system for poliovirus recovery from environmental waters. Recovery of PV types 1, 2, and 3 were compared for glass wool, ViroCap, and NanoCeram (PV1 only) filters. Seeded experiments were performed using 10(5) plaque forming units of PV inoculated into 10-L volumes of secondary effluent, surface water, or a 50:50 mixture of each at pH 7.0. Filter eluates were plated onto buffalo green monkey kidney cells for virus enumeration by plaque assay. Across all water types, recovery from glass wool filters for PV1, PV2, and PV3 averaged 17%, 28%, and 6%, respectively. Recovery from ViroCaps for PV1, PV2, and PV3 averaged 44%, 70%, and 81%, respectively. 10-L samples of moderate turbidity water were processed through ViroCap filters in less than 30 minutes using a pumpless, bag-mediated filtration system. Bag-mediated filtration offers a simple, compact, and efficient method for enhanced environmental PV surveillance. PMID:25473984

  5. Development of a novel bag-mediated filtration system for environmental recovery of poliovirus.

    PubMed

    Fagnant, Christine Susan; Beck, Nicola Koren; Yang, Ming-Fong; Barnes, Kilala Sayisha; Boyle, David S; Meschke, John Scott

    2014-12-01

    Poliovirus (PV) is on the verge of global eradication. Due to asymptomatic shedding, eradication certification requires environmental and clinical surveillance. Current environmental surveillance methods involve collection and processing of 400-mL to 1-L grab samples by a two-phase separation method, where sample volume limits detection sensitivity. Filtration of larger sample volumes facilitates increased detection sensitivity. This study describes development of a pumpless in-field filtration system for poliovirus recovery from environmental waters. Recovery of PV types 1, 2, and 3 were compared for glass wool, ViroCap, and NanoCeram (PV1 only) filters. Seeded experiments were performed using 10(5) plaque forming units of PV inoculated into 10-L volumes of secondary effluent, surface water, or a 50:50 mixture of each at pH 7.0. Filter eluates were plated onto buffalo green monkey kidney cells for virus enumeration by plaque assay. Across all water types, recovery from glass wool filters for PV1, PV2, and PV3 averaged 17%, 28%, and 6%, respectively. Recovery from ViroCaps for PV1, PV2, and PV3 averaged 44%, 70%, and 81%, respectively. 10-L samples of moderate turbidity water were processed through ViroCap filters in less than 30 minutes using a pumpless, bag-mediated filtration system. Bag-mediated filtration offers a simple, compact, and efficient method for enhanced environmental PV surveillance.

  6. Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology

    NASA Astrophysics Data System (ADS)

    Metz, S.; Trautmann, C.; Bertsch, A.; Renaud, Ph

    2004-03-01

    This paper reports on polyimide microfluidic devices fabricated by photolithography and a layer transfer lamination technology. The microchannels are sealed by laminating an uncured polyimide film on a partially cured layer and subsequent imidization. Selected areas of the microchannels were irradiated with heavy ions of several hundred MeV and the generated ion tracks are chemically etched to submicron pores of high aspect ratio. The ion beam parameters and the track etching conditions define density, length, diameter and shape of the pores. Membrane permeability and separation performance is demonstrated in cross-flow filtration experiments. The devices can be used for selective delivery or probing of fluids to biological tissue, e.g. drug delivery or microdialysis. For chip-based devices the filters can be used as a sample pre-treatment unit for filtration or concentration of particles or molecules.

  7. Fish mouths as engineering structures for vortical cross-step filtration

    NASA Astrophysics Data System (ADS)

    Sanderson, S. Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah

    2016-03-01

    Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.

  8. Fish mouths as engineering structures for vortical cross-step filtration.

    PubMed

    Sanderson, S Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah

    2016-01-01

    Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.

  9. Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin

    NASA Astrophysics Data System (ADS)

    Markley, C. T.; Herbert, B. E.

    2004-12-01

    Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 μ M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further

  10. Filtration of ultrafine metallic particles in industry.

    PubMed

    Bémer, D; Morele, Y; Régnier, R

    2015-01-01

    Thermal metal spraying, metal cutting and arc welding processes generate large quantities of ultrafine particles that cause the irreversible clogging of industrial filters. The aim of the study performed was to identify the causes of the clogging of cartridge filters and investigate other paths for cleaning them. This study required the development of a test bench capable of reproducing a thermal spraying process to test the performances of different filtration techniques. This test instrument first, permitted the precise characterization of the aerosol generated by the process and, second, defined the clogging and cleaning conditions for filters. Several parameters were tested: the type of filter, online and off-line cleaning, pre-coating, cleaning by jets of high-speed compressed air via a probe.

  11. Dynamical Systems, Cytokine Storms, and Blood Filtration

    NASA Astrophysics Data System (ADS)

    Foster, Glenn; Hubler, Alfred

    2008-03-01

    Various infections and non-infectious diseases can trigger immune cells and the proteins (cytokines) the cells use to communicate with each other to be caught in a positive feedback loop; this ``cytokine storm'' is frequently fatal. By examining the network of cytokine-immune cell interactions we will illustrate why anti-mediator drugs have been generally ineffective in stopping this feedback. A more effective approach may be to try and reduce interactions by dampening many signals at once by filtering the cytokines out of the blood directly (think dialysis). We will argue that feedback on an out of control nonlinear dynamical system is easier to understand than its normal healthy state and apply filtration to a toy model of immune response.

  12. Enhancement of air filtration using electric fields.

    PubMed

    Nelson, G O; Bergman, W; Miller, H H; Taylor, R D; Richards, C P; Biermann, A H

    1978-06-01

    Although polarized electrostatic air filters are efficient air filtrating devices, their main disadvantages are difficulty in collecting conductive particles or in operating at relative humidities above 70%. We describe here a new filter design that eliminates these problems. A nonconductive media, normally a glass fiber mat, is placed between two insulated conductive screens. As the voltage across the screens is increased, the penetration of particles decreases exponentially. Increasing the electric field from 0 to 10 kV/cm will decrease the mass penetration from 60% to less than 10% of a polydispersed 0.8 micrometer ammd(sigma g = 2.0) sodium chloride aerosol. The experimental effects of face velocity, particle charge and size, packing density, fiber size, and screen insulation mirror the theoretical effects of these variables on particle penetration. PMID:685827

  13. Filtration of ultrafine metallic particles in industry.

    PubMed

    Bémer, D; Morele, Y; Régnier, R

    2015-01-01

    Thermal metal spraying, metal cutting and arc welding processes generate large quantities of ultrafine particles that cause the irreversible clogging of industrial filters. The aim of the study performed was to identify the causes of the clogging of cartridge filters and investigate other paths for cleaning them. This study required the development of a test bench capable of reproducing a thermal spraying process to test the performances of different filtration techniques. This test instrument first, permitted the precise characterization of the aerosol generated by the process and, second, defined the clogging and cleaning conditions for filters. Several parameters were tested: the type of filter, online and off-line cleaning, pre-coating, cleaning by jets of high-speed compressed air via a probe. PMID:25759204

  14. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....71 Section 141.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71 Criteria for avoiding filtration. A public water system that uses a surface water source must meet all...

  15. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....71 Section 141.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71 Criteria for avoiding filtration. A public water system that uses a surface water source must meet all...

  16. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....71 Section 141.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71 Criteria for avoiding filtration. A public water system that uses a surface water source must meet all...

  17. STORMWATER TREATMENT AT CRITICAL AREAS: EVALUATION OF FILTRATION MEDIA

    EPA Science Inventory

    Past research has identified urban runoff as a major contributor to the degradation of urban streams and rivers. Filtration, especially "slow" filtration, is of interest for stormwater runoff treatment because filters will work on intermittent flows without significant loss of ca...

  18. RIVERBANK FILTRATION: FATE OF DBP PRECURSORS AND SELECTED MICROORGANISMS

    EPA Science Inventory

    The fate of disinfection by-product (DBP) precursors and selected microorganisms during riverbank filtration (RBF) was monitored at three different mid-Western drinking water utilities. At all three sites, filtration (RBF) was monitored at three different mid-Western drinking wa...

  19. Purification of contaminated water by filtration through porous glass

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  20. Increased Biological Effective Dose of Radiation Correlates with Prolonged Survival of Patients with Limited-Stage Small Cell Lung Cancer: A Systematic Review

    PubMed Central

    Xu, Xiao; Wang, Bing; Wu, Kan; Deng, Qinghua; Xia, Bing; Ma, Shenglin

    2016-01-01

    Objective Thoracic radiotherapy (TRT) is a critical component of the treatment of limited-stage small cell lung cancer (LS-SCLC). However, the optimal radiation dose/fractionation remains elusive. This study reviewed current evidence and explored the dose-response relationship in patients with LS-SCLC who were treated with radiochemotherapy. Materials and Methods A quantitative analysis was performed through a systematic search of PubMed, Web of Science, and the Cochrane Library. The correlations between the biological effective dose (BED) and median overall survival (mOS), median progression-free survival (mPFS), 1-, 3-, and 5-year overall survival (OS) as well as local relapse (LR) were evaluated. Results In all, 2389 patients in 19 trials were included in this study. Among these 19 trials, seven were conducted in Europe, eight were conducted in Asia and four were conducted in the United States. The 19 trials that were included consisted of 29 arms with 24 concurrent and 5 sequential TRT arms. For all included studies, the results showed that a higher BED prolonged the mOS (R2 = 0.198, p<0.001) and the mPFS (R2 = 0.045, p<0.001). The results also showed that increased BED improved the 1-, 3-, and 5-year OS. A 10-Gy increment added a 6.3%, a 5.1% and a 3.7% benefit for the 1-, 3-, and 5-year OS, respectively. Additionally, BED was negatively correlated with LR (R2 = 0.09, p<0.001). A subgroup analysis of concurrent TRT showed that a high BED prolonged the mOS (p<0.001) and the mPFS (p<0.001), improved the 1-, 3-, and 5-year OS (p<0.001) and decreased the rate of LR (p<0.001). Conclusion This study showed that an increased BED was associated with improved OS, PFS and decreased LR in patients with LS-SCLC who were treated with combined chemoradiotherapy, which indicates that the strategy of radiation dose escalation over a limited time frame is worth exploring in a prospective clinical trial. PMID:27227819

  1. Use of Biological and Non-biological Surrogates for Evaluating Cryptosporidium Removal by Filtration

    EPA Science Inventory

    Water treatment plants are currently facing increasing challenges in monitoring Cryptosporidium in source and treated water because of complex analytical techniques and associated health risks. Surrogates may be easier to analyze than Cryptosporidium, but they must also be reliab...

  2. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  3. Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse.

    PubMed

    Haaken, Daniela; Dittmar, Thomas; Schmalz, Viktor; Worch, Eckhard

    2014-04-01

    Reuse of wastewater contributes significantly to an efficient and sustainable water usage. However, due to the presence of a multitude of pathogens (e.g. bacteria, viruses, worms, protozoa) in secondary effluents, disinfection procedures are indispensable. In decentralized wastewater treatment, UV irradiation represents one of the most common disinfection methods in addition to membrane processes and to a certain extent electrochemical procedures. However, the usage of UV disinfected secondary effluents for domestic (sanitary) or irrigation purposes bears a potential health risk due to the possible photo and dark repair of reversibly damaged bacteria. Against this background, the application of the UV/electrolysis hybrid technology for disinfection and prevention of bacterial reactivation in biologically treated wastewater was investigated in view of relevant influence factors and operating limits. Furthermore, the influence of electrochemically generated total oxidants on the formation of biofilms on quartz glass surfaces was examined, since its preventive avoidance contributes to an enhanced operational safety of the hybrid reactor. It was found that reactivation of bacteria in UV irradiated, biologically treated wastewater can be prevented by electrochemically produced total oxidants. In this regard, the influence of the initial concentration of the microbiological indicator organism Escherichia coli (E. coli) (9.3*10(2)-2.2*10(5) per 100 mL) and the influence of total suspended solids (TSS) in the range of 11-75 mg L(-1) was examined. The concentration of total oxidants necessary for prevention of bacterial regrowth increases linearly with the initial E. coli and TSS concentration. At an initial concentration of 933 E. coli per 100 mL, a total oxidants concentration of 0.4 mg L(-1) is necessary to avoid photo reactivation (at 4200 Lux), whereas 0.67 mg L(-1) is required if the E. coli concentration is enhanced by 2.4 log levels (cTSS = constant = 13 mg

  4. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization

    USGS Publications Warehouse

    Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M.E.

    2006-01-01

    Far field features of ore deposits include mineralogical, geochemical, or biological attributes that can be recognized beyond the obvious limits of the deposits. They can be primary, if formed in association with mineralization or alteration processes, or secondary, if formed from the interaction of ore deposits with the hydrosphere and biosphere. This paper examines a variety of far field features of different ore deposit types and considers novel applications to exploration and discovery. Primary far field features include mineral and rock chemistry, isotopic or element halos, fluid pathways and thermal anomalies in host-rock sequences. Examples include the use of apatite chemistry to distinguish intrusive rocks permissive for iron oxide copper gold (IOCG) and porphyry deposits; resistate mineral (e.g., rutile, tourmaline) chemistry in exploration for volcanogenic massive sulfide (VMS), orogenic gold, and porphyry deposits; and pyrite chemistry to vector toward sedimentary exhalative (sedex) deposits. Distinctive whole-rock geochemical signatures also can be recognized as a far field feature of porphyry deposits. For example, unique Sr/Y ratios in whole-rock samples, used to distinguish barren versus fertile magmas for Cu mineralization, result from the differentiation of oxidized hydrous melts. Anomalous concentrations of halogen elements (Cl, Br, and I) have been found for distances of up to 200 m away from some mineralized centers. Variations in isotopic composition between ore-bearing and barren intrusions and/or systematic vertical and lateral zonation in sulfur, carbon, or oxygen isotope values have been documented for some deposit types. Owing to the thermal aureole that extends beyond the area of mineralization for some deposits, detection of paleothermal effects through methods such as conodont alteration indices, vitrinite or bitumen reflectance, illite crystallinity, and apatite or zircon thermochronology studies also can be valuable, particularly for

  5. Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse.

    PubMed

    Haaken, Daniela; Dittmar, Thomas; Schmalz, Viktor; Worch, Eckhard

    2014-04-01

    Reuse of wastewater contributes significantly to an efficient and sustainable water usage. However, due to the presence of a multitude of pathogens (e.g. bacteria, viruses, worms, protozoa) in secondary effluents, disinfection procedures are indispensable. In decentralized wastewater treatment, UV irradiation represents one of the most common disinfection methods in addition to membrane processes and to a certain extent electrochemical procedures. However, the usage of UV disinfected secondary effluents for domestic (sanitary) or irrigation purposes bears a potential health risk due to the possible photo and dark repair of reversibly damaged bacteria. Against this background, the application of the UV/electrolysis hybrid technology for disinfection and prevention of bacterial reactivation in biologically treated wastewater was investigated in view of relevant influence factors and operating limits. Furthermore, the influence of electrochemically generated total oxidants on the formation of biofilms on quartz glass surfaces was examined, since its preventive avoidance contributes to an enhanced operational safety of the hybrid reactor. It was found that reactivation of bacteria in UV irradiated, biologically treated wastewater can be prevented by electrochemically produced total oxidants. In this regard, the influence of the initial concentration of the microbiological indicator organism Escherichia coli (E. coli) (9.3*10(2)-2.2*10(5) per 100 mL) and the influence of total suspended solids (TSS) in the range of 11-75 mg L(-1) was examined. The concentration of total oxidants necessary for prevention of bacterial regrowth increases linearly with the initial E. coli and TSS concentration. At an initial concentration of 933 E. coli per 100 mL, a total oxidants concentration of 0.4 mg L(-1) is necessary to avoid photo reactivation (at 4200 Lux), whereas 0.67 mg L(-1) is required if the E. coli concentration is enhanced by 2.4 log levels (cTSS = constant = 13 mg

  6. Tertiary treatment for wastewater reuse based on the Daphnia magna filtration - comparison with conventional tertiary treatments.

    PubMed

    Serra, Teresa; Colomer, Jordi; Pau, Conxi; Marín, Maribel; Sala, Lluís

    2014-01-01

    Tertiary treatments are required to permit safe reuse of wastewater. The performance of a new biological tertiary treatment based on the filtration by a population of Daphnia magna was studied and compared with the performance of other conventional tertiary treatments such as coagulation-flocculation, settling tank, disc filtration, sand filtering and ultraviolet (UV) light. The analysis was based on the efficiency in the particle removal and Escherichia coli inactivation. The Daphnia magna treatment reduced the concentration of particles with diameters below 30 μm by 35%, depending on abiotic parameters such as water temperature and the hydraulic retention time (HRT). The Daphnia magna filtration increased with water temperature for water temperatures >20 °C, while it remained constant for water temperatures <20 °C. Lower HRTs induced the growth of the Daphnia magna population, maintaining the same water quality. Furthermore, the Daphnia magna treatment inactivated E. coli in 1.2 log units. This inactivation was six times larger than that obtained by the conventional macrofiltration systems analyzed, although lower than the inactivation attained by UV light, which ranged between 1.5 and 4 log units.

  7. Virtual membrane for filtration of particles using surface acoustic waves (SAW).

    PubMed

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Collins, David J; Ai, Ye; Neild, Adrian

    2016-09-21

    Surface acoustic wave (SAW) based particle manipulation is contactless, versatile, non-invasive and biocompatible making it useful for biological studies and diagnostic technologies. In this work, we present a sensitive particle sorting system, termed the virtual membrane, in which a periodic acoustic field with a wavelength on the order of particle dimensions permits size-selective filtration. Polystyrene particles that are larger than approximately 0.3 times the acoustic half-wavelength experience a force repelling them from the acoustic field. If the particle size is such that, at a given acoustic power and flow velocity, this repulsive force is dominant over the drag force, these particles will be prohibited from progressing further downstream (i.e. filtered), while smaller particles will be able to pass through the force field along the pressure nodes (akin to a filter's pores). Using this mechanism, we demonstrate high size selectivity using a standing SAW generated by opposing sets of focused interdigital transducers (FIDTs). The use of FIDTs permits the generation of a highly localized standing wave field, here used for filtration in μl min(-1) order flow rates at 10s of mW of applied power. Specifically, we demonstrate the filtration of 8 μm particles from 5 μm particles and 10.36 μm particles from 7.0 μm and 5.0 μm particles, using high frequency SAW at 258 MHz, 192.5 MHz, and 129.5 MHz, respectively.

  8. Effect of Oxalate on the Recycle of Neptunium Filtrate Solution by Anion Exchange

    SciTech Connect

    Kyser, E

    2004-11-18

    A series of laboratory column runs has been performed that demonstrates the recovery of neptunium (Np) containing up to 0.05 M oxalate. Np losses were generally less than one percent to the raffinate for feed solutions that contained 2 to 10 g Np/L. Up to 16 percent Np losses were observed with lower Np feed concentrations, but those losses were attributed to the shortened residence times rather than the higher oxalate to Np ratios. Losses in the plant are expected to be significantly less due to the lower cross-section flowrate possible with existing plant pumps. Elimination of the permanganate treatment of filtrates appears to be reasonable since the amount of Np in those filtrates does not appear to be practical to recover. Combination of untreated filtrates with other actinide rich solutions is not advisable as precipitation problems are likely. If untreated filtrates are kept segregated from other actinide rich streams, the recovery of the remaining Np is probably still possible, but could be limited due to the excessively high oxalate to Np ratio. The persistence of hydrazine/hydrazoic acid in filtrate solutions dictates that the nitrite treatment be retained to eliminate those species from the filtrates prior to transfer to the canyon. Elimination of the permanganate treatment of precipitator flushes and recovery by anion exchange does not appear to be limited by the oxalate effect on anion exchange. Np from solutions with higher oxalate to Np molar ratios than expected in precipitator flushes was recovered with low to modest losses. Solubility problems appear to be unlikely when the moles of oxalate involved are less than the total number of moles of Np due to complexation effects. The presence of significant concentrations of iron (Fe) in the solutions will further decrease the probability of Np oxalate precipitation due the formation of Fe oxalate complexes. Np oxalate solubility data in 8 M HNO{sub 3} with from one to six times as much oxalate as Np have

  9. Coal fired powerhouse wastewater pressure filtration

    SciTech Connect

    Martin, H.L.; Diener, G.A.

    1994-05-01

    The Savannah River Site`s permit for construction of an industrial wastewater treatment facility to remove solids from the boiler blow-down and wet ash scrubber effluent of the A-Area coal fired powerhouse was rejected. Conventional clarification technology would not remove arsenic from the combined effluent sufficient to achieve human health criteria in the small receiving surface stream. Treatability studies demonstrated that an existing facility, which will no longer be needed for metal finishing wastewater, can very efficiently process the powerhouse wastewater to less than 35 {mu}g/L arsenic. Use of cationic and anionic polymers to flocculate both the wastewater and filter aid solids formed a ``bridged cake`` with exceptionally low resistance to flow. This will double the capacity of the Oberlin pressure filters with the Tyvek T-980 sub micron filter media. The affects of high sheer agitation and high temperature in the raw wastewater on the filtration process were also studied and adequate controls were demonstrated.

  10. Pulmonary interstitial compliance and microvascular filtration coefficient.

    PubMed

    Goldberg, H S

    1980-08-01

    Static and dynamic properties governing the fluid movement into the pulmonary interstitium were examined in isolated canine lobes. The system was driven by altering intravascular presure (Piv) when the lobe was isogravimetric (change in weight (W) = 0) and allowing the lobe to become isogravimetric again. By making use of an analogy to charging a capacitor across a resistor, calculation of the filtration coefficient for transvascular fluid movement (KF) and determination of the pressure-volume relationship of the pulmonary interstitial space (Pis-Vis), with a minimum of untested assumptions, was possible. KF was found to be the same for fluid moving out of or into the intravascular space, and when the relationship between Piv and alveolar pressure (PAlv) was constant, KF was independent of transpulmonary pressure (PL). When PAlv exceeded Piv, changes in Piv did not influence KF, suggesting no significant change in either surface area available for fluid transudation or vascular permeability. The Pis-Vis curve for increasing values of Vis and Pis is best described by an exponential relationhip and is independent of PL. However, the Pis-Vis curve with decreasing values of Vis and Pis is dependent on PL.

  11. Capturing phosphates with iron enhanced sand filtration.

    PubMed

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  12. Fibrosis of the Choroid Plexus Filtration Membrane

    PubMed Central

    Parratt, John D. E.; Kirwan, Paul D.

    2016-01-01

    We report a previously undescribed inflammatory lesion consisting of deposition of activated complement (C3d and C9neo) in association with major histocompatibility complex type II (MHC2)-positive activated microglia in choroid plexus villi exhibiting classical fibrous thickening of the pericapillary filtration membrane. The proportion of villi affected ranged from 5% to 90% in 56 adult subjects with diseases of the CNS and 11 subjects with no preexisting disease of the CNS. In 3 of the 4 children studied, 2% or less of examined villi showed stromal thickening, complement deposition, and the presence of MHC2-positive microglia; in adults, the proportion of villi affected increased with age. Other features of the lesion included loss of capillaries and failure by macrophages to clear extracellular particulate electron-dense material by clathrin-mediated phagocytosis. This choroid plexus lesion may relate pathogenetically to age-related macular degeneration and to Alzheimer disease, 2 other conditions with no known risk factors other than increasing age. All 3 conditions are characterized by the presence of damaged capillaries, inflammatory extracellular aggregates of mixed molecular composition and defective clearance of the deposits by macrophages. PMID:27444353

  13. Sorghum genome sequencing by methylation filtration.

    PubMed

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  14. Sorghum Genome Sequencing by Methylation Filtration

    PubMed Central

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis. PMID:15660154

  15. Improve filtration for optimum equipment reliability

    SciTech Connect

    Cervera, S.M.

    1996-01-01

    The introduction 20 years ago of the American Petroleum Institute Standard API-614 as a purchase specification for lubrication, shaft sealing and control oil systems, had a considerable impact and did much to improve system reliability at that time. Today, however, these recommendations regarding filter rating and flushing cleanliness are outdated. Much research in the tribology field correlates clearance size particulate contamination with accelerated component wear, fatigue and performance degradation. Some of these studies demonstrate that by decreasing the population of clearance size particulate in lubrication oils, component life increases exponentially. Knowing the dynamic clearances of a piece of machinery makes it possible, using the ISO 4406 Cleanliness Code, to determine what cleanliness level will minimize contamination-related component wear/fatigue and thus help optimize machinery performance and reliability. Data obtained by the author through random sampling of rotating equipment lube and seal oil systems indicate that the API-614 standard, as it pertains to filtration and flushing, is insufficient to ensure that particulate contamination is maintained to within the levels necessary to achieve optimum equipment reliability and safety, without increasing operating cost. Adopting and practicing the guidelines presented should result in the following benefits: (1) the frequency of bearing, oil pump, mechanical seal, fluid coupling, gearbox and hydraulic control valve failures would be minimized; (2) the mean time between planned maintenance (MTBPM) would be increased. The result will be a substantial increase in safety and cost savings to the operator.

  16. Radionuclide measurement of differential glomerular filtration rate

    SciTech Connect

    Powers, T.A.; Stone, W.J.; Grove, R.B.; Plunkett, J.M.; Kadir, S.; Patton, J.A.; Bowen, R.D.

    1981-01-01

    The authors sought to determine whether radionuclides could provide a reasonable estimate of differential renal function in five normal dogs and six dogs with unilateral segmental renal infarction. Glomerular filtration rate (GFR) of each kidney was measured by the standard technique using constant infusions of 99mTc-DTPA, iothalamate, and creatinine following ureteral catheterization. These results were correlated with total GFR estimated by bolus injection of 99mTc-DTPA and analysis of the plasma 99mTc-DTPA disappearance curve obtained by blood sampling. Differential GFR was then calculated by multiplying the total GFR from double exponential analysis of this curve (DTPA2) by each of three measures of differential function. These include the percent differential uptake of 99mTc-DTPA and 99mTc-DMSA in the posterior projection as well as the geometric mean of 99mTc-DMSA uptake. There were good correlations between differential GFR calculated from iothalamate clearances obtained at ureteral catheterization and all noninvasive methods involving radionuclides and DTPA2 (r = 0.85 - 0.99). Single exponential analysis of the 99mTc-DTPA plasma disappearance curve was less satisfactory. The authors suggest that measurement of total and differential GFR calculated from plasma clearance of 99mTc-DTPA and external counting may be a useful method with potential clinical applications.

  17. Analytical liquid test sample filtration apparatus

    DOEpatents

    Lohnes, Brent C.; Turner, Terry D.; Klingler, Kerry M.; Clark, Michael L.

    1996-01-01

    A liquid sample filtration apparatus includes: a) a module retaining filter elements; b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to sealing engage a filter element therebetween; c) an inlet tube connected to an opposing engageable member; d) an outlet tube connected to an opposing engageable member; e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member.

  18. Analytical liquid test sample filtration apparatus

    DOEpatents

    Lohnes, B.C.; Turner, T.D.; Klingler, K.M.; Clark, M.L.

    1996-01-09

    A liquid sample filtration apparatus includes: (a) a module retaining filter elements; (b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to engage a filter element there between; (c) an inlet tube connected to an opposing engageable member; (d) an outlet tube connected to an opposing engageable member; (e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and (f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: (a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and (b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member. 8 figs.

  19. Gravity filtration of suspensions: permeability effects

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Wang, Mengyu; Ward, Thomas

    2015-11-01

    This paper examines the filtration rates of mono-modal suspensions as a function of time and a cake layer builds up through theory and experimentation. Darcy's Law, which describes fluid flow through porous media, was applied along with the Kynch theory of sedimentation, which provides the basis for analyzing low concentration (ϕ <=20%) cake formation. Experiments were performed to study the effects of varying particle sizes (45 μm <= d <= 1400 μm) and total solid concentration ϕ on both the formation rate of the cake layer and its flow permeability (k) in conjunction with the filter media. A CCD camera was used to capture images of the cake formation and fluid drainage processes, and subsequent image and theoretical analysis found the fluid flow experienced a constant pressure loss due to the permeability of the filter media, whereas the experienced pressure loss due to the cake formation varies as a function of time, ϕ and d. The rate of cake formation was also found to be independent of ϕ but dependent on d which can be attributed to a change in porosity affecting permeability. Studies on similar systems with multi-modal suspensions are in-progress.

  20. Sorghum genome sequencing by methylation filtration.

    PubMed

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis. PMID:15660154

  1. Zebra mussel control with backwash filtration

    SciTech Connect

    Dardeau, E.A. Jr.; Bivens, T.

    1995-12-31

    Zebra Mussels (Dreissena polymorpha) were found in North American waters in 1988 at Lake St. Clair, Michigan, when a ship from a European freshwater port released its ballast water. These organisms quickly spread from the Great Lakes to many midwestern, eastern, and southern streams and lakes. As macrofoulers, they quickly colonize new areas on many natural and artificial substrates. Zebra mussels clog intakes, piping, and screens. Power production facilities that withdraw large quantities of raw water to generate electricity and cool critical components are especially vulnerable. Many control strategies have been proposed and tested; however, not all of them are environmentally acceptable. The US Army Corps of Engineers, under the auspices of the Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990, has initiated a research program to control zebra mussels at public facilities. One test being conducted under this research program is a cooperative effort between the Corps` Nashville District, the Corps` Waterways Experiment Station, and several other agencies. The test involves the design and test of a backwash filtration system for a hydropower project in the Cumberland River Basin. The preliminary design, based on lessons learned from associated tests, is discussed. In addition, recommendations for future use are presented.

  2. Effects of ultra-clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-mm bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration to determine the upper limit in bearing life under the strictest possible lubricant cleanliness conditions. Bearing fatigue lives, surface distress and weight loss were compared to previous bearing fatigue tests in contaminated and noncontaminated oil filters having absolute removal ratings of 3, 30, 49, and 105 microns, with lubricant and sump temperatures maintained at 347 K. Ultra clean lubrication was found to produce bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration. It was also observed that the centrifugal oil filter has the same effectiveness as a 30 micron absolute filter in preventing surface damage.

  3. DECONTAMINATION OF PLUTONIUM FOR FLUORIDE AND CHLORIDE DURING OXALATE PRECIPITATION, FILTRATION AND CALCINATION PROCESSES

    SciTech Connect

    Kyser, E.

    2012-07-25

    Due to analytical limitations for the determination of fluoride (F) and chloride (Cl) in a previous anion exchange study, an additional study of the decontamination of Pu from F and Cl by oxalate precipitation, filtration and calcination was performed. Anion product solution from the previous impurity study was precipitated as an oxalate, filtered, and calcined to produce an oxide for analysis by pyrohydrolysis for total Cl and F. Analysis of samples from this experiment achieved the purity specification for Cl and F for the proposed AFS-2 process. Decontamination factors (DF's) for the overall process (including anion exchange) achieved a DF of {approx}5000 for F and a DF of {approx}100 for Cl. Similar experiments where both HF and HCl were spiked into the anion product solution to a {approx}5000 {micro}g /g Pu concentration showed a DF of 5 for F and a DF of 35 for Cl across the combined precipitation-filtration-calcination process steps.

  4. Simulation of Anomalous Oil Filtration in a Porous Bed

    NASA Astrophysics Data System (ADS)

    Kelbaliev, G. I.; Rzaev, Ab. G.; Rasulov, S. R.; Guseinova, L. V.

    2015-03-01

    The problems of modeling the processes of filtration of anomalous structurized oils with coagulation structures present in a porous bed are considered. An equation for the filtration of Bingham fluids in a carrier bed that accounts for the dependence of the filtration rate on the pressure gradient and shear stress has been derived. Models for calculating the effective viscosity and mobility of oil depending on the change of the pressure gradient in the bed and of the concentration of particles in it have been developed. A comparison of these models with the experimental data available in the literature for various wells yielded satisfactory results.

  5. Filtration is a time-efficient option to Histopaque, providing good-quality islets in mouse islet isolation.

    PubMed

    Ramírez-Domínguez, Miriam; Castaño, Luis

    2015-03-01

    Pancreatic islet transplantation is a promising therapy for Type I Diabetes. For many years the method used worldwide for islet purification in both rodent and human islet isolation has been Ficoll-based density gradients, such as Histopaque. However, it is difficult to purify islets in laboratories with staff limitations when large scale isolations are required. We hypothesized that filtration could be a more simple and fast alternative to obtain good quality islets. Four separate islet isolations were performed per method, comparing filtration and Histopaque purification with handpicking as the gold standard method for islet purity. Different parameters of quality were assessed: yield in number of islets per pancreas, purity by dithizone staining, viability by Fluorescein Diacetate/Propidium Iodide vital staining and in vitro functionality assessed by Glucose Stimulated Insulin Secretion. Time efficiency and cost were also analyzed. The overall quality of the islets obtained both by Histopaque and filtration was good. Filtration saved almost 90 % of the time consumed by Histopaque purification, and was also cheaper. However, one-third of the islets were lost. Since human and rodent islets share similar size but different density, filtration appears as a purification method with potential interest in translation to clinic. PMID:24443076

  6. Financial implications of installing air filtration systems to prevent PRRSV infection in large sow herds.

    PubMed

    Alonso, Carmen; Davies, Peter R; Polson, Dale D; Dee, Scott A; Lazarus, William F

    2013-09-01

    Air filtration systems implemented in large sow herds have been demonstrated to decrease the probability of having a porcine reproductive and respiratory syndrome virus (PRRSV) outbreak. However, implementation of air filtration represents a considerable capital investment, and does not eliminate the risk of new virus introductions. The specific objectives of the study were: 1) to determine productivity differences between a cohort of filtered and non-filtered sow farms; and 2) to employ those productivity differences to model the profitability of filtration system investments in a hypothetical 3000 sow farm. Variables included in the study were production variables (quarterly) from respective herds; air filtration status; number of pig sites within 4.7 km of the farm; occurrence of a PRRSV outbreak in a quarter, and season. For the investment analyses, three Scenarios were compared in a deterministic spreadsheet model of weaned pig cost: (1) control, (2) filtered conventional attic, and (3) filtered tunnel ventilation. Model outputs indicated that a filtered farm produced 5927 more pigs than unfiltered farms. The payback periods for the investments, were estimated to be 5.35 years for Scenario 2 and 7.13 years for Scenario 3 based solely on sow herd productivity. Payback period sensitivity analyses were performed for both biological and financial inputs. The payback period was most influenced by the premium for weaned pig sales price for PRRSV-negative pigs, and the relative proportions of time that filtered vs. unfiltered farms produced PRRSV-negative pigs. A premium of $5 per pig for PRRS-negative weaned pigs reduced the estimated payback periods to 2.1 years for Scenario 2 and 2.8 years for Scenario 3. PMID:23735427

  7. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect

    Shamsuddin Ilias

    2005-01-25

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  8. EXPERIMENTS ON CAKE DEVELOPMENT IN CROSSFLOW FILTRATION FOR HIGH LEVEL WASTE

    SciTech Connect

    Duignan, M.; Nash, C.

    2011-04-14

    Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self cleaning through the action of wall shear stress, which is created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduces permeability. Low filter flux can be a bottleneck in waste processing facilities such as the Salt Waste Processing Facility at the Savannah River Site and the Waste Treatment Plant at the Hanford Site. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date, increased rates are generally realized by either increasing the crossflow filter axial flowrate, which is limited by pump capacity, or by increasing filter surface area, which is limited by space and increases the required pump load. In the interest of accelerating waste treatment processing, DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on startup techniques and filter cake development. This paper discusses those filter studies. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, and filter cleaning. Using non-radioactive simulated wastes, which were both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions filter flow rates can be increased

  9. Gel filtration chromatography of triple-helical calf skin collagen.

    PubMed

    Noelken, M E; Bettin, B D

    1983-10-15

    Gel filtration of type I collagen has been of limited use, because at low pH where the protein is not associated it binds to agarose gels, and at neutrality collagen has a tendency to form fibrils. The more porous polyacrylamide-based gels do not interact with collagen but cannot be used at very high flow rates because they are compressible. It was found that these difficulties are surmounted by use of Fractogel TSK HW-65F, a spherical gel made from a weakly hydrophilic vinyl polymer, and use of the buffer system 0.5 M urea, 0.117 M Tris-HCl, pH 7.3, which prevents fibril formation. The solvent has only a slight effect on the thermal stability of collagen, as determined by circular dichroism measurements. The recovery of native collagen, at 25 degrees C, was at least 88% and that of partially unfolded collagen, at 35 degrees C where it is about one-third unfolded, was 98%. The Fractogel TSK gels and the urea, Tris solvent system should be useful for both preparative work and for studies involving interaction of unaggregated type I collagen with smaller molecules at physiological pH.

  10. Phosphoproteomic Analysis Reveals Regulatory Mechanisms at the Kidney Filtration Barrier

    PubMed Central

    Rinschen, Markus M.; Wu, Xiongwu; König, Tim; Pisitkun, Trairak; Hagmann, Henning; Pahmeyer, Caroline; Lamkemeyer, Tobias; Kohli, Priyanka; Schnell, Nicole; Schermer, Bernhard; Dryer, Stuart; Brooks, Bernard R.; Beltrao, Pedro; Krueger, Marcus

    2014-01-01

    Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus-expressed proteins, including podocyte-specific gene products, identified in an unbiased tandem mass spectrometry–based approach. We discovered 2449 phosphorylated proteins corresponding to 4079 identified high-confidence phosphorylated residues and performed a systematic bioinformatics analysis of this dataset. We discovered 146 phosphorylation sites on proteins abundantly expressed in podocytes. The prohibitin homology domain of the slit diaphragm protein podocin contained one such site, threonine 234 (T234), located within a phosphorylation motif that is mutated in human genetic forms of proteinuria. The T234 site resides at the interface of podocin dimers. Free energy calculation through molecular dynamic simulations revealed a role for T234 in regulating podocin dimerization. We show that phosphorylation critically regulates formation of high molecular weight complexes and that this may represent a general principle for the assembly of proteins containing prohibitin homology domains. PMID:24511133

  11. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... up to 12 percent yttrium oxide (CAS Reg. No. 1314-36-9). (3) Ultra-filtration membranes that consist... up to 5 percent yttrium oxide (CAS Reg. No. 1314-36-9). (4) Ultrafiltration membranes that consist...

  12. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... up to 12 percent yttrium oxide (CAS Reg. No. 1314-36-9). (3) Ultra-filtration membranes that consist... up to 5 percent yttrium oxide (CAS Reg. No. 1314-36-9). (4) Ultrafiltration membranes that consist...

  13. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... up to 12 percent yttrium oxide (CAS Reg. No. 1314-36-9). (3) Ultra-filtration membranes that consist... up to 5 percent yttrium oxide (CAS Reg. No. 1314-36-9). (4) Ultrafiltration membranes that consist...

  14. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or direct filtration must conduct continuous monitoring of turbidity for each individual filter using...) If there is a failure in the continuous turbidity monitoring equipment, the system must conduct...

  15. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or direct filtration must conduct continuous monitoring of turbidity for each individual filter using...) If there is a failure in the continuous turbidity monitoring equipment, the system must conduct...

  16. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or direct filtration must conduct continuous monitoring of turbidity for each individual filter using...) If there is a failure in the continuous turbidity monitoring equipment, the system must conduct...

  17. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or direct filtration must conduct continuous monitoring of turbidity for each individual filter using...) If there is a failure in the continuous turbidity monitoring equipment, the system must conduct...

  18. A CONTINUED INVESTIGATION OF ELECTRICALLY STIMULATED FABRIC FILTRATION

    EPA Science Inventory

    The report summarizes three experiments performed by Southern Research Institute under a cooperative agreement with EPA. First was a demonstration of electrostatically stimulated fabric filtration (ESFF) used to collect particulate matter (PM) from fossil fuel electrical power pl...

  19. Filtration method efficiently desalts crude in commercial test

    SciTech Connect

    Not Available

    1993-05-17

    During 3 months of industrial testing of a filtration crude oil desalting method, a total of 120,500 metric tons (mt), or 1,475 mt/d (almost 11,000 b/d) of crude was processed. Rongxi Du, Kai Peng, and Li Wang, engineers at Wuhan Petrochemical Works, Wuhan, China, in an unpublished report, indicate that they determined unit operating parameters and performed statistical analyses of desalting-efficiency data from the test run. The engineers also determined relationships between desalting efficiency and flow velocity, relative density, mixing pressure drop (MPD), filtration-tank pressure drop, and temperature. The desalting and dewatering level of single-stage filtrations desalting was found to be equal to that of two-stage electrostatic desalting with remarkable benefits resulting from reduced power, water, and demulsifier requirements. This paper describes the filtration desalting, test parameters, performance results, and filter revivification.

  20. Pore sizes and filtration rates from two alumina slips

    SciTech Connect

    Smith, P.A. . Materials Science Dept.); Kerch, H.; Krueger, S.; Long, G.G. . Ceramics Div.); Keller, J.; Haber, R.A. . Dept. of Ceramics)

    1994-07-01

    The relationship between filtration rate and the resultant green body microstructure was examined for aqueous alumina slips cast at two different deflocculation states. The volume loading of both slips was 40%. Slip viscosities of 500 and 60 mPa[center dot]s were produced by different tetrasodium pyrophosphate additions. The filtration rate of these slips varied by a factor of 2; however, mercury porosimetry results showed the same average pore size for both samples. Single and multiple small-angle neutron scattering results showed the specimen cast with the higher-viscosity slip to possess a bimodal pore size distribution. The body cast with the low-viscosity slip showed unimodal porosity and, consequently, the filtration is attributed to the toroidal region between the packed particles. These results showed that mercury porosimetry does not provide a pore size that predicts filtration behavior of slips with different degrees of dispersion.

  1. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potential for contamination by Giardia lamblia cysts and viruses in the source water. The State must....71 Section 141.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection §...

  2. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potential for contamination by Giardia lamblia cysts and viruses in the source water. The State must....71 Section 141.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection §...

  3. RIVERBANK FILTRATION: EFFECT OF GROUND PASSAGE ON NOM CHARACTER

    EPA Science Inventory

    Research was conducted to explore the effect of underground travel on the character of the natural organic matter (NOM) originating from the river water source during riverbank filtration (RBF) at three Midwestern US drinking water utilities. Measurements of biodegradable dissolv...

  4. Improved Filtration Technique for Concentrating and Harvesting Bacteria

    PubMed Central

    Tanny, Gerald B.; Mirelman, David; Pistole, Thomas

    1980-01-01

    An improved technique is described for the filtrative concentration and harvesting of bacterial cultures. A pleated tangential flow filtration unit containing 1,000 cm2 of 0.2-μm-pore-size microporous membrane was used to rapidly (30 to 50 min) reduce the volume of 5 liters of bacterial culture of approximately 109 cells per ml to 0.2 to 0.5 liters of concentrated bacterial suspension. The effects of cell concentration, filtration pressure, and tangential flow rate were examined with respect to the rate of concentration and cell viability. Recovery efficiencies were between 60 and 75%, with no apparent impairment of organism viability. Cell concentration exerted the predominant effect on the filtration rate. Images PMID:16345606

  5. Improved filtration technique for concentrating and harvesting bacteria.

    PubMed

    Tanny, G B; Mirelman, D; Pistole, T

    1980-08-01

    An improved technique is described for the filtrative concentration and harvesting of bacterial cultures. A pleated tangential flow filtration unit containing 1,000 cm of 0.2-mum-pore-size microporous membrane was used to rapidly (30 to 50 min) reduce the volume of 5 liters of bacterial culture of approximately 10 cells per ml to 0.2 to 0.5 liters of concentrated bacterial suspension. The effects of cell concentration, filtration pressure, and tangential flow rate were examined with respect to the rate of concentration and cell viability. Recovery efficiencies were between 60 and 75%, with no apparent impairment of organism viability. Cell concentration exerted the predominant effect on the filtration rate.

  6. 1. VIEW OF THE WATER FILTRATION PLANT FROM THE ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE WATER FILTRATION PLANT FROM THE ACCESS ROAD, LOOKING NORTHWEST. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  7. Granular bed filtration of high temperature biomass gasification gas.

    PubMed

    Stanghelle, Daniel; Slungaard, Torbjørn; Sønju, Otto K

    2007-06-18

    High temperature cleaning of producer gas from biomass gasification has been investigated with a granular filter. Field tests were performed for several hours on a single filter element at about 550 degrees C. The results show cake filtration on the granular material and indicate good filtration of the biomass gasification producer gas. The relatively low pressure drop over the filter during filtration is comparable to those of bag filters. The granular filter can operate with high filtration velocities compared to bag filters and maintain high efficiency and a low residual pressure. This work is a part of the BioSOFC-up project that has a goal of utilizing the producer gas from the gasification plant in a solid oxide fuel cell (SOFC). The BioSOFC-up project will continue to the end of 2007.

  8. Water Clarity Simulant for K East Basin Filtration Testing

    SciTech Connect

    Schmidt, Andrew J.

    2006-01-20

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  9. The effect of particle sedimentation on gravity filtration

    SciTech Connect

    Lu, W.M.; Tung, K.L.; Pan, C.H.; Hwang, K.J.

    1998-09-01

    Simulation of cake formation of mono-sized and dual-sized particles under gravitational sedimentation and filtration is presented. The dynamic analysis proposed by Lu and Hwang in 1993 is applied to examine the local cake properties formed under a falling head by considering the hindered settling effect of particles in the slurry and the variation of the pressure drop across the filter septum. Results of this study show that, at a given position in a cake, the solid compressive pressure reaches a maximum value and then decreases for a gravity filtration due to the decrease in the driving head. A cake constructed with dual-sized particles has a more compact structure than does one with mono-sized particles, and larger particles will form looser packing than will smaller ones for mono-sized particles. A dual-dispersed suspension with a lower fraction of large particles will result in the lowest cake porosity and the highest specific filtration resistance of cake. Comparison of the porosity distribution in filter cake formed by means of gravity filtration and constant head filtration shows that the porosity near the filter septum of gravity filtration has a convex behavior while that of constant head filtration has a tendency toward concavity. This discrepancy is mainly due to the change in the driving head during the filtration process. Both theoretical and experimental results show that the uniformity of particle size distributions in the filter cake will be much better when the relative settling velocity between large and fine particles is reduced.

  10. Control of the arteriolar myogenic response by transvascular fluid filtration.

    PubMed

    Kim, Min-ho; Harris, Norman R; Korzick, Donna H; Tarbell, John M

    2004-07-01

    Mechanisms of the myogenic response have not been completely established. We hypothesized that transvascular fluid filtration from plasma across smooth muscle cells (SMC) and into the surrounding interstitium helps regulate arteriolar myogenic tone. Arteriolar diameters in the rat mesentery were monitored before and following vascular occlusion with a glass micropipette. Arteriolar occlusion not only gave an increase in hydrostatic pressure that initiated myogenic constriction upstream of the pipette, but also allowed measurement of fluid filtration rate by monitoring the movement of vascular red blood cells. A statistically significant correlation (P < 0.001) existed between basal myogenic tone and fluid filtration. Additionally, the myogenic response was attenuated by 47% +/- 7% (N = 10) when an osmotic solution of albumin or albumin plus Ficoll was infused into the bloodstream to decrease fluid filtration by 53% +/- 3%. Moreover, the same inhibition of myogenic tone was found in isolated, cannulated rat soleus muscle arterioles when filtration was osmotically attenuated by intravascular dextran. Taken together, these results are consistent with the hypothesis that shear stress on arteriolar smooth muscle, induced by transvascular fluid filtration, is a contributing factor that helps control myogenic tone. PMID:15219418

  11. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    SciTech Connect

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  12. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

    1990-06-01

    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  13. Effects of Ultra-Clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class "000" per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the "upper limit" in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters' supply line at 125 milligrams per bearing-hour. "Ultra-clean" lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.

  14. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis

    NASA Astrophysics Data System (ADS)

    Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard

    2014-06-01

    Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R2=0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.

  15. Rapid Detection of Pathogenic Bacteria from Fresh Produce by Filtration and Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Han, Caiqin; Chen, Jing; Huang, Yao-Wen; Zhao, Yiping

    2016-04-01

    The detection of Salmonella Poona from cantaloupe cubes and E. coli O157:H7 from lettuce has been explored by using a filtration method and surface-enhanced Raman spectroscopy (SERS) based on vancomycin-functionalized silver nanorod array substrates. It is found that with a two-step filtration process, the limit of detection (LOD) of Salmonella Poona from cantaloupe cubes can be as low as 100 CFU/mL in less than 4 h, whereas the chlorophyll in the lettuce causes severe SERS spectral interference. To improve the LOD of lettuce, a three-step filtration method with a hydrophobic filter is proposed. The hydrophobic filter can effectively eliminate the interferences from chlorophyll and achieve a LOD of 1000 CFU/mL detection of E. coli O157:H7 from lettuce samples within 5 h. With the low LODs and rapid detection time, the SERS biosensing platform has demonstrated its potential as a rapid, simple, and inexpensive means for pathogenic bacteria detection from fresh produce.

  16. Suitability Evaluation on River Bank Filtration of the Second Songhua River, China

    NASA Astrophysics Data System (ADS)

    Wang, Lixue; Ye, Xueyan; Du, Xinqiang

    2016-04-01

    The Second Songhua River is the biggest river with the most economic value in Jilin Province, China. In recent years, with the rapid development of economy, water resources and water environment problem is getting prominent, including surface water pollution and over exploitation of groundwater resources, etc. By means of bank filtration, the Second Songhua River basin might realize the combined utilization of regional groundwater and surface water, and thus has important significance for the guarantee of water demand for industrial and agricultural production planning in the basin. The following steps were adopted to evaluate the suitability of bank filtration nearby the Scond Songhua River : Firstly, in order to focus on the most possible area, the evaluation area was divided based on the aspects of natural geographical conditions and hydraulic connection extent between river water and groundwater. Second, the main suitability indexes including water quantity, water quality, interaction intensity between surface water and groundwater, and the exploitation condition of groundwater resource, and nine sub-indexes including hydraulic conductivity, aquifer thickness, river runoff, the status of groundwater quality, the status of surface water quality, groundwater hydraulic gradient, possible influence zone width of surface water under the condition of groundwater exploitation, permeability of riverbed layer and groundwater depth were proposed to establish an evaluation index system for the suitability of river bank filtration. Thirdly, Combined with the natural geography, geology and hydrogeology conditions of the Second Songhua River basin, the ArcGIS technology is used to complete the evaluation of the various indicators. According to the weighted sum of each index, the suitability of river bank filtration in the study area is divided into five grades. The evaluation index system and evaluation method established in this article are applicable to the Second Songhua

  17. Using a Filtration Technique to Isolate Platelet Free Plasma for Assaying Pyrophosphate

    PubMed Central

    TOLOUIAN, RAMIN; CONNERY, SEAN M.; O’NEILL, W. CHARLES; GUPTA, AJAY

    2015-01-01

    SUMMARY Background Vascular calcification (VC) is a strong prognostic marker of mortality from cardiovascular disease. Extracellular inorganic pyrophosphate (PPi) is a critical inhibitor of vascular calcification and it has been reported that hemodialysis patients have reduced plasma PPi levels, suggesting that altered PPi metabolism could contribute to VC in hemodialysis patients. Platelets are rich in PPi and release of PPi from platelets during storage or processing of plasma can lead to falsely elevated plasma PPi levels. To prepare plasma samples that are suitable for measuring PPi levels, ultracentrifugation has been used to remove platelets. Consequently, plasma PPi measurements have been limited to research laboratories since the majority of clinical laboratories do not have access to an ultracentrifuge. The purpose of the present study was to test the validity of an improved method of preparing platelet free plasma that uses filtration with a 300,000 Dalton molecular weight cut-off filter to exclude platelets, while minimizing their release of PPi. Methods In 20 maintenance hemodialysis patients, PPi levels were measured in plasma samples prepared by the conventional technique of low-speed centrifugation to remove red and white blood cells versus a novel filtration technique. Results Plasma prepared by filtration had significantly lower platelet counts (0 vs. 3 – 7 103/μL) and PPi levels (1.39 ± 0.30 μM vs. 2.74 ± 1.19 μM; mean ± SD, p < 0.01). Conclusions The filtration method appears effective in excluding platelets without causing trauma to platelets and can be used by clinical laboratories to prepare platelet-depleted plasma for PPi measurement. PMID:23289181

  18. Identification of three elicitins and a galactan-based complex polysaccharide from a concentrated culture filtrate of Phytophthora infestans efficient against Pectobacterium atrosepticum.

    PubMed

    Saubeau, Guillaume; Gaillard, Fanny; Legentil, Laurent; Nugier-Chauvin, Caroline; Ferrières, Vincent; Andrivon, Didier; Val, Florence

    2014-01-01

    The induction of plant immunity by Pathogen Associated Molecular Patterns (PAMPs) constitutes a powerful strategy for crop protection. PAMPs indeed induce general defense responses in plants and thus increase plant resistance to pathogens. Phytophthora infestans culture filtrates (CCFs) are known to induce defense responses and decrease the severity of soft rot due to Pectobacterium atrosepticum in potato tubers. The aim of this study was to identify and characterize the active compounds from P. infestans filtrate. The filtrate was fractionated by gel filtration, and the protection effects against P. atrosepticum and the ability to induce PAL activity were tested for each fraction. The fraction active in protection (F1) also induced PAL activity, as did the whole filtrate. Three elicitins (INF1, INF4 and INF5) were identified in F1b, subfraction of F1, by MALDI-TOF-MS and MS/MS analyses. However, deproteinized F1b still showed biological activity against the bacterium, revealing the presence of an additional active compound. GC-MS analyses of the deproteinized fraction highlighted the presence of a galactan-based complex polysaccharide. These experiments demonstrate that the biological activity of the CCF against P. atrosepticum results from a combined action of three elicitins and a complex polysaccharide, probably through the activation of general defense responses. PMID:25264828

  19. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    PubMed

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    also determined for gabapentin, an anticonvulsant drug recently detected in drinking water resources for which suitable removal technologies are still largely unknown. Gabapentin showed poor adsorptive removal, resulting in rapid concentration increases. Whereas previous studies classified gabapentin as not readily biodegradable, sustained removal was observed after prolonged operation and points at biological elimination of gabapentin within the GAC filter. The application of GAC as filter medium was compared to direct addition of powdered activated carbon (PAC) to deep-bed filtration as a direct process alternative. Both options yielded comparable OMP removals for most compounds at similar carbon usage rates, but GAC achieved considerably higher removals for biodegradable OMPs. Based on the results, the application of GAC in combination with coagulation/filtration represents a promising alternative to powdered activated carbon and ozone for advanced wastewater treatment. PMID:26849316

  20. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    PubMed

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    also determined for gabapentin, an anticonvulsant drug recently detected in drinking water resources for which suitable removal technologies are still largely unknown. Gabapentin showed poor adsorptive removal, resulting in rapid concentration increases. Whereas previous studies classified gabapentin as not readily biodegradable, sustained removal was observed after prolonged operation and points at biological elimination of gabapentin within the GAC filter. The application of GAC as filter medium was compared to direct addition of powdered activated carbon (PAC) to deep-bed filtration as a direct process alternative. Both options yielded comparable OMP removals for most compounds at similar carbon usage rates, but GAC achieved considerably higher removals for biodegradable OMPs. Based on the results, the application of GAC in combination with coagulation/filtration represents a promising alternative to powdered activated carbon and ozone for advanced wastewater treatment.

  1. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron

  2. Phosphorus limitation in nitrifying groundwater filters.

    PubMed

    de Vet, W W J M; van Loosdrecht, M C M; Rietveld, L C

    2012-03-15

    Phosphorus limitation has been demonstrated for heterotrophic growth in groundwater, in drinking water production and distribution systems, and for nitrification of surface water treatment at low temperatures. In this study, phosphorus limitation was tested, in the Netherlands, for nitrification of anaerobic groundwater rich in iron, ammonium and orthophosphate. The bioassay method developed by Lehtola et al. (1999) was adapted to determine the microbially available phosphorus (MAP) for nitrification. In standardized batch experiments with an enriched mixed culture inoculum, the formation of nitrite and nitrate and ATP and the growth of ammonia-oxidizing bacteria (AOB; as indicated by qPCR targeting the amoA-coding gene) were determined for MAP concentrations between 0 and 100 μg PO4-P L(-1). The nitrification and microbial growth rates were limited at under 100 μg PO4-P L(-1) and virtually stopped at under 10 μg PO4-P L(-1). In the range between 10 and 50 μg PO4-P L(-1), a linear relationship was found between MAP and the maximum nitrification rate. AOB cell growth and ATP formation were proportional to the total ammonia oxidized. Contrary to Lehtola et al. (1999), biological growth was very slow for MAP concentrations less than 25 μg PO4-P L(-1). No full conversion nor maximum cell numbers were reached within 19 days. In full-scale groundwater filters, most of the orthophosphate was removed alongside with iron. The remaining orthophosphate appeared to have only limited availability for microbial growth and activity. In some groundwater filters, nitrification was almost totally prevented by limitation of MAP. In batch experiments with filtrate water from these filters, the nitrification process could be effectively stimulated by adding phosphoric acid.

  3. Harvesting of Dunaliella tertiolecta cells by magnetic filtration

    NASA Astrophysics Data System (ADS)

    Manousakis, Emmanouil; Manariotis, Ioannis D.

    2015-04-01

    The rising cost and reduced reserves of fossil fuels have enhanced the interest for finding alterative energy sources. Microalgae are considered to be the only sustainable option in biodiesel production for two key points. The energy yield from microalgae is much higher than that of oil producing crops, and the cultivation of algae it is not antagonistic with food supply chain. Because of the small size of microalgae and the dilute nature of algal cultures, the harvesting cost of microalgae is so far a limiting step for the scale up of microalgal biofuel production. It is estimated that the algal harvesting cost is at least 20-30% of the total biomass production cost. Traditional methods, which have been employed for the recovery of microalgal biomass, include centrifugation, gravity separation, filtration, flocculation, and flotation. Alternative approaches, other than conventional methods, capable of processing large cultures volume at a low cost, and reducing effluent toxicity are essential for microalgal biomass production. Magnetic separation is a promising technology and has been applied for algal removal in the mid of 1970s. The aim of this study was to investigate the harvesting of microalgae cells using magnetic microparticles (MPs). Dunaliella tertiolecta was selected as a representative for marine microalgae. The cultivation of microalgae was conducted under continuous artificial light, in 20 L flasks. Iron oxide microparticles were prepared by microwave irradiation of FeSO4 7H2O in an alkaline solution. Samples were taken at different operation intervals to conduct harvesting studies. Batch and flow-through experiments were conducted in order to investigate the effect of the magnetic material on microalgae removal. Algal removal in flow through experiments ranged from 70 to 85% depending on the initial MPs concentration even at very short hydraulic retention times (i.e. 2 min). In batch tests, algal removal was up to 97% at MPs concentration of 490 mg/L.

  4. Effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  5. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethysmography of supine healthy male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n = 6) and during placebo infusion (n = 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 +/- 4 to 2,568 +/- 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion: mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3%, respectively, relative to preinfusion baseline values (p less than 0.05). Mean calf filtration, however, was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20% with ANP infusion, whereas blood pressure was unchanged. Calf conductance (blood flow/ arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, pharmacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchnic sites or both, while having the opposite effect in the leg.

  6. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  7. Mechanism of cake buildup in crossflow filtration of colloidal suspensions

    SciTech Connect

    Jiao, D.; Sharma, M.M. )

    1994-02-01

    Experimental results are presented for the crossflow filtration of concentrated bentonite suspensions. It is proposed that the hydrodynamic forces acting on the suspended colloids determine the rate of cake buildup and, therefore, the fluid loss rate. A simple model is proposed that predicts a power law relationship between the filtration rate and the shear stress at the cake surface. This is found to be consistent with experimental data at different filtration times at various suspension flow rates using three different suspensions. The mode shows that the cake formed will be inhomogeneous with smaller and smaller particles being deposited as filtration proceeds. An equilibrium cake thickness is achieved when no particles small enough to be deposited are available in the suspension. The cake thickness as a function of time can be computed form the model. It is also shown that for a given suspension rheology and flow rate there exists a critical permeability of the filter below which no cake will be formed. This critical permeability has been computed for these experiments. The model suggests that the equilibrium cake thickness can be precisely controlled by an appropriate choice of suspension flow rate and filter permeability. These observations have important implications in cross-flow filtration and in slip-casting of inorganic membranes.

  8. Method for photo-altering a biological system to improve biological effect

    DOEpatents

    Hill, Richard A.; Doiron, Daniel R.; Crean, David H.

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  9. Assessing the fate of organic micropollutants during riverbank filtration utilizing field studies and laboratory test systems

    NASA Astrophysics Data System (ADS)

    Schmidt, C. K.; Lange, F. T.; Sacher, F.; Baus, C.; Brauch, H.-J.

    2003-04-01

    In Germany and other highly populated countries, several waterworks use riverbank filtration as a first step in the treatment of river water for water supplies. Unfortunately, industrial and municipal discharges and the influence of agriculture lead to the pollution of rivers and lakes by a number of organic chemicals. In order to assess the impact of those organic micropollutants on the quality of drinking water, it is necessary to clarify their fate during infiltration and underground passage. The fate of organic micropollutants in a river water-groundwater infiltration system is mainly determined by adsorption mechanisms and biological transformations. One possibility to simulate the microbial degradation of single compounds during riverbank filtration is the use of laboratory test filter systems, that are operated as biological fixed-bed reactors under aerobic conditions. The benefit and meaningfulness of those test filters was evaluated on the basis of selected target compounds by comparing the results derived from test filter experiments with field studies under environmental conditions at the River Rhine. Samples from the river and from groundwater of a well characterized aerobic infiltration pathway were analyzed over a time period of several years for a spectrum of organic micropollutants. Target compounds comprised several contaminants relevant for the aquatic environment, such as complexing agents, aromatic sulfonates, pharmaceuticals (including iodinated X ray contrast media), and MTBE. Furthermore, the behaviour of some target compounds during aerobic riverbank filtration was compared to their fate along a section of an anaerobic (oxygen-depleted) aquifer at the River Ruhr that is characterized by a transition state between sulfate reduction and methane production. While some organic micropollutants showed no major differences, the elimination of others turned out to be clearly dependent on the underlying redox processes in the groundwater. The

  10. Filtrates and Residues: Spectrophotometry: Mechanics and Measurement.

    ERIC Educational Resources Information Center

    Diehl-Jones, Susan M.

    1984-01-01

    Provided are experiments to acquaint students with basic spectrophotometer components and their functions, to use the instrument in an openended-experiment, and to use Beer's Law in several different ways. In addition, the detectability (tolerance) of the spectrophotometer with visual detection limits is provided as an optional activity. (JN)

  11. Removing iron from concentrated alum solutions by polymer filtrations

    SciTech Connect

    Trujillo, S.M.

    1997-12-31

    The Forest Product Industry is the ninth largest industry in the United States, yet it is ranked third in energy consumption among all U.S. industries. From the environmental point of view, paper manufacturing is a complex business, with a wide range of impacts. Its use of natural raw materials, large amounts of energy, chemicals and water, coupled with a wide range of emissions ensure that it has a high environmental profile. Any new technology that is introduced to into pulp and paper mills to reduce energy consumption will have a major impact on the environment. Polymer Filtration, A membrane-based technology, was successful in making the electroplating industry recycle its rinse wastestream and was recognize for this achievement with a 1995 R&D 100 Award. We would like extend the applications of Polymer Filtration to the Forest Products in the following area: Removing Iron From Concentrated Alum Solutions by Polymer Filtration.

  12. C-018H LERF filtration test plan. Revision 1

    SciTech Connect

    Moberg, T.P.; King, C.V.

    1994-08-26

    The following outlines the plan to test the polymeric backwash filtration system at the LERF. These tests will determine if the ETF filter design is adequate. If the tests show that the design is adequate, the task will be complete. If the tests show that the technology is inadequate, it may be necessary to perform further tests to qualify other candidate filtration technologies (e.g., polymeric tubular ultrafiltration, centrifugal ultrafiltration). The criteria to determine the success or failure of the backwash filter will be based on the system`s ability to remove the bacteria and inorganic contaminants from the evaporator process condensate. The tests are designed to qualify the design basis of the filtration technology that will be used in the ETF.

  13. Dose Titration of Walleye Dermal Sarcoma (WDS) Tumor Filtrate.

    PubMed

    Getchell, R G; Wooster, G A; Sutton, C A; Casey, J W; Bowser, P R

    2006-12-01

    Walleyes Stizostedion vitreum were challenged with a topical application of a dilution series of cell-free dermal sarcoma tumor filtrates to determine the minimum dose of virus needed to induce these walleye tumors. A series of six 10-fold dilutions of the filtrate were applied to the side of the fish, which were allowed to develop grossly visible tumors at 15°C for 20 weeks. Quantification of the virus in the filtrates was accomplished by quantitative (real-time) reverse transcriptase-polymerase chain reaction. We determined that there are approximately 10(10) viral RNA copies in 100 μL of walleye dermal sarcoma inoculum. The minimum dose of walleye dermal sarcoma virus that could induce tumors by the topical challenge method was the 1,000-fold dilution of this 10(10) inoculum, or approximately 10(7) viral RNA copies.

  14. The effect of membrane filtration on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

  15. Optical, real-time monitoring of the glomerular filtration rate

    NASA Astrophysics Data System (ADS)

    Rabito, Carlos A.; Chen, Yang; Schomacker, Kevin T.; Modell, Mark D.

    2005-10-01

    An easy and accurate assessment of the renal function is a critical requirement for detecting the initial functional decline of the kidney induced by acute or chronic renal disease. A method for measuring the glomerular filtration rate is developed with the accuracy of clearance techniques and the convenience of plasma creatinine. The renal function is measured in rats as the rate of clearance determined from time-resolved transcutaneous fluorescence measurements of a new fluorescent glomerular filtration agent. The agent has a large dose-safety coefficient and the same space distribution and clearance characteristics as iothalamate. This new approach is a convenient and accurate way to perform real-time measurements of the glomerular filtration rate to detect early kidney disease before the renal function becomes severely and irreversibly compromised.

  16. Formation of bacterial streamers during filtration in microfluidic systems.

    PubMed

    Marty, Aurélie; Roques, Christine; Causserand, Christel; Bacchin, Patrice

    2012-01-01

    Bacterial behavior during filtration is complex and is influenced by numerous factors. The aim of this paper is to report on experiments designed to make progress in the understanding of bacterial transfer in filters and membranes. Polydimethylsiloxane (PDMS) microsystems were built to allow direct dynamic observation of bacterial transfer across different microchannel geometries mimicking filtration processes. When filtering Escherichia coli suspensions in such devices, the bacteria accumulated in the downstream zone of the filter forming long streamers undulating in the flow. Confocal microscopy and 3D reconstruction of streamers showed how the streamers are connected to the filter and how they form in the stream. Streamer development was found to be influenced by the flow configuration and the presence of connections or tortuosity between channels. Experiments showed that streamer formation was greatest in a filtration system composed of staggered arrays of squares 10 μm apart. PMID:22686836

  17. The renal handling of hemoglobin. I. Glomerular filtration.

    PubMed

    Bunn, H F; Esham, W T; Bull, R W

    1969-05-01

    The glomerular filtration of hemoglobin (alpha(2)beta(2)) was studied under conditions in which its dissociation into alphabeta dimers was experimentally altered. Rats receiving hemoglobin treated with the sulfhydryl reagent bis(N-maleimidomethyl) ether (BME) showed a much lower renal excretion and prolonged plasma survival as compared with animals injected with untreated hemoglobin. Plasma disappearance was also prolonged in dogs receiving BME hemoglobin. Gel filtration data indicated that under physiological conditions, BME hemoglobin had impaired subunit dissociation. In addition, BME hemoglobin showed a very high oxygen affinity and a decreased rate of auto-oxidation. Glomerular filtration was enhanced under conditions which favor the dissociation of hemoglobin into dimers. Cat hemoglobin, which forms subunits much more extensively than canine hemoglobin, was excreted more readily by the rat kidney. The renal uptake of (59)Fe hemoglobin injected intra-arterially into rabbits varied inversely with the concentration of the injected dose.

  18. Effects of drinking-water filtration on Cryptosporidium seroepidemiology, Scotland.

    PubMed

    Ramsay, Colin N; Wagner, Adam P; Robertson, Chris; Smith, Huw V; Pollock, Kevin G J

    2014-01-01

    Continuous exposure to low levels of Cryptosporidium oocysts is associated with production of protective antibodies. We investigated prevalence of antibodies against the 27-kDa Cryptosporidium oocyst antigen among blood donors in 2 areas of Scotland supplied by drinking water from different sources with different filtration standards: Glasgow (not filtered) and Dundee (filtered). During 2006-2009, seroprevalence and risk factor data were collected; this period includes 2007, when enhanced filtration was introduced to the Glasgow supply. A serologic response to the 27-kDa antigen was found for ≈75% of donors in the 2 cohorts combined. Mixed regression modeling indicated a 32% step-change reduction in seroprevalence of antibodies against Cryptosporidium among persons in the Glasgow area, which was associated with introduction of enhanced filtration treatment. Removal of Cryptosporidium oocysts from water reduces the risk for waterborne exposure, sporadic infections, and outbreaks. Paradoxically, however, oocyst removal might lower immunity and increase the risk for infection from other sources.

  19. Perlite filtration of phenolic compounds from cigarette smoke.

    PubMed

    Rostami-Charati, Faramarz; Robati, Gholamreza Moradi; Naghizadeh, Farhad; Hosseini, Shahnaz; Chaichi, Mohammad Javad

    2013-01-01

    Adsorption of phenolic compounds and chemical analysis of them from a local production cigarette (named by Farvardin cigarette) smoke have been investigated by using perlite filtration. In this research, the mainstream smoke was tested by three filtration methods: Perlite filter, Cambridge filter and general cigarette filter. Then the used filter was extracted by pure methanol as solvent. After that, the extracted solution was analysed by GC-MS. By this consideration, the phenolic derivatives such as phenol, hydroquinone, resorcinol, pyrocatechol, m-cresol, p-cresol and o-cresol were detected. The structure of the perlite filtration after absorption was studied by SEM. In addition, its chemical structure was investigated by XRD and XRF.

  20. A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism.

    PubMed

    Lei, Qian; Zhang, Meijia; Shen, Liguo; Li, Renjie; Liao, Bao-Qiang; Lin, Hongjun

    2016-01-01

    This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model's simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration.

  1. A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism

    PubMed Central

    Lei, Qian; Zhang, Meijia; Shen, Liguo; Li, Renjie; Liao, Bao-Qiang; Lin, Hongjun

    2016-01-01

    This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model’s simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration. PMID:27627851

  2. A new method to evaluate polydisperse kaolinite clay particle removal in roughing filtration using colloid filtration theory.

    PubMed

    Lin, Edwin; Page, Declan; Pavelic, Paul

    2008-02-01

    Previous application of colloid filtration theory to roughing filtration has not considered a reliable method for determining a representative attachment factor for a polydisperse suspension (of constant particle density). Establishment of such a method would broaden the application of trajectory modelling in roughing filtration, and progress the development of a comprehensive database of attachment factors and surface charge potentials for various particle and fluid types. This study establishes a methodology for the application of colloid filtration theory to roughing filtration and incorporates recent advancements in theoretical single-collector efficiency. A polydisperse kaolinite clay suspension was passed through a series of four gravel upflow roughing filters and removal efficiencies were calculated. Both the classical and Tufenkji and Elimelech's more recent correlation equations were used to calculate theoretical single-collector efficiencies and associated attachment factors for three different filter media sizes, flow rates, and suspended solids concentrations (0.137+/-0.023). The use of Tufenkji and Elimelech's modified correlation equation resulted in reduced variability in the estimation of theoretical single-collector efficiencies. PMID:17884131

  3. A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism.

    PubMed

    Lei, Qian; Zhang, Meijia; Shen, Liguo; Li, Renjie; Liao, Bao-Qiang; Lin, Hongjun

    2016-01-01

    This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model's simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration. PMID:27627851

  4. A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism

    NASA Astrophysics Data System (ADS)

    Lei, Qian; Zhang, Meijia; Shen, Liguo; Li, Renjie; Liao, Bao-Qiang; Lin, Hongjun

    2016-09-01

    This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model’s simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration.

  5. Structural basis for reduced glomerular filtration capacity in nephrotic humans.

    PubMed Central

    Drumond, M C; Kristal, B; Myers, B D; Deen, W M

    1994-01-01

    Previous studies have established that in a variety of human glomerulopathies the reduced glomerular filtration rate (GFR) is due to a marked lowering of the ultrafiltration coefficient (Kf). To identify the factors which lower Kf, we measured the filtering surface area per glomerulus, filtration slit frequency, basement membrane thickness, and GFR and its determinants in patients with minimal change and membraneous nephropathies and in age-matched healthy controls. Overall values of Kf for the two kidneys were calculated from GFR, renal plasma flow rate, systemic colloid osmotic pressure, and three assumed values for the transcapillary pressure difference. "Experimental" values of the glomerular hydraulic permeability (kexp) were then calculated from Kf, glomerular filtering surface area, and estimates of the total number of nephrons of the two kidneys. Independent estimates of the glomerular hydraulic permeability (kmodel) were obtained using a recent mathematical model that is based on analyses of viscous flow through the various structural components of the glomerular capillary wall. Individual values of basement membrane thickness and filtration slit frequency were used as inputs in this model. The results indicate that the reductions of Kf in both nephropathies can be attributed entirely to reduced glomerular hydraulic permeability. The mean values of kexp and kmodel were very similar in both disorders and much smaller in the nephrotic groups than in healthy controls. There was good agreement between kexp and kmodel for any given group of subjects. It was shown that, in both groups of nephrotics, filtration slit frequency was a more important determinant of the water flow resistance than was basement membrane thickness. The decrease in filtration slit frequency observed in both disorders caused the average path length for the filtrate to increase, thereby explaining the decreased hydraulic permeability. Images PMID:8083359

  6. Individual venom profiling of Crotalus durissus terrificus specimens from a geographically limited region: crotamine assessment and captivity evaluation on the biological activities.

    PubMed

    Lourenço, Airton; Zorzella Creste, Camila Fernanda; de Barros, Luciana Curtolo; Delazari dos Santos, Lucilene; Pimenta, Daniel C; Barraviera, Benedito; Ferreira, Rui Seabra

    2013-07-01

    Crotalus durissus terrificus (Cdt) venom major components comprise crotoxin, crotamine, gyroxin and convulxin. Crotamine exerts a myotoxic action, among others, but its expression varies even amid snakes from the same region. Biochemical, enzymatic and pharmacological variations of venoms may be associated with the geography, climate, gender, age, and diet, as well as captivity time and venom extraction intervals. The present study aimed to characterize the Cdt venom from the Botucatu region, (SP, Brazil), by assessing its biochemical, pharmacological and enzymatic properties. Venoms from newly captured snakes and already-captured animals were characterized comparatively to verify the sexual, environmental (length of captivity) and ontogenetic variations that could influence the venom composition. Protein concentration, SDS-PAGE and RP-HPLC were performed and the coagulant, toxic (LD50) and crotamine activities were assayed. Individual SDS-PAGE analyses (315 samples) were performed and the biological activities of the venom of 60 adults (captive and newly captured males and females) and 18 newborns were compared with the Brazilian Reference Venom. Crotamine was found in 39.7% (125/315) of the samples, as determined by SDS-PAGE and RP-HPLC. Protein concentration differed significantly between adults (75%) and newborns (60%). RP-HPLC and SDS-PAGE analyses showed highly variable protein concentration and copious crotoxin isoforms; however, the LD50 values decreased during the captivity time. Cdt venom biological activities were similar among adult groups, but diminished during the captivity period. The current findings demonstrate that venoms vary significantly in terms activity and protein concentration, despite originating from the same specie and region.

  7. Spin filtration of unpolarized electrons by impurity centers in semiconductors

    SciTech Connect

    Bobin, E. G.; Berdinskiy, V. L.

    2011-11-15

    It is shown that unpolarized paramagnetic centers can implement the spin filtration of unpolarized conduction electrons in semiconductors. This ability of paramagnetic centers is caused by the difference in the spin evolution of the states of electron-paramagnetic-center pairs and by the spin selectivity of electron capture exclusively from singlet pairs. The electron spin polarization should be opposite to the paramagneticcenter polarization. To implement spin filtration, an external magnetic field is necessary. The polarization can attain the largest values ({approx}10%) if the probability of spin-selective electron capture from singlet pairs exceeds the pair-decay rate by a factor of 5-7.

  8. Drilling fluid containing a copolymer filtration control agent

    SciTech Connect

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  9. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect

    Shamsuddin Ilias

    2002-03-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Bovine serum albumin (BSA) is a well-studied model solute in membrane filtration known for its fouling and concentration polarization capabilities. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using BSA solution as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure.

  10. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    PubMed

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold. PMID:17884208

  11. Virtual membrane for filtration of particles using surface acoustic waves (SAW).

    PubMed

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Collins, David J; Ai, Ye; Neild, Adrian

    2016-09-21

    Surface acoustic wave (SAW) based particle manipulation is contactless, versatile, non-invasive and biocompatible making it useful for biological studies and diagnostic technologies. In this work, we present a sensitive particle sorting system, termed the virtual membrane, in which a periodic acoustic field with a wavelength on the order of particle dimensions permits size-selective filtration. Polystyrene particles that are larger than approximately 0.3 times the acoustic half-wavelength experience a force repelling them from the acoustic field. If the particle size is such that, at a given acoustic power and flow velocity, this repulsive force is dominant over the drag force, these particles will be prohibited from progressing further downstream (i.e. filtered), while smaller particles will be able to pass through the force field along the pressure nodes (akin to a filter's pores). Using this mechanism, we demonstrate high size selectivity using a standing SAW generated by opposing sets of focused interdigital transducers (FIDTs). The use of FIDTs permits the generation of a highly localized standing wave field, here used for filtration in μl min(-1) order flow rates at 10s of mW of applied power. Specifically, we demonstrate the filtration of 8 μm particles from 5 μm particles and 10.36 μm particles from 7.0 μm and 5.0 μm particles, using high frequency SAW at 258 MHz, 192.5 MHz, and 129.5 MHz, respectively. PMID:27458086

  12. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect

    Shamsuddin Ilias

    2004-06-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the

  13. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification

    SciTech Connect

    Phelps, Tommy Joe; Palumbo, Anthony Vito; Fagan, Lisa Anne; Bischoff, Brian L; Miller, Curtis Jack; Drake, Meghan M; Judkins, Roddie Reagan

    2008-01-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 {micro}m in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 {micro}m filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 {micro}m filters can potentially outperform the commercial filter by factors of 100-1000 fold.

  14. Biological effect of dose distortion by fiducial markers in spot-scanning proton therapy with a limited number of fields: A simulation study

    SciTech Connect

    Matsuura, Taeko; Maeda, Kenichiro; Sutherland, Kenneth; Takayanagi, Taisuke; Shimizu, Shinichi; Takao, Seishin; Miyamoto, Naoki; Nihongi, Hideaki; Toramatsu, Chie; Nagamine, Yoshihiko; Fujimoto, Rintaro; Suzuki, Ryusuke; Ishikawa, Masayori; Umegaki, Kikuo; Shirato, Hiroki

    2012-09-15

    Purpose: In accurate proton spot-scanning therapy, continuous target tracking by fluoroscopic x ray during irradiation is beneficial not only for respiratory moving tumors of lung and liver but also for relatively stationary tumors of prostate. Implanted gold markers have been used with great effect for positioning the target volume by a fluoroscopy, especially for the cases of liver and prostate with the targets surrounded by water-equivalent tissues. However, recent studies have revealed that gold markers can cause a significant underdose in proton therapy. This paper focuses on prostate cancer and explores the possibility that multiple-field irradiation improves the underdose effect by markers on tumor-control probability (TCP). Methods: A Monte Carlo simulation was performed to evaluate the dose distortion effect. A spherical gold marker was placed at several characteristic points in a water phantom. The markers were with two different diameters of 2 and 1.5 mm, both visible on fluoroscopy. Three beam arrangements of single-field uniform dose (SFUD) were examined: one lateral field, two opposite lateral fields, and three fields (two opposite lateral fields + anterior field). The relative biological effectiveness (RBE) was set to 1.1 and a dose of 74 Gy (RBE) was delivered to the target of a typical prostate size in 37 fractions. The ratios of TCP to that without the marker (TCP{sub r}) were compared with the parameters of the marker sizes, number of fields, and marker positions. To take into account the dependence of biological parameters in TCP model, {alpha}/{beta} values of 1.5, 3, and 10 Gy (RBE) were considered. Results: It was found that the marker of 1.5 mm diameter does not affect the TCPs with all {alpha}/{beta} values when two or more fields are used. On the other hand, if the marker diameter is 2 mm, more than two irradiation fields are required to suppress the decrease in TCP from TCP{sub r} by less than 3%. This is especially true when multiple

  15. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults.

    PubMed

    Jepsen, Karl J; Centi, Amanda; Duarte, G Felipe; Galloway, Kathleen; Goldman, Haviva; Hampson, Naomi; Lappe, Joan M; Cullen, Diane M; Greeves, Julie; Izard, Rachel; Nindl, Bradley C; Kraemer, William J; Negus, Charles H; Evans, Rachel K

    2011-12-01

    Having a better understanding of how complex systems like bone compensate for the natural variation in bone width to establish mechanical function will benefit efforts to identify traits contributing to fracture risk. Using a collection of pQCT images of the tibial diaphysis from 696 young adult women and men, we tested the hypothesis that bone cells cannot surmount the nonlinear relationship between bone width and whole bone stiffness to establish functional equivalence across a healthy population. Intrinsic cellular constraints limited the degree of compensation, leading to functional inequivalence relative to robustness, with slender tibias being as much as two to three times less stiff relative to body size compared with robust tibias. Using Path Analysis, we identified a network of compensatory trait interactions that explained 79% of the variation in whole-bone bending stiffness. Although slender tibias had significantly less cortical area relative to body size compared with robust tibias, it was the limited range in tissue modulus that was largely responsible for the functional inequivalence. Bone cells coordinately modulated mineralization as well as the cortical porosity associated with internal bone multicellular units (BMU)-based remodeling to adjust tissue modulus to compensate for robustness. Although anecdotal evidence suggests that functional inequivalence is tolerated under normal loading conditions, our concern is that the functional deficit of slender tibias may contribute to fracture susceptibility under extreme loading conditions, such as intense exercise during military training or falls in the elderly. Thus, we show the natural variation in bone robustness was associated with predictable functional deficits that were attributable to cellular constraints limiting the amount of compensation permissible in human long bone. Whether these cellular constraints can be circumvented prophylactically to better equilibrate function among individuals

  16. Rapid and Efficient Filtration-Based Procedure for Separation and Safe Analysis of CBRN Mixed Samples

    PubMed Central

    Bentahir, Mostafa; Laduron, Frederic; Irenge, Leonid; Ambroise, Jérôme; Gala, Jean-Luc

    2014-01-01

    Separating CBRN mixed samples that contain both chemical and biological warfare agents (CB mixed sample) in liquid and solid matrices remains a very challenging issue. Parameters were set up to assess the performance of a simple filtration-based method first optimized on separate C- and B-agents, and then assessed on a model of CB mixed sample. In this model, MS2 bacteriophage, Autographa californica nuclear polyhedrosis baculovirus (AcNPV), Bacillus atrophaeus and Bacillus subtilis spores were used as biological agent simulants whereas ethyl methylphosphonic acid (EMPA) and pinacolyl methylphophonic acid (PMPA) were used as VX and soman (GD) nerve agent surrogates, respectively. Nanoseparation centrifugal devices with various pore size cut-off (30 kD up to 0.45 µm) and three RNA extraction methods (Invisorb, EZ1 and Nuclisens) were compared. RNA (MS2) and DNA (AcNPV) quantification was carried out by means of specific and sensitive quantitative real-time PCRs (qPCR). Liquid chromatography coupled to time-of-flight mass spectrometry (LC/TOFMS) methods was used for quantifying EMPA and PMPA. Culture methods and qPCR demonstrated that membranes with a 30 kD cut-off retain more than 99.99% of biological agents (MS2, AcNPV, Bacillus Atrophaeus and Bacillus subtilis spores) tested separately. A rapid and reliable separation of CB mixed sample models (MS2/PEG-400 and MS2/EMPA/PMPA) contained in simple liquid or complex matrices such as sand and soil was also successfully achieved on a 30 kD filter with more than 99.99% retention of MS2 on the filter membrane, and up to 99% of PEG-400, EMPA and PMPA recovery in the filtrate. The whole separation process turnaround-time (TAT) was less than 10 minutes. The filtration method appears to be rapid, versatile and extremely efficient. The separation method developed in this work constitutes therefore a useful model for further evaluating and comparing additional separation alternative procedures for a safe handling and

  17. An integrated dielectrophoresis-active hydrophoretic microchip for continuous particle filtration and separation

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Zhang, Jun; Pan, Chao; Yuan, Dan; Alici, Gursel; Du, Haiping; Zhu, Yonggang; Li, Weihua

    2015-08-01

    Microfluidic manipulation of biological objects from mixture has a significant application in sample preparation and clinical diagnosis. This work presents a dielectrophoresis-active hydrophoretic device for continuous label-free particle separation and filtration. This device comprises interdigitated electrodes and a hydrophoretic channel. According to the difference of lateral positions of polystyrene particles, the device can run at separation or filtration modes by altering the power supply voltages. With an applied voltage of 24 Vp-p, both 3 and 10 μm beads had close lateral positions and were redirected to the same outlet. Under a voltage of 36 Vp-p, beads with the diameters of 3 and 10 μm had different lateral positions and were collected from the different outlets. Separation of 5 and 10 μm particles was achieved to demonstrate the relatively small size difference of the beads. This device has great potential in a range of lab-on-a-chip applications.

  18. Fish mouths as engineering structures for vortical cross-step filtration

    PubMed Central

    Sanderson, S. Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah

    2016-01-01

    Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments. PMID:27023700

  19. Fish mouths as engineering structures for vortical cross-step filtration.

    PubMed

    Sanderson, S Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah

    2016-01-01

    Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments. PMID:27023700

  20. Baghouse operation and maintenance user and fabric filtration

    SciTech Connect

    1999-07-01

    This group of papers from the ninth in a series of A and WMA biannual Fabric Filtration conferences is of particular interest to engineers, operators, managers, and vendors of baghouses because it covers the topics from the perspective of the user. It features such topics as cement applications, boilers and incineration, and metals applications.

  1. Field Performance of a Newly Developed Upflow Filtration Device

    EPA Science Inventory

    The objective of this research is to examine the removal capacities of a newly developed Upflow filtration device for treatment of stormwater. The device was developed by engineers at the University of Alabama through a Small Business Innovative Research (SBIR) grant from the U....

  2. Dissemination, resuspension, and filtration of carbon fibers. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Carbon fiber transport was studied using mathematical models established for other pollution problems. It was demonstrated that resuspension is not a major factor contributing to the risk. Filtration and fragmentation tests revealed that fiber fragmentation shifts the fiber spectrum to shorter mean lengths in high velocity air handling systems.

  3. Superamphiphobic nanofibrous membranes for effective filtration of fine particles.

    PubMed

    Wang, Na; Zhu, Zhigao; Sheng, Junlu; Al-Deyab, Salem S; Yu, Jianyong; Ding, Bin

    2014-08-15

    The worldwide demands are rising for an energy-efficient and cost-effective approach that can provide advanced nanofibrous membranes with high filtration performance and superior antifouling properties. Here we report a novel synthesized fluorinated polyurethane (FPU) modified nanofibrous membrane optimized to achieve oil and non-oil aerosol particle filtration. By employing the FPU incorporation, the polyacrylonitrile/polyurethane (PAN/PU) composite membranes were endowed with superhydrophobicity with a water contact angle of 154° and superoleophobicity with an oil contact angle of 151°. Morphology, surface wettability, porous structure, and filtration performance could be manipulated by tuning the solution composition as well as the hierarchical structure. Furthermore, the as-prepared membranes can capture, for the first time, a range of different oil aerosol particles in a single-unit operation, with >99.9% filtration efficiency, by using the combined contribution of fiber diameter and surface roughness acting on the objective particles. Exemplified here by the construction of superamphiphobic nanofibrous membrane, numerous applications of this medium includes high efficiency particulate air filters, ultra-low penetration air filters, and respiratory protection equipment.

  4. Culture: A Filtration Process during Communication in Education.

    ERIC Educational Resources Information Center

    de Lange, Rudi

    This paper focuses on the filtration process of culture during communication in education with reference to visual elements. An introduction provides a review of some communication models--graphic representations of theories that attempt to predict and explain the process of communication. These simple models are discussed: Aristotle's model of…

  5. Alternative filtration testing program: Pre-evaluation of test results

    SciTech Connect

    Georgeton, G.K.; Poirier, M.R.

    1990-09-28

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing.

  6. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT.

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  7. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... requirements of § 141.71, a public water system subject to the requirements of this subpart that does...

  8. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... requirements of § 141.71, a public water system subject to the requirements of this subpart that does...

  9. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    PubMed

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime.

  10. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177.2910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use...

  11. RIVERBANK FILTRATION AS A PRETREATMENT FOR NANOFILTRATION MEMBRANES

    EPA Science Inventory

    The loss of membrane efficiency due to fouling is one of the main impediments to the development of membrane processes for use in drinking water treatment. Surface waters, in general, have a greater proclivity towards fouling as compared to groundwaters. Riverbank filtration chan...

  12. Modelling contaminant transport for pumping wells in riverbank filtration systems.

    PubMed

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-01-01

    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants.

  13. Pressure filtration of ceramic pastes. 4: Treatment of experimental data

    NASA Technical Reports Server (NTRS)

    Torrecillas, A. S.; Polo, J. F.; Perez, A. A.

    1984-01-01

    The use of data processing method based on the algorithm proposed by Kalman and its application to the filtration process at constant pressure are described, as well as the advantages of this method. This technique is compared to the least squares method. The operation allows the precise parameter adjustment of the equation in direct relationship to the specific resistance of the cake.

  14. Superamphiphobic nanofibrous membranes for effective filtration of fine particles.

    PubMed

    Wang, Na; Zhu, Zhigao; Sheng, Junlu; Al-Deyab, Salem S; Yu, Jianyong; Ding, Bin

    2014-08-15

    The worldwide demands are rising for an energy-efficient and cost-effective approach that can provide advanced nanofibrous membranes with high filtration performance and superior antifouling properties. Here we report a novel synthesized fluorinated polyurethane (FPU) modified nanofibrous membrane optimized to achieve oil and non-oil aerosol particle filtration. By employing the FPU incorporation, the polyacrylonitrile/polyurethane (PAN/PU) composite membranes were endowed with superhydrophobicity with a water contact angle of 154° and superoleophobicity with an oil contact angle of 151°. Morphology, surface wettability, porous structure, and filtration performance could be manipulated by tuning the solution composition as well as the hierarchical structure. Furthermore, the as-prepared membranes can capture, for the first time, a range of different oil aerosol particles in a single-unit operation, with >99.9% filtration efficiency, by using the combined contribution of fiber diameter and surface roughness acting on the objective particles. Exemplified here by the construction of superamphiphobic nanofibrous membrane, numerous applications of this medium includes high efficiency particulate air filters, ultra-low penetration air filters, and respiratory protection equipment. PMID:24910033

  15. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-09-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  16. DEM Simulation of Particle Clogging in Fiber Filtration

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Yang, Mengmeng; Li, Shuiqing

    2015-11-01

    The formation of porous particle deposits plays a crucial role in determining the efficiency of filtration process. In this work, an adhesive discrete element method (DEM), in combination with CFD, is developed to dynamically describe these porous deposit structures and the changed flow field between two parallel fibers under the periodic boundary conditions. For the first time, it is clarified that the structures of clogged particles are dependent on both the adhesion parameter (defined as the ratio of interparticle adhesion to particle inertia) and the Stokes number (as an index of impaction efficiency). The relationship between the pressure-drop gradient and the coordination number along the filtration time is explored, which can be used to quantitatively classify the different filtration regimes, i.e., clean filter stage, clogging stage and cake filtration stage. Finally, we investigate the influence of the fiber separation distance on the particle clogging behavior, which affects the collecting efficiency of the fibers significantly. The results suggest that changing the arrangement of fibers can improve the filter performance. This work has been funded by the National Key Basic Research and Development Program (2013CB228506).

  17. 2. VIEW OF THE WATER FILTRATION PLANT LOOKING SOUTHEAST. A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE WATER FILTRATION PLANT LOOKING SOUTH-EAST. A SET OF FOUR EVENLY SPACED CONCRETE WALLS JUT OUT FROM THE NORTHEAST FACADE OF THE BUILDING. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  18. ADVANCED ELECTROSTATIC STIMULATION OF FABRIC FILTRATION: PERFORMANCE AND ECONOMICS

    EPA Science Inventory

    The paper discusses the performance and economics of advanced electrostatic stimulation of fabric filtration (AESFF), in which a high-voltage electrode is placed coaxially inside a filter bag to establish an electric field between the electrode and the bag surface. The electric f...

  19. Filtration efficiency in casting of a complexly alloyed nickel melt

    NASA Astrophysics Data System (ADS)

    Sidorov, V. V.; Iskhodzhanova, I. V.; Rigin, V. E.; Folomeikin, Yu. I.

    2012-12-01

    The use of a cellular ceramic filter is shown to be effective for casting nickel superalloys in vacuum, including superalloys cast using wastes. As a result of filtration, the volume fraction of nonmetallic inclusions and their sizes and quantity in a metal decrease.

  20. Comparing Denitrification Rates and Carbon Sources in Commercial Scale Upflow Denitrification Biological Filters in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable leve...

  1. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  2. Rapid Fractionation of Wheat Leaf Protoplasts Using Membrane Filtration 1

    PubMed Central

    Lilley, Ross McC.; Stitt, Mark; Mader, Gerhard; Heldt, Hans W.

    1982-01-01

    A technique is presented for measuring the in vivo metabolite levels in the chloroplast stroma, the cytosol, and the mitochondrial matrix of wheat (Triticum aestivum, var `Timmo') leaf protoplasts, in which membrane filtration is used to prepare fractions enriched in the different subcellular fractions within 0.1 seconds after disruption of the protoplasts. By closing a syringe, protoplasts are forced through a net and disrupted, diluting the cytosol into the medium and also releasing intact chloroplasts and mitochondria which can then be immediately removed on membrane filters placed behind the nylon net. By varying the membrane filters, different filtrates are obtained corresponding to (a) mainly cytosol, or (b) cytosol and mitochondria with only low levels of chloroplasts; alternatively, (c) the entire protoplast contents are obtained by omitting the filters. The filtrates are immediately split, half flowing into HClO4 where they are immediately quenched for subsequent metabolite analyses; the other half flows into detergent and is used to monitor the exact distribution of marker enzymes in each individual fractionation. Using the measured distributions of metabolite and of marker enzymes in the three filtrates, the subcellular distribution of the metabolite can be algebraically calculated. The method is presented using ATP as an example. The quench time (0.1 second) made possible by membrane filtration is considerably faster than has been possible in the previously developed techniques using silicone oil centrifugation for chloroplasts (1 second) or mitochondria (1 minute). This rapid quench makes it possible to investigate subcellular pools which have a rapid turnover, like the adenine nucleotides. PMID:16662652

  3. Impacts of extreme flooding on riverbank filtration water quality.

    PubMed

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the

  4. Impacts of extreme flooding on riverbank filtration water quality.

    PubMed

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the

  5. Test for the integrity of environmental tractor cab filtration systems.

    PubMed

    Moyer, Ernest S; Heitbrink, William A; Jensen, Paul A

    2005-10-01

    Cab filtration systems can be used to protect vehicle operators from hazardous air contaminants. In a cab filtration system, a fan draws air through filters and pressurizes the cab with this filtered air. This article describes the application of a low-cost, optical particle counter to evaluate the performance of tractor cab filtration systems. The tractors were equipped with environmental enclosures to protect the operators from pesticide exposures that occur during air blast spraying in orchards. Prior to testing, all environmental tractor cabs underwent a complete maintenance overhaul followed by a careful inspection by the manufacturer's field representative. As part of this maintenance effort, 13 tractors with cab filtration systems were tested in an enclosure. A Met One model 227B two-channel optical particle counter was used to measure the aerosol concentration outside and inside the cab. Ambient aerosol and/or aerosol generated by burning incense sticks were used to challenge the stationary cab filtration system in an enclosure. The ratio of the outside to inside concentration (Co/Ci) is the exposure reduction attained by the cab system. Alternatively, the inside concentration divided by the outside concentration times 100 (Ci/Co x 100) gives the percent penetration. All 13 tractors were tested for leak sites. Leak sites were identified and sealed. This process was repeated until each cab showed an exposure reduction ratio Co/Ci of at least 50 (aerosol penetration into the cab Ci/Co x 100 was less than 2%) at the 0.3-0.5 microm particle size interval.

  6. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  7. Dewatering of fibre suspensions by pressure filtration

    NASA Astrophysics Data System (ADS)

    Hewitt, Duncan R.; Paterson, Daniel T.; Balmforth, Neil J.; Martinez, D. Mark

    2016-06-01

    A theoretical and experimental study of dewatering of fibre suspensions by uniaxial compression is presented. Solutions of a one-dimensional model are discussed and asymptotic limits of fast and slow compression are explored. Particular focus is given to relatively rapid compression and to the corresponding development of spatial variations in the solidity and velocity profiles of the suspension. The results of complementary laboratory experiments are presented for nylon or cellulose fibres suspended in viscous fluid. The constitutive relationships for each suspension were measured independently. Measurements of the load for different fixed compression speeds, together with some direct measurements of the velocity profiles using particle tracking velocimetry, are compared with model predictions. The comparison is reasonable for nylon, but poor for cellulose fibres. An extension to the model, which allows for a strain-rate-dependent component in the network stress, is proposed, and is found to give a dramatic improvement in the model predictions for cellulose fibre suspensions. The reason for this improvement is attributed to the microstructure of cellulose fibres, which, unlike nylon fibres, are themselves porous.

  8. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ....'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units... the design, inspection, and testing of air filtration and iodine adsorption units of...

  9. Colloids engineering and filtration to enhance the sensitivity of paper-based biosensors.

    PubMed

    Peng, Ping; Summers, Lauren; Rodriguez, Alexandra; Garnier, Gil

    2011-11-01

    Paper-based biosensors represent a disruptive technology by providing instantaneous and low-cost diagnostics for health and environmental applications. The lack of sensitivity can be an obstacle for this technology to compete with traditional analytical instrumentations. Aiming to improve the sensitivity of a paper-based colorimetric biosensor, we have applied colloids engineering in combination with filtration to lower the paper substrate backgrounds and optimize the immobilization of bio-molecules on paper. A model system consisting of an enzyme, alkaline phosphatase (ALP), and an inorganic colloid, calcium carbonate (CC), flocculated by a cationic dimethylamino-ethyl-methacrylate polyacrylamide (CPAM), demonstrated that the optimized CC flocs are best for enhancing the detecting sensitivity of ALP. The CC floc structure on paper was optimized by modulating its structure in suspension. Subsequently, the filtration process and the wicking ability of paper enabled to freeze the deposited CC structure inherited from the suspension. The incorporation of biomolecules into the CC before immobilizing on paper through filtration provided not only a better microenvironment, but also a higher surface density of immobilized biomolecules. The ALP detection limit of 117 fmol per zone (5mm circle) in the current study was fifty times lower than that of the common soaking method for biomolecule immobilization. The minimum amount of biomolecules per unit substrate area required for detection was lowered by over an order of magnitude, compared with spotting methods (i.e. inkjet printing). The improvement was also demonstrated by the steepest slope of standard curve, the lowest background, and the highest activity of the bioactive paper probed with the diluted BCIP/NBT liquid substrates.

  10. Modeling water chemistry change and contaminant transport in riverbank filtration systems

    NASA Astrophysics Data System (ADS)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-06-01

    Riverbank filtration system is river water treatment approach based on natural removal of contaminants due to physical, chemical and biological processes. In this article, an analytical model is developed by using Green's function method to simulate the effects of pumping well and microbial activity that occurs in riverbed sediments on contaminant transport and evolution of water chemistry. The model is tested with data collected previously for RBF site in France. The results are compared with numerical simulation conducted in the literature by using finite difference method. Graphically, it is noticed that both numerical and analytical results have almost the same behavior. Also it is found that the model can simulate the decreasing of one pollutant concentration at the zone where the bacteria starts to consume this pollutant.

  11. Treatment of anaerobic digester supernatant and filter press filtrate sidestreams with a sequencing batch reactor

    SciTech Connect

    Bowen, R.B.; Ketchum, L.H. Jr.

    1998-07-01

    The Elkhart, Indiana publicly owned treatment works (POTW) occasionally experiences periods of high effluent ammonia. The POTW currently treats 61,000 m{sup 3}/d (16 MGD), which includes a large industrial component of 15,000 m{sup 3}/d (4 MGD). This industrial component includes frequent periods of high ammonia levels resulting in plant influent ammonia concentrations exceeding 40 mg/L as nitrogen which can upset plant nitrification. The anaerobic digester supernatant and filter press filtrate are returned to the head of the plant. These recycled streams also contain high ammonia, 475 mg/L as nitrogen, and contribute to the influent ammonia problem. This study is an investigation of the use of a sequencing batch reactor (SBR) to biologically nitrify these recycle streams to help mitigate the problem of high effluent ammonia.

  12. Characterization, Washing, Leaching, and Filtration of C-104 Sludge

    SciTech Connect

    KP Brooks; PR Bredt; GR Golcar; SA Hartley; LK Jagoda; KG Rappe; MW Urie

    2000-06-09

    Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-{micro}m sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft{sup 2}. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft{sup 2}. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft{sup 2}. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by

  13. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  14. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal.

    PubMed

    D'Alessio, Matteo; Yoneyama, Bunnie; Kirs, Marek; Kisand, Veljo; Ray, Chittaranjan

    2015-08-15

    Slow sand filtration (SSF) has been widely used as a means of providing potable water due to its efficacy, low cost, and minimal maintenance. Advances in analytical instrumentation have revealed the occurrence of pharmaceutically active compounds (PhACs) in surface water as well as in groundwater. It is unclear if the presence of these compounds in the feed water can interfere with the performances of an SSF unit. The aim of this work was to examine i) the ability of two SSF units to remove six PhACs (caffeine, carbamazepine, 17-β estradiol [E2], estrone [E1], gemfibrozil, and phenazone), and ii) the impact of these PhACs on the removal of bacteria by two SSF units. The presence of PhACs in feed water for SSF can occur in surface waters impacted by wastewater or leakage from sewers and septic tanks, as well as in developing countries where unregulated use and improper disposal are prevalent. Two pilot-scale SSF units were used during the study. Unit B1 was fed with stream water with 1% of primary effluent added, while unit B2 was fed with stream water alone. Although limited removal (<10%) of carbamazepine, gemfibrozil, and phenazone occurred, the complete removal of caffeine, and the partial removal (11-92%) of E2 and E1 were observed in the two SSF units. The results of this study suggest that the occurrence of the selected PhACs, probably estrogens and caffeine, in the feed water at 50 μg L(-1) affected the ability of the schmutzdecke to remove total coliform and Escherichia coli. The bacterial removal achieved within the schmutzdecke dropped from 95% to less than 20% by the end of the study. This decrease in removal may be related to the change in the microbial community within the schmutzdecke. A diverse microbial community, including Bacteroidetes and several classes of Proteobacteria, was replaced by a microbial community in which Gammaproteobacteria was the predominant phylum (99%). Despite the low removal achieved within the schmutzdecke, removal of

  15. Filtration and flocculation in industrial processes. (Latest citations from Fluidex data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning theoretical aspects, system design, evaluations, and standards for filtration and flocculation techniques and equipment used in various industrial processes. Applications include air filtration, dust collection, water filtration, dewatering, and flocculant separation. A variety of filter types and flocculation mechanisms is discussed. (Contains 250 citations and includes a subject term index and title list.)

  16. Filtration and flocculation in industrial processes. (Latest citations from Fluidex). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning theoretical aspects, system design, evaluations, and standards for filtration and flocculation techniques and equipment used in various industrial processes. Applications include air filtration, dust collection, water filtration, dewatering, and flocculant separation. A variety of filter types and flocculation mechanisms is discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Filtration and flocculation in industrial processes. (Latest citations from Fluidex). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning theoretical aspects, system design, evaluations, and standards for filtration and flocculation techniques and equipment used in various industrial processes. Applications include air filtration, dust collection, water filtration, dewatering, and flocculant separation. A variety of filter types and flocculation mechanisms is discussed. (Contains a minimum of 166 citations and includes a subject term index and title list.)

  18. Treating wastewater with high oil and grease content using an Anaerobic Membrane Bioreactor (AnMBR). Filtration and cleaning assays.

    PubMed

    Diez, V; Ramos, C; Cabezas, J L

    2012-01-01

    An Anaerobic Membrane Bioreactor (AnMBR) pilot plant was studied to improve certain operational conditions of AnMBRs that treat high oil and grease wastewaters discharged from a snacks factory. A comparison of its performance and behavior was made with an upflow anaerobic reactor throughout the first eight weeks of its operation. Raw snack food wastewater was characterized by oil and grease concentrations of up to 6,000 mg/l, with chemical oxygen demand (COD) and biological oxygen demand (BOD(5)) concentrations of up to 22,000 and 10,300 mg/l, respectively. The AnMBR achieved COD removal efficiencies of 97% at an organic loading rate (OLR) of 5.1 kg COD/m(3) d. The filtration flux, and the suction, backwash and relaxation times for each cycle were all varied: an 11 min filtration time involving 10 s pre-relaxation, 20 s backwash and 70 s post-relaxation was finally selected. The filtration flux for long-term operation was between 6.5 and 8.0 l/m(2) h. The study also tested physical cleaning strategies such as intensive backwashing cycles and extended relaxation mode, and different chemical cleaning methods, such as chemically enhanced backwash on air and chemical cleaning by immersion.

  19. Resolution of the three dimensional structure of components of the glomerular filtration barrier

    PubMed Central

    2014-01-01

    Background The human glomerulus is the primary filtration unit of the kidney, and contains the Glomerular Filtration Barrier (GFB). The GFB had been thought to comprise 3 layers – the endothelium, the basement membrane and the podocyte foot processes. However, recent studies have suggested that at least two additional layers contribute to the function of the GFB, the endothelial glycocalyx on the vascular side, and the sub-podocyte space on the urinary side. To investigate the structure of these additional layers is difficult as it requires three-dimensional reconstruction of delicate sub-microscopic (<1 μm) cellular and extracellular elements. Methods Here we have combined three different advanced electron microscopic techniques that cover multiple orders of magnitude of volume sampled, with a novel staining methodology (Lanthanum Dysprosium Glycosaminoglycan adhesion, or LaDy GAGa), to determine the structural basis of these two additional layers. Serial Block Face Scanning Electron Microscopy (SBF-SEM) was used to generate a 3-D image stack with a volume of a 5.3 x 105 μm3 volume of a whole kidney glomerulus (13% of glomerular volume). Secondly, Focused Ion Beam milling Scanning Electron Microscopy (FIB-SEM) was used to image a filtration region (48 μm3 volume). Lastly Transmission Electron Tomography (Tom-TEM) was performed on a 0.3 μm3 volume to identify the fine structure of the glycocalyx. Results Tom-TEM clearly showed 20 nm fibre spacing in the glycocalyx, within a limited field of view. FIB-SEM demonstrated, in a far greater field of view, how the glycocalyx structure related to fenestrations and the filtration slits, though without the resolution of TomTEM. SBF-SEM was able to determine the extent of the sub-podocyte space and glycocalyx coverage, without additional heavy metal staining. Neither SBF- nor FIB-SEM suffered the anisotropic shrinkage under the electron beam that is seen with Tom-TEM. Conclusions These images demonstrate that the

  20. T cell response to purified filtrate antigen 85 from Mycobacterium bovis Bacilli Calmette-Guérin (BCG) in leprosy patients.

    PubMed Central

    Launois, P; Huygen, K; De Bruyn, J; N'Diaye, M; Diouf, B; Sarthouj, L; Grimaud, J; Millan, J

    1991-01-01

    T cell proliferation and IFN-gamma production of peripheral blood mononuclear cells from 25 healthy controls and 39 leprosy patients were tested against BCG-bacilli and culture filtrate. Mycobacterium leprae and purified antigen 85 (the major secreted 30-32 kD protein antigen) from M. bovis strain BCG. In lepromin negative healthy controls, blastogenesis was low to M. leprae and completely negative to antigen 85. IFN-gamma levels were very low, close to detection limits. In all lepromin positive controls, significant proliferation and IFN-gamma secretion was found in response to M. leprae and antigen 85. In the group of lepromatous leprosy (LL) patients, 25/29 of patients (with either positive (13) or negative (12) lymphoproliferative response to BCG) were unreactive to M. leprae or to antigen 85. Four LL patients with positive T cell response to BCG responded with detectable lymphoproliferative response and IFN-gamma secretion to antigen 85. All tuberculoid (TT) leprosy patients responded to BCG, M. leprae and antigen 85. Hence, T cells from leprosy patients and controls demonstrate a marked parallelism of responsiveness towards whole M. leprae and purified antigen 85 from M. bovis BCG, suggesting strong cross-reactivity between the two species and underlining the biological importance of such secreted antigens. PMID:1934596

  1. Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors.

    PubMed

    Shi, Bingbing; Ekberg, Lars

    2015-06-01

    Previous research has demonstrated that unipolar ionization can enhance the filter performance to collect airborne particles, aeroallergens, and airborne microorganisms, without affecting the filter pressure drop. However, there is a lack of research on the long-term system performance as well as the influence of environmental and operational parameters. In this paper, both field and laboratory tests were carried out to evaluate the long-term particle collection efficiency of a synthetic filter of class M6 with and without ionization. The effect of air velocity, temperature, relative humidity, and particle concentration were further investigated in laboratory tests. Results showed that ionization enhanced the filtration efficiency by 40%-units during most of the operation time. When the ionization system was managed by periodically switching the ionizer polarity, the filtration efficiency against PM0.3-0.5 was maintained above 50% during half a year. Furthermore, the pressure drop of the ionizer-assisted M6 filter was 25-30% lower than that of a filter of class F7. The evaluation of various influencing factors demonstrated that (1) air moisture reduced the increase of filtration efficiency; (2) higher upstream particle concentration and air velocity decreased the filtration efficiency; and (3) the air temperature had very limited effect on the filtration efficiency.

  2. Splitting a simple homotopy equivalence along a submanifold with filtration

    SciTech Connect

    Bak, A; Muranov, Yu V

    2008-06-30

    A simple homotopy equivalence f:M{sup n}{yields}X{sup n} of manifolds splits along a submanifold Y subset of X if it is homotopic to a map that is a simple homotopy equivalence on the transversal preimage of the submanifold and on the complement of this preimage. The problem of splitting along a submanifold with filtration is a natural generalization of this problem. In this paper we define groups LSF{sub *} of obstructions to splitting along a submanifold with filtration and describe their properties. We apply the results obtained to the problem of the realization of surgery and splitting obstructions by maps of closed manifolds and consider several examples. Bibliography: 36 titles.

  3. Chemical filtration of indoor air: An application primer

    SciTech Connect

    Joffe, M.A.

    1996-02-01

    Low levels of airborne molecular contaminants determine perceived freshness of breathing air and have to be controlled to achieve good indoor air quality (IAQ). Hence, issues of chemical purity of indoor air and different means to achieve it receive increasing attention. Thus, chemical air filtration, as a part of an HVAC system, is the often best solution. IAQ engineers and facility managers increasingly favor chemical air filters to control molecular contamination. The number of vendors offering different products for indoor air purification has jumped in the last decade from a couple to more than a dozen. But because of the novelty of the problem and rapid developments in control technology, design features and application parameters often pose difficulties for end users. This paper addresses common end-user questions encountered during several years of implementing chemical filtration systems.

  4. Particle flocculation and filtration by high-gradient magnetic fields

    SciTech Connect

    Tsouris, C.; Yiacoumi, S.

    1997-01-01

    Flocculation and filtration of micrometer-sized particles in a high-gradient magnetic field (HGMF) were investigated. Experiments were conducted using a cryogenic magnet of 6 Tesla maximum strength. Hematite particles were used for flocculation and filtration experiments. A new approach of using magnetic fields to enhance separation of weakly magnetic particles was also investigated. This approach is based on magnetic seeding which involves flocculation of existing non-magnetic particles with injected paramagnetic particles. A particle-flocculation model was developed based on trajectory analysis. External forces due to gravity and magnetism, and interparticle forces such as electrostatic, hydrodynamic, magnetic dipole, and van der Waals forces, were taken into consideration in these models.

  5. Filtration of slime suspension in water-treatment precipitation clarifiers

    SciTech Connect

    Trofimenko, M.A.; Tyagnyryadno, L.A.; Korol'kov, N.M.; Zheleznyak, A.B.

    1988-02-10

    When water is treated in industrial clarifiers a slime suspension is produced that has a pH 11-12.5 and contains up to 5% solid phase. In order to utilize the excess alkalinity of the suspension and save fresh lime milk, the suspension is used to neutralize the acidic regenerates past the cation-exchanger columns. The operation of the vacuum filter is a narrow part of the wastewater treatment area. The filter cloth often gets choked, the sediment being sticky and difficult to remove from the cloth. We proposed to alter the mode of removal of the slime suspension by submitting it to filtration immediately after its exit from the clarifier. For mixing with the acidic regeneration from the cation-exchanger columns the filtrate was delivered after the vacuum filter.

  6. NASA Lunar Dust Filtration and Separations Workshop Report

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Stocker, Dennis P.

    2009-01-01

    NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.

  7. Phosphorus removal with membrane filtration for surface water treatment.

    PubMed

    Dietze, A; Gnirss, R; Wiesmann, U

    2002-01-01

    Surface waters are often burdened with inflows of low quality water, so that drinking-water production, swimming or ground water charging must be restricted. To ensure the long-term use of such surface water it is necessary to treat the influents or the water used for ground water charging. The current treatment process for phosphorus and turbidity removal is a process combination called floc filtration. By using this conventional method it is possible to reduce the dissolved ortho-phosphate and the turbidity (particulate phosphorus) as well as the amounts of algae and pathogenic organisms to very low concentrations. The high degree of reduction is only achieved by a relatively high dosage of chemicals. A comparison will be made between this process, which represents the state-of-the-art, and the combination of precipitation/coagulation with micro-/ultrafiltration in dead-end filtration mode.

  8. Energy conservation in electrostatic fabric filtration of industrial dust

    SciTech Connect

    Ariman, T.

    1981-12-01

    Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

  9. CRADA opportunities in removal of particulates from hot-gas streams by filtration

    SciTech Connect

    Smith, D.H.

    1995-06-01

    Our analyses of samples and operating data from the Pressurized Fluidized Bed Combustion (PFBC), cyclone, and filtration units of the Tidd Clean Coal demonstration facility show that calcined dolomitic sorbent reacted with SO{sub 2} (and O{sub 2}) to form Sulfates (CaSO{sub 4} and CaMgn [SO{sub 4}]n+1) not only in the PFBC bed, but also in the filtration vessel. Analyses of limited data from the journal literature suggest that the filter-vessel reactions may have produced sulfate {open_quotes}necks,{close_quotes} which bonded the particles together, thus substantially increasing the critical angle of repose and shear tensile strengths of the filtered powders. This proposed mechanism rationalizes the {open_quotes}bridging{close_quotes} and other particle-accumulation problems that caused filter breakage. Engineering services potentially available to resolve these problems include elucidation and modeling of ex-situ and in-situ filter-vessel chemistry, measurement and modeling of particulate materials properties, and measurement and modeling of cleaning back-pulse aerodynamics and cleaning efficiencies.

  10. Nitrate contamination of riverbank filtrate at Srinagar, Uttarakhand, India: A case of geogenic mineralization

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Ronghang, M.; Kumar, P.; Mehrotra, I.; Kumar, S.; Grischek, T.; Sandhu, C.; Knoeller, K.

    2015-12-01

    In place of direct pumping, river bank filtration (RBF) is increasingly being used for collecting surface water for municipal supplies. However, as each site is different, every such scheme needs evaluation and adds to our knowledge about RBF. This work aimed at evaluating the efficacy of a well commissioned in May 2010 on the bank of River Alaknanda in Srinagar (Uttarakhand), India. The well water was monitored for coliform removal and mineral content with reference to the river and surrounding groundwater since the construction of the well. Study showed that the well water is much better in terms of bacteriological quality and turbidity, but is highly mineralized with respect to the river water. The ionic concentrations in the well water were comparable to the groundwater in the region. Stable isotope δ2H and δ18O values, however, showed that the well water is predominantly river bank filtrate. In addition, the water from the well has been containing unusually high concentrations of nitrate (53-138 mg/L)-much higher than permissible limit for drinking water supply while the river water had much lower concentrations (0.3-4.2 mg/L). Investigations were conducted on groundwater, wastewaters, soils, and rocks in the area to identify the source of excess nitrate. The results suggest the occurrence of phyllite and quartzite bedrocks as the origin of nitrate. These findings underline the need for extensive hydrogeochemical studies before designing a RBF scheme.

  11. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus).

    PubMed

    Simon, Malene; Johnson, Mark; Tyack, Peter; Madsen, Peter T

    2009-11-01

    Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s(-1)), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration rate of approximately 3 m(3) s(-1), amounting to some 2000 tonnes of water and prey filtered per dive. We conclude that a food niche of dense, slow-moving zooplankton prey has led balaenids to evolve locomotor and filtering systems adapted to work against a high drag at swimming speeds of less than 0.07 body length s(-1) using a continuous fluking gait very different from that of nekton-feeding, aquatic predators.

  12. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus)

    PubMed Central

    Simon, Malene; Johnson, Mark; Tyack, Peter; Madsen, Peter T.

    2009-01-01

    Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s−1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration rate of approximately 3 m3 s−1, amounting to some 2000 tonnes of water and prey filtered per dive. We conclude that a food niche of dense, slow-moving zooplankton prey has led balaenids to evolve locomotor and filtering systems adapted to work against a high drag at swimming speeds of less than 0.07 body length s−1 using a continuous fluking gait very different from that of nekton-feeding, aquatic predators. PMID:19692400

  13. Removal of Pu-238 from aqueous process streams using a polymer filtration process

    NASA Astrophysics Data System (ADS)

    Jarvinen, Gordon D.; Purdy, Geraldine M.; Rau, Karen C.; Remeroski, M. L.; Reimus, Mary Ann H.; Ramsey, Kevin B.; Foltyn, Elizabeth M.; Smith, Barbara F.; Robison, Thomas W.

    2001-02-01

    A glovebox facility is under construction at Los Alamos that will recover a significant quantity of the impure Pu-238 that exists in scrap and residues from past production operations. The general flowsheet consists of milling, acid dissolution, ion exchange, precipitation, calcination, oxygen isotope exchange, and waste treatment operations. As part of the waste treatment operations we are using polymer filtration to remove Pu-238 to meet facility discharge limits. Polymer filtration (PF) technology uses water-soluble polymers prepared with selective receptor sites to sequester metal ions, organic molecules, and other species from dilute aqueous solutions. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using ultrafiltration (UF) methods. Water and small, unbound components of the solution pass freely through the UF membrane while the polymer concentrates in the retentate. The permeate stream is ``cleaned'' of the components bound to the polymer and can be used in further processing steps or discharged. The concentrated retentate solution can be treated to give a final waste form or to release the sequestered species from the receptor sites by adjusting the conditions in the retentate solution. The PF technology is part of our work to develop a safe, reliable and cost-effective scrap recovery operation with high process efficiencies, minimal waste generation, and high product purity. .

  14. Urban Wetlands' Filtration of Pollutants in Milledgeville, Georgia

    NASA Astrophysics Data System (ADS)

    Sadowski, H.; Mutiti, S.; Melvin, C.; Hazzard, S.; Berry, L. E.; GCSU Hydrogeoligists

    2011-12-01

    Wetlands provide the vital biological service of filtering contaminants and wastes. Constructed wetlands can be used to treat urban wastewater, providing additional economic value. Suspended sediments are trapped and retained by roots, microbes break down nutrients and disinfection occurs via photolysis. The primary objective of this research was to investigate the effectiveness of a structurally-unique urban wetland along the Oconee River in Milledgeville, Georgia at filtering contaminants from urban runoff. In the past two years, there have been at least two reported instances where sewer blockages occurred and raw waste spilled into the wetland and nearby streams. Contaminants of concern include pathogens, nutrients, pharmaceuticals and other chemical compounds found in runoff. The wetland is made up of a series of basins that are in places separated by covered bricks and provides the only opportunity for runoff to be filtered before entering the creek and river. To understand the processes affecting water flow within the basins, a variety of field tests (in-situ permeameter, slug, evaporation, and infiltration tests) were conducted. Soil cores were also collected for nitrate, aluminum, and phosphate transport experiments. Water samples were collected from the runoff, the basins, the creek, and discharge into the creek during and after rain events. These samples were analyzed using Hach colorimeters, spectrophotometers and a mass spectrophotometer. Interflow through a sandy layer, with a hydraulic conductivity of about 20 m/d, was observed at about 1 meter below ground surface. Evaporation and infiltration tests in the wetland yielded values of about 0.001 and 0.46 m/d. Preliminary results showed the creek to have relatively lower nutrient and iron concentrations than the input runoff and the wetland. In contrast, phosphate, iron and sulfate levels were higher in the basins than in the incoming runoff. This is probably a result of accumulation over time

  15. Numerical simulation of high-gradient magnetic filtration

    NASA Astrophysics Data System (ADS)

    Gusev, B. A.; Semenov, V. G.; Panchuk, V. V.

    2016-09-01

    We have reported on the results of a numerical simulation of high-gradient magnetic filtration of ultradisperse corrosion products from water coolants. These results have made it possible to establish optimal technical characteristics of high-gradient magnetic filters. The results have been used to develop test samples of high-gradient magnetic filters (HGMFs) with different magnetic systems to purify technological water media of atomic power plants from activated corrosion products.

  16. Water Hyacinths and Alligator Weeds for Final Filtration of Sewage

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1976-01-01

    The potential of water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxerides) (Mart.) Griesb. as secondary and tertiary filtration systems for domestic sewage was demonstrated. These two vascular aquatic plants reduced the suspended solids, total Kjeldahl nitrogen, total phosphorus, BOD sub 5, and total organic carbon levels in domestic sewage from 60 percent to 98 percent within a two week period. These plants grown in domestic sewage were also free of toxic levels of trace heavy metals.

  17. Intra-aortic filtration is effective in collecting hazardous materials.

    PubMed

    Mestres, Carlos-A; Bernabeu, Eduardo; Fernández, Claudio; Colli, Andrea; Josa, Miguel

    2007-04-01

    Neurological complications after cardiac operations are mostly due to particle embolization. This case illustrates the embolic potential of any material. A 77-year-old lady underwent re-operation for homograft aortic regurgitation and mitral valve replacement. Intra-aortic filtration was used. After cardiopulmonary bypass the filter was found to have captured a pledget from a suture used to secure the mitral replacement device.

  18. Hazard categorization of K Basin water filtration upgrade project

    SciTech Connect

    Conn, K.R.

    1995-10-19

    This supporting document provides the hazards categorization for the K Basin Water Filtration Upgrade Project at K East. All activities associated with the project are less than Hazard Category 3, except for the handling of the ECO-ROK liners containing spent filter cartridges. All activities involving the handling of liners, containing spent cartridges, by monorail, forklift or mobile crane are classified as Hazard Category 3.

  19. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    PubMed

    Tang, Bo; Zhang, Lianbin; Li, Renyuan; Wu, Jinbo; Hedhili, Mohamed Neijib; Wang, Peng

    2016-01-14

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes' physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.

  20. Ultra-filtration measurement using CT imaging technology

    NASA Astrophysics Data System (ADS)

    Lu, Junfeng; Lu, Wenqiang

    2009-02-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc …. Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.