Science.gov

Sample records for biological isru implications

  1. Developing Biological ISRU: Implications for Life Support and Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Allen, C. C.; Garrison, D. H.; Sarkisova, S. A.; Galindo, C.; Mckay, David S.

    2010-01-01

    Main findings: 1) supplementing very dilute media for cultivation of CB with analogs of lunar or Martian regolith effectively supported the proliferation of CB; 2) O2 evolution by siderophilic cyanobacteria cultivated in diluted media but supplemented with iron-rich rocks was higher than O2 evolution by same strain in undiluted medium; 3) preliminary data suggest that organic acids produced by CB are involved in iron-rich mineral dissolution; 4) the CB studied can accumulate iron on and in their cells; 4) sequencing of the cyanobacterium JSC-1 genome revealed that this strain possesses molecular features which make it applicable for the cultivation in special photoreactors on Moon and Mars. Conclusion: As a result of pilot studies, we propose, to develop a concept for semi-closed integrated system that uses CB to extract useful elements to revitalize air and produce valuable biomolecules. Such a system could be the foundation of a self-sustaining extraterrestrial outpost (Hendrickx, De Wever et al., 2005; Handford, 2006). A potential advantage of a cyanobacterial photoreactor placed between LSS and ISRU loops is the possibility of supplying these systems with extracted elements and compounds from the regolith. In addition, waste regolith may be transformed into additional products such as methane, biomass, and organic and inorganic soil enrichment for the cultivation of higher plants.

  2. The role of synthetic biology for in situ resource utilization (ISRU).

    PubMed

    Montague, Michael; McArthur, George H; Cockell, Charles S; Held, Jason; Marshall, William; Sherman, Louis A; Wang, Norman; Nicholson, Wayne L; Tarjan, Daniel R; Cumbers, John

    2012-12-01

    A persistent presence in space can either be supported from Earth or generate the required resources for human survival from material already present in space, so called "in situ material." Likely, many of these resources such as water or oxygen can best be liberated from in situ material by conventional physical and chemical processes. However, there is one critical resource required for human life that can only be produced in quantity by biological processes: high-protein food. Here, recent data concerning the materials available on the Moon and common asteroid types is reviewed with regard to the necessary materials to support the production of food from material in situ to those environments. These materials and their suitability as feedstock for the biological production of food are reviewed in a broad and general way such that terminology that is often a barrier to understanding such material by interdisciplinary readers is avoided. The waste products available as in situ materials for feasibility studies on the International Space Station are also briefly discussed. The conclusion is that food production in space environments from in situ material proven to exist there is quite feasible.

  3. ISRU Planning for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Elliott, J. O.; Easter, R.; Surampudi, S.; Voecks, G.

    2012-06-01

    Applications for use of ISRU in Mars exploration abound. Technologies being developed today need to be guided by appropriate system, mission and campaign analyses to identify optimal paths to large scale applicability.

  4. Social Implications of Biological Education.

    ERIC Educational Resources Information Center

    Grobman, Arnold B.

    Political and social implications of biological research, with particular reference to consequences for education, are discussed in this collection of papers presented at the 1969 convention of the National Association of Biology Teachers. Commentary papers by a panel of three, including at least one high school biology teacher and one expert in…

  5. In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Duke, Michael

    2005-01-01

    A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.

  6. In-situ Resource Utilization (ISRU) and Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry; Larson, Bill; Sacksteder, Kurt

    2007-01-01

    This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.

  7. Minimizing Launch Mass for ISRU Processes

    NASA Technical Reports Server (NTRS)

    England, C.; Hallinan, K. P.

    2004-01-01

    The University of Dayton and the Jet Propulsion Laboratory are developing a methodology for estimating the Earth launch mass (ELM) of processes for In-Situ Resource Utilization (ISRU) with a focus on lunar resource recovery. ISRU may be enabling for both an extended presence on the Moon, and for large sample return missions and for a human presence on Mars. To accomplish these exploration goals, the resources recovered by ISRU must offset the ELM for the recovery process. An appropriate figure of merit is the cost of the exploration mission, which is closely related to ELM. For a given production rate and resource concentration, the lowest ELM - and the best ISRU process - is achieved by minimizing capital equipment for both the ISRU process and energy production. ISRU processes incur Carnot limitations and second law losses (irreversibilities) that ultimately determine production rate, material utilization and energy efficiencies. Heat transfer, chemical reaction, and mechanical operations affect the ELM in ways that are best understood by examining the process's detailed energetics. Schemes for chemical and thermal processing that do not incorporate an understanding of second law losses will be incompletely understood. Our team is developing a methodology that will aid design and selection of ISRU processes by identifying the impact of thermodynamic losses on ELM. The methodology includes mechanical, thermal and chemical operations, and, when completed, will provide a procedure and rationale for optimizing their design and minimizing their cost. The technique for optimizing ISRU with respect to ELM draws from work of England and Funk that relates the cost of endothermic processes to their second law efficiencies. Our team joins their approach for recovering resources by chemical processing with analysis of thermal and mechanical operations in space. Commercial firms provide cost inputs for ELM and planetary landing. Additional information is included in the

  8. Overview of Proposed ISRU Technology Development

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Sanders, Jerry; Starr, Stan; Suzuki, Nantel; O'Malley, Terry

    2016-01-01

    ISRU involves any hardware or operation that harnesses and utilizes in-situ resources (natural and discarded) to create products and services for robotic and human exploration: Assessment of physical, mineral chemical, and volatile water resources, terrain, geology, and environment (orbital and local). Production of replacement parts, complex products, machines, and integrated systems from feedstock derived from one or more processed resources. Civil engineering, infrastructure emplacement, and structure construction using materials produced from in situ resources. Radiation shields, landing pads, roads, berms, habitats, etc. Generation and storage of electrical, thermal, and chemical energy with in situ derived materials. Solar arrays, thermal wadis, chemical batteries, etc. ISRU is a disruptive capability: Enables more affordable exploration than todays paradigm. Allows more sustainable architectures to be developed. Understand the ripple effect in the other Exploration Elements: MAV: propellant selection, higher rendezvous altitude (higher DV capable with ISRU propellants). EDL: significantly reduces required landed mass. Life Support: reduce amount of ECLSS closure, reduce trash mass carried through propulsive maneuvers. Power: ISRU drives electrical requirements, reactant and regeneration for fuel cells for landers, rovers, and habitat backup. Every Exploration Element except ISRU has some flight heritage (power, propulsion, habitats, landers, life support, etc.) ISRU will require a flight demonstration mission on Mars before it will be included in the critical path. Mission needs to be concluded at least 10 years before first human landed mission to ensure lessons learned can be incorporated into final design. ISRU Formulation team has generated a (still incomplete) list of over 75 technical questions on more than 40 components and subsystems that need to be answered before the right ISRU system will be ready for this flight demo.

  9. Plasma Assisted ISRU at Mars

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Kuhl, Christopher A.; Templeton, Justin D.

    2005-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization (ISRU) technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  10. Planetary Regolith Delivery Systems for ISRU

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I., III

    2012-01-01

    The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.

  11. ISRU Technologies for Mars Life Support

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Sridhar, K. R.

    2000-01-01

    The primary objectives of the Mars Exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolution stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the robotic + human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere. ISRU for propellant production and for generation of life support consumables is a key element of human exploration mission plans because of the tremendous savings that can be realized in terms of launch costs and reduction in overall risk to the mission. The Human Exploration and Development of Space (HEDS) Enterprise has supported ISRU technology development for several years, and is funding the MIP and PROMISE payloads that will serve as the first demonstrations of ISRU technology for Mars. In our discussion and presentation at the workshop, we will highlight how the PROMISE ISRU experiment that has been selected by HEDS for a future Mars flight opportunity can extend and enhance the science experiments on board.

  12. Biological Implications of Artificial Illumination.

    ERIC Educational Resources Information Center

    Wurtman, Richard J.

    1968-01-01

    Environmental lighting exerts profound biologic effects on humans and other mammals, in addition to providing the visual stimulus. Light acts on the skin to stimulate the synthesis of Vitamin D. It also acts, through the eyes, to control several glands and many metabolic processes. Light, or its absence, "induces" certain biologic functions. Light…

  13. Biological Implications of Gene-Environment Interaction

    ERIC Educational Resources Information Center

    Rutter, Michael

    2008-01-01

    Gene-environment interaction (G x E) has been treated as both a statistical phenomenon and a biological reality. It is argued that, although there are important statistical issues that need to be considered, the focus has to be on the biological implications of G x E. Four reports of G x E deriving from the Dunedin longitudinal study are used as…

  14. In-Situ Resource Utilization (ISRU) Development Program

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry

    1998-01-01

    The question "Why In-Situ Resource Utilization (ISRU)?" is addressed in this presentation. The reasons given concentrate on Cost reduction, Mass reduction, Risk reduction, the expansion of human exploration and presence and the enabling of industrial exploitation. A review of the Martian and Lunar resources available for ISRU is presented. Other ISRU concepts (i.e., In-Situ Consumable production (ISCP) and In-Situ Propellant Production (ISPP)) are introduced and further explained. The objectives of a Mars ISRU System Technology (MIST) include (1) the characterization of technology and subsystem performance for mission modeling and technology funding planning, (2) reduce risk and concerns arising from sample return and human missions utilizing ISRU, and (3) demonstrate the environmental suitability of ISRU components/processes and systems. A proof of concept demonstration schedule and a facility overview for MIST is presented.

  15. Oxygen production System Models for Lunar ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  16. A Nuclear Powered ISRU Mission to Mars

    NASA Astrophysics Data System (ADS)

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-01

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  17. A Nuclear Powered ISRU Mission to Mars

    SciTech Connect

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-20

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  18. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Walton, Krista S.; LeVan, M. Douglas

    2004-01-01

    The atmosphere of Mars has many resources that can be processed to produce things such as oxygen, fuel, buffer gas, and water for support of human exploration missions. Successful manipulation of these resources is crucial for safe, cost-effective, and self-sufficient long-term human exploration of Mars. In our research, we are developing enabling technologies that require fundamental knowledge of adsorptive gas storage and separation processes. In particular, we are designing and constructing an innovative, low mass, low power separation device to recover carbon dioxide and carbon monoxide for Mars ISRU (in-situ resource utilization). The technology has broad implications for gas storage and separations for gas-solid systems that are ideally suited for reduced gravitational environments. This paper describes our separation process design and experimental procedures and reports results for the separation of CO2 and CO by a four-step adsorption cycle.

  19. ISRU Propellant Selection for Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Timothy T.

    2013-01-01

    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size

  20. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    with Mars ISRU systems further substantiated the preliminary results from the Mars DRA 5.0 study. This paper will provide an overview of Mars ISRU consumable production options, the analyses, results, and conclusions from the Mars DRA 5.0 (2007), Mars Collaborative (2013), and Mars ISRU Payload for the Supersonic Retro Propulsion (2014) mission studies, and the current state-of-the-art of Mars ISRU technologies and systems. The paper will also briefly discuss the mission architectural implications associated with Mars resource and ISRU processing options.

  1. Biological implications of thymectomy for myasthenia gravis.

    PubMed

    Okumura, Meinoshin; Inoue, Masayoshi; Kadota, Yoshihisa; Hayashi, Akio; Tokunaga, Toshiteru; Kusu, Takashi; Sawabata, Noriyoshi; Shiono, Hiroyuki

    2010-01-01

    Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies to the striated muscle tissue. It is often treated by thymectomy. We review recent studies to investigate the biological implications of thymectomy. In anti-acetylcholine receptor antibody (anti-AchR Ab)-positive patients without a thymoma, abnormal germinal center formation in the thymus seems to play an essential role in the pathogenesis of MG. Specific differentiation of B cells producing anti-AchR Ab takes place uniquely in the thymus, and thymectomy is thought to assist in terminating the provision of high-affinity anti-AchR antibody-producing cells to peripheral organs. Thymectomy is not indicated for anti-AchR Ab-negative MG patients who are antimuscle specific kinase antibody (anti-MuSK Ab)-positive, although some anti-MuSK Ab-negative patients may benefit from the procedure. A thymoma can be considered as an acquired thymus with insufficient function of negative selection. The resection of a thymoma is thought to terminate the production of self-reactive T cells. Thus, the biological implications of thymectomy for MG have been partially revealed. Nevertheless, additional studies are needed to elucidate the ontogeny of T cells that recognize AchR and the mechanism of the activation of anti-AchR antibodies producing B cells.

  2. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  3. Opportunities for ISRU Applications in the Mars Reference Mission

    NASA Astrophysics Data System (ADS)

    Duke, Michael B.

    1998-01-01

    The use of in-situ resources in the Mars Reference Mission is discussed in this presentation. The objectives of the presentation are to consider whether In Situ Resource Use (ISRU), other than propellants and life support consumables can be useful, and to outline the type of analysis that has to be performed to evaluate the ISRU use, and to suggest some areas for investigation. The presentation also discusses ways to reduce risk, and cost. Possible strategies are posed, including use of robotic systems. The use of robotic systems could reduce total mass required for the mission by producing required material over a long period of time. Several examples are discussed. (1) In the presentation the possible use of ISRU in making concrete for structures is discussed. Using robots to produce, mix, form, and cure the concrete, ISRU concrete may be able to compete with earth supply. (2) The use of robots to grade roads is also discussed. The use of ISRU is more complex than bringing things from Earth.

  4. ISRU in the Context of Future European Human Mars Exploration

    NASA Astrophysics Data System (ADS)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  5. Martian Atmospheric Dust Mitigation for ISRU Intakes via Electrostatic Precipitation

    NASA Technical Reports Server (NTRS)

    Phillips, James R., III; Pollard, Jacob R. S.; Johansen, Michael R.; Mackey, Paul J.; Clements, J. Sid; Calle, Carlos I.

    2016-01-01

    The Mars 2020 and Mars Sample Return missions expected to fly to Mars within the next ten years will each include an In Situ Resource Utilization (ISRU) system. They convert carbon dioxide in the Martian atmosphere into consumable oxygen at 1% and 20% of the rate required by a full scale human exploration Mars mission, respectively. The ISRU systems will need to draw in the surrounding atmosphere at a rate of 110L/min and 550L/min, respectively, in order to meet their oxygen production goals. Over the duration of each respective mission, a total atmospheric dust mass of 4.86g and 243g will be drawn into each system, respectively. Ingestion of large quantities of dust may interfere with ISRU operations, so a dust mitigation device will be required. The atmospheric volume and dust mass flow rates above will be utilized to simulate Martian environmental conditions in a laboratory electrostatic precipitator being developed to provide active dust mitigation support for atmospheric ISRU systems such as these.

  6. In Situ Resource Utilization (ISRU 3) Technical Interchange Meeting: Abstracts

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU III) Technical Interchange Meeting, February 11-12, 1999, hosted by the Lockheed Martin Astronautics Waterton Facility, Denver, Colorado. Administration and publication support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  7. In Situ Resource Utilization (ISRU II) Technical Interchange Meeting

    NASA Technical Reports Server (NTRS)

    Kaplan, David (Compiler); Saunders, Stephen R. (Compiler)

    1997-01-01

    This volume contains extended abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU II) Technical Interchange Meeting, November 18-19, 1997, at the Lunar and Planetary Institute, Houston, Texas. Included are topics which include: Extraterrestrial resources, in situ propellant production, sampling of planetary surfaces, oxygen production, water vapor extraction from the Martian atmosphere, gas generation, cryogenic refrigeration, and propellant transport and storage.

  8. In Situ Resource Utilization (ISRU) Technical Interchange Meeting

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This volume contains abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU) Technical Interchange Meeting, February 4-5, 1997, at the Lunar and Planetary Institute, Houston, Texas. Abstracts are arranged in order of presentation at the meetings, with corresponding page numbers shown in the enclosed agenda. Logistics, administration, and publication support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  9. The Biology of Trauma: Implications for Treatment

    ERIC Educational Resources Information Center

    Solomon, Eldra P.; Heide, Kathleen M.

    2005-01-01

    During the past 20 years, the development of brain imaging techniques and new biochemical approaches has led to increased understanding of the biological effects of psychological trauma. New hypotheses have been generated about brain development and the roots of antisocial behavior. We now understand that psychological trauma disrupts homeostasis…

  10. The biology of trauma: implications for treatment.

    PubMed

    Solomon, Eldra P; Heide, Kathleen M

    2005-01-01

    During the past 20 years, the development of brain imaging techniques and new biochemical approaches has led to increased understanding of the biological effects of psychological trauma. New hypotheses have been generated about brain development and the roots of antisocial behavior. We now understand that psychological trauma disrupts homeostasis and can cause both short and long-term effects on many organs and systems of the body. Our expanding knowledge of the effects of trauma on the body has inspired new approaches to treating trauma survivors. Biologically informed therapy addresses the physiological effects of trauma, as well as cognitive distortions and maladaptive behaviors. The authors suggest that the most effective therapeutic innovation during the past 20 years for treating trauma survivors has been Eye Movement Desensitization and Reprocessing (EMDR), a therapeutic approach that focuses on resolving trauma using a combination of top-down (cognitive) and bottom-up (affect/body) processing.

  11. Arenavirus genetic diversity and its biological implications.

    PubMed

    Emonet, Sebastien F; de la Torre, Juan C; Domingo, Esteban; Sevilla, Noemí

    2009-07-01

    The Arenaviridae family currently comprises 22 viral species, each of them associated with a rodent species. This viral family is important both as tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens. Arenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. The interaction with the cellular receptor and subsequent entry into the host cell differs between Old World and New World arenavirus that use alpha-dystoglycan or human transferring receptor 1, respectively, as main receptors. The recent development of reverse genetic systems for several arenaviruses has facilitated progress in understanding the molecular biology and cell biology of this viral family, as well as opening new approaches for the development of novel strategies to combat human pathogenic arenaviruses. On the other hand, increased availability of genetic data has allowed more detailed studies on the phylogeny and evolution of arenaviruses. As with other riboviruses, arenaviruses exist as viral quasispecies, which allow virus adaptation to rapidly changing environments. The large number of different arenavirus host reservoirs and great genetic diversity among virus species provide the bases for the emergence of new arenaviruses potentially pathogenic for humans.

  12. [The ethical implications of conserving biological samples].

    PubMed

    Tazzite, A; Roky, R; Avard, D

    2009-09-01

    The conservation and use of biological samples become more and more frequent all around the world. Biobanks of human body substances (blood, urine, DNA, tissues, cells, etc.), and personal data associated with them are created. They have a double character as they are collections of both human biological samples and personal data. In some cases, the gametes, reproductive tissues, embryos, foetal tissue after abortion or even specimens of dead donors are collected and conserved. Although biobanks raise hopes in both the development of new therapies, new drugs and their integration into clinical medicine, they also point to concerns related to ethical questions such as: the principles of information, the consent of the persons concerned, the confidentiality about the personal data, and in some cases discrimination and stigmatisation. Other ethical aspects could raise gradually as research advance. Research being carried out on human sample requires informed free consent from the person who should be able to consent. The donor must be sufficiently informed about the process of research, the purpose, benefits and the risks involved in participating in this research. In the case of persons unable to give consent such minors or persons with mental disabilities, special measures are undertaken. Once the consent was given, the right of withdrawal has been consistently supported by the various declarations and regulations, but some oppose this right for a number of reasons particularly in the case of research on the samples without risk of physical exposure. In this case the notion of human body integrity is different than in research involving therapeutic or clinical intervention. In the case of withdrawal of consent, the samples should be destroyed, but the anonymous results arising from them and their analysis are not affected. What is the case for future uses? Should the researcher obtain again the consent from the donor for a secondary use of the samples? This is a

  13. Environment, Biology, and Culture: Implications for Adolescent Development.

    ERIC Educational Resources Information Center

    Zahn-Waxler, Carolyn

    1996-01-01

    Introduces this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Problems of adolescence addressed include antisocial behavior, depressive symptoms, substance abuse, low achievement, and eating problems. Considers factors implicated in successful…

  14. Local Citation Analysis of Graduate Biology Theses: Collection Development Implications

    ERIC Educational Resources Information Center

    Miller, Laura Newton

    2011-01-01

    This paper will focus on the citation analysis of graduate masters theses from Carleton University's Biology Department with implications for library collection management decisions. Twenty-five masters theses were studied to determine citation types and percentages, ranking of journals by frequency of citation and by number of authors citing, and…

  15. Topological implications of negative curvature for biological and social networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim

    2014-03-01

    Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.

  16. Calculation of Excavation Force for ISRU on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Zeng, Xiangwu (David); Burnoski, Louis; Agui, Juan H.; Wilkinson, Allen

    2007-01-01

    Accurately predicting the excavation force that will be encountered by digging tools on the lunar surface is a crucial element of in-situ resource utilization (ISRU). Based on principles of soil mechanics, this paper develops an analytical model that is relatively simple to apply and uses soil parameters that can be determined by traditional soil strength tests. The influence of important parameters on the excavation force is investigated. The results are compared with that predicted by other available theories. Results of preliminary soil tests on lunar stimulant are also reported.

  17. Opportunities for ISRU Applications in the Mars Reference Mission

    NASA Astrophysics Data System (ADS)

    Duke, Michael B.

    1998-01-01

    The NASA Mars Exploration Reference Mission envisions sending three crews of six astronauts to Mars, each for 500-day stays on the surface. In situ Resourse Unitlization (ISRU) has been baselined for the production of propellant for crews leaving the surface, as well as to create reservoirs of water and life-support consumables These applications improve performance (by reducing the mass of hardware and supplies that must be brought to Mars for the propulsion system) and reduce risk (by creating consumables as backups to stores brought from Earth). Similar applications of other types of ISRU-derived materials should be sought and selected if they similarly improve performance or reduce risk. Some possible concepts for consideration, based on a review of the components included in the Reference Mission, include (1) emplacement of a hardened landing pad; (2) construction of a roadway for transporting the nuclear power system to a safe distance from the habitat; (3) radiation shielding for inflatable structures; (4) tanks and plumbing for bioregenerative life-support system; (5) drilling rig; (6) additional access structures for equipment and personnel and unpressurized structures for vehicle storage; (7) utilitarian manufactured products (e.g., stools and benches) for habitat and laboratory; (8) thermal radiators; (9) photovoltaic devices and support structures; and ( 10) external structures for storage and preservation of Mars samples. These may be viewed principally as mission- enhancing concepts for the Reference Mission. Selection would require a clear rationale for performance improvement or risk reduction and a demonstration that the cost of developing and transporting the needed equipment would be recovered within the budget for the program. Additional work is also necessary to ascertain whether early applications of ISRU for these types of purposes could lead to the modification of later missions, allowing the replacement of infrastructure payloads currently

  18. Discussion of thermal extraction chamber concepts for Lunar ISRU

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Matthias; Hager, Philipp; Parzinger, Stephan; Dirlich, Thomas; Spinnler, Markus; Sattelmayer, Thomas; Walter, Ulrich

    The Exploration group of the Institute of Astronautics (LRT) of the Technische Universitüt a München focuses on long-term scenarios and sustainable human presence in space. One of the enabling technologies in this long-term perspective is in-situ resource utilization (ISRU). When dealing with the prospect of future manned missions to Moon and Mars the use of ISRU seems useful and intended. The activities presented in this paper focus on Lunar ISRU. This basically incorporates both the exploitation of Lunar oxygen from natural rock and the extraction of solar wind implanted particles (SWIP) from regolith dust. Presently the group at the LRT is examining possibilities for the extraction of SWIPs, which may provide several gaseous components (such as H2 and N2) valuable to a human presence on the Moon. As a major stepping stone in the near future a Lunar demonstrator/ verification experiment payload is being designed. This experiment, LUISE (LUnar ISru Experiment), will comprise a thermal process chamber for heating regolith dust (grain size below 500m), a solar thermal power supply, a sample distribution unit and a trace gas analysis. The first project stage includes the detailed design and analysis of the extraction chamber concepts and the thermal process involved in the removal of SWIP from Lunar Regolith dust. The technique of extracting Solar Wind volatiles from Regolith has been outlined by several sources. Heating the material to a threshold value seems to be the most reasonable approach. The present paper will give an overview over concepts for thermal extraction chambers to be used in the LUISE project and evaluate in detail the pros and cons of each concept. The special boundary conditions set by solar thermal heating of the chambers as well as the material properties of Regolith in a Lunar environment will be discussed. Both greatly influence the design of the extraction chamber. The performance of the chamber concepts is discussed with respect to the

  19. Arenavirus Quasispecies and Their Biological Implications.

    PubMed

    Grande-Pérez, Ana; Martin, Veronica; Moreno, Hector; de la Torre, Juan C

    2016-01-01

    arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.

  20. Resource Prospector: A Lunar Volatiles Prospecting and ISRU Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony

    2015-01-01

    A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form. extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations

  1. Field Scale Testing of RESOLVE at 2010 ISRU Analog Test

    NASA Technical Reports Server (NTRS)

    Captain, Janine E.; Quinn, J. W.; Moss, T. J.; Weis, K. H.

    2010-01-01

    When mankind returns to the moon, there will be one aspect of the architecture that will totally change how we explore the solar system. For the first time in space exploration, we will take the initial steps towards breaking our reliance on Earth-supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In Situ Resource Utilization (ISRU), will be directed at extracting some of the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of hydrogen that can be reasonably extracted from the regolith, it would provide a foundation for true independence from Earth consumables. With in-situ hydrogen and oxygen (and/or water) we can produce many of the major consumables needed to travel to and operate on a sustainable lunar outpost. We would have water to drink, oxygen to breath, and rocket propellants and fuel cell reagents to enable extended access and operations across the moon. NASA initiated development of an experiment package named RESOLVE (Regolith & Environment Science and Oxygen & Lunar Volatile Extraction) that could be flown to the rim or into a permanently shadowed crater to answer the questions surrounding elevated hydrogen at the lunar poles.

  2. New Developments in Mast Cell Biology: Clinical Implications.

    PubMed

    Arthur, Greer; Bradding, Peter

    2016-09-01

    Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.

  3. ISRU Production of Life Support Consumables for a Lunar Base

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Simon, Tom

    2007-01-01

    Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5degS, 0degE) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.

  4. College biology students' conceptions related to the nature of biological knowledge: Implications for conceptual change

    NASA Astrophysics Data System (ADS)

    Ameny, Gloria Millie Apio

    knowledge or course was found to have a statistically significant influence on students' conceptions related to scientific methods, the scope and limits of biological knowledge, the importance of evolution in biology, and students' understanding of homologous and analogous structural features as products of divergent and convergent evolutionary processes. Findings of this study have implications for college biology teaching, student learning, and conceptual change among college biology students.

  5. Thermodynamic model of Mars Oxygen ISRU Experiment (MOXIE)

    NASA Astrophysics Data System (ADS)

    Meyen, Forrest E.; Hecht, Michael H.; Hoffman, Jeffrey A.

    2016-12-01

    As humankind expands its footprint in the solar system, it is increasingly important to make use of the resources already in our solar system to make these missions economically feasible and sustainable. In-Situ Resource Utilization (ISRU), the science of using resources at a destination to support exploration missions, unlocks potential destinations by significantly reducing the amount of resources that need to be launched from Earth. Carbon dioxide is an example of an in-situ resource that comprises 96% of the Martian atmosphere and can be used as a source of oxygen for propellant and life support systems. The Mars Oxygen ISRU Experiment (MOXIE) is a payload being developed for NASA's upcoming Mars 2020 rover. MOXIE will produce oxygen from the Martian atmosphere using solid oxide electrolysis (SOXE). MOXIE is on the order of magnitude of a 1% scale model of an oxygen processing plant that might enable a human expedition to Mars in the 2030s through the production of the oxygen needed for the propellant of a Mars ascent vehicle. MOXIE is essentially an energy conversion system that draws energy from the Mars 2020 rover's radioisotope thermoelectric generator and ultimately converts it to stored energy in oxygen and carbon monoxide molecules. A thermodynamic model of this novel system is used to understand this process in order to derive operating parameters for the experiment. This paper specifically describes the model of the SOXE component. Assumptions and idealizations are addressed, including 1D and 2D simplifications. Operating points are discussed as well as impacts of flow rates and production.

  6. ISRU System Model Tool: From Excavation to Oxygen Production

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Linne, Diane L.

    2007-01-01

    In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.

  7. The Mars Oxygen ISRU Experiment (MOXIE) on the Mars 2020 Rover

    NASA Astrophysics Data System (ADS)

    Hecht, M. H.; Hoffman, J. A.; Moxie Team

    2016-10-01

    The Mars Oxygen ISRU Experiment (MOXIE) is a technology experiment on the Mars 2020 Rover mission that will demonstrate the production of oxygen from atmospheric carbon dioxide as a precursor to a future human mission.

  8. Molecular Biology of Gallbladder Cancer: Potential Clinical Implications

    PubMed Central

    Andrén-Sandberg, Åke

    2012-01-01

    Gallbladder cancer (GBC) is a common malignancy of the biliary tract and involves the changes in multiple oncogenes and multiple genetic genes. Since over the past decade there has been an advance in the knowledge of the genetic basis of cancer, mainly as a result of the rapid progression of molecular technology; however, conventional therapeutic approaches have not had much impact on the course of this aggressive neoplasm. Knowledge of the molecular biology of GBC is rapidly growing. Genetic alterations in GBC include adenosine triphosphate-binding cassette transporter ABCG8, membrane-bound enzyme ADAM-17 of multi-functional gene family, and other genes including p53, COX2, XPC, and RASSF1A. The advances in molecular biology have potential implications for the detection of this disease, using Synuclein-gamma, Syndecan-1, glycoprotein 72 (TAG-72), tumor endothelial marker 8 protein (TEM8) and TNF-alpha. The use of these molecular diagnostic methods is of clinical importance for the gene replacement therapy, genetic prodrug activation therapy, and antisense immunology technology for the treatment of malignancy. The author reviewed recent publications on PubMed, and summarized molecular biology of GBC, with an emphasis on features of potential clinical implications for diagnosis and management. PMID:23112962

  9. Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Romig, Kris A.; Larson, William E.; Johnson, Robert; Rapp, Don; Johnson, Ken R.; Sacksteder, Kurt; Linne, Diane; Curreri, Peter; Duke, Michael; Blair, Brad; Gertsch, Leslie; Boucher, Dale; Rice, Eric; Clark, Larry; McCullough, Ed; Zubrin, Robert

    2005-01-01

    On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of

  10. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications.

    PubMed

    Sun, Yuzhen; Liu, Guangliang; Cai, Yong

    2016-11-01

    Arsenic (As) is a notoriously toxic pollutant of health concern worldwide with potential risk of cancer induction, but meanwhile it is used as medicines for the treatment of different conditions including hematological cancers. Arsenic can undergo extensive metabolism in biological systems, and both toxicological and therapeutic effects of arsenic compounds are closely related to their metabolism. Recent studies have identified methylated thioarsenicals as a new class of arsenic metabolites in biological systems after exposure of inorganic and organic arsenicals, including arsenite, dimethylarsinic acid (DMA(V)), dimethylarsinous glutathione (DMA(III)GS), and arsenosugars. The increasing detection of thiolated arsenicals, including monomethylmonothioarsonic acid (MMMTA(V)), dimethylmonothioarsinic acid (DMMTA(V)) and its glutathione conjugate (DMMTA(V)GS), and dimethyldithioarsinic acid (DMDTA(V)) suggests that thioarsenicals may be important metabolites and play important roles in arsenic toxicity and therapeutic effects. Here we summarized the reported occurrence of thioarsenicals in biological systems, the possible formation pathways of thioarsenicals, and their toxicity, and discussed the biological implications of thioarsenicals on arsenic metabolism, toxicity, and therapeutic effects.

  11. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for

  12. In Situ Resource Utilization (ISRU) Experiments for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Marone, Matt

    2005-01-01

    In situ resource utilization can best be described as living off the land. In our case the land is the planet Mars. ISRU is based on the idea that some fraction of the consumables, life support and propellant materials do not have to be flown from earth. Rather, they can be manufactured or extracted from resources already present on Mars. The primary resources on Mars are the atmosphere, polar caps and regolith. The atmosphere of Mars is mostly carbon dioxide as shown in the table below. The proportion of oxygen on the other hand is quite small. Still, there is quite a bit of oxygen in the Martian atmosphere, but it is unfortunately tied up with carbon. Thus, one of the goals of ISRU is the separation of breathable oxygen from the carbon dioxide. Several means of separation have been proposed. We have begun experiments on another approach for production of oxygen with carbon monoxide as a useful by product. Our work on a CO2 separator is described later in this report. Regolith melting is another means of obtaining materials. Two materials of interest are iron and silicon. Iron oxide is plentiful on Mars and is of obvious importance for structural components. Silicon is the foundation of solid state devices. Power generation on Mars may be accomplished using silicon solar cells. There is discussion of the feasibility of in situ production of solar cells. This would require a means of extracting silicon from the regolith. We have conducted several experiments concerning melting and glassification of the Mars soil simulant. Other summer faculty fellows have tried various means of processing the stimulant material. These include furnace melting, microwave melting and laser ablation. We have conducted several furnace melting experiments in both air and carbon dioxide environments. We have also carried out experiments to test spark melting in a carbon dioxide atmosphere. These experiments suggest the possibility of using arc melting in a reducing atmosphere. It is

  13. ISRU Development Strategy and Recent Activities to Support Near and Far Term Missions

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald B.; Simon, Thomas M.

    2003-01-01

    The practical expansion of humans beyond low Earth orbit into near-Earth space and out into the solar system for exploration, commercialization, tourism, and colonization will require the effective utilization of whatever indigenous resources are available to make these endeavors economically feasible and capable of extended operations. This concept of ``living off the land'' is called In-Situ Resource Utilization (ISRU). The resources available for ISRU applications vary widely, depending upon the location. However, there are resources, technologies, and processes that are common to multiple destinations and ISRU-related applications. These resources range from carbon dioxide (CO2) and water vapor found in human habitats (surface & spacecraft) and in the Martian atmosphere, to water (ice and hydrated minerals) and various oxygen, carbon, and metal-bearing resources found on comets and asteroids, and in planetary surface materials at numerous destinations of interest (Moon, Mars, Titan, and Europa). Many parties are investigating the common technologies and processes to effectively extract and use these resources. This paper will discuss how ISRU is enabling for both near and far term human exploration missions, and present a summary of recent and on-going ISRU work sponsored by the NASA/Johnson Space Center. Technology development activities that will be described in detail include an advanced CO2 freezer acquisition system, a multi-fluid common bulkhead cryogenic storage tank, and a variety of microchannel chemical reactor concepts. Recent advanced Sabatier reactor concept development activities in preparation for later, end-to-end system testing will be described as well. This paper will also discuss an ISRU-based strategy to enable extensive robotic and human surface exploration operations and a related on-going demonstration program for a fuel cell based power plant for rover applications. Technology commonalities between ISRU, life support systems, and Extra

  14. RESOLVE: Bridge between early lunar ISRU and science objectives

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    THE NEED FOR RESOURCES: When mankind returns to the moon, there will be an aspect of the architecture that will totally change how we explore the solar system. We will take the first steps towards breaking our reliance on Earth supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In-Situ Resource Utilization (ISRU), will be to extract the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of extractable hydrogen, it would provide a foundation for true independence from Earth. With in-situ hydrogen (or water) and oxygen we can produce many of the major consumables needed to operate a lunar outpost. We would have water to drink, oxygen to breath, as well as rocket propellants and fuel cell reagents to enable extended access and operations on the moon. These items make up a huge percentage of the mass launched from the Earth. Producing them in-situ would significantly reduce the cost of operating a lunar outpost while increasing payload availability for science. PROSPECTING: The Lunar Prospector found evidence of elevated hydrogen at the lunar poles, and measurements made at these locations from the Clementine mission bistatic radar have been interpreted as correlating to water/ice concentrations. At the South Pole, there is reasonably strong correlation between the elevated areas of hydrogen and permanently shadowed craters. However, there is considerable debate on the form and concentration of this hydrogen since the orbiting satellites had limited resolution and their data can be interpreted in different ways. The varying interpretations are based on differing opinions and theories of lunar environment, evolution, and cometary bombardment within the lunar Science community. The only way to truly answer this question from both a Science and resource availability perspective is to go to the lunar poles

  15. Microchannel CO Methanation Reactors for Martian and Lunar ISRU

    SciTech Connect

    Dagle, Robert A.; Wegeng, Robert S.

    2008-07-05

    [Abstract] Microhannel technology offer significant advantages as a highly effective route to process intensification. NASA applications where size, weight, and process efficiency are key performance metrics, are very suitable applications. In situ resource utilization (ISRU) technologies is one such example. For use in a lunar carbothermal reduction process system a catalytic microchannel CO methanation reactor was developed. Design characteristics and operating performance evaluation for a multichannel reactor, approximately 4.5” X 0.5” X 1.0” in size, is discussed. Temperature, throughput, and mode of operation are variables explored. Two modes of operation were investigated: 1) under adiabatic conditions and 2) utilizing counter-current air cooling. The latter scenario offered a differential temperature profile which helped to improve performance. Demonstration of this concept is provided. Maintaining the inlet reactor temperature at 430oC the methane effluent composition output increased from 66.2% to 79.9% by introducing counter-flow air cooling. This allowed the exiting reactor temperature to decrease by ~ 100oC. Operating under such temperature differential conditions offeres exploitation of high kinetics at the hot front-end of the reactor while utilizing favorable thermodynamics at the cooler back-end. The highly efficient and compact nature of microchannel reactors make them uniquely suitable for such reaction engineering applications.

  16. Cassegrain Solar Concentrator System for ISRU Material Processing

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Macosko, Robert; Castle, Charles; Sacksteder, Kurt; Suzuki, Nantel H.; Mulherin, James

    2012-01-01

    A 0.5 m diameter Cassegrain concentrator was constructed as a means of providing highly concentrated sunlight for the demonstration processing of lunar simulated regolith and other NASA In-Situ Resource Utilization Project (ISRU) reaction processes. The concentrator is constructed of aluminum with a concentration ratio of approximately 3000 to 1. The concentrator focuses solar energy into a movable tray located behind the concentrator. This tray can hold simulated regolith or any other material and or device to be tested with concentrated solar energy. The tray is movable in one axis. A 2-axis extended optical system was also designed and fabricated. The extended optical system is added to the back of the primary concentrator in place of the moveable test tray and associated apparatus. With this optical system the focused sunlight can be extended from the back of the primary concentrator toward the ground with the added advantage of moving the focal point axially and laterally relative to the ground. This allows holding the focal point at a fixed position on the ground as the primary concentrator tracks the sun. Also, by design, the focal point size was reduced via the extended optics by a factor of 2 and results in a concentration ratio for the system of approximately 6,000 to 1.The designs of both optical systems are discussed. The results from simulated regolith melting tests are presented as well as the operational experience of utilizing the Cassegrain concentrator system.

  17. Biology, detection, and clinical implications of circulating tumor cells

    PubMed Central

    Joosse, Simon A; Gorges, Tobias M; Pantel, Klaus

    2015-01-01

    Cancer metastasis is the main cause of cancer-related death, and dissemination of tumor cells through the blood circulation is an important intermediate step that also exemplifies the switch from localized to systemic disease. Early detection and characterization of circulating tumor cells (CTCs) is therefore important as a general strategy to monitor and prevent the development of overt metastatic disease. Furthermore, sequential analysis of CTCs can provide clinically relevant information on the effectiveness and progression of systemic therapies (e.g., chemo-, hormonal, or targeted therapies with antibodies or small inhibitors). Although many advances have been made regarding the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this important diagnostic approach. In this review, we discuss the biology of tumor cell dissemination, technical advances, as well as the challenges and potential clinical implications of CTC detection and characterization. PMID:25398926

  18. ISRU: An Overview of NASA'S Current Development Activities and Long-Term Goals

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    The concept of "living off the land" by utilizing the indigenous resources of the Moon, Mars, or other potential sites of robotic and human exploration has been termed In-Situ Resource Utilization (ISRU). It is fundamental to any program of extended human presence and operation on other extraterrestrial bodies that we learn how to utilize the indigenous resources. The chief benefits of ISRU are that it can reduce the mass, cost, and risk of robotic and human exploration while providing capabilities that enable the commercial development of space. In January 1997, the American Institute of Aeronautics and Astronautics (AIAA) Space Processing Technical Committee released a position paper entitled, "Need for A NASA Indigenous Space Resource Utilization (ISRU) Program". Besides outlining some of the potential advantages of incorporating ISRU into Lunar and Mars human mission plans and providing an overview of technologies and processes of interest, the position paper concluded with a list of seven recommendations to NASA. This paper will examine the seven recommendations proposed and provide an overview of NASA's current ISRU development activities and possible long term goals with respect to these recommendations.

  19. Clinical and biological implications of driver mutations in myelodysplastic syndromes

    PubMed Central

    Papaemmanuil, Elli; Gerstung, Moritz; Malcovati, Luca; Tauro, Sudhir; Gundem, Gunes; Van Loo, Peter; Yoon, Chris J.; Ellis, Peter; Wedge, David C.; Pellagatti, Andrea; Shlien, Adam; Groves, Michael John; Forbes, Simon A.; Raine, Keiran; Hinton, Jon; Mudie, Laura J.; McLaren, Stuart; Hardy, Claire; Latimer, Calli; Della Porta, Matteo G.; O’Meara, Sarah; Ambaglio, Ilaria; Galli, Anna; Butler, Adam P.; Walldin, Gunilla; Teague, Jon W.; Quek, Lynn; Sternberg, Alex; Gambacorti-Passerini, Carlo; Cross, Nicholas C. P.; Green, Anthony R.; Boultwood, Jacqueline; Vyas, Paresh; Hellstrom-Lindberg, Eva; Bowen, David; Cazzola, Mario; Stratton, Michael R.

    2013-01-01

    Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation, and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including chronic myelomonocytic leukemia and MDS–myeloproliferative neoplasms) to explore the role of acquired mutations in MDS biology and clinical phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic “predestination,” in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application. PMID:24030381

  20. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  1. Initial Biological Damage from Space Radiation: Implications for Development of Biological Countermeasures

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Paloski, William H. (Technical Monitor)

    1999-01-01

    Astronauts are exposed to high-energy nuclear particles originating from the galactic cosmic rays, high-energy protons trapped in the Earth's magnetic field or solar particle events, and secondary radiation produced by nuclear reactions. Important differences between conventional radiation including X-rays or gamma-rays, and high-energy nuclei occur at the level of initial damage to DNA and other potential biological target molecules, and to tissues. Such differences include a large fraction of the initial damage from high charge and energy (HZE) nuclear particles manifested as irreparable lesions including small- and large-scale DNA deletions. Also, low dose-rate exposures in space result in a heterogeneous population of damaged cells distinct from energetic photon irradiation of tissue. We present an overview of the initial biological damage and dose and dose-rate effects produced by ionizing radiation using track structure and nuclear reaction models. Implications of the differences in cellular and tissue damage between conventional radiation and space radiation for the development of biological countermeasures are discussed.

  2. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications.

    PubMed

    Kalapos, M P

    1999-11-22

    Despite the growing interest towards methylglyoxal and glyoxalases their real role in metabolic network is still obscure. In the light of developments several reviews have been published in this field mainly dealing with only a narrow segment of this research area. In this article a trial is made to present a comprehensive overview of methylglyoxal research, extending discussion from chemistry to biological implications by reviewing some important characteristics of methylglyoxal metabolism and toxicity in a wide variety of species, and emphasizing the action of methylglyoxal on energy production, free radical generation and cell killing. Special attention is paid to the discussion of alpha-oxoaldehyde production in the environment as a potential risk factor and to the possible role of this a-dicarbonyl in diseases. Concerning the interaction of methylglyoxal with biological macromolecules (DNA, RNA, proteins) an earlier review (Kalapos, Toxicology Letters, 73, 1994, 3-24) means a supplementation to this paper, thus hoping the avoidance of unnecessary bombast. The paper arrives at the conclusion that since the early stage of evolution the function of methylglyoxalase pathway has been related to carbohydrate metabolism, but its significance has been changed over the thousands of years. Namely, at the beginning of evolution methylglyoxalase path was essential for the reductive citric acid cycle as an anaplerotic route, while in the extant metabolism it concerns with the detoxification of methylglyoxal and plays some regulatory role in triose-phosphate household. As there is a tight junction between methylglyoxal and carbohydrate metabolism its pathological role in the events of the development of diabetic complications emerges in a natural manner and further progress is hoped in this field. In contrast, significant advancement cannot be expected in relation to cancer research.

  3. An ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Paz, Aaron

    2017-01-01

    In-Situ Resource Utilization (ISRU) will enable the long term presence of humans beyond low earth orbit. Since 2009, oxygen production from the Mars atmosphere has been baselined as an enabling technology for Mars human exploration by NASA. However, using water from the Martian regolith in addition to the atmospheric CO2 would enable the production of both liquid Methane and liquid Oxygen, thus fully fueling a Mars return vehicle. A case study was performed to show how ISRU can support NASA's Evolvable Mars Campaign (EMC) using methane and oxygen production from Mars resources. A model was built and used to generate mass and power estimates of an end-to-end ISRU system including excavation and extraction water from Mars regolith, processing the Mars atmosphere, and liquefying the propellants. Even using the lowest yield regolith, a full ISRU system would weigh 1.7 mT while eliminating the need to transport 30 mT of ascent propellants from earth.

  4. Evolution of Regolith Feed Systems for Lunar ISRU 02 Production Plants

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.; Metzger, Philip T.

    2010-01-01

    The In-Situ Resource Utilization (ISRU) project of the NASA Constellation Program, Exploration Technology Development Program (ETDP) has been engaged in the design and testing of various Lunar ISRU O2 production plant prototypes that can extract chemically bound oxygen from the minerals in the lunar regolith. This work demands that lunar regolith (or simulants) shall be introduced into the O2 production plant from a holding bin or hopper and subsequently expelled from the ISRU O2 production plant for disposal. This sub-system is called the Regolith Feed System (RFS) which exists in a variety of configurations depending on the O2 production plant oxygen being used (e.g. Hydrogen Reduction, Carbothermal, Molten Oxide Electrolysis). Each configuration may use a different technology and in addition it is desirable to have heat recuperation from the spent hot regolith as an integral part of the RFS. This paper addresses the various RFS and heat recuperation technologies and system configurations that have been developed under the NASA ISRU project since 2007. In addition current design solutions and lessons learned from reduced gravity flight testing will be discussed.

  5. Sustaining Human Presence on Mars Using ISRU and a Reusable Lander

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Jones, Christopher A.; Klovstad, Jordan J.; Komar, D.R.; Earle, Kevin; Moses, Robert; Shyface, Hilary R.

    2015-01-01

    This paper presents an analysis of the impact of ISRU (In-Site Resource Utilization), reusability, and automation on sustaining a human presence on Mars, requiring a transition from Earth dependence to Earth independence. The study analyzes the surface and transportation architectures and compared campaigns that revealed the importance of ISRU and reusability. A reusable Mars lander, Hercules, eliminates the need to deliver a new descent and ascent stage with each cargo and crew delivery to Mars, reducing the mass delivered from Earth. As part of an evolvable transportation architecture, this investment is key to enabling continuous human presence on Mars. The extensive use of ISRU reduces the logistics supply chain from Earth in order to support population growth at Mars. Reliable and autonomous systems, in conjunction with robotics, are required to enable ISRU architectures as systems must operate and maintain themselves while the crew is not present. A comparison of Mars campaigns is presented to show the impact of adding these investments and their ability to contribute to sustaining a human presence on Mars.

  6. Early In-Situ Resource Utilization (ISRU) Leading to Robust Sample Return and Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Sanders, G. B.; Larson, W. E.; Interbartolo, M. A.; Mueller, R. P.; Muscatello, A. C.

    2012-06-01

    ISRU to make propellants from Mars resources should be pursued early due to the benefits to Mars sample return and human exploration and synergism with lunar and Mars science objectives. Existing hardware can be used for a low cost/low risk demo 2018.

  7. Understanding the biological and environmental implications of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lin, Sijie

    of Nano-Eco and Nano-Bio interactions at the cellular level. (6) Chapter 6: Conclusions and future work. The overarching goal of this research is to advance our understanding on the fate of nanomaterials in biological and ecological systems. Knowledge obtained from this dissertation is expected to benefit future research on the implications and applications of engineered nanomaterials.

  8. Tutorial in oral antithrombotic therapy: Biology and dental implications

    PubMed Central

    Fakhri, Hamid R.; Janket, Sok J.; Baird, Alison E.; Dinnocenzo, Richard; Meurman, Jukka H.

    2013-01-01

    Objectives: Recent developments of new direct oral anticoagulants that target specific clotting factors necessitate understanding of coagulation biology. The objective of this tutorial is to offer dental professionals a review of coagulation mechanisms and the pharmacodynamics of the conventional and new oral anticoagulants. Also, we summarized the dental implications of the conventional and new anticoagulants. Method: We searched Medline using search terms “antithrombotic”, “antihemostasis” or “anticoagulation” and combined them with the search results of “dental”, “oral surgery” or “periodontal”. We restricted the results to “human” and “English”. Results: The early coagulation cascade, the new cell-based coagulation model, the pharmacokinetics and pharmacodynamics of conventional antithrombotics, and new oral anticoagulants were reviewed. The new direct factor Xa inhibitors and the direct thrombin inhibitor (s), called direct oral anticoagulants (DOAs) have rapid onset of action, fast elimination on cessation, and fewer drug-drug or drug-food interactions than warfarin. However, the lack of antidotes raises concerns that some dental procedures may trigger serious hemorrhagic events. Additionally, careful perioperative withdrawal and resumption protocols for the DOAs are reviewed, because DOAs’ blood levels are dependent on renal function. Also, various reversal strategies in the event of excessive bleedings are summarized. Perioperative management of dental patients taking new DOAs and conventional oral anticoagulants are also discussed. However, the perioperative strategies for DOAs are yet to be validated in randomized trials. Key words:Coagulation cascade, cell-based coagulation model, factor Xa inhibitors, direct thrombin inhibitors, prothrombin complex concentrates. PMID:23524440

  9. Book review: Conservation biology of Hawaiian forest birds: Implications for island avifauna

    USGS Publications Warehouse

    Engstrom, R. Todd; van Riper, Charles

    2010-01-01

    Review info: Conservation Biology of Hawaiian Forest Birds: Implications for Island Avifauna. By Thane K. Pratt, Carter T. Atkinson, Paul C. Banko, James D. Jacobi, and Bethany L. Woodworth, Eds., 2009. ISBN 978-0300141085, 707 pp.

  10. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  11. Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo

    2009-01-01

    Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.

  12. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  13. Reassessing Biological Threats: Implications for Cooperative Mitigation Strategies

    PubMed Central

    Galloway, Summer Elise; Petzing, Stephanie Rachel; Young, Catharine Grace

    2015-01-01

    Multiple factors ranging from globalization to ecosystem disruption are presenting the global community with evolving biological threats to local, national, and global security that reach beyond the realm of traditional bioweapon threats. As a result, mitigation strategies have adapted necessarily to the increased diversity of biological threats. In general, response and preparedness strategies have largely shifted from being primarily reactive to traditional biological weapons to more proactive in nature. In this review, we briefly explore biological threats through a wider aperture, to embrace a greater appreciation of viral pathogens, antimicrobial resistance, and agricultural pathogens, and their potential to cause civil, economic, and political devastation. In addition, we discuss current mitigation strategies codified by the Global Health Security Agenda and the One Health paradigm as well as some of the available tools to assist with their sustainable implementation. PMID:26649289

  14. Self Organizing Systems and the Research Implications for Biological Systems

    NASA Astrophysics Data System (ADS)

    Denkins-Taffe, Lauren R.; Alfred, Marcus; Lindesay, James

    2008-03-01

    The knowledge gained from the human genome project, has provided an added opportunity to study the dynamical relationships within biological systems and can lead to an increased knowledge of diseases and subsequent drug discovery. Through computation, methods in which to rebuild these systems are being studied. These methods, which have first been applied to simpler systems: predator-prey, and self sustaining ecosystems can be applied to the study of microscopic biological systems.

  15. Experimental Testing and Modeling of a Pneumatic Regolith Delivery System for ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Dominquez, Jesus A.; Mantovani, James G.

    2011-01-01

    Excavating and transporting planetary regolith are examples of surface activities that may occur during a future space exploration mission to a planetary body. Regolith, whether it is collected on the Moon, Mars or even an asteroid, consists of granular minerals, some of which have been identified to be viable resources that can be mined and processed chemically to extract useful by-products, such as oxygen, water, and various metals and metal alloys. Even the depleted "waste" material from such chemical processes may be utilized later in the construction of landing pads and protective structures at the site of a planetary base. One reason for excavating and conveying planetary regolith is to deliver raw regolith material to in-situ resource utilization (ISRU) systems. The goal of ISRU is to provide expendable supplies and materials at the planetary destination, if possible. An in-situ capability of producing mission-critical substances such as oxygen will help to extend the mission and its success, and will greatly lower the overall cost of a mission by either eliminating, or significantly reducing, the need to transport the same expendable materials from the Earth. In order to support the goals and objectives of present and future ISRU projects, NASA seeks technology advancements in the areas of regolith conveying. Such systems must be effective, efficient and provide reliable performance over long durations while being exposed to the harsh environments found on planetary surfaces. These conditions include contact with very abrasive regolith particulates, exposure to high vacuum or dry (partial) atmospheres, wide variations in temperature, reduced gravity, and exposure to space radiation. Regolith conveying techniques that combine reduced failure modes and low energy consumption with high material transfer rates will provide significant value for future space exploration missions to the surfaces of the moon, Mars and asteroids. Pneumatic regolith conveying has

  16. ISRU at a Lunar Outpost: Implementation and Opportunities for Partnerships and Commercial Development

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Simon, Thomas; Larson, William E.; Santiago-Maldonado, Edgardo; Sacksteder, Kurt; Linne, Diane; Caruso, John; Easter, Robert

    2007-01-01

    The NASA Lunar Architecture Team (LAT), which was commissioned to help answer the question "how" will humans return to the Moon, and the Synthesis Team and the recently released Global Exploration Strategy, which was commissioned to help answer the question "why" will humans return to the Moon and go on to Mars have identified the ability to extract and use in-situ resources as important to extending human frontiers, reduce dependence on Earth, and further economic and commercial expansion into space. The extraction and processing of space resources into useful products, known as In-Situ Resource Utilization (ISRU), can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. Potential lunar resources include solar wind implanted volatiles, vast quantities of metal and mineral oxides, possible water/ice at the poles, abundant solar energy, regions of permanent light and darkness, the vacuum of space itself, and even scavenging leftover descent propellants and/or trash and waste from human crew activities. Suitable processing can transform these raw resources into useful materials and products. The establishment of a human lunar Outpost, as proposed by NASA at the 2nd Space Exploration Conference in Houston in December 2006, opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to "live off the land". The ISRU phasing and capability incorporation strategy developed during LAT Phase I & II is based on the premise that while ISRU is a critical capability and key to successful implementation of the US Vision for Space Exploration, it is also an unproven capability for human lunar exploration and can not be put in the critical path of architecture success until it has been proven. Therefore, ISRU needs to take incremental

  17. Opportunities and Strategies for Testing and Infusion of ISRU in the Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Mantovani, James; Sanders, Gerald B.; Jones, Christopher A.

    2015-01-01

    HE Evolvable Mars Campaign (EMC) is developing the plans and systems needed for a robust, evolutionary strategy to explore cis-lunar space, the Mars sphere of influence (including the moons of Mars), and the surface of Mars. Recently, the emphasis of NASA's plans has changed to focus on the prolonged pioneering of space, rather than focusing on a single crewed mission as the ultimate goal. A sustainable, pioneering vision of space would include in-situ resource utilization (ISRU) in multiple forms and at multiple destinations: atmospheric capture of Mars CO2 and/or volatiles for consumables and propellants, regolith for bulk and refined materials, and in-situ manufacturing at the Moon, Mars, and other bodies. These resources would enable a reduction in the logistical needs from Earth for future missions, thus preparing the way for a sustained presence on Mars. Although the EMC initially relies only on propellant production for the Mars ascent vehicle via ISRU, one of its primary objectives is to prospect at every EMC destination to understand the potential for ISRU; this will permit true pioneering to be enabled after the first crew arrives at Mars. Recent and ongoing analysis has considered the possible prospecting measurements that can be performed at the asteroid returned to cis-lunar space by the Asteroid Robotic Redirect Mission (ARRM), at the lunar surface, at Phobos and Deimos, and on the surface of Mars to identify available resources for future use. These opportunities will be available on missions currently in the Evolvable Mars Campaign construct, and will also facilitate the testing and demonstration of resource acquisition, processing, storage, and useage technologies that can play a role in later missions. This analysis has also led to the identification of several objectives that should be targeted during the missions building up to and including the initial crewed missions. These objectives are mapped to strategies for incorporating ISRU to support

  18. Specific heat determination of plant barrier lipophilic components: biological implications.

    PubMed

    Casado, C G; Heredia, A

    2001-04-02

    The specific heat of isolated plant cuticles and their corresponding cuticular waxes have been measured for the physiological temperature in the range of 273-318 K at regular intervals. C(p) values ranged from 1.5 up to 4 J K(-1) g(-1) indicating a high cohesion, at the molecular level, of the molecular lipophilic components that constitute the plant cuticle. Second order phase transitions around 293 K, assigned to the cuticular matrix mainly constituted of the biopolyester cutin, have been detected and measured. Ecophysiological and physical implications of these thermodynamic data are discussed.

  19. Biological implications of the Weibull and Gompertz models of aging.

    PubMed

    Ricklefs, Robert E; Scheuerlein, Alex

    2002-02-01

    Gompertz and Weibull functions imply contrasting biological causes of demographic aging. The terms describing increasing mortality with age are multiplicative and additive, respectively, which could result from an increase in the vulnerability of individuals to extrinsic causes in the Gompertz model and the predominance of intrinsic causes at older ages in the Weibull model. Experiments that manipulate extrinsic mortality can distinguish these biological models. To facilitate analyses of experimental data, we defined a single index for the rate of aging (omega) for the Weibull and Gompertz functions. Each function described the increase in aging-related mortality in simulated ages at death reasonably well. However, in contrast to the Weibull omega(W), the Gompertz omega(G) was sensitive to variation in the initial mortality rate independently of aging-related mortality. Comparisons between wild and captive populations appear to support the intrinsic-causes model for birds, but give mixed support for both models in mammals.

  20. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.

    PubMed

    Gonen-Wadmany, Maya; Goldshmid, Revital; Seliktar, Dror

    2011-09-01

    Protein PEGylation has been successfully applied in pharmaceuticals and more recently in biomaterials development for making bioactive and structurally versatile hydrogels. Despite many advantages in this regard, PEGylation of proteins is also known to alter biological activity and modify biophysical characteristics in ways that may be detrimental to cells. The aim of this study was to evaluate the relative loss of biological compatibility associated with PEGylating a fibrinogen precursor into a hydrogel scaffold, in comparison to thrombin cross-linked fibrin hydrogels. Specifically, we investigated the consequences of conjugating fibrinogen with linear polyethtylene glycol (PEG) polymer chains (10 kDa) on the ability to cultivate neonatal human foreskin fibroblasts (HFFs) in 3-D. For this purpose, thrombin cross-linked fibrin (TCL-Fib) and PEGylated fibrinogen (PEG-Fib) gels were prepared with HFFs and cultured for up to seven days. The benchmark biological compatibility test was based on a combined assessment of cellular morphology, proliferation, actin expression, and matrix metalloproteinase (MMP) expression in the 3-D culture systems. The results showed correlations between modulus and proteolytic biodegradation in both materials, but no correlation between the mechanical properties and the ability of HFFs to remodel the microenvironment. A slight reduction of actin, MMPs, and spindled morphology of the cells in the PEG-Fib hydrogels indicated that the PEGylation process altered the biological compatibility of the fibrin. Nevertheless, the overall benchmark performance of the two materials demonstrated that PEGylated fibrinogen hydrogels still retains much to the inherent biofunctionality of the fibrin precursor when used as a scaffold for 3-D cell cultivation.

  1. Biological framework for soil aggregation: Implications for ecological functions.

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  2. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    PubMed Central

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  3. Vascular biology of ageing-Implications in hypertension.

    PubMed

    Harvey, Adam; Montezano, Augusto C; Touyz, Rhian M

    2015-06-01

    Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing.

  4. Vascular biology of ageing—Implications in hypertension

    PubMed Central

    Harvey, Adam; Montezano, Augusto C.; Touyz, Rhian M.

    2015-01-01

    Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing. PMID:25896391

  5. Biological versus chronological ovarian age: implications for assisted reproductive technology

    PubMed Central

    Alviggi, Carlo; Humaidan, Peter; Howles, Colin M; Tredway, Donald; Hillier, Stephen G

    2009-01-01

    Background Women have been able to delay childbearing since effective contraception became available in the 1960s. However, fertility decreases with increasing maternal age. A slow but steady decrease in fertility is observed in women aged between 30 and 35 years, which is followed by an accelerated decline among women aged over 35 years. A combination of delayed childbearing and reduced fecundity with increasing age has resulted in an increased number and proportion of women of greater than or equal to 35 years of age seeking assisted reproductive technology (ART) treatment. Methods Literature searches supplemented with the authors' knowledge. Results Despite major advances in medical technology, there is currently no ART treatment strategy that can fully compensate for the natural decline in fertility with increasing female age. Although chronological age is the most important predictor of ovarian response to follicle-stimulating hormone, the rate of reproductive ageing and ovarian sensitivity to gonadotrophins varies considerably among individuals. Both environmental and genetic factors contribute to depletion of the ovarian oocyte pool and reduction in oocyte quality. Thus, biological and chronological ovarian age are not always equivalent. Furthermore, biological age is more important than chronological age in predicting the outcome of ART. As older patients present increasingly for ART treatment, it will become more important to critically assess prognosis, counsel appropriately and optimize treatment strategies. Several genetic markers and biomarkers (such as anti-Müllerian hormone and the antral follicle count) are emerging that can identify women with accelerated biological ovarian ageing. Potential strategies for improving ovarian response include the use of luteinizing hormone (LH) and growth hormone (GH). When endogenous LH levels are heavily suppressed by gonadotrophin-releasing hormone analogues, LH supplementation may help to optimize treatment

  6. Biological implications of polydimethylsiloxane-based microfluidic cell culture†

    PubMed Central

    Regehr, Keil J.; Domenech, Maribella; Koepsel, Justin T.; Carver, Kristopher C.; Ellison-Zelski, Stephanie J.; Murphy, William L.; Schuler, Linda A.; Alarid, Elaine T.; Beebe, David J.

    2009-01-01

    Polydimethylsiloxane (PDMS) has become a staple of the microfluidics community by virtue of its simple fabrication process and material attributes, such as gas permeability, optical transparency, and flexibility. As microfluidic systems are put toward biological problems and increasingly utilized as cell culture platforms, the material properties of PDMS must be considered in a biological context. Two properties of PDMS were addressed in this study: the leaching of uncured oligomers from the polymer network into microchannel media, and the absorption of small, hydrophobic molecules (i.e. estrogen) from serum-containing media into the polymer bulk. Uncured PDMS oligomers were detectable via MALDI-MS in microchannel media both before and after Soxhlet extraction of PDMS devices in ethanol. Additionally, PDMS oligomers were identified in the plasma membranes of NMuMG cells cultured in PDMS microchannels for 24 hours. Cells cultured in extracted microchannels also contained a detectable amount of uncured PDMS. It was shown that MCF-7 cells seeded directly on PDMS inserts were responsive to hydrophilic prolactin but not hydrophobic estrogen, reflecting its specificity for absorbing small, hydrophobic molecules; and the presence of PDMS floating in wells significantly reduced cellular response to estrogen in a serum-dependent manner. Quantification of estrogen via ELISA revealed that microchannel estrogen partitioned rapidly into the surrounding PDMS to a ratio of approximately 9:1. Pretreatments such as blocking with serum or pre-absorbing estrogen for 24 hours did not affect estrogen loss from PDMS-based microchannels. These findings highlight the importance of careful consideration of culture system properties when determining an appropriate environment for biological experiments. PMID:19606288

  7. Biological implications of polydimethylsiloxane-based microfluidic cell culture.

    PubMed

    Regehr, Keil J; Domenech, Maribella; Koepsel, Justin T; Carver, Kristopher C; Ellison-Zelski, Stephanie J; Murphy, William L; Schuler, Linda A; Alarid, Elaine T; Beebe, David J

    2009-08-07

    Polydimethylsiloxane (PDMS) has become a staple of the microfluidics community by virtue of its simple fabrication process and material attributes, such as gas permeability, optical transparency, and flexibility. As microfluidic systems are put toward biological problems and increasingly utilized as cell culture platforms, the material properties of PDMS must be considered in a biological context. Two properties of PDMS were addressed in this study: the leaching of uncured oligomers from the polymer network into microchannel media, and the absorption of small, hydrophobic molecules (i.e. estrogen) from serum-containing media into the polymer bulk. Uncured PDMS oligomers were detectable via MALDI-MS in microchannel media both before and after Soxhlet extraction of PDMS devices in ethanol. Additionally, PDMS oligomers were identified in the plasma membranes of NMuMG cells cultured in PDMS microchannels for 24 hours. Cells cultured in extracted microchannels also contained a detectable amount of uncured PDMS. It was shown that MCF-7 cells seeded directly on PDMS inserts were responsive to hydrophilic prolactin but not hydrophobic estrogen, reflecting its specificity for absorbing small, hydrophobic molecules; and the presence of PDMS floating in wells significantly reduced cellular response to estrogen in a serum-dependent manner. Quantification of estrogen via ELISA revealed that microchannel estrogen partitioned rapidly into the surrounding PDMS to a ratio of approximately 9:1. Pretreatments such as blocking with serum or pre-absorbing estrogen for 24 hours did not affect estrogen loss from PDMS-based microchannels. These findings highlight the importance of careful consideration of culture system properties when determining an appropriate environment for biological experiments.

  8. The photochemistry of fluorescent proteins: implications for their biological applications.

    PubMed

    Seward, Harriet E; Bagshaw, Clive R

    2009-10-01

    Green fluorescent protein from Aequorea victoria, its relatives and derivatives are ubiquitous in their use as biological probes. In this tutorial review, we discuss the photochemistry of this fascinating class of proteins and illustrate some of their advantages and drawbacks in a range of applications. In particular, we focus on the ionisation states of the chromophore and how they are affected by internal and external proton transfer. Light-induced reversible and irreversible events are discussed in terms of the underlying chromophore structure. These phenomena have an influence on the interpretation of FRET (Förster resonance energy transfer), FRAP (fluorescence recovery after photobleaching), as well as single molecule studies.

  9. Multiple biological properties of macelignan and its pharmacological implications.

    PubMed

    Paul, Saswati; Hwang, Jae Kwan; Kim, Hahn Young; Jeon, Won Kyung; Chung, ChiHye; Han, Jung-Soo

    2013-03-01

    Macelignan found in the nutmeg mace of Myristica fragrans obtains increasing attention as a new avenue in treating various diseases. Macelignan has been shown to possess a spectrum of pharmacological activities, including anti-bacterial, anti-inflammatory, anti-cancer, anti-diabetes, and hepatoprotective activities; recently, it has also been shown to have neuroprotective activities. This review summarizes the current research on the biological effects of macelignan derived from M. fragrans, with emphasis on the importance in understanding and treating complex diseases such as cancer and Alzheimer's disease.

  10. Biosynthesis, processing and secretion of von Willebrand factor: biological implications.

    PubMed

    de Wit, T R; van Mourik, J A

    2001-06-01

    von Willebrand factor is a multimeric plasma glycoprotein that is required for normal haemostasis. von Willebrand factor is synthesized by endothelial cells and megakaryocytes, and originates from its precursor pro-von Willebrand factor. The endoproteolytic processing of pro-von Willebrand factor results in mature von Willebrand factor and von Willebrand factor propeptide (also known as von Willebrand Ag II). In endothelial cells, the propeptide controls the polymerization and subsequent targeting of von Willebrand factor to the storage vesicles, the so-called Weibel-Palade bodies. Upon stimulation of the endothelial cells, the Weibel-Palade bodies are translocated to the plasma membrane of the cell, and mature von Willebrand factor and its propeptide are co-secreted. After release, these polypeptides have divergent fates and serve different biological functions. Mature von Willebrand factor both controls platelet adhesion and aggregation at sites of vascular injury and acts as a chaperone protein for coagulation factor VIII. The von Willebrand factor propeptide may serve a role in modulating inflammatory processes. This still growing body of information indicates that the biological function of the von Willebrand factor gene product is more diverse than was previously thought.

  11. The paradox of the parasites: implications for biological invasion.

    PubMed Central

    Drake, John M

    2003-01-01

    The enemy-release hypothesis for biological invasions supposes that invasive species may be more successful in their introduced ranges than in their native ranges owing to the absence of coevolved natural enemies. Recent studies supporting this hypothesis have found that introduced plants and animals are less parasitized in their introduced ranges than in their native ranges. Expanding on this theory, I hypothesize that the role of enemy release may differ among the introduction, establishment and spread phases of an invasion. I present a simple model indicating that parasite release is unlikely to greatly affect the chance of establishment in populations with and without an immune subpopulation. The specific numerical relationship between the number of individuals introduced and the chance of establishment depends on a relationship between virulence, here conceptualized as the chance for the extinction of a lineage, and the fraction of the population infected at introduction. These results support the idea of a 'filter effect' in which different biological processes regulate the different phases of an invasion. PMID:14667361

  12. Implications of Oxygen Homeostasis for Tumor Biology and Treatment.

    PubMed

    Garvalov, Boyan K; Acker, Till

    2016-01-01

    Tumors serve as a prototype system to study the role of the hypoxic microenvironment and gain insight in the regulation oxygen homeostasis. A series of biochemical and cell biological studies have significantly extended our knowledge of how tumor cells activate key regulatory mechanisms of oxygen homeostasis not only to adapt to the hostile tumor microenvironment but also to acquire a more aggressive tumor phenotype. Reduced oxygen levels and tumor-specific genetic alterations synergistically drive tumor progression by activating a key transcriptional system, the hypoxia inducible factors (HIFs). HIFs trigger a set of adaptive responses commonly associated with tumor malignancy including tumor angiogenesis, a shift in metabolism, proliferation, invasion, and metastasis. We and others could demonstrate that cancer stem cells are controlled by HIFs within a hypoxic niche, establishing an intriguing link between the well known function of hypoxia in tumor growth and stem cell biology. Additionally, HIF activation potentially conveys resistance to current tumor therapies including the evasive resistance phenotype observed after anti-angiogenic treatment. Together, these findings provide strong evidence that activation of the HIF system is a decisive step in cancer progression that critically shapes therapy response and clinical outcome. Recent insight into the precise mechanisms of oxygen sensing and signalling has offered new promising and potentially selective strategies to counteract this crucial pathway.

  13. Trauma and Stem Cells: Biology and Potential Therapeutic Implications

    PubMed Central

    Thurairajah, Kabilan; Broadhead, Matthew L.; Balogh, Zsolt J.

    2017-01-01

    Trauma may cause irreversible tissue damage and loss of function despite current best practice. Healing is dependent both on the nature of the injury and the intrinsic biological capacity of those tissues for healing. Preclinical research has highlighted stem cell therapy as a potential avenue for improving outcomes for injuries with poor healing capacity. Additionally, trauma activates the immune system and alters stem cell behaviour. This paper reviews the current literature on stem cells and its relevance to trauma care. Emphasis is placed on understanding how stem cells respond to trauma and pertinent mechanisms that can be utilised to promote tissue healing. Research involving notable difficulties in trauma care such as fracture non-union, cartilage damage and trauma induced inflammation is discussed further. PMID:28272352

  14. Trends and implications of biological analyses for agricultural operations

    SciTech Connect

    Ash, D.H.; Salladay, D.G.

    1994-10-01

    State and federal legislatures, regulatory agencies, the agricultural community, and the public at large have increasing concerns about groundwater contamination and other environmental issues. The U.S. Congress has requested all federal agencies working with agriculture to address these issues. Even with current pressures to {open_quotes}cut government spending,{close_quotes} public pressure prevails to clean up polluted sites and to prevent future contamination. Farmers, agrichemical dealers and producers, and related trade associations have voiced concern about regulations affecting their industries. Over the last three decades positive changes have evolved in the disposal or final resolution of agricultural wastes from indiscriminate disposal on land and in water, through regulated land filling and incineration to a point where biological treatment/remediation strategies are coming to the forefront. These biological strategies bring with them different requirements for analytical methods. In March of this year the Environmental Protection Agency (EPA) and ARA organized a work group which met in Cincinnati, Ohio, to discuss the bioremediation of pesticide-laden soil. This work group consisted of EPA researchers, regulators, and administrators; state ag-environmental technologists and program directors; ag-chemical producer, remediation program managers, university ag researchers, USDA researchers, and TVA technologists. Consensus was quickly obtained on the utter unaffordability of current chemical and thermal treatment schemes for agricultural wastes, contaminated soils, and rinsewaters. Consensus was also reached that conventional analytical methods are too expensive and complicated for use in the field demonstration/application of the bioremediation-type processes. Thus the group recommended and supported field agrichemical dealer demonstrations of landfarming and composting with an emphasis on the need to develop low cost, easy toxicological measurements.

  15. The implications of the precautionary principle for biological monitoring

    NASA Astrophysics Data System (ADS)

    Macgarvin, M.

    1995-03-01

    Marine biological monitoring programmes frequently attempt to determine “safe” levels of contamination, based on assumptions about the assimilative capacity of the environment. This paper argues that such assumptions lack scientific rigour, and do not form the basis upon which a precautionary policy can be built. It notes the problems associated with assessing toxicological effects, but centres its attention on the crucial (yet far less discussed) weaknesses in theoretical ecology that make it extremely unlikely that biological monitoring can determine safe levels of contamination that leave ecosystems unaffected. It is argued that many marine biologists, if pressed, would concede these shortcomings but believe that, in the face of the technical difficulties and high costs of pollution prevention, we have no choice but to use such methods. This paper argues, with examples, that pollution prevention, often with considerable economic savings, is becoming a reality for even the most problematic substances. The difficulty is that the development of “clean production” methods lie outside the sphere of interest of those carrying out monitoring, so that measures that attempt to determine safe levels of contamination continue to be advocated. This gulf needs to be bridged so that the continuation of monitoring programmes that are part of dilute and disperse policies become regarded as inappropriate, indeed unethical. The paper concludes that this does not mean the end of marine monitoring. Instead, reliable methods for assessing physical levels of contamination will be required to determine whether the reduction targets set—as part of the introduction of clean production—are being met. Formidable difficulties will remain, requiring a precautious approach. Nevertheless, monitoring will no longer carry the burden of attempting to demonstrate that a particular level of environmental contamination is safe, which is currently destroying its scientific credibility.

  16. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  17. The Microbiome of Animals: Implications for Conservation Biology

    PubMed Central

    Bahrndorff, Simon; Alemu, Tibebu; Alemneh, Temesgen; Lund Nielsen, Jeppe

    2016-01-01

    In recent years the human microbiome has become a growing area of research and it is becoming clear that the microbiome of humans plays an important role for human health. Extensive research is now going into cataloging and annotating the functional role of the human microbiome. The ability to explore and describe the microbiome of any species has become possible due to new methods for sequencing. These techniques allow comprehensive surveys of the composition of the microbiome of nonmodel organisms of which relatively little is known. Some attention has been paid to the microbiome of insect species including important vectors of pathogens of human and veterinary importance, agricultural pests, and model species. Together these studies suggest that the microbiome of insects is highly dependent on the environment, species, and populations and affects the fitness of species. These fitness effects can have important implications for the conservation and management of species and populations. Further, these results are important for our understanding of invasion of nonnative species, responses to pathogens, and responses to chemicals and global climate change in the present and future. PMID:27195280

  18. The chemical biology of naphthoquinones and its environmental implications.

    PubMed

    Kumagai, Yoshito; Shinkai, Yasuhiro; Miura, Takashi; Cho, Arthur K

    2012-01-01

    Quinones are a group of highly reactive organic chemical species that interact with biological systems to promote inflammatory, anti-inflammatory, and anticancer actions and to induce toxicities. This review describes the chemistry, biochemistry, and cellular effects of 1,2- and 1,4-naphthoquinones and their derivatives. The naphthoquinones are of particular interest because of their prevalence as natural products and as environmental chemicals, present in the atmosphere as products of fuel and tobacco combustion. 1,2- and 1,4-naphthoquinones are also toxic metabolites of naphthalene, the major polynuclear aromatic hydrocarbon present in ambient air. Quinones exert their actions through two reactions: as prooxidants, reducing oxygen to reactive oxygen species; and as electrophiles, forming covalent bonds with tissue nucleophiles. The targets for these reactions include regulatory proteins such as protein tyrosine phosphatases; Kelch-like ECH-associated protein 1, the regulatory protein for NF-E2-related factor 2; and the glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase. Through their actions on regulatory proteins, quinones affect various cell signaling pathways that promote and protect against inflammatory responses and cell damage. These actions vary with the specific quinone and its concentration. Effects of exposure to naphthoquinones as environmental chemicals can vary with the physical state, i.e., whether the quinone is particle bound or is in the vapor state. The exacerbation of pulmonary diseases by air pollutants can, in part, be attributed to quinone action.

  19. Implications of Plasmodium vivax Biology for Control, Elimination, and Research

    PubMed Central

    Olliaro, Piero L.; Barnwell, John W.; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C.; Shanks, G. Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-01-01

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. PMID:27799636

  20. Lunar Contour Crafting: A Novel Technique for ISRU-Based Habitat Development

    NASA Technical Reports Server (NTRS)

    Khoshnevis, Behrokh; Bodiford, Melanie P.; Burks, Kevin H.; Ethridge, Ed; Tucker, Dennis; Kim, Won; Toutanji, Houssam; Fiske, Michael R.

    2005-01-01

    1. Habitat Structures at MSFC is one element of the In-Situ Fabrication and Repair (ISFR) Program: ISFR develops technologies for fabrication, repair and recycling of tools, parts, and habitats/structures using in-situ resources. ISRU - based habitat structures are considered Class III. 2. Habitat Structure Purpose: Develop Lunar and/or Martian habitat structures for manned missions that maximize the use of in-situ resources to address the following agency topics: bioastronautics critical path roadmap; strategic technical challenges defined in H&RT formulation plan: margins and redundancy; modularity, robotic network, space resource utilization; autonomy, affordable logistics pre-positioning.

  1. Mars Simulant Development for In-Situ Resource Utilization (ISRU) Applications

    NASA Technical Reports Server (NTRS)

    Ming, Doug

    2016-01-01

    Current design reference missions for the Evolvable Mars Campaign (EMC) call for the use of in-situ resources to enable human missions to the surface of Mars. One potential resource is water extracted from the Martian regolith. Current Mars' soil analogs (JSC Mars-1) have 5-10 times more water than typical regolith on Mars. Therefore, there is a critical need to develop Mars simulants to be used in ISRU applications that mimic the chemical, mineralogical, and physical properties of the Martian regolith.

  2. Trade Study of Excavation Tools and Equipment for Lunar Outpost Development and ISRU

    NASA Astrophysics Data System (ADS)

    Mueller, R. P.; King, R. H.

    2008-01-01

    The NASA Lunar Architecture Team (LAT) has developed a candidate architecture to establish a lunar outpost that includes in-situ resource utilization (ISRU). Outpost development requires excavation for landing and launch sites, roads, trenches, foundations, radiation and thermal shielding, etc. Furthermore, ISRU requires excavation as feed stock for water processing and oxygen production plants. The design environment for lunar excavation tools and equipment including low gravity, cost of launching massive equipment, limited power, limited size, high reliability, and extreme temperatures is significantly different from terrestrial excavation equipment design environment. Consequently, the lunar application requires new approaches to developing excavation tools and equipment in the context of a systems engineering approach to building a Lunar Outpost. Several authors have proposed interesting and innovative general excavation approaches in the literature, and the authors of this paper will propose adaptations and/or new excavation concepts specific to the Lunar Outpost. The requirements for excavation from the LAT architecture will be examined and quantified with corresponding figures of merit and evaluation criteria. This paper will evaluate the proposed approaches using traditional decision making with uncertainty techniques.

  3. The Development of ISRU and ISSE Technologies Leveraging Canadian Mining Expertise

    NASA Astrophysics Data System (ADS)

    Boucher, Dale S.; Richard, Jim; Dupuis, Erick

    2003-01-01

    F uture space missions to planetary bodies, both manned and robotic, will require the efficient utilization of in-situ resources to ensure longevity and success. In Situ Resources Utilization (ISRU) and In Situ Support Equipment (ISSE), while requiring the development of new technologies and methods for commodity extraction, will still rely upon some method of mining technology for the harvesting and pre-beneficiation of the raw materials prior to processing. The Northern Centre for Advanced Technologies Inc., in partnership with Electric Vehicle Controllers Ltd., is presently engaged in the development and adaptation of existing mining technologies and methodologies for use extra-terrestrially as pre cursor and enabling technologies for ISRU and for use as ISSE in support of longer term missions. More specifically, NORCAT and EVC, in partnership with MD Robotics and under contract to the Canadian Space Agency, are developing a drill and sample handler system for sub surface sampling of planetary bodies, specifically Mars. The partnership brings to the table some formidable world leading expertise in space robotics coupled with world leading expertise in mining technologies.

  4. Resource Prospector (RP: )A Lunar Volatiles Prospecting and In-Situ Resource Utilization (ISRU) Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel

    2016-01-01

    Efficient expansion of human presence beyond low-Earth orbit to asteroids and Mars will require the maximum possible use of local materials, so-called in-situ resources. The moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as provide significant exploration and science value. Since the moons polar regions have confirmed the presence of volatiles, as revealed by the LCROSS and LRO missions, the next step is to understand the nature and distribution of those candidate resources and how they might be extracted. Recent studies have even indicated that if those volatiles are practically available for harvesting, they could be processed into propellants and human life-support resources, significantly reducing the cost of human missions to Mars maybe by as much as 50!Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission under study by the NASA Human Exploration and Operations Mission Directorates (HEOMD). This clever mission is currently planned to launch as early as 2021 and will demonstrate extraction of oxygen, water and other volatiles, as well measure mineralogical content such as silicon and light metals from lunar regolith.

  5. ISRU 3D printing for habitats and structures on the Moon

    NASA Astrophysics Data System (ADS)

    Cowley, Aidan

    2016-07-01

    In-situ-resource utilisation (ISRU) in combination with 3D printing may evolve into a key technology for future exploration. Setting up a lunar facility could be made much simpler by using additive manufacturing techniques to build elements from local materials - this would drastically reduce mission mass requirements and act as an excellent demonstrator for ISRU on other planetary bodies. Fabricating structures and components using Lunar regolith is an area of interest for ESA, as evidenced by past successful General Studies Program (GSP) and ongoing technology development studies. In this talk we detail a number of projects looking into the behavior of Lunar regolith simulants, their compositional variants and approaches to sintering such material that are under-way involving EAC, ESTEC and DLR. We report on early studies into utilizing conventional thermal sintering approaches of simulants as well as microwave sintering of these compositions. Both techniques are candidates for developing a 3D printing methodology using Lunar regolith. It is known that the differences in microwave effects between the actual lunar soil and lunar simulants can be readily ascribed to the presence of nanophase metallic Fe, native to Lunar regolith but lacking in simulants. In compostions of simulant with increased Illmenite (FeTiO3) concentrations, we observe improved regolith response to microwave heating, and the readily achieved formation of a glassy melt in ambient atmosphere. The improved response relative to untreated simulant is likely owing to the increased Fe content in the powder mix.

  6. Asteroid and Lava Tube In Situ Resource Utilization (ISRU) Prospecting Free Flyer Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Mueller, Robert; Dupuis, Michael

    2015-01-01

    This project seeks to develop a small free flyer that can be used to safely and effectively prospect on an Asteroid while being controlled by the crew. This will enable the characterization of the Asteroid for the In Situ Resource Utilization (ISRU). Lava tubes can be explored remotely from the outside Asteroids can contain vast amounts of resources such as water for propellants and metals for feed stocks. Lava Tubes on Mars and the Moon may contain frozen volatile resources. Before the resources can be used, they must be found with a prospecting method. The NASA Agency Asteroid Grand Challenge seeks new ideas for Asteroid retrieval mission technologies for exploration and utilization of asteroids in a Distant Retrograde Orbit (DRO). This project will develop a small free flying platform that can be used to safely and effectively prospect on an Asteroid with limited autonomy while being controlled by the crew. This will enable the characterization of the Asteroid for ISRU. Lava tubes can be explored remotely from the outside as well using this same technology.

  7. Preface: Terrestrial Fieldwork to Support in situ Resource Utilization (ISRU) and Robotic Resource Prospecting for Future Activities in Space

    NASA Astrophysics Data System (ADS)

    Sanders, Gerald B.

    2015-05-01

    Finding, extracting, and using resources at the site of robotic and human exploration activities holds the promise of enabling sustainable and affordable exploration of the Moon, Mars, and asteroids, and eventually allow humans to expand their economy and habitation beyond the surface of the Earth. Commonly referred to as in situ Resource Utilization (ISRU), mineral and volatile resources found in space can be converted into oxygen, water, metals, fuels, and manufacturing and construction materials (such as plastics and concrete) for transportation, power, life support, habitation construction, and part/logistics manufacturing applications. For every kilogram of payload landed on the surface of the Moon or Mars, 7.5-11 kg of payload (mostly propellant) needs to be launched into low Earth orbit. Therefore, besides promising long-term self-sufficiency and infrastructure growth, ISRU can provide significant reductions in launch costs and the number of launches required. Key to being able to use space resources is knowing where they are located, how much is there, and how the resources are distributed. While ISRU holds great promise, it has also never been demonstrated in an actual space mission. Therefore, operations and hardware associated with each ISRU prospecting, excavation, transportation, and processing step must be examined, tested, and finally integrated to enable the end goal of using space resources in future human space missions.

  8. In-situ Resource Utilization (ISRU) to Support the Lunar Outpost and the Rationale for Precursor Missions

    NASA Technical Reports Server (NTRS)

    Simon, Thomas M.

    2008-01-01

    One of the ways that the Constellation Program can differ from Apollo is to employ a live-off-the-land or In-Situ Resource Utilization (ISRU) supported architecture. The options considered over the past decades for using indigenous materials have varied considerably in terms of what resources to attempt to acquire, how much to acquire, and what the motivations are to acquiring these resources. The latest NASA concepts for supporting the lunar outpost have considered many of these plans and compared these options to customers requirements and desires. Depending on the architecture employed, ISRU technologies can make a significant contribution towards a sustainable and affordable lunar outpost. While extensive ground testing will reduce some mission risk, one or more flight demonstrations prior to the first crew's arrival will build confidence and increase the chance that outpost architects will include ISRU as part of the early outpost architecture. This presentation includes some of the options for using ISRU that are under consideration for the lunar outpost, the precursor missions that would support these applications, and a notional timeline to allow the lessons learned from the precursor missions to support outpost hardware designs.

  9. Posttranslational modifications of desmin and their implication in biological processes and pathologies.

    PubMed

    Winter, Daniel L; Paulin, Denise; Mericskay, Mathias; Li, Zhenlin

    2014-01-01

    Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.

  10. Causal attributions of obese men and women in genetic testing: implications of genetic/biological attributions.

    PubMed

    Hilbert, Anja; Dierk, Jan-Michael; Conradt, Matthias; Schlumberger, Pia; Hinney, Anke; Hebebrand, Johannes; Rief, Winfried

    2009-09-01

    The present study sought to investigate genetic/biological attributions of obesity, their associations with a predisposition to obesity and their crossectional and longitudinal implications for weight regulation in obese individuals presenting for genetic testing and counselling. A total of 421 obese men and women underwent psychological and anthropometric assessment and a mutation screen of the melanocortin-4 receptor gene. At study entry, women revealed more genetic/biological attributions than men on the Revised Illness Perception Questionnaire adapted to obesity (86.2% versus 59.7%). Genetic/biological attributions of obesity were associated in both sexes with a family history of obesity, assessed through Stunkard's Figure Rating Scale. In both sexes, genetic/biological attributions were unrelated to weight regulation beliefs and behaviour (i.e. self-efficacy, controllability beliefs, restrained eating and physical activity), assessed through standardised questionnaires or interview at baseline and at six-month follow-up. In addition, causal attributions and weight regulation beliefs and behaviour were not predictive of body mass index at six-month follow-up. Overall, the results indicate that causal attributions of obesity to genetic/biological factors in obese individuals presenting for genetic screening and counselling are crossectionally and longitudinally unrelated to weight regulation and longer-term weight outcome. Those who attribute their obesity to genetic/biological factors likely have a familial obesity risk.

  11. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  12. Performance of Adsorption - Based CO2 Acquisition Hardware for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Mulloth, Lila M.; Borchers, Bruce A.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Chemical processing of the dusty, low-pressure Martian atmosphere typically requires conditioning and compression of the gases as first steps. A temperature-swing adsorption process can perform these tasks using nearly solid-state hardware and with relatively low power consumption compared to alternative processes. In addition, the process can separate the atmospheric constituents, producing both pressurized CO2 and a buffer gas mixture of nitrogen and argon. To date we have developed and tested adsorption compressors at scales appropriate for the near-term robotic missions that will lead the way to ISRU-based human exploration missions. In this talk we describe the characteristics, testing, and performance of these devices. We also discuss scale-up issues associated with meeting the processing demands of sample return and human missions.

  13. Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Wilkinson, R. Allen

    2014-01-01

    For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.

  14. Understanding Schizophrenia as a Disorder of Consciousness: Biological Correlates and Translational Implications from Quantum Theory Perspectives

    PubMed Central

    Venkatasubramanian, Ganesan

    2015-01-01

    From neurophenomenological perspectives, schizophrenia has been conceptualized as “a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness”. While these theoretical constructs based on consciousness facilitate understanding the ‘gestalt’ of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of “perturbed consciousness” in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is “the orchestrated object reduction (Orch-OR) theory” which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared ‘scaffold’ of microtubules. The initial sections of this review focus on the compelling evidence to support the view that “schizophrenia is a disorder of consciousness” through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with ‘Orch-OR theory’ through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as “fundamental disturbances in consciousness”. PMID:25912536

  15. Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives.

    PubMed

    Venkatasubramanian, Ganesan

    2015-04-30

    From neurophenomenological perspectives, schizophrenia has been conceptualized as "a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness". While these theoretical constructs based on consciousness facilitate understanding the 'gestalt' of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of "perturbed consciousness" in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is "the orchestrated object reduction (Orch-OR) theory" which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared 'scaffold' of microtubules. The initial sections of this review focus on the compelling evidence to support the view that "schizophrenia is a disorder of consciousness" through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with 'Orch-OR theory' through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as "fundamental disturbances in consciousness".

  16. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect

    1994-12-31

    The ocean plays an important role in regulating the earth`s climate, sustains a large portion of the earth`s biodiversity, is a tremendous reservoir of commercially important substances, and is used for a variety of often conflicting purposes. In recent decades marine scientists have discovered much about the ocean and its organisms, yet many important fundamental questions remain unanswered. Human populations have increased, particularly in coastal regions. As a result, the marine environment in these areas is increasingly disrupted by human activities, including pollution and the depletion of some ecologically and commercially important species. There is a sense of urgency about reducing human impacts on the ocean and a need to understand how altered ecosystems and the loss of marine species and biodiversity could affect society. During the past two decades, the development of sophisticated technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. While some of these technologies have been readily incorporated into the study of marine organisms as models for understanding basic biology, the value of molecular techniques for addressing problems in marine biology and biological oceanography has only recently begun to be appreciated. This report defines critical scientific questions in marine biology and biological oceanography, describes the molecular technologies that could be used to answer these questions, and discusses some of the implications and economic opportunities that might result from this research which could potentially improve the international competitive position of the United States in the rapidly growing area of marine biotechnology. The committee recommends that the federal government provide the infrastructure necessary to use the techniques of molecular biology in the marine sciences.

  17. The pediatric sepsis biomarker risk model: potential implications for sepsis therapy and biology

    PubMed Central

    Alder, Matthew N; Lindsell, Christopher J; Wong, Hector R

    2015-01-01

    Sepsis remains a major cause of morbidity and mortality in adult and pediatric intensive care units. Heterogeneity of demographics, comorbidities, biological mechanisms, and severity of illness leads to difficulty in determining which patients are at highest risk of mortality. Determining mortality risk is important for weighing the potential benefits of more aggressive interventions and for deciding whom to enroll in clinical trials. Biomarkers can be used to parse patients into different risk categories and can outperform current methods of patient risk stratification based on physiologic parameters. Here we review the Pediatric Sepsis Biomarker Risk Model that has also been modified and applied to estimate mortality risk in adult patients. We compare the two models and speculate on the biological implications of the biomarkers in patients with sepsis. PMID:24754535

  18. Recent biologic and genetic advances in neuroblastoma: Implications for diagnostic, risk stratification, and treatment strategies.

    PubMed

    Newman, Erika A; Nuchtern, Jed G

    2016-10-01

    Neuroblastoma is an embryonic cancer of neural crest cell lineage, accounting for up to 10% of all pediatric cancer. The clinical course is heterogeneous ranging from spontaneous regression in neonates to life-threatening metastatic disease in older children. Much of this clinical variance is thought to result from distinct pathologic characteristics that predict patient outcomes. Consequently, many research efforts have been focused on identifying the underlying biologic and genetic features of neuroblastoma tumors in order to more clearly define prognostic subgroups for treatment stratification. Recent technological advances have placed emphasis on the integration of genetic alterations and predictive biologic variables into targeted treatment approaches to improve patient survival outcomes. This review will focus on these recent advances and the implications they have on the diagnostic, staging, and treatment approaches in modern neuroblastoma clinical management.

  19. Environmental and biological applications and implications of soft and condensed nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Pengyu

    Recent innovations and growth of nanotechnology have spurred exciting technological and commercial developments of nanomaterails. Their appealing physical and physicochemical properties offer great opportunities in biological and environmental applications, while in the meantime may compromise human health and environmental sustainability through either unintentional exposure or intentional discharge. Accordingly, this dissertation exploits the physicochemical behavior of soft dendritic polymers for environmental remediation and condensed nano ZnO tetrapods for biological sensing (Chapter two-four), and further delineate the environmental implications of such nanomaterials using algae- the major constituent of the aquatic food chain-as a model system (Chapter five). This dissertation is presented as follows. Chapter one presents a general review of the characteristic properties, applications, forces dictating nanomaterials, and their biological and environmental implications of the most produced and studied soft and condensed nanomaterials. In addition, dendritic polymers and ZnO nanomaterials are thoroughly reviewed separately. Chapter two investigates the physicochemical properties of poly(amidoamine)-tris(hydroxymethyl)amidomethane- dendrimer for its potential applications in water purification. The binding mechanisms and capacities of this dendrimer in hosting major environmental pollutants including cationic copper, anionic nitrate, and polyaromatic phenanthrene are discussed. Chapter three exploits a promising use of dendrimers for removal of potentially harmful discharged nanoparticles (NPs). Specifically, fullerenols are used as a model nanomaterial, and their interactions with two different generations of dendrimers are studied using spectrophotometry and thermodynamics methods. Chapter four elucidates two novel optical schemes for sensing environmental pollutants and biological compounds using dendrimer-gold nanowire complex and gold-coated ZnO tetrapods

  20. Dormant Circulating Tumor Cells in Prostate Cancer: Therapeutic, Clinical and Biological Implications.

    PubMed

    Alvarez-Cubero, Maria J; Vázquez-Alonso, Fernando; Puche-Sanz, Ignacio; Ortega, F Gabriel; Martin-Prieto, M; Garcia-Puche, José L; Pascual-Geler, Manrique; Lorente, José A; Cozar-Olmo, José M; Serrano, Maria J

    2016-01-01

    Circulating Tumor Cells (CTCs) are a valuable prognostic factor in several solid tumors. By understanding the biological characteristics of CTCs we could better understand the biology of metastasis. CTCs usually adopt a dormant state that is believed to be a strategy to survive in extreme conditions. To enter a dormant state, CTCs undergo numerous phenotypic, genetic and functional mutations that significantly affect the efficacy of the therapies used to kill dormant CTCs. Hence, understanding the biological events involved in the dormancy process of CTCs would allow the identification of new therapeutic targets. Some experimental studies or preclinical models have explored these biological events, as well as the molecular factors that contribute to the maintenance of and release from dormancy. However, few studies have assessed the effects of anticancer therapies on dormant cells. This study reviews current the data currently available on cell dormancy mechanisms in prostate cancer, with a special focus on the functional, genetic and phenotypic plasticity of CTCs and their potential implications in the clinical and therapeutic management of prostate cancer.

  1. Field Testing of a Pneumatic Regolith Feed System During a 2010 ISRU Field Campaign on Mauna Kea, Hawaii

    NASA Technical Reports Server (NTRS)

    Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.

    2010-01-01

    Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.

  2. Propositions of Schroedinger and Dyson: Implications for program development in secondary school biology

    NASA Astrophysics Data System (ADS)

    Kaiser-Antonowich, Roxanne

    The purpose of this study is to ascertain whether there is a linkage between the special case of New Jersey Core Curriculum Content Standards for Science as they represent biology, and the propositions of Schrodinger and Dyson. The aim of the study is to derive implications for program development in secondary school biology. Critical review reveals that the New Jersey Core Curriculum Content Standards for Science do not provide linkage to biology and the propositions of Erwin Schrodinger and Freeman Dyson. If life is characterized by replication and metabolism, then Schrodinger and Dyson present a plausible argument toward describing life as reciprocal forms and functions that characterize a living system. Examination revealed that Schrodinger, in stating that life can be characterized by the processes of replication and metabolism, emphasized replication and virtually ignored metabolism. Dyson also acknowledges the relationship of metabolism to replication. Examination of Dyson revealed that rather than describing metabolism as a characterization of life, he advances the origin of metabolism and its connection to the origin of life. If metabolism and replication characterize life and if the origin of life is within the domain of biology, then Schrodinger's and Dyson's propositions are central to the characterization of biology. If program development for secondary school biology requires accurate description of its domain, then it is necessary to acknowledge the complexity of life forms. There is as yet no universally accepted general description of life and no reasonable consensus for something to be termed living. If the conditions for something to be termed living are the capacity to reproduce self as maintained by Schrodinger, and the capacity for self-organization preserved through natural selection as proposed by Dyson, then these conditions form the basis for program development.

  3. Access and benefit sharing (ABS) under the convention on biological diversity (CBD): implications for microbial biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and implementers of biological control are confronted with a variety of scientific, regulatory and administrative challenges to their biological control programs. One developing challenge will arise from the implementation of provisions of the Convention on Biological Diversity (CBD) co...

  4. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU-Concepts

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.; Sridhar, K. R.

    2000-01-01

    Solid oxide electrolyzers, such as electrolysis cells utilizing yttria-stabilized zirconia, can produce oxygen from Mars atmospheric carbon dioxide and reject carbon monoxide and unreacted carbon dioxide in a separate stream. The oxygen-production process has been shown to be far more efficient if the high-pressure, unreacted carbon dioxide can be separated and recycled back into the feed stream. Additionally, the mass of the adsorption compressor can be reduced. Also, the carbon monoxide by-product is a valuable fuel for space exploration and habitation, with applications from fuel cells to production of hydrocarbons and plastics. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU. Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, respectively. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU, Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, Research needs for the design shown are as follows: (1) The best adsorbent

  5. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes

  6. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes

  7. Human Lunar Mission Capabilities Using SSTO, ISRU and LOX-Augmented NTR Technologies: A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1995-01-01

    The feasibility of conducting human missions to the Moon is examined assuming the use of three 'high leverage' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) 'in-situ' resource utilization (ISRU)--specifically 'lunar-derived' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the 'compact' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of approximately 60 t (3 SSTO launches). Using approximately 8 t of LUNOX to 'reoxidize' the LERV for a 'direct return' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/ hydrogen mixture ratio from 0 to 7 with high specific impulse (approximately 940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's 'propulsion' and 'propellant modules'. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. Concluding remarks address the issue of lunar transportation system costs from the launch vehicle perspective.

  8. Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Klenhenz, Julie; Linne, Diane

    2013-01-01

    In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.

  9. Multirobot Lunar Excavation and ISRU Using Artificial-Neural-Tissue Controllers

    SciTech Connect

    Thangavelautham, Jekanthan; Smith, Alexander; Abu El Samid, Nader; Ho, Alexander; D'Eleuterio, Gabriele M. T.; Boucher, Dale; Richard, Jim

    2008-01-21

    Automation of site preparation and resource utilization on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. Such multirobot autonomous systems would require limited human support infrastructure, complement necessary manned operations and reduce overall mission risk. We present an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot excavation tasks. An ANT approach requires much less human supervision and pre-programmed human expertise than previous techniques. Only a single global fitness function and a set of allowable basis behaviors need be specified. An evolutionary (Darwinian) selection process is used to 'breed' controllers for the task at hand in simulation and the fittest controllers are transferred onto hardware for further validation and testing. ANT facilitates 'machine creativity', with the emergence of novel functionality through a process of self-organized task decomposition of mission goals. ANT based controllers are shown to exhibit self-organization, employ stigmergy (communication mediated through the environment) and make use of templates (unlabeled environmental cues). With lunar in-situ resource utilization (ISRU) efforts in mind, ANT controllers have been tested on a multirobot excavation task in which teams of robots with no explicit supervision can successfully avoid obstacles, interpret excavation blueprints, perform layered digging, avoid burying or trapping other robots and clear/maintain digging routes.

  10. Solar Transmission Through Sea Ice in the Fram Strait: Implications for Biology and Climate

    NASA Astrophysics Data System (ADS)

    Hudson, S.; Reigstad, M.; Gerland, S.; Nicolaus, M.; Nicolaus, A.

    2008-12-01

    Snow and ice control the light penetration into ice-covered Arctic waters, determining the onset of biological production after the winter. Changes in the snow and ice cover and their characteristics influence both the amount of light and the spectral distribution of light transmitted to the underlying water, with effects on timing, distribution, production rate and even species composition of the Arctic marine production. Light transmitted through the sea ice also provides a source of heat to the upper part of the water column, and may promote melting of the ice from the bottom. Spectral measurements of the transmitted solar flux were made at several locations in the Fram Strait-East Greenland Shelf region in April---May 2008, as part of the iAOOS-Norway project of interdisciplinary observations in the Arctic Ocean, and in September 2007 and 2008. These transmission measurements were made both immediately below ice floes, and as profiles to a depth of 80~m both beneath floes and beneath open water in leads. During the spring cruise, the corresponding biological productivity and biomass in the water column below the ice were measured. Together such data will increase our understanding of how a changing Arctic climate will influence the ecosystem and productivity. This presentation will present results from these transmission measurements, the first of their kind from this important region of sea ice export and biological and oceanographic activity, and their relationship to biological productivity, along with their implications for climate processes, including the formation and melting of sea ice.

  11. Long-Term Biological Monitoring of an Impaired Stream: Implications for Environmental Management [Special Issue

    SciTech Connect

    Adams, Marshall; Brandt, Craig C; Christensen, Sigurd W; Efroymson, Rebecca Ann; Greeley Jr, Mark Stephen; Ham, Kenneth; Kszos, Lynn A; Loar, James M; McCracken, Kitty; Morris, Gail Wright; Peterson, Mark J; Ryon, Michael G; Smith, John G; Southworth, George R; Stewart, Arthur J

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  12. Long-term Biological Monitoring of an Impaired Stream: Synthesis and Environmental Management Implications

    SciTech Connect

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  13. Green tea catechins: biologic properties, proposed mechanisms of action, and clinical implications.

    PubMed

    Rosen, Ted

    2012-11-01

    Botanical products, including and especially green tea leaves, have a wide range of both reputed and demonstrated health benefits and have been used medicinally for thousands of years. This paper focuses on green tea catechins, principally reviewing their known biologic properties and potential mechanisms of action (MOAs). The primary objective is to discuss the proposed antiviral, antiproliferative, and immunostimulatory activity of catechins based on strong evidence from in vitro and in vivo studies conducted to date, including two preclinical in vitro studies with sinecatechins, a proprietary mixture of catechins. This review also discusses the clinical implications of catechins for the treatment of external genital and perianal warts (EGWs) and other conditions caused by human papillomavirus (HPV). While the MOA of catechins in the treatment of EGWs and other HPV-related conditions may be related to or associated with postulated or proven antiviral and immunostimulatory activity, the precise clinical significance of the various in vitro findings remains largely unknown.

  14. Biologic Mechanisms of Oral Cancer Pain and Implications for Clinical Therapy

    PubMed Central

    Viet, C.T.; Schmidt, B.L.

    2012-01-01

    Cancer pain is an ever-present public health concern. With innovations in treatment, cancer patients are surviving longer, but uncontrollable pain creates a poor quality of life for these patients. Oral cancer is unique in that it causes intense pain at the primary site and significantly impairs speech, swallowing, and masticatory functions. We propose that oral cancer pain has underlying biologic mechanisms that are generated within the cancer microenvironment. A comprehensive understanding of key mediators that control cross-talk between the cancer and peripheral nervous system, and possible interventions, underlies effective cancer pain management. The purpose of this review is to explore the current studies on oral cancer pain and their implications in clinical management for cancer pain in general. Furthermore, we will explore the endogenous opioid systems and novel cancer pain therapeutics that target these systems, which could solve the issue of opiate tolerance and improve quality of life in oral cancer patients. PMID:21972258

  15. Neural systems implicated in obesity as an addictive disorder: from biological to behavioral mechanisms.

    PubMed

    Schulte, Erica M; Yokum, Sonja; Potenza, Marc N; Gearhardt, Ashley N

    2016-01-01

    Contributing factors to obesity have been identified, yet prevention and treatment efforts have had limited long-term success. It has recently been suggested that some individuals may experience an addictive-like response to certain foods, such as losing control over consumption and continued consumption despite negative consequences. In support, shared biological and behavioral features seem to exist between "food addiction" and traditional substance-use disorders. "Food addiction" may be another important contributor to obesity. The current chapter reviews existing literature regarding neural systems implicated similarly in obesity and addiction, discusses unique considerations for addictive-like eating, and proposes directions for future research regarding "food addiction" as an emerging construct for addiction medicine.

  16. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    PubMed

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  17. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology.

    PubMed

    Wang, Yuling; Irudayaraj, Joseph

    2013-02-05

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences.

  18. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  19. A fractal model for nuclear organization: current evidence and biological implications.

    PubMed

    Bancaud, Aurélien; Lavelle, Christophe; Huet, Sébastien; Ellenberg, Jan

    2012-10-01

    Chromatin is a multiscale structure on which transcription, replication, recombination and repair of the genome occur. To fully understand any of these processes at the molecular level under physiological conditions, a clear picture of the polymorphic and dynamic organization of chromatin in the eukaryotic nucleus is required. Recent studies indicate that a fractal model of chromatin architecture is consistent with both the reaction-diffusion properties of chromatin interacting proteins and with structural data on chromatin interminglement. In this study, we provide a critical overview of the experimental evidence that support a fractal organization of chromatin. On this basis, we discuss the functional implications of a fractal chromatin model for biological processes and propose future experiments to probe chromatin organization further that should allow to strongly support or invalidate the fractal hypothesis.

  20. Subject-specific pedagogical content knowledge: Implications for alternatively and traditionally trained biology teachers

    NASA Astrophysics Data System (ADS)

    Ravgiala, Rebekah Rae

    Theories regarding the development of expertise hold implications for alternative and traditional certification programs and the teachers they train. The literature suggests that when compared to experts in the field of teaching, the behaviors of novices differ in ways that are directly attributed to their pedagogical content knowledge. However, few studies have examined how first and second year biology teachers entering the profession from traditional and alternative training differ in their demonstration of subject-specific pedagogical content knowledge. The research problem in this multicase, naturalistic inquiry investigated how subject-specific pedagogical content knowledge was manifested among first and second year biology teachers in the task of transforming subject matter into forms that are potentially meaningful to students when explicit formal training has been and has not been imparted to them as preservice teachers. Two first year and two second year biology teachers were the subjects of this investigation. Allen and Amber obtained their certification through an alternative summer training institute in consecutive years. Tiffany and Tricia obtained their certification through a traditional, graduate level training program in consecutive years. Both programs were offered at the same northeastern state university. Participants contributed to six data gathering techniques including an initial semi-structured interview, responses to the Conceptions of Teaching Science questionnaire (Hewson & Hewson, 1989), three videotaped biology lessons, evaluation of three corresponding lesson plans, and a final semi-structured interview conducted at the end of the investigation. An informal, end-of-study survey intended to offer participants an opportunity to disclose their thoughts and needs as first year teachers was also employed. Results indicate that while conceptions of teaching science may vary slightly among participants, there is no evidence to suggest that

  1. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  2. Epistatic interactions of AKT1 on human medial temporal lobe biology and pharmacogenetic implications

    PubMed Central

    Tan, H Y; Chen, A G; Chen, Q; Browne, L B; Verchinski, B; Kolachana, B; Zhang, F; Apud, J; Callicott, J H; Mattay, V S; Weinberger, D R

    2012-01-01

    AKT1 controls important processes in medial temporal lobe (MTL) development and plasticity, but the impact of human genetic variation in AKT1 on these processes is not known in healthy or disease states. Here, we report that an AKT1 variant (rs1130233) previously associated with AKT1 protein expression, prefrontal function and schizophrenia, affects human MTL structure and memory function. Further, supporting AKT1's role in transducing hippocampal neuroplasticity and dopaminergic processes, we found epistasis with functional polymorphisms in BDNF and COMT—genes also implicated in MTL biology related to AKT1. Consistent with prior predictions that these biologic processes relate to schizophrenia, we found epistasis between the same AKT1, BDNF and COMT functional variants on schizophrenia risk, and pharmacogenetic interactions of AKT1 with the effects on cognition and brain volume measures by AKT1 activators in common clinical use—lithium and sodium valproate. Our findings suggest that AKT1 affects risk for schizophrenia and accompanying cognitive deficits, at least in part through specific genetic interactions related to brain neuroplasticity and development, and that these AKT1 effects may be pharmacologically modulated in patients. PMID:21788944

  3. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery.

    PubMed

    Oppenheimer, Adam J; Mesa, John; Buchman, Steven R

    2012-01-01

    Ongoing research in bone biology has brought cutting-edge technologies into everyday use in craniofacial surgery. Nonetheless, when osseous defects of the craniomaxillofacial skeleton are encountered, autogenous bone grafting remains the criterion standard for reconstruction. Accordingly, the core principles of bone graft physiology continue to be of paramount importance. Bone grafts, however, are not a panacea; donor site morbidity and operative risk are among the limitations of autologous bone graft harvest. Bone graft survival is impaired when irradiation, contamination, and impaired vascularity are encountered. Although the dura can induce calvarial ossification in children younger than 2 years, the repair of critical-size defects in the pediatric population may be hindered by inadequate bone graft donor volume. The novel and emerging field of bone tissue engineering holds great promise as a limitless source of autogenous bone. Three core constituents of bone tissue engineering have been established: scaffolds, signals, and cells. Blood supply is the sine qua non of these components, which are used both individually and concertedly in regenerative craniofacial surgery. The discerning craniofacial surgeon must determine the proper use for these bone graft alternatives, while understanding their concomitant risks. This article presents a review of contemporary and emerging concepts in bone biology and their implications in craniofacial surgery. Current practices, areas of controversy, and near-term future applications are emphasized.

  4. Differential characteristics of olive pollen from different cultivars: biological and clinical implications.

    PubMed

    Alché, J D; Castro, A J; Jiménez-López, J C; Morales, S; Zafra, A; Hamman-Khalifa, A M; Rodríguez-García, M I

    2007-01-01

    The olive tree is grown in many parts of the world. Its germplasm is very broad, with 250 varieties in Spain alone. Variations in the ability of pollen to germinate have been studied in detail and show conspicuous differences between varieties. However, commercial olive pollen from cultivars whose origin is unknown is the material that is commonly used for clinical and biological studies. We aim to assess the putative heterogeneity of olive cultivars with regard to the presence of several pollen allergens and to determine whether these differences have biological and clinical relevance. Previous studies show that most allergens isolated and characterized to date are highly polymorphic. Olive cultivars display wide differences in the expression levels of many allergens and in the number and molecular characteristics of the allergen isoforms expressed. These differences are maintained over the years, and are intrinsic to the genetics of each cultivar. Such broad polymorphism seems to be involved in the physiology of the olive reproductive system, which might include the adaptation of the plant to different environmental conditions, the establishment of the compatibility system, and pollen performance. The differences in allergen composition in cultivars, particularly in the Ole e 1 allergen, are responsible for the important differences in the allergenic potency of the extracts. These findings could have a number of implications for the diagnosis and therapy of olive pollen allergy. We discuss how cultivar differences affect extract quality, diagnostic and therapeutic efficacy and safety, and the development of new vaccines based on the use of recombinant allergens.

  5. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications

    PubMed Central

    Garidel, Patrick; Kaconis, Yani; Heinbockel, Lena; Wulf, Matthias; Gerber, Sven; Munk, Ariane; Vill, Volkmar; Brandenburg, Klaus

    2015-01-01

    Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance. PMID:26464591

  6. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  7. 'Biologizing' Psychopathy: Ethical, Legal, and Research Implications at the Interface of Epigenetics and Chronic Antisocial Conduct.

    PubMed

    Tamatea, Armon J

    2015-10-01

    Epigenetics, a field that links genetics and environmental influences on the expression of phenotypic traits, offers to increase our understanding of the development and trajectory of disease and psychological disorders beyond that thought of traditional genetic research and behavioural measures. By extension, this new perspective has implications for risk and risk management of antisocial behaviour where there is a biological component, such as psychopathy. Psychopathy is a personality disorder associated with repeat displays of antisocial behaviour, and is associated with the disproportionate imposition of harm on communities. Despite advances in our knowledge of psychopathic individuals, the construct remains complex and is hampered by a lack of integration across a range of fundamental domains. The clinical and forensic research on psychopathy is brought into conversation with the emerging field of epigenetics to highlight critical issues of (1) clinical definition and diagnosis, (2) assessment, (3) aetiology of psychopathic phenotypes, and (4) treatment and rehabilitation approaches. Broader ethical and legal questions of the role of epigenetic mechanisms in the management of psychopathy beyond the criminal justice arena are also outlined.

  8. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine.

    PubMed

    Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei

    2015-11-01

    Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine.

  9. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase.

    PubMed Central

    Albrich, J M; McCarthy, C A; Hurst, J K

    1981-01-01

    Oxidative degradation of biological substrates by hypochlorous acid has been examined under reaction conditions similar to those found in active phagosomes. Iron sulfur proteins are bleached extremely rapidly, followed in decreasing order by beta-carotene, nucleotides, porphyrins, and heme proteins. Enzymes containing essential cysteine molecules are inactivated with an effectiveness that roughly parallels the nucleophilic reactivities of their sulfhydryl groups. Other compounds, including glucosamines, quinones, riboflavin, and, except for N-chlorination, phospholipids, are unreactive. Rapid irreversible oxidation of cytochromes, adenine nucleotides, and carotene pigments occurs when bacterial cells are exposed to exogenous hypochlorous acid; with Escherichia coli, titrimetric oxidation of cytochrome was found to coincide with loss of aerobic respiration. The occurrence of these cellular reactions implicates hypochlorous acid as a primary microbicide in myeloperoxidase-containing leukocytes; the reactivity patterns observed are consistent with the view that bactericidal action results primarily from loss of energy-linked respiration due to destruction of cellular electron transport chains and the adenine nucleotide pool. PMID:6264434

  10. Molecular biology of anal squamous cell carcinoma: implications for future research and clinical intervention.

    PubMed

    Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A

    2015-12-01

    Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets.

  11. Very small embryonic-like stem cells: implications in reproductive biology.

    PubMed

    Bhartiya, Deepa; Unni, Sreepoorna; Parte, Seema; Anand, Sandhya

    2013-01-01

    The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  12. Trypanosome species in neo-tropical bats: biological, evolutionary and epidemiological implications.

    PubMed

    Ramírez, Juan David; Tapia-Calle, Gabriela; Muñoz-Cruz, Geissler; Poveda, Cristina; Rendón, Lina M; Hincapié, Eduwin; Guhl, Felipe

    2014-03-01

    Bats (Chiroptera) are the only mammals naturally able to fly. Due to this characteristic they play a relevant ecological role in the niches they inhabit. These mammals spread infectious diseases from enzootic to domestic foci. Rabbies, SARS, fungi, ebola and trypanosomes are the most common pathogens these animals may host. We conducted intensive sampling of bats from the phyllostomidae, vespertilionidae and emballonuridae families in six localities from Casanare department in eastern Colombia. Blood-EDTA samples were obtained and subsequently submitted to analyses of mitochondrial and nuclear genetic markers in order to conduct barcoding analyses to discriminate trypanosome species. The findings according to the congruence of the three molecular markers suggest the occurrence of Trypanosoma cruzi cruzi (51%), T. c. marinkellei (9%), T. dionisii (13%), T. rangeli (21%), T. evansi (4%) and T. theileri (2%) among 107 positive bat specimens. Regarding the T. cruzi DTUs, we observed the presence of TcI (60%), TcII (15%), TcIII (7%), TcIV (7%) and TcBAT (11%) being the first evidence to our concern of the foreseen genotype TcBAT in Colombia. These results allowed us to propose reliable hypotheses regarding the ecology and biology of the bats circulating in the area including the enigmatic question whether TcBAT should be considered a novel DTU. The epidemiological and evolutionary implications of these findings are herein discussed.

  13. Software Architecture to Support the Evolution of the ISRU RESOLVE Engineering Breadboard Unit 2 (EBU2)

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Nurge, Mark; Perusich, Stephen

    2011-01-01

    The In-Situ Resource Utilization (ISRU) Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) software provides operation of the physical plant from a remote location with a high-level interface that can access and control the data from external software applications of other subsystems. This software allows autonomous control over the entire system with manual computer control of individual system/process components. It gives non-programmer operators the capability to easily modify the high-level autonomous sequencing while the software is in operation, as well as the ability to modify the low-level, file-based sequences prior to the system operation. Local automated control in a distributed system is also enabled where component control is maintained during the loss of network connectivity with the remote workstation. This innovation also minimizes network traffic. The software architecture commands and controls the latest generation of RESOLVE processes used to obtain, process, and quantify lunar regolith. The system is grouped into six sub-processes: Drill, Crush, Reactor, Lunar Water Resource Demonstration (LWRD), Regolith Volatiles Characterization (RVC) (see example), and Regolith Oxygen Extraction (ROE). Some processes are independent, some are dependent on other processes, and some are independent but run concurrently with other processes. The first goal is to analyze the volatiles emanating from lunar regolith, such as water, carbon monoxide, carbon dioxide, ammonia, hydrogen, and others. This is done by heating the soil and analyzing and capturing the volatilized product. The second goal is to produce water by reducing the soil at high temperatures with hydrogen. This is done by raising the reactor temperature in the range of 800 to 900 C, causing the reaction to progress by adding hydrogen, and then capturing the water product in a desiccant bed. The software needs to run the entire unit and all sub-processes; however

  14. Regulation of nuclear NF-κB oscillation by a diffusion coefficient and its biological implications.

    PubMed

    Ohshima, Daisuke; Ichikawa, Kazuhisa

    2014-01-01

    The transcription factor NF-κB shuttles between the cytoplasm and the nucleus, and nuclear NF-κB is known to oscillate with a cycle of 1.5-2.5 h following the application of external stimuli. Oscillation pattern of NF-κB is implicated in regulation of the gene expression profile. In a previous report, we found that the oscillation pattern of nuclear NF-κB in a computational 3D spherical cell was regulated by spatial parameters such as nuclear to cytoplasmic volume ratio, nuclear transport, locus of protein synthesis, and diffusion coefficient. Here we report analyses and a biological implication for the regulation of oscillation pattern by diffusion coefficient. Our analyses show that the "reset" of nuclear NF-κB, defined as the return of nuclear NF-κB to the initial level or lower, was crucial for the oscillation; this was confirmed by the flux analysis. In addition, we found that the distant cytoplasmic location from the nucleus acted as a "reservoir" for storing newly synthesized IκBα. When the diffusion coefficient of proteins was large (≥ 10-11 m2/s), a larger amount of IκBα was stored in the "reservoir" with a large flux by diffusion. Subsequently, stored IκBα diffused back to the nucleus, where nuclear NF-κB was "reset" to the initial state. This initiated the next oscillation cycle. When the diffusion coefficient was small (≤ 10-13 m2/s), oscillation of nuclear NF-κB was not observed because a smaller amount of IκBα was stored in the "reservoir" and there was incomplete "reset" of nuclear NF-κB. If the diffusion coefficient for IκBα was increased to 10-11 m2/s keeping other proteins at 10-13 m2/s, the oscillation was rescued confirming the "reset" and "reservoir" hypothesis. Finally, we showed altered effective value of diffusion coefficient by diffusion obstacles. Thus, organelle crowding seen in stressed cells possibly changes the oscillation pattern by controlling the effective diffusion coefficient.

  15. Observing and diagnosing biological fluxes and canopy mechanisms with implications for climate change and ecosystem disturbance

    NASA Astrophysics Data System (ADS)

    Reed, David E.

    Improving our predictions of ecosystem responses is an important challenge in ecological science due to the increasing number of stresses applied to biological systems. The assumption that ecosystems are operating in steady-state conditions at annual and longer time scales is far too simple of a model as ecosystems are an integral part of the earth system. Anthropogenic and non-anthropogenic forces acting on ecosystems within the earth system are numerous and include broad external factors such as climate change to specific internal factors such as infestations causing disturbance. This research quantifies changes in biogeochemical cycling and increases understanding of the mechanisms that control these cycles across two major ecosystems of the intermountain west with the broad goal of better predictive power of ecosystem responses. Eddy covariance methods were used to quantify carbon, water and energy fluxes at two different field sites in sagebrush ecosystems and one field site in a lodgepole pine ecosystem, in south-east Wyoming and northern Colorado. These measurements were supported with environmental and micrometeorological measurements in order to better understand physical mechanisms and canopy processes that control these biological fluxes. Results from the sagebrush component of this dissertation show how semi-arid sagebrush canopies interact with the lower atmosphere in ways that can alter environmental control of water loss with changing leaf area. This feedback has large implications combined with the large land area of these ecosystems and predictions of a dryer and more variable precipitation regime in the future. At the higher elevation lodgepole pine site, the ecosystem is undergoing a major mortality disturbance due to native bark beetles. Interestingly, even with ˜80% mortality of the canopy, few changes are observed to carbon and water cycling, as well as water use efficiency and energy cycling at the ecosystem scale. This calls into question

  16. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  17. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue.

    PubMed

    Hulikova, Alzbeta; Swietach, Pawel

    2014-07-01

    The degree to which cell membranes are barriers to CO2 transport remains controversial. Proteins, such as aquaporins and Rh complex, have been proposed to facilitate CO2 transport, implying that the nonchannel component of membranes must have greatly reduced CO2 permeability. To determine whether membrane CO2 permeation is rate limiting for gas transport, the spread of CO2 across multicellular tissue growths (spheroids) was measured using intracellular pH as a spatial readout. Colorectal HCT116 cells have basal water and NH3 permeability, indicating the functional absence of aquaporins and gas channels. However, CO2 diffusivity in HCT116 spheroids was only 24 ± 4% lower than in pure water, which can be accounted for fully by volume exclusion due to proteins. Diffusivity was unaffected by blockers of aquaporins and Rh complex (Hg(2+), p-chloromercuribenzoic acid, and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid) but decreased under hypertonic conditions (by addition of 300 mOsm mannitol), which increases intracellular protein crowding. Similar CO2 diffusivity was measured in spheroids of T47D breast cells (basal water permeability) and NHDF-Ad fibroblasts (aquaporin-facilitated water permeability). In contrast, diffusivity of NH3, a smaller but less lipophilic gas, was considerably slower than in pure water, as expected from rate-limiting membrane permeation. In conclusion, membranes, even in the functional absence of proposed gas channels, do not restrict CO2 venting from tissue growths.-Hulikova, A., Swietach, P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue.

  18. Reductive activation of mitomycin C by thiols: kinetics, mechanism, and biological implications.

    PubMed

    Paz, Manuel M

    2009-10-01

    The clinically used antitumor antibiotic mitomycin C requires a reductive activation to be converted to a bis-electrophile that forms several covalent adducts with DNA, including an interstrand cross-link which is considered to be the lesion responsible for the cytotoxic effects of the drug. Enzymes such as cytochrome P450 reductase and DT-diaphorase have traditionally been implicated in the bioreduction of mitomycin C, but recent reports indicate that enzymes containing a dithiol active site are also involved in the metabolism of mitomycin C. The reductive activation can also be effected in vitro with chemical reductants, but until now, mitomycin C was considered to be inert to thiols. We report here that mitomycin C can, in fact, be reductively activated by thiols. We show that the reaction is autocatalytic and that the end product is a relatively stable aziridinomitosene that can be trapped by adding several nucleophiles after the activation reaction. Kinetic studies show that the reaction is highly sensitive to pH and does not proceed or proceeds very slowly at neutral pH, an observation that explains the unsuccessful results on previous attempts to activate mitomycin C with thiols. The optimum pH for the reactions is around the pK(a) values of the thiols used in the activation. A mechanism for the reaction is hypothesized, involving the initial formation of a thiolate-mitomycin adduct, that then evolves to give the hydroquinone of mitomycin C and disulfide. The results presented here provide a chemical mechanism to explain how some biological dithiols containing an unusually acidic thiol group (deprotonated at physiological pH) participate in the modulation of mitomycin C cytotoxicity.

  19. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics

    PubMed Central

    Chakedis, Jeffery; French, Randall; Babicky, Michele; Jaquish, Dawn; Mose, Evangeline; Cheng, Peter; Holman, Patrick; Howard, Haleigh; Miyamoto, Jaclyn; Porras, Paula; Walterscheid, Zakk; Schultz-Fademrecht, Carsten; Esdar, Christina; Schadt, Oliver; Eickhoff, Jan; Lowy, Andrew M.

    2016-01-01

    The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2′-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity. PMID:27323855

  20. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics.

    PubMed

    Chakedis, Jeffery; French, Randall; Babicky, Michele; Jaquish, Dawn; Mose, Evangeline; Cheng, Peter; Holman, Patrick; Howard, Haleigh; Miyamoto, Jaclyn; Porras, Paula; Walterscheid, Zakk; Schultz-Fademrecht, Carsten; Esdar, Christina; Schadt, Oliver; Eickhoff, Jan; Lowy, Andrew M

    2016-07-19

    The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2'-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity.

  1. Absorption of millimeter waves by human beings and its biological implications

    SciTech Connect

    Gandhi, O.P.; Riazi, A.

    1986-02-01

    With recent advances in millimeter-wave technology, including the availability of high-power sources, in this band, it has become necessary to understand the biological implications of this energy for human beings. This paper gives the millimeter-wave absorption efficiency for the human body with and without clothing. Ninety to ninety-five percent of the incident energy may be absorbed in the skin with dry clothing, with or without an intervening air gap, acting as an impedance transformer. On account of the submillimeter depths of penetration in the skin, superficial SAR's as high as 65-357 W/Kg have been calculated for power density of incident radiation corresponding to the ANSI guideline of 5 mW/cm/sup 2/. Because most of the millimeter-wave absorption is in the region of the cutaneous thermal receptors (0.1-1.0 mm), the sensations of absorbed energy are likely to be similar to those of IR. For the latter, threshold of heat perception is near 0.67 mW/cm/sup 2/, with power densities on the order of 8.7 mW/cm/sup 2/ likely to cause sensations of ''very warm to hot'' with a latency of 1.0 +- 0.6 s. Calculations are made for thresholds of hearing of pulsed millimeter waves. Pulsed energy densities of 143/579 ..mu..J/cm/sup 2/ are obtained for the frequency band 30-300 GHz. These are 8-28 times larger than the threshold for microwaves below 3 GHz. The paper also points to the need for evaluation of ocular effects of millimeter-wave irradiation because of high SAR's in the cornea.

  2. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications.

    PubMed

    Jones, Kayleigh E; Batchler, Kathleen L; Zalouk, Célia; Valentine, Ann M

    2017-02-06

    The siderophore desferrioxamine B (DFOB) binds Ti(IV) tightly and precludes its hydrolytic precipitation under biologically and environmentally relevant conditions. This interaction of DFOB with Ti(IV) is investigated by using spectro-potentiometric and spectro-photometric titrations, mass spectrometry, isothermal titration calorimetry (ITC), and computational modeling. The data from pH 2-10 suggest two one-proton equilibria among three species, with one species predominating below pH 3.5, a second from pH 3.5 to 8, and a third above pH 8. The latter species is prone to slow hydrolytic precipitation. Electrospray mass spectrometry allowed the detection of [Ti(IV) (HDFOB)](2+) and [Ti(DFOB)](+); these species were assigned as the pH < 3.5 and the 3.5 < pH < 8 species, respectively. The stability constant for Ti(IV)-DFOB was determined by using UV/vis-monitored competition with ethylenediaminetetraacetic acid (EDTA). Taking into consideration the available binding constant of Ti(IV) and EDTA, the data reveal values of log β111 = 41.7, log β110 = 38.1, and log β11-1 = 30.1. The former value was supported by ITC, with the transfer of Ti(IV) from EDTA to DFOB determined to be both enthalpically and entropically favorable. Computational methods yielded a model of Ti-DFOB. The physiological and environmental implications of this tight interaction and the potential role of DFOB in solubilizing Ti(IV) are discussed.

  3. An Advanced In-Situ Resource Utilization (ISRU) Production Plant Design for Robotic and Human Mars Missions

    NASA Astrophysics Data System (ADS)

    Simon, T.; Baird, R. S.; Trevathan, J.; Clark, L.

    2002-01-01

    The ability to produce the necessary consumables, rather than relying solely on what is brought from Earth decreases the launch mass, cost, and risk associated with a Mars mission while providing capabilities that enable the commercial development of space. The idea of using natural resources, or "living off the land", is termed In-Situ Resource Utilization (ISRU). Trade studies have shown that producing and utilizing consumables such as water, breathing oxygen, and propellant can reduce the launch mass for a human or robotic mission to Mars by 20-45%. The Johnson Space Center and Lockheed Martin Astronautics are currently designing and planning assembly of a complete collection-to-storage production plant design for producing methane (fuel), oxygen, and water from carbon dioxide (Martian atmosphere) and hydrogen (electrolyzed Martian water or Earth-originated), based on lessons learned and design enhancements from a 1st generation testbed. The design and testing of the major subsystems incorporated in the 2nd generation system, including a carbon dioxide freezer, Sabatier reactor, water electrolysis unit, and vacuum-jacketed, cryogenic, common-bulkhead storage tank, will be presented in detail with the goal of increasing the awareness of the readiness level of these technologies. These technologies are mass and power efficient as well as fundamentally simple and reliable. These technologies also have potential uses in Environmental Control and Life Support System (ECLSS) applications for removing and recycling crew-exhaled carbon dioxide. Each subsystem is sized for an ISRU-assisted sample return mission, producing in an 8-hour period 0.56 kg water and 0.26 kg methane from the Sabatier reactor and 0.50 kg oxygen from electrolyzed water. The testing of these technologies to date will be discussed as well as plans for integrating the subsystems for a complete end-to-end demonstration at Mars conditions. This paper will also address the history of these subsystem

  4. Assessment of temporal variance components and implications for trend assessment in biological monitoring programs

    EPA Science Inventory

    Assessment of temporal trends in biological monitoring programs is often undertaken without an understanding of temporal variability of biological communities. Typically, the within-site variance is unknown and included as part of sampling error. This investigation – designed jo...

  5. Biological products for the treatment of psoriasis: therapeutic targets, pharmacodynamics and disease-drug-drug interaction implications.

    PubMed

    Wang, Jie; Wang, Yow-Ming C; Ahn, Hae-Young

    2014-09-01

    Psoriasis is a chronic inflammatory skin disease condition that involves altered expression of a broad spectrum of proinflammatory cytokines which are associated with activation of T cells and proliferation of keratinocytes. Currently approved biological products for psoriasis treatment fall into two main classes: cytokine modulators and biologics targeting T cells. In psoriatic patients, elevated levels of proinflammatory cytokines are observed. Elevated proinflammatory cytokines can suppress some cytochrome P450 (CYP) enzymes, and the treatment of psoriasis with biological products can reduce proinflammatory cytokine levels. Therefore, the exposure of CYP substrate drugs is anticipated to be affected by the psoriasis disease resulting in a higher exposure than in healthy state (named disease-drug interaction) as well as by the biological treatments due to disease improvements resulting in a decrease in exposure (named disease-drug-drug interaction, disease-DDI). However, the quantitative impact on CYP substrate exposure due to disease or due to treatment with biological products remains to be evaluated. The objective of the current review is to provide an overview of the therapeutic targets and cytokine-related pharmacodynamic effects of biological products in psoriasis treatment with a particular focus on their implications for disease-DDI. The clinical study design considerations for psoriasis disease-DDI evaluation are also discussed.

  6. Formation of Nanophase Iron in Lunar Soil Simulant for Use in ISRU Studies

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Day, James D. M.

    2005-01-01

    discovered the presence of abundant np-Fe(sup 0) particles in the glass patinas coating most soil particles. Therefore, the correlation of glass content and magnetic susceptibility can be explained by the presence of the np-Feo particles in glass: small particles contain relatively more np-Fe(sup 0) as glass coatings because the surface area versus mass ratio of the grain size is so increased. The magnetic properties of lunar soil are important in dust mitigation on the Moon (Taylor et al. 2005). Thus material simulating this property is important for testing mitigation methods using electromagnetic field. This np- Fe(sup 0) also produces a unique energy coupling to normal microwaves, such as present in kitchen microwave ovens. Effectively, a portion of lunar soil placed in a normal 2.45 GHz oven will melt at greater than 1200 C before your tea will boil at 100 C, a startling and new discovery reported by Taylor and Meek (2004, 2005). Several methods have been investigated in attempts to make nanophase-sized Feo dispersed within silicate glass; like in the lunar glass. We have been successful in synthesizing such a product and continue to improve on our recipe. We have performed extensive experimentation on this subject to date. Ultimately it will probably be necessary to add this np-Fe(sup 0) bearing silicate glass to lunar soil stimulant, like JSC-1, to actually produce the desired magnetic and microwave coupling properties for use in appropriate ISRU experimentation.

  7. Strengthening the biological weapons convention and implications on the pharmaceutical and biotechnology industry.

    PubMed

    Zabriskie, D

    1998-06-01

    The development, production, stockpiling, and use of biological weapons are banned by the 1972 Biological Weapons Convention (BWC). Reflecting the realities of the Cold War era in which it was negotiated, the BWC lacks means for compliance verification or enforcement. International efforts to remedy this deficiency are accelerating in the face of evidence that covert biological weapon programs are proliferating at the national and subnational levels.

  8. "McLean v. Arkansas" (1982) and Beyond: Implications for Biology Professors

    ERIC Educational Resources Information Center

    Bland, Mark W.; Moore, Randy

    2011-01-01

    To assess current trends of evolution instruction in high schools of the mid-South, we invited Arkansas high school biology teachers from across the state to respond to a survey designed to address this issue. We also asked students enrolled in a freshman-level, nonmajors biology course at a midsize public Arkansas university to recall their…

  9. Synthetic biology in space: considering the broad societal and ethical implications

    NASA Astrophysics Data System (ADS)

    Race, Margaret S.; Moses, Jacob; McKay, Christopher; Venkateswaran, Kasthuri J.

    2012-02-01

    Although the field of synthetic biology is still in its infancy, there are expectations for great advances in the coming decades, both on Earth and potentially in space. Promising applications for long duration space missions include a variety of biologically engineered products and biologically aided processes and technologies, which will undoubtedly be scrutinized for risks and benefits in the broad context of ethical, legal and social realms. By comparing and contrasting features of Earth-based and space-applied synthetic biology, it is possible to identify the likely similarities and differences, and to identify possible challenges ahead for space applications that will require additional research, both in the short and long terms. Using an analytical framework associated with synthetic biology and new technologies on Earth, this paper analyses the kinds of issues and concerns ahead, and identifies those areas where space applications may require additional examination. In general, while Earth- and space-based synthetic biology share many commonalities, space applications have additional challenges such as those raised by space microbiology and environmental factors, legal complications, planetary protection, lack of decision-making infrastructure(s), long duration human missions, terraforming and the possible discovery of extraterrestrial (ET) life. For synthetic biology, the way forward offers many exciting opportunities, but is not without legitimate concerns - for life, environments and society, both on Earth and beyond.

  10. Trends in American agriculture. Their implications for biological warfare against crop and animal resources.

    PubMed

    Deen, W A

    1999-01-01

    Current trends in American agriculture have changed the vulnerability to use of biological weapons against plant and animal resources. The major effect has been a requirement to look again at the model of the U.S. BW program of widespread dissemination of agent and look to attack models requiring much lower levels of resources. The U.S. biological warfare program models must take the effects of these major trends into account when considering the possible widespread dissemination of a biological agent. The models must also acknowledge the lowered levels or resources required to make such attacks given the modern trends in American agriculture.

  11. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    NASA Astrophysics Data System (ADS)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  12. Implications of Rheumatic Disease and Biological Response-Modifying Agents in Plastic Surgery.

    PubMed

    Tsai, David M; Borah, Gregory L

    2015-12-01

    The preoperative evaluation for any reconstructive or aesthetic procedure requires a detailed history of existing medical conditions and current home medications. The prevalence of rheumatic diseases such as rheumatoid arthritis, gout, and psoriasis is high, but the impact of these chronic illnesses on surgical outcome and the side effects of the powerful medications used for treatment are often underappreciated. In this review, the authors highlight key perioperative considerations specific to rheumatologic diseases and their associated pharmacologic therapies. In particular, the authors discuss the perioperative management of biological response-modifying agents, which have largely become the new standard of therapy for many rheumatic diseases. The literature reveals three key perioperative concerns with biological therapy for rheumatic disease: infection, wound healing delays, and disease flare. However, data on specific perioperative complications are lacking, and it remains controversial whether withholding biological therapy before surgery is of benefit. The risk of these adverse events is influenced by several factors: age, sex, class of biological agent, duration of exposure, dosage, onset and severity of disease, and type of surgical procedure. Overall, it remains best to develop an individualized plan. In younger patients with recent onset of biological therapy, it is reasonable to withhold therapy based on 3 to 5 half-lives of the specific agent. In older patients with a substantial history of rheumatic disease, the decision to discontinue therapy must be weighed and decided carefully in conjunction with the rheumatologist.

  13. Population biology of coral trout species in eastern Torres Strait: Implications for fishery management

    NASA Astrophysics Data System (ADS)

    Williams, Ashley J.; Currey, Leanne M.; Begg, Gavin A.; Murchie, Cameron D.; Ballagh, Aaron C.

    2008-09-01

    Coral trout ( Plectropomus spp.) are the main target species for commercial fishers in the eastern Torres Strait Reef Line Fishery (ETS RLF). The four species of coral trout known to occur in Torres Strait: Plectropomus leopardus, Plectropomus maculatus, Plectropomus areolatus and Plectropomus laevis are currently managed as a single species in Torres Strait, as there is no species-specific biological information available for the region which could be used to assess whether species differ in their response to fishing pressure. The aim of our study was to determine whether it is appropriate (biologically) to manage coral trout in the ETS RLF as a single species group or whether different management arrangements are required for some species. We used catch data and biological data from samples collected by commercial fishers to examine the distribution within Torres Strait and estimate a range of biological parameters for P. leopardus, P. maculatus and P. areolatus. Insufficient P. laevis samples were collected to reliably examine this species. Results indicated that the population biology, particularly the reproductive biology, of P. areolatus was substantially different to both P. leopardus and P. maculatus. Although it is difficult to predict the response to fishing, P. areolatus may be more vulnerable to fishing than P. leopardus and P. maculatus, due to the larger size at sex change observed for this species and the very low proportion of males protected by the current minimum size limit. Therefore, while the common management arrangements for P. leopardus and P. maculatus appear to be adequate for these species, separate management arrangements are needed for the sustainable harvest of P. areolatus populations in the ETS. Specifically, we recommend the introduction of a maximum size limit for P. areolatus, in addition to the current minimum size limit, which may allow a proportion of males some protection from fishing.

  14. Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology.

    PubMed

    Peter, Isabelle S; Davidson, Eric H

    2016-01-01

    The insight that the genomic control of developmental process is encoded in the form of gene regulatory networks has profound impacts on many areas of modern bioscience. Most importantly, it affects developmental biology itself, as it means that a causal understanding of development requires knowledge of the architecture of regulatory network interactions. Furthermore, it follows that functional changes in developmental gene regulatory networks have to be considered as a primary mechanism for evolutionary process. We here discuss some of the recent advances in gene regulatory network biology and how they have affected our current understanding of development, evolution, and regulatory genomics.

  15. Evolutionary interactions between the invasive tallow tree and herbivores: implications for biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding interactions between insect agents and host plants is critical for forecasting their impact before the insects are introduced, and for improving our knowledge of the mechanisms driving success or failure in biological weed control. As invasive plants may undergo rapid adaptive evolutio...

  16. Dissertation Citations in Organismal Biology at Southern Illinois University at Carbondale: Implications for Collection Development

    ERIC Educational Resources Information Center

    Nabe, Jonathan; Imre, Andrea

    2008-01-01

    We report on a citation analysis of Ph.D. dissertations in plant biology and zoology at Southern Illinois University Carbondale, undertaken to test the common assumption that scientists favor current research to such an extent that journal backfiles can be de-emphasized in academic library collections. Results demonstrate otherwise. The study is…

  17. Genetic control of chromosome behaviour: Implications in evolution, crop improvement, and human biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromosomes and chromosome pairing are pivotal to all biological sciences. The study of chromosomes helps unravel several aspects of an organism. Although the foundation of genetics occurred with the formulation of the laws of heredity in 1865, long before the discovery of chromosomes, their subsequ...

  18. THE INFLUENCE OF CATCHMENT LAND USE ON HYDROGRAPH DYNAMICS AND IMPLICATIONS FOR STREAM BIOLOGICAL ASSEMBLAGES

    EPA Science Inventory

    Catchment land use impacts the rise and fall dynamic of hydrographs, and may also help explain variation in biological assemblages known to be sensitive to flow regime. We collected continuous stream depth records for the 2002 water year (5 min. intervals) from eight streams dra...

  19. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains.

    PubMed

    Parke, J L; Gurian-Sherman, D

    2001-01-01

    The Burkholderia cepacia complex (Bcc) consists of several species of closely related and extremely versatile gram-negative bacteria found naturally in soil, water, and the rhizosphere of plants. Strains of Bcc have been used in biological control of plant diseases and bioremediation, while some strains are plant pathogens or opportunistic pathogens of humans with cystic fibrosis. The ecological versatility of these bacteria is likely due to their unusually large genomes, which are often comprised of several (typically two or three) large replicons, as well as their ability to use a large array of compounds as sole carbon sources. The original species B. cepacia has been split into eight genetic species (genomovars), including five named species, but taxonomic distinctions have not enabled biological control strains to be clearly distinguished from human pathogenic strains. This has led to a reassessment of the risk of several strains registered by the U.S. Environmental Protection Agency for biological control. We review the biology of Bcc bacteria, especially how our growing knowledge of Bcc ecology and pathogenicity might be used in risk assessment. The capability of this bacterial complex to cause disease in plants and humans, as well as to control plant diseases, affords a rare opportunity to explore traits that may function in all three environments.

  20. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    ERIC Educational Resources Information Center

    Hermann, Ronald S.

    2013-01-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of…

  1. Developmental Changes in Children's Inductive Inferences for Biological Concepts: Implications for the Development of Essentialist Beliefs

    ERIC Educational Resources Information Center

    Farrar, M. Jeffrey; Boyer-Pennington, Michelle

    2011-01-01

    We examined developmental changes in children's inductive inferences about biological concepts as a function of knowledge of properties and concepts. Specifically, 4- to 5-year-olds and 9- to 10-year-olds were taught either familiar or unfamiliar internal, external, or functional properties about known and unknown target animals. Children were…

  2. Biological cost of fluoroquinolone resistance in Escherichia coli implicated in polyclonal infection.

    PubMed

    Bémer, P; Corvec, S; Guitton, C; Giraudeau, C; Le Gargasson, G; Espaze, E; Drugeon, H

    2007-07-01

    Polyclonal Escherichia coli strains were isolated in a transplanted patient who experienced successive septic shocks. Fluoroquinolone susceptible and resistant strains were corresponding to different PFGE fragment profiles. The gyrA S83L mutation was associated with a reduction in biological fitness. Resistant strain was selected by a long-term single use of ofloxacin.

  3. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    PubMed

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  4. Initial Test Firing Results for Solid CO/GOX Cryogenic Hybrid Rocket Engine for Mars ISRU Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rice, Eric E.; St. Clair, Christopher P.; Chiaverini, Martin J.; Knuth, William H.; Gustafson, Robert J.; Gramer, Daniel J.

    1999-01-01

    ORBITEC is developing methods for producing, testing, and utilizing Mars-based ISRU fuel/oxidizer combinations to support low cost, planetary surface and flight propulsion and power systems. When humans explore Mars we will need to use in situ resources that are available, such as: energy (solar); gases or liquids for life support, ground transportation, and flight to and from other surface locations and Earth; and materials for shielding and building habitats and infrastructure. Probably the easiest use of Martian resources to reduce the cost of human exploration activities is the use of the carbon and oxygen readily available from the CO2 in the Mars atmosphere. ORBITEC has conducted preliminary R&D that will eventually allow us to reliably use these resources. ORBITEC is focusing on the innovative use of solid CO as a fuel. A new advanced cryogenic hybrid rocket propulsion system is suggested that will offer advantages over LCO/LOX propulsion, making it the best option for a Mars sample return vehicle and other flight vehicles. This technology could also greatly support logistics and base operations by providing a reliable and simple way to store solar or nuclear generated energy in the form of chemical energy that can be used for ground transportation (rovers/land vehicles) and planetary surface power generators. This paper describes the overall concept and the test results of the first ever solid carbon monoxide/oxygen rocket engine firing.

  5. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  6. Weak-field ELF magnetic interactions: Implications for biological change during paleomagnetic reversals.

    PubMed

    Liboff, Abraham R

    2013-12-01

    Contrary to the belief that paleomagnetic reversals are not biologically significant, we find good reason to think otherwise. Attention is drawn to polarity transitions, time intervals a few thousand years long that follow the collapse of the existing geomagnetic dipole moment and precede the establishment of the new, oppositely directed moment. The geomagnetic field during transitions is reduced to a maximal mean intensity about 10% of the stable field and can exhibit low-frequency perturbations comparable to numerous laboratory-based extremely low frequency (ELF) studies reporting biological interactions, making it very likely that similar interactions must occur over the course of a polarity transition. This conclusion is strengthened by reports of medical problems that significantly correlate with intense solar winds, events that also generate ELF perturbations similar to those that can occur during polarity transitions.

  7. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    NASA Astrophysics Data System (ADS)

    Hermann, Ronald S.

    2013-06-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.

  8. Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions.

    PubMed

    Liang, Ying; Fu, Qibin; Wang, Xudong; Liu, Feng; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2017-03-21

    Current knowledge in radiobiology ascribes the adverse biological effects of ionizing radiation primarily to the induction of DNA double-strand breaks (DSBs), which is supposed to be potentially lethal and may be converted to lethal damage due to misrepair. Soft and ultrasoft x-rays have been found to bear elevated biological effectiveness for cell killing compared with conventional x-rays or (60)Co γ-rays. This phenomenon is qualitatively interpreted as the increased level of DSB induction for low energy photons, however, a thorough quantitative reasoning is lacking. Here, we systematically compared the relative biological effectiveness (RBE) with relative DSB induction for photons from several hundreds of eV up to MeV. Although there is an approximate two-fold increase in the yields of DSB for low energy photons found in our calculation and a large number of experimental measurements, it is far from enough to account for the three- to four-fold increase in RBE. Further theoretical investigations show that DSB complexity (additional single-strand breaks and base damage within 10 base pairs) increases notably for low energy photons, which largely reconciles the discrepancy between RBE and DSB induction. Our theoretical results are in line with accumulating experimental evidence that complex DSBs are refractory to repair machinery and may contribute predominantly to the formation of lethal damage.

  9. Adhesion control by inflation: implications from biology to artificial attachment device

    NASA Astrophysics Data System (ADS)

    Dening, Kirstin; Heepe, Lars; Afferrante, Luciano; Carbone, Giuseppe; Gorb, Stanislav N.

    2014-08-01

    There is an increasing demand for materials that incorporate advanced adhesion properties, such as an ability to adhere in a reversible and controllable manner. In biological systems, these features are known from adhesive pads of the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima. These species have convergently developed soft, hemispherically shaped pads that might be able to control their adhesion through active changing the curvature of the pad. Inspired by these biological systems, an artificial model system is developed here. It consists of an inflatable membrane clamped to the metallic cylinder and filled with air. Pull-off force measurements of the membrane surface were conducted in contact with the membrane at five different radii of curvature r c with (1) a smooth polyvinylsiloxane membrane and (2) mushroom-shaped adhesive microstructured membrane made of the same polymer. The hypothesis that an increased internal pressure, acting on the membrane, reduces the radius of the membrane curvature, resulting in turn in a lower pull-off force, is verified. Such an active control of adhesion, inspired by biological models, will lead to the development of industrial pick-and-drop devices with controllable adhesive properties.

  10. Biological and chemical terrorism scenarios and implications for detection systems needs

    NASA Astrophysics Data System (ADS)

    Gordon, Susanna P.; Chumfong, Isabelle; Edwards, Donna M.; Gleason, Nathaniel J.; West, Todd; Yang, Lynn

    2007-04-01

    Terrorists intent on causing many deaths and severe disruption to our society could, in theory, cause hundreds to tens of thousands of deaths and significant contamination of key urban facilities by using chemical or biological (CB) agents. The attacks that have occurred to date, such as the 1995 Aum Shinrikyo CB attacks and the 2001 anthrax letters, have been very small on the scale of what is possible. In order to defend against and mitigate the impacts of large-scale terrorist attacks, defensive systems for protection of urban areas and high-value facilities from biological and chemical threats have been deployed. This paper reviews analyses of such scenarios and of the efficacy of potential response options, discusses defensive systems that have been deployed and detectors that are being developed, and finally outlines the detection systems that will be needed for improved CB defense in the future. Sandia's collaboration with San Francisco International Airport on CB defense will also be briefly reviewed, including an overview of airport facility defense guidelines produced in collaboration with Lawrence Berkeley National Laboratory. The analyses that will be discussed were conducted by Sandia National Laboratories' Systems Studies Department in support of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, and include quantitative analyses utilizing simulation models developed through close collaboration with subject matter experts, such as public health officials in urban areas and biological defense experts.

  11. Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Fu, Qibin; Wang, Xudong; Liu, Feng; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2017-03-01

    Current knowledge in radiobiology ascribes the adverse biological effects of ionizing radiation primarily to the induction of DNA double-strand breaks (DSBs), which is supposed to be potentially lethal and may be converted to lethal damage due to misrepair. Soft and ultrasoft x-rays have been found to bear elevated biological effectiveness for cell killing compared with conventional x-rays or 60Co γ-rays. This phenomenon is qualitatively interpreted as the increased level of DSB induction for low energy photons, however, a thorough quantitative reasoning is lacking. Here, we systematically compared the relative biological effectiveness (RBE) with relative DSB induction for photons from several hundreds of eV up to MeV. Although there is an approximate two-fold increase in the yields of DSB for low energy photons found in our calculation and a large number of experimental measurements, it is far from enough to account for the three- to four-fold increase in RBE. Further theoretical investigations show that DSB complexity (additional single-strand breaks and base damage within 10 base pairs) increases notably for low energy photons, which largely reconciles the discrepancy between RBE and DSB induction. Our theoretical results are in line with accumulating experimental evidence that complex DSBs are refractory to repair machinery and may contribute predominantly to the formation of lethal damage.

  12. Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents

    PubMed Central

    Zepeda-Paulo, Francisca A; Ortiz-Martínez, Sebastián A; Figueroa, Christian C; Lavandero, Blas

    2013-01-01

    The use of alternative hosts imposes divergent selection pressures on parasitoid populations. In response to selective pressures, these populations may follow different evolutionary trajectories. Divergent natural selection could promote local host adaptation in populations, translating into direct benefits for biological control, thereby increasing their effectiveness on the target host. Alternatively, adaptive phenotypic plasticity could be favored over local adaptation in temporal and spatially heterogeneous environments. We investigated the existence of local host adaptation in Aphidius ervi, an important biological control agent, by examining different traits related to infectivity (preference) and virulence (a proxy of parasitoid fitness) on different aphid-host species. The results showed significant differences in parasitoid infectivity on their natal host compared with the non-natal hosts. However, parasitoids showed a similar high fitness on both natal and non-natal hosts, thus supporting a lack of host adaptation in these introduced parasitoid populations. Our results highlight the role of phenotypic plasticity in fitness-related traits of parasitoids, enabling them to maximize fitness on alternative hosts. This could be used to increase the effectiveness of biological control. In addition, A. ervi females showed significant differences in infectivity and virulence across the tested host range, thus suggesting a possible host phylogeny effect for those traits. PMID:24062806

  13. Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents.

    PubMed

    Zepeda-Paulo, Francisca A; Ortiz-Martínez, Sebastián A; Figueroa, Christian C; Lavandero, Blas

    2013-09-01

    The use of alternative hosts imposes divergent selection pressures on parasitoid populations. In response to selective pressures, these populations may follow different evolutionary trajectories. Divergent natural selection could promote local host adaptation in populations, translating into direct benefits for biological control, thereby increasing their effectiveness on the target host. Alternatively, adaptive phenotypic plasticity could be favored over local adaptation in temporal and spatially heterogeneous environments. We investigated the existence of local host adaptation in Aphidius ervi, an important biological control agent, by examining different traits related to infectivity (preference) and virulence (a proxy of parasitoid fitness) on different aphid-host species. The results showed significant differences in parasitoid infectivity on their natal host compared with the non-natal hosts. However, parasitoids showed a similar high fitness on both natal and non-natal hosts, thus supporting a lack of host adaptation in these introduced parasitoid populations. Our results highlight the role of phenotypic plasticity in fitness-related traits of parasitoids, enabling them to maximize fitness on alternative hosts. This could be used to increase the effectiveness of biological control. In addition, A. ervi females showed significant differences in infectivity and virulence across the tested host range, thus suggesting a possible host phylogeny effect for those traits.

  14. The ultraviolet environment of Mars: biological implications past, present, and future

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  15. The ultraviolet environment of Mars: biological implications past, present, and future.

    PubMed

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  16. Biological reductive dechlorination of chlorinated ethylenes: Implications for natural attenuation and biostimulation

    SciTech Connect

    Distefano, T.D.

    1995-12-31

    Chlorinated organic compounds are the most frequently found contaminants at many hazardous waste sites and industrial facilities. Numerous industries use chlorinated organics such as tetrachloroethylene also known as perchloroethylene (PCE) -- and trichloroethylene (TCE), as degreasing agents, paint strippers, and in textile processing. These solvents are often detected as soil and ground water contaminants due to improper storage and disposal practices. Laboratory and full-scale investigations have proven that complete biological transformation of PCE and TCE is possible under anaerobic conditions. Biological treatment of chlorinated ethenes has received much interest due to the prevalence of these contaminants and the need to develop technologies that destroy contaminants rather than transfer them to other media. The purpose of this paper is to give an overview of the biological process by which anaerobic bacteria biodegrade chlorinated ethylenes. The benefits of this process are discussed along with key findings that may be employed to determine if dechlorination is occurring under natural conditions. Requirements of these bacteria are described and an assessment of future research needs is provided.

  17. Dopamine-derived biological reactive intermediates and protein modifications: Implications for Parkinson's disease.

    PubMed

    Jinsmaa, Yunden; Florang, Virginia R; Rees, Jennifer N; Mexas, Lydia M; Eckert, Laurie L; Allen, Erin M G; Anderson, David G; Doorn, Jonathan A

    2011-06-30

    Dopamine (DA) undergoes monoamine oxidase catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily to 3,4-dihydroxyphenylacetic acid (DOPAC) via aldehyde dehydrogenase (ALDH). Previous studies demonstrated DOPAL to be neurotoxic, more so than DA and other metabolites, and implicated the aldehyde intermediate as a factor in the pathogenesis of Parkinson's disease (PD). However, the mechanism for generation of DOPAL at aberrant levels and the pathways for toxicity are not conclusively known. Various models for DA catabolism revealed the susceptibility of DOPAL biotransformation (e.g., ALDH) to products of oxidative stress, e.g., 4-hydroxy-2-nonenal, at physiologic/pathologic levels and agents that induce oxidative stress. An elevated concentration of DOPAL correlated with increased protein modification with subsequent work demonstrating significant reactivity of the DA-derived electrophile toward protein nucleophiles compared to DA and other metabolites, e.g., DOPAC. The addition of DOPAL to proteins proceeds via reaction of the aldehyde with Lys residues, yielding a Schiff base; however, post-adduction chemistry occurs for the DOPAL-modification resulting in protein cross-linking. Preliminary work indicates enzymes in DA synthesis and catabolism to be cellular targets for DOPAL. Functional consequences for elevated levels of the DA-derived aldehyde and protein modification may include adverse cellular effects. These data implicate DOPAL as a toxic and reactive intermediate potentially serving as a "chemical trigger" for some stage of PD pathogenesis.

  18. A Systems Biology Methodology Combining Transcriptome and Interactome Datasets to Assess the Implications of Cytokinin Signaling for Plant Immune Networks.

    PubMed

    Kunz, Meik; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    Cytokinins (CKs) play an important role in plant growth and development. Also, several studies highlight the modulatory implications of CKs for plant-pathogen interaction. However, the underlying mechanisms of CK mediating immune networks in plants are still not fully understood. A detailed analysis of high-throughput transcriptome (RNA-Seq and microarrays) datasets under modulated conditions of plant CKs and its mergence with cellular interactome (large-scale protein-protein interaction data) has the potential to unlock the contribution of CKs to plant defense. Here, we specifically describe a detailed systems biology methodology pertinent to the acquisition and analysis of various omics datasets that delineate the role of plant CKs in impacting immune pathways in Arabidopsis.

  19. Dispersion of produced water in a coastal environment and its biological implications

    NASA Astrophysics Data System (ADS)

    Washburn, Libe; Stone, Shannon; MacIntyre, Sally

    1999-01-01

    Produced water, a pollutant associated with offshore oil production, has been shown to have adverse effects on marine organisms. We conducted a study of the dispersion of a produced water plume from an outfall in the Santa Barbara Channel near Carpinteria, CA. Biological effects were studied previously in a series of experiments which examined the toxicity of ocean waters near the outfall. To define the changing ocean conditions around the outfall, we obtained time series observations of currents and water properties from July, 1992 to January, 1994. Near-field dispersion of the produced water is simulated with a buoyant plume model. Measured currents and density profiles are used as model inputs. Far-field dispersion is simulated with the current statistics combined with an elementary solution to the diffusion equation. The modeled depth of the plume varies strongly with season due to changing stratification. In spring and summer, the modeled plume is trapped below the surface. In fall and winter it extends over most of the water column and occasionally surfaces. Minimum initial dilution is ˜100 in summer and ˜500 in winter. Far-field modeling indicates along-isobath symmetry in produced water dispersion in the mid water column. This pattern agrees with the distribution of toxic effects from the biological studies. At 1000 m from the outfall, the farthest test sites in the biological studies, minimum dilutions range from 4000 to 4×10 5 when the plume is present. These estimates exceed the threshold for sub-lethal effects found by Krause (1993) in a sea urchin fertilization bioassay. Time averaged dilutions in the far-field are larger by factors of 10 2 to 10 3.

  20. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing.

    PubMed

    Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey

    2013-10-01

    Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests

  1. New insights in the biology of BDNF synthesis and release: implications in CNS function.

    PubMed

    Greenberg, Michael E; Xu, Baoji; Lu, Bai; Hempstead, Barbara L

    2009-10-14

    BDNF has pleiotropic effects on neuronal development and synaptic plasticity that underlie circuit formation and cognitive function. Recent breakthroughs reveal that neuronal activity regulates BDNF cell biology, including Bdnf transcription, dendritic targeting and trafficking of BDNF mRNA and protein, and secretion and extracellular conversion of proBDNF to mature BDNF. Defects in these mechanisms contribute differentially to cognitive dysfunction and anxiety-like behaviors. Here we review recent studies, presented at a symposium at Neuroscience 2009, that describe regulatory mechanisms that permit rapid and dynamic refinement of BDNF actions in neurons.

  2. The state, potential distribution, and biological implications of methane in the Martian crust

    NASA Astrophysics Data System (ADS)

    Max, Michael D.; Clifford, Stephen M.

    2000-02-01

    The search for life on Mars has recently focused on its potential survival in deep (>2 km) subpermafrost aquifers where anaerobic bacteria, similar to those found in deep subsurface ecosystems on Earth, may have survived in an environment that has remained stable for billions of years. An anticipated by-product of this biological activity is methane. The detection of large deposits of methane gas and hydrate in the Martian cryosphere, or as emissions from deep fracture zones, would provide persuasive evidence of indigenous life and confirm the presence of a valuable in situ resource for use by future human explorers.

  3. The State, Potential Distribution, and Biological Implications of Methane in the Martian Crust

    NASA Technical Reports Server (NTRS)

    Max, Michael D.; Clifford, Stephen M.

    2000-01-01

    The search for life on Mars has recently focused on its potential survival in deep (>2 km) subpermafrost aquifers where anaerobic bacteria, similar to those found in deep subsurface ecosystems on Earth, may have survived in an environment that has remained stable for billions of years. An anticipated by-product of this biological activity is methane. The detection of large deposits of methane gas and hydrate in the Martian cryosphere, or as emissions from deep fracture zones, would provide persuasive evidence of indigenous life and confirm the presence of a valuable in situ resource for use by future human explorers.

  4. Novel insights into Mycobacterium antigen Ag85 biology and implications in countermeasures for M. tuberculosis.

    PubMed

    Tang, XieMei; Deng, Wanyan; Xie, Jianping

    2012-01-01

    Tuberculosis remains one of the most prevalent and deadly infectious diseases, largely due to the emergence of multidrug-resistant and extensive drug-resistant Mycobacterium tuberculosis, especially the coinfection with HIV. Mycobacterium Ag85 complex (Ag85A, B, and C), with a carboxylesterase consensus sequence and conserved surface catalysis residues, involves in cell wall biosynthesis and the trigger of the host immune response. The physiological function, structures, distributions, and molecular mechanisms of regulations as well as their implications in novel vaccines and diagnostics against tuberculosis are summarized. Special focus is the regulation underlying the Ag85 expression. This will facilitate in-depth understanding of the role of Ag85 and developing better novel measures against M. tuberculosis infection.

  5. Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biologic implications. An overview.

    PubMed Central

    Eyer, P

    1994-01-01

    Aromatic amines belong to a group of compounds that exert their toxic effects usually after oxidative biotransformation, primarily in the liver. In addition, aromatic amines also undergo extrahepatic activation to yield free arylaminyl radicals. The reactive intermediates are potential promutagens and procarcinogens, and responsible for target tissue toxicity. Since thiols react with these intermediates at high rates, it is of interest to know the underlying reaction mechanisms and the toxicologic implications. Phenoxyl radicals from aminophenols and aminyl radicals from phenylenediamines quickly disproportionate to quinone imines and quinone diimines. Depending on the structure, Michael addition or reduction reactions with thiols may prevail. Products of sequential oxidation/addition reactions (e.g., S-conjugates of aminophenols) are occasionally more toxic than the parent compounds because of their higher autoxidizability and their accumulation in the kidney. Even after covalent binding of quinone imines to protein SH groups, the resulting thioethers are able to autoxidize. The quinoid thioethers can then cross-link the protein by addition to neighboring nucleophiles. The reactions of nitrosoarenes with thiols yield a so-called "semimercaptal" from which various branching reactions detach, depending on substituents. Compounds with strong pi-donors, like 4-nitrosophenetol, give a resonance-stabilized N-(thiol-S-yl)-arylamine cation that may lead to bicyclic products, thioethers, and DNA adducts. Examples of toxicologic implications of the interactions of nitroso compounds with thiols are given for nitrosoimidazoles, heterocyclic nitroso compounds from protein pyrolysates, and nitrosoarenes. These data indicate that interactions of activated arylamines with thiols may not be regarded exclusively as detoxication reactions. PMID:7889834

  6. Histopathology of Growth Anomaly Affecting the Coral, Montipora capitata: Implications on Biological Functions and Population Viability

    PubMed Central

    Burns, John H. R.; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1–93.7%), symbiotic dinoflagellates (38.8–67.5%), mesenterial filaments (11.2–29.0%), and nematocytes (28.8–46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7–49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  7. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect

    Not Available

    1994-12-31

    The ocean plays an important role in regulating the earth`s climate, sustains a large portion of the earth`s biodiversity, is a tremendous reservoir of commercially important substances, and is used for a variety of often conflicting purposes. In recent decades marine scientists have discovered much about the ocean and its organisms, yet many important fundamental questions remain unanswered. Human populations have increased, particularly in coastal regions. As a result, the marine environment in these areas is increasingly disrupted by human activities, including pollution and the depletion of some ecologically and commercially important species. There is a sense of urgency about reducing human impacts on the ocean and a need to understand how altered ecosystems and the loss of marine species and biodiversity could affect society. This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ground truthing at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously.

  8. In vitro susceptibility of nematophagous fungi to antiparasitic drugs: interactions and implications for biological control.

    PubMed

    Vieira, J N; Maia, F S; Ferreira, G F; Mendes, J F; Gonçalves, C L; Villela, M M; Pereira, D I B; Nascente, P S

    2016-10-03

    The fast anthelmintic resistance development has shown a limited efficiency in the control of animal's endoparasitosis and has promoted research using alternative control methods. The use of chemicals in animal anthelmintic treatment, in association with nematophagous fungi used for biological control, is a strategy that has proven to be effective in reducing the nematode population density in farm animals. This study aims to verify the in vitro susceptibility of the nematophagous fungi Arthrobotrys oligospora, Duddingtonia flagrans and Paecilomyces lilacinus against the antiparasitic drugs albendazole, thiabendazole, ivermectin, levamisole and closantel by using the Minimum Inhibitory Concentration (MIC). MICs ranged between 4.0 and 0.031 µg/mL for albendazole, thiabendazole and ivermectin, between 0.937 and 0.117 µg/mL for levamisole, and between 0.625 and 0.034 µg/mL for closantel. The results showed that all antiparasitic drugs had an in vitro inhibitory effect on nematophagous fungi, which could compromise their action as agents of biological control. D. flagrans was the most susceptible species to all drugs.

  9. Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design.

    PubMed

    Lu, Yunxiang; Wang, Yong; Zhu, Weiliang

    2010-05-14

    Halogenation is an important approach in lead optimization for drug development and about half of the molecules used in high-throughput screening are halogenated. However, there is neither a suitable theoretical algorithm for evaluating the interaction between the halogen atoms of a ligand and its target protein nor a detailed understanding of how a halogen atom interacts with electron-rich atoms or groups of the residues in the binding pocket. In this Perspective, we concentrate on nonbonding interactions of halogens from both crystallographic data and theoretical viewpoints. It is found that organic halogen atoms are favorably involved in a wide variety of noncovalent protein-ligand interactions, such as halogen bonds C-X...O and hydrogen bonds C-X...H, that show remarkable differences in terms of the geometrical and energetic features. In biological molecules, heavier halogens prefer to form linear interactions with oxygen atoms and aromatic pi systems as compared to N or S, while the mean intermolecular distances for these types of halogen bonds increase with the radius or polarizability of halogen atoms, viz., Cl < Br < I. Furthermore, F...H interactions in protein-ligand complexes exhibit disparate behavior relative to X...H (X = Cl, Br, I) counterparts. These observed tendencies of the interactions involving halogens are subsequently rationalized by means of ab initio calculations using small model systems. The results presented herein should be of great use in the rational design of halogenated ligands as inhibitors and drugs as well as in biological engineering.

  10. Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment.

    PubMed

    Lopresti, Adrian L; Drummond, Peter D

    2013-08-01

    Rates of obesity are higher than normal across a range of psychiatric disorders, including major depressive disorder, bipolar disorder, schizophrenia and anxiety disorders. While the problem of obesity is generally acknowledged in mental health research and treatment, an understanding of their bi-directional relationship is still developing. In this review the association between obesity and psychiatric disorders is summarised, with a specific emphasis on similarities in their disturbed biological pathways; namely neurotransmitter imbalances, hypothalamus-pituitary-adrenal axis disturbances, dysregulated inflammatory pathways, increased oxidative and nitrosative stress, mitochondrial disturbances, and neuroprogression. The applicability and effectiveness of weight-loss interventions in psychiatric populations are reviewed along with their potential efficacy in ameliorating disturbed biological pathways, particularly those mediating inflammation and oxidative stress. It is proposed that weight loss may not only be an effective intervention to enhance physical health but may also improve mental health outcomes and slow the rate of neuroprogressive disturbances in psychiatric disorders. Areas of future research to help expand our understanding of the relationship between obesity and psychiatric disorders are also outlined.

  11. Aluminum-Induced Entropy in Biological Systems: Implications for Neurological Disease

    PubMed Central

    Shaw, Christopher A.; Seneff, Stephanie; Kette, Stephen D.; Tomljenovic, Lucija; Oller, John W.; Davidson, Robert M.

    2014-01-01

    Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed. PMID:25349607

  12. Biologic complexity in sickle cell disease: implications for developing targeted therapeutics.

    PubMed

    Gee, Beatrice E

    2013-01-01

    Current therapy for sickle cell disease (SCD) is limited to supportive treatment of complications, red blood cell transfusions, hydroxyurea, and stem cell transplantation. Difficulty in the translation of mechanistically based therapies may be the result of a reductionist approach focused on individual pathways, without having demonstrated their relative contribution to SCD complications. Many pathophysiologic processes in SCD are likely to interact simultaneously to contribute to acute vaso-occlusion or chronic vasculopathy. Applying concepts of systems biology and network medicine, models were developed to show relationships between the primary defect of sickle hemoglobin (Hb S) polymerization and the outcomes of acute pain and chronic vasculopathy. Pathophysiologic processes such as inflammation and oxidative stress are downstream by-products of Hb S polymerization, transduced through secondary pathways of hemolysis and vaso-occlusion. Pain, a common clinical trials endpoint, is also complex and may be influenced by factors outside of sickle cell polymerization and vascular occlusion. Future sickle cell research needs to better address the biologic complexity of both sickle cell disease and pain. The relevance of individual pathways to important sickle cell outcomes needs to be demonstrated in vivo before investing in expensive and labor-intensive clinical trials.

  13. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    PubMed

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology.

  14. A test of Ockham's razor: implications of conjugated linoleic acid in bone biology.

    PubMed

    Watkins, Bruce A; Li, Yong; Lippman, Hugh E; Reinwald, Susan; Seifert, Mark F

    2004-06-01

    The philosopher William of Ockham is recognized for the maxim that an assumption introduced to explain a phenomenon must not be multiplied beyond necessity, or that the simplest explanation is probably the correct explanation. The general truth is that conjugated linoleic acids (CLAs) are nutrients. However, the demonstration that these isomers of octadecadienoic acid protect against cancers in rodents stimulated curiosity that directed significant resources to characterize the biological functions of these fatty acids in cell and animal models. The benefits to human subjects given supplements of CLA were at best modest. The disappointing results in humans should be taken as an opportunity to critically evaluate all findings of CLA use and to consolidate the common actions of this nutrient so that future investigations focus on specific isomers and the most reasonable mechanisms. As such, the principal and consistently reported benefits of CLA have been in improving cancer outcomes, reducing body fat in growing animals, and modulating cell functions. Recognizing where related actions of CLA converge in specific disease conditions and physiologic states is how research efforts should be directed to minimize the pursuit of superfluous theories. Here, we briefly review the current biological effects of CLA and attempt to integrate their potential effect on the physiology and health of the skeletal system. Thus, the purpose of this review is to advance the science of CLA and to identify areas of research in which these nutrients affect bone metabolism and skeletal health.

  15. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems.

    PubMed

    Khandhar, Amit P; Ferguson, R Matthew; Krishnan, Kannan M

    2011-04-01

    Magnetite (Fe(3)O(4)) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H(0) = 13.4 kA∕m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σ(avg.) = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W∕g Fe(3)O(4)) for 16 nm (diameter) particles. For broader size distributions (σ(avg.) = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (∼30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.

  16. Elevated reward-related neural activation as a unique biological marker of bipolar disorder: assessment and treatment implications.

    PubMed

    Nusslock, Robin; Young, Christina B; Damme, Katherine S F

    2014-11-01

    Growing evidence indicates that risk for bipolar disorder is characterized by elevated activation in a fronto-striatal reward neural circuit involving the ventral striatum and orbitofrontal cortex, among other regions. It is proposed that individuals with abnormally elevated reward-related neural activation are at risk for experiencing an excessive increase in approach-related motivation during life events involving rewards or goal striving and attainment. In the extreme, this increase in motivation is reflected in hypomanic/manic symptoms. By contrast, unipolar depression (without a history of hypomania/mania) is characterized by decreased reward responsivity and decreased reward-related neural activation. Collectively, this suggests that risk for bipolar disorder and unipolar depression are characterized by distinct and opposite profiles of reward processing and reward-related neural activation. The objective of the present paper is threefold. First, we review the literature on reward processing and reward-related neural activation in bipolar disorder, and in particular risk for hypomania/mania. Second, we propose that reward-related neural activation reflects a biological marker of differential risk for bipolar disorder versus unipolar depression that may help facilitate psychiatric assessment and differential diagnosis. We also discuss, however, the challenges to using neuroscience techniques and biological markers in a clinical setting for assessment and diagnostic purposes. Lastly, we address the pharmacological and psychosocial treatment implications of research on reward-related neural activation in bipolar disorder.

  17. A Theoretical Mechanism of Szilard Engine Function in Nucleic Acids and the Implications for Quantum Coherence in Biological Systems

    SciTech Connect

    Matthew Mihelic, F.

    2010-12-22

    Nucleic acids theoretically possess a Szilard engine function that can convert the energy associated with the Shannon entropy of molecules for which they have coded recognition, into the useful work of geometric reconfiguration of the nucleic acid molecule. This function is logically reversible because its mechanism is literally and physically constructed out of the information necessary to reduce the Shannon entropy of such molecules, which means that this information exists on both sides of the theoretical engine, and because information is retained in the geometric degrees of freedom of the nucleic acid molecule, a quantum gate is formed through which multi-state nucleic acid qubits can interact. Entangled biophotons emitted as a consequence of symmetry breaking nucleic acid Szilard engine (NASE) function can be used to coordinate relative positioning of different nucleic acid locations, both within and between cells, thus providing the potential for quantum coherence of an entire biological system. Theoretical implications of understanding biological systems as such 'quantum adaptive systems' include the potential for multi-agent based quantum computing, and a better understanding of systemic pathologies such as cancer, as being related to a loss of systemic quantum coherence.

  18. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication.

    PubMed

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.

  19. Molecular Biology of Human Herpesvirus 8: Novel Functions and Virus–Host Interactions Implicated in Viral Pathogenesis and Replication

    PubMed Central

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman’s disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of “accessory” genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus–host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein–coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus–host interactions and their potential roles in both virus biology and virus-associated disease. PMID:24008302

  20. Biology and clinical implications of CD133{sup +} liver cancer stem cells

    SciTech Connect

    Ma, Stephanie

    2013-01-15

    Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, accounting for 80%–90% of all liver cancers. The disease ranks as the fifth most common cancer worldwide and is the third leading cause of all cancer-associated deaths. Although advances in HCC detection and treatment have increased the likelihood of a cure at early stages of the disease, HCC remains largely incurable because of late presentation and tumor recurrence. Only 25% of HCC patients are deemed suitable for curative treatment, with the overall survival at just a few months for inoperable patients. Apart from surgical resection, loco-regional ablation and liver transplantation, current treatment protocols include conventional cytotoxic chemotherapy. But due to the highly resistant nature of the disease, the efficacy of the latter regimen is limited. The recent emergence of the cancer stem cell (CSC) concept lends insight into the explanation of why treatment with chemotherapy often may seem to be initially successful but results in not only a failure to eradicate the tumor but also possibly tumor relapse. Commonly used anti-cancer drugs in HCC work by targeting the rapidly proliferating and differentiated liver cancer cells that constitute the bulk of the tumor. However, a subset of CSCs exists within the tumor, which are more resistant and are able to survive and maintain residence after treatment, thus, growing and self-renewing to generate the development and spread of recurrent tumors in HCC. In the past few years, compelling evidence has emerged in support of the hierarchic CSC model for solid tumors, including HCC. And in particular, CD133 has drawn significant attention as a critical liver CSC marker. Understanding the characteristics and function of CD133{sup +} liver CSCs has also shed light on HCC management and treatment, including the implications for prognosis, prediction and treatment resistance. In this review, a detailed summary of the recent progress

  1. Physical and biological response of the Arabian Sea to tropical cyclone Phyan and its implications.

    PubMed

    Byju, P; Prasanna Kumar, S

    2011-06-01

    The response to the tropical cyclone Phyan, which developed in the eastern Arabian Sea during 9-11 November 2009, was rapid cooling of sea surface temperature (SST), enhancement of chlorophyll a and two-fold increase in net primary productivity (NPP). Cooling of SST was immediate in response to the strong wind-mixing, and the subsequent upward Ekman pumping sustained the cooling even after the dissipation of Phyan. The biological response mediated by the upward Ekman pumping driven vertical transport of subsurface nutrient showed a time lag of 3-4 days. The CO₂ flux to the atmosphere associated with Phyan was 0.123 Tg C, which accounted for ~85% of the total out-gassing from the eastern Arabian Sea during November. Thus, an increased occurrence of cyclones in a warming environment will lead to an enhanced biomass production and also increase in CO₂ out-gassing.

  2. Dynamic models of biological pattern formation have some surprising implications for understanding the epigenetics of development.

    PubMed

    Molenaar, Peter C M; Lo, Lawrence

    2013-01-01

    Nonlinear epigenetic processes are conceived of in terms of self-organizing dynamic models of biological pattern formation. Epigenetic processes thus conceived generate substantial subject-specific structural variation, for instance, in growing brain networks. It is shown that standard quantitative genetic modeling based on analyses of interindividual phenotypic variation misclassifies the variation generated by nonlinear epigenetic processes as being due to specific environmental influences. A new quantitative genetic model, iFACE, is introduced to correctly identify the structural variation generated by self-organizing epigenetic processes. iFACE is based on time series analysis of intraindividual variation of a single pair of genetically related subjects. The results of an application of iFACE to multilead EEG obtained with a single dizygotic twin pair is presented.

  3. Structure and Bonding in Heme-Nitrosyl Complexes and Implications for Biology

    SciTech Connect

    Lehnert, Nicolai; Scheidt, W. Robert; Wolf, Matthew W.

    2016-09-13

    This review summarizes our current understanding of the geometric and electronic structures of ferrous and ferric heme–nitrosyls, which are of key importance for the biological functions and transformations of NO. In-depth correlations are made between these properties and the reactivities of these species. Here, a focus is put on the discoveries that have been made in the last 10 years, but previous findings are also included as necessary. Besides this, ferrous heme–nitroxyl complexes are also considered, which have become of increasing interest recently due to their roles as intermediates in NO and multiheme nitrite reductases, and because of the potential role of HNO as a signaling molecule in mammals. In recent years, computational methods have received more attention as a means of investigating enzyme reaction mechanisms, and some important findings from these theoretical studies are also highlighted in this chapter.

  4. Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications

    PubMed Central

    Liu, Tiantian; Yuan, Xiaotian; Xu, Dawei

    2016-01-01

    The accumulated evidence has pointed to a key role of telomerase in carcinogenesis. As a RNA-dependent DNA polymerase, telomerase synthesizes telomeric DNA at the end of linear chromosomes, and attenuates or prevents telomere erosion associated with cell divisions. By lengthening telomeres, telomerase extends cellular life-span or even induces immortalization. Consistent with its functional activity, telomerase is silent in most human normal somatic cells while active only in germ-line, stem and other highly proliferative cells. In contrast, telomerase activation widely occurs in human cancer and the enzymatic activity is detectable in up to 90% of malignancies. Recently, hotspot point mutations in the regulatory region of the telomerase reverse transcriptase (TERT) gene, encoding the core catalytic component of telomerase, was identified as a novel mechanism to activate telomerase in cancer. This review discusses the cancer-specific TERT promoter mutations and potential biological and clinical significances. PMID:27438857

  5. HNS+ and HSN+ cations: Electronic states, spin-rovibronic spectroscopy with planetary and biological implications

    NASA Astrophysics Data System (ADS)

    Trabelsi, Tarek; Ben Yaghlane, Saida; Al Mogren, Muneerah Mogren; Francisco, Joseph S.; Hochlaf, Majdi

    2016-08-01

    Ab initio methods in conjunction with a large basis set are used to compute the potential energy surfaces of the 12 lowest electronic states of the HNS+ and HSN+ isomeric forms. These potentials are used in discussions of the metastability of these cations and plausible mechanisms for the H+/H + SN+/SN, S/S+ + NH+/NH, N/N+ + SH+/SH ion-molecule reactions. Interestingly, the low rovibrational levels of HSN+(12A″) and HNS+(12A″) electronically excited ions are predicted to be long-lived. Both ions are suggested to be a suitable candidate for light-sensitive NOṡ donor in vivo and as a possible marker for the detection of intermediates in nitrites + H2S reactions at the cellular level. The full spin rovibronic levels of HNS+ are presented, which may assist in the experimental identification of HNS+ and HSN+ ions and in elucidating their roles in astrophysical and biological media.

  6. The emerging biology of muscle stem cells: implications for cell-based therapies.

    PubMed

    Bentzinger, C Florian; Wang, Yu Xin; von Maltzahn, Julia; Rudnicki, Michael A

    2013-03-01

    Cell-based therapies for degenerative diseases of the musculature remain on the verge of feasibility. Myogenic cells are relatively abundant, accessible, and typically harbor significant proliferative potential ex vivo. However, their use for therapeutic intervention is limited due to several critical aspects of their complex biology. Recent insights based on mouse models have advanced our understanding of the molecular mechanisms controlling the function of myogenic progenitors significantly. Moreover, the discovery of atypical myogenic cell types with the ability to cross the blood-muscle barrier has opened exciting new therapeutic avenues. In this paper, we outline the major problems that are currently associated with the manipulation of myogenic cells and discuss promising strategies to overcome these obstacles.

  7. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response

    PubMed Central

    Davra, Viralkumar; Kimani, Stanley G.; Calianese, David; Birge, Raymond B.

    2016-01-01

    The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice. PMID:27916840

  8. Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer's disease.

    PubMed

    Conti, Elisa; Gregori, Maria; Radice, Isabella; Da Re, Fulvio; Grana, Denise; Re, Francesca; Salvati, Elisa; Masserini, Massimo; Ferrarese, Carlo; Zoia, Chiara Paola; Tremolizzo, Lucio

    2017-02-23

    The accumulation of extracellular amyloid beta (Abeta42) both in brain and in cerebral vessels characterizes Alzheimer's disease (AD) pathogenesis. Recently, the possibility to functionalize nanoparticles (NPs) surface with Abeta42 binding molecules, making them suitable tools for reducing Abeta42 burden has been shown effective in models of AD. Aim of this work consisted in proving that NPs might be effective in sequestering Abeta42 in biological fluids, such as CSF and plasma. This demonstration is extremely important considering that these Abeta42 pools are in continuum with the brain parenchyma with drainage of Abeta from interstitial brain tissue to blood vessel and plasma. In this work, liposomes (LIP) were functionalized as previously shown in order to promote high-affinity Abeta binding, i.e., either with, phosphatidic acid (PA), or a modified Apolipoprotein E-derived peptide (mApo), or with a curcumin derivative (TREG); Abeta42 levels were determined by ELISA in CSF and plasma samples. mApo-PA-LIP (25 and 250 μM) mildly albeit significantly sequestered Abeta42 proteins in CSF samples obtained from healthy subjects (p < 0.01). Analogously a significant binding (∼20%) of Abeta42 (p < 0.001) was demonstrated following exposure to all functionalized liposomes in plasma samples obtained from selected AD or Down's syndrome patients expressing high levels of Abeta42. The same results were obtained by quantifying Abeta42 content after removal of liposome-bound Abeta by using gel filtration chromatography or ultracentrifugation on a discontinuous sucrose density gradient. In conclusion, we demonstrate that functionalized liposomes significantly sequester Abeta42 in human biological fluids. These data may be critical for future in vivo administration tests using NPs for promoting sink effect.

  9. A Case of SAPHO Syndrome with Endodontic Implications and Treatment with Biologic Drugs.

    PubMed

    Cotti, Elisabetta; Careddu, Roberto; Schirru, Elia; Marongiu, Silvia; Barca, Maria Pina; Manconi, Paolo Emilio; Mercuro, Giuseppe

    2015-09-01

    SAPHO syndrome (SS) is an autoinflammatory disease characterized by synovitis, acne, pustulosis, hyperostosis, and osteitis. Among the sites affected by the osteoarticular manifestations of SS are the anterior chest wall and the mandible. The etiology of SS is still unknown; theories advocate a genetic predisposition and an infectious cause in association with disorders of the immune system. We report a case of SS in which there was the involvement of the mandible with a lesion of endodontic origin. A 44-year-old white woman diagnosed with SS at the university hospital was referred to the Department of Conservative Dentistry and Endodontics for a consultation. She reported spontaneous pain localized to the periapical area of tooth #19 with a history of multiple restorative and endodontic treatments. It was diagnosed as a previously treated tooth with symptomatic apical periodontitis (AP) at the time of the endodontic evaluation. A second retreatment was then performed in 1 appointment under local anesthesia. During retreatment, a separated instrument and a ledge were found in the mesiobuccal canal, and attempts to bypass it were not successful; the canal was then obturated to the reachable length. Within the same month, the patient was also administered an anti-tumor necrosis factor alpha biologic medication in association with a disease-modifying antirheumatic drugs for the treatment of SS. Within 3 months, the overall therapy had led to a marked improvement of the systemic and mandibular symptoms, and a periapical radiograph showed almost complete healing of the lesion. Medical examinations have shown a total remission of signs and symptoms starting 6 months after the initiation of treatment. After 5 years, the disease is under control, and tooth #19 is symptom free and shows absence of AP. The endodontists need to be aware of the existence of SS and the possible effects of the use of disease-modifying antirheumatic drugs and biologic medications on the

  10. Grades and Withdrawal Rates in Cell Biology and Genetics Based upon Institution Type for General Biology and Implications for Transfer Articulation Agreements

    ERIC Educational Resources Information Center

    Regier, Kimberly Fayette

    2016-01-01

    General biology courses (for majors) are often transferred from one institution to another. These courses must prepare students for upper division courses in biology. In Colorado, a Biology Transfer Articulation Agreement that includes general biology has been created across the state. An evaluation was conducted of course grades in two upper…

  11. Cancer Stem Cells and Macrophages: Implications in Tumor Biology and Therapeutic Strategies

    PubMed Central

    Sainz, Bruno; Carron, Emily; Vallespinós, Mireia; Machado, Heather L.

    2016-01-01

    Cancer stem cells (CSCs) are a unique subset of cells within tumors with stemlike properties that have been proposed to be key drivers of tumor initiation and progression. CSCs are functionally defined by their unlimited self-renewal capacity and their ability to initiate tumor formation in vivo. Like normal stem cells, CSCs exist in a cellular niche comprised of numerous cell types including tumor-associated macrophages (TAMs) which provides a unique microenvironment to protect and promote CSC functions. TAMs provide pivotal signals to promote CSC survival, self-renewal, maintenance, and migratory ability, and in turn, CSCs deliver tumor-promoting cues to TAMs that further enhance tumorigenesis. Studies in the last decade have aimed to understand the molecular mediators of CSCs and TAMs, and recent advances have begun to elucidate the complex cross talk that occurs between these two cell types. In this review, we discuss the molecular interactions that define CSC-TAM cross talk at each stage of tumor progression and examine the clinical implications of targeting these interactions. PMID:26980947

  12. Epidemiological Implications of Host Biodiversity and Vector Biology: Key Insights from Simple Models.

    PubMed

    Dobson, Andrew D M; Auld, Stuart K J R

    2016-04-01

    Models used to investigate the relationship between biodiversity change and vector-borne disease risk often do not explicitly include the vector; they instead rely on a frequency-dependent transmission function to represent vector dynamics. However, differences between classes of vector (e.g., ticks and insects) can cause discrepancies in epidemiological responses to environmental change. Using a pair of disease models (mosquito- and tick-borne), we simulated substitutive and additive biodiversity change (where noncompetent hosts replaced or were added to competent hosts, respectively), while considering different relationships between vector and host densities. We found important differences between classes of vector, including an increased likelihood of amplified disease risk under additive biodiversity change in mosquito models, driven by higher vector biting rates. We also draw attention to more general phenomena, such as a negative relationship between initial infection prevalence in vectors and likelihood of dilution, and the potential for a rise in density of infected vectors to occur simultaneously with a decline in proportion of infected hosts. This has important implications; the density of infected vectors is the most valid metric for primarily zoonotic infections, while the proportion of infected hosts is more relevant for infections where humans are a primary host.

  13. Removal of polar UV stabilizers in biological wastewater treatments and ecotoxicological implications.

    PubMed

    Molins-Delgado, Daniel; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-01-01

    The present study describes the development, validation and application of a fully automated analytical method based on on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (on line SPE-HPLC-MS/MS) to assess the removal efficiency in water works and the ecotoxicological implications derived of the two most used benzotriazole-class UV stabilizers (BZTs), namely 1H-benzotriazole (BZT) and 5-methyl-1H-benzotriazole (MeBZT). Influent and effluent wastewater samples from 20 wastewater treatment plants (WWTPs) were analyzed. Removal rates (RE%) and half-lives (t1/2) for each BZTs were calculated and correlated to the hydraulic retention time (HRT) of each plant. Both BZTs were detected in all influent and effluent samples (concentrations in the range 26.7 ng L(-1)-42.9 μg L(-1)), with the highest concentrations corresponding to MeBZT. Results indicated that both compounds were recalcitrant (RE% in the range 11.8-94.7%) and that no clear influence of HRT on removals could be drawn. Finally, the potential environmental risk posed by the levels of BZTs detected was evaluated calculating the hazard quotients (HQs) MeBZT was the only BZTs posing a risk to Vibrio fischeri, Daphnia galeata and Pimephales promelas.

  14. The shape of the spatial kernel and its implications for biological invasions in patchy environments.

    PubMed

    Lindström, Tom; Håkansson, Nina; Wennergren, Uno

    2011-05-22

    Ecological and epidemiological invasions occur in a spatial context. We investigated how these processes correlate to the distance dependence of spread or dispersal between spatial entities such as habitat patches or epidemiological units. Distance dependence is described by a spatial kernel, characterized by its shape (kurtosis) and width (variance). We also developed a novel method to analyse and generate point-pattern landscapes based on spectral representation. This involves two measures: continuity, which is related to autocorrelation and contrast, which refers to variation in patch density. We also analysed some empirical data where our results are expected to have implications, namely distributions of trees (Quercus and Ulmus) and farms in Sweden. Through a simulation study, we found that kernel shape was not important for predicting the invasion speed in randomly distributed patches. However, the shape may be essential when the distribution of patches deviates from randomness, particularly when the contrast is high. We conclude that the speed of invasions depends on the spatial context and the effect of the spatial kernel is intertwined with the spatial structure. This implies substantial demands on the empirical data, because it requires knowledge of shape and width of the spatial kernel, and spatial structure.

  15. Differentiation between osteoarthritis and psoriatic arthritis: implications for pathogenesis and treatment in the biologic therapy era

    PubMed Central

    Hermann, Kay-Geert A.; Tan, Ai Lyn

    2015-01-01

    Rheumatologists have long considered OA and PsA as two completely distinct arthropathies. This review highlights how some forms of generalized OA and PsA may afflict the same entheseal-associated anatomical territories. While degeneration or inflammation may be clearly discernible at the two extremes, there may be a group of patients where differentiation is impossible. Misdiagnosis of a primary degeneration-related pathology as being part of the PsA spectrum could lead to apparent failure of disease-modifying agents, including apparent anti-TNF and apparent IL23/17 axis therapy failure. This is not a reflection of poor clinical acumen, but rather a failure to appreciate that the pathological process overlaps in the two diseases. Whether the category of OA–PsA overlap disease exists or whether it represents the co-occurrence of two common arthropathies that afflict the same anatomical territories has implications for the optimal diagnosis and management of both OA and PsA. PMID:25231177

  16. An Advanced Organometallic Lab Experiment with Biological Implications: Synthesis and Characterization of Fe[subscript 2](µ-S[subscript 2])(C0)[subscript 6

    ERIC Educational Resources Information Center

    Barrett, Jacob; Spentzos, Ariana; Works, Carmen

    2015-01-01

    The organometallic complex Fe[subscript 2](µ-S[subscript 2])(CO)[subscript 6] has interesting biological implications. The concepts of bio-organometallic chemistry are rarely discussed at the undergraduate level, but this experiment can start such a conversation and, in addition, teach valuable synthetic techniques. The lab experiment takes a…

  17. Mauna Kea, Hawaii as an Analogue Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign

    NASA Technical Reports Server (NTRS)

    ten Kate, I. L.; Armstrong, R.; Bernhardt, B.; Blummers, M.; Boucher, D.; Caillibot, E.; Captain, J.; Deleuterio, G.; Farmer, J. D.; Glavin, D. P.; Hamilton, J. C.; Klingelhoefer, G.; Morris, R. V.; Nunez, J. I.; Quinn, J. W.; Sanders, G. B.; Sellar, R. G.; Sigurdson, L.; Taylor, R.; Zacny, K.

    2010-01-01

    Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.

  18. Development of an Electrostatic Precipitator to Remove Martian Atmospheric Dust from ISRU Gas Intakes During Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Clements, J. Sidney; Thompson, Samuel M.; Cox, Nathan D.; Johansen, Michael R.; Williams, Blakeley S.; Hogue, Michael D.; Lowder, M. Loraine; Calle, Carlos I.

    2011-01-01

    Manned exploration missions to Mars will need dependable in situ resource utilization (ISRU) for the production of oxygen and other commodities. One of these resources is the Martian atmosphere itself, which is composed of carbon dioxide (95.3%), nitrogen (2.7%), argon (1.6%), oxygen (0.13%), carbon monoxide (0.07%), and water vapor (0.03%), as well as other trace gases. However, the Martian atmosphere also contains relatively large amounts of dust, uploaded by frequent dust devils and high Winds. To make this gas usable for oxygen extraction in specialized chambers requires the removal of most of the dust. An electrostatic precipitator (ESP) system is an obvious choice. But with an atmospheric pressure just one-hundredth of Earth's, electrical breakdown at low voltages makes the implementation of the electrostatic precipitator technology very challenging. Ion mobility, drag forces, dust particle charging, and migration velocity are also affected because the low gas pressure results in molecular mean free paths that are approximately one hundred times longer than those at Earth .atmospheric pressure. We report here on our efforts to develop this technology at the Kennedy Space Center, using gases with approximately the same composition as the Martian atmosphere in a vacuum chamber at 9 mbars, the atmospheric pressure on Mars. We also present I-V curves and large particle charging data for various versions of wire-cylinder and rod-cylinder geometry ESPs. Preliminary results suggest that use of an ESP for dust collection on Mars may be feasible, but further testing with Martian dust simulant is required.

  19. Cell and molecular biology of simian virus 40: implications for human infections and disease

    NASA Technical Reports Server (NTRS)

    Butel, J. S.; Lednicky, J. A.

    1999-01-01

    Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.

  20. Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions

    USGS Publications Warehouse

    Zelikova, Tamara J.; Hufbauer, Ruth A.; Reed, Sasha C.; Wertin, Timothy M.; Fettig, Christa; Belnap, Jayne

    2013-01-01

    implications for B. tectorum invasion dynamics on the Colorado Plateau.

  1. Predicting Potential Global Distributions of Two Miscanthus Grasses: Implications for Horticulture, Biofuel Production, and Biological Invasions

    PubMed Central

    Hager, Heather A.; Sinasac, Sarah E.; Gedalof, Ze’ev; Newman, Jonathan A.

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models’ sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk. PMID:24945154

  2. Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions.

    PubMed

    Zelikova, Tamara J; Hufbauer, Ruth A; Reed, Sasha C; Wertin, Timothy; Fettig, Christa; Belnap, Jayne

    2013-05-01

    implications for B. tectorum invasion dynamics on the Colorado Plateau.

  3. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    PubMed

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  4. The 2010 ILSO-ISRU Field Test at Mauna Kea, Hawaii: Results from the Miniaturised Mossbauer Spectrometers Mimos II and Mimos IIA

    NASA Technical Reports Server (NTRS)

    Klingelhoefer, G.; Morris, R. V.; Blumers, M.; Bernhardt, B.; Graff, T.

    2011-01-01

    For the advanced Moessbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform X-ray fluorescence analysis simultaneously to Moessbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The ISRU 2010 field campaign demonstrated that in-situ Moessbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.

  5. Degradation of biological weapons agents in the environment: implications for terrorism response.

    PubMed

    Stuart, Amy L; Wilkening, Dean A

    2005-04-15

    We investigate the impact on effective terrorism response of the viability degradation of biological weapons agents in the environment. We briefly review the scientific understanding and modeling of agent environmental viability degradation. In general, agent susceptibility to viability loss is greatest for vegetative bacteria, intermediate for viruses, and least for bacterial spores. Survival is greatest in soil and progressively decreases in the following environments: textiles, water, hard surfaces, and air. There is little detailed understanding of loss mechanisms. We analyze the time behavior and sensitivity of four mathematical models that are used to represent environmental viability degradation (the exponential, probability, and first- and second-order catastrophic decay models). The models behave similarly at short times (<30 min for our example case) but diverge to significantly different values at intermediate to long times. Hence, for a release event in which the majority of atmospheric exposure or deposition occurs oververy short times, the current response models likely provide a good representation of the hazard. For longer time phenomena, including decontamination, the current model capabilities are likely insufficient. Finally, we implement each model in a simple numerical integration of anthrax dispersion, viability degradation, and dose response. Decay models spanning the current knowledge of airborne degradation result in vastly different predicted hazard areas. This confounds attempts to determine necessary medical and decontamination measures. Hence,the current level of understanding and representation of environmental viability degradation in response models is inadequate to inform appropriate emergency response measures.

  6. Lone-pair-π interactions: analysis of the physical origin and biological implications.

    PubMed

    Novotný, Jan; Bazzi, Sophia; Marek, Radek; Kozelka, Jiří

    2016-07-28

    Lone-pair-π (lp-π) interactions have been suggested to stabilize DNA and protein structures, and to participate in the formation of DNA-protein complexes. To elucidate their physical origin, we have carried out a theoretical multi-approach analysis of two biologically relevant model systems, water-indole and water-uracil complexes, which we compared with the structurally similar chloride-tetracyanobenzene (TCB) complex previously shown to contain a strong charge-transfer (CT) binding component. We demonstrate that the CT component in lp-π interactions between water and indole/uracil is significantly smaller than that stabilizing the Cl(-)-TCB reference system. The strong lp(Cl(-))-π(TCB) orbital interaction is characterized by a small energy gap and an efficient lp-π* overlap. In contrast, in lp-π interactions between water and indole or uracil, the corresponding energy gap is larger and the overlap less efficient. As a result, water-uracil and water-indole interactions are weak forces composed by smaller contributions from all energy components: electrostatics, polarization, dispersion, and charge transfer. In addition, indole exhibits a negative electrostatic potential at its π-face, making lp-π interactions less favorable than O-Hπ hydrogen bonding. Consequently, some of the water-tryptophan contacts observed in X-ray structures of proteins and previously interpreted as lp-π interactions [Luisi, et al., Proteins, 2004, 57, 1-8], might in fact arise from O-Hπ hydrogen bonding.

  7. Germination biology of Hibiscus tridactylites in Australia and the implications for weed management

    PubMed Central

    Chauhan, Bhagirath Singh

    2016-01-01

    Hibiscus tridactylites is a problematic broadleaf weed in many crops in Australia; however, very limited information is available on seed germination biology of Australian populations. Experiments were conducted to evaluate the effect of environmental factors on germination and emergence of H. tridactylites. Germination was stimulated by seed scarification, suggesting the inhibition of germination in this species is mainly due to the hard seed coat. Germination was not affected by light conditions, suggesting that seeds of this species are not photoblastic. Germination was higher at alternating day/night temperatures of 30/20 °C (74%) and 35/25 °C (69%) than at 25/15 °C (63%). Moderate salinity and water stress did not inhibit germination of H. tridactylites. Seedling emergence of H. tridactylites was highest (57%) for the seeds buried at a 2 cm depth in the soil; 18% of seedlings emerged from seeds buried at 8 cm but no seedlings emerged below this depth. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence could serve an important tool for managing H. tridactylites. PMID:27174752

  8. Insertion sequences shared by Bordetella species and implications for the biological diagnosis of pertussis syndrome.

    PubMed

    Tizolova, A; Guiso, N; Guillot, S

    2013-01-01

    The molecular diagnosis of pertussis and parapertussis syndromes is based on the detection of insertion sequences (IS) 481 and 1001, respectively. However, these IS are also detected in the genomes of various Bordetella species, such that they are not specific for either B. pertussis or B. parapertussis. Therefore, we screened the genome of recently circulating isolates of Bordetella species to compare the prevalence of IS481, IS1001 and, also IS1002 with previously published data and to sequence all IS detected. We also investigated whether the numbers of IS481 and IS1001 copies vary in recently circulating isolates of the different Bordetella species. We used the polymerase chain reaction (PCR) method for screening the genome of circulating isolates and to prepare the fragments for sequencing. We used Southern blotting and quantitative real-time PCR for quantification of the numbers of IS. We found no significant diversity in the sequences of the IS harboured in the genomes of the Bordetella isolates screened, except for a 71-nucleotide deletion from IS1002 in B. bronchiseptica. The IS copy numbers in the genome of recently circulating isolates were similar to those in reference strains. Our results confirm that biological diagnosis targeting the IS481 and IS1001 elements are not specific and detect the species B. pertussis, B. holmesii and B. bronchiseptica (IS481), and B. parapertussis and B. bronchiseptica (IS1001).

  9. Influence of membrane lipid composition on flavonoid-membrane interactions: Implications on their biological activity.

    PubMed

    Selvaraj, Stalin; Krishnaswamy, Sridharan; Devashya, Venkappayya; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-04-01

    The membrane interactions and localization of flavonoids play a vital role in altering membrane-mediated cell signaling cascades as well as influence the pharmacological activities such as anti-tumour, anti-microbial and anti-oxidant properties of flavonoids. Various techniques have been used to investigate the membrane interaction of flavonoids. These include partition coefficient, fluorescence anisotropy, differential scanning calorimetry, NMR spectroscopy, electrophysiological methods and molecular dynamics simulations. Each technique will provide specific information about either alteration of membrane fluidity or localization of flavonoids within the lipid bilayer. Apart from the diverse techniques employed, the concentrations of flavonoids and lipid membrane composition employed in various studies reported in literature also are different and together these variables contribute to diverse findings that sometimes contradict each other. This review highlights different techniques employed to investigate the membrane interaction of flavonoids with special emphasis on erythrocyte model membrane systems and their significance in understanding the nature and extent of flavonoid-membrane interactions. We also attempt to correlate the membrane localization and alteration in membrane fluidity with the biological activities of flavonoids such as anti-oxidant, anti-cancer and anti-microbial properties.

  10. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  11. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    PubMed

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-03

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  12. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-12-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  13. Toward the laboratory identification of [O,N,S,S] isomers: Implications for biological NO chemistry

    NASA Astrophysics Data System (ADS)

    Ayari, Tarek; Jaidane, Nejm-Eddine; Al Mogren, Muneerah Mogren; Francisco, Joseph S.; Hochlaf, Majdi

    2016-06-01

    Benchmark ab initio calculations are performed to investigate the stable isomers of [O,N,S,S]. These computations are carried out using coupled cluster (RCCSD(T)) and explicitly correlated coupled cluster methods (RCCSD(T)-F12). In addition to the already known cis isomer of SSNO, nine other stable forms are predicted. The most stable isomer is cis-OSNS. Nine structures are chain bent-bent with relatively large dipole moments which make them detectable, as cis-SSNO, by infrared, far-infrared, and microwave spectroscopies. We found also a C2v isomer (NS2O). Since these species are strongly suggested to play an important role as intermediates during the bioactive reaction products of the NO/H2S interaction, the rotational and vibrational spectroscopic parameters are presented to help aid the in vivo identification and assignment of these spectra. Results from this work show that [O,N,S,S] may play key roles during nitric oxide transport and deliver in biological media, as well as, provide an explanation for the weak characteristic of disulfide bridges within proteins.

  14. Germination biology of Hibiscus tridactylites in Australia and the implications for weed management.

    PubMed

    Chauhan, Bhagirath Singh

    2016-05-13

    Hibiscus tridactylites is a problematic broadleaf weed in many crops in Australia; however, very limited information is available on seed germination biology of Australian populations. Experiments were conducted to evaluate the effect of environmental factors on germination and emergence of H. tridactylites. Germination was stimulated by seed scarification, suggesting the inhibition of germination in this species is mainly due to the hard seed coat. Germination was not affected by light conditions, suggesting that seeds of this species are not photoblastic. Germination was higher at alternating day/night temperatures of 30/20 °C (74%) and 35/25 °C (69%) than at 25/15 °C (63%). Moderate salinity and water stress did not inhibit germination of H. tridactylites. Seedling emergence of H. tridactylites was highest (57%) for the seeds buried at a 2 cm depth in the soil; 18% of seedlings emerged from seeds buried at 8 cm but no seedlings emerged below this depth. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence could serve an important tool for managing H. tridactylites.

  15. Germination biology of Hibiscus tridactylites in Australia and the implications for weed management

    NASA Astrophysics Data System (ADS)

    Chauhan, Bhagirath Singh

    2016-05-01

    Hibiscus tridactylites is a problematic broadleaf weed in many crops in Australia; however, very limited information is available on seed germination biology of Australian populations. Experiments were conducted to evaluate the effect of environmental factors on germination and emergence of H. tridactylites. Germination was stimulated by seed scarification, suggesting the inhibition of germination in this species is mainly due to the hard seed coat. Germination was not affected by light conditions, suggesting that seeds of this species are not photoblastic. Germination was higher at alternating day/night temperatures of 30/20 °C (74%) and 35/25 °C (69%) than at 25/15 °C (63%). Moderate salinity and water stress did not inhibit germination of H. tridactylites. Seedling emergence of H. tridactylites was highest (57%) for the seeds buried at a 2 cm depth in the soil; 18% of seedlings emerged from seeds buried at 8 cm but no seedlings emerged below this depth. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence could serve an important tool for managing H. tridactylites.

  16. Reductive assays for S-nitrosothiols: implications for measurements in biological systems.

    PubMed

    Fang, K; Ragsdale, N V; Carey, R M; MacDonald, T; Gaston, B

    1998-11-27

    Bioactive SNOs are found in many tissues. We speculated SNOs might be misidentified in conventional assays which reduce NO-3 to NO. S-Nitrosothiols were exposed to saturated VCl3 in HCl, 1% KI in acetic acid, photolysis, or CuCl and CSH in He; NO was measured by chemiluminescence. S-Nitrosothiols were readily detected in VCl3 but not in KI. Reduction in CuCl/cysteine was linear (r2 = 1.0, n = 6), sensitive to 10 pmol, and eliminated by HgCl2; it did not detect NO-2, NO-3, or 3-nitrotyrosine. S-Nitrosothiols represented approximately 2.9% of NOx assayed by VCl3 in human serum, of which <5% were low-mass species. In summary, (i) conventional assays may misidentify NO-3, but not NO-2, as SNOs; and (ii) chemiluminescence/reduction systems may be sensitive and specific as SNO assays. We suggest that assay of the SNO fraction in biological NOx may be more relevant and feasible than is now appreciated.

  17. Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications

    NASA Astrophysics Data System (ADS)

    CáCeres, Luis; Gómez-Silva, Benito; Garró, Ximena; RodríGuez, Violeta; Monardes, Vinka; McKay, Christopher P.

    2007-12-01

    Fog is the most important source of water for native plants and biological soil crusts in the Atacama Desert. Since fog depends upon available moisture, an understanding of climatic patterns is essential to interpret its present-day occurrence and distribution. In this work, temperature and humidity of ambient air and collected fog water in selected sites were studied across a transect from the coast to inland of the Atacama Desert, by using automated outdoor sensors for temperature and relative humidity, and also fog collectors equipped with automated rain gauges to measure collected fog water flow rates. Field measurements were organized to determine fog and collected fog water patterns at three selected sites, namely, Coloso, Inacesa and Yungay in addition to the relative humidity and temperature variation with altitude at Coloso Mountain located within Coloso site. The results show a decreasing trend in the collected fog water flow rates from the coast toward inland locations. Daily thermal oscillations at each site are closely related to fog water collection. At Coloso Mountain, an adiabatic cooling-like effect of the wind ascending its slope was observed preferentially during nighttime. At daytime, occasional distortions observed in the temperature profiles are probably produced by a thermal driven-air convection process along the Coloso Mountain slope heated by solar radiation. The reduction in available water from fog from the coast to the inland site is consistent with the reduction in colonization rate for hypolithic cyanobacteria along this same transect.

  18. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    PubMed Central

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  19. Evolutionary, biological origins of morality: implications for research with human embryonic stem cells.

    PubMed

    Baschetti, Riccardo

    2005-06-01

    Medical research with human embryonic stem cells, despite its enormous potential to reduce human suffering, is banned in many countries and heavily restricted in others. "Moral reasons" are invoked to justify bans and restrictions on this promising research. Rather surprisingly, while those moral reasons have been extensively discussed and hotly debated in several papers, not a single article on the moral aspects of that research has attempted to answer this fundamental question: What is morality? Considering that a scientifically objective definition of morality is essential to determine whether those moral reasons are justified or groundless, this article focuses on the evolutionary origins of morality and its biological basis. Morality arose as a selectively advantageous product of evolution and preceded all religions and philosophies by millions of years. For the 99% of humankind's evolution, morality was axiomatically aimed at reducing the sufferings of the social members, because pains and afflictions, as expressions of diseases and impairments, tended to hasten the extinction of the small ancestral groups, which characteristically consisted of a few tens of members. Had the therapeutic use of human embryos been available in remote times, our ancestors would have deemed it unquestionably immoral to save amorphous and microscopic agglomerates of insensitive cells representing neither parental nor social investment, at the expense of the lives of the suffering members of their little communities. Unless we venture the untenable thesis that the unlikelihood of extinction of our immense societies entitles us to overturn the meaning of morality, we cannot but conclude that bans and restrictions on research with human embryonic stem cells are patently immoral.

  20. Ontogeny of taste preferences: basic biology and implications for health12345

    PubMed Central

    Mennella, Julie A

    2014-01-01

    Health initiatives address childhood obesity in part by encouraging good nutrition early in life. This review highlights the science that shows that children naturally prefer higher levels of sweet and salty tastes and reject lower levels of bitter tastes than do adults. Thus, their basic biology does not predispose them to favor the recommended low-sugar, low-sodium, vegetable-rich diets and makes them especially vulnerable to our current food environment of foods high in salt and refined sugars. The good news is that sensory experiences, beginning early in life, can shape preferences. Mothers who consume diets rich in healthy foods can get children off to a good start because flavors are transmitted from the maternal diet to amniotic fluid and mother's milk, and breastfed infants are more accepting of these flavors. In contrast, infants fed formula learn to prefer its unique flavor profile and may have more difficulty initially accepting flavors not found in formula, such as those of fruit and vegetables. Regardless of early feeding mode, infants can learn through repeated exposure and dietary variety if caregivers focus on the child's willingness to consume a food and not just the facial expressions made during feeding. In addition, providing complementary foods low in salt and sugars may help protect the developing child from excess intake later in life. Early-life experiences with healthy tastes and flavors may go a long way toward promoting healthy eating, which could have a significant impact in addressing the many chronic illnesses associated with poor food choice. PMID:24452237

  1. Senemorphism: a novel perspective on aging patterns and its implication for diet-related biology.

    PubMed

    Trindade, Lucas Siqueira; Balduino, Alex; Aigaki, Toshiro; Heddle, Jonathan G

    2012-08-01

    Aging can be described as the accumulation of changes in organisms over time. Aging in organisms undergoing caloric restriction (CR) is widely considered as a slowed version of aging under ad libitum (AL) conditions. However, here we argue that aging under optimized CR is fundamentally different from aging under AL based on the following facts: (1) Comparing the two dietary groups, several age-related changes run in the opposite direction over time; (2) Switching from an AL to a CR diet clearly reverts (not only delays) several "normal" accumulated changes; (3) major causes of death are as different between both groups as they are between species. These observations support the idea that CR and AL initially modulate different metabolic and physiological programs, which exclusively over time generate two biologically different organisms. Such distinct diet-related senescence is analogous to the divergent aging processes and causes of death observed between castes of social insects, such as queens versus workers ("caste-related-senescence") and also between breeding versus non-breeding semelparous animals ("reproduction-related-senescence"). All these aging phenotypes are different not because they accumulate changes at a different rate, but because they accumulate different changes over time. Thus, the environment does not simply affect the individual aging rate through stochastic effects (e.g. U.V.) but also modulates the activation of a particular program/strategy that influences lifespan (e.g. caste, calorie intake). We refer to the environment-dependent aging patterns encoded by the genome as "senemorphism". Based on this idea we propose experimental schemes for aging, evolution and biomedical research.

  2. Purification of retroviral vectors for clinical application: biological implications and technological challenges.

    PubMed

    Rodrigues, Teresa; Carrondo, Manuel J T; Alves, Paula M; Cruz, Pedro E

    2007-01-10

    For centuries mankind led a difficult battle against viruses, the smallest infectious agents at the surface of the earth. Nowadays it is possible to use viruses for our benefit, both at a prophylactic level in the production of vaccines and at a therapeutic level in the promising field of gene therapy. Retroviruses were discovered at the end of the 19th century and constitute one of the most effective entities for gene transfer and insertion into the genome of mammalian cells. This attractive feature has intensified research in retroviral vectors development and production over the past years, mainly due to the expectations raised by the concept of gene therapy. The demand for high quality retroviral vectors that meet standard requisites from the regulatory agencies (FDA and EMEA) is therefore increasing, as the technology has moved into clinical trials. The development of safer producer cell lines that can be used in large-scale production will result in the production of large quantities of retroviral stocks. Cost-efficient and scalable purification processes are essential for production of injectable-grade preparations to achieve final implementation of these vectors as therapeutics. Several preparative purification steps already established for proteins can certainly be applied to retroviral vectors, in particular membrane filtration and chromatographic methods. Nevertheless, the special properties of these complex products require technological improvement of the existing purification steps and/or development of particular purification steps to increase productivity and throughput, while maintaining biological activity of the final product. This review focuses on downstream process development in relation to the retroviral vectors characteristics and quality assessment of retroviral stocks for intended use in gene therapy.

  3. Unsaturated glycerophospholipids mediate heme crystallization: biological implications for hemozoin formation in the kissing bug Rhodnius prolixus.

    PubMed

    Stiebler, Renata; Majerowicz, David; Knudsen, Jens; Gondim, Katia C; Wright, David W; Egan, Timothy J; Oliveira, Marcus F

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM). Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML) in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE) and phosphatidylcholine (uPC), with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9-17.7 minutes) than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut.

  4. Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

    PubMed Central

    Stiebler, Renata; Majerowicz, David; Knudsen, Jens; Gondim, Katia C.; Wright, David W.; Egan, Timothy J.; Oliveira, Marcus F.

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM). Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML) in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE) and phosphatidylcholine (uPC), with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9–17.7 minutes) than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut. PMID:24586467

  5. Transmitting biological effects of stress in utero: implications for mother and offspring.

    PubMed

    Reynolds, Rebecca M; Labad, Javier; Buss, Claudia; Ghaemmaghami, Pearl; Räikkönen, Katri

    2013-09-01

    The developing foetus makes adaptations to an adverse in utero environment which may lead to permanent changes in structure and physiology, thus 'programming' the foetus to risk of ill health in later life. Epidemiological studies have shown associations between low birth weight, a surrogate marker of an adverse intrauterine environment, and a range of diseases in adult life including cardiometabolic and psychiatric disease. These associations do not apply exclusively to low birth weight babies but also to newborns within the normal birth weight range. Early life stress, including stressors in the prenatal and early postnatal period, is a key factor that can have long-term effects on offspring health. Animal studies show this is mediated through changes in the maternal and foetal hypothalamic-pituitary-adrenal axes resulting in foetal exposure to excess glucocorticoids. Data in humans are more limited but support that the biological effects of stress in utero may be transmitted through changes in glucocorticoid action or metabolism. Common contemporary physical and social stressors of maternal obesity and socio-economic deprivation impact on the maternal response to pregnancy and the prevailing hormonal milieu that the developing foetus will be exposed to. Prenatal stress may also be compounded by early postnatal stresses such as childhood maltreatment with resultant adverse effects for the offspring. Understanding of the mechanisms whereby these stressors are transmitted from mother to foetus will not only improve our knowledge of normal foetal development but will also help identify novel pathways for early intervention either in the periconceptional, pregnancy or the early postpartum period.

  6. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    SciTech Connect

    Cimpan, Ciprian Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  7. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications.

    PubMed

    Kornis, M S; Mercado-Silva, N; Vander Zanden, M J

    2012-02-01

    are presented; most pressing are evaluating the economic effects of N. melanostomus invasion, determining long-term population level effects of egg predation on game-fish recruitment and comparing several variables (density, ecological effects morphology and life history) among invaded ecosystems. This review provides a central reference as researchers continue studying N. melanostomus, often as examples for advancing basic ecology and invasion biology.

  8. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    PubMed

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  9. Student learning style preferences in college-level biology courses: Implications for teaching and academic performance

    NASA Astrophysics Data System (ADS)

    Sitton, Jennifer Susan

    Education research has focused on defining and identifying student learning style preferences and how to incorporate this knowledge into teaching practices that are effective in engaging student interest and transmitting information. One objective was determining the learning style preferences of undergraduate students in Biology courses at New Mexico State University by using the online VARK Questionnaire and an investigator developed survey (Self Assessed Learning Style Survey, LSS). Categories include visual, aural, read-write, kinesthetic, and multimodal. The courses differed in VARK single modal learning preferences (p = 0.035) but not in the proportions of the number of modes students preferred (p = 0.18). As elsewhere, the majority of students were multimodal. There were similarities and differences between LSS and VARK results and between students planning on attending medical school and those not. Preferences and modalities tended not to match as expected for ratings of helpfulness of images and text. To detect relationships between VARK preferred learning style and academic performance, ANOVAs were performed using modality preferences and normalized learning gains from pre and post tests over material taught in the different modalities, as well as on end of semester laboratory and lecture grades. Overall, preference did not affect the performance for a given modality based activity, quiz, or final lecture or laboratory grades (p > 0.05). This suggests that a student's preference does not predict an improved performance when supplied with material in that modality. It is recommended that methods be developed to aid learning in a variety of modalities, rather than catering to individual learning styles. Another topic that is heavily debated in the field of education is the use of simulations or videos to replace or supplement dissections. These activities were compared using normalized learning gains from pre and post tests, as well as attitude surveys

  10. Integrated Bio-ISRU and Life Support Systems at the Lunar Outpost: Concept and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Garrison, D. H.; Allen, C. C.; Pickering, K.; Sarkisova, S. A.; Galindo, C., Jr.; Pan, D.; Foraker, E.; Mckay, D. S.

    2009-01-01

    We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.

  11. Characterization and reactivity of the weakly bound complexes of the [H, N, S]- anionic system with astrophysical and biological implications

    NASA Astrophysics Data System (ADS)

    Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E.; Mogren Al-Mogren, M.; Francisco, J. S.; Hochlaf, M.

    2015-07-01

    We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS- and HSN- together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH- + N, SN- + H, SN + H-, NH + S-, and NH- + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN- and H or SH- and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH-, SN-, and NH- lead either to the formation of HNS- or HSN- in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH-, SN-, and NH-, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN- and HNS- should be incorporated into H2S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.

  12. A Systems Biology Comparison of Ovarian Cancers Implicates Putative Somatic Driver Mutations through Protein-Protein Interaction Models

    PubMed Central

    Yang, Mary Qu; Elnitski, Laura

    2016-01-01

    Ovarian carcinomas can be aggressive with a high mortality rate (e.g., high-grade serous ovarian carcinomas, or HGSOCs), or indolent with much better long-term outcomes (e.g., low-malignant-potential, or LMP, serous ovarian carcinomas). By comparing LMP and HGSOC tumors, we can gain insight into the mechanisms underlying malignant progression in ovarian cancer. However, previous studies of the two subtypes have been focused on gene expression analysis. Here, we applied a systems biology approach, integrating gene expression profiles derived from two independent data sets containing both LMP and HGSOC tumors with protein-protein interaction data. Genes and related networks implicated by both data sets involved both known and novel disease mechanisms and highlighted the different roles of BRCA1 and CREBBP in the two tumor types. In addition, the incorporation of somatic mutation data revealed that amplification of PAK4 is associated with poor survival in patients with HGSOC. Thus, perturbations in protein interaction networks demonstrate differential trafficking of network information between malignant and benign ovarian cancers. The novel network-based molecular signatures identified here may be used to identify new targets for intervention and to improve the treatment of invasive ovarian cancer as well as early diagnosis. PMID:27788148

  13. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    USGS Publications Warehouse

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  14. Reproductive biology of Ilisha elongata (Teleostei: Pristigasteridae) in Ariake Sound, Japan: Implications for estuarine fish conservation in Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Takita, Toru; Zhang, Chunguang

    2009-01-01

    Elongate ilisha ( Ilisha enlongata) is a commercially important species that contributes to clupeoid fisheries in Asian countries. In the present study, the reproductive biology of I. elongata in Ariake Sound, Japan is determined for the first time. Six maturity stages were described using ovarian and testicular histology throughout the annual cycle. The spawning season in Ariake Sound lasts from May to July, with peak spawning activity in May and June. Age at first maturity was estimated to be 2 years, with a few exceptions of 1 year in well-developed males. Ovaries that contained both tertiary yolk oocytes and postovulatory follicles occurred from late May to late July, indicating that I. elongata is a multiple spawner. The size-frequency distribution of oocytes provided evidence for its multiple spawning and accuracy of the fecundity estimates. The batch fecundity of this species was estimated at between 22,200 and 270,900 eggs per individual, increasing with age between two and six years. The present findings on the reproductive strategy of I. elongata in Ariake Sound are generally consistent with those in temperate or subtropical populations, but quite different from those of tropical population where first maturation occurs around 200 days and life spans are shorter, with a maximum age less than 3 years. The conservation implications of this reproductive strategy in a harsh, variable environment in Asian countries are also discussed.

  15. Nicotine dose-concentration relationship and pregnancy outcomes in rat: Biologic plausibility and implications for future research

    SciTech Connect

    Hussein, Jabeen; Farkas, Svetlana; MacKinnon, Yolanda; Ariano, Robert E.; Sitar, Daniel S.; Hasan, Shabih U. . E-mail: hasans@ucalgary.ca

    2007-01-01

    Cigarette smoke (CS) exposure during pregnancy can lead to profound adverse effects on fetal development. Although CS contains several thousand chemicals, nicotine has been widely used as its surrogate as well as in its own right as a neuroteratogen. The justification for the route and dose of nicotine administration is largely based on inferential data suggesting that nicotine 6 mg/kg/day infused continuously via osmotic mini pumps (OMP) would mimic maternal CS exposure. We provide evidence that 6 mg/kg/day nicotine dose as commonly administered to pregnant rats leads to plasma nicotine concentrations that are 3-10-fold higher than those observed in moderate to heavy smokers and pregnant mothers, respectively. Furthermore, the cumulative daily nicotine dose exceeds by several hundred fold the amount consumed by human heavy smokers. Our study does not support the widely accepted notion that regardless of the nicotine dose, a linear nicotine dose-concentration relationship exists in a steady-state OMP model. We also show that total nicotine clearance increases with advancing pregnancy but no significant change is observed between the 2nd and 3rd trimester. Furthermore, nicotine infusion even at this extremely high dose has little effect on a number of maternal and fetal biologic variables and pregnancy outcome suggesting that CS constituents other than nicotine mediate the fetal growth restriction in infants born to smoking mothers. Our current study has major implications for translational research in developmental toxicology and pharmacotherapy using nicotine replacement treatment as an aid to cessation of cigarette smoking in pregnant mothers.

  16. The Basic Biology of Redoxosomes in Cytokine-Mediated Signal Transduction and Implications for Disease-Specific Therapies

    PubMed Central

    2015-01-01

    Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases. PMID:24555469

  17. High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo; Fu, Pingqing

    2014-05-01

    Atmospheric dicarboxylic acids (DCA) are a ubiquitous water-soluble component of secondary organic aerosols (SOA), which can act as cloud condensation nuclei (CCN), affecting the Earth's climate. Despite the high abundances of oxalic acid and related compounds in the marine aerosols, there is no consensus on what controls their distributions over the open ocean. Marine biological productivity could play a role in the production of DCA, but there is no substantial evidence to support this hypothesis. Here we present latitudinal distributions of DCA, oxoacids and α-dicarbonyls in the marine aerosols from the remote Pacific. Their concentrations were found several times higher in more biologically influenced aerosols (MBA) than less biologically influenced aerosols. We propose isoprene and unsaturated fatty acids as sources of DCA as inferred from significantly higher abundances of isoprene-SOA tracers and azelaic acid in MBA. These results have implications toward the reassessment of climate forcing feedbacks of marine-derived SOA.

  18. Gaps in college biology students' understanding of photosynthesis: Implications for human constructivist learning theory and college classroom practice

    NASA Astrophysics Data System (ADS)

    Griffard, Phyllis Baudoin

    1999-11-01

    The main research question of this study was: What gaps in biochemical understanding are revealed by a range of university introductory biology students as they work through a critically acclaimed multimedia program on photosynthesis, and what are the corresponding implications for elaboration of the Ausubel-Novak-Gowin Learning Theory (ANG, now Human Constructivism)? Twelve students, mixed for ability, gender and ethnicity, were recruited from two sections of "Bio 101." Before and after instruction in photosynthesis, in-depth clinical interviews were conducted during which participants completed a range of cognitive tasks such as sorting, concept mapping, explaining and predicting. Some tasks involved interacting with a computer simulation of photosynthesis. This study primarily employed qualitative case study and verbal analysis methods. Verbal analysis of the clinical interviews revealed numerous gaps that were categorized into typologies. The two major categories were propositional gaps and processing gaps. Propositional gaps were evident in development of participants' concepts, links and constructs. Significant among these were conceptual distance gaps and continuity of matter gaps. Gaps such as convention gaps and relative significance gaps seem to be due to naivete in the discipline. Processing gaps included gaps in graphic decoding skills and relevant cognitive habits such as self-monitoring and consulting prior knowledge. Although the gaps were easier to detect and isolate with the above-average participants, all participants showed evidence of at least some of these gaps. Since some gaps are not unexpected at all but the highest literacy levels, not all the gaps identified are to be considered deficiencies. The gaps identified support the attention given by ANG theorists to the role of prior knowledge and metacognition as well as the value of graphic organizers in knowledge construction. In addition, this study revealed numerous gaps in graphic decoding

  19. The ISRU Field Tests 2010 and 2012 at Mauna Kea, Hawaii: Results from the Miniaturised Mossbauer Spectrometers Mimos II and Mimos IIA

    NASA Technical Reports Server (NTRS)

    Klingelhoefer, G.; Morris, R. V.; Blumers, M; Bernhardt, B.; Graff, T.

    2014-01-01

    The 2010 and 2012 In-Situ Resource Utilization Analogue Test (ISRU) [1] on the Mauna Kea volcano in Hawai'i was coordinated by the Northern Centre for Advanced Technology (NORCAT) in collaboration with the Canadian Space Agency (CSA), the German Aerospace Center (DLR), and the National Aeronautics and Space Administration (NASA), through the PISCES program. Several instruments were tested as reference candidates for future analogue testing at the new field test site at the Mauna Kea volcano in Hawai'i. The fine-grained, volcanic nature of the material is a suitable lunar and martian analogue, and can be used to test excavation, site preparation, and resource utilization techniques. The 2010 location Pu'u Hiwahine, a cinder cone located below the summit of Mauna Kea (19deg45'39.29" N, 155deg28'14.56" W) at an elevation of 2800 m, provides a large number of slopes, rock avalanches, etc. to perform mobility tests, site preparation or resource prospecting. Besides hardware testing of technologies and systems related to resource identification, also in situ science measurements played a significant role in integration of ISRU and science instruments. For the advanced Mössbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform Xray fluorescence analysis simultaneously to Mössbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The 2010 and 2012 field campaigns demonstrated that in-situ Mössbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.

  20. The Redox Chemistry and Chemical Biology of H2S, Hydropersulfides and Derived Species: Implications to Their Possible Biological Activity and Utility

    PubMed Central

    Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186

  1. US Food and Drug Administration approval of generic versions of complex biologics: implications for the practicing physician using low molecular weight heparins.

    PubMed

    Cohen, Marc; Jeske, Walter P; Nicolau, Jose C; Montalescot, Gilles; Fareed, Jawed

    2012-04-01

    Low-molecular-weight heparins (LMWHs) have shown equivalent or superior efficacy and safety to unfractionated heparin as antithrombotic therapy for patients with acute coronary syndromes. Each approved LMWH is a pleotropic biological agent with a unique chemical, biochemical, biophysical and biological profile and displays different pharmacodynamic and pharmacokinetic profiles. As a result, LMWHs are neither equipotent in preclinical assays nor equivalent in terms of their clinical efficacy and safety. Previously, the US Food and Drug Administration (FDA) cautioned against using various LMWHs interchangeably, however recently, the FDA approved generic versions of LMWH that have not been tested in large clinical trials. This paper highlights the bio-chemical and pharmacological differences between the LMWH preparations that may result in different clinical outcomes, and also reviews the implications and challenges physicians face when generic versions of the original/innovator agents are approved for clinical use.

  2. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes

    USGS Publications Warehouse

    Zelikova, Tamara J.; Housman, David C.; Grote, Ed E.; Neher, Deborah A.; Belnap, Jayne

    2012-01-01

    Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.

  3. Policy implications of select student characteristics and their influence on the Florida biology end-of-course assessment

    NASA Astrophysics Data System (ADS)

    Bertolotti, Janine Cecelia

    In an attempt to improve student achievement in science in Florida, the Florida Department of Education implemented end-of-course (EOC) assessments in biology during the 2011-2012 academic school year. Although this first administration would only account for 30% of the student's overall final course grade in biology, subsequent administrations would be accompanied by increasing stakes for students, teachers, and schools. Therefore, this study sought to address gaps in empirical evidence as well as discuss how educational policy will potentially impact on teacher evaluation and professional development, student retention and graduation rates, and school accountability indicators. This study explored four variables- reading proficiency, ethnicity, socioeconomic status, and gender- to determine their influence and relationship on biology achievement on the Biology I EOC assessment at a Title 1 school. To do so, the results of the Biology I EOC assessment administered during the Spring 2012 school year was obtained from a small, rural Title 1 high school in North Florida. Additional data regarding each student's qualification for free and reduced-price lunch, FCAT Reading developmental scale scores, FCAT Reading level, grade level, gender, and ethnicity were also collected for the causal-comparative exploratory study. Of the 178 students represented, 48% qualified for free and reduced-price lunch, 54% were female, and 55% scored at FCAT Reading level 3 or higher. Additionally, 59% were White and 37% Black. A combination of descriptive statistics and other statistical procedures such as independent samples one-tailed t-test, one-way ANOVAs, ANCOVAs, multipleregression, and a Pearson r correlation was utilized in the analysis, with a significance level set at 0.05. Results indicate that of all four variables, FCAT Reading proficiency was the sole variable, after adjusting for other variables; that had a significant impact on biology achievement. Students with higher

  4. In Situ Resource Utilization (ISRU) on the Moon: Moessbauer Spectroscopy as a Process Monitor for Oxygen Production. Results from a Field Test on Mauna Kea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Morris, R.V.; Schroder, C.; Graff, T.G.; Sanders, G.B.; Lee, K.A.; Simon, T.M.; Larson, W.E.; Quinn, J.W.; Clark, L.D.; Caruso, J.J.

    2009-01-01

    Essential consumables like oxygen must to be produced from materials on the lunar surface to enable a sustained, long-term presence of humans on the Moon. The Outpost Precursor for ISRU and Modular Architecture (OPTIMA) field test on Mauna Kea, Hawaii, facilitated by the Pacific International Space Center for Exploration Systems (PISCES) of the University of Hawaii at Hilo, was designed to test the implementation of three hardware concepts to extract oxygen from the lunar regolith: Precursor ISRU Lunar Oxygen Testbed (PILOT) developed by Lockheed Martin in Littleton, CO; Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) developed at the NASA Kennedy Space Center in Cape Canaveral, FL; and ROxygen developed at the NASA Johnson Space Center in Houston, TX. The three concepts differ in design, but all rely on the same general principle: hydrogen reduction of metal cations (primarily Fe2+) bonded to oxygen to metal (e.g., Fe0) with the production of water. The hydrogen source is residual hydrogen in the fuel tanks of lunar landers. Electrolysis of the water produces oxygen and hydrogen (which is recycled). We used the miniaturized M ssbauer spectrometer MIMOS II to quantify the yield of this process on the basis of the quantity of Fe0 produced. Iron M ssbauer spectroscopy identifies iron-bearing phases, determines iron oxidation states, and quantifies the distribution of iron between mineral phases and oxidation states. The oxygen yield can be calculated by quantitative measurements of the distribution of Fe among oxidation states in the regolith before and after hydrogen reduction. A M ssbauer spectrometer can also be used as a prospecting tool to select the optimum feedstock for the oxygen production plants (e.g., high total Fe content and easily reduced phases). As a demonstration, a MIMOS II backscatter spectrometer (SPESI, Germany) was mounted on the Cratos rover (NASA Glenn Research Center in Cleveland, OH), which is one of

  5. Network-based discovery through mechanistic systems biology. Implications for applications--SMEs and drug discovery: where the action is.

    PubMed

    Benson, Neil

    2015-08-01

    Phase II attrition remains the most important challenge for drug discovery. Tackling the problem requires improved understanding of the complexity of disease biology. Systems biology approaches to this problem can, in principle, deliver this. This article reviews the reports of the application of mechanistic systems models to drug discovery questions and discusses the added value. Although we are on the journey to the virtual human, the length, path and rate of learning from this remain an open question. Success will be dependent on the will to invest and make the most of the insight generated along the way.

  6. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS).

    PubMed

    Sage, Cindy

    2015-01-01

    The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health

  7. Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates.

    PubMed

    Darnajoux, Romain; Zhang, Xinning; McRose, Darcy L; Miadlikowska, Jolanta; Lutzoni, François; Kraepiel, Anne M L; Bellenger, Jean-Philippe

    2017-01-01

    Cryptogamic species and their associated cyanobacteria have attracted the attention of biogeochemists because of their critical roles in the nitrogen cycle through symbiotic and asymbiotic biological fixation of nitrogen (BNF). BNF is mediated by the nitrogenase enzyme, which, in its most common form, requires molybdenum at its active site. Molybdenum has been reported as a limiting nutrient for BNF in many ecosystems, including tropical and temperate forests. Recent studies have suggested that alternative nitrogenases, which use vanadium or iron in place of molybdenum at their active site, might play a more prominent role in natural ecosystems than previously recognized. Here, we studied the occurrence of vanadium, the role of molybdenum availability on vanadium acquisition and the contribution of alternative nitrogenases to BNF in the ubiquitous cyanolichen Peltigera aphthosa s.l. We confirmed the use of the alternative vanadium-based nitrogenase in the Nostoc cyanobiont of these lichens and its substantial contribution to BNF in this organism. We also showed that the acquisition of vanadium is strongly regulated by the abundance of molybdenum. These findings show that alternative nitrogenase can no longer be neglected in natural ecosystems, particularly in molybdenum-limited habitats.

  8. Evaluation of the biological differences of canine and human factor VIII in gene delivery: Implications in human hemophilia treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The canine is the most important large animal model for testing novel hemophilia A(HA) treatment. It is often necessary to use canine factor VIII (cFIII) gene or protein for the evaluation of HA treatment in the canine model. However, the different biological properties between cFVIII and human FVII...

  9. Papers presented to the Conference on Large Body Impacts and Terrestrial Evolution: Geological, Climatological, and Biological Implications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The effects of large impacts on the environment are discussed and include thermal effects, atmospheric effects, changes in ocean temperatures, and geomagnetic anomalies. Biological factors such as extinction and increases in mutation development were investigated. Geological anomalies studied include stratigraphic gaps, extinction of entire boundary layers from the geological record, and geochemical oddities. Evidence was examined for impact cratering throughout the world.

  10. Positionings of Racial, Ethnic, and Linguistic Minority Students in High School Biology Class: Implications for Science Education in Diverse Classrooms

    ERIC Educational Resources Information Center

    Ryu, Minjung

    2015-01-01

    In the present study, I analyze ethnographic data from a year-long study of two Advanced Placement (AP) Biology classes that enrolled students with diverse racial, ethnic, and linguistic backgrounds. Specifically, I consider participation, positioning, and learning of newcomer Korean students in the focal classes. Building on the notion of figured…

  11. Hg2+ interference with the structure of tobacco etch virus protease (TEVp) and its implications for biological engineering

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Zhang; Ren, Si-Yan; Zhu, Guo-Fei; Xi, Lei; Han, Yong-Guang; Luo, Yue; Du, Lin-Fang

    2013-11-01

    Tobacco etch virus protease (TEVp) has specific and highly-conserved enzymatic activity, and is frequently applied in the fields of biology and biotechnology. Hg2+ can be utilized to purify target proteins in metal-chelate affinity chromatography. However, because Hg2+ has special biological toxity, it may endanger the stability of TEVp and hinder the utilization of TEVp in the related research. We determined the effects of Hg2+ on the structure of TEVp by means of intrinsic fluorescence, synchronous fluorescence, Fourier transform infrared (FTIR), and circular dichroism (CD) spectroscopies. The fluorescence emission and the synchronous fluorescence spectra suggested that Hg2+ induced the increased hydrophobicity around both of the tryptophan and the tyrosine residues in TEVp. Hg2+ mainly quenched the fluorescence of TEVp in a static process, with the possible formation of a complex (approximate molar ratio of 1:1), and the electrostatic force was the main binding force between TEVp and Hg2+. The FTIR and CD spectra suggested that Hg2+ induced the increased content of β-sheet in TEVp, indicating that Hg2+ may bind to the catalytic residues His46 and Cys151 in TEVp and promote TEVp to form a more compact structure. The Hg2+-induced structural changes of TEVp may potentially inhibit the catalytic activity of TEVp. These findings are beneficial for the intensive understanding of the factors that influence the stability of TEVp, and are helpful for the efficient and effective application of TEVp in the fields of biology and biological engineering.

  12. Cooperative and Active Learning in Undergraduate Biological Laboratories at FIU--Implications to TA Teaching and Training

    ERIC Educational Resources Information Center

    Penwell, Rebecca A.; Elsawa, Sherine F.; Pitzer, Thomas

    2004-01-01

    There were several changes in the laboratory teaching program in the Biological Sciences at Florida International University (FIU) between 1993-1994. The underlying goal was the improvement of the amount of material learned and retained by the student, but these changes showed little positive improvement. It was deemed necessary for FIU to…

  13. Invasive Blackberry Species in Oregon, USA: Their Identity and Susceptibility to Rust Disease, and Implications for Biological Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two of five species of European blackberry (Rubus fruticosus L. Aggregate) along the West Coast of the United States are invasive, and they are also similar in appearance. Biological control by Phragmidium violaceum, causal agent of a rust disease, was under consideration when rust-diseased blackber...

  14. Clinical implications of basic science discoveries: janus resurrected--two faces of B cell and plasma cell biology.

    PubMed

    Woodle, E S; Rothstein, D M

    2015-01-01

    B cells play a complex role in the immune response. In addition to giving rise to plasma cells (PCs) and promoting T cell responses via antigen presentation, they perform immunoregulatory functions. This knowledge has created concerns regarding nonspecific B cell depletional therapy because of the potential to paradoxically augment immune responses. Recent studies now indicate that PCs have immune functions beyond immunoglobulin synthesis. Evidence for a new role for PCs as potent regulatory cells (via IL-10 and IL-35 production) is discussed including the implications for PC-targeted therapies currently being developed for clinical transplantation.

  15. The leafminer Liriomyza trifolii (Diptera: Agromyzidae) encapsulates its koinobiont parasitoid Halticoptera circulus (Hymenoptera: Pteromalidae): implications for biological control.

    PubMed

    Kemmochi, T; Fujimori, S; Saito, T

    2016-06-01

    The koinobiont parasitoid Halticoptera circulus (Walker) is a potential biological control agent of leafminers, but it has only rarely been collected from the invasive leafminer, Liriomyza trifolii (Burgess), in Japan. To understand why this is the case, parasitism and development of H. circulus in L. trifolii was compared with parasitism and development in two indigenous leafminer species, Liriomyza chinensis Kato and Chromatomyia horticola (Goureau). There was no significant difference in parasitism rates by H. circulus in the three leafminer species and the eggs and larvae successfully developed in L. chinensis and C. horticola. However, H. circulus failed to develop in L. trifolii, where developmental stages were encapsulated by host haemocytes. This parasitoid may be a good agent to control indigenous leafminers such as L. chinensis and C. horticola but is unlikely to be useful for the biological control of the invasive L. trifolii in Japan.

  16. Evidence for two-dimensional solitary sound waves in a lipid controlled interface and its implications for biological signalling.

    PubMed

    Shrivastava, Shamit; Schneider, Matthias F

    2014-08-06

    Biological membranes by virtue of their elastic properties should be capable of propagating localized perturbations analogous to sound waves. However, the existence and the possible role of such waves in communication in biology remain unexplored. Here, we report the first observations of two-dimensional solitary elastic pulses in lipid interfaces, excited mechanically and detected by FRET. We demonstrate that the nonlinearity near a maximum in the susceptibility of the lipid monolayer results in solitary pulses that also have a threshold for excitation. These experiments clearly demonstrate that the state of the interface regulates the propagation of pulses both qualitatively and quantitatively. Finally, we elaborate on the striking similarity of the observed phenomenon to nerve pulse propagation and a thermodynamic basis of cell signalling in general.

  17. Structural and functional diversity among amyloid proteins: Agents of disease, building blocks of biology, and implications for molecular engineering.

    PubMed

    Bleem, Alissa; Daggett, Valerie

    2017-01-01

    Amyloids have long been associated with protein dysfunction and neurodegenerative diseases, but recent research has demonstrated that some organisms utilize the unique properties of the amyloid fold to create functional structures with important roles in biological processes. Additionally, new engineering approaches have taken advantage of amyloid structures for implementation in a wide variety of materials and devices. In this review, the role of amyloid in human disease is discussed and compared to the functional amyloids, which serve a largely structural purpose. We then consider the use of amyloid constructs in engineering applications, including their utility as building blocks for synthetic biology and molecular engineering. Biotechnol. Bioeng. 2017;114: 7-20. © 2016 Wiley Periodicals, Inc.

  18. Population dynamics of the white wax scale, Ceroplastes destructor (Hemiptera: Coccidae), on citrus in South Africa, with implications for biological control.

    PubMed

    Wakgari, W M; Giliomee, J H

    2001-08-01

    The population dynamics of the white wax scale, Ceroplastes destructor Newstead, was studied intensively in four easy-peel citrus orchards in the Western Cape Province of South Africa over three consecutive years (1997-1999). Key factor analysis was used to determine and quantify the contribution of individual mortality factors to the total generation mortality. Key stage mortality, determined from a cohort life table, was in the third instar and pre-ovipositing female stages. Mortality of C. destructor was caused primarily by parasitoids, predators and miscellaneous factors. Parasitoids and miscellaneous factors acted as density-dependent regulatory agents during the pre-ovipositional and first instar stages respectively. This has implications for biological control of C. destructor. Some of the mortality factors acted either randomly with no reference to the population densities or in an inverse density-dependent manner during the egg-crawler, second or third instar stages.

  19. Hofmeister effects in biology: effect of choline addition on the salt-induced super activity of horseradish peroxidase and its implication for salt resistance of plants.

    PubMed

    Pinna, M C; Bauduin, P; Touraud, D; Monduzzi, M; Ninham, B W; Kunz, W

    2005-09-01

    The effect of choline addition on the salt-induced super activity of horseradish peroxidase (HRP) is investigated. HRP is presented in the literature as an efficient H(2)O(2) scavenger, and choline is the precursor of glycine betaine, a strong osmoprotectant molecule. Both the regulations of H(2)O(2) and of osmoprotectant concentrations are implicated in plants in order to counteract salt-induced cell damage. For the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), sulfate anions were found to play a crucial role in the increase of HRP activity. This induced super activity can be strongly reduced by adding choline chloride. The phenomena provide an example of physicochemical Hofmeister effects playing a central regulatory role in an important biological system.

  20. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  1. Population synchronies within and between ocean basins: Apparent teleconnections and implications as to physical-biological linkage mechanisms

    NASA Astrophysics Data System (ADS)

    Alheit, Jürgen; Bakun, Andrew

    2010-02-01

    Major fish populations in large marine ecosystems separated by thousands of kilometres often seem to fluctuate in decadal-scale synchrony indicating strong forcing of ecosystem processes and population dynamics by regional and global climatic variability. The climate signals propagating through the atmosphere appear to act as synchronizing agents leading to teleconnection patterns between distant marine ecosystems and populations. This review is an attempt (i) to summarize these apparent within and between ocean basin teleconnection patterns in a comparative framework using particularly suggestive examples and (ii) to unravel physical-biological linkage mechanisms between a climate signal and fish populations. Synchronies in the timing of physical and biological processes between the Kuroshio and the Humboldt Current ecosystems are particularly striking. The collapse of the Peruvian anchovy in 1971 and the rapid decrease of the Japanese anchovy seem not to be directly associated with climate indices such as the Southern Oscillation Index (SOI) and the Pacific Decadal Oscillation (PDO). The "climate regime shift" in the mid-1970s in the North Pacific indicated by the PDO is not reflected in the dynamics of anchovies and sardines and other main components in both ecosystems, whereas the Asian Winter Monsoon Index (MOI) and the Arctic Oscillation (AO) seem to correlate with these events, at least in the Northwest Pacific. We speculate that the synchrony between processes in the Kuroshio and Humboldt systems is brought about by changes in the basin-scale coupled ocean-atmosphere circulation in North and South Pacific basins. The example of European aquatic systems describes physical-biological synchronies for which the NAO appears to be the synchronizing agent. When the NAO index changed in the late 1980s from a negative to a positive phase, a coherent increase in water temperature was observed in the Central Baltic, the North Sea, the NW Mediterranean and north and

  2. Are Internet use and video-game-playing addictive behaviors? Biological, clinical and public health implications for youths and adults

    PubMed Central

    Yau, Yvonne H. C.; Crowley, Michael J.; Mayes, Linda C.; Potenza, Marc N.

    2013-01-01

    Internet use and video-game playing are experiencing rapid growth among both youth and adult populations. Research suggests that a minority of users experience symptoms traditionally associated with substance-related addictions. Mental health professionals, policy makers and the general public continue to debate the issue of Internet addiction (IA) and problematic video-game playing (PVG). This review identifies existing studies into the clinical and biological characteristics of these disorders that may help guide decisions as to whether or not IA and PVG should be grouped together with substance use disorders (SUDs). PMID:24288435

  3. Are Internet use and video-game-playing addictive behaviors? Biological, clinical and public health implications for youths and adults.

    PubMed

    Yau, Yvonne H C; Crowley, Michael J; Mayes, Linda C; Potenza, Marc N

    2012-09-01

    Internet use and video-game playing are experiencing rapid growth among both youth and adult populations. Research suggests that a minority of users experience symptoms traditionally associated with substance-related addictions. Mental health professionals, policy makers and the general public continue to debate the issue of Internet addiction (IA) and problematic video-game playing (PVG). This review identifies existing studies into the clinical and biological characteristics of these disorders that may help guide decisions as to whether or not IA and PVG should be grouped together with substance use disorders (SUDs).

  4. Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits.

    PubMed

    Macovei, Anca; Pagano, Andrea; Leonetti, Paola; Carbonera, Daniela; Balestrazzi, Alma; Araújo, Susana S

    2016-10-11

    The pre-germinative metabolism is among the most fascinating aspects of seed biology. The early seed germination phase, or pre-germination, is characterized by rapid water uptake (imbibition), which directs a series of dynamic biochemical events. Among those are enzyme activation, DNA damage and repair, and use of reserve storage compounds, such as lipids, carbohydrates and proteins. Industrial seedling production and intensive agricultural production systems require seed stocks with high rate of synchronized germination and low dormancy. Consequently, seed dormancy, a quantitative trait related to the activation of the pre-germinative metabolism, is probably the most studied seed trait in model species and crops. Single omics, systems biology, QTLs and GWAS mapping approaches have unveiled a list of molecules and regulatory mechanisms acting at transcriptional, post-transcriptional and post-translational levels. Most of the identified candidate genes encode for regulatory proteins targeting ROS, phytohormone and primary metabolisms, corroborating the data obtained from simple molecular biology approaches. Emerging evidences show that epigenetic regulation plays a crucial role in the regulation of these mentioned processes, constituting a still unexploited strategy to modulate seed traits. The present review will provide an up-date of the current knowledge on seed pre-germinative metabolism, gathering the most relevant results from physiological, genetics, and omics studies conducted in model and crop plants. The effects exerted by the biotic and abiotic stresses and priming are also addressed. The possible implications derived from the modulation of pre-germinative metabolism will be discussed from the point of view of seed quality and technology.

  5. Changing tides for Lake Erie: the biogeochemical evolution of a Laurentian Great Lake and implications for biological communities of the future (Invited)

    NASA Astrophysics Data System (ADS)

    Wilhelm, S.; Steffen, M.; Belisle, B. S.; Dearth, S.; Campbell, M.; Boyer, G. L.; Watson, S.; Bourbonniere, R. A.; DeBruyn, J.; Campagna, S.

    2013-12-01

    Lake Erie is perhaps the most anthropogenically influenced of all the Laurentian Great Lakes. The history of the lake clearly demonstrates one where external loads of phosphorous drove primary production to a point where the lake was declared dead in the 1970's. The lake however, is also one of the greatest environmental success stories, as abatement programs had seen this system begin to return to health until the mid-1990's. In recent years, however, new cyanobacterial blooms of the potentially toxic cyanobacterium Microcystis have dominated the water column in late-summer months. Driven by a combination of changes in water column chemistry and regional climate, Lake Erie is no longer predictably P-limited through summer months and in some cases experiments have clearly shown that within the lake primary productivity is now N-limited. Experimentally, our goal has been to couple water column geochemistry with biomolecular pathways in cells to have the biology tell us which elements are driving community structure and function. Using community level transcriptomics and metabolomics, our observations suggest that changes in the chemical species of nitrogen, and especially the presence of urea, may be controlling the biological community structure of microbial communities in Lake Erie and may in part shape the extent of toxic cyanobacterial blooms. Moreover, data from multiple sampling surveys now demonstrates that additives designed to shape nutrient use in terrestrial environments may be influencing nitrogen cycles within the lake. Coupled to historical data sets dating back decades, we will discuss how seemingly minor alterations in system geochemistry over time have major biological implications for regional stakeholders. MODIS image of Lake Erie algal bloom in 2012

  6. Potential Hybridization between Two Invasive Termite Species, Coptotermes formosanus and C. gestroi (Isoptera: Rhinotermitidae), and Its Biological and Economic Implications.

    PubMed

    Su, Nan-Yao; Chouvenc, Thomas; Li, Hou-Feng

    2017-01-25

    The Asian subterranean termite, Coptotermes gestroi, is a tropical species but has increasingly been collected from the subtropics in recent years, making it sympatric to the Formosan subterranean termite, C. formosanus in at least three areas, Taiwan, Hawaii, and Florida. Simultaneous flights by these two species were observed since 2013 in South Florida, during which interspecies tandems were observed. Laboratory mating of C. formosanus and C. gestroi alates produced hybrid incipient colonies of larger population size. Studies are underway to examine the presence in the field of hybrid colonies in sympatric areas of Taiwan and Florida. Other biological characteristics of C. formosanus × C. gestroi hybrids being studied include temperature tolerance and preference, colony growth rate, wood-consumption rate, and reproductive fertility. This current research aims to determine the potential establishment of a hybrid termite population in south Florida and Taiwan. It investigates the risk of introgressive hybridization in field populations, with an emphasis on its potential ecological, evolutionary, and economic consequences.

  7. Molecular and cell biology of the prototypic arenavirus LCMV: implications for understanding and combating hemorrhagic fever arenaviruses.

    PubMed

    de la Torre, Juan C

    2009-09-01

    Arenaviruses merit interest as experimental model systems to study virus-host interactions and as clinically important human pathogens. Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) in humans. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. Moreover, arenaviruses pose a biodefense threat. No licensed arenavirus vaccines are available, and current therapy is limited to the use of ribavirin, which is only partially effective and associated with significant side effects. The development of arenavirus reverse genetics systems has made it possible to manipulate the arenavirus genome, which is contributing to significant progress in understanding arenavirus molecular and cell biology, as well as arenavirus-host interactions underlying arenavirus-induced HF disease in humans. This, in turn, should facilitate the development of novel both vaccines and antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced arenavirus infections.

  8. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2014-01-01

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from

  9. Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2013-12-30

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from

  10. Biological effects and subsequent economic effects and losses from marine pollution and degradations in marine environments: Implications from the literature.

    PubMed

    Ofiara, Douglas D; Seneca, Joseph J

    2006-08-01

    This paper serves as the missing piece in a more fuller understanding about economic losses from marine pollution, and demonstrates what losses have been estimated in the literature. Biological effects from marine pollution are linked with resulting economic effects and losses. The merging of these two areas is usually absent in studies of marine pollution losses. The literature has examined several effects due to marine pollution: damages due to harvest closures-restrictions, damages from consumption of unsafe seafood, damages due to decreased recreational activity, and damages related to waterfront real estate adjacent to contaminated water. Overall, marine pollution can and has resulted in sizable economic effects and losses. On the basis of the literature there is adequate justification for public policy actions to curb marine pollution, require inspection of seafood for toxic substances, and preserve marine water quality and sensitive marine environments.

  11. Substrate contributions in micro-ATR of thin samples: implications for analysis of cells, tissue and biological fluids.

    PubMed

    Bassan, Paul; Sachdeva, Ashwin; Lee, Joe; Gardner, Peter

    2013-07-21

    Low-e microscope slides are a common substrate for biological samples. Typically they are used for transflection infrared microspectroscopy but increasingly they are also being used for micro-ATR experiments since it is assumed that the FTIR-ATR absorbance spectra of cells and tissue on low-e substrates will not contain any spectral contributions from the substrate materials. This, in part, is due to the expectation that all the infrared light will be reflected at the highly reflective surface. At low sample thicknesses, however (e.g. less than 2 μm) the electric field does indeed penetrate through the substrate layers and undergoes absorption, from the glass supporting layer making up the majority of the slide. In this paper we show experimental evidence of the substrate contributions in ATR spectra and also a theoretical model giving insight into the spectral contributions of the substrate as a function of sample thickness.

  12. Biological implications of lab-on-a-chip devices fabricated using multi-jet modelling and stereolithography processes

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald

    2015-06-01

    Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.

  13. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    PubMed

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  14. Impacts of climate, land use, and biological invasion on the ecology of immature Aedes mosquitoes: Implications for La Crosse emergence

    PubMed Central

    Leisnham, Paul; Juliano, Steven A.

    2012-01-01

    Arthropod-borne viruses (arboviruses) cause many diseases worldwide and their transmission is likely to change with land use and climate changes. La Crosse virus is historically transmitted by the native mosquito Aedes triseriatus (Say) in the upper Midwestern U.S., but the invasive congeners Aedes albopictus (Skuse) and Aedes japonicus (Theobald), which co-occur with A. triseriatus in water-holding containers, may be important accessory vectors in the Appalachian region where La Crosse encephalitis is an emerging disease. This review focuses on evidence for how climate, land use, and biological invasions may have direct abiotic and indirect community-level impacts on immature developmental stages (eggs and larvae) of Aedes mosquitoes. Because vector-borne diseases usually vary in space and time and are related to the ecology of the vector species, we propose that the ecology of its mosquito vectors, particularly at their immature stages, has played an important role in the emergence of La Crosse encephalitis in the Appalachian region and represents a model for investigating the effects of environmental changes on other vector-borne diseases. We summarize the health effects of La Crosse virus and associated socioeconomic costs that make it the most important native mosquito-borne disease in the U.S. We review of the transmission of La Crosse virus, and present evidence for the impacts of climate, land use, and biological invasions on Aedes mosquito communities. Last, we discuss important questions about the ecology of La Crosse virus mosquito vectors that may improve our understanding of the impacts of environmental changes on La Crosse virus and other arboviruses. PMID:22692799

  15. Pulmonary adenocarcinoma: implications of the recent advances in molecular biology, treatment and the IASLC/ATS/ERS classification

    PubMed Central

    Thakur, Priyanka; Bhardwaj, Bhaskar; Susheela, Sridhar Papaiah; Madabhavi, Irappa

    2014-01-01

    A decade ago, lung cancer could conveniently be classified into two broad categories—either the small cell lung carcinoma (SCLC), or the non-small cell lung carcinoma (NSCLC), mainly to assist in further treatment related decision making. However, the understanding regarding the eligibility of adenocarcinoma histology for treatments with agents such as pemetrexed and bevacizumab made it a necessity for NSCLC to be classified into more specific sub-groups. Then, the availability of molecular targeted therapy with oral tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib not only further emphasized the need for accurate sub-classification of lung cancer, but also heralded the important role of molecular profiling of lung adenocarcinomas. Given the remarkable advances in molecular biology, oncology and radiology, a need for felt for a revised classification for lung adenocarcinoma, since the existing World Health Organization (WHO) classification of lung cancer, published in the year 2004 was mainly a pathological system of classification. Thus, there was a combined effort by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS) and the European Respiratory Society (ERS) with an effort to inculcate newly established perspectives from clinical, molecular and radiological aspects in evolving a modern classification for lung adenocarcinomas. This review provides a summary of the recent advances in molecular biology and molecular targeted therapy with respect to lung adenocarcinoma. Also, a brief summation of the salient recommendations provided in the IASLC/ATS/ERS classification of lung adenocarcinomas is provided. Lastly, a discussion regarding the future prospects with lung adenocarcinoma is included. PMID:25349702

  16. Evaluation of the biological differences of canine and human factor VIII in gene delivery: implications in human hemophilia treatment

    PubMed Central

    Wang, Qizhao; Dong, Biao; Firrman, Jenni; Wu, Wenman; Roberts, Sean; Moore, Andrea Rossi; Liu, LinShu; Chin, Mario P.S.; Diao, Yong; Kost, Joseph; Xiao, Weidong

    2016-01-01

    The canine is the most important large animal model for testing novel hemophilia A(HA) treatment. It is often necessary to use canine factor VIII (cFIII) gene or protein for the evaluation of HA treatment in the canine model. However, the different biological properties between cFVIII and human FVIII(hFVIII) indicated that the development of novel HA treatment may require careful characterization of non-human FVIII. To investigate whether the data obtained using cFVIII can translate to HA treatment in human, we analyzed the differential biological properties of canine heavy chain (cHC) and light chain (cLC) by comparing with human HC (hHC) and LC (hLC). The secretion of cHC was 5~30 fold higher than hHC, with or without LCs. cHC+hLC group exhibited ~18-fold increase in coagulation activity compared with hHC+hLC delivery by recombinant adeno-associated viral vectors. Unlike hHC, the secretion of cHC was independent of LCs. cLC improves the specific activity of FVIII by 2~3-fold compared with hLC. Moreover, the cLC but not cHC, contributes the high stability of cFVIII. Our results suggested that the cFVIII expression results in the canine model should be interpreted with caution as the cHC secreted more efficiently than hHC and cLC exhibited a more active and stable phenotype than hLC. PMID:27064790

  17. Evaluation of the biological differences of canine and human factor VIII in gene delivery: implications in human hemophilia treatment.

    PubMed

    Wang, Q; Dong, B; Firrman, J; Wu, W; Roberts, S; Moore, A R; Liu, L S; Chin, M P S; Diao, Y; Kost, J; Xiao, W

    2016-07-01

    The canine is the most important large animal model for testing novel hemophilia A (HA) treatment. It is often necessary to use canine factor VIII (cFIII) gene or protein for the evaluation of HA treatment in the canine model. However, different biological properties between cFVIII and human FVIII (hFVIII) indicated that the development of novel HA treatment may require careful characterization of non-human FVIII. To investigate whether the data obtained using cFVIII can translate to HA treatment in human, we analyzed the differential biological properties of canine heavy chain (cHC) and light chain (cLC) by comparing with human heavy chain (hHC) and light chain (hLC). The secretion of cHC was 5-30-fold higher than hHC, with or without light chains (LCs). cHC+hLC group exhibited ~18-fold increase in coagulation activity compared with hHC+hLC delivery by recombinant adeno-associated viral vectors. Unlike hHC, the secretion of cHC was independent of LCs. cLC improves the specific activity of FVIII by two- to threefold compared with hLC. Moreover, the cLC, but not cHC, contributes to the higher stability of cFVIII. Our results suggested that the cFVIII expression results in the canine model should be interpreted with caution as the cHC secreted more efficiently than hHC and cLC exhibited a more active and stable phenotype than hLC.

  18. Non-migratory breeding by isolated green sea turtles ( Chelonia mydas) in the Indian Ocean: biological and conservation implications

    NASA Astrophysics Data System (ADS)

    Whiting, Scott D.; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U.

    2008-04-01

    Green sea turtles ( Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle ( C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.

  19. Adsorption of small biological molecules on silica from diluted aqueous solutions: Quantitative characterization and implications to the Bernal's hypothesis

    NASA Astrophysics Data System (ADS)

    Basiuk, Vladimir A.; Gromovoy, Taras Yu.; Khil'Chevskaya, Elena G.

    1995-08-01

    To describe quantitatively the adsorption of prebiotically important compounds of low molecular weight (amino acids, short linear peptides, cyclic dipeptides, the Krebs's cycle and other carboxylic acids, nucleosides and related phosphates) on silica surface from diluted neutral aqueous solutions, equilibrium constants (K) and free energies (-ΔG) of adsorption were determined from the retention values measured by means of high-performance liquid chromatography on a silica gel column and from the isotherms measured under static conditions. For most carboxylic acids (including amino acids and linear peptides) -ΔG values were negative and K<1, thus showing very weak adsorption. Cyclic dipeptides (2,5-piperazinediones) exhibited higher adsorbability; -ΔG>0 and K>1 were found for most of them. Influence of the structure of α-substituent on the adsorbability is analyzed. A linear dependence of -ΔG on the number of aliphatic carbon atoms in a sorbate molecule was found for the series of aliphatic bifunctional amino acids, related dipeptides and 2,5-piperazinediones, as well as for the row from glycine to triglycyl glycine. The adsorption of nucleosides and their phosphates is characterized by much higherK and -ΔG values (of the order of 102 and 104, respectively). The adsorption data available from our work and literature are summarized and discussed with implications to the Bernal's hypothesis on the roles of solid surfaces in the prebiotic formation of biopolymers from monomeric ‘building blocks’.

  20. Climatic, tectonic, and biological factors affecting the oxidation state of the atmosphere and oceans: Implications for Phanerozoic O2 evolution

    NASA Astrophysics Data System (ADS)

    Ozaki, K.; Tajika, E.

    2015-12-01

    also shed light on the causal linkage between the critical biological evolution (such as an establishment of biological pump and advent of land plant) and the oxidation state of the atmosphere and oceans.

  1. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control

    PubMed Central

    2013-01-01

    Background A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. Methods In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen’s kappa statistic (κ) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. Results The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%, and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. Conclusions The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage

  2. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry

    SciTech Connect

    Baechler, Sebastien; Hobbs, Robert F.; Prideaux, Andrew R.; Wahl, Richard L.; Sgouros, George

    2008-03-15

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high {alpha}/{beta}), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the

  3. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants.

    PubMed

    Zempleni, Janos; Aguilar-Lozano, Ana; Sadri, Mahrou; Sukreet, Sonal; Manca, Sonia; Wu, Di; Zhou, Fang; Mutai, Ezra

    2017-01-01

    Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are

  4. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution.

    PubMed

    McCormick, Nicholas H; Hennigar, Stephen R; Kiselyov, Kirill; Kelleher, Shannon L

    2014-03-01

    Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1-14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1-10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.

  5. Consumption habits of pregnant women and implications for developmental biology: a survey of predominantly Hispanic women in California

    PubMed Central

    2013-01-01

    Background Healthy post-pregnancy outcomes are contingent upon an informed regimen of prenatal care encouraging healthy maternal consumption habits. In this article, we describe aspects of maternal intake of food, drink, and medication in a population of predominantly Hispanic women in Southern California. Potential implications for unhealthy prenatal dietary choices are discussed. Methods The Food, Beverage, and Medication Intake Questionnaire (FBMIQ) measures common practices of maternal consumption during pregnancy. The FBMIQ was administered to English and Spanish speaking pregnant and recently pregnant (36 weeks pregnant - 8 weeks post-partum) women over the age of 18 who were receiving care from a private medical group in Downey CA. Results A total of 200 women completed the FBMIQ. Consumption habits of healthy foods and beverages, unhealthy foods, unhealthy beverages, and medication are characterized in this article. Data indicate widespread consumption of fresh fruit, meats, milk and juice and indicate most women used prenatal vitamin supplements. Studies in developmental neuroscience have shown that certain substances may cause teratogenic effects on the fetus when ingested by the mother during pregnancy. Those potentially harmful substances included in our study were Bisphenol-A (BPA), methylmercury, caffeine, alcohol and certain medications. Our results show that a proportion of the women surveyed in our study consumed BPA, methylmercury, caffeine, alcohol, and certain medications at varied levels during pregnancy. This represents an interesting finding and suggests a disconnect between scientific data and general recommendations provided to pregnant mothers by obstetricians. Conclusions The results of our study demonstrate that a proportion of pregnant women consume substances that are potentially teratogenic and may impact the health and well being of the offspring. It is important to appraise healthy and unhealthy consumption habits in order to

  6. Variability in airborne and biological measures of exposure to mercury in the chloralkali industry: implications for epidemiologic studies.

    PubMed Central

    Symanski, E; Sällsten, G; Barregård, L

    2000-01-01

    Exposure assessment is a critical component of epidemiologic studies, and more sophisticated approaches require that variation in exposure be considered. We examined the intra- and interindividual sources of variation in exposure to mercury vapor as measured in air, blood, and urine among four groups of workers during 1990-1997 at a Swedish chloralkali plant. Consistent with the underlying kinetics of mercury in the body, the variability of biological measures was dampened considerably relative to the variation in airborne levels. Owing to the effects of intraindividual variation, estimating workers' exposures from a few measurements can attenuate measures of effect. To examine such effects on studies relating long-term exposure to a continuous health outcome, we evaluated the utility of each exposure measure by comparing the necessary sample sizes required for accurate estimation of a slope coefficient obtained from a regression analysis. No single measure outperformed the others for all groups of workers. However, when workers were evaluated together, creatinine-corrected urinary mercury better discriminated workers' exposures than airborne or blood mercury levels. Thus, pilot studies should be conducted to examine variability in both air and biomonitoring data because quantitative information about the relative magnitude of the intra- and interindividual sources of variation feeds directly into our efforts to design an optimal sampling strategy when evaluating health risks associated with occupational or environmental contaminants. Images Figure 1 PMID:10856033

  7. Reproductive biology of Haemulon plumierii in the south-western Atlantic Ocean's most extensive reefs: implications for fisheries management.

    PubMed

    Hoffmann, G C S; Freitas, M O; Moura, R L; Previero, M; Abilhoa, V

    2017-03-21

    The reproductive biology of the white grunt Haemulon plumierii was studied from 360 individuals obtained from artisanal fisheries landings in the Abrolhos Bank, Brazil, between August 2010 and March 2012. The overall sex-ratio did not differ significantly from 1:1, although males predominated in larger size classes. β-Binomial modelling of historical sex-ratio data indicated that the catch rate of females has increased in recent years. Females reached maturity at a smaller total length (LT ; 214 mm) than males (235 mm LT ) and the LT at which 50% of all individuals are mature (L50 ) was 220 mm, corresponding to 41·5% of the maximum recorded LT . Variation in the gonado-somatic index and in the relative frequency of reproductive stages indicates that reproduction occurs year round, with increased activity during the austral spring and summer. Fecundity was not size dependent. The reproductive parameters provided here can support management measures focussed on seasonal closures during spawning peaks (September to November and February to March) and minimum sizes (>L50 ) for the capture of this important artisanal fisheries resource in Abrolhos, the region with the largest and most biodiverse coralline reefs in the South Atlantic Ocean.

  8. Stratified and nonstratified areas in the North Sea: Long-term variability and biological and policy implications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Sonja; Tett, Paul; Mills, David; van der Molen, Johan

    2015-07-01

    The European Unions' Marine Strategy Framework Directive aims to limit anthropogenic influences in the marine environment. But marine ecosystems are characterized by high variability, and it is not trivial to define its natural state. Here, we use the physical environment as a basis for marine classification, as it determines the conditions in which organisms must operate to survive and thrive locally. We present a delineation of the North Sea into five distinct regimes, based on multidecadal stratification characteristics. Results are based on a 51 year simulation of the region using the coupled hydrobiogeochemical model GETM-ERSEM-BFM. The five identified regimes are: permanently stratified, seasonally stratified, intermittently stratified, permanently mixed, and Region Of Freshwater Influence (ROFI). The areas characterized by these regimes show some interannual variation in geographical coverage, but are overall remarkable stable features within the North Sea. Results also show that 29% of North Sea waters fail to classify as one of the defined stratification regimes, due to high interannual variability. Biological characteristics of these regimes differ from diatom-based food webs in areas with prolonged stratification to Phaeocystis-dominated food webs in areas experiencing short-lived or no stratification. The spatial stability of the identified regimes indicates that carefully selected monitoring locations can be used to represent a substantive area of the North Sea.

  9. Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology.

    PubMed

    Higgs, Nicholas D; Little, Crispin T S; Glover, Adrian G

    2011-01-07

    Whales are unique among vertebrates because of the enormous oil reserves held in their soft tissue and bone. These 'biofuel' stores have been used by humans from prehistoric times to more recent industrial-scale whaling. Deep-sea biologists have now discovered that the oily bones of dead whales on the seabed are also used by specialist and generalist scavenging communities, including many unique organisms recently described as new to science. In the context of both cetacean and deep-sea invertebrate biology, we review scientific knowledge on the oil content of bone from several of the great whale species: Balaenoptera musculus, Balaenoptera physalus, Balaenoptera borealis, Megaptera novaeangliae, Eschrichtius robustus, Physeter macrocephalus and the striped dolphin, Stenella coeruleoalba. We show that data collected by scientists over 50 years ago during the heyday of industrial whaling explain several interesting phenomena with regard to the decay of whale remains. Variations in the lipid content of bones from different parts of a whale correspond closely with recently observed differences in the taphonomy of deep-sea whale carcasses and observed biases in the frequency of whale bones at archaeological sites.

  10. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties.

    PubMed

    Romm, Horst; Wilkins, Ruth C; Coleman, C Norman; Lillis-Hearne, Patricia K; Pellmar, Terry C; Livingston, Gordon K; Awa, Akio A; Jenkins, Mark S; Yoshida, Mitsuaki A; Oestreicher, Ursula; Prasanna, Pataje G S

    2011-03-01

    Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.

  11. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery.

    PubMed

    Principe, Simona; Hui, Angela Bik-Yu; Bruce, Jeff; Sinha, Ankit; Liu, Fei-Fei; Kislinger, Thomas

    2013-05-01

    Exosomes and microvesicles (MVs) are nanometer-sized, membranous vesicles secreted from many cell types into their surrounding extracellular space and into body fluids. These two classes of extracellular vesicles are regarded as a novel mechanism through which cancer cells, including virally infected cancer cells, regulate their micro-environment via the horizontal transfer of bioactive molecules: proteins, lipids, and nucleic acids (DNA, mRNA, micro-RNAs; oncogenic cargo hence often referred to as oncosomes). In head and neck cancer (HNC), exosomes and MVs have been described in Epstein Barr Virus (EBV)-associated nasopharyngeal cancer (NPC), as well as being positively correlated with oral squamous cell carcinoma (OSCC) progression. It has therefore been suggested that HNC-derived vesicles could represent a useful source for biomarker discovery, enriched in tumor antigens and cargo; hence fundamentally important for cancer progression. This current review offers an overall perspective on the roles of exosomes and MVs in HNC biology, focusing on EBV-associated NPC and OSCC. We also highlight the importance of saliva as a proximal and easily accessible bio-fluid for HNC detection, and propose that salivary vesicles might serve as an alternative model in the discovery of novel HNC biomarkers.

  12. Potential Hybridization between Two Invasive Termite Species, Coptotermes formosanus and C. gestroi (Isoptera: Rhinotermitidae), and Its Biological and Economic Implications

    PubMed Central

    Su, Nan-Yao; Chouvenc, Thomas; Li, Hou-Feng

    2017-01-01

    The Asian subterranean termite, Coptotermes gestroi, is a tropical species but has increasingly been collected from the subtropics in recent years, making it sympatric to the Formosan subterranean termite, C. formosanus in at least three areas, Taiwan, Hawaii, and Florida. Simultaneous flights by these two species were observed since 2013 in South Florida, during which interspecies tandems were observed. Laboratory mating of C. formosanus and C. gestroi alates produced hybrid incipient colonies of larger population size. Studies are underway to examine the presence in the field of hybrid colonies in sympatric areas of Taiwan and Florida. Other biological characteristics of C. formosanus × C. gestroi hybrids being studied include temperature tolerance and preference, colony growth rate, wood-consumption rate, and reproductive fertility. This current research aims to determine the potential establishment of a hybrid termite population in south Florida and Taiwan. It investigates the risk of introgressive hybridization in field populations, with an emphasis on its potential ecological, evolutionary, and economic consequences. PMID:28125068

  13. Wolbachia Affects Reproduction and Population Dynamics of the Coffee Berry Borer (Hypothenemus hampei): Implications for Biological Control

    PubMed Central

    Mariño, Yobana A.; Verle Rodrigues, José C.; Bayman, Paul

    2017-01-01

    Wolbachia are widely distributed endosymbiotic bacteria that influence the reproduction and fitness of their hosts. In recent years the manipulation of Wolbachia infection has been considered as a potential tool for biological control. The coffee berry borer (CBB), Hypothenemus hampei, is the most devastating coffee pest worldwide. Wolbachia infection in the CBB has been reported, but until now the role of Wolbachia in CBB reproduction and fitness has not been tested. To address this issue we reared the CBB in artificial diets with and without tetracycline (0.1% w/v) for ten generations. Tetracycline reduced significantly the relative proportion of Wolbachia in the CBB microbiota from 0.49% to 0.04%. This reduction affected CBB reproduction: females fed with tetracycline had significantly fewer progeny, lower fecundity, and fewer eggs per female. Tetracycline also reduced the population growth rate (λ), net reproductive rate (R0), and mean generation time (T) in CBB; the reduction in population growth was mostly due to variation in fertility, according to life time response experiments (LTREs) analysis. Our results suggest that Wolbachia contribute to the reproductive success of the CBB and their manipulation represents a possible approach to CBB biocontrol mediated by microbiome management. PMID:28085049

  14. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes

    SciTech Connect

    Zelikova TJ; Hosman DC; Grote EE; Neher DA; Belnap J

    2011-03-21

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  15. Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis.

    PubMed

    Morato do Canto, Amanda; Ceciliato, Paulo H O; Ribeiro, Bianca; Ortiz Morea, Fausto Andrés; Franco Garcia, Antonio Augusto; Silva-Filho, Marcio C; Moura, Daniel S

    2014-02-01

    RALF is a small (5 kDa) and ubiquitous plant peptide signal. It was first isolated from tobacco leaf protein extracts owing to its capacity to alkalinize the extracellular media of cell suspensions. RALFs inhibit root growth and hypocotyl elongation, and a role for RALFs in cell expansion has also been proposed. Arabidopsis has 37 RALF isoforms (AtRALF), but only a small group of nine has high primary structure identity to the original RALF peptide isolated from tobacco. Herein, we report the heterologous production of these nine peptides in Escherichia coli and the evaluation of their activity in five biological assays. All AtRALF peptides produced showed strong alkalinizing activities, with the exception of the pollen-specific isoform AtRALF4. Although it exhibited no inhibitory activity in the root growth and hypocotyl elongation assays, AtRALF4 is a strong inhibitor of pollen germination. Our data demonstrate that the divergence in the tissue specificity and gene expression patterns of the different AtRALFs does not change the fact that their main role seems to be the regulation of cell expansion. Furthermore, different activities in the alkalinization assays upon the addition of two consecutive and saturating doses of the peptides suggest that the peptides are likely being sensed by specific receptors.

  16. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  17. Impact of Amorphous SiO2 Nanoparticles on a Living Organism: Morphological, Behavioral, and Molecular Biology Implications.

    PubMed

    Ambrosone, Alfredo; Scotto di Vettimo, Maria Rosaria; Malvindi, Maria Ada; Roopin, Modi; Levy, Oren; Marchesano, Valentina; Pompa, Pier Paolo; Tortiglione, Claudia; Tino, Angela

    2014-01-01

    It is generally accepted that silica (SiO2) is not toxic. But the increasing use of silica nanoparticles (SiO2NPs) in many different industrial fields has prompted the careful investigation of their toxicity in biological systems. In this report, we describe the effects elicited by SiO2NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles, 25 nM in diameter, were administered to living Hydra vulgaris (Cnidaria). The dose-related effects were defined by morphological and behavioral assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35 nM NPs) and a LT50 of 38 h. At sub lethal doses, the morphophysiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells, and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq) revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO2NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO2NPs, and that the physiological modifications are transduced to gene expression modulation.

  18. Impact of Amorphous SiO2 Nanoparticles on a Living Organism: Morphological, Behavioral, and Molecular Biology Implications

    PubMed Central

    Ambrosone, Alfredo; Scotto di Vettimo, Maria Rosaria; Malvindi, Maria Ada; Roopin, Modi; Levy, Oren; Marchesano, Valentina; Pompa, Pier Paolo; Tortiglione, Claudia; Tino, Angela

    2014-01-01

    It is generally accepted that silica (SiO2) is not toxic. But the increasing use of silica nanoparticles (SiO2NPs) in many different industrial fields has prompted the careful investigation of their toxicity in biological systems. In this report, we describe the effects elicited by SiO2NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles, 25 nM in diameter, were administered to living Hydra vulgaris (Cnidaria). The dose-related effects were defined by morphological and behavioral assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35 nM NPs) and a LT50 of 38 h. At sub lethal doses, the morphophysiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells, and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq) revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO2NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO2NPs, and that the physiological modifications are transduced to gene expression modulation. PMID:25325055

  19. [High-risk human papilloma virus associated oropharynx squamous cell carcinomas: clinical, biological implications and therapeutical perspectives].

    PubMed

    Guihard, S; Jung, A-C; Noël, G

    2012-02-01

    The infection of the head and neck epithelium by high-risk human papillomaviruses (HPV) is a risk factor for cancer onset and development. The incidence of HPV-related head and neck squamous cell carcinoma is currently increasing. These lesions display distinct clinical features. HPV positive patients are often younger and have a smaller history of tobacco smoking and alcohol drinking, but have a history of virus-transmitting sex practices. HPV-related tumours are mainly found in the oropharynx, are more associated to a local lymph node invasion and display a poorly differentiated morphology. Despite these more aggressive features, HPV-positive head and neck squamous cell carcinomas correlate with an improved local control, disease-free and global survival. It is thought that HPV-driven specific biologic abnormalities underlie higher tumour sensitivity to chemotherapeutic drugs and ionizing radiations. The expression of the HPV E6 and E7 oncoproteins induce cell transformation by interfering with cell signalling pathways involved in apoptosis, cell cycle, angiogenesis and induce the overexpression of the CDKN2A gene. Therefore, alternative treatments based on therapies targeting these pathways in combination with radiation dose de-escalation could be proposed to HPV-positive patients, if they are properly and reliably identified.

  20. Wolbachia Affects Reproduction and Population Dynamics of the Coffee Berry Borer (Hypothenemus hampei): Implications for Biological Control.

    PubMed

    Mariño, Yobana A; Verle Rodrigues, José C; Bayman, Paul

    2017-01-11

    Wolbachia are widely distributed endosymbiotic bacteria that influence the reproduction and fitness of their hosts. In recent years the manipulation of Wolbachia infection has been considered as a potential tool for biological control. The coffee berry borer (CBB), Hypothenemus hampei, is the most devastating coffee pest worldwide. Wolbachia infection in the CBB has been reported, but until now the role of Wolbachia in CBB reproduction and fitness has not been tested. To address this issue we reared the CBB in artificial diets with and without tetracycline (0.1% w/v) for ten generations. Tetracycline reduced significantly the relative proportion of Wolbachia in the CBB microbiota from 0.49% to 0.04%. This reduction affected CBB reproduction: females fed with tetracycline had significantly fewer progeny, lower fecundity, and fewer eggs per female. Tetracycline also reduced the population growth rate (λ), net reproductive rate (R₀), and mean generation time (T) in CBB; the reduction in population growth was mostly due to variation in fertility, according to life time response experiments (LTREs) analysis. Our results suggest that Wolbachia contribute to the reproductive success of the CBB and their manipulation represents a possible approach to CBB biocontrol mediated by microbiome management.

  1. Experimental derivation of relative biological effectiveness of A-bomb neutrons in Hiroshima and Nagasaki and implications for risk assessment.

    PubMed

    Sasaki, M S; Nomura, T; Ejima, Y; Utsumi, H; Endo, S; Saito, I; Itoh, T; Hoshi, M

    2008-07-01

    Epidemiological data on the health effects of A-bomb radiation in Hiroshima and Nagasaki provide the framework for setting limits for radiation risk and radiological protection. However, uncertainty remains in the equivalent dose, because it is generally believed that direct derivation of the relative biological effectiveness (RBE) of neutrons from the epidemiological data on the survivors is difficult. To solve this problem, an alternative approach has been taken. The RBE of polyenergetic neutrons was determined for chromosome aberration formation in human lymphocytes irradiated in vitro, compared with published data for tumor induction in experimental animals, and validated using epidemiological data from A-bomb survivors. The RBE of fission neutrons was dependent on dose but was independent of the energy spectrum. The same RBE regimen was observed for lymphocyte chromosome aberrations and tumors in mice and rats. Used as a weighting factor for A-bomb survivors, this RBE system was superior in eliminating the city difference in chromosome aberration frequencies and cancer mortality. The revision of the equivalent dose of A-bomb radiation using DS02 weighted by this RBE system reduces the cancer risk by a factor of 0.7 compared with the current estimates using DS86, with neutrons weighted by a constant RBE of 10.

  2. Molecular biology of the human cytosolic sulfotransferase gene superfamily implicated in the bioactivation of minoxidil and cholesterol in skin.

    PubMed

    Dooley, T P

    1999-08-01

    Cytosolic sulfotransferases (ST) catalyze the sulfation of various phenolic agents, catecholamines, thyroid hormones, steroids, drugs, and procarcinogens, usually resulting in the inactivation and subsequent excretion of the compound. My laboratory's efforts have focused on the cloning of the human phenol-sulfating (PST) members of this gene superfamily, implicated in the bioactivation of the hair growth stimulant, minoxidil. At least two major forms of human PST enzymes have been characterized biochemically, the phenol-preferring PST (P-PST), and the catecholamine-preferring PST (M-PST). Various cDNAs have been cloned representing alleles of 3 gene loci termed as STP1, STP2, and STM, which were all mapped precisely to a small region on human chromosome 16p and to the homologous region of mouse chromosome 7. Human cosmid genomic clones have been sequenced to determine the genomic organization for each of the 3 highly-related genes. All contain 7 coding exons, with conserved intron-exon boundaries, and presumptive alternative tissue-specific promoters. At least one of the 3 PST-encoding genes is responsible for forming minoxidil sulfate in the lower outer root sheath of anagen hair follicles. The steroid sulfating genes, STD and STE, have been cloned by other laboratories. The isozyme products of these genes sulfate DHEA and estrogens, respectively. I hypothesize that either STE or STD is involved in the formation of cholesterol sulfate (CS) in epidermal keratinocytes. CS has been demonstrated by other groups to be an activator of keratinocyte Protein Kinase Ceta, which subsequently results in the activation of epidermal transglutaminase and formation of the cornified envelop. STE or STD might also be involved in bioinactivation of estrogens and androgens within skin. Our recent unpublished results have focused on elucidating the patterns of ST gene expression in cultured keratinocytes and fibroblasts derived from human skin using RT-PCR, to understand which of the

  3. Evolutionary and biological implications of dental mesial drift in rodents: the case of the Ctenodactylidae (Rodentia, Mammalia).

    PubMed

    Gomes Rodrigues, Helder; Solé, Floréal; Charles, Cyril; Tafforeau, Paul; Vianey-Liaud, Monique; Viriot, Laurent

    2012-01-01

    Dental characters are importantly used for reconstructing the evolutionary history of mammals, because teeth represent the most abundant material available for the fossil species. However, the characteristics of dental renewal are presently poorly used, probably because dental formulae are frequently not properly established, whereas they could be of high interest for evolutionary and developmental issues. One of the oldest rodent families, the Ctenodactylidae, is intriguing in having longstanding disputed dental formulae. Here, we investigated 70 skulls among all extant ctenodactylid genera (Ctenodactylus, Felovia, Massoutiera and Pectinator) by using X-ray conventional and synchrotron microtomography in order to solve and discuss these dental issues. Our study clearly indicates that Massoutiera, Felovia and Ctenodactylus differ from Pectinator not only by a more derived dentition, but also by a more derived eruptive sequence. In addition to molars, their dentition only includes the fourth deciduous premolars, and no longer bears permanent premolars, conversely to Pectinator. Moreover, we found that these premolars are lost during adulthood, because of mesial drift of molars. Mesial drift is a striking mechanism involving migration of teeth allowed by both bone remodeling and dental resorption. This dental innovation is to date poorly known in rodents, since it is only the second report described. Interestingly, we noted that dental drift in rodents is always associated with high-crowned teeth favoring molar size enlargement. It can thus represent another adaptation to withstand high wear, inasmuch as these rodents inhabit desert environments where dust is abundant. A more accurate study of mesial drift in rodents would be very promising from evolutionary, biological and orthodontic points of view.

  4. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    USGS Publications Warehouse

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  5. Tannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications.

    PubMed

    Friedrich, Valentin; Janesch, Bettina; Windwarder, Markus; Maresch, Daniel; Braun, Matthias L; Megson, Zoë A; Vinogradov, Evgeny; Goneau, Marie-France; Sharma, Ashu; Altmann, Friedrich; Messner, Paul; Schoenhofen, Ian C; Schäffer, Christina

    2016-12-16

    Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes' functions. Using capillary electrophoresis (CE), CE-mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.

  6. Tannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications

    PubMed Central

    Windwarder, Markus; Maresch, Daniel; Braun, Matthias L.; Megson, Zoë A.; Vinogradov, Evgeny; Goneau, Marie-France; Sharma, Ashu; Altmann, Friedrich; Messner, Paul; Schoenhofen, Ian C.; Schäffer, Christina

    2017-01-01

    Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium’s cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes’ functions. Using capillary electrophoresis (CE), CE–mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs. PMID:27986835

  7. Clustering amino acid contents of protein domains: biochemical functions of proteins and implications for origin of biological macromolecules.

    PubMed

    Torshin, I Y

    2001-04-01

    Structural classes of protein domains correlate with their amino acid compositions. Several successful algorithms (that use only amino acid composition) have been elaborated for the prediction of structural class or potential biochemical significance. This work deals with dynamic classification (clustering) of the domains on the basis of their amino acid composition. Amino acid contents of domains from a non-redundant PDB set were clustered in 20-dimensional space of amino acid contents. Despite the variations of an empirical parameter and non-redundancy of the set, only one large cluster (tens-hundreds of proteins) surrounded by hundreds of small clusters (1-5 proteins), was identified. The core of the largest cluster contains at least 64% DNA (nucleotide)-interacting protein domains from various sources. About 90% of the proteins of the core are intracellular proteins. 83% of the DNA/nucleotide interacting domains in the core belong to the mixed alpha-beta folds (a+b, a/b), 14% are all-alpha (mostly helices) and all-beta (mostly beta-strands) proteins. At the same time, when core domains that belong to one organism (E.coli) are considered, over 80% of them prove to be DNA/nucleotide interacting proteins. The core is compact: amino acid contents of domains from the core lie in relatively narrow and specific ranges. The core also contains several Fe-S cluster-binding domains, amino acid contents of the core overlap with ferredoxin and CO-dehydrogenase clusters, the oldest known proteins. As Fe-S clusters are thought to be the first biocatalysts, the results are discussed in relation to contemporary experiments and models dealing with the origin of biological macromolecules. The origin of most primordial proteins is considered here to be a result of co-adsorption of nucleotides and amino acids on specific clays, followed by en-block polymerization of the adsorbed mixtures of amino acids.

  8. In situ biological resources: Soluble nutrients and electrolytes in carbonaceous asteroids/meteorites. Implications for astroecology and human space populations

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    2014-12-01

    Ecosystems in space will need in-situ bioavailable nutrients. The measured nutrients in meteorites allow experiment-based estimates of nutrients in asteroids, and of the biomass and populations that can be derived from these in situ bioresources. In this respect, we found that carbonaceous chondrite meteorites can support microorganisms and plant cultures, suggesting that similar asteroid materials are also biologically fertile. The sustainable biomass and populations are determined by the available resource materials, their yields of nutrients and biomass, the biomass needed to support human populations, the duration of the ecosystem, and wastage. The bioavailable C, N, and electrolytes in carbonaceous chondrite meteorites vary as CM2>CR2>CV3>CO3>CK4>CK5 in correlation with petrologic type, including aqueous alteration. Their average bioavailable C, N, K and P can yield 2.4, 3.5, 2.5, and 0.08 g biomass/kg resource material, respectively, showing phosphorus as the limiting nutrient. On this basis, soluble nutrients in a 100 km radius, 1019 kg resource asteroid can sustain an ecosystem of 108 kg biomass and a human population of 10,000 for >109 years, and its total nutrient contents can sustain a population of one million, by replacing a wastage of 1% of the biomass per year. Overall, the total nutrient contents of the 1022 kg carbonaceous asteroids can yield a biomass of 1020 kg that supports a steady-state human population of one billion during the habitable future of the Solar System, contributing a time-integrated biomass of 1022 kg-years. These astroecology estimates use experimental data on nutrients in asteroids/meteorites to quantify the sustainable biomass and human populations in this and similar solar systems.

  9. Study of a possible magnetite biosignature in Martian meteorite ALH84001: Implications for the biological toxicology of Mars

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, Kathie Louise

    "Why do we have such a longstanding fascination with Mars? Very simply put, it's about life. The search for life elsewhere in our Solar System has been a major driver for exploring Mars, pretty much since we began seriously looking at that planet."1 The major objective of this work is to describe signs of possible life, that is biosignatures, in rocks from Mars if indeed they are present. Biosignatures are specific identifiable properties that result from living things; they may be implanted in the environment and may persist even if the living thing is no longer present. Over 100 mineral biosignatures have been discussed in the literature; however, only one, magnetite, is addressed by this study. Magnetite is found in many rock types on earth and in meteorites. Previous studies of terrestrial magnetite have used few properties, such as size and chemical composition, to determine one of the modes of origins for magnetite (e.g., biogenic, inorganic). This study has established a rigorous set of six criteria for the identification of intracellularly precipitated biogenic magnetite. These criteria have been applied to a subpopulation of magnetites embedded within carbonates in Martian meteorite ALH84001. These magnetites are found to be chemically and physically indistinguishable from those produced by magnetotactic bacteria strain MV-1, hence, they were likely formed by biogenic processes on ancient Mars. These criteria may be also used to distinguish origins for magnetites from terrestrial samples with complex or unknown histories. The presence of purported past life on early Mars suggests that, if life once began it may still exist today, possibly in oases in the Martian subsurface. Future manned missions should consider potential hazards of an extant biological environment(s) on Mars. 1 Quote attributed to Jack Farmer of Arizona State University in discussing NASA's program of Mars Exploration (see "Deciphering Mars: Follow the Water," Astrobiology Magazine Sept

  10. Evolutionary and Biological Implications of Dental Mesial Drift in Rodents: The Case of the Ctenodactylidae (Rodentia, Mammalia)

    PubMed Central

    Gomes Rodrigues, Helder; Solé, Floréal; Charles, Cyril; Tafforeau, Paul; Vianey-Liaud, Monique; Viriot, Laurent

    2012-01-01

    Dental characters are importantly used for reconstructing the evolutionary history of mammals, because teeth represent the most abundant material available for the fossil species. However, the characteristics of dental renewal are presently poorly used, probably because dental formulae are frequently not properly established, whereas they could be of high interest for evolutionary and developmental issues. One of the oldest rodent families, the Ctenodactylidae, is intriguing in having longstanding disputed dental formulae. Here, we investigated 70 skulls among all extant ctenodactylid genera (Ctenodactylus, Felovia, Massoutiera and Pectinator) by using X-ray conventional and synchrotron microtomography in order to solve and discuss these dental issues. Our study clearly indicates that Massoutiera, Felovia and Ctenodactylus differ from Pectinator not only by a more derived dentition, but also by a more derived eruptive sequence. In addition to molars, their dentition only includes the fourth deciduous premolars, and no longer bears permanent premolars, conversely to Pectinator. Moreover, we found that these premolars are lost during adulthood, because of mesial drift of molars. Mesial drift is a striking mechanism involving migration of teeth allowed by both bone remodeling and dental resorption. This dental innovation is to date poorly known in rodents, since it is only the second report described. Interestingly, we noted that dental drift in rodents is always associated with high-crowned teeth favoring molar size enlargement. It can thus represent another adaptation to withstand high wear, inasmuch as these rodents inhabit desert environments where dust is abundant. A more accurate study of mesial drift in rodents would be very promising from evolutionary, biological and orthodontic points of view. PMID:23185576

  11. Climate and Physical Disturbance Effects on the Spectral Signatures of Biological Soil Crusts: Implications for Future Dryland Energy Balance

    NASA Astrophysics Data System (ADS)

    Rutherford, W. A.; Flagg, C.; Painter, T. H.; Okin, G. S.; Belnap, J.; Reed, S.

    2014-12-01

    Drylands comprise ≈40% of the terrestrial Earth surface and observations suggest they can respond markedly to climate change. A vital component of dryland ecosystems are biological soil crusts (biocrusts) - a network of surface soil lichens, mosses, and cyanobacteria - that perform critical ecosystem functions, such as stabilizing soil and fixing carbon and nitrogen. Yet, our understanding of the role biocrusts play in dryland energy balance remains poor. Changes in climate can rapidly affect biocrust communities and we have long known that biocrusts respond dramatically to physical disturbance, such as human trampling and grazing animals. Associated changes in biocrust cover often result in increased bare soil; creating higher surface reflectance. We used spectral solar reflectance measurements in two manipulative experiments to compare the effects of climate and physical disturbance on biocrusts of the Colorado Plateau We measured reflectance at two heights: at crust surface and 1 m above. The climate disturbance site has four treatments: control, warming (4°C), altered precipitation, and warming plus altered precipitation. The physical disturbance site was trampled by foot annually since 1998. At the climate experiment, the largest change in reflectance was in the altered precipitation treatment (35% increase) at the surface-level, and the smallest difference was in the warmed (17% increase) at the meter-level. Physical disturbance differences were 10% at meter-level and 25% at surface-level. Unexpectedly, these results suggest that, via effects on biocrust communities, climate change could have a larger effect on dryland energy balance relative to physical disturbance, and result in more radiation from drylands returned to the atmosphere. Biocrusts cover large portions of the Earth's surface and, to our knowledge, these are the first data showing climate-induced changes to biocrust reflectance, with negative feedback in the global energy balance.

  12. Impact of fluorescence emission from gold atoms on surrounding biological tissue—implications for nanoparticle radio-enhancement

    NASA Astrophysics Data System (ADS)

    Byrne, H. L.; Gholami, Y.; Kuncic, Z.

    2017-04-01

    The addition of gold nanoparticles within target tissue (i.e. a tumour) to enhance the delivered radiation dose is a well studied radiotherapy treatment strategy, despite not yet having been translated into standard clinical practice. While several studies have used Monte Carlo simulations to investigate radiation dose enhancement by Auger electrons emitted from irradiated gold nanoparticles, none have yet considered the effects due to escaping fluorescence photons. Geant4 was used to simulate a water phantom containing 10 mg ml‑1 uniformly dispersed gold (1% by mass) at 5 cm depth. Incident monoenergetic photons with energies either side of the gold K-edge at 73 keV and 139.5 keV were chosen to give the same attenuation contrast against water, where water is used as a surrogate for biological tissue. For 73 keV incident photons, adding 1% gold into the water phantom enhances the energy deposited in the phantom by a factor of  ≈1.9 while 139.5 keV incident photons give a lower enhancement ratio of  ≈1.5. This difference in enhancement ratio, despite the equivalent attenuation ratios, can be attributed to energy carried from the target into the surrounding volume by fluorescence photons for the higher incident photon energy. The energy de-localisation is maximal just above the K-edge with 36% of the initial energy deposit in the phantom lost to escaping fluorescence photons. Conversely we find that the absorption of more photons by gold in the phantom reduces the number of scattered photons and hence energy deposited in the surrounding volume by up to 6% for incident photons below the K-edge. For incident photons above the K-edge this is somewhat offset by fluorescence. Our results give new insight into the previously unstudied centimetre scale energy deposition outside a target, which will be valuable for the future development of treatment plans using gold nanoparticles. From these results, we can conclude that gold nanoparticles

  13. Computational Fluid Dynamic Simulations of Maternal Circulation: Wall Shear Stress in the Human Placenta and Its Biological Implications

    PubMed Central

    Lecarpentier, E.; Bhatt, M.; Bertin, G. I.; Deloison, B.; Salomon, L. J.; Deloron, P.; Fournier, T.; Barakat, A. I.; Tsatsaris, V.

    2016-01-01

    Introduction In the human placenta the maternal blood circulates in the intervillous space (IVS). The syncytiotrophoblast (STB) is in direct contact with maternal blood. The wall shear stress (WSS) exerted by the maternal blood flow on the STB has not been evaluated. Our objective was to determine the physiological WSS exerted on the surface of the STB during the third trimester of pregnancy. Material and Methods To gain insight into the shear stress levels that the STB is expected to experience in vivo, we have formulated three different computational models of varying levels of complexity that reflect different physical representations of the IVS. Computations of the flow fields in all models were performed using the CFD module of the finite element code COMSOL Multiphysics 4.4. The mean velocity of maternal blood in the IVS during the third trimester was measured in vivo with dynamic MRI (0.94±0.14 mm.s-1). To investigate if the in silico results are consistent with physiological observations, we studied the cytoadhesion of human parasitized (Plasmodium falciparum) erythrocytes to primary human STB cultures, in flow conditions with different WSS values. Results The WSS applied to the STB is highly heterogeneous in the IVS. The estimated average values are relatively low (0.5±0.2 to 2.3±1.1 dyn.cm-2). The increase of WSS from 0.15 to 5 dyn.cm-2 was associated with a significant decrease of infected erythrocyte cytoadhesion. No cytoadhesion of infected erythrocytes was observed above 5 dyn.cm-2 applied for one hour. Conclusion Our study provides for the first time a WSS estimation in the maternal placental circulation. In spite of high maternal blood flow rates, the average WSS applied at the surface of the chorionic villi is low (<5 dyn.cm-2). These results provide the basis for future physiologically-relevant in vitro studies of the biological effects of WSS on the STB. PMID:26815115

  14. Assessing the potential biological implications of recreational inshore fisheries on sub-tidal fish communities of Azores (north-east Atlantic Ocean) using catch and effort data.

    PubMed

    Diogo, H; Pereira, J G

    2014-04-01

    Recreational inshore fishing activities practiced on Faial and Pico Islands (Azorean archipelago) were surveyed between October 2004 and September 2005. Recreational inshore fishers employ three main methods of fishing (shore angling, spear fishing and intertidal collecting). The method that demanded the highest fishing effort (number of fishing operations) was shore angling, followed by intertidal collecting and spear fishing. Shore angling produced the highest diversity of catch composition (38), which is in part explained by the seven fishing techniques used by shore anglers. The estimates of annual catch were higher for shore angling than spear fishing (51·2 and 6·3 t) even though they were lower than commercial artisanal fishing (442 t). The weighted mean trophic level and vulnerability index values in the fish catch were higher for spear fishing (3·4 and 50·9) than for shore angling (3·1 and 44·5). Cumulative pressure by different recreational fishing activities was detected on species already subject to a heavy pressure from Azorean commercial fishing, and on vulnerable and top-predator species. There are important biological and ecological implications whereby fishery managers should implement additional regulations such as prohibiting catches of the most vulnerable species.

  15. An In Silico Study of the Differential Effect of Oxidation on Two Biologically Relevant G-Quadruplexes: Possible Implications in Oncogene Expression

    PubMed Central

    Stebbeds, William J. D.; Lunec, Joseph; Larcombe, Lee D.

    2012-01-01

    G-quadruplex structures, formed from guanine rich sequences, have previously been shown to be involved in various physiological processes including cancer-related gene expression. Furthermore, G-quadruplexes have been found in several oncogene promoter regions, and have been shown to play a role in the regulation of gene expression. The mutagenic properties of oxidative stress on DNA have been widely studied, as has the association with carcinogenesis. Guanine is the most susceptible nucleotide to oxidation, and as such, G-rich sequences that form G-quadruplexes can be viewed as potential “hot-spots” for DNA oxidation. We propose that oxidation may destabilise the G-quadruplex structure, leading to its unfolding into the duplex structure, affecting gene expression. This would imply a possible mechanism by which oxidation may impact on oncogene expression. This work investigates the effect of oxidation on two biologically relevant G-quadruplex structures through 500 ns molecular dynamics simulations on those found in the promoter regions of the c-Kit and c-Myc oncogenes. The results show oxidation having a detrimental effect on stability of the structure, substantially destabilising the c-Kit quadruplex, and with a more attenuated effect on the c-Myc quadruplex. Results are suggestive of a novel route for oxidation-mediated oncogenesis and may have wider implications for genome stability. PMID:22928025

  16. Biology and the Government

    ERIC Educational Resources Information Center

    Reid, Roger D.

    1969-01-01

    Emphasizes the social implications of biological knowledge and discusses two main government roles in biology: (1) a creative and supportive role, including support of education and research, (2) control, regulation and protection related to the applications of biological knowledge. Public control is considered necessary in areas such as food and…

  17. Bio-ISRU Concepts using microorganisms to release O2 and H2 on Moon and Mars

    NASA Astrophysics Data System (ADS)

    Slenzka, Klaus; Kempf, Juergen

    life support system embedded in a permanent Moon or Mars base. This method demonstrates a low energetic oxygen release, a serious alternative to high the energetic oxygen separation of the ilmenite process, fluorination process, melting hydrol-ysis, vacuum distillation or photo dissociation, respectively. Not only oxygen production of the biological processes should be in focus of space application. Also the metal oxide reducing component of the process might run batteries to provide energy to devices of a Moon or Mars base.

  18. Robotic Subsurface Analyzer and Sample Handler for Resource Reconnaissance and Preliminary Site Assessment for ISRU Activities at the Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Gorevan, S. P.; Wilson, J.; Bartlett, P.; Powderly, J.; Lawrence, D.; Elphic, R.; Mungas, G.; McCullough, E.; Stoker, C.; Cannon, H.

    2004-01-01

    Since the 1960s, claims have been made that water ice deposits should exist in permanently shadowed craters near both lunar poles. Recent interpretations of data from the Lunar Prospector-Neutron Spectrometer (LP- NS) confirm that significant concentrations of hydrogen exist, probably in the form of water ice, in the permanently shadowed polar cold traps. Yet, due to the large spatial resolution (45-60 Ian) of the LP-NS measurements relative to these shadowed craters (approx.5-25 km), these data offer little certainty regarding the precise location, form or distribution of these deposits. Even less is known about how such deposits of water ice might effect lunar regolith physical properties relevant to mining, excavation, water extraction and construction. These uncertainties will need to be addressed in order to validate fundamental lunar In Situ Resource Utilization (ISRU) precepts by 2011. Given the importance of the in situ utilization of water and other resources to the future of space exploration a need arises for the advanced deployment of a robotic and reconfigurable system for physical properties and resource reconnaissance. Based on a collection of high-TRL. designs, the Subsurface Analyzer and Sample Handler (SASH) addresses these needs, particularly determining the location and form of water ice and the physical properties of regolith. SASH would be capable of: (1) subsurface access via drilling, on the order of 3-10 meters into both competent targets (ice, rock) and regolith, (2) down-hole analysis through drill string embedded instrumentation and sensors (Neutron Spectrometer and Microscopic Imager), enabling water ice identification and physical properties measurements; (3) core and unconsolidated sample acquisition from rock and regolith; (4) sample handling and processing, with minimized contamination, sample containerization and delivery to a modular instrument payload. This system would be designed with three mission enabling goals, including: (1

  19. Characterization and reactivity of the weakly bound complexes of the [H, N, S]{sup −} anionic system with astrophysical and biological implications

    SciTech Connect

    Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E.; Mogren Al-Mogren, M.; Francisco, J. S.; Hochlaf, M.

    2015-07-21

    We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS{sup −} and HSN{sup −} together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH{sup −} + N, SN{sup −} + H, SN + H{sup −}, NH + S{sup −}, and NH{sup −} + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN{sup −} and H or SH{sup −} and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH{sup −}, SN{sup −}, and NH{sup −} lead either to the formation of HNS{sup −} or HSN{sup −} in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH{sup −}, SN{sup −}, and NH{sup −}, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN{sup −} and HNS{sup −} should be incorporated into H{sub 2}S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.

  20. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: Second-order rate constants and implications for biological damage.

    PubMed

    Carroll, Luke; Pattison, David I; Fu, Shanlin; Schiesser, Carl H; Davies, Michael J; Hawkins, Clare L

    2015-07-01

    Hypochlorous acid (HOCl) and N-chloramines are produced by myeloperoxidase (MPO) as part of the immune response to destroy invading pathogens. However, MPO also plays a detrimental role in inflammatory pathologies, including atherosclerosis, as inappropriate production of oxidants, including HOCl and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity toward oxidants compared to the analogous sulfur compounds, and are known to be efficient scavengers of HOCl and other hypohalous acids produced by MPO. In this study, we examined the efficacy of a number of sulfur and selenium compounds to scavenge a range of biologically relevant N-chloramines and oxidants produced by both isolated MPO and activated neutrophils and characterized the resulting selenium-derived oxidation products in each case. A dose-dependent decrease in the concentration of each N-chloramine was observed on addition of the sulfur compounds (cysteine, methionine) and selenium compounds (selenomethionine, methylselenocysteine, 1,4-anhydro-4-seleno-L-talitol, 1,5-anhydro-5-selenogulitol) studied. In general, selenomethionine was the most reactive with N-chloramines (k2 0.8-3.4×10(3)M(-1) s(-1)) with 1,5-anhydro-5-selenogulitol and 1,4-anhydro-4-seleno-L-talitol (k2 1.1-6.8×10(2)M(-1) s(-1)) showing lower reactivity. This resulted in the formation of the respective selenoxides as the primary oxidation products. The selenium compounds demonstrated greater ability to remove protein N-chloramines compared to the analogous sulfur compounds. These reactions may have implications for preventing cellular damage in vivo, particularly under chronic inflammatory conditions.

  1. Pneumatic hydrodynamics influence transplastomic protein yields and biological responses during in vitro shoot regeneration of Nicotiana tabacum callus: Implications for bioprocess routes to plant-made biopharmaceuticals.

    PubMed

    Barretto, Sherwin S; Michoux, Franck; Hellgardt, Klaus; Nixon, Peter J

    2017-01-15

    Transplastomic plants are capable of high-yield production of recombinant biopharmaceutical proteins. Plant tissue culture combines advantages of agricultural cultivation with the bioprocess consistency associated with suspension culture. Overexpression of recombinant proteins through regeneration of transplastomic Nicotiana tabacum shoots from callus tissue in RITA(®) temporary immersion bioreactors has been previously demonstrated. In this study we investigated the hydrodynamics of periodic pneumatic suspension of liquid medium during temporary immersion culture (4 min aeration every 8 h), and the impact on biological responses and transplastomic expression of fragment C of tetanus toxin (TetC). Biomass was grown under a range of aeration rates for 3, 20 and 40-day durations. Growth, mitochondrial activity (a viability indicator) and TetC protein yields were correlated against the hydrodynamic parameters, shear rate and energy dissipation rate (per kg of medium). A critical aeration rate of 440 ml min(-1) was identified, corresponding to a shear rate of 96.7 s(-1), pneumatic power input of 8.8 mW kg(-1) and initial 20-day pneumatic energy dissipation of 127 J kg(-1), at which significant reductions in biomass accumulation and mitochondrial activity were observed. There was an exponential decline in TetC yields with increasing aeration rates at 40 days, across the entire range of conditions tested. These observations have important implications for the optimisation and scale-up of transplastomic plant tissue culture bioprocesses for biopharmaceutical production.

  2. Using Course Syllabi to Assess Research Expectations of Biology Majors: Implications for Further Development of Information Literacy Skills in the Curriculum

    ERIC Educational Resources Information Center

    Dinkelman, Andrea L.

    2010-01-01

    This article describes an analysis of course syllabi from selected courses in the biology curriculum at Iowa State University. The purpose of this research was to learn about the numbers and types of information literacy assignments given to students majoring in biology. Overall, the most common assignment type for biology majors was a lab report…

  3. Openness to and preference for attributes of biologic therapy prior to initiation among patients with rheumatoid arthritis: patient and rheumatologist perspectives and implications for decision making

    PubMed Central

    Bolge, Susan C; Goren, Amir; Brown, Duncan; Ginsberg, Seth; Allen, Isabel

    2016-01-01

    Purpose Despite American College of Rheumatology recommendations, appropriate and timely initiation of biologic therapies does not always occur. This study examined openness to and preference for attributes of biologic therapies among patients with rheumatoid arthritis (RA), differences in patients’ and rheumatologists’ perceptions, and discussions around biologic therapy initiation. Patients and methods A self-administered online survey was completed by 243 adult patients with RA in the US who were taking disease-modifying antirheumatic drugs (DMARDs) and had never taken, but had discussed biologic therapy with a rheumatologist. Patients were recruited from a consumer panel (n=142) and patient advocacy organization (n=101). A separate survey was completed by 103 rheumatologists who treated at least 25 patients with RA per month with biologic therapy. Descriptive and bivariate analyses were conducted separately for patients and rheumatologists. Attributes of biologic therapy included route of administration (intravenous infusion or subcutaneous injection), frequency of injections/infusions, and duration of infusion. Results Over half of patients (53.1%) were open to both intravenous infusion and subcutaneous injection, whereas rheumatologists reported 40.7% of patients would be open to both. Only 26.3% of patients strongly preferred subcutaneous injection, whereas rheumatologists reported 35.2%. Discrepancies were even more pronounced among specific patient types (eg, older vs younger patients and Medicare recipients). Among patients, 23% reported initiating discussion about biologics and 54% reported their rheumatologist initiated the discussion. A majority of rheumatologists reported discussing in detail several key aspects of biologics, whereas a minority of patients reported the same. Conclusion Preferences differed among patients with RA from rheumatologists’ perceptions of these preferences for biologic therapy, including greater openness to intravenous

  4. Multiparasitism by Tetrastichus planipennisi (Hymenoptera: Eulophidae) and Spathius agrili (Hymenoptera:Braconidae): Implication for biological control of the Emerald Ash Borer (Coleoptera: Buprestidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interspecific competition among different species of insect parasitoids may affect the establishment or efficacies of these species in biological control of targeted pests. The endoparasitoid Tetrastichus planipennisi Yang and the ectoparasitoid Spathius agrili Yang, two gregarious larval parasito...

  5. Responses of an idiobiont ectoparasitoid, Spathius galinae, to host larvae parasitized by the koinobiont endoparasitoid Tetrastichus planipennisi: implications for biological control of emerald ash borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding interspecific competition among insect parasitoids is important in designing classical biological control programs that involve multiple species introductions. Spathius galinae, a new idiobiont ectoparasitoid from the Russian Far East, is currently being considered for introduction to ...

  6. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Liu, Jing; Dong, Faqin

    2017-02-01

    Mackinawite (FeS), widespread in low temperature aquatic environments, is generally considered to be the first Fe sulfide formed in sedimentary environments which has shown effective immobilization of heavy metals and toxic oxyanions through various sorption reactions. The spectroscopic study researches on mackinawite formed by FRB and SRB and its environmental implication for in-situ remediation of acid mine drainage where contains large amounts of Fe3 + and SO42 -. The XRD result of biologically synthetic particles shows that these particles are mainly composed of mackinawite (FeS0.9). The Raman peaks observed at 208, 256, 282, 298 cm- 1 are attributed to Fesbnd S stretching vibrations of mackinawite. The Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) reveals that the diagnostic bands of low intensity for these FeS particles occur at 412-425 cm- 1 and 607-622 cm- 1, which are assigned to the stretching vibrations of Ssbnd S and Fesbnd S bonds. The Raman and IR vibrations from organic components both confirm that these particles are biogenic origin. The IR spectra of biologically synthesized mackinawite for different aging times show that the nano-sized particles mackinwate will be completely oxidized within 10 h. All these findings have good implications for in-situ remediation of acid mine drainage.

  7. Population Genomics and the Statistical Values of Race: An Interdisciplinary Perspective on the Biological Classification of Human Populations and Implications for Clinical Genetic Epidemiological Research

    PubMed Central

    Maglo, Koffi N.; Mersha, Tesfaye B.; Martin, Lisa J.

    2016-01-01

    The biological status and biomedical significance of the concept of race as applied to humans continue to be contentious issues despite the use of advanced statistical and clustering methods to determine continental ancestry. It is thus imperative for researchers to understand the limitations as well as potential uses of the concept of race in biology and biomedicine. This paper deals with the theoretical assumptions behind cluster analysis in human population genomics. Adopting an interdisciplinary approach, it demonstrates that the hypothesis that attributes the clustering of human populations to “frictional” effects of landform barriers at continental boundaries is empirically incoherent. It then contrasts the scientific status of the “cluster” and “cline” constructs in human population genomics, and shows how cluster may be instrumentally produced. It also shows how statistical values of race vindicate Darwin's argument that race is evolutionarily meaningless. Finally, the paper explains why, due to spatiotemporal parameters, evolutionary forces, and socio-cultural factors influencing population structure, continental ancestry may be pragmatically relevant to global and public health genomics. Overall, this work demonstrates that, from a biological systematic and evolutionary taxonomical perspective, human races/continental groups or clusters have no natural meaning or objective biological reality. In fact, the utility of racial categorizations in research and in clinics can be explained by spatiotemporal parameters, socio-cultural factors, and evolutionary forces affecting disease causation and treatment response. PMID:26925096

  8. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  9. Unusual five copies and dual forms of nrdB in “Candidatus Liberibacter asiaticus”: biological implications and PCR detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Candidatus Liberibacter asiaticus” (CLas), an alpha-proteobacterium, is associated with citrus Huanglongbing (HLB, yellow shoot disease), which is currently threatening citrus production worldwide. Research in CLas biology is challenging because the bacterium cannot be cultivated in vitro. In this ...

  10. Microbial Mats in the Tswaing Impact Crater: Results of a South African Exobiology Expedition and Implications for the Search for Biological Molecules on Mars

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.; Brandt, D.; Hand, K.; Lee, P. C.

    2001-01-01

    We describe microbial mats from the Tswaing impact crater in South Africa. The mats provide insights into the unique biological characteristics of impact craters and can help strategies for the search for biomolecules on Mars. Additional information is contained in the original extended abstract.

  11. Trade-offs in parasitism efficiency and brood size mediate parasitoid coexistence, with implications for biological control of the invasive emerald ash borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parasitoids often are selected for use as biological control agents because of their high host specificity, yet such host specificity can result in strong interspecific competition. However, few studies have examined if and how various extrinsic factors (such as parasitism efficiency) influence the ...

  12. Mating disruption by aerial application of sex pheromone against the invasive light brown apple moth and implications for the management of biological invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological invasions resulting from international trade can have major ecological and economic impacts. Eradication can be a viable strategy during the early stage of an invasion but there is a need for the development of suitable tactics that are both effective and have minimal non-target effects. ...

  13. Wheat curl mite (Aceria tosichella s.l.) cryptic biotypes with divergent host ranges: Implications for using Eriophyidae for biological control of invasive grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-specificity is the most important criterion for biological control agents (BCAs) and is particularly important for BCAs of invasive grasses that are close relatives of grass crop species. Plant-feeding mites in the family Eriophyidae are often highly host-specific. A study was conducted on th...

  14. The dynamic range of biologic functions and variation of many environmental cues may be declining in the modern age: implications for diseases and therapeutics.

    PubMed

    Yun, Anthony J; Bazar, Kimberly A; Gerber, Anthony; Lee, Patrick Y; Daniel, Stephanie M

    2005-01-01

    We hypothesize that declining dynamic range and variation of environmental cues may contribute to health dysfunctions, and that judicious expansion of biologic dynamic ranges may be beneficial. Three disparate examples involving the endocrine, autonomic, and musculoskeletal systems are discussed. Daytime sheltering, optical shading, and nighttime use of artificial light may reduce circadian luminal variation. The resulting melatonin alterations may contribute to systemic dysfunctions. Loss of temporal variation of other hormones may contribute to biologic dysfunctions, especially those involving the hypothalamic-pituitary axis. Reduced variation of physical exertion, environmental stressors, and thermal gradients that characterize modern lifestyles may reduce the autonomic dynamic range resulting in lowered heart rate variability and a myriad of systemic dysfunctions. The health benefits of activities such as exercise, meditation, acupuncture, coitus, and laughter may operate through increasing autonomic variability. Reduced physical exertion also accounts for declining dynamic range of musculoskeletal function. The resulting muscle atrophy, fat infiltration, and sarcomere shortening may not only have deleterious local effects, but may also be involved in systemic metabolic dysfunctions such as insulin resistance. The extent to which our endogenous systems rely on environmental variation for self-tuning and the impact that under-utilization of compensatory mechanisms has on biologic function are not well understood. Modern therapeutic approaches generally result in reversion to the mean of physiologic functions and may buffer against variation. For example, beta-blockers are given to reduce adrenergic excess, insulin to treat insulin insufficiency, serotonin-reuptake inhibitors for depression, and refractive lenses for myopia. By undermining the demand for native compensatory functions, such therapeutic strategies may actually impair future ability to respond to

  15. Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of Chromobacterium violaceum, the biosynthetic implications and the biological activity of chromoazepinone A and B.

    PubMed

    Mizuoka, Takaaki; Toume, Kazufumi; Ishibashi, Masami; Hoshino, Tsutomu

    2010-07-21

    Chromobacterium violaceum produces tryptophan metabolites, purple pigments of violacein and deoxyviolacein. A blocked mutant was prepared with N-methyl-N'-nitrosoguanidine to gain insights into the biosynthetic mechanisms of the pigments. Five tryptophan metabolites were isolated: three novel compounds, named chromoazepinone A, B and C and two known compounds, chromopyrrolic acid and arcyriarubin A. The structure determinations of the three novel compounds are described. The biosynthetic pathways of these metabolites are proposed on the basis of the findings about violacein biosynthesis. Chromoazepinone A and B were found to have an interesting effect of inhibition of Wnt signal transcriptional activity, which is implicated in the formation of numerous tumors when aberrantly activated.

  16. Temporal Diversity and Abundance Patterns of Parasitoids of Fruit-Infesting Tephritidae (Diptera) in the Argentinean Yungas: Implications for Biological Control.

    PubMed

    Schliserman, Pablo; Aluja, Martin; Rull, Juan; Ovruski, Sergio M

    2016-10-01

    A 4-yr study was done to analyze seasonal patterns underlying host plant-fruit fly-parasitoid interactions in a secondary forest in the Argentinean Yunga and its importance for the implementation of conservation and augmentative biological control. Larval-pupal hymenopteran parasitoids associated with all host plants and fruit fly species were identified and the seasonal occurrence of fruit, infestation levels, parasitism percentage, and relative parasitoid abundance were determined. Three fruit fly species in two genera were found in association with surveyed plants, two of which (Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann)) are of major economic importance. Infestation levels were strongly influenced by environmental factors and peak fruit availability. Five fruit fly parasitoid species were recovered from fly pupae, four braconid species, and one figitid. Time windows for fruit fly population growth were pinpointed. Based on results, the present analysis proposes an effective fruit fly biological control strategy tailored for the northwestern Argentinean citrus-producing area.

  17. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    PubMed

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  18. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically

  19. Extracellular vesicles in the biology of brain tumour stem cells--Implications for inter-cellular communication, therapy and biomarker development.

    PubMed

    Nakano, Ichiro; Garnier, Delphine; Minata, Mutsuko; Rak, Janusz

    2015-04-01

    Extracellular vesicles (EVs) act as carriers of molecular and oncogenic signatures present in subsets of tumour cells and tumour-associated stroma, and as mediators of intercellular communication. These processes likely involve cancer stem cells (CSCs). EVs represent a unique pathway of cellular export and cell-to-cell transfer of insoluble molecular regulators such as membrane receptors, signalling proteins and metabolites, thereby influencing the functional integration of cancer cell populations. While mechanisms that control biogenesis, cargo and uptake of different classes of EVs (exosomes, microvesicles, ectosomes, large oncosomes) are poorly understood, they likely remain under the influence of stress-responses, microenvironment and oncogenic processes that define the biology and heterogeneity of human cancers. In glioblastoma (GBM), recent molecular profiling approaches distinguished several disease subtypes driven by distinct molecular, epigenetic and mutational mechanisms, leading to formation of proneural, neural, classical and mesenchymal tumours. Moreover, molecularly distinct clonal cellular lineages co-exist within individual GBM lesions, where they differentiate according to distinct stem cell hierarchies resulting in several facets of tumour heterogeneity and the related potential for intercellular interactions. Glioma stem cells (GSCs) may carry signatures of either proneural or mesenchymal GBM subtypes and differ in several biological characteristics that are, at least in part, represented by the output and repertoire of EV production (vesiculome). We report that vesiculomes differ between known GBM subtypes. EVs may also reflect and influence the equilibrium of the stem cell hierarchy, contain oncogenic drivers and modulate the microenvironment (vascular niche). The GBM/GSC subtype-specific differentials in EV cargo of proteins, transcripts, microRNA and DNA may enable detection of the dynamics of the stem cell compartment and result in

  20. Development of garlic bioactive compounds analytical methodology based on liquid phase microextraction using response surface design. Implications for dual analysis: Cooked and biological fluids samples.

    PubMed

    Ramirez, Daniela Andrea; Locatelli, Daniela Ana; Torres-Palazzolo, Carolina Andrea; Altamirano, Jorgelina Cecilia; Camargo, Alejandra Beatriz

    2017-01-15

    Organosulphur compounds (OSCs) present in garlic (Allium sativum L.) are responsible of several biological properties. Functional foods researches indicate the importance of quantifying these compounds in food matrices and biological fluids. For this purpose, this paper introduces a novel methodology based on dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography with ultraviolet detector (HPLC-UV) for the extraction and determination of organosulphur compounds in different matrices. The target analytes were allicin, (E)- and (Z)-ajoene, 2-vinyl-4H-1,2-dithiin (2-VD), diallyl sulphide (DAS) and diallyl disulphide (DADS). The microextraction technique was optimized using an experimental design, and the analytical performance was evaluated under optimum conditions. The desirability function presented an optimal value for 600μL of chloroform as extraction solvent using acetonitrile as dispersant. The method proved to be reliable, precise and accurate. It was successfully applied to determine OSCs in cooked garlic samples as well as blood plasma and digestive fluids.

  1. HDFx: a novel biologic immunomodulator accelerates wound healing and is suggestive of unique regenerative powers: potential implications for the warfighter and disaster victims.

    PubMed

    Altura, Burton M; Carella, Anthony; Gebrewold, Asefa

    2012-01-01

    Recently, we reported on the discovery of a new, conserved biologic protein (35-40 KDa), termed HDFx, that protects rats, guinea-pigs, mice, and rabbits against lethal hemorrhage, endotoxins, intestinal ischemic-shock, and traumatic injuries. It was found to stimulate several arms of the immune system. The present report demonstrates, for the first time, that HDFx accelerates wound healing in two different models (excision wound model; and incision wound model) in rats. The results shown, herein, indicate that HDFx produces greater rates of wound contraction, greater tensile strength, and more rapid healing than controls. Our new data also show that this biologic increases hydroxyproline content of granulation tissue coupled with a reduction in superoxide dismutase (SOD). In addition, we show that HDFx increases the levels of serum ascorbic acid and stimulates the mononuclear cells of the reticuloendothelial system (RES). Overall, these data suggest that HDFx may possess unique regenerative powers. We, thus, believe that HDFx can be of great potential use in diverse types of wounds which, otherwise, could result in difficult to treat infections and thus prevent sepsis and loss of body parts from amputations.

  2. Examining the reproducibility of stable isotope ratios in the marine bivalve, Astarte borealis, from populations in the White Sea, Russia: implications for biological consequences of climate change

    NASA Astrophysics Data System (ADS)

    McNabb, Justin; Surge, Donna

    2015-04-01

    Shells of the marine bivalve, Astarte, are uniquely suited to investigate links between environmental/climate change and biological consequences because of their change in size and biogeographic distribution through time. For example, are there corresponding changes in lifespan and biogeographic distribution depending on warm vs. cold climate states? Does warm vs. cold climate state result in longer or shorter lifespans? Early studies of Astarte have documented a decrease in shell size through geologic time. Modern specimens are much smaller than those from the mid Pliocene at similar latitudes. Astarte had a wide latitudinal and cosmopolitan distribution in the western North Atlantic during the Oligocene to Pliocene. During the early Pleistocene, most of the warm-water species became extinct, and today, their biogeographic distribution is mostly restricted to the northern Pacific, Atlantic, and Arctic Oceans. To answer questions linking biological consequences and climate change, we must first decipher ontogenetic changes in shell growth of modern specimens. Preliminary data using isotope sclerochronology identified slowed shell growth from late summer to winter in modern specimens from the White Sea, Russia, possibly triggered by increasing freshwater input and decreasing temperatures. Here, we present new data examining the reproducibility of isotopic time series and season of slowed growth among modern individuals collected at the same time from the same population.

  3. Small molecule intercalation with double stranded DNA: implications for normal gene regulation and for predicting the biological efficacy and genotoxicity of drugs and other chemicals.

    PubMed

    Hendry, Lawrence B; Mahesh, Virendra B; Bransome, Edwin D; Ewing, Douglas E

    2007-10-01

    The binding of small molecules to double stranded DNA including intercalation between base pairs has been a topic of research for over 40 years. For the most part, however, intercalation has been of marginal interest given the prevailing notion that binding of small molecules to protein receptors is largely responsible for governing biological function. This picture is now changing with the discovery of nuclear enzymes, e.g. topoisomerases that modulate intercalation of various compounds including certain antitumor drugs and genotoxins. While intercalators are classically flat, aromatic structures that can easily insert between base pairs, our laboratories reported in 1977 that a number of biologically active compounds with greater molecular thickness, e.g. steroid hormones, could fit stereospecifically between base pairs. The hypothesis was advanced that intercalation was a salient feature of the action of gene regulatory molecules. Two parallel lines of research were pursued: (1) development of technology to employ intercalation in the design of safe and effective chemicals, e.g. pharmaceuticals, nutraceuticals, agricultural chemicals; (2) exploration of intercalation in the mode of action of nuclear receptor proteins. Computer modeling demonstrated that degree of fit of certain small molecules into DNA intercalation sites correlated with degree of biological activity but not with strength of receptor binding. These findings led to computational tools including pharmacophores and search engines to design new drug candidates by predicting desirable and undesirable activities. The specific sequences in DNA into which ligands best intercalated were later found in the consensus sequences of genes activated by nuclear receptors implying intercalation was central to their mode of action. Recently, the orientation of ligands bound to nuclear receptors was found to match closely the spatial locations of ligands derived from intercalation into unwound gene sequences

  4. Clinical Implications for the Timely Diagnosis of Mycobacterium marinum in the Age of Biologic Therapy: A Case Report and Review of the Literature

    PubMed Central

    Edgar, Kelle

    2017-01-01

    Mycobacterium marinum infections typically present as cutaneous nodular lesions with a sporotrichoid lymphatic spread on extensor surfaces of extremities. The natural history of this infection can be altered if the host is immunosuppressed, leading to disseminated presentations. A detailed exposure history and high degree of suspicion for this indolent pathogen are often required for the correct diagnosis of this disease. We present a case of a 67-year-old male misdiagnosed with seronegative rheumatoid arthritis presenting with rheumatic nodules. Initiation of chronic immunosuppressant therapy including biologic monoclonal antibodies resulted in the exacerbation of initially localized disease to broadly disseminated lymphatic, joint, and myotendinous granulomatous disease and led to delay in the correct diagnosis. Cessation of immunosuppressants, with a prolonged course of antimicrobial therapy and multiple surgical debridements were required for cure. PMID:28392952

  5. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  6. A paradigm for viewing biologic systems as scale-free networks based on energy efficiency: implications for present therapies and the future of evolution.

    PubMed

    Yun, Anthony J; Lee, Patrick Y; Doux, John D

    2006-01-01

    A network constitutes an abstract description of the relationships among entities, respectively termed links and nodes. If a power law describes the probability distribution of the number of links per node, the network is said to be scale-free. Scale-free networks feature link clustering around certain hubs based on preferential attachments that emerge due either to merit or legacy. Biologic systems ranging from sub-atomic to ecosystems represent scale-free networks in which energy efficiency forms the basis of preferential attachments. This paradigm engenders a novel scale-free network theory of evolution based on energy efficiency. As environmental flux induces fitness dislocations and compels a new meritocracy, new merit-based hubs emerge, previously merit-based hubs become legacy hubs, and network recalibration occurs to achieve system optimization. To date, Darwinian evolution, characterized by innovation sampling, variation, and selection through filtered termination, has enabled biologic progress through optimization of energy efficiency. However, as humans remodel their environment, increasing the level of unanticipated fitness dislocations and inducing evolutionary stress, the tendency of networks to exhibit inertia and retain legacy hubs engender maladaptations. Many modern diseases may fundamentally derive from these evolutionary displacements. Death itself may constitute a programmed adaptation, terminating individuals who represent legacy hubs and recalibrating the network. As memes replace genes as the basis of innovation, death itself has become a legacy hub. Post-Darwinian evolution may favor indefinite persistence to optimize energy efficiency. We describe strategies to reprogram or decommission legacy hubs that participate in human disease and death.

  7. Options for human {open_quote}{open_quote}return to the moon{close_quote}{close_quote} using tomorrow{close_quote}s SSTO, ISRU, and LOX-augmented NTR technologies

    SciTech Connect

    Borowski, S.K.

    1996-03-01

    The feasibility of conducting human missions to the Moon is examined assuming the use of three {open_quote}{open_quote}high leverage{close_quote}{close_quote} technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) {open_quote}{open_quote}{ital in}-{ital situ}{close_quote}{close_quote} {ital resource} {ital utilization} (ISRU){emdash}specifically {open_quote}{open_quote}lunar-derived{close_quote}{close_quote} liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the {open_quote}{open_quote}compact{close_quote}{close_quote} dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of {approximately}60 t (3 SSTO launches). Using {approximately}8 t of LUNOX to {open_quote}{open_quote}reoxidize{close_quote}{close_quote} the LERV for a {open_quote}{open_quote}direct return{close_quote}{close_quote} flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine{close_quote}s ability to operate at any oxygen/hydrogen mixture ratio from 0 to 7 with high specific impulse ({approximately}940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV{close_quote}s {open_quote}{open_quote}propulsion{close_quote}{close_quote} and {open_quote}{open_quote}propellant modules{close_quote}{close_quote}. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. {copyright} {ital 1996 American Institute of Physics.}

  8. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin.

    PubMed

    Slominski, Andrzej T; Zmijewski, Michal A; Semak, Igor; Sweatman, Trevor; Janjetovic, Zorica; Li, Wei; Zjawiony, Jordan K; Tuckey, Robert C

    2009-01-01

    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3betaHSD for 7DHP (V(m)/K(m)) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC-->22(OH)7DHC-->20,22(OH)(2)7DHC-->7DHP, with potential further metabolism of 7DHP mediated by 3betaHSD or CYP17, depending on mammalian species. The 5-7 dienal intermediates of the pathway can be a source

  9. Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

    PubMed Central

    Slominski, Andrzej T.; Zmijewski, Michal A.; Semak, Igor; Sweatman, Trevor; Janjetovic, Zorica; Li, Wei; Zjawiony, Jordan K.; Tuckey, Robert C.

    2009-01-01

    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of

  10. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.

    PubMed

    Di Lonardo, Maria Chiara; Franzese, Maurizio; Costa, Giulia; Gavasci, Renato; Lombardi, Francesco

    2016-01-01

    This work assessed the quality in terms of solid recovered fuel (SRF) definitions of the dry light flow (until now indicated as refuse derived fuel, RDF), heavy rejects and stabilisation rejects, produced by two mechanical biological treatment plants of Rome (Italy). SRF classification and specifications were evaluated first on the basis of RDF historical characterisation methods and data and then applying the sampling and analytical methods laid down by the recently issued SRF standards. The results showed that the dry light flow presented a worst SRF class in terms of net calorific value applying the new methods compared to that obtained from RDF historical data (4 instead of 3). This lead to incompliance with end of waste criteria established by Italian legislation for SRF use as co-fuel in cement kilns and power plants. Furthermore, the metal contents of the dry light flow obtained applying SRF current methods proved to be considerably higher (although still meeting SRF specifications) compared to those resulting from historical data retrieved with RDF standard methods. These differences were not related to a decrease in the quality of the dry light flow produced in the mechanical-biological treatment plants but rather to the different sampling procedures set by the former RDF and current SRF standards. In particular, the shredding of the sample before quartering established by the latter methods ensures that also the finest waste fractions, characterised by higher moisture and metal contents, are included in the sample to be analysed, therefore affecting the composition and net calorific value of the waste. As for the reject flows, on the basis of their SRF classification and specification parameters, it was found that combined with the dry light flow they may present similar if not the same class codes as the latter alone, thus indicating that these material flows could be also treated in combustion plants instead of landfilled. In conclusion, the

  11. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.

    PubMed

    Littlejohn, George R; Mansfield, Jessica C; Christmas, Jacqueline T; Witterick, Eleanor; Fricker, Mark D; Grant, Murray R; Smirnoff, Nicholas; Everson, Richard M; Moger, Julian; Love, John

    2014-01-01

    Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the "negative space" within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

  12. Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: Implications for acid mine drainage treatment and neutralization.

    PubMed

    Liu, Jing; Zhou, Lei; Dong, Faqin; Hudson-Edwards, Karen A

    2017-02-01

    The iron-reducing bacterium Acidiphilium cryputum JF-5 and a sulfate reducing bacterium (SRB) collected and purified from the mine drainage of a copper mine in the northwest of Sichuan Province, China, were used to biologically synthesize nano-sized FeS-coated limestone to remove As(V) from solution. The adsorption efficiency of As(V) is improved from 6.64 μg/g with limestone alone to 187 μg/g with the FeS coated limestone in both batch and column experiments. The hydraulic conductivity of the columns are also improved by the presence of the nano-sized FeS coatings, but the solution neutralization performance of the limestone can be reduced by passivation by gypsum and Fe(III) precipitates. Calculations for FeS-coated limestone dissolution experiments show that the process can be described as nCa.sol = At(1/2) - nCa,gyp. The results suggest that FeS-coated limestone may be an effective medium for remediating As(V)-bearing solutions such as acid mine drainage in systems such as Permeable Reactive Barriers.

  13. Use of a cytogenetic whole-genome comparison to resolve phylogenetic relationships among three species: implications for mammalian systematics and conservation biology.

    PubMed

    Yu, Hon-Tsen; Ma, Gwo-Chin; Lee, Dong-Jay; Chin, Shih-Chien; Chen, Ting-Li; Tsao, Hsien-Shao; Lin, Wen-Hsiang; Wu, Sheng-Hai; Lin, Chyi-Chyang; Chen, Ming

    2012-05-01

    The objective was to apply a novel modification of a genome-wide, comparative cytogenetic technique (comparative genomic hybridization, comparative genomic hybridization (CGH)), to study species belonging to the myrmecophagous (ant/termite eating) mammalian orders/superorders (Pholidota, Tubulidentata, Carnivora, and Xenarthra), as a model for other applications in mammalian systematics and conservation biology. In this study, CGH was applied to high-quality metaphase spreads of pangolin (Pholidota), using probes of sloth and canine (Xenarthra and Carnivora, respectively) genomic DNA labeled with different fluorophores, thereby facilitating analysis of the visible color spectrum on pangolin karyotypes. Our results posited that pholidotes are closer to carnivores than to xenarthrans, which confirmed the current consensus that myrmecophagy in these mammalian lineages was more likely because of homoplasy (convergent evolution) than being an ancestral character. Since the modified CGH technique used is genome-wide, has chromosome-level resolution, and does not need full genome sequencing, it has considerable potential in systematics and other fields.

  14. Dangerous liaisons: anion-induced protonation in phosphate-polyamine interactions and their implications for the charge states of biologically relevant surfaces.

    PubMed

    Laucirica, Gregorio; Marmisollé, Waldemar A; Azzaroni, Omar

    2017-03-22

    Although not always considered a preponderant interaction, amine-phosphate interactions are omnipresent in multiple chemical and biological systems. This study aims to answer questions that are still pending about their nature and consequences. We focus on the description of the charge state as surface charges constitute directing agents of the interaction of amine groups with either natural or synthetic counterparts. Our results allow us to quantitatively determine the relative affinities of HPO4(2-) and H2PO4(-) from the analysis of the influence of phosphates on the zeta-potential of amino-functionalized surfaces in a broad pH range. We show that phosphate anions enhance the protonation of amino groups and, conversely, charged amines induce further proton dissociation of phosphates, yielding a complex dependence of the surface effective charge on the pH and phosphate concentration. We also demonstrate that phosphate-amine interaction is specific and the modulation of surface charge occurs in the physiological phosphate concentration range, emphasizing its biochemical and biotechnological relevance and the importance of considering this veiled association in both in vivo and in vitro studies.

  15. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways

    SciTech Connect

    Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas; Van Seuningen, Isabelle

    2015-01-16

    Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our in vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.

  16. All biology is computational biology

    PubMed Central

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  17. All biology is computational biology.

    PubMed

    Markowetz, Florian

    2017-03-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

  18. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology.

    PubMed

    Simbari, Fabio; McCaskill, Jana; Coakley, Gillian; Millar, Marissa; Maizels, Rick M; Fabriás, Gemma; Casas, Josefina; Buck, Amy H

    2016-01-01

    , which has not been widely reported and could have implications for the biochemical or immunomodulatory properties of EVs. Further comparative analyses such as those described here will shed light on diversity in the molecular properties of EVs that enable them to function in cross-species communication.

  19. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology

    PubMed Central

    Simbari, Fabio; McCaskill, Jana; Coakley, Gillian; Millar, Marissa; Maizels, Rick M.; Fabriás, Gemma; Casas, Josefina; Buck, Amy H.

    2016-01-01

    , which has not been widely reported and could have implications for the biochemical or immunomodulatory properties of EVs. Further comparative analyses such as those described here will shed light on diversity in the molecular properties of EVs that enable them to function in cross-species communication. PMID:27389011

  20. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning

    PubMed Central

    Escolar, Cristina; Martínez, Isabel; Bowker, Matthew A.; Maestre, Fernando T.

    2012-01-01

    Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics. PMID:23045707

  1. Structure of the Type III Pantothenate Kinase from Bacillus Anthracis at 2.0 A Resolution: Implications for Coenzyme A-Dependent Redox Biology

    SciTech Connect

    Nicely,N.; Parsonage, D.; Paige, C.; Newton, G.; Fahey, R.; Leonardi, R.; Jackowski, S.; Mallett, T.; Claiborne, A.

    2007-01-01

    Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-89]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 {angstrom}, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen.

  2. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases.

    PubMed

    Wallace, Douglas C

    2013-07-19

    Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist-selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies.

  3. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning.

    PubMed

    Escolar, Cristina; Martínez, Isabel; Bowker, Matthew A; Maestre, Fernando T

    2012-11-19

    Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics.

  4. De Novo Transcriptome Analysis of Oncomelania hupensis after Molluscicide Treatment by Next-Generation Sequencing: Implications for Biology and Future Snail Interventions

    PubMed Central

    Zhao, Qin Ping; Xiong, Tao; Xu, Xing Jian; Jiang, Ming Sen; Dong, Hui Fen

    2015-01-01

    The freshwater snail Oncomelania hupensis is the only intermediate host of Schistosoma japonicum, which causes schistosomiasis. This disease is endemic in the Far East, especially in mainland China. Because niclosamide is the only molluscicide recommended by the World Health Organization, 50% wettable powder of niclosamide ethanolamine salt (WPN), the only chemical molluscicide available in China, has been widely used as the main snail control method for over two decades. Recently, a novel molluscicide derived from niclosamide, the salt of quinoid-2',5-dichloro-4'-nitro-salicylanilide (Liu Dai Shui Yang An, LDS), has been developed and proven to have the same molluscicidal effect as WPN, with lower cost and significantly lower toxicity to fish than WPN. The mechanism by which these molluscicides cause snail death is not known. Here, we report the next-generation transcriptome sequencing of O. hupensis; 145,008,667 clean reads were generated and assembled into 254,286 unigenes. Using GO and KEGG databases, 14,860 unigenes were assigned GO annotations and 4,686 unigenes were mapped to 250 KEGG pathways. Many sequences involved in key processes associated with biological regulation and innate immunity have been identified. After the snails were exposed to LDS and WPN, 254 unigenes showed significant differential expression. These genes were shown to be involved in cell structure defects and the inhibition of neurohumoral transmission and energy metabolism, which may cause snail death. Gene expression patterns differed after exposure to LDS and WPN, and these differences must be elucidated by the identification and annotation of these unknown unigenes. We believe that this first large-scale transcriptome dataset for O. hupensis will provide an opportunity for the in-depth analysis of this biomedically important freshwater snail at the molecular level and accelerate studies of the O. hupensis genome. The data elucidating the molluscicidal mechanism will be of great

  5. A bioactive probe for glutathione-dependent antioxidant capacity in breast cancer patients: Implications in measuring biological effects of arsenic compounds

    PubMed Central

    Li, Jie; Zhang, Donglan; Jefferson, Pearl A.; Ward, Kathleen M.; Ayene, Iraimoudi S.

    2013-01-01

    Introduction Glutathione, a major cellular non-protein thiol (NPSH), serves a central role in repairing damage induced by cancer drugs, pollutants and radiation and in the detoxification of several cancer chemotherapeutic drugs and toxins. Current methods measure glutathione levels only, which require cellular extraction, rather than the glutathione recycling dependent antioxidant activity in intact cells. Here, we present a novel method using a bioactive probe of the oxidative pentose phosphate cycle, termed the OxPhos™ test, to quantify glutathione recycling dependent antioxidant activity in whole blood and intact human and rodent cells without the need for the isolation and cytoplasm extraction of cells. Methods OxPhos™ test kit (Rockland Immunochemicals, USA), which uses hydroxyethyldisulfide (HEDS) as a probe for the oxidative pentose phosphate cycle, was used in these studies. The results with OxPhos™ test kit in human blood and intact cells were compared with total thiol and high pressure liquid chromatography/electrochemical detection of HEDS metabolism. Results The OxPhos™ test measured glutathione-dependent antioxidant activity both in intact human and rodent cells and breast cancer patient’s blood with a better correlation coefficient and biological variability than the thiol assay. Additionally, human blood and mammalian cells treated with various arsenicals showed a concentration-dependent decrease in activity. Discussion The results demonstrate the application of this test for measuring the antioxidant capacity of blood and the effects of environmental pollutants/toxins. It opens up new avenues for an easy and reliable assessment of glutathione-dependent antioxidant capacity in various diseases such as stroke, blood borne diseases, infection, cardiovascular disease and other oxidative stress related diseases and as a prognostic indicator of chemotherapy response and toxicity. The use of this approach in pharmacology/toxicology including

  6. The gap junction as a "Biological Rosetta Stone": implications of evolution, stem cells to homeostatic regulation of health and disease in the Barker hypothesis.

    PubMed

    Trosko, James E

    2011-03-01

    The discovery of the gap junction structure, its functions and the family of the "connexin" genes, has been basically ignored by the major biological disciplines. These connexin genes code for proteins that organize to form membrane-associated hemi-channels, "connexons", co-join with the connexons of neighboring cells to form gap junctions. Gap junctions appeared in the early evolution of the metazoan. Their fundamental functions, (e.g., to synchronize electrotonic and metabolic functions of societies of cells, and to regulate cell proliferation, cell differentiation, and apoptosis), were accomplished via integrating the extra-cellular triggering of intra-cellular signaling, and therefore, regulating gene expression. These functions have been documented by genetic mutations of the connexin genes and by chemical modulation of gap junctions. Via genetic alteration of connexins in knock-out and transgenic mice, as well as inherited connexin mutations in various human syndromes, the gap junction has been shown to be directly linked to many normal cell functions and multiple diseases, such as birth defects, reproductive, neurological disorders, immune dysfunction and cancer. Specifically, the modulation of gap junctional intercellular communication (GJIC), either by increasing or decreasing its functions by non-mutagenic chemicals or by oncogenes or tumor suppressor genes in normal or "initiated" stem cells and their progenitor cells, can have a major impact on tumor promotion or cancer chemoprevention and chemotherapy. The overview of the roles of the gap junction in the evolution of the metazoan and its potential in understanding a "systems" view of human health and aging and the diseases of aging will be attempted.

  7. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases

    PubMed Central

    Wallace, Douglas C.

    2013-01-01

    Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist–selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies. PMID:23754818

  8. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission.

    PubMed

    Ramasamy, Ranjan; Jude, Pavilupillai J; Veluppillai, Thabothiny; Eswaramohan, Thampoe; Surendran, Sinnathamby N

    2014-01-01

    The mainly fresh water arboviral vector Aedes aegypti L. (Diptera: Culicidae) can also undergo pre-imaginal development in brackish water of up to 15 ppt (parts per thousand) salt in coastal areas. We investigated differences in salinity tolerance, egg laying preference, egg hatching and larval development times and resistance to common insecticides in Ae. aegypti collected from brackish and fresh water habitats in Jaffna, Sri Lanka. Brackish water-derived Ae. aegypti were more tolerant of salinity than fresh water-derived Ae. aegypti and this difference was only partly reduced after their transfer to fresh water for up to five generations. Brackish water-derived Ae. aegypti did not significantly discriminate between 10 ppt salt brackish water and fresh water for oviposition, while fresh water-derived Ae. aegypti preferred fresh water. The hatching of eggs from both brackish and fresh water-derived Ae. aegypti was less efficient and the time taken for larvae to develop into pupae was prolonged in 10 ppt salt brackish water. Ae. aegypti isolated from coastal brackish water were less resistant to the organophosphate insecticide malathion than inland fresh water Ae. aegypti. Brackish and fresh water-derived Ae. aegypti however were able to mate and produce viable offspring in the laboratory. The results suggest that development in brackish water is characterised by pertinent biological changes, and that there is restricted genetic exchange between coastal brackish and inland fresh water Ae. aegypti isolates from sites 5 km apart. The findings highlight the need for monitoring Ae. aegypti developing in coastal brackish waters and extending vector control measures to their habitats.

  9. Binding competition to the POPG lipid bilayer of Ca2+, Mg2+, Na+, and K+ in different ion mixtures and biological implication.

    PubMed

    Mao, Yanyan; Du, Yun; Cang, Xiaohui; Wang, Jinan; Chen, Zhuxi; Yang, Huaiyu; Jiang, Hualiang

    2013-01-24

    Ion mixtures are prevalent in both cytosol and the exterior of a plasma membrane with variable compositions and concentrations. Although abundant MD simulations have been performed to study the effects of single ion species on the structures of lipid bilayers, our understanding of the influence of the ion mixture on membranes is still limited; for example, the competition mechanism of different ions in binding with lipids is not clearly addressed yet. Here, microsecond MD simulations were carried out to study the effects of the mixtures of Ca(2+), Mg(2+), Na(+), and K(+) ions on a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. It has been revealed that the binding efficiency of these ions with POPG lipids is in the following order, Ca(2+) > Mg(2+) > Na(+) > K(+). The binding free energy of Ca(2+) to the lipid bilayer is ~-4.0 kcal/mol, which is much lower than those of other ions. This result explains why the effects of the ion mixture on membranes are particularly sensitive to the concentration of calcium. The on-rates of different ions do not have a large difference, while the off-rate of Ca(2+) is 2-3 orders of magnitude smaller than those of the others. Therefore, the strongest binding affinity of Ca(2+) is mainly determined by its smallest off-rate. In addition, our study suggests that the structure of the lipid bilayer is influenced dominantly by the concentration of Ca(2+) ions. The simulation results also provide a good explanation for a variety of biological processes relevant to Ca(2+) and Mg(2+) regulations, such as membrane fusion.

  10. Iridoid and secoiridoid glycosides in a hybrid complex of bush honeysuckles (Lonicera spp., Caprifolicaceae): implications for evolutionary ecology and invasion biology.

    PubMed

    Whitehead, Susan R; Bowers, M Deane

    2013-02-01

    Interspecific hybridization among non-native plant species can generate genotypes that are more reproductively successful in the introduced habitat than either parent. One important mechanism that may serve as a stimulus for the evolution of invasiveness in hybrids is increased variation in secondary metabolite chemistry, but still very little is known about patterns of chemical trait introgression in plant hybrid zones. This study examined the occurrence of iridoid and secoiridoid glycosides (IGs), an important group of plant defense compounds, in three species of honeysuckle, Lonicera morrowii A. Gray, Lonicera tatarica L., and their hybrid Lonicera×bella Zabel. (Caprifoliaceae), all of which are considered invasive in various parts of North America. Hybrid genotypes had a diversity of IGs inherited from both parent species, as well as one component not detected in either parent. All three species were similar in that overall concentrations of IGs were significantly higher in fruits than in leaves, and several compounds that were major components of fruits were never found in leaves. However, specific patterns of quantitative distribution among leaves, unripe fruits, and ripe fruits differed among the three species, with a relatively higher allocation to fruits in the hybrid species than for either parent. These patterns likely have important consequences for plant interactions with antagonistic herbivores and pathogens as well as mutualistic seed dispersers, and thus the potential invasiveness of hybrid and parental species in their introduced range. Methods established here for quantitative analysis of IGs will allow for the exploration of many compelling research questions related to the evolutionary ecology and invasion biology of these and other related species in the genus Lonicera.

  11. Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: implications for reach scales and beyond

    USGS Publications Warehouse

    Bohlke, Johnkarl F.; Tobias, Craig

    2011-01-01

    Movement of dissolved inorganic carbon (DIC) through the hydrologic cycle is an important component of global carbon budgets, but there is considerable uncertainty about the controls of DIC transmission from landscapes to streams, and through river networks to the oceans. In this study, diel measurements of DIC, d13C-DIC, dissolved oxygen (O2), d18O-O2, alkalinity, pH, and other parameters were used to assess the relative magnitudes of biological and geochemical controls on DIC cycling and flux in a nutrient-rich, net autotrophic stream. Rates of photosynthesis (P), respiration (R), groundwater discharge, air–water exchange of CO2, and carbonate precipitation/dissolution were quantified through a time-stepping chemical/isotope (12C and 13C, 16O and 18O) mass balance model. Groundwater was the major source of DIC to the stream. Primary production and carbonate precipitation were equally important sinks for DIC removed from the water column. The stream was always super-saturated with respect to carbonate minerals, but carbonate precipitation occurred mainly during the day when P increased pH. We estimated more than half (possibly 90%) of the carbonate precipitated during the day was retained in the reach under steady baseflow conditions. The amount of DIC removed from the overlying water through carbonate precipitation was similar to the amount of DIC generated from R. Air–water exchange of CO2 was always from the stream to the atmosphere, but was the smallest component of the DIC budget. Overall, the in-stream DIC reactions reduced the amount of CO2 evasion and the downstream flux of groundwater-derived DIC by about half relative to a hypothetical scenario with groundwater discharge only. Other streams with similar characteristics are widely distributed in the major river basins of North America. Data from USGS water quality monitoring networks from the 1960s to the 1990s indicated that 40% of 652 stream monitoring stations in the contiguous USA were at or above

  12. Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: Implications for reach scales and beyond

    USGS Publications Warehouse

    Tobias, C.; Böhlke, J.K.

    2011-01-01

    Movement of dissolved inorganic carbon (DIC) through the hydrologic cycle is an important component of global carbon budgets, but there is considerable uncertainty about the controls of DIC transmission from landscapes to streams, and through river networks to the oceans. In this study, diel measurements of DIC, ??13C-DIC, dissolved oxygen (O2), ??18O-O2, alkalinity, pH, and other parameters were used to assess the relative magnitudes of biological and geochemical controls on DIC cycling and flux in a nutrient-rich, net autotrophic stream. Rates of photosynthesis (P), respiration (R), groundwater discharge, air-water exchange of CO2, and carbonate precipitation/dissolution were quantified through a time-stepping chemical/isotope (12C and 13C, 16O and 18O) mass balance model. Groundwater was the major source of DIC to the stream. Primary production and carbonate precipitation were equally important sinks for DIC removed from the water column. The stream was always super-saturated with respect to carbonate minerals, but carbonate precipitation occurred mainly during the day when P increased pH. We estimated more than half (possibly 90%) of the carbonate precipitated during the day was retained in the reach under steady baseflow conditions. The amount of DIC removed from the overlying water through carbonate precipitation was similar to the amount of DIC generated from R. Air-water exchange of CO2 was always from the stream to the atmosphere, but was the smallest component of the DIC budget. Overall, the in-stream DIC reactions reduced the amount of CO2 evasion and the downstream flux of groundwater-derived DIC by about half relative to a hypothetical scenario with groundwater discharge only. Other streams with similar characteristics are widely distributed in the major river basins of North America. Data from USGS water quality monitoring networks from the 1960s to the 1990s indicated that 40% of 652 stream monitoring stations in the contiguous USA were at or above

  13. Impact of estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) co-expression on breast cancer disease characteristics: implications for tumor biology and research.

    PubMed

    Alqaisi, Abeer; Chen, Li; Romond, Edward; Chambers, Mara; Stevens, Mark; Pasley, Grace; Awasthi, Mukta; Massarweh, Suleiman

    2014-11-01

    ER and HER2 are critical drivers of breast cancer biology and can interact when co-expressed, but less data describe the impact of ER/HER2 co-expression on clinical disease characteristics. We studied the impact of ER and HER2 (co)-expression in a cohort of 1,187 patients with invasive breast cancer and compared disease characteristics among different groups according to ER and HER2 status. Age, tumor size, grade, nodal status, TNM stage, and metastatic sites were compared and significance determined using the appropriate t tests. All p values were two-tailed. Compared to ER-negative/HER2-negative disease as the control group, ER expression was associated with older age, smaller tumors, lower grade, earlier TNM stage, and increased bone involvement in de novo metastasis, while HER2 had no significant impact on these characteristics. ER and HER2 co-expression was associated with lower grade and higher bone involvement in de novo metastasis, reflecting a retained impact for ER. HER2 impact on ER-positive disease was reflected by younger age, higher grade and TNM stage, and increased frequency of visceral involvement in de novo metastasis. Within the ER-positive/HER2-positive group, triple positive breast cancer (ER+/PgR+/HER2+) was associated with younger age compared to ER+/PgR-/HER2+ disease (mean age of 50.8 vs. 56 years, p = 0.0226). PgR was also associated with younger age in ER+/HER2- disease with a mean age of 57.6 years in ER+/PgR+/HER2- disease vs. 63.4 years in ER+/PgR-/HER2- disease (p < 0.0001). In conclusion, ER has a profound impact on breast cancer characteristics, including a retained impact when co-expressed with HER2. Similarly, HER2 dramatically modulates ER-positive breast cancer making it more aggressive. PgR association with young age may be related to hormonal levels of the premenopausal state, with HER2 providing an earlier growth advantage in triple positive disease, suggesting a specific dependence for this subset on high estrogen

  14. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration

    PubMed Central

    2011-01-01

    validated and replicated in the extended family cohort, an unrelated case-control cohort from central Greece and a prospective nested case-control population from the Nurse's Health Study and Health Professionals Follow-Up Studies, which included patients with all subtypes of AMD for a total of 2,528 individuals. Single point variants in CYP24A1 (the gene encoding the catabolising enzyme of the vitamin D pathway) were demonstrated to influence AMD risk after controlling for smoking history, sex and age in all populations, both separately and, more importantly, in a meta-analysis. This is the first report demonstrating a genetic association between vitamin D metabolism and AMD risk. These findings were also supplemented with expression data from human donor eyes and human retinal cell lines. These data not only extend previous biological studies in the AMD field, but further emphasise common antecedents between several disorders with an inflammatory/immunogenic component such as cardiovascular disease, cancer and AMD. PMID:22155603

  15. Nutrient and biological conditions of selected small streams in the Edwards Plateau, central Texas, 2005-06, and implications for development of nutrient criteria

    USGS Publications Warehouse

    Mabe, Jeffrey A.

    2007-01-01

    During the summers of 2005 and 2006 the U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, evaluated nutrient and biological conditions in small streams in parts of the Edwards Plateau of Central Texas. Land-cover analysis was used to select 15 small streams that represented a gradient of conditions with the potential to affect nutrient concentrations across the study area, which comprises two of four subregions of the Edwards Plateau ecoregion. All 15 streams were sampled for water properties, nutrients, algae, benthic invertebrates, and fish in summer 2005, and eight streams were resampled in summer 2006. Streams that did not receive wastewater effluent had relatively low nutrient concentrations and were classified as oligotrophic; streams receiving wastewater effluent had relatively high nutrient concentrations and were classified as eutrophic. Nutrient concentrations measured in the least-disturbed streams closely matched the U.S. Environmental Protection Agency nutrient criteria recommendations based on estimated reference concentrations. Nitrogen/phosphorus ratios indicated streams not affected by wastewater effluent might be limited by phosphorus concentrations. Algal indicators of nutrient condition were closely related to dissolved nitrogen concentrations and streamflow conditions. Ambient dissolved nitrogen concentrations (nitrite plus nitrate) were positively correlated with benthic algal chlorophyll-a concentrations. The correlation of benthic algal chlorophyll-a with instantaneous nitrite plus nitrate load was stronger than correlations with ambient nutrients. Increased nutrient concentrations were associated with increased macroalgae cover, wider diel dissolved oxygen ranges, and reduced diel dissolved oxygen minimums. Benthic invertebrate aquatic life use scores generally were classified as High to Exceptional in study streams despite the influence of urbanization or wastewater effluent. Reductions in aquatic

  16. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration.

    PubMed

    Morrison, Margaux A; Silveira, Alexandra C; Huynh, Nancy; Jun, Gyungah; Smith, Silvia E; Zacharaki, Fani; Sato, Hajime; Loomis, Stephanie; Andreoli, Michael T; Adams, Scott M; Radeke, Monte J; Jelcick, Austin S; Yuan, Yang; Tsiloulis, Aristoteles N; Chatzoulis, Dimitrios Z; Silvestri, Giuliana; Kotoula, Maria G; Tsironi, Evangelia E; Hollis, Bruce W; Chen, Rui; Haider, Neena B; Miller, Joan W; Farrer, Lindsay A; Hageman, Gregory S; Kim, Ivana K; Schaumberg, Debra A; DeAngelis, Margaret M

    2011-10-01

    validated and replicated in the extended family cohort, an unrelated case-control cohort from central Greece and a prospective nested case-control population from the Nurse's Health Study and Health Professionals Follow-Up Studies, which included patients with all subtypes of AMD for a total of 2,528 individuals. Single point variants in CYP24A1 (the gene encoding the catabolising enzyme of the vitamin D pathway) were demonstrated to influence AMD risk after controlling for smoking history, sex and age in all populations, both separately and, more importantly, in a meta-analysis. This is the first report demonstrating a genetic association between vitamin D metabolism and AMD risk. These findings were also supplemented with expression data from human donor eyes and human retinal cell lines. These data not only extend previous biological studies in the AMD field, but further emphasise common antecedents between several disorders with an inflammatory/immunogenic component such as cardiovascular disease, cancer and AMD.

  17. Biological Technicians

    MedlinePlus

    ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ...

  18. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  19. Biological implications of the 1996 controlled flood

    NASA Astrophysics Data System (ADS)

    Valdez, Richard A.; Shannon, Joseph P.; Blinn, Dean W.

    The 1996 controlled flood provided evidence that elevated releases from Glen Canyon Dam can enhance short-term primary and secondary production of aquatic resources of the Colorado River in Grand Canyon National Park. The flood scoured substantial proportions of benthic algae and macroinvertebrates and removed fine sediments from the channel, which ultimately stimulated primary productivity and consumer biomass. Channel margin sand deposits buried riparian vegetation and leaf litter, entraining nutrients for later incorporation into the upper trophic levels. The flood restructured high-stage sand bars and associated eddy return channels (i.e., backwaters used as nurseries by native and non-native fish), but many were short-lived because reattachment bars were eroded shortly after the flood. The flood was of insufficient magnitude to permanently suppress non-native fish populations, even though there was significant population depletion at some collecting sites. Pre-spawning aggregations, spawning ascents of tributaries, and habitat use by native fishes were unaffected by the flood. Adult rainbow trout (Oncorhynchus mykiss) in the Lees Ferry tailwater fishery were also unaffected, but the proportion of juveniles <152 mm total length decreased by 10% a strong year class following the flood indicated replacement through successful reproduction.

  20. Biological Implications of the Nuclear Age.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    Reported are the proceedings of an interdisciplinary symposium on the effects on the biosphere of the release of radiation from the use of nuclear energy. Papers given include discussions of the use of radioisotopes in medicine, the benefits and possible consequences of peaceful applications of nuclear explosives, methods of estimating maximum…

  1. Biological and neurodevelopmental implications of neonatal pain.

    PubMed

    Walker, Suellen M

    2013-09-01

    Nociceptive pathways are functional following birth. In addition to physiological and behavioral responses, neurophysiological measures and neuroimaging evaluate nociceptive pathway function and quantify responses to noxious stimuli in preterm and term neonates. Intensive care and surgery can expose neonates to painful stimuli when the developing nervous system is sensitive to changing input, resulting in persistent impacts into later childhood. Early pain experience has been correlated with increased sensitivity to subsequent painful stimuli, impaired neurodevelopmental outcomes, and structural changes in brain development. Parallel preclinical studies have elucidated underlying mechanisms and evaluate preventive strategies to inform future clinical trials.

  2. ISRU Technologies for Mars Life Support

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Kliss, Mark; Sridhar, K. R.; Iacomini, Christie

    2001-01-01

    Life support systems can take advantage of elements in the atmosphere of Mars to provide for necessary consumables such as oxygen and buffer gas for makeup of leakage. In situ consumables production (ISCP) can be performed effectively in conjunction with in situ propellant production, in which oxygen and methane are manufactured for rocket fuel. This project considers ways of achieving the optimal system objectives from the two sometimes competing objectives of ISPP and ISCP. In previous years we worked on production of a nitrogen-argon buffer gas as a by- product of the CO2 acquisition and compression system. Recently we have been focusing on combined electrolysis of water vapor and carbon dioxide. Combined electrolysis of water vapor and carbon dioxide is essential for reducin,o the complexity of a combined ISPP/ISCP plant. Using a solid oxide electrolysis cell (SOEC) for this combined process would be most advantageous for it allows mainly gas phase reactions, O2 gas delivered from the electrolyzer is free of any H2O vapor, and SOE is already a proven technology for pure CO2 electrolysis. Combined SOEC testing is conducted at The University of Arizona in the Space Technologies Laboratory (STL) of the Aerospace and Mechanical Engineering Department.

  3. Employing ISRU Models to Improve Hardware Design

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    2010-01-01

    An analytical model for hydrogen reduction of regolith was used to investigate the effects of several key variables on the energy and mass performance of reactors for a lunar in-situ resource utilization oxygen production plant. Reactor geometry, reaction time, number of reactors, heat recuperation, heat loss, and operating pressure were all studied to guide hardware designers who are developing future prototype reactors. The effects of heat recuperation where the incoming regolith is pre-heated by the hot spent regolith before transfer was also investigated for the first time. In general, longer reaction times per batch provide a lower overall energy, but also result in larger and heavier reactors. Three reactors with long heat-up times results in similar energy requirements as a two-reactor system with all other parameters the same. Three reactors with heat recuperation results in energy reductions of 20 to 40 percent compared to a three-reactor system with no heat recuperation. Increasing operating pressure can provide similar energy reductions as heat recuperation for the same reaction times.

  4. Granular Materials and Risks in ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilki8nson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today s massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  5. Granular Materials and Risks In ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  6. Will extreme climatic events facilitate biological invasions?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...

  7. Nestedness across biological scales.

    PubMed

    Cantor, Mauricio; Pires, Mathias M; Marquitti, Flavia M D; Raimundo, Rafael L G; Sebastián-González, Esther; Coltri, Patricia P; Perez, S Ivan; Barneche, Diego R; Brandt, Débora Y C; Nunes, Kelly; Daura-Jorge, Fábio G; Floeter, Sergio R; Guimarães, Paulo R

    2017-01-01

    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness

  8. Nestedness across biological scales

    PubMed Central

    Marquitti, Flavia M. D.; Raimundo, Rafael L. G.; Sebastián-González, Esther; Coltri, Patricia P.; Perez, S. Ivan; Brandt, Débora Y. C.; Nunes, Kelly; Daura-Jorge, Fábio G.; Floeter, Sergio R.; Guimarães, Paulo R.

    2017-01-01

    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness

  9. Aristotle's biopolitics: a defense of biological teleology against biological nihilism.

    PubMed

    Arnhart, L

    1988-02-01

    Modern Darwinian biology seems to promote nihilism, for it seems to teach that there is no rationally discoverable standard in nature for giving meaning to life. The purpose of this article is to argue for a revival of Aristotle's biological teleology as a reasonable alternative to biological nihilism. The article begins with Edward Wilson's vain struggle against nihilism. Then it is argued that a teleological understanding of nature is assumed in the practice of medicine, as illustrated by one case from Oliver Sacks' neurological practice. The article then considers the importance of biological teleology for Aristotle's moral and political philosophy, and attention is given to some points of agreement and disagreement with contemporary sociobiologists. The main part of the article is then devoted to a defense of Aristotle's biology against the five objections that might be made by a Darwinian biologist. Finally, the article illustrates the practical implications of this issue for bioethics by considering the recent work of Engelhardt.

  10. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  11. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including chi-square tests on a microcomputer, an integrated biology game, microscope slides of leaf stomata, culturing soil nematodes, technique for watering locust egg-laying tubes, hazards of biological chemicals (such as benzene, benzidene, calchicine,…

  12. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including use of dwarf cichlids (fishes) in secondary school biology, teaching edge effects on stomatal diffusion, computer program on effects of selection on gene frequencies, biological oxidation/reduction reactions, short cuts with Drosophila, computer program…

  13. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  14. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Presents experiments, demonstrations, activities and ideas relating to various fields of biology to be used in biology courses in secondary schools. Among those experiments presented are demonstrating the early stages of ferns and mosses and simple culture methods for fern prothalli. (HM)

  15. Sex Differences in Intelligence: Implications for Education.

    ERIC Educational Resources Information Center

    Halpern, Diane F.

    1997-01-01

    A psychobiosocial model that is based on the inextricable link between the biological bases of intelligence and environmental events is proposed as an alternative to nature/nurture dichotomies. Societal implications and applications to teaching and learning are suggested. (MMU)

  16. Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  17. BIOLOGICAL WARFARE

    PubMed Central

    Beeston, John

    1953-01-01

    The use of biological agents as controlled weapons of war is practical although uncertain. Three types of agents are feasible, including pathogenic organisms and biological pests, toxins, and synthetic hormones regulating plant growth. These agents may be chosen for selective effects varying from prolonged incipient illness to death of plants, man and domestic animals. For specific preventive and control measures required to combat these situations, there must be careful and detailed planning. The nucleus of such a program is available within the existing framework of public health activities. Additional research and expansion of established activities in time of attack are necessary parts of biological warfare defense. PMID:13059641

  18. Foldit Biology

    DTIC Science & Technology

    2015-07-31

    Report 8/1/2013-7/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Foldit Biology NOOO 14-13-C-0221 Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT...Include area code) Unclassified Unclassified Unclassified (206) 616-2660 Zoran Popović Foldit Biology (Task 1, 2, 3, 4) Final Report...Period Covered by the Report August 1, 2013 – July 31, 2015 Date of Report: July 31, 2015 Project Title: Foldit Biology Contract Number: N00014-13

  19. Biological monitoring

    SciTech Connect

    Ho, M.H.; Dillon, H.K.

    1986-02-01

    Biological monitoring is defined as the measurement and assessment of workplace agents or their metabolites in tissues, secreta, excreta, expired air, or any combination of these to evaluate exposure and health risk compared to an appropriate reference. Biological monitoring offers several advantages: it takes into account individual variability in biological activity resulting from a chemical insult. It takes into account the effects of personal physical activity and individual life styles. It is a valuable adjunct to ambient monitoring and health surveillance. The importance of chemical speciation in the toxicity of pollutants is discussed. Basic protocols for lead, aluminum, cadmium, mercury, selenium, and nickel are presented. Basic criteria for biological monitoring methods are presented. 11 references, 1 table.

  20. Bottle Biology.

    ERIC Educational Resources Information Center

    CSTA Journal, 1995

    1995-01-01

    Provides hands-on biology activities using plastic bottles that allow students to become engaged in asking questions, creating experiments, testing hypotheses, and generating answers. Activities explore terrestrial and aquatic systems. (MKR)

  1. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Ten ideas that have been tried out by the authors in schools are presented for biology teachers. The areas covered include genetics, dispersal of seeds, habituation in earthworms, respiration, sensory neurons, fats and oils. A reading list is provided. (PS)

  2. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new experiments in biology are described by teachers for use in classrooms. Broad areas covered include enzyme action, growth regulation, microscopy, respiration, germination, plant succession, leaf structure and blood structure. Explanations are detailed. (PS)

  3. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Some helpful ideas are proposed for use by biology teachers. Topics included are Food Webs,'' Key to Identification of Families,'' Viruses,'' Sieve Tube,'' Woodlice,'' Ecology of Oak Leaf Roller Moth,'' and Model Making.'' (PS)

  4. NEO Targets for Biological In Situ Resource Utilization

    NASA Astrophysics Data System (ADS)

    Grace, J. M.; Ernst, S. M.; Navarrete, J. U.; Gentry, D.

    2014-12-01

    We are investigating a mission architecture concept for low-cost pre-processing of materials on long synodic period asteroids using bioengineered microbes delivered by small spacecraft. Space exploration opportunities, particularly those requiring a human presence, are sharply constrained by the high cost of launching resources such as fuel, construction materials, oxygen, water, and foodstuffs. Near-Earth asteroids (NEAs) have been proposed for supporting a human space presence. However, the combination of high initial investment requirements, delayed potential return, and uncertainty in resource payoff currently prevents their effective utilization.Biomining is the process in which microorganisms perform useful material reduction, sequestration or separation. It is commonly used in terrestrial copper extraction. Compared to physical and chemical methods of extraction it is slow, but very low cost, thus rendering economical even very poor ores. These advantages are potentially extensible to asteroid in situ resource utilization (ISRU).One of the first limiting factors for the use of biology in these environments is temperature. A survey of NEA data was conducted to identify those NEAs whose projected interior temperatures remained within both potential (-5 - 100 ºC) and preferred (15 - 45 ºC) ranges for the minimum projected time per synodic period without exceeding 100 ºC at any point. Approximately 2800 of the 11000 NEAs (25%) are predicted to remain within the potential range for at least 90 days, and 120 (1%) in the preferred range.A second major factor is water availability and stability. We have evaluated a design for a small-spacecraft-based injector which forces low-temperature fluid into the NEA interior, creating potentially habitable microniches. The fluid contains microbes genetically engineered to accelerate the degradation rates of a desired fraction of the native resources, allowing for more efficient material extraction upon a subsequent

  5. Biological monitoring of radiation exposure

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  6. Biological Oceanography

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  7. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  8. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  9. Systems biology approach to bioremediation

    SciTech Connect

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  10. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Presents content information and/or laboratory procedures and experiments on different biology topics including small-scale cultivation of watercress and its use in water-culture experiments, microbiology of the phylloplane, use of mouthbrooders in science class, and the gene. (DC)

  11. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  12. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  13. Cancer Biology

    ERIC Educational Resources Information Center

    Dominiecki, Mary E.

    2004-01-01

    University of Colorado's Virtual Student Fellowship available at and developed by Bakemeier, Richard F. This website is designed to give students applying for a fellowship an overview of basic topics in biology and how they are used by cancer researchers to develop new treatments.

  14. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  15. Bottle Biology.

    ERIC Educational Resources Information Center

    Jager, Peter

    1993-01-01

    Describes activities which utilize plastic drink bottles and are designed to foster the development of a wide range of biological and ecological concepts. Includes instructions for making a model compost column and presents a model that illustrates open versus closed ecosystems. (DDR)

  16. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in biology and environmental education instruction, including, among others, sampling in ecology using an overhead projector, the slide finder as an aid to microscopy, teaching kidney function, and teaching wildlife conservation-sand dune systems. (SK)

  17. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  18. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  19. Biology Excursions

    ERIC Educational Resources Information Center

    Baldock, R. N.

    1973-01-01

    Provides many useful suggestions and cautions for planning and executing a biology field excursion. Specific procedures are outlined for investigating land communities and coastal areas, and a number of follow-up laboratory activities are described. The appendix provides an extensive bibliography with useful comments on the literature. (JR)

  20. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1979

    1979-01-01

    Organized by topic is a reading list for A- and S-level biology. Described are experiments for measuring rate of water uptake in a shoot; questions to aid students in designing experiments; rise of overhead projection to demonstrate osmosis and blood cell counting; and microbial manufacture of vinegar. (CS)

  1. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes nine biology experiments, including osmosis, genetics; oxygen content of blood, enzymes in bean seedlings, preparation of bird skins, vascularization in bean seedlings, a game called "sequences" (applied to review situations), crossword puzzle for human respiration, and physiology of the woodlouse. (CS)

  2. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  3. Molecular biology of gastric cancer.

    PubMed

    Cervantes, A; Rodríguez Braun, E; Pérez Fidalgo, A; Chirivella González, I

    2007-04-01

    Despite its decreasing incidence overall, gastric cancer is still a challenging disease. Therapy is based mainly upon surgical resection when the tumour remains localised in the stomach. Conventional chemotherapy may play a role in treating micrometastatic disease and is effective as palliative therapy for recurrent or advanced disease. However, the knowledge of molecular pathways implicated in gastric cancer pathogenesis is still in its infancy and the contribution of molecular biology to the development of new targeted therapies in gastric cancer is far behind other more common cancers such as breast, colon or lung. This review will focus first on the difference of two well defined types of gastric cancer: intestinal and diffuse. A discussion of the cell of origin of gastric cancer with some intriguing data implicating bone marrow derived cells will follow, and a comprehensive review of different genetic alterations detected in gastric cancer, underlining those that may have clinical, therapeutic or prognostic implications.

  4. Monod and the spirit of molecular biology.

    PubMed

    Morange, Michel

    2015-06-01

    The founders of molecular biology shared views on the place of biology within science, as well as on the relations of molecular biology to Darwinism. Jacques Monod was no exception, but the study of his writings is particularly interesting because he expressed his point of view very clearly and pushed the implications of some of his choices further than most of his contemporaries. The spirit of molecular biology is no longer the same as in the 1960s but, interestingly, Monod anticipated some recent evolutions of this discipline.

  5. Crusts: biological

    USGS Publications Warehouse

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  6. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  7. Biological-Community Composition in Small Streams and its Relations to Habitat, Nutrients, and Land Use in Agriculturally Dominated Landscapes in Indiana and Ohio, 2004, and Implications for Assessing Nutrient Conditions in Midwest Streams

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.

    2009-01-01

    The objective of this study was to relate algal-, invertebrate-, and fish-community composition to habitat, nutrients, and land-use variables in small streams in agriculturally dominated landscapes of the Midwest in Indiana and Ohio. Thirty sample locations were selected from a single ecoregion; all were small wadable streams within agriculturally dominated landscapes with similar substrate and canopy. Biological and nutrient samples were collected during stable flow conditions in August 2004. Canonical correspondence analysis was used to determine which variables most influenced each community. Total phosphorus concentrations significantly influenced the depositional-targeted habitat algal-diatom community and the richest-targeted habitat invertebrate community. Multivariate statistical analysis showed that habitat variables were more influential to the richest-targeted habitat algal-diatom and fish communities than nutrient concentrations. Although the nutrient concentrations measured during this study indicate that most streams were not eutrophic, the biological communities were dominated by eutrophic species, suggesting streams sampled were eutrophic. Consequently, it was concluded that biological relations to nutrients in agriculturally dominated landscapes are complex and habitat variables should be included in biological assessments of nutrient conditions in agriculturally dominated landscapes.

  8. Hormesis: a fundamental concept in biology

    PubMed Central

    Calabrese, Edward J.

    2014-01-01

    This paper assesses the hormesis dose response concept, including its historical foundations, frequency, generality, quantitative features, mechanistic basis and biomedical, pharmaceutical and environmental health implications. The hormetic dose response is highly generalizable, being independent of biology model (i.e. common from plants to humans), level of biological organization (i.e. cell, organ and organism), endpoint, inducing agent and mechanism, providing the first general and quantitative description of plasticity. The hormetic dose response describes the limits to which integrative endpoints (e.g. cell proliferation, cell migration, growth patterns, tissue repair, aging processes, complex behaviors such as anxiety, learning, memory, and stress, preconditioning responses, and numerous adaptive responses) can be modulated (i.e., enhanced or diminished) by pharmaceutical, chemical and physical means. Thus, the hormesis concept is a fundamental concept in biology with a wide range of biological implications and biomedical applications. PMID:28357236

  9. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  10. Creating biological nanomaterials using synthetic biology

    NASA Astrophysics Data System (ADS)

    Rice, MaryJoe K.; Ruder, Warren C.

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  11. Creating biological nanomaterials using synthetic biology.

    PubMed

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  12. Quantitative analysis of CDKN2A methylation, mRNA, and p16(INK4a) protein expression in children and adolescents with Burkitt lymphoma: biological and clinical implications.

    PubMed

    Robaina, Marcela Cristina S; Faccion, Roberta Soares; Arruda, Viviane Oliveira; de Rezende, Lidia Maria Magalhães; Vasconcelos, Gisele Moledo; Apa, Alexandre Gustavo; Bacchi, Carlos E; Klumb, Claudete Esteves

    2015-02-01

    CDKN2A is a tumor suppressor gene critical in the cell cycle regulation. Little is known regarding the role of CDKN2A methylation in the pathogenesis of Burkitt lymphoma (BL). CDKN2A methylation was investigated using pyrosequencing in 51 tumor samples. p16(INK4a) mRNA and protein levels were measured using real-time PCR and immunohistochemistry, respectively. CDKN2A methylation was detectable in 72% cases. Nuclear expression of p16(INK4a) was not detected in 41% cases. There was an association between methylation and absence of CDKN2A mRNA (P=0.003). In conclusion, CDKN2A methylation occurs at a high frequency suggesting a role in BL pathogenesis and potential therapeutic implications.

  13. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  14. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  15. Kinetic Modeling of Biological Systems

    PubMed Central

    Petzold, Linda; Pettigrew, Michel F.

    2010-01-01

    The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided. PMID:19381542

  16. Molecular ferroelectrics: where electronics meet biology

    PubMed Central

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also noted. PMID:24018952

  17. Molecular ferroelectrics: where electronics meet biology.

    PubMed

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  18. Biology and the Individual in Society

    ERIC Educational Resources Information Center

    Manier, Edward

    1970-01-01

    Discusses the interaction of biological knowledge and human values, emphasizing problems raised by man's ability to control human evolution. Analyzes moral and religious concerns about eugenic artificial insemination or nuclear transplantation, including implications for the structure of the family and the basis of parenthood. (EB)

  19. Mechanism of biological effects observed in honey bees (Apis mellifera, L. ) hived under extra-high-voltage transmission lines: implications derived from bee exposure to simulated intense electric fields and shocks

    SciTech Connect

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    1988-01-01

    This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line (electric (E) field = 7 kV/m) observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (= tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field to colony disturbance. Exposure of worker bees (1400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275-350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100-1,000 times the shock thresholds.

  20. The anatomy and ontogeny of the head, neck, pectoral, and upper limb muscles of Lemur catta and Propithecus coquereli (primates): discussion on the parallelism between ontogeny and phylogeny and implications for evolutionary and developmental biology.

    PubMed

    Diogo, Rui; Molnar, Julia L; Smith, Timothy D

    2014-08-01

    Most anatomical studies of primates focus on skeletal tissues, but muscular anatomy can provide valuable information about phylogeny, functional specializations, and evolution. Herein, we present the first detailed description of the head, neck, pectoral, and upper limb muscles of the fetal lemuriforms Lemur catta (Lemuridae) and Propithecus coquereli (Indriidae). These two species belong to the suborder Strepsirrhini, which is often presumed to possess some plesiomorphic anatomical features within primates. We compare the muscular anatomy of the fetuses with that of infants and adults and discuss the evolutionary and developmental implications. The fetal anatomy reflects a phylogenetically more plesiomorphic condition in nine of the muscles we studied and a more derived condition in only two, supporting a parallel between ontogeny and phylogeny. The derived exceptions concern muscles with additional insertions in the fetus which are lost in adults of the same species, that is, flexor carpi radialis inserts on metacarpal III and levator claviculae inserts on the clavicle. Interestingly, these two muscles are involved in movements of the pectoral girdle and upper limb, which are mainly important for activities in later stages of life, such as locomotion and prey capture, rather than activities in fetal life. Accordingly, our findings suggest that some exceptions to the "ontogeny parallels phylogeny" rule are probably driven more by ontogenetic constraints than by adaptive plasticity.

  1. Global warming and biological diversity

    SciTech Connect

    Peters, R.L.; Lovejoy, T.E.

    1992-01-01

    This book is based on presentations given at the World Wildlife Fund's Conference on Consequences of the Greenhouse Effect for Biological Diverisity in 1988, and includes updated literature citations. The general topics covered in the book include the following: overview; summary of past responses of plants to climatic change; general ecological and physiological responses; ecosystems in 4 specific regions (arctic marine, Alaskan North Slope, NW US forests, and Mediterranean); global warming's implications for conservation. Ideas and data from many ecosystems and information about the relationships between biodiversity and climatic change are brought together with a balance of factual information and defensible scientific prognostication.

  2. A Bioethics Course for Biology and Science Education Students.

    ERIC Educational Resources Information Center

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  3. Biosecurity and Open-Source Biology: The Promise and Peril of Distributed Synthetic Biological Technologies.

    PubMed

    Evans, Nicholas G; Selgelid, Michael J

    2015-08-01

    In this article, we raise ethical concerns about the potential misuse of open-source biology (OSB): biological research and development that progresses through an organisational model of radical openness, deskilling, and innovation. We compare this organisational structure to that of the open-source software model, and detail salient ethical implications of this model. We demonstrate that OSB, in virtue of its commitment to openness, may be resistant to governance attempts.

  4. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  5. Effect of encapsulation in the anion receptor pocket of sub-domain IIA of human serum albumin on the modulation of pKa of warfarin and structurally similar acidic guests: a possible implication on biological activity.

    PubMed

    Datta, Shubhashis; Halder, Mintu

    2014-01-05

    Supramolecular and bio-supramolecular host assisted pKa shift of biologically relevant acidic guests, warfarin and coumarin 343, has been monitored using both steady-state and time resolved fluorescence spectroscopy. The anion receptors present in sub-domain IIA of human serum albumin (HSA) stabilize the anionic form of the guest and thereby shift pKa towards acidic range. On the other hand, the preferential binding of the neutral form of guests in the non-polar hydrophobic cavity of β-cyclodextrin results in up-shifted pKa. This shifting of pKa of drugs like warfarin, etc., whose therapeutic activity depends on the position of the acid-base equilibrium in human system, is of great importance in pharmacokinetics. The release of the active form of such drugs from macrocyclic carrier and subsequent distribution through the carrier protein should depend on the modulation of the overall pKa window brought about by the encapsulation in these hosts. Present work also suggests that properly optimized encapsulation in appropriate receptor pocket can enhance the bioavailability of drugs. This work also opens up the possibility to use HSA as encapsulator, instead of traditional cyclodextrins or other polymeric hosts, since such system may overcome toxicity as well as biocompatibility issues.

  6. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  7. Plant biology in the future.

    PubMed

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  8. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin.

    PubMed

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2012-03-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include

  9. [Viral safety of biologicals].

    PubMed

    Barin, F

    2008-06-01

    The viral safety of biologicals, either human blood derivatives or animal products or recombinant proteins issued from biotechnology, relies on the quality of the starting material, the manufacturing process and, if necessary, the control of the final product. The quality of the starting material is highly guaranteed for blood derivatives due to the individual screening for specific markers (antigens, genome, antibodies) for major blood borne viruses such as hepatitis B and C viruses (HBV, HCV) and human immunodeficiency virus (HIV). It can be reinforced by the detection through amplification procedures (polymerase chain reaction) in the plasma pool of genomes from viruses that have been implicated in contaminations of blood derivatives in the past (parvovirus B19, hepatitis A virus). The association in the manufacturing process of different steps dedicated to purification of plasma proteins (partitioning), virus inactivation (solvent/detergent treatment, heat inactivation) or specific procedures allowing virus removal (nanofiltration) allows to reduce the viral risk very efficiently. The validation studies using scaled down systems and model viruses allow to evaluate the virus safety of any product quantitatively. The aim of these procedures is to guarantee the lack of infectivity due to any virus, either known or unknown.

  10. Biological effects of tremolite.

    PubMed Central

    Wagner, J. C.; Chamberlain, M.; Brown, R. C.; Berry, G.; Pooley, F. D.; Davies, R.; Griffiths, D. M.

    1982-01-01

    Tremolite is an amphibole which has been implicated in a variety of disease patterns in different parts of the world. It occurs in a number of phases, which are chemically identical but have specific physical characteristics. In an attempt to clarify the epidemiological findings, tremolite fibres of 3 specific forms--A, B and C--were characterized and studied for biological activity by: (i) in vivo intrapleural injection of rats (2 separate experiments--1 with poor survival). (ii) in vitro enzyme release from mouse peritoneal macrophages (iii) in vitro giant-cell formation in A549 cultures (iv) in vitro cytotoxicity for V79-4 cells. Sample C, which contained more long thin fibres than A and B, was alone in producing mesotheliomas. C, but not A or B, induced LDH and B-glucuronidase enzyme release, and induced giant cells. A was not cytotoxic, B moderately cytotoxic and C as highly cytotoxic as UICC crocidolite. The in vivo studies were marred by being split between 2 experiments, of which the second had poor survival. We are aware of the weakness of our in vivo data, but as Tremolite C was being considered for commercial use on the European market we felt it timely to submit our findings for publication. Images Fig. 4 PMID:6280741

  11. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  12. Biological warfare agents.

    PubMed

    Pohanka, Miroslav; Kuca, Kamil

    2010-01-01

    Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.

  13. Concepts in human biological rhythms

    PubMed Central

    Reinberg, Alain; Ashkenazi, Israel

    2003-01-01

    Biological rhythms and their temporal organization are adaptive phenomena to periodic changes in environmental factors linked to the earth's rotation on its axis and around the sun. Experimental data from the plant and animal kingdoms have led to many models and concepts related to biological clocks that help describe and understand the mechanisms of these changes. Many of the prevailing concepts apply to all organisms, but most of the experimental data are insufficient to explain the dynamics of human biological clocks. This review presents phenomena thai are mainly characteristic ofand unique to - human chronobiology, and which cannot be fully explained by concepts and models drawn from laboratory experiments. We deal with the functional advantages of the human temporal organization and the problem of desynchronization, with special reference to the period (τ) of the circadian rhythm and its interindividual and intraindividual variability. We describe the differences between right- and left-hand rhythms suggesting the existence of different biological clocks in the right and left cortices, Desynchronization of rhythms is rather frequent (one example is night shift worker