Sample records for biological monitoring methods

  1. SCIENCE RESULTS INTEGRATION. BRINGING MOLECULAR BIOLOGY TECHNIQUES TO REGIONAL WATER MONITORING PROGRAMS

    EPA Science Inventory

    EPA's Office of Research and Development (ORD) develops innovative methods for use in environmental monitoring and assessment by scientists in Regions, states, and Tribes. Molecular-biology-based methods are not yet established in the environmental monitoring "tool box". SRI (Sci...

  2. Human biological monitoring of suspected endocrine-disrupting compounds

    PubMed Central

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  3. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    ERIC Educational Resources Information Center

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  4. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  5. Exploring a new method for the biological monitoring of plastic workers exposed to the vinyl chloride monomer.

    PubMed

    Azari, Mansour Rezazadeh; Tayefeh-Rahimian, Raana; Jafari, Mohamad Javad; Souri, Hamid; Shokoohi, Yasser; Tavakol, Alaheh; Yazdanbakhsh, Zahra

    2016-12-01

    Vinyl chloride monomer (VCM) is widely used in the production of polyvinyl chloride (PVC) plastics. VCM is recognized as a confirmed human and animal carcinogenic compound. Recent studies have reported poor health of plastic workers, even having exposure at concentrations below the permissible limit to VCM. There has not been any study regarding exposed workers to VCM in Iran. Similarly, no information exists as to the biological monitoring of such workers. The main purpose of this study was to conduct a thorough occupational and biological monitoring of Iranian plastic workers exposed to VCM.A total of 100 workers from two plastic manufacturing plants (A and B) in Tehran along with 25 unexposed workers as controls were studied. The personal monitoring of all nonsmoking workers exposed to VCM at two plastic manufacturing plants (A and B) was performed in the morning shift (8 a.m. to 4 p.m.) according to the National Institute For Occupational Safety And Health method no. 1007.Biological monitoring of workers was carried out through collection of exhaled breath of all exposed and control workers in Tedlar bags and with a subsequent analysis using gas chromatography-flame ionization detector.Not only the mean occupational exposure of workers to VCM at plant A was higher than the respective threshold limit value but also the statistical significance was higher than workers at plant B. Similarly, VCM concentration in exhaled breath of workers at plant A was also statistically significantly higher than at plant B. Correlation of occupational exposure of all workers to vinyl chloride with its concentration in exhaled breath was statistically significant.This is the first study on biological monitoring for exposed plastic workers to VCM using exhaled breath. On the basis of the results in this study, a novel method of biological monitoring of plastic workers was proposed. © The Author(s) 2015.

  6. Estimation of Metabolism Characteristics for Heat-Injured Bacteria Using Dielectrophoretic Impedance Measurement Method

    NASA Astrophysics Data System (ADS)

    Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi

    Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.

  7. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  8. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    PubMed

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  9. Pollen and spore monitoring in the world.

    PubMed

    Buters, J T M; Antunes, C; Galveias, A; Bergmann, K C; Thibaudon, M; Galán, C; Schmidt-Weber, C; Oteros, J

    2018-01-01

    Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological ("chemical") components in ambient air, such as particles of < 10 µm (PM 10 , PM 2.5 ), ozone, sulphur dioxide, and nitrogen oxides. These monitoring networks are publicly funded and air quality data are open to the public. The situation for biological particles that have detrimental effects on health, as is the case of pollen and fungal spores, is however very different. Most pollen and spore monitoring networks are not publicly funded and data are not freely available. The information regarding which biological particle is being monitored, where and by whom, is consequently often not known, even by aerobiologists themselves. This is a considerable problem, as local pollen data are an important tool for the prevention of allergic symptoms. The aim of this study was to review pollen monitoring stations throughout the world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users' needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who are interested in pollen and spore counts. It might also help to improve the monitoring of biological particles up to the current level employed for non-biological components.

  10. A COMPENDIUM OF CHEMICAL, PHYSICAL AND BIOLOGICAL METHODS FOR ASSESSING AND MONITORING THE REMEDIATION OF CONTAMINATED SEDIMENT SITES

    EPA Science Inventory

    Considering the many organizations which have published methods for monitoring contaminated sediments and the large number of documents on this subject, it can be a formidable task for a superfund project manager to find methods appropriate for his or her contaminated sediment si...

  11. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  12. EVALUATION OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY FOR BIOLOGICAL MONITORING OF 3-PHENOXYBENZOIC ACID IN URINE

    EPA Science Inventory

    Abstract describes the development of an enzyme-linked immunosorbent assay (ELISA) method for monitoring 2,4-dichlorophenoxyacetic acid (2,4-D exposures). The ELISA is compared with a gas chromatograhy/mass spectrometry procedure. ELISA method development steps and comparative ...

  13. Environmental and Water Quality Operational Studies. General Guidelines for Monitoring Contaminants in Reservoirs

    DTIC Science & Technology

    1986-02-01

    espacially trte for the topics of sampling and analytical methods, statistical considerations, and the design of general water quality monitoring networks. For...and to the establishment and habitat differentiation of biological populations within reservoirs. Reservoir operatirn, esp- cially the timing...8217 % - - % properties of bottom sediments, as well as specific habitat associations of biological populations of reservoirs. Thus, such heterogeneities

  14. Coupling online effects-based monitoring with physicochemical, optical, and spectroscopy methods to assess quality at a surface water intake

    EPA Science Inventory

    Effects-based monitoring of water quality is a proven approach to monitoring the status of a water source. Only biological material can integrate factors which dictate toxicity. Online Toxicity Monitors (OTMs) provide a means to digitize sentinel organism responses to dynamic wa...

  15. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  16. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  17. Trends in fluorescence imaging and related techniques to unravel biological information.

    PubMed

    Haustein, Elke; Schwille, Petra

    2007-09-01

    Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both new techniques and novel combinations of established methods to study biological processes with unprecedented spatial and temporal precision. On the one hand, major technical advances have significantly improved spatial resolution. On the other hand, life scientists are moving toward three- and even four-dimensional cell biology and biophysics involving time as a crucial coordinate to quantitatively understand living specimen. Monitoring the whole cell or tissue in real time, rather than producing snap-shot-like two-dimensional projections, will enable more physiological and, thus, more clinically relevant experiments, whereas an increase in temporal resolution facilitates monitoring fast nonperiodic processes as well as the quantitative analysis of characteristic dynamics.

  18. Trends in fluorescence imaging and related techniques to unravel biological information

    PubMed Central

    Haustein, Elke; Schwille, Petra

    2007-01-01

    Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both new techniques and novel combinations of established methods to study biological processes with unprecedented spatial and temporal precision. On the one hand, major technical advances have significantly improved spatial resolution. On the other hand, life scientists are moving toward three- and even four-dimensional cell biology and biophysics involving time as a crucial coordinate to quantitatively understand living specimen. Monitoring the whole cell or tissue in real time, rather than producing snap-shot-like two-dimensional projections, will enable more physiological and, thus, more clinically relevant experiments, whereas an increase in temporal resolution facilitates monitoring fast nonperiodic processes as well as the quantitative analysis of characteristic dynamics. PMID:19404444

  19. Measuring and monitoring biological diversity: Standard methods for mammals

    USGS Publications Warehouse

    Wilson, Don E.; Cole, F. Russell; Nichols, James D.; Rudran, Rasanayagam; Foster, Mercedes S.

    1996-01-01

    Measuring and Monitoring Biological Diversity: Standard Methods for Mammals provides a comprehensive manual for designing and implementing inventories of mammalian biodiversity anywhere in the world and for any group, from rodents to open-country grazers. The book emphasizes formal estimation approaches, which supply data that can be compared across habitats and over time. Beginning with brief natural histories of the twenty-six orders of living mammals, the book details the field techniques—observation, capture, and sign interpretation—appropriate to different species. The contributors provide guidelines for study design, discuss survey planning, describe statistical techniques, and outline methods of translating field data into electronic formats. Extensive appendixes address such issues as the ethical treatment of animals in research, human health concerns, preserving voucher specimens, and assessing age, sex, and reproductive condition in mammals.Useful in both developed and developing countries, this volume and the Biological Diversity Handbook Series as a whole establish essential standards for a key aspect of conservation biology and resource management.

  20. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  1. A smart health monitoring chair for nonintrusive measurement of biological signals.

    PubMed

    Baek, Hyun Jae; Chung, Gih Sung; Kim, Ko Keun; Park, Kwang Suk

    2012-01-01

    We developed nonintrusive methods for simultaneous electrocardiogram, photoplethysmogram, and ballistocardiogram measurements that do not require direct contact between instruments and bare skin. These methods were applied to the design of a diagnostic chair for unconstrained heart rate and blood pressure monitoring purposes. Our methods were operationalized through capacitively coupled electrodes installed in the chair back that include high-input impedance amplifiers, and conductive textiles installed in the seat for capacitive driven-right-leg circuit configuration that is capable of recording electrocardiogram information through clothing. Photoplethysmograms were measured through clothing using seat mounted sensors with specially designed amplifier circuits that vary in light intensity according to clothing type. Ballistocardiograms were recorded using a film type transducer material, polyvinylidenefluoride (PVDF), which was installed beneath the seat cover. By simultaneously measuring signals, beat-to-beat heart rates could be monitored even when electrocardiograms were not recorded due to movement artifacts. Beat-to-beat blood pressure was also monitored using unconstrained measurements of pulse arrival time and other physiological parameters, and our experimental results indicated that the estimated blood pressure tended to coincide with actual blood pressure measurements. This study demonstrates the feasibility of our method and device for biological signal monitoring through clothing for unconstrained long-term daily health monitoring that does not require user awareness and is not limited by physical activity.

  2. Modern Methods for Analysis of Antiepileptic Drugs in the Biological Fluids for Pharmacokinetics, Bioequivalence and Therapeutic Drug Monitoring

    PubMed Central

    Park, Yoo-Sin; Kim, Shin-Hee; Kim, Sang-Hyun; Jun, Min-Young

    2011-01-01

    Epilepsy is a chronic disease occurring in approximately 1.0% of the world's population. About 30% of the epileptic patients treated with availably antiepileptic drugs (AEDs) continue to have seizures and are considered therapy-resistant or refractory patients. The ultimate goal for the use of AEDs is complete cessation of seizures without side effects. Because of a narrow therapeutic index of AEDs, a complete understanding of its clinical pharmacokinetics is essential for understanding of the pharmacodynamics of these drugs. These drug concentrations in biological fluids serve as surrogate markers and can be used to guide or target drug dosing. Because early studies demonstrated clinical and/or electroencephalographic correlations with serum concentrations of several AEDs, It has been almost 50 years since clinicians started using plasma concentrations of AEDs to optimize pharmacotherapy in patients with epilepsy. Therefore, validated analytical method for concentrations of AEDs in biological fluids is a necessity in order to explore pharmacokinetics, bioequivalence and TDM in various clinical situations. There are hundreds of published articles on the analysis of specific AEDs by a wide variety of analytical methods in biological samples have appears over the past decade. This review intends to provide an updated, concise overview on the modern method development for monitoring AEDs for pharmacokinetic studies, bioequivalence and therapeutic drug monitoring. PMID:21660146

  3. Presence/absence as a metric for monitoring vertebrate populations

    Treesearch

    Len Ruggiero; Dean Pearson

    2000-01-01

    Developing cost effective methods for monitoring vertebrate populations is a persistent problem in wildlife biology. Population demographic data is too costly and time intensive to acquire, so researchers have begun investigating presence/absence sampling as a means for monitoring wildlife populations. We examined three important assumptions regarding the probability...

  4. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    PubMed

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were <0.001 mg m(-3), the limit of quantification (LOQ), therefore samples below the LOQ were assigned a value of 1/2 LOQ (0.0005 mg m(-3)). Of the 70 samples, 67 were below the current workplace exposure limit of 0.02 mg m(-3). The highest inhalation exposures occurred during spray painting activities in a truck manufacturing company (0.066 mg m(-3)) and also during spray application of polyurethane foam insulation (0.023 mg m(-3)). The most commonly detected isocyanate in the urine was hexamethylene diisocyanate, which was detected in 21 instances. The geometric mean total isocyanate metabolite concentration for the dataset was 0.29 micromol mol(-1) creatinine (range 0.05-12.64 micromol mol(-1) creatinine). A total of 23 samples collected were above the agreed biological monitoring guidance value of 1.0 micromol mol(-1) creatinine. Activities that resulted in the highest biological monitoring results of the dataset included mixing and casting of polyurethane products (12.64 micromol mol(-1) creatinine), semi-automatic moulding (4.80 micromol mol(-1) creatinine) and resin application (3.91 micromol mol(-1) creatinine). The biological monitoring results show that despite low airborne isocyanate concentrations, it was possible to demonstrate biological uptake. This tends to suggest high sensitivity of the biological monitoring method and/or that in some instances the RPE being used by operators was not effective or that absorption may have occurred via dermal or other routes of exposure. This study demonstrates that biological monitoring is a useful tool when assessing worker exposure to isocyanates, providing a more complete picture on the efficacy of control measures in place than is possible by air monitoring alone. The results also demonstrated that where control measures were judged to be adequate, most biological samples were close to or < 1 micromol mol(-1) creatinine, the agreed biological monitoring benchmark.

  5. Assessment of genotoxic exposure in Swedish coke-oven work by different methods of biological monitoring.

    PubMed

    Reuterwall, C; Aringer, L; Elinder, C G; Rannug, A; Levin, J O; Juringe, L; Onfelt, A

    1991-04-01

    This study evaluated the results of several biological methods used simultaneously to monitor coke-oven work. Blood samples from 44 male coke-oven workers and 48 male referents, matched for age and smoking/snuff consumption, were examined for cytogenetic damage in lymphocytes. Urinary thioether excretion was determined for 62, and urine mutagenicity for 31, of the subjects, who followed a standardized diet during the urine sampling. Exposure to polycyclic aromatic hydrocarbons varied with work task, the ambient air levels of benzo[a]pyrene sometimes exceeding 5 micrograms/m3. Cytogenetic damage, urine mutagenicity, and thioether excretion did not differ between the groups. The smokers, however, had significantly higher sister chromatid exchange frequencies, urine mutagenicity, and thioether excretion than the nonsmokers. The absence of biological indications of genotoxic exposure was unexpected and indicates that the studied methods are not adequate to assess the carcinogenic risks of Swedish coke-oven workers.

  6. The implications of the precautionary principle for biological monitoring

    NASA Astrophysics Data System (ADS)

    Macgarvin, M.

    1995-03-01

    Marine biological monitoring programmes frequently attempt to determine “safe” levels of contamination, based on assumptions about the assimilative capacity of the environment. This paper argues that such assumptions lack scientific rigour, and do not form the basis upon which a precautionary policy can be built. It notes the problems associated with assessing toxicological effects, but centres its attention on the crucial (yet far less discussed) weaknesses in theoretical ecology that make it extremely unlikely that biological monitoring can determine safe levels of contamination that leave ecosystems unaffected. It is argued that many marine biologists, if pressed, would concede these shortcomings but believe that, in the face of the technical difficulties and high costs of pollution prevention, we have no choice but to use such methods. This paper argues, with examples, that pollution prevention, often with considerable economic savings, is becoming a reality for even the most problematic substances. The difficulty is that the development of “clean production” methods lie outside the sphere of interest of those carrying out monitoring, so that measures that attempt to determine safe levels of contamination continue to be advocated. This gulf needs to be bridged so that the continuation of monitoring programmes that are part of dilute and disperse policies become regarded as inappropriate, indeed unethical. The paper concludes that this does not mean the end of marine monitoring. Instead, reliable methods for assessing physical levels of contamination will be required to determine whether the reduction targets set—as part of the introduction of clean production—are being met. Formidable difficulties will remain, requiring a precautious approach. Nevertheless, monitoring will no longer carry the burden of attempting to demonstrate that a particular level of environmental contamination is safe, which is currently destroying its scientific credibility.

  7. Analysis of methods for growth detection in the search for extraterrestrial life.

    PubMed

    Merek, E L; Oyama, V I

    1968-05-01

    In the search for life on other planets, experiments designed to detect the growth of microorganisms may prove to be definitive when coupled with chemical characterization and metabolic experiments. If organisms are not abundant, growth provides the only means for obtaining a large mass of biological material suitable for chemical compositional analyses and metabolic assays. Several methods of monitoring growth are described. Of these, optical monitoring in a unique system free of soil particles is advanced as the most appropriate. Theoretical problems related to the formulation of culture media are discussed, and several possible solutions are proposed. The sampling system, the type of monitoring, the size and placement of inoculum, and the medium volume and composition are contingent upon one another and must be integrated without sacrifice to the biological demands.

  8. Monitoring wilderness stream ecosystems

    Treesearch

    Jeffrey C. Davis; G. Wayne Minshall; Christopher T. Robinson; Peter Landres

    2001-01-01

    A protocol and methods for monitoring the major physical, chemical, and biological components of stream ecosystems are presented. The monitoring protocol is organized into four stages. At stage 1 information is obtained on a basic set of parameters that describe stream ecosystems. Each following stage builds upon stage 1 by increasing the number of parameters and the...

  9. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... II. Definitions Biological treatment unit = wastewater treatment unit designed and operated to... last zone in the series and ending with the first zone. B. Data Collection Requirements This method is based upon modeling the nonthoroughly mixed open biological treatment unit as a series of well-mixed...

  10. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of…

  11. Environmental management and monitoring for education building development

    NASA Astrophysics Data System (ADS)

    Masri, R. M.

    2018-05-01

    The purpose of research were (1) a conceptual, functional model designed and implementation for environmental management and monitoring for education building development, (2) standard operational procedure made for management and monitoring for education building development, (3) assessed physic-chemical, biological, social-economic environmental components so that fulfilling sustainable development, (4) environmental management and monitoring program made for decreasing negative and increasing positive impact in education building development activities. Descriptive method is used for the research. Cibiru UPI Campus, Bandung, West Java, Indonesia was study location. The research was conducted on July 2016 to January 2017. Spatial and activities analysis were used to assess physic-chemical, biological, social-economic environmental components. Environmental management and monitoring for education building development could be decreasing water, air, soil pollution and environmental degradation in education building development activities.

  12. Exposure to 4,4'-methylene bis (2-chloroaniline) (MbOCA) in New South Wales, Australia

    PubMed Central

    Shankar, Kiran; Fung, Vivian; Seneviratne, Mahinda; O'Donnell, Gregory E

    2017-01-01

    Objectives: This study was conducted to determine the level of exposure of 4,4'-methylene bis (2-chloroaniline) (MbOCA) in New South Wales (NSW), Australia. Methods: An integrated occupational hygiene and biological monitoring program were used to assess the workers' exposure to MbOCA via inhalation, ingestion and dermal contact. This was conducted by personal air monitoring, static air monitoring and surface contamination monitoring of the work environment and biological monitoring of the workers' exposure to MbOCA at nine workplaces in NSW. Results: The air monitoring results for MbOCA gave a geometric mean (GM) of 0.06 μg/m3 and a geometric standard deviation (GSD) of 2.70 and a 95% confidence interval of 0.29 μg/m3. The surface contamination in the main work area showed the highest contamination with a GM of 74 ng/cm2 and a GSD of 17 and a 95% confidence interval of 7,751 ng/cm2. Biological monitoring showed a GM of 0.89 μmol/mol cr and a GSD of 11.9 and a 95% confidence interval of 52 μmol/mol cr. This indicated that 13% of the workers were over the SafeWork NSW Biological Occupational Exposure Limit of 15 μmol/mol cr. Conclusions: Workers' exposure through inhalation was minimal; however, evidence from biological monitoring of MbOCA suggested that the main contributing factor to exposure was skin absorption. This was attributed to poor housekeeping and inadequate personal protection. Improvements in these areas were recommended, and it was also recommended to improve the awareness of the workers to the adverse effects to their health of exposure to this carcinogen. PMID:28320979

  13. A MULTI-ASSEMBLAGE INDEX OF STREAM INTEGRITY: WHAT ARE THE FISH, BUGS, AND ALGAE TELLING US?

    EPA Science Inventory

    Three different taxonomic assemblages have been proposed for use in the biological monitoring and assessment of water quality and stream biological integrity: fishm macroinvertebrates, and periphyton. All three assemblages can be eficiently collected with established methods, ar...

  14. Validation of biological activity testing procedure of recombinant human interleukin-7.

    PubMed

    Lutsenko, T N; Kovalenko, M V; Galkin, O Yu

    2017-01-01

    Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation charac­teristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.

  15. The biospeckle method for the investigation of agricultural crops: A review

    NASA Astrophysics Data System (ADS)

    Zdunek, Artur; Adamiak, Anna; Pieczywek, Piotr M.; Kurenda, Andrzej

    2014-01-01

    Biospeckle is a nondestructive method for the evaluation of living objects. It has been applied to medicine, agriculture and microbiology for monitoring processes related to the movement of material particles. Recently, this method is extensively used for evaluation of quality of agricultural crops. In the case of botanical materials, the sources of apparent biospeckle activity are the Brownian motions and biological processes such as cyclosis, growth, transport, etc. Several different applications have been shown to monitor aging and maturation of samples, organ development and the detection and development of defects and diseases. This review will focus on three aspects: on the image analysis and mathematical methods for biospeckle activity evaluation, on published applications to botanical samples, with special attention to agricultural crops, and on interpretation of the phenomena from a biological point of view.

  16. Evaluating a new method for monitoring the field establishment and parasitism of Oobius agrili, an egg parasitoid of the emerald ash borer

    USDA-ARS?s Scientific Manuscript database

    Oobius agrili is a solitary egg parasitoid of emerald ash borer (EAB), Agrilus planipennis, and can be responsible for 50-60% of EAB egg mortality in its native range. O. agrili has been released for biological control of EAB in the US since 2007; however, current methods to monitor its establishme...

  17. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  18. LARGE RIVER ASSESSMENT METHODS FOR BENTHIC MACROINVERTEBRATES AND FISH

    EPA Science Inventory

    Multiple projects are currently underway to increase our understanding of the varying results of different sampling methods and designs used for the biological assessment and monitoring of large (boatable) rivers. Studies include methods used to assess fish, benthic macroinverte...

  19. Monitoring biological effects of contamination in marine fish along French coasts by measurement of ethoxyresorufin-O-deethylase activity.

    PubMed

    Burgeot, T; Bocquené, G; Pingray, G; Godefroy, D; Legrand, J; Dimeet, J; Marco, F; Vincent, F; Henocque, Y; Jeanneret, H O

    1994-11-01

    The use of bioindicators to evaluate exposure to the biological effects of chemical pollutants in marine organisms constitutes a new tool in the monitoring field. The establishment of a North Sea monitoring network in 1991, involving such international organizations as the North Sea Task Force, the International Council for the Exploration of the Sea, and the Intergovernmental Oceanography Commission, led French researchers to develop an enzymatic biomarker to monitor biological effects within the National Observation Network. The biomarker, ethoxyresorufin-O-deethylase (EROD), dependent on the CP450 system, has been monitored biannually since 1992 in several species of fish (Callionymus lyra, Limanda limanda, Serranus sp., Mullus barbatus) in two coastal sites particularly exposed to industrial and domestic pollution. A rapid method is used to assay EROD enzymatic activity determined along a pollution gradient, and results are interpreted on a microplate reader. The strategy of this approach is to assess the effects on the marine ecosystem during prolonged exposure to specific pollutants such as polyaromatic hydrocarbons, polychlorinated biphenyls, and dioxins.

  20. Monitoring occupational exposure to cancer chemotherapy drugs

    NASA Technical Reports Server (NTRS)

    Baker, E. S.; Connor, T. H.

    1996-01-01

    Reports of the health effects of handling cytotoxic drugs and compliance with guidelines for handling these agents are briefly reviewed, and studies using analytical and biological methods of detecting exposure are evaluated. There is little conclusive evidence of detrimental health effects from occupational exposure to cytotoxic drugs. Work practices have improved since the issuance of guidelines for handling these drugs, but compliance with the recommended practices is still inadequate. Of 64 reports published since 1979 on studies of workers' exposure to these drugs, 53 involved studies of changes in cellular or molecular endpoints (biological markers) and 12 described chemical analyses of drugs or their metabolites in urine (2 involved both, and 2 reported the same study). The primary biological markers used were urine mutagenicity, sister chromatid exchange, and chromosomal aberrations; other studies involved formation of micronuclei and measurements of urinary thioethers. The studies had small sample sizes, and the methods were qualitative, nonspecific, subject to many confounders, and possibly not sensitive enough to detect most occupational exposures. Since none of the currently available biological and analytical methods is sufficiently reliable or reproducible for routine monitoring of exposure in the workplace, further studies using these methods are not recommended; efforts should focus instead on wide-spread implementation of improved practices for handling cytotoxic drugs.

  1. An integrated approach to detecting and monitoring chemicals of biological concern in Great Lakes ecosystems

    EPA Science Inventory

    Chemical monitoring strategies are most effective for those chemicals whose hazards are well understood and for which sensitive and cost effective analytical methods are available. Unfortunately, such chemicals represent a minor fraction of those that may currently occur in the e...

  2. EPA METHOD STUDY 8, TOTAL MERCURY IN WATER

    EPA Science Inventory

    The Environmental Monitoring and Support Laboratory-Cincinnati of EPA conducts EPA's quality assurance program for the water laboratories and assists EPA laboratories in the choice of methods for physical, chemical, biological and microbiological analyses. The responsibility for ...

  3. Real-time activity monitoring of New Delhi metallo-β-lactamase-1 in living bacterial cells by UV-Vis spectroscopy.

    PubMed

    Yang, Ke-Wu; Zhou, Yajun; Ge, Ying; Zhang, Yuejuan

    2017-07-13

    We report an UV-Vis method for monitoring the hydrolysis of the β-lactam antibiotics inside living bacterial cells. Cell-based studies demonstrated that the hydrolysis of cefazolin was inhibited by three known NDM-1 inhibitors. This approach can be applied to the monitoring of reactions in a complex biological system, for instance in medical testing.

  4. Multifrequency method for dielectric monitoring of cold-preserved organs.

    PubMed

    Raicu, V; Saibara, T; Irimajiri, A

    2000-05-01

    To answer a growing need for non-invasive monitoring of biological organs, we have developed an automated system capable of repeated dielectric measurements over the frequency range 10 kHz-100 MHz. Further, we propose a novel method of data analysis that may convert the acquired, individual dispersion curves into a diagram of the time course of specific phenomenological parameters, such as the characteristic frequency. By using this new procedure, unattended, long-term monitoring of temporal changes in the dielectric behaviour of excised liver lobes stored at 4 degrees C was successfully realized. The 'multifrequency' method presented here was definitely superior to the conventional 'fixed-frequency' method in providing reliable results.

  5. Comparability among four invertebrate sampling methods, Fountain Creek Basin, Colorado, 2010-2012

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.; Brown, Krystal D.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, designed a study to determine if sampling method and sample timing resulted in comparable samples and assessments of biological condition. To accomplish this task, annual invertebrate samples were collected concurrently using four sampling methods at 15 U.S. Geological Survey streamflow gages in the Fountain Creek basin from 2010 to 2012. Collectively, the four methods are used by local (U.S. Geological Survey cooperative monitoring program) and State monitoring programs (Colorado Department of Public Health and Environment) in the Fountain Creek basin to produce two distinct sample types for each program that target single-and multiple-habitats. This study found distinguishable differences between single-and multi-habitat sample types using both community similarities and multi-metric index values, while methods from each program within sample type were comparable. This indicates that the Colorado Department of Public Health and Environment methods were compatible with the cooperative monitoring program methods within multi-and single-habitat sample types. Comparisons between September and October samples found distinguishable differences based on community similarities for both sample types, whereas only differences were found for single-habitat samples when multi-metric index values were considered. At one site, differences between September and October index values from single-habitat samples resulted in opposing assessments of biological condition. Direct application of the results to inform the revision of the existing Fountain Creek basin U.S. Geological Survey cooperative monitoring program are discussed.

  6. Positive Bioluminescence Imaging of MicroRNA Expression in Small Animal Models Using an Engineered Genetic-Switch Expression System, RILES.

    PubMed

    Baril, Patrick; Pichon, Chantal

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs which regulate gene expression by directing their target mRNA for degradation or translational repression. Since their discovery in the early 1990s, miRNAs have emerged as key components in the posttranscriptional regulation of gene networks, shaping many biological processes from development, morphogenesis, differentiation, proliferation and apoptosis. Although understanding of the molecular basis of miRNA biology is improving, methods to monitor the dynamic and the spatiotemporal aspects of miRNA expression under physiopathological conditions are required. However, monitoring of miRNAs is difficult due to their small size, low abundance, high degree of sequence similarity, and their dynamic expression pattern which is subjected to tight transcriptional and post-transcriptional controls. Recently, we developed a miRNA monitoring system called RILES, standing for RNAi-inducible expression system, which relies on an engineered regulatable expression system, to switch on the expression of the luciferase gene when the targeted miRNA is expressed in cells. We demonstrated that RILES is a specific, sensitive, and robust method to determine the fine-tuning of miRNA expression during the development of an experimental pathological process in mice. Because RILES offers the possibility for longitudinal studies on individual subjects, sharper insights into miRNA regulation can be generated, with applications in physiology, pathophysiology and development of RNAi-based therapies. This chapter describes methods and protocols to monitor the expression of myomiR-206, -1, and -133 in the tibialis anterior muscle of mice. These protocols can be used and adapted to monitor the expression of other miRNAs in other biological processes.

  7. SAMPLING LARGE RIVERS FOR ALGAE, BENTHIC MACROINVERTEBRATES AND FISH

    EPA Science Inventory

    Multiple projects are currently underway to increase our understanding of the effects of different sampling methods and designs used for the biological assessment and monitoring of large (boatable) rivers. Studies include methods used to assess fish, benthic macroinvertebrates, ...

  8. A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks.

    PubMed

    Sarmanova, Olga E; Burikov, Sergey A; Dolenko, Sergey A; Isaev, Igor V; Laptinskiy, Kirill A; Prabhakar, Neeraj; Karaman, Didem Şen; Rosenholm, Jessica M; Shenderova, Olga A; Dolenko, Tatiana A

    2018-04-12

    In this study, a new approach to the implementation of optical imaging of fluorescent nanoparticles in a biological medium using artificial neural networks is proposed. The studies were carried out using new synthesized nanocomposites - nanometer graphene oxides, covered by the poly(ethylene imine)-poly(ethylene glycol) copolymer and by the folic acid. We present an example of a successful solution of the problem of monitoring the removal of nanocomposites based on nGO and their components with urine using fluorescent spectroscopy and artificial neural networks. However, the proposed method is applicable for optical imaging of any fluorescent nanoparticles used as theranostic agents in biological tissue. Copyright © 2018. Published by Elsevier Inc.

  9. Evaluation of recovery and monitoring methods for parasitoids released against emerald ash borer

    Treesearch

    Michael S. Parisio; Juli R. Gould; John D. Vandenberg; Leah S. Bauer; Melissa K. Fierke

    2017-01-01

    Emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an invasive forest pest and the target of an extensive biological control program designed to mitigate EAB-caused ash (Fraxinus spp.) mortality. Since 2007, hymenopteran parasitoids of EAB from northeastern Asia have been released as biological control agents in North...

  10. Cryptosporidium Propidium Monoazide-PCR, a Molecular Biology-Based Technique for Genotyping Viable Cryptosporidium Oocysts

    EPA Science Inventory

    Cryptosporidium is an important waterborne protozoan parasite that can cause severe diarrhea and death in the immunocompromised. Current methods to monitor for Cryptosporidium oocysts in water are microscopy-based USEPA Methods 1622 and 1623. These methods assess total levels o...

  11. Determination of the molecular weight of poly(ethylene glycol) in biological samples by reversed-phase LC-MS with in-source fragmentation.

    PubMed

    Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S

    2013-05-01

    PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.

  12. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-09-01

    Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.

  13. Water quality real-time monitoring system via biological detection based on video analysis

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Fei, Yuan

    2017-11-01

    With the development of society, water pollution has become the most serious problem in China. Therefore, real-time water quality monitoring is an important part of human activities and water pollution prevention. In this paper, the behavior of zebrafish was monitored by computer vision. Firstly, the moving target was extracted by the method of saliency detection, and tracked by fitting the ellipse model. Then the motion parameters were extracted by optical flow method, and the data were monitored in real time by means of Hinkley warning and threshold warning. We achieved classification warning through a number of dimensions by comprehensive toxicity index. The experimental results show that the system can achieve more accurate real-time monitoring.

  14. A Database of Reaction Monitoring Mass Spectrometry Assays for Elucidating Therapeutic Response in Cancer

    PubMed Central

    Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.

    2012-01-01

    Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910

  15. Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions.

    PubMed

    Żamojć, Krzysztof; Zdrowowicz, Magdalena; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Chmurzyński, Lech

    2016-05-03

    Hydrogen peroxide is a well-established precursor of reactive oxygen and nitrogen species that are known to contribute to oxidative stress-the crucial factor responsible for the course of a wide range of phy-sicochemical processes as well as the genesis of various diseases, such as cancer and neurodegenerative disorders. Thus, the development of sensitive and selective methods for the detection and quantitative determination of hydrogen peroxide is of great importance in monitoring the in vivo production of that species and elucidating its biological functions. This review highlights the progress that has been made in the development of fluorescent and luminescent probes (excluding nanoparticles) employed to monitor hydrogen peroxide under biological conditions. Attention was focused on probes developed in the past 10 years.

  16. [Sterilization effect analysis of B-class pulsation table top vacuum sterilizer to dental handpieces].

    PubMed

    Zeng, Shu-Rong; Jiang, Bo; Xiao, Xiao-Rong

    2007-06-01

    Discuss sterilization effect of B-class pulsation table top vacuum pressure steam sterilizer for dental handpiece. Analysis selection of sterilizer for dental handpiece and sterilization management processes and sterilization effect monitoring, evaluation of monitoring result and effective sterilization method. The B-class pulsation table top vacuum pressure steam sterilizer to dental handpiece in West China Stomatological Hospital of Sichuan University met the requirement of the chemical and biological monitoring. Its efficiency of sterilization was 100%. The results of aerobic culture, anaerobic culture, B-type hepatitis mark monitoring to sterilized dental handpiece were negative. It is effective method for dental handpiece sterilization to use B-class pulsation table top vacuum pressure steam sterilizer.

  17. STREAMS TO RIVERS: THE NEXT GENERATION OF ECOSYSTEM MONITORING

    EPA Science Inventory

    The historical focus in aquatic ecosystems has been on sampling methods oriented toward surveys of wadeable streams or smaller rivers. However, to fully assess the condition of the nations waters, methods are needed for systems above and below this scale. Biological communities...

  18. BIOMOLECULAR SENSING FOR BIOLOGICAL PROCESSES AND ENVIRONMENTAL MONITORING APPLICATIONS

    EPA Science Inventory

    Biomolecular recognition is being increasingly employed as the basis for a variety of analytical methods such as biosensors. he sensitivity, selectivity, and format versatility inherent in these methods may allow them to be adapted to solving a number of analytical problems. ltho...

  19. Design of a water quality monitoring network for the Limpopo River Basin in Mozambique

    NASA Astrophysics Data System (ADS)

    Chilundo, M.; Kelderman, P.; O´keeffe, J. H.

    The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating possible need for monthly monitoring of WQ. From this study it was concluded that a systematic WQ monitoring network composed of 16 stations would fit the conditions of the LRB. Ambient, earl warning, operational and effluents are the main monitoring types recommended. Additional research at a Basin scale was also recommended to identify the major sources of pollution, their transport and impacts to the downstream ecosystem.

  20. Sensitive method to monitor trace quantities of benzanthrone in workers of dyestuff industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, A.; Khanna, S.K.; Singh, G.B.

    1986-03-01

    Dyestuff workers coming in contact with benzanthrone (an intermediate used for the synthesis of a variety of dyes) develop skin lesions, gastritis, liver malfunctions, and sexual disturbances. A highly sensitive fluorometric method to monitor trace quantities of benzanthrone in urine, serum, and biological tissues for experimental studies, has been developed. Coupled with simple extraction and resolution, optimum fluorescence is obtained in an equal mixture of chloroform:methanol, detecting as low as 2 ng benzanthrone. This method is approximately 250 times more sensitive than currently available colorimetric assay.

  1. Field Application of the Micro Biological Survey Method for the Assessment of the Microbiological Safety of Different Water Sources in Horn of Africa and the Evaluation of the Effectiveness of Moringa Oleifera in Drinking Water Purification

    PubMed Central

    Losito, Francesca; Arienzo, Alyexandra; Somma, Daniela; Murgia, Lorenza; Stalio, Ottavia; Zuppi, Paolo; Rossi, Elisabetta; Antonini, Giovanni

    2017-01-01

    Water monitoring requires expensive instrumentations and skilled technicians. In developing Countries as Africa, the severe economic restrictions and lack of technology make water safety monitoring approaches applied in developed Countries, still not sustainable. The need to develop new methods that are suitable, affordable, and sustainable in the African context is urgent. The simple, economic and rapid Micro Biological Survey (MBS) method does not require an equipped laboratory nor special instruments and skilled technicians, but it can be very useful for routine water analysis. The aim of this work was the application of the MBS method to evaluate the microbiological safety of different water sources and the effectiveness of different drinking water treatments in the Horn of Africa. The obtained results have proved that this method could be very helpful to monitor water safety before and after various purification treatments, with the aim to control waterborne diseases especially in developing Countries, whose population is the most exposed to these diseases. In addition, it has been proved that Moringa oleifera water treatment is ineffective in decreasing bacterial load of Eritrea water samples. PMID:28748063

  2. Field Application of the Micro Biological Survey Method for the Assessment of the Microbiological Safety of Different Water Sources in Horn of Africa and the Evaluation of the Effectiveness of Moringa Oleifera in Drinking Water Purification.

    PubMed

    Losito, Francesca; Arienzo, Alyexandra; Somma, Daniela; Murgia, Lorenza; Stalio, Ottavia; Zuppi, Paolo; Rossi, Elisabetta; Antonini, Giovanni

    2017-06-23

    Water monitoring requires expensive instrumentations and skilled technicians. In developing Countries as Africa, the severe economic restrictions and lack of technology make water safety monitoring approaches applied in developed Countries, still not sustainable. The need to develop new methods that are suitable, affordable, and sustainable in the African context is urgent. The simple, economic and rapid Micro Biological Survey (MBS) method does not require an equipped laboratory nor special instruments and skilled technicians, but it can be very useful for routine water analysis. The aim of this work was the application of the MBS method to evaluate the microbiological safety of different water sources and the effectiveness of different drinking water treatments in the Horn of Africa. The obtained results have proved that this method could be very helpful to monitor water safety before and after various purification treatments, with the aim to control waterborne diseases especially in developing Countries, whose population is the most exposed to these diseases. In addition, it has been proved that Moringa oleifera water treatment is ineffective in decreasing bacterial load of Eritrea water samples.

  3. Intelligence Community Forum

    DTIC Science & Technology

    2008-11-05

    Description Operationally Feasible? EEG ms ms cm Measures electrical activity in the brain. Practical tool for applications - real time monitoring or...Cognitive Systems Device Development & Processing Methods Brain activity can be monitored in real-time in operational environments with EEG Brain...biological and cognitive findings about the user to customize the learning environment Neurofeedback • Present the user with real-time feedback

  4. Benzoin Condensation: Monitoring a Chemical Reaction by High-Pressure Liquid Chromatography

    ERIC Educational Resources Information Center

    Bhattacharya, Apurba; Purohit, Vikram C.; Bellar, Nicholas R.

    2004-01-01

    High-pressure liquid chromatography (HPLC) is the preferred method of separating a variety of materials in complex mixtures such as pharmaceuticals, polymers, soils, food products and biological fluids and is also considered to be a powerful analytical tool in both academia and industry. The use of HPLC analysis as a means of monitoring and…

  5. Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia)

    NASA Astrophysics Data System (ADS)

    Orlandi, F.; Msallem, M.; Bonofiglio, T.; Ben Dhiab, A.; Sgromo, C.; Romano, B.; Fornaciari, M.

    2010-11-01

    In phenological studies, the plant developments are analysed considering their relationships with seasonal meteorological conditions; moreover, the influences of geographical features on biological responses have to be also considered. Different studies analysed the influence of latitude on phenological phases to investigate the possible different magnitude of biological response. In our experience, this type of geographic evaluation was conducted considering one of the more important plant species of Mediterranean shrub, the olive ( Olea europaea L.) in fifteen olive monitoring stations, four located in Tunisia and eleven in Italy, from the southern Zarzis area at 33° to the northern Perugia area at 43° of latitude. The olive flowering phenomenon was studied, utilising an aerobiological monitoring method through appropriate pollen traps located inside olive groves from 1999 to 2008. The olive monitored pollen grains were recognised and evaluated to obtain daily pollen concentrations to define the flowering dates in the different study areas. The biometeorological statistical analysis showed the 7°C threshold temperature and the single triangle method for growing degree days (GDD) yearly computing as the better ones in comparison to others. Moreover, the regression analysis between the dates of full flowering and the GDD amounts at the different monitoring latitudes permitted us to evidence the biological response of olive species in geographic regions with different climate patterns. The specific biological response at different latitude was investigated, the slope results, as flowering days per heat amounts, evidenced that olive species behaviours are very constant in consequence to similar meteorological conditions independently to latitude variations. Averagely, the relationships between plant’s phenology, temperature trends and geographical features are very close, even if the yearly mesoscale meteorological variations force to consider, year by year, phenological advances or delays as local events.

  6. Biological monitoring of environment exposure to safrole and the Taiwanese betel quid chewing.

    PubMed

    Chang, M J W; Ko, C Y; Lin, R F; Hsieh, L L

    2002-11-01

    A rapid and sensitive biological monitoring (BM) method for assessing exposure to the environmental carcinogen safrole has been developed. The method is an isocratic high-performance liquid chromatographic (HPLC) analysis of urinary dihydroxychavicol (DHAB) and eugenol, the urinary metabolites of safrole. Good linearity, precision, and accuracy were demonstrated. A recovery of 98.8 +/- 5.4% (SD, n = 3) was found for DHAB and 84.1 +/- 3.4% (n = 3) for eugenol. The quantitation limits of the method were 8 ng for DHAB and 10 ng for eugenol. The validity of the method was demonstrated by a linear dose-response relationship observed in rats given oral doses of safrole at 30, 75, and 150 mg/kg body weight. The method was also used to monitor the environmental exposure to the Taiwanese betel quid (TBQ) chewing, because TBQ used in Taiwan not only contains areca (betel) nut, slaked lime, and catechu but also Piper betle inflorescence or its leaves. Both of the latter have a high content of safrole. The feasibility of the method to monitor TBQ chewing was demonstrated by an analysis of 153 spot human urine samples. The results showed that the p value of the nonparametric group comparison was < 0.001 for DHAB and 0.832 for eugenol. The TBQ chewers also exhibited a significantly higher rate of urinary DHAB (but not eugenol) than the nonchewers with an odd ratio of 3.47 (95% CI, 1.61-7.51). However, when only the eugenol-positive subjects were taken into analysis, the ratio rose to 24.38 (95% CI, 3.00-197.90).

  7. A Photo-triggered and photo-calibrated nitric oxide donor: Rational design, spectral characterizations, and biological applications.

    PubMed

    He, Haihong; Liu, Yuxin; Zhou, Zhongneng; Guo, Chunlei; Wang, Hong-Yin; Wang, Zhuang; Wang, Xueli; Zhang, Ziqian; Wu, Fu-Gen; Wang, Haolu; Chen, Daijie; Yang, Dahai; Liang, Xiaowen; Chen, Jinquan; Zhou, Shengmin; Liang, Xin; Qian, Xuhong; Yang, Youjun

    2018-04-27

    Nitric oxide (NO) donors are valuable tools to probe the profound implications of NO in health and disease. The elusive nature of NO bio-relevance has largely limited the use of spontaneous NO donors and promoted the development of next generation NO donors, whose NO release is not only stimulated by a trigger, but also readily monitored via a judiciously built-in self-calibration mechanism. Light is without a doubt the most sensitive, versatile and biocompatible method of choice for both triggering and monitoring, for applications in complex biological matrices. Herein, we designed and synthesized an N-nitroso rhodamine derivative (NOD560) as a photo-triggered and photo-calibrated NO donor to address this need. NOD560 is essentially non-fluorescent. Upon irradiation by green light (532 nm), it efficiently release NO and a rhodamine dye, the dramatic fluorescence turn-on from which could be harnessed to conveniently monitor the localization, flux, and dose of NO release. The potentials of NOD560 for in vitro biological applications were also exemplified in in vitro biological models, i.e. mesenchymal stem cell (MSC) migration suppression. NOD560 is expected to complement the existing NO donors and find widespread applications in chemical biological studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Southern Idaho student "bug crews": Weeds, youth, and biocontrol in the rangelands of Idaho

    Treesearch

    Sharlyn Gunderson-Izurieta; George P. Markin; Nan Reedy; Becky Frieberg

    2009-01-01

    Biological control of noxious weeds is an effective and widespread method often used by rangeland managers in the western United States. However, once biological control agents, usually insects, are released onto public and private lands there are few, if any, programs to follow up and monitor the effectiveness of these agents. A technique being used by some...

  9. Hui Wei | NREL

    Science.gov Websites

    , bioinformatics, and literature analyses. In total, 75 proteins were identified using the in-solution method, and 236 proteins were identified using the in-gel method, among which approximately 10% of proteins were Molecular Biology (2012) "Tracking Dynamics of Biomass Composting by Monitoring the Changes in

  10. Integration of laser trapping for continuous and selective monitoring of photothermal response of a single microparticle.

    PubMed

    Vasudevan, Srivathsan; Chen, George C K; Ahluwalia, Balpreet Singh

    2008-12-01

    Photothermal response (PTR) is an established pump and probe technique for real-time sensing of biological assays. Continuous and selective PTR monitoring is difficult owing to the Brownian motion changing the relative position of the target with respect to the beams. Integration of laser trapping with PTR is proposed as a solution. The proposed method is verified on red polystyrene microparticles. PTR is continuously monitored for 30 min. Results show that the mean relaxation time variation of the acquired signals is less than 5%. The proposed method is then applied to human red blood cells for continuous and selective PTR.

  11. Establishment of monitoring plots and evaluation of trees injured by ozone

    Treesearch

    Daniel Duriscoe; Kenneth Stolte; John Pronos

    1996-01-01

    By establishing long–term monitoring plots, it is possible to record environmental and biological conditions of the plot and individual trees, evaluate the condition of crowns of trees in the plot, and determine the extent of ozone injury to western conifers. This chapter recommends various methods for recording data and selecting plots, and provides information for...

  12. Counting migrants to monitor bird populations: state of the art

    Treesearch

    Erica H. Dunn

    2005-01-01

    The aim of this paper is to summarize background information on what migration monitoring is, what biases are present and how they can be addressed, evidence that resulting trends are biologically meaningful, and what the benefits and limitations of the method are. Some topics have been covered elsewhere in greater detail (Dunn and Hussell 1995, Dunn et al. 1997,...

  13. Holographic monitoring of spatial distributions of singlet oxygen in water

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  14. Simulation of temperature distribution in tumor Photothermal treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyang; Qiu, Shaoping; Wu, Shulian; Li, Zhifang; Li, Hui

    2018-02-01

    The light transmission in biological tissue and the optical properties of biological tissue are important research contents of biomedical photonics. It is of great theoretical and practical significance in medical diagnosis and light therapy of disease. In this paper, the temperature feedback-controller was presented for monitoring photothermal treatment in realtime. Two-dimensional Monte Carlo (MC) and diffuse approximation were compared and analyzed. The results demonstrated that diffuse approximation using extrapolated boundary conditions by finite element method is a good approximation to MC simulation. Then in order to minimize thermal damage, real-time temperature monitoring was appraised by proportional-integral-differential (PID) controller in the process of photothermal treatment.

  15. Overview of U.S. EPA Office of Research and Development’s planned research on analysis and monitoring in fresh and coastal/estuarine environments

    EPA Science Inventory

    This research plan has several objectives: 1) develop new or refine existing chemical, instrument and biological methods for the detection of cyanobacteria and their toxins; test such methods in field studies in both HAB and non HAB environments; 2) determine the method(s) that c...

  16. A Biological Signal-Based Stress Monitoring Framework for Children Using Wearable Devices.

    PubMed

    Choi, Yerim; Jeon, Yu-Mi; Wang, Lin; Kim, Kwanho

    2017-08-23

    The safety of children has always been an important issue, and several studies have been conducted to determine the stress state of a child to ensure the safety. Audio signals and biological signals including heart rate are known to be effective for stress state detection. However, collecting those data requires specialized equipment, which is not appropriate for the constant monitoring of children, and advanced data analysis is required for accurate detection. In this regard, we propose a stress state detection framework which utilizes both audio signal and heart rate collected from wearable devices, and adopted machine learning methods for the detection. Experiments using real-world data were conducted to compare detection performances across various machine learning methods and noise levels of audio signal. Adopting the proposed framework in the real-world will contribute to the enhancement of child safety.

  17. Biological monitoring as proficient assessment method in chronic exposure to irritating gases and vapors.

    PubMed

    Szász, Zsuzsánna; Abrám, Z; Szász, L; Moldovan, H; Demeter, Annamária

    2013-01-01

    Air pollution and its adverse health effect represent a global issue. Long term or permanent exposure at low doses of toxic material may increase the number of new appeared severe respiratory diseases and may aggravate most of the existing chronic cases. In the present study, the main toxic aerosols released by the greatest chemical factory in Transylvania were analyzed and their health impacts were measured. We have used in our trial biologic monitoring 1786 employees from a chemical factory in a transversal descriptive study. In the same time, we have noticed environmental determination of air quality and also, we have checked the health status and other 90 cases from a nonchemical factory. In this factory there are also pneumotrop harms. Results of our study give useful information regarding workers health status, with possibility to make pollution-medical condition association: there was no significant association between occurrence of decreased lung function tests and exposure of chemical irritants compared to the second investigated factory. Exposure to pneumotrope hazards imposes safeguards to protect health and biological monitoring has proven absolutely necessary to do so. Last but not least, lifestyle monitoring is to be effective.

  18. The efficacy of wire and glue hair snares in identifying mesocarnivores

    Treesearch

    William J. Zielinski; Fredrick V. Schlexer; Kristine L. Pilgrim; Michael K. Schwartz

    2006-01-01

    Track plates and cameras are proven methods for detecting and identifying fishers (Martes pennant) and other mesocarnivores. But these methods are inadequate to achieve demographic and population-monitoring objectives that require identifying sex and individuals. Although noninvasive collection of biological material for genetic analysis (i.e.,...

  19. Harnessing High-Throughput Monitoring Methods to Strengthen 21st Century Risk-Based Evaluations (SETAC Presentation)

    EPA Science Inventory

    Over the past ten years, the US government has invested in high-throughput (HT) methods to screen chemicals for biological activity. Under the interagency Tox21 consortium and the US Environmental Protection Agency’s (EPA) ToxCast™ program, thousands of chemicals have...

  20. Autoclave use in dental practice in the Republic of Ireland.

    PubMed

    Healy, C M; Kearns, H P O; Coulter, W A; Stevenson, M; Burke, F J T

    2004-08-01

    To assess by postal questionnaire, cross-infection control methods, especially sterilisation procedures, of 700 general dental practitioners in the Republic of Ireland, and to biologically monitor steam pressure sterilisers or autoclaves in their practices. Methods of instrument cleaning and sterilisation, autoclave efficacy. A response rate of 40% with all, except one practitioner, using steam sterilisation. 49% also reported the use of chemical sterilisation with a quarter of these using glutaraldehyde. However, instrument soaking time varied greatly from 2.5 minutes to 74 hours. Methods of instrument cleaning prior to autoclaving were as follows: scrubbing by hand 41.5%, ultrasonic cleaning 7.0%, combination of both 50%. 52.9% of the respondents did not autoclave their dental handpieces and only 44.7% disinfected impressions before sending them to the laboratory. The autoclaves of thirty practitioners (11.3%) did not pass the initial biological test. Following counselling about possible causes of failure, four autoclaves (1.5%) failed a repeat biological test. However, seven practitioners did not return the repeat biological test. Some aspects of recommended cross-infection control procedures are well adhered to, e.g. instrument cleaning, but further education is required in certain key areas, in particular the use of chemical sterilisation, dental handpiece autoclaving and impression disinfection. There is also a need to increase awareness of the importance of routine autoclave servicing and calibration, along with validation and monitoring.

  1. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone.

    PubMed

    Pinna, Daniela; Salvadori, Barbara; Galeotti, Monica

    2012-04-15

    In this study, some mixtures of consolidants or water-repellent products and biocides developed to prevent biological growth, were tested over time on three stone substrates with different bioreceptivity. The performance of both traditional (tetraethylorthosilicate, methylethoxy polysiloxane, Paraloid B72, tributyltin oxide, dibutyltin dilaurate) and innovative compounds (copper nanoparticles) was assessed using colour measurements, the water absorption by contact sponge method, and observation under stereo and optical microscopes. The application of the mixtures had also the purpose of controlling re-colonization on stone after a conservation treatment. The study site was the archaeological Area of Fiesole; the mixtures were applied in situ to sandstone, marble and plaster which had been cleaned beforehand. An innovative aspect of the study is that, by using non-invasive methods, it also permitted monitoring the mixtures' effectiveness in preventing biological growth. The monitoring results made it possible to assess the bioreceptivity of the treated stones (sandstone, marble, plaster) over a period of almost three years. The results showed that the mixtures of consolidants or water-repellent products with biocides were effective in preventing biological growth on both a substrate with low bioreceptivity like plaster and a substrate with high bioreceptivity such as marble. The innovative mixture of nano-Cu particles with a water-repellent yielded good results in terms of preventing biological colonization. Moreover, they apparently did not affect the substrates' colour. Mixtures of nano-Cu particles with a consolidant and a water-repellent hold great promise for preventing re-colonization of stone after conservation treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity.

    PubMed

    Buxton, Rachel; McKenna, Megan F; Clapp, Mary; Meyer, Erik; Stabenau, Erik; Angeloni, Lisa M; Crooks, Kevin; Wittemyer, George

    2018-04-20

    Passive acoustic monitoring has the potential to be a powerful approach for assessing biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examine the ability of acoustic indices to predict the diversity and abundance of biological sounds within recordings. First we reviewed the acoustic index literature and found that over 60 indices have been applied to a range of objectives with varying success. We then implemented a subset of the most successful indices on acoustic data collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental U.S., developing a predictive model of the diversity of animal sounds observed in recordings. For terrestrial recordings, random forest models using a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R 2 > = 0.94, mean squared error MSE < = 170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively impacted by insect, weather, and anthropogenic sounds. For marine recordings, random forest models predicted Shannon diversity, richness, and total number of biological sounds with low accuracy (R 2 < = 0.40, MSE > = 195), indicating that alternative methods are necessary in marine habitats. Our results suggest that using a combination of relevant indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats in the face of accelerating human-caused ecological change. This article is protected by copyright. All rights reserved.

  3. A survey of enabling technologies in synthetic biology

    PubMed Central

    2013-01-01

    Background Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non-exclusive licensing. Access to some patent protected technologies is less clear and use of these technologies may be subject to restrictions imposed by material transfer agreements or other contract terms. We expect the technologies considered enabling for synthetic biology to change as the field advances. By monitoring the enabling technologies of synthetic biology and addressing the policies and practices that impact their development and use, our hope is that the field will be better able to realize its full potential. PMID:23663447

  4. [Determination of ethylene glycol in biological fluids--propylene glycol interferences].

    PubMed

    Gomółka, Ewa; Cudzich-Czop, Sylwia; Sulka, Adrianna

    2013-01-01

    Many laboratories in Poland do not use gas chromatography (GC) method for determination of ethylene glycol (EG) and methanol in blood of poisoned patients, they use non specific spectrophotometry methods. One of the interfering substances is propylene glycol (PG)--compound present in many medical and cosmetic products: drops, air freshens, disinfectants, electronic cigarettes and others. In Laboratory of Analytical Toxicology and Drug Monitoring in Krakow determination of EG is made by GC method. The method enables to distinguish and make resolution of (EG) and (PG) in biological samples. In the years 2011-2012 in several serum samples from diagnosed patients PG was present in concentration from several to higher than 100 mg/dL. The aim of the study was to estimate PG interferences of serum EG determination by spectrophotometry method. Serum samples containing PG and EG were used in the study. The samples were analyzed by two methods: GC and spectrophotometry. Results of serum samples spiked with PG with no EG analysed by spectrophotometry method were improper ("false positive"). The results were correlated to PG concentration in samples. Calculated cross-reactivity of PG in the method was 42%. Positive results of EG measured by spectrophotometry method must be confirmed by reference GC method. Spectrophotometry method shouldn't be used for diagnostics and monitoring of patients poisoned by EG.

  5. Live Imaging Followed by Single Cell Tracking to Monitor Cell Biology and the Lineage Progression of Multiple Neural Populations.

    PubMed

    Gómez-Villafuertes, Rosa; Paniagua-Herranz, Lucía; Gascon, Sergio; de Agustín-Durán, David; Ferreras, María de la O; Gil-Redondo, Juan Carlos; Queipo, María José; Menendez-Mendez, Aida; Pérez-Sen, Ráquel; Delicado, Esmerilda G; Gualix, Javier; Costa, Marcos R; Schroeder, Timm; Miras-Portugal, María Teresa; Ortega, Felipe

    2017-12-16

    Understanding the mechanisms that control critical biological events of neural cell populations, such as proliferation, differentiation, or cell fate decisions, will be crucial to design therapeutic strategies for many diseases affecting the nervous system. Current methods to track cell populations rely on their final outcomes in still images and they generally fail to provide sufficient temporal resolution to identify behavioral features in single cells. Moreover, variations in cell death, behavioral heterogeneity within a cell population, dilution, spreading, or the low efficiency of the markers used to analyze cells are all important handicaps that will lead to incomplete or incorrect read-outs of the results. Conversely, performing live imaging and single cell tracking under appropriate conditions represents a powerful tool to monitor each of these events. Here, a time-lapse video-microscopy protocol, followed by post-processing, is described to track neural populations with single cell resolution, employing specific software. The methods described enable researchers to address essential questions regarding the cell biology and lineage progression of distinct neural populations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream inmore » Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.« less

  7. Establishing a national biological laboratory safety and security monitoring program.

    PubMed

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  8. Recent Advances in Point-of-Access Water Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  9. Separation of Cis-Trans Phospholipid Isomers using Reversed Phase LC with High Resolution MS Detection

    PubMed Central

    Bird, Susan S.; Marur, Vasant R.; Stavrovskaya, Irina G.; Kristal, Bruce S.

    2012-01-01

    The increased presence of synthetic trans fatty acids into western diets has been shown to have deleterious effects on physiology and raising an individual’s risk of developing metabolic disease, cardiovascular disease, and stroke. The importance of these fatty acids for health and the diversity of their (patho) physiological effects suggest that not only should the free trans fatty acids be studied, but that monitoring the presence of these fats into the side-chains of biological lipids, such as glycerophospholipids, is also essential. We developed a high resolution LC-MS method that quantitatively monitors the major lipid classes found in biospecimens in an efficient, sensitive and robust manner while also characterizing individual lipid side-chains through the use of HCD fragmentation and chromatographic alignment. We herein show how this previously described reversed phase method can baseline separate the cis-trans isomers of phosphatidylglycerol and phosphatidylcholine (PC) with two 18:1 side chains, in both positive and negative mode, as neat solutions and when spiked into a biological matrix. Endogenous PC (18:1/18:1) cis and PC (18:1/18:1) trans isomers were examined in mitochondrial and serum profiling studies, where rats were fed diets enriched in either trans 18:1 fatty acids, or cis 18:1 fatty acids. In this study, we determined the cis:trans isomer ratios of PC (18:1/18:1) and related this ratio to dietary composition. This generalized LC-MS method enables the monitoring of trans fats in biological lipids in the context of a non-targeted method, allowing for relative quantitation and enhanced identification of unknown lipids in complex matrices. PMID:22656324

  10. Bioanalytical procedures for monitoring in utero drug exposure

    PubMed Central

    Gray, Teresa

    2009-01-01

    Drug use by pregnant women has been extensively associated with adverse mental, physical, and psychological outcomes in their exposed children. This manuscript reviews bioanalytical methods for in utero drug exposure monitoring for common drugs of abuse in urine, hair, oral fluid, blood, sweat, meconium, amniotic fluid, umbilical cord tissue, nails, and vernix caseosa; neonatal matrices are particularly emphasized. Advantages and limitations of testing different maternal and neonatal biological specimens including ease and invasiveness of collection, and detection time frames, sensitivities, and specificities are described, and specific references for available analytical methods included. Future research involves identifying metabolites unique to fetal drug metabolism to improve detection rates of in utero drug exposure and determining relationships between the amount, frequency, and timing of drug exposure and drug concentrations in infant biological fluids and tissues. Accurate bioanalytical procedures are vital to defining the scope of and resolving this important public health problem. PMID:17370066

  11. Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.

    Treesearch

    S.M. Nay; B.T. Bormann

    2000-01-01

    Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...

  12. Quantitative determination of 5-hydroxy-N-methylpyrrolidone in urine for biological monitoring of N-methylpyrrolidone exposure.

    PubMed

    Ligocka, D; Lison, D; Haufroid, V

    2002-10-05

    The aim of this work was to validate a sensitive method for quantitative analysis of 5-hydroxy-N-methylpyrrolidone (5-HNMP) in urine. This compound has been recommended as a marker for biological monitoring of N-methylpyrrolidone (NMP) exposure. Different solvents and alternative methods of extraction including liquid-liquid extraction (LLE) on Chem Elut and solid-phase extraction (SPE) on Oasis HLB columns were tested. The most efficient extraction of 5-HNMP in urine was LLE with Chem Elut columns and dichloromethane as a solvent (consistently 22% of recovery). The urinary extracts were derivatized by bis(trimethylsilyl)trifluoroacetamide and analysed by gas chromatography-mass spectrometry (GC-MS) with tetradeutered 5-HNMP as an internal standard. The detection limit of this method is 0.017 mg/l urine with an intraassay precision of 1.6-2.6%. The proposed method of extraction is simple and reproducible. Four different m/z signal ratios of TMS-5-HNMP and tetralabelled TMS-5-HNMP have been validated and could be indifferently used in case of unexpected impurities from urine matrix. Copyright 2002 Elsevier Science B.V.

  13. Exploring the MACH Model’s Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    PubMed Central

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms. PMID:27252295

  14. Measurement methods for human exposure analysis.

    PubMed Central

    Lioy, P J

    1995-01-01

    The general methods used to complete measurements of human exposures are identified and illustrations are provided for the cases of indirect and direct methods used for exposure analysis. The application of the techniques for external measurements of exposure, microenvironmental and personal monitors, are placed in the context of the need to test hypotheses concerning the biological effects of concern. The linkage of external measurements to measurements made in biological fluids is explored for a suite of contaminants. This information is placed in the context of the scientific framework used to conduct exposure assessment. Examples are taken from research on volatile organics and for a large scale problem: hazardous waste sites. PMID:7635110

  15. A new aggregation-induced emission fluorescent probe for rapid detection of nitroreductase and its application in living cells

    NASA Astrophysics Data System (ADS)

    Xu, Gaoping; Tang, Yonghe; Ma, Yanyan; Xu, An; Lin, Weiying

    2018-01-01

    The biological activity of nitroreductase (NTR) is closely related to biological hypoxia status in organisms. The development of effective methods for monitoring the activity of NTR is of great significance for medical diagnosis and tumor research. Toward this goal, we have developed a new aggregation-induced emission (AIE) fluorescence NTR probe TPE-HY used the tetraphenylethene as the fluorophore, and used the nitro group as the NTR recognition site. The probe TPE-HY has many excellent properties, including rapid response, AIE characteristics, high sensitivity and selectivity, and low cytotoxicity. Importantly, the probe TPE-HY is successfully applied to monitor endogenous NTR in living HeLa cells.

  16. Conference on Occupational Health Aspects of Advanced Composite Technology in the Aerospace Industry Held in Dayton, Ohio on 6-9 February 1989. Volume 2. Proceedings

    DTIC Science & Technology

    1989-03-01

    fibers do not appoear to be a significant inhalation hazard nor are they biologically active in several in vitro test systems. Minor skin and eye...Additional emphasis on defining various methods to be utilized to define exposure including biological monitoring and application of various skin absorption...Threshold Limit Values and Biological Indices for 1988-1989, Cincinnati, Ohio Bartek, M.J., LaBulde, J.A., and Maibach, H.I. (1983). Skin permeability

  17. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  18. Uncertainty result of biotic index in analysing the water quality of Cikapundung river catchment area, Bandung

    NASA Astrophysics Data System (ADS)

    Surtikanti, Hertien Koosbandiah

    2017-05-01

    The Biotic Index was developed in Western Countries in response to the need in water quality evaluation. This method analysis is based on the classification of aquatic macrobenthos as a bioindicator for clean and polluted water. The aim of this study is to compare the analysis of Cikapundung river using 6 different Biotic Indexes. BI Shannon-Weiner, Belgian Biological Index (BBI), Family Biotic Index (FBI), Biological Monitoring Working Party (BMWP), Biological Monitoring Working Party-Average Score Per Taxon (BMWP-ASPT), and A Scoring System for Macroinvertebrate in Australian River (A SIGNAL). Those analysis are compared with Physical Water Index (CPI) which is developed in Indonesia. The result shows that a decreasing water quality is detected upstream to downstream of Cikapundung River. However, based on the CPI analysis result, the BMWP-ASPT biotic index analysis is more comprehensive than other BI in explaining Cikapundung water quality.

  19. IMMUNOCHEMICAL DETERMINATION OF DIOXINS IN SEDIMENT AND SERUM SAMPLES

    EPA Science Inventory

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are considered highly toxic contaminants and the environmental and biological monitoring of these compounds is of great concern. Immunoassays may be used as screening methods to satisfy the gro...

  20. Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kausaite, A.; van Dijk, M.; Castrop, J.

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without labeling. The system can therefore be used to determine both affinity and rate constants for interactions between various types of molecules. Here, we describe the application of a surface plasmon resonance biosensor for label-free investigation of the interaction between an immobilized antigen bovine serum albumin (BSA) and antibodymore » rabbit anti-cow albumin IgG1 (anti-BSA). The formation of a self-assembled monolayer (SAM) over a gold surface is introduced into this laboratory training protocol as an effective immobilization method, which is very promising in biosensing systems based on detection of affinity interactions. In the next step, covalent attachment via artificially formed amide bonds is applied for the immobilization of proteins on the formed SAM surface. These experiments provide suitable experience for postgraduate students to help them understand immobilization of biologically active materials via SAMs, fundamentals of surface plasmon resonance biosensor applications, and determination of non-covalent biomolecular interactions. The experiment is designed for master and/or Ph.D. students. In some particular cases, this protocol might be adoptable for bachelor students that already have completed an extended biochemistry program that included a background in immunology.« less

  1. Method for estimating optimal spectral and energy parameters of laser irradiation in photodynamic therapy of biological tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisenko, S A; Kugeiko, M M

    We have solved the problem of layer-by-layer laser-light dosimetry in biological tissues and of selecting an individual therapeutic dose in laser therapy. A method is proposed for real-time monitoring of the radiation density in tissue layers in vivo, concentrations of its endogenous (natural) and exogenous (specially administered) chromophores, as well as in-depth distributions of the spectrum of light action on these chromophores. As the background information use is made of the spectrum of diffuse light reflected from a patient's tissue, measured by a fibre-optic spectrophotometer. The measured spectrum is quantitatively analysed by the method of approximating functions for fluxes ofmore » light multiply scattered in tissue and by a semi-analytical method for calculating the in-depth distribution of the light flux in a multi-layered medium. We have shown the possibility of employing the developed method for monitoring photosensitizer and oxyhaemoglobin concentrations in tissue, light power absorbed by chromophores in tissue layers at different depths and laser-induced changes in the tissue morphology (vascular volume content and ratios of various forms of haemoglobin) during photodynamic therapy. (biophotonics)« less

  2. Validation of the Hirst-Type Spore Trap for Simultaneous Monitoring of Prokaryotic and Eukaryotic Biodiversities in Urban Air Samples by Next-Generation Sequencing.

    PubMed

    Núñez, Andrés; Amo de Paz, Guillermo; Ferencova, Zuzana; Rastrojo, Alberto; Guantes, Raúl; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2017-07-01

    Pollen, fungi, and bacteria are the main microscopic biological entities present in outdoor air, causing allergy symptoms and disease transmission and having a significant role in atmosphere dynamics. Despite their relevance, a method for monitoring simultaneously these biological particles in metropolitan environments has not yet been developed. Here, we assessed the use of the Hirst-type spore trap to characterize the global airborne biota by high-throughput DNA sequencing, selecting regions of the 16S rRNA gene and internal transcribed spacer for the taxonomic assignment. We showed that aerobiological communities are well represented by this approach. The operational taxonomic units (OTUs) of two traps working synchronically compiled >87% of the total relative abundance for bacterial diversity collected in each sampler, >89% for fungi, and >97% for pollen. We found a good correspondence between traditional characterization by microscopy and genetic identification, obtaining more-accurate taxonomic assignments and detecting a greater diversity using the latter. We also demonstrated that DNA sequencing accurately detects differences in biodiversity between samples. We concluded that high-throughput DNA sequencing applied to aerobiological samples obtained with Hirst spore traps provides reliable results and can be easily implemented for monitoring prokaryotic and eukaryotic entities present in the air of urban areas. IMPORTANCE Detection, monitoring, and characterization of the wide diversity of biological entities present in the air are difficult tasks that require time and expertise in different disciplines. We have evaluated the use of the Hirst spore trap (an instrument broadly employed in aerobiological studies) to detect and identify these organisms by DNA-based analyses. Our results showed a consistent collection of DNA and a good concordance with traditional methods for identification, suggesting that these devices can be used as a tool for continuous monitoring of the airborne biodiversity, improving taxonomic resolution and characterization together. They are also suitable for acquiring novel DNA amplicon-based information in order to gain a better understanding of the biological particles present in a scarcely known environment such as the air. Copyright © 2017 American Society for Microbiology.

  3. Validation of the Hirst-Type Spore Trap for Simultaneous Monitoring of Prokaryotic and Eukaryotic Biodiversities in Urban Air Samples by Next-Generation Sequencing

    PubMed Central

    Núñez, Andrés; Amo de Paz, Guillermo; Ferencova, Zuzana; Rastrojo, Alberto; Guantes, Raúl; García, Ana M.; Alcamí, Antonio; Gutiérrez-Bustillo, A. Montserrat

    2017-01-01

    ABSTRACT Pollen, fungi, and bacteria are the main microscopic biological entities present in outdoor air, causing allergy symptoms and disease transmission and having a significant role in atmosphere dynamics. Despite their relevance, a method for monitoring simultaneously these biological particles in metropolitan environments has not yet been developed. Here, we assessed the use of the Hirst-type spore trap to characterize the global airborne biota by high-throughput DNA sequencing, selecting regions of the 16S rRNA gene and internal transcribed spacer for the taxonomic assignment. We showed that aerobiological communities are well represented by this approach. The operational taxonomic units (OTUs) of two traps working synchronically compiled >87% of the total relative abundance for bacterial diversity collected in each sampler, >89% for fungi, and >97% for pollen. We found a good correspondence between traditional characterization by microscopy and genetic identification, obtaining more-accurate taxonomic assignments and detecting a greater diversity using the latter. We also demonstrated that DNA sequencing accurately detects differences in biodiversity between samples. We concluded that high-throughput DNA sequencing applied to aerobiological samples obtained with Hirst spore traps provides reliable results and can be easily implemented for monitoring prokaryotic and eukaryotic entities present in the air of urban areas. IMPORTANCE Detection, monitoring, and characterization of the wide diversity of biological entities present in the air are difficult tasks that require time and expertise in different disciplines. We have evaluated the use of the Hirst spore trap (an instrument broadly employed in aerobiological studies) to detect and identify these organisms by DNA-based analyses. Our results showed a consistent collection of DNA and a good concordance with traditional methods for identification, suggesting that these devices can be used as a tool for continuous monitoring of the airborne biodiversity, improving taxonomic resolution and characterization together. They are also suitable for acquiring novel DNA amplicon-based information in order to gain a better understanding of the biological particles present in a scarcely known environment such as the air. PMID:28455334

  4. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  5. Cell viability monitoring using Fano resonance in gold nanoslit array

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Han; Hsieh, Shu-Yi; Lee, Kuang-Li; Weng, Ruei-Hung; Chiou, Arthur; Wei, Pei-Kuen

    2013-09-01

    Cell viability is a crucial issue in biological research. We present label-free monitoring of adhesion cells viability by gold nanoslits-based Fano resonance biosensors. Plastic multiple wells with gold nanoslits substrate were made using a thermal nanoimprint method. Adhesion cells in the wells were treated with doxorubicin for inducing cell death and compared with conventional colorimetric assay. The nanoslits method shows better respones of viability tests under low concentration and short interaction time due to its high surface sensitivies. The vinculin labelling indicates that the measured signals are in good agreement with the adhesion abilities of cells.

  6. Before the storm: informing and involving stakeholder groups in workplace biomarker monitoring.

    PubMed

    Musham, C; Trettin, L; Jablonski, R

    1999-01-01

    The social, legal and ethical implications of advances in biomarker indentification have been discussed by scholars and environmental researchers, but not by the "everyday" professionals and workers who may eventually make and be affected by decisions about their workplace applications. Through the use of a hypothetical scenario, this study introduced members of various professional and occupational groups to the potential uses of biomarkers research on biological monitoring in the workplace. The purpose was to obtain opinions about how events would proceed based on the scenario, leading to a broad discussion of potential uses and abuses of biomarker-based health monitoring. Six professionally homogeneous focus groups, comprised of 1) company health professionals, 2) third-party payers, 3) attorneys, 4) human resource managers, 5) non-unionized workers, and 6) unionized workers, participated in focus groups presented as "think-tank" discussions in Greenville and Charleston, S.C. Participants were given a fictitious "newspaper article" about the use of biomarker-based monitoring at a chemical plant and were asked to comment on what they thought would happen next. The discussion expanded to a general consideration of biological monitoring and its legal, social and ethical ramifications. Data was analyzed through the "immersion/crystallization" method. Few participants reported any knowledge of biological monitoring prior to the focus group session. Some had initial difficulty understanding the concept and how it differs from other means of measuring environmental risk. Although biological monitoring was previously unknown to many participants, occupational groups were relatively consistent in the issues they raised about its use in the workplace. In all groups, questions about potential discrimination against employees were raised. The general consensus was that the use of biomarker-based monitoring would result in conflict and litigation without regulations to protect employees from discrimination. Although most participants saw potential health benefits resulting from the preventive advantages associated with this technology, their concerns about its misuses were paramount. Perceptions varied as a function of occupation. Non-unionized workers expressed the most concern about discriminatory uses of biological monitoring. Unionized workers, who said they believed the union would support their interests, expressed much less concern. Health professionals (company physicians and nurse practitioners) were most alarmed about the "extra work" a monitoring program would create for them. Human resource managers concentrated on the company's "damage control" efforts. Attorneys emphasized that the reliable use of such tests would establish a causal relationship between exposure and personal injury. The results of this project illustrate that people who are most likely to be affected by biomarker-based biological monitoring in the workplace readily understand and are alarmed by its legal and ethical implications. It is unlikely that this technology will be fully accepted as an environmental risk assessment tool or as a prevention strategy without stringent protection of workers' rights. This study demonstrated the value of focus groups in obtaining opinion data about an environmental risk issue that it not yet well known to the general public.

  7. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  8. Supramolecular delivery of photoactivatable fluorophores in developing embryos

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tang, Sicheng; Sansalone, Lorenzo; Thapaliya, Ek Raj; Baker, James D.; Raymo, Françisco M.

    2017-02-01

    The identification of noninvasive strategies to monitor dynamics within living organisms in real time is essential to elucidate the fundamental factors governing a diversity of biological processes. This study demonstrates that the supramolecular delivery of photoactivatable fluorophores in Drosophila melanogaster embryos allows the real-time tracking of translocating molecules. The designed photoactivatable fluorophores switch from an emissive reactant to an emissive product with spectrally-resolved fluorescence, under moderate blue-light irradiation conditions. These hydrophobic fluorescent probes can be encapsulated within supramolecular hosts and delivered to the cellular blastoderm of the embryos. Thus, the combination of supramolecular delivery and fluorescence photoactivation translates into a noninvasive method to monitor dynamics in vivo and can evolve into a general chemical tool to track motion in biological specimens.

  9. Energy Efficient Communication Using Relationships between Biological Signals for Ubiquitous Health Monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Songjun; Na, Doosu; Koo, Bonmin

    Wireless sensor networks with a star network topology are commonly applied for health monitoring systems. To determine the condition of a patient, sensor nodes are attached to the body to transmit the data to a coordinator. However, this process is inefficient because the coordinator is always communicating with each sensor node resulting in a data processing workload for the coordinator that becomes much greater than that of the sensor nodes. In this paper, a method is proposed to reduce the number of data transmissions from the sensor nodes to the coordinator by establishing a threshold for data from the biological signals to ensure that only relevant information is transmitted. This results in a dramatic reduction in power consumption throughout the entire network.

  10. [Radar as imaging tool in ecology and conservation biology].

    PubMed

    Matyjasiak, Piotr

    2017-01-01

    Migrations and dispersal are among the most important ecological processes that shape ecosystems and influence our economy, health and safety. Movements of birds, bats and insects occur in a large spatial scale - regional, continental, or intercontinental. However, studies of these phenomena using classic methods are usually local. Breakthrough came with the development of radar technology, which enabled researchers to study animal movements in the atmosphere in a large spatial and temporal scale. The aim of this article was to present the radar imaging methods used in the research of aerial movements of birds, bats and insects. The types of radars used in research are described, and examples of the use of radar in basic research and in conservation biology are discussed. Radar visualizations are used in studies on the effect of meteorological conditions on bird migration, on spatial and temporal dynamics of movements of birds, bats and insects, and on the mechanism of orientation of migrating birds and insects. In conservation biology research radars are used in the monitoring of endangered species of birds and bats, to monitor bird activity at airports, as well as in assessing the impact of high constructions on flying birds and bats.

  11. Real-time Monitoring of Nanoparticle-based Therapeutics: A Review.

    PubMed

    Han, Qingqing; Niu, Meng; Wu, Qirun; Zhong, Hongshan

    2018-01-01

    With the development of nanomaterials, nanoparticle-based therapeutics have found increasing application in various fields, including clinical and basic medicine. Real-time monitoring of nanoparticle-based therapeutics is considered critical to both pharmacology and pharmacokinetics. In this review, we discuss the different methods of real-time monitoring of nanoparticle-based therapeutics comprising different types of nanoparticle carriers, such as metal nanoparticles, inorganic nonmetallic nanoparticles, biodegradable polymer nanoparticles, and biological nanoparticles. In the light of examples and analyses, we conclude that the methods of analysis of the four types of nanoparticle carriers are commonly used methods and mostly not necessary. Under most circumstances, real-time monitoring differs according to nanoparticle type, drugs, diseases, and surroundings. With technology development and advanced researches, there have been increasing measures to track the real-time changes in nanoparticles, and this has led to great progress in pharmacology and therapeutics. However, future studies are warranted to determine the accuracy, applicability, and practicability of different technologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Monitoring Soil Bacteria with Community-Level Physiological Profiles Using Biolog™ ECO-Plates in the Republic of Tatarstan (Russia)

    NASA Astrophysics Data System (ADS)

    Galieva, G. Sh; Gilmutdinova, I. M.; Fomin, V. P.; Selivanovskaya, S. Yu; Galitskaya, P. Yu

    2018-01-01

    Conservation of soil fertility is one of the most important tasks of the present time. As microorganisms are among the key factors in forming soil fertility, monitoring their state in natural and anthropogenically changed soils is an important component of compulsory environmental monitoring. Modern methods make it possible to evaluate the diversity and the functions of soil microorganisms, however, unfortunately, not all the soils are analyzed with their help up to the present moment. The present investigation is aimed to evaluate the functional diversity of five natural soil samples in the Republic of Tatarstan (belonging to sod-podzol, sod-carbonate, alluvial, and gray types) using the method of Biolog EcoPlate according to the index of average well color development, alpha-biodiversiry Shannon index (H), amount of substrates consumed ®, and strategy of consumption of various carbon substrate groups. It was shown that the highest AWCD index was found in sample No 3 - alluvial soil type (3.159±0.460), the lowest one - in sample No 5 - gray soil type (0.572±0.230). Correlation of biological activity of microorganisms with organic matter content in soil was shown.

  13. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  14. 10 CFR 851.21 - Hazard identification and assessment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety workplace hazards through appropriate workplace monitoring; (2) Document assessment for chemical, physical... hazards; (6) Perform routine job activity-level hazard analyses; (7) Review site safety and health...

  15. 10 CFR 851.21 - Hazard identification and assessment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety workplace hazards through appropriate workplace monitoring; (2) Document assessment for chemical, physical... hazards; (6) Perform routine job activity-level hazard analyses; (7) Review site safety and health...

  16. ATP monitoring technology for microbial growth control in potable water systems

    NASA Astrophysics Data System (ADS)

    Whalen, Patrick A.; Whalen, Philip J.; Cairns, James E.

    2006-05-01

    ATP (Adenosine Triphosphate) is the primary energy transfer molecule present in all living biological cells on Earth. ATP cannot be produced or maintained by anything but a living organism, and as such, its measurement is a direct indication of biological activity. The main advantage of ATP as a biological indicator is the speed of the analysis - from collecting the sample to obtaining the result, only minutes are required. The technology to measure ATP is already widely utilized to verify disinfection efficacy in the food industry and is also commonly applied in industrial water processes such as cooling water systems to monitor microbial growth and biocide applications. Research has indicated that ATP measurement technology can also play a key role in such important industries as potable water distribution and biological wastewater treatment. As will be detailed in this paper, LuminUltra Technologies has developed and applied ATP measurement technologies designed for any water type, and as such can provide a method to rapidly and accurately determine the level of biological activity in drinking water supplies. Because of its speed and specificity to biological activity, ATP measurement can play a key role in defending against failing drinking water quality, including those encountered during routine operation and also bioterrorism.

  17. Biological method to quantify progressive stages of decay in five commercial woods by Coriolus versicolor.

    PubMed

    Olfat, A M; Karimi, A N; Parsapajouh, D

    2007-04-01

    Biologic agar-block method was developed that allowed wood samples to be evaluated and monitored in terms of colonization and development of the decay by Basidiomycetes fungi (Coriolus versicolor) and to be directly classified based on mean mass loss. In this research, the in vitro decay of five commercial woods by Coriolus versicolor was studied by the agar-block method. The selected wood samples were Abies alba, Populus alba, Fagus orientalis, Platanus orientalis and Ulmus glabra. The results demonstrated the strong resistance of Ulmus glabra and the lowest resistance in Fagus orientalis. The mass losses (%) were 16.8 and 42.4%, respectively. There were also a high correlation between the mass loss and apparent damage. Therefore biological evaluation of wood regarding biodegradation and the selection of wood types for various application respects will be of high priority.

  18. Watershed monitoring and modelling and USA regulatory compliance.

    PubMed

    Turner, B G; Boner, M C

    2004-01-01

    The aim of the Columbus program was to implement a comprehensive watershed monitoring-network including water chemistry, aquatic biology and alternative sensors to establish water environment health and methods for determining future restoration progress and early warning for protection of drinking water supplies. The program was implemented to comply with USA regulatory requirements including Total Maximum Daily Load (TMDL) rules of the Clean Water Act (CWA) and Source Water Assessment and Protection (SWAP) rules under the Safe Drinking Water Act (SDWA). The USEPA Office of Research and Development and the Water Environment Research Foundation provided quality assurance oversight. The results obtained demonstrated that significant wet weather data is necessary to establish relationships between land use, water chemistry, aquatic biology and sensor data. These measurements and relationships formed the basis for calibrating the US EPA BASINS Model, prioritizing watershed health and determination of compliance with water quality standards. Conclusions specify priorities of cost-effective drainage system controls that attenuate stormwater flows and capture flushed pollutants. A network of permanent long-term real-time monitoring using combination of continuous sensor measurements, water column sampling and aquatic biology surveys and a regional organization is prescribed to protect drinking water supplies and measure progress towards water quality targets.

  19. Whole-cell bioluminescent bioreporter sensing of foodborne toxicants

    NASA Astrophysics Data System (ADS)

    Ripp, Steve A.; Applegate, Bruce M.; Simpson, Michael L.; Sayler, Gary S.

    2001-03-01

    The presence of biologically derived toxins in foods is of utmost significance to food safety and human health concerns. Biologically active amines, referred to as biogenic amines, serve as a noteworthy example, having been implicated as the causative agent in numerous food poisoning episodes. Of the various biogenic amines encountered, histamine, putrescine, cadaverine, tyramine, tryptamine, beta-phenylethylamine, spermine, and spermidine are considered to be the most significant, and can be used as hygienic-quality indicators of food. Biogenic amines can be monitored using whole-cell bioluminescent bioreporters, which represent a family of genetically engineered microorganisms that generate visible light in response to specific chemical or physical agents in their environment. The light response occurs due to transcriptional activation of a genetically incorporated lux cassette, and can be measured using standard photomultiplier devices. We have successfully engineered a lux-based bioreporter capable of detecting and monitoring the biogenic amine beta-phenylethylamine. This research represents a biologically-based sensor technology that can be readily integrated into Hazard Analysis Critical Control Point programs to provide a rugged monitoring regime that can be uniformly applied for field-based and in-house laboratory quality control analyses. Since the bioreporter and biosensing elements are completely self-contained within the sensor design, this system provides ease of use, with operational capabilities realized by simply combining the food sample with the bioreporter and allowing the sensor to process the ensuing bioluminescent signal and communicate the results. The application of this technology to the critically important issue of food safety and hygienic quality represents a novel method for detecting, monitoring, and preventing biologically active toxins in food commodities.

  20. A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids.

    PubMed

    Karaźniewicz-Łada, Marta; Główka, Anna

    2016-01-01

    Vitamins are an essential element of nutrition and thus contribute to human health. Vitamins catalyze many biochemical reactions and their lack or excess can cause health problems. Therefore, monitoring vitamin concentrations in plasma or other biological fluids may be useful in the diagnosis of various disorders as well as in the treatment process. Several chromatographic methods have been developed for the determination of these compounds in biological samples, including high-performance liquid chromatography with UV and fluorescence detection. Recently, high-performance liquid chromatography with tandem mass spectrometry methods have been widely used for the determination of vitamins in complex matrices because of their high sensitivity and selectivity. This method requires preconditioning of samples for analysis, including protein precipitation and/or various extraction techniques. The choice of method may depend on the desired cost, convenience, turnaround time, specificity, and accuracy of the information to be obtained. This article reviews the recently reported chromatographic methods used for determination of vitamins in biological fluids. Relevant papers published mostly during the last 5 years were identified by an extensive PubMed search using appropriate keywords. Particular attention was given to the preparation steps and extraction techniques. This report may be helpful in the selection of procedures that are appropriate for certain types of biological materials and analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transcriptomic-based effects monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    EPA Science Inventory

    The present study investigated whether combining of targeted analytical chemistry methods with unsupervised, data-rich methodologies (i.e. transcriptomics) can be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The...

  2. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress

    PubMed Central

    Fu, Longwen; Liu, Zuoyi

    2018-01-01

    Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612

  3. Thermal-work strain in law enforcement personnel during chemical, biological, radiological, and nuclear (CBRN) training

    PubMed Central

    Yokota, M; Karis, A J; Tharion, W J

    2014-01-01

    Background: Thermal safety standards for the use of chemical, biological, radiological, and nuclear (CBRN) ensembles have been established for various US occupations, but not for law enforcement personnel. Objectives: We examined thermal strain levels of 30 male US law enforcement personnel who participated in CBRN field training in Arizona, Florida, and Massachusetts. Methods: Physiological responses were examined using unobtrusive heart rate (HR) monitors and a simple thermoregulatory model to predict core temperature (Tc) using HR and environment. Results: Thermal strain levels varied by environments, activity levels, and type of CBRN ensemble. Arizona and Florida volunteers working in hot-dry and hot-humid environment indicated high heat strain (predicted max Tc>38.5°C). The cool environment of Massachusetts reduced thermal strain although thermal strains were occasionally moderate. Conclusions: The non-invasive method of using physiological monitoring and thermoregulatory modeling could improve law enforcement mission to reduce the risk of heat illness or injury. PMID:24999847

  4. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid:
a systematic review

    PubMed Central

    Nunes, Lazaro Alessandro Soares; Mussavira, Sayeeda

    2015-01-01

    This systematic review presents the latest trends in salivary research and its applications in health and disease. Among the large number of analytes present in saliva, many are affected by diverse physiological and pathological conditions. Further, the non-invasive, easy and cost-effective collection methods prompt an interest in evaluating its diagnostic or prognostic utility. Accumulating data over the past two decades indicates towards the possible utility of saliva to monitor overall health, diagnose and treat various oral or systemic disorders and drug monitoring. Advances in saliva based systems biology has also contributed towards identification of several biomarkers, development of diverse salivary diagnostic kits and other sensitive analytical techniques. However, its utilization should be carefully evaluated in relation to standardization of pre-analytical and analytical variables, such as collection and storage methods, analyte circadian variation, sample recovery, prevention of sample contamination and analytical procedures. In spite of all these challenges, there is an escalating evolution of knowledge with the use of this biological matrix. PMID:26110030

  5. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    NASA Astrophysics Data System (ADS)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.

  6. A sensitive UPLC-MS/MS method for simultaneous determination of eleven bioactive components of Tong-Xie-Yao-Fang decoction in rat biological matrices.

    PubMed

    Li, Tian-xue; Hu, Lang; Zhang, Meng-meng; Sun, Jian; Qiu, Yue; Rui, Jun-qian; Yang, Xing-hao

    2014-01-01

    There is a growing concern for the sensitive quantification of multiple components using advanced data acquisition method in herbal medicines (HMs). An improved and rugged UPLC-MS/MS method has been developed and validated for sensitive and rapid determination of multiply analytes from Tong-Xie-Yao-Fang (TXYF) decoction in three biological matrices (plasma/brain tissue/urine) using geniposide and formononetin as internal standards. After solid-phase extraction, chromatographic separation was performed on a C18 column using gradient elution. Quantifier and qualifier transitions were monitored using novel Triggered Dynamic multiple reaction monitoring (TdMRM) in the positive ionization mode. A significant peak symmetry and sensitivity improvement in the TdMRM mode was achieved as compared to conventional MRM. The reproducibility (RSD%) was ≤7.9% by applying TdMRM transition while the values were 6.8-20.6% for MRM. Excellent linear calibration curves were obtained under TdMRM transitions over the tested concentration ranges. Intra- and inter-day precisions (RSD%) were ≤14.2% and accuracies (RE%) ranged from -9.6% to 10.6%. The validation data of specificity, carryover, recovery, matrix effect and stability were within the required limits. The method was effectively applied to simultaneously detect and quantify 1 lactone, 2 monoterpene glucosides, 1 alkaloid, 5 flavonoids and 2 chromones in plasma, brain tissue and urine after oral administration of TXYF decoction. In conclusion, this new and reliable method is beneficial for quantification and confirmation assays of multiply components in complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed Central

    Chouler, Jon; Di Lorenzo, Mirella

    2015-01-01

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries. PMID:26193327

  8. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed

    Chouler, Jon; Di Lorenzo, Mirella

    2015-07-16

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  9. Automated selected reaction monitoring software for accurate label-free protein quantification.

    PubMed

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  10. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  11. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    PubMed

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  12. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer*

    PubMed Central

    Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno

    2012-01-01

    There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein quantification methods in complex samples and address the pressing demand of systems biology or biomarker evaluation studies. PMID:22962056

  13. Monitoring biological diversity: strategies, tools, limitations, and challenges

    USGS Publications Warehouse

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  14. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal eosystem

    USGS Publications Warehouse

    O'Connell, Allan F.; Talancy, Neil W.; Bailey, Larissa L.; Sauer, John R.; Cook, Robert; Gilbert, Andrew T.

    2006-01-01

    Large-scale, multispecies monitoring programs are widely used to assess changes in wildlife populations but they often assume constant detectability when documenting species occurrence. This assumption is rarely met in practice because animal populations vary across time and space. As a result, detectability of a species can be influenced by a number of physical, biological, or anthropogenic factors (e.g., weather, seasonality, topography, biological rhythms, sampling methods). To evaluate some of these influences, we estimated site occupancy rates using species-specific detection probabilities for meso- and large terrestrial mammal species on Cape Cod, Massachusetts, USA. We used model selection to assess the influence of different sampling methods and major environmental factors on our ability to detect individual species. Remote cameras detected the most species (9), followed by cubby boxes (7) and hair traps (4) over a 13-month period. Estimated site occupancy rates were similar among sampling methods for most species when detection probabilities exceeded 0.15, but we question estimates obtained from methods with detection probabilities between 0.05 and 0.15, and we consider methods with lower probabilities unacceptable for occupancy estimation and inference. Estimated detection probabilities can be used to accommodate variation in sampling methods, which allows for comparison of monitoring programs using different protocols. Vegetation and seasonality produced species-specific differences in detectability and occupancy, but differences were not consistent within or among species, which suggests that our results should be considered in the context of local habitat features and life history traits for the target species. We believe that site occupancy is a useful state variable and suggest that monitoring programs for mammals using occupancy data consider detectability prior to making inferences about species distributions or population change.

  15. DNA-PK assay

    DOEpatents

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  16. Monitoring biological diversity: strategies, tools, limitations, and challenges.

    Treesearch

    Erik A. Beever

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity...

  17. Biological Bases of Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP4, the discussion focuses on the following topics: Hematopoiesis Dynamics in Irradiated Mammals, Mathematical Modeling; Estimating Health Risks in Space from Galactic Cosmic Rays; Failure of Heavy Ions to Affect Physiological Integrity of the Corneal Endothelial Monolayer; Application of an Unbiased Two-Gel CDNA Library Screening Method to Expression Monitoring of Genes in Irradiated Versus Control Cells; Detection of Radiation-Induced DNA Strand Breaks in Mammalian Cells By Enzymatic Post-Labeling; Evaluation of Bleomycin-Induced Chromosome Aberrations Under Microgravity Conditions in Human Lymphocytes, Using "Fish" Techniques; Technical Description of the Space Exposure Biology Assembly Seba on ISS; and Cytogenetic Research in Biological Dosimetry.

  18. Monitoring and modeling of microbial and biological water quality

    USDA-ARS?s Scientific Manuscript database

    Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...

  19. Advancing capability for bioassessment using DNA metabarcoding: Application to aquatic invasive species monitoring

    EPA Science Inventory

    Characterizing biological communities by their constituent species is fundamental to biological monitoring and ecological condition assessment. Finding and identifying rare species is a long-standing challenge for monitoring programs. Nevertheless, conducting surveys that can des...

  20. Mimicking multivalent protein-carbohydrate interactions for monitoring the glucosamine level in biological fluids and pharmaceutical tablets.

    PubMed

    Dey, Nilanjan; Bhattacharya, Santanu

    2017-05-11

    An easily synthesizable probe has been employed for dual mode sensing of glucosamine in pure water. The method was also applied for glucosamine estimation in blood serum samples and pharmaceutical tablets. Further, selective detection of glucosamine was also achieved using portable color strips.

  1. Evaluation of recovery and monitoring methods for parasitoids released against Emerald Ash Borer

    USDA-ARS?s Scientific Manuscript database

    The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an invasive insect pest, and the target of an extensive biological control campaign designed to mitigate EAB driven ash tree (Fraxinus spp.) mortality. Since 2007, environmental releases of three species of hymenopteran parasitoids of EA...

  2. PCR Based Microbial Monitor for Analysis of Recycled Water Aboard the ISSA: Issues and Prospects

    NASA Technical Reports Server (NTRS)

    Cassell, Gail H.; Lefkowitz, Elliot J.; Glass, John I.

    1995-01-01

    The monitoring of spacecraft life support systems for the presence of health threatening microorganisms is paramount for crew well being and successful completion of missions. Development of technology to monitor spacecraft recycled water based on detection and identification of the genetic material of contaminating microorganisms and viruses would be a substantial improvement over current NASA plans to monitor recycled water samples that call for the use of conventional microbiology techniques which are slow, insensitive, and labor intensive. The union of the molecular biology techniques of DNA probe hybridization and polymerase chain reaction (PCR) offers a powerful method for the detection, identification, and quantification of microorganisms and viruses. This technology is theoretically capable of assaying samples in as little as two hours with specificity and sensitivity unmatched by any other method. A major advance in probe-hybridization/PCR has come about in a technology called TaqMan(TM), which was invented by Perkin Elmer. Instrumentation using TaqMan concepts is evolving towards devices that could meet NASA's needs of size, low power use, and simplicity of operation. The chemistry and molecular biology needed to utilize these probe-hybridization/PCR instruments must evolve in parallel with the hardware. The following issues of chemistry and biology must be addressed in developing a monitor: Early in the development of a PCR-based microbial monitor it will be necessary to decide how many and which organisms does the system need the capacity to detect. We propose a set of 17 different tests that would detect groups of bacteria and fungus, as well as specific eukaryotic parasites and viruses; In order to use the great sensitivity of PCR it will be necessary to concentrate water samples using filtration. If a lower limit of detection of 1 microorganism per 100 ml is required then the microbes in a 100 ml sample must be concentrated into a volume that can be added to a PCR assay; There are not likely to be contaminants in ISSA recycled water that would inhibit PCR resulting in false-negative results; The TaqMan PCR product detection system is the most promising method for developing a rapid, highly automated gene-based microbial monitoring system. The method is inherently quantitative. NASA and other government agencies have invested in other technologies that, although potentially could lead to revolutionary advances, are not likely to mature in the next 5 years into working systems; PCR-based methods cannot distinguish between DNA or RNA of a viable microorganism and that of a non-viable organism. This may or may not be an important issue with reclaimed water on the ISSA. The recycling system probably damages the capacity of the genetic material of any bacteria or viruses killed during processing to serve as a template in a PCR desinged to amplify a large segment of DNA (less than 650 base pairs). If necessary, vital dye staining could be used in addition to PCR, to enumerate the viable cells in a water sample; The quality control methods have been developed to insure that PCR's are working properly, and that reactions are not contaminated with PCR carryover products which could lead to the generation of false-positive results; and The sequences of the small rRNA subunit gene for a large number of microorganisms are known, and they consititue the best database for rational development of the oligonucleotide reagents that give PCR its great specificity. From those gene sequences, sets of oligonucleotide primers for PCR and Taqman detection that could be used in a NASA microbial monitor were constructed using computer based methods. In addition to space utilization, a microbial monitior will have tremendous terrestrial applications. Analysis of patient samples for microbial pathogens, testing industrial effluent for biofouling bacteria, and detection biological warfare agents on the battlefield are but a few of the diverse potential uses for this technology. Once fully developed, gene-based microbial monitors will become the fundamental tool in every lab that tests for microbial contaminants, and serve as a powerful weapon in mankind's war with the germ world.

  3. Field Monitoring of Drosophila suzukii and Associated Communities in South Eastern France as a Pre-Requisite for Classical Biological Control

    PubMed Central

    Kremmer, Laurent; Thaon, Marcel; Borowiec, Nicolas; David, Jean; Poirié, Marylène; Ris, Nicolas

    2017-01-01

    The spotted wing Drosophila, Drosophila suzukii (Ds), became a major economic pest for fruit production since its establishment in Europe and America. Among potential control methods, only classical biological control appears to be a mean of sustainably regulating Ds in both cultivated and natural habitats. In the frame of risk assessment, pre-release surveys were carried out in a restricted but highly heterogeneous area in the south-east of France using traps and deliberate field exposures of Ds and D. melanogaster larvae/pupae. Although Ds abundance varied according to sampling methods, it was found to be pervasive and to produce offspring and adults in most conditions (spatial and seasonal). Its main limits are some specific abiotic conditions (i.e., desiccation) as well as interspecific competition. Indeed, Ds mostly co-occurred with D. busckii and D. hydei, probably due to common phenology and/or ecological requirements. These two species thus deserve more attention for risk assessment. The main indigenous parasitoids collected belonged to two pupal species, Trichopria cf drosophilae and Pachycrepoideus vindemmiae, but their presence was observed late in the autumn and mainly in cultivated areas. Results are discussed in a comparison of the methodological approaches for monitoring Drosophilids and the benefits-risks assessment of classical biological control. PMID:29144440

  4. Electrochemical Measurement of the β-Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay.

    PubMed

    Tschirhart, Tanya; Zhou, Xinyi Y; Ueda, Hana; Tsao, Chen-Yu; Kim, Eunkyoung; Payne, Gregory F; Bentley, William E

    2016-01-15

    In order to match our ability to conceive of and construct cells with enhanced function, we must concomitantly develop facile, real-time methods for elucidating performance. With these, new designs can be tested in silico and steps in construction incrementally validated. Electrochemical monitoring offers the above advantages largely because signal transduction stems from direct electron transfer, allowing for potentially quicker and more integrated measurements. One of the most common genetic reporters, β-galactosidase, can be measured both spectrophotometrically (Miller assay) and electrochemically. However, since the relationship between the two is not well understood, the electrochemical methods have not yet garnered the attention of biologists. With the aim of demonstrating the utility of an electrochemical measurement to the synthetic biology community, we created a genetic construct that interprets and reports (with β-galactosidase) on the concentration of the bacterial quorum sensing molecule autoinducer-2. In this work, we provide a correlation between electrochemical measurements and Miller Units. We show that the electrochemical assay works with both lysed and whole cells, allowing for the prediction of one from the other, and for continuous monitoring of cell response. We further present a conceptually simple and generalized mathematical model for cell-based β-galactosidase reporter systems that could aid in building and predicting a variety of synthetic biology constructs. This first-ever in-depth comparison and analysis aims to facilitate the use of electrochemical real-time monitoring in the field of synthetic biology as well as to facilitate the creation of constructs that can more easily communicate information to electronic systems.

  5. The determination of fenspiride in human plasma and urine by liquid chromatography with electrochemical or ultraviolet detection.

    PubMed

    Sauveur, C; Baune, A; Vergnes, N; Jeanniot, J P

    1989-01-01

    A selective and sensitive method for the determination of fenspiride in biological fluids is described. The method involves liquid-liquid extraction followed by separation on a reversed-phase column with electrochemical detection for low levels of the drug in plasma (less than or equal to 100 ng ml-1) or UV absorption for higher concentrations in plasma or urine. The method is suitable for pharmacokinetic analyses and drug monitoring studies.

  6. Molecular commonality detection using an artificial enzyme membrane for in situ one-stop biosurveillance.

    PubMed

    Ikeno, Shinya; Asakawa, Hitoshi; Haruyama, Tetsuya

    2007-08-01

    Biodetection and biosensing have been developed based on the concept of sensitivity toward specific molecules. However, current demand may require more levelheaded or far-sighted methods, especially in the field of biological safety and security. In the fields of hygiene, public safety, and security including fighting bioterrorism, the detection of biological contaminants, e.g., microorganisms, spores, and viruses, is a constant challenge. However, there is as yet no sophisticated method of detecting such contaminants in situ without oversight. The authors focused their attention on diphosphoric acid anhydride, which is a structure common to all biological phosphoric substances. Interestingly, biological phosphoric substances are peculiar substances present in all living things and include many different substances, e.g., ATP, ADP, dNTP, pyrophosphate, and so forth, all of which have a diphosphoric acid anhydride structure. The authors took this common structure as the basis of their development of an artificial enzyme membrane with selectivity for the structure common to all biological phosphoric substances and studied the possibility of its application to in situ biosurveillance sensors. The artificial enzyme membrane-based amperometric biosensor developed by the authors can detect various biological phosphoric substances, because it has a comprehensive molecular selectivity for the structure of these biological phosphoric substances. This in situ detection method of the common diphosphoric acid anhydride structure brings a unique advantage to the fabrication of in situ biosurveillance sensors for monitoring biological contaminants, e.g., microorganism, spores, and viruses, without an oversight, even if they were transformed.

  7. Antidoping programme and biological monitoring before and during the 2014 FIFA World Cup Brazil

    PubMed Central

    Baume, Norbert; Jan, Nicolas; Emery, Caroline; Mandanis, Béatrice; Schweizer, Carine; Giraud, Sylvain; Leuenberger, Nicolas; Marclay, François; Nicoli, Raul; Perrenoud, Laurent; Robinson, Neil; Dvorak, Jiri; Saugy, Martial

    2015-01-01

    Background The FIFA has implemented an important antidoping programme for the 2014 FIFA World Cup. Aim To perform the analyses before and during the World Cup with biological monitoring of blood and urine samples. Methods All qualified players from the 32 teams participating in the World Cup were tested out-of-competition. During the World Cup, 2–8 players per match were tested. Over 1000 samples were collected in total and analysed in the WADA accredited Laboratory of Lausanne. Results The quality of the analyses was at the required level as described in the WADA technical documents. The urinary steroid profiles of the players were stable and consistent with previously published papers on football players. During the competition, amphetamine was detected in a sample collected on a player who had a therapeutic use exemption for attention deficit hyperactivity disorder. The blood passport data showed no significant difference in haemoglobin values between out-of-competition and postmatch samples. Conclusions Logistical issues linked to biological samples collection, and the overseas shipment during the World Cup did not impair the quality of the analyses, especially when used as the biological passport of football players. PMID:25878079

  8. Freezing curve-based monitoring to quickly evaluate the viability of biological materials subject to freezing or thermal injury.

    PubMed

    Liu, Jing; Zhou, Yi-Xin

    2003-09-01

    This paper is aimed at investigating the roles of freezing dynamics of a liquid droplet to characterize the properties of the material. In particular, freezing curve-based monitoring was proposed to quickly evaluate the viability of biological materials subject to freezing, re-warming, or other kinds of injury, which is an extremely important issue in practices such as cryobiology, hyperthermia, or freshness evaluation of bio-samples. An integrated micro analysis device was fabricated which is simple in structure and cheap to make. Preliminary freezing results demonstrated that minor changes in a biological material due to freezing or warming injury might result in a significant deviation of its freezing curve from that of the intact biomaterials. Several potential thermal indexes to quantify the material features were pointed out. Further, experiments were performed on some freezing and thawing processes of small amount of water on a cooling surface to test the effects of droplet sizes, measurement sites, cooling strength, and cooling geometry, etc., on the freezing responses of a water droplet. Their implementation in developing a new micro analysis system were suggested. This freezing curve-based monitoring method may open a new strategy for the evaluation of biomaterials subject to destruction in diverse fields.

  9. Dynamic laser speckle analyzed considering inhomogeneities in the biological sample

    NASA Astrophysics Data System (ADS)

    Braga, Roberto A.; González-Peña, Rolando J.; Viana, Dimitri Campos; Rivera, Fernando Pujaico

    2017-04-01

    Dynamic laser speckle phenomenon allows a contactless and nondestructive way to monitor biological changes that are quantified by second-order statistics applied in the images in time using a secondary matrix known as time history of the speckle pattern (THSP). To avoid being time consuming, the traditional way to build the THSP restricts the data to a line or column. Our hypothesis is that the spatial restriction of the information could compromise the results, particularly when undesirable and unexpected optical inhomogeneities occur, such as in cell culture media. It tested a spatial random approach to collect the points to form a THSP. Cells in a culture medium and in drying paint, representing homogeneous samples in different levels, were tested, and a comparison with the traditional method was carried out. An alternative random selection based on a Gaussian distribution around a desired position was also presented. The results showed that the traditional protocol presented higher variation than the outcomes using the random method. The higher the inhomogeneity of the activity map, the higher the efficiency of the proposed method using random points. The Gaussian distribution proved to be useful when there was a well-defined area to monitor.

  10. Determination of Iodate in Food, Environmental, and Biological Samples after Solid-Phase Extraction with Ni-Al-Zr Ternary Layered Double Hydroxide as a Nanosorbent

    PubMed Central

    Abdolmohammad-Zadeh, Hossein; Tavarid, Keyvan; Talleb, Zeynab

    2012-01-01

    Nanostructured nickel-aluminum-zirconium ternary layered double hydroxide was successfully applied as a solid-phase extraction sorbent for the separation and pre-concentration of trace levels of iodate in food, environmental and biological samples. An indirect method was used for monitoring of the extracted iodate ions. The method is based on the reaction of the iodate with iodide in acidic solution to produce iodine, which can be spectrophotometrically monitored at 352 nm. The absorbance is directly proportional to the concentration of iodate in the sample. The effect of several parameters such as pH, sample flow rate, amount of nanosorbent, elution conditions, sample volume, and coexisting ions on the recovery was investigated. In the optimum experimental conditions, the limit of detection (3s) and enrichment factor were 0.12 μg mL−1 and 20, respectively. The calibration graph using the preconcentration system was linear in the range of 0.2–2.8 μg mL−1 with a correlation coefficient of 0.998. In order to validate the presented method, a certified reference material, NIST SRM 1549, was also analyzed. PMID:22619590

  11. Forest genetic monitoring: an overview of concepts and definitions.

    PubMed

    Fussi, Barbara; Westergren, Marjana; Aravanopoulos, Filippos; Baier, Roland; Kavaliauskas, Darius; Finzgar, Domen; Alizoti, Paraskevi; Bozic, Gregor; Avramidou, Evangelia; Konnert, Monika; Kraigher, Hojka

    2016-08-01

    Safeguarding sustainability of forest ecosystems with their habitat variability and all their functions is of highest priority. Therefore, the long-term adaptability of forest ecosystems to a changing environment must be secured, e.g., through sustainable forest management. High adaptability is based on biological variation starting at the genetic level. Thus, the ultimate goal of the Convention on Biological Diversity (CBD) to halt the ongoing erosion of biological variation is of utmost importance for forest ecosystem functioning and sustainability. Monitoring of biological diversity over time is needed to detect changes that threaten these biological resources. Genetic variation, as an integral part of biological diversity, needs special attention, and its monitoring can ensure its effective conservation. We compare forest genetic monitoring to other biodiversity monitoring concepts. Forest genetic monitoring (FGM) enables early detection of potentially harmful changes of forest adaptability before these appear at higher biodiversity levels (e.g., species or ecosystem diversity) and can improve the sustainability of applied forest management practices and direct further research. Theoretical genetic monitoring concepts developed up to now need to be evaluated before being implemented on a national and international scale. This article provides an overview of FGM concepts and definitions, discusses their advantages and disadvantages, and provides a flow chart of the steps needed for the optimization and implementation of FGM. FGM is an important module of biodiversity monitoring, and we define an effective FGM scheme as consisting of an assessment of a forest population's capacity to survive, reproduce, and persist under rapid environmental changes on a long-term scale.

  12. Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting.

    PubMed

    Atkins, S D; Clark, I M; Sosnowska, D; Hirsch, P R; Kerry, B R

    2003-08-01

    Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.

  13. The future role of next-generation DNA sequencing and metagenetics in aquatic biology monitoring programs

    EPA Science Inventory

    The development of current biological monitoring and bioassessment programs was a drastic improvement over previous programs created for monitoring a limited number of specific chemical pollutants. Although these assessment programs are better designed to address the transient an...

  14. Environmental and biological monitoring for lead exposure in California workplaces.

    PubMed Central

    Rudolph, L; Sharp, D S; Samuels, S; Perkins, C; Rosenberg, J

    1990-01-01

    Patterns of environmental and biological monitoring for lead exposure were surveyed in lead-using industries in California. Employer self-reporting indicates a large proportion of potentially lead-exposed workers have never participated in a monitoring program. Only 2.6 percent of facilities have done environmental monitoring for lead, and only 1.4 percent have routine biological monitoring programs. Monitoring practices vary by size of facility, with higher proportions in industries in which larger facilities predominate. Almost 80 percent of battery manufacturing employees work in job classifications which have been monitored, versus only 1 percent of radiator-repair workers. These findings suggest that laboratory-based surveillance for occupational lead poisoning may seriously underestimate the true number of lead poisoned workers and raise serious questions regarding compliance with key elements of the OSHA Lead Standard. PMID:2368850

  15. Imaging in focus: Imaging the dynamics of endocytosis.

    PubMed

    Rosendale, Morgane; Perrais, David

    2017-12-01

    Endocytosis, the formation of membrane vesicles from the plasma membrane, is an essential feature of eukaryotic cell biology. Intense research effort has been dedicated to developing methods that can detect endocytosis events with the highest resolution. We have classified these methods into four families. They exploit the physical properties of endocytosis, namely: 1. Distinguishing extracellular from internalised cargo in fixed samples, 2. Monitoring endosomal acidification, 3. Measuring the turnover of endocytic zones and 4. Detecting vesicle scission. The last three families, all based on fluorescence imaging, are used to study endocytosis in living cells. We discuss the advantages and limitations of these methods and conclude on the future developments required to tackle the upcoming challenges in this fundamental field of cell biology. Copyright © 2017. Published by Elsevier Ltd.

  16. Recommended methods for range-wide monitoring of prairie dogs in the United States

    USGS Publications Warehouse

    McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren

    2011-01-01

    One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western Association of Fish and Wildlife Agencies (WAFWA), in coordination with USFWS and U.S. Geological Survey (USGS), hosted a prairie dog species survey methodology workshop January 25-28, 2010 in Fort Collins, Colorado. The workshop provided all WAFWA partners and interested parties the opportunity to present their survey methodology to a review panel made up of experts in the fields of quantitative biology, population biology, species biology, and biostatistics. This report presents the panel's survey methodology recommendations for each of the four species of prairie dogs found in the United States and, for the black-tailed prairie dog, a list of action items to facilitate implementation of the recommended methodology.

  17. Biological monitors of pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, M.

    1990-02-01

    This article discusses the use of biological monitors to assess the biological consequences of toxicants in the environment, such as bioavailability, synergism, and bioaccumulation through the food web. Among the organisms discussed are fly larvae, worms, bees, shellfish, fishes, birds (starlings, owls, hawks, songbirds) and mammals (rabbits, field mice, shrews).

  18. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases.

    PubMed

    Gianazza, Erica; Tremoli, Elena; Banfi, Cristina

    2014-12-01

    Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.

  19. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.

    PubMed

    Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Borchers, Christoph H

    2016-01-01

    Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels.

  20. FT-IR/ATR univariate and multivariate calibration models for in situ monitoring of sugars in complex microalgal culture media.

    PubMed

    Girard, Jean-Michel; Deschênes, Jean-Sébastien; Tremblay, Réjean; Gagnon, Jonathan

    2013-09-01

    The objective of this work is to develop a quick and simple method for the in situ monitoring of sugars in biological cultures. A new technology based on Attenuated Total Reflectance-Fourier Transform Infrared (FT-IR/ATR) spectroscopy in combination with an external light guiding fiber probe was tested, first to build predictive models from solutions of pure sugars, and secondly to use those models to monitor the sugars in the complex culture medium of mixotrophic microalgae. Quantification results from the univariate model were correlated with the total dissolved solids content (R(2)=0.74). A vector normalized multivariate model was used to proportionally quantify the different sugars present in the complex culture medium and showed a predictive accuracy of >90% for sugars representing >20% of the total. This method offers an alternative to conventional sugar monitoring assays and could be used at-line or on-line in commercial scale production systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Real-time measurements of airborne biologic particles using fluorescent particle counter to evaluate microbial contamination: results of a comparative study in an operating theater.

    PubMed

    Dai, Chunyang; Zhang, Yan; Ma, Xiaoling; Yin, Meiling; Zheng, Haiyang; Gu, Xuejun; Xie, Shaoqing; Jia, Hengmin; Zhang, Liang; Zhang, Weijun

    2015-01-01

    Airborne bacterial contamination poses a risk for surgical site infection, and routine surveillance of airborne bacteria is important. Traditional methods for detecting airborne bacteria are time consuming and strenuous. Measurement of biologic particle concentrations using a fluorescent particle counter is a novel method for evaluating air quality. The current study was to determine whether the number of biologic particles detected by the fluorescent particle counter can be used to indicate airborne bacterial counts in operating rooms. The study was performed in an operating theater at a university hospital in Hefei, China. The number of airborne biologic particles every minute was quantified using a fluorescent particle counter. Microbiologic air sampling was performed every 30 minutes using an Andersen air sampler (Pusong Electronic Instruments, Changzhou, China). Correlations between the 2 different methods were analyzed by Pearson correlation coefficients. A significant correlation was observed between biologic particle and bacterial counts (Pearson correlation coefficient = 0.76), and the counting results from 2 methods both increased substantially between operations, corresponding with human movements in the operating room. Fluorescent particle counters show potential as important tools for monitoring bacterial contamination in operating theatres. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Proteomic Methods of Detection and Quantification of Protein Toxins.

    PubMed

    Duracova, Miloslava; Klimentova, Jana; Fucikova, Alena; Dresler, Jiri

    2018-02-28

    Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins , Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis , Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album . The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.

  3. Proteomic Methods of Detection and Quantification of Protein Toxins

    PubMed Central

    Klimentova, Jana; Fucikova, Alena

    2018-01-01

    Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents. PMID:29495560

  4. Circulating Tumor Cells: Moving Biological Insights into Detection

    PubMed Central

    Chen, Lichan; Bode, Ann M; Dong, Zigang

    2017-01-01

    Circulating tumor cells (CTCs) have shown promising potential as liquid biopsies that facilitate early detection, prognosis, therapeutic target selection and monitoring treatment response. CTCs in most cancer patients are low in abundance and heterogeneous in morphological and phenotypic profiles, which complicate their enrichment and subsequent characterization. Several methodologies for CTC enrichment and characterization have been developed over the past few years. However, integrating recent advances in CTC biology into these methodologies and the selection of appropriate enrichment and characterization methods for specific applications are needed to improve the reliability of CTC biopsies. In this review, we summarize recent advances in the studies of CTC biology, including the mechanisms of their generation and their potential forms of existence in blood, as well as the current CTC enrichment technologies. We then critically examine the selection of methods for appropriately enriching CTCs for further investigation of their clinical applications. PMID:28819450

  5. Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy

    PubMed Central

    Godard, Patrice; van Eyll, Jonathan

    2015-01-01

    MicroRNAs (miRNAs) are involved in the regulation of gene expression at a post-transcriptional level. As such, monitoring miRNA expression has been increasingly used to assess their role in regulatory mechanisms of biological processes. In large scale studies, once miRNAs of interest have been identified, the target genes they regulate are often inferred using algorithms or databases. A pathway analysis is then often performed in order to generate hypotheses about the relevant biological functions controlled by the miRNA signature. Here we show that the method widely used in scientific literature to identify these pathways is biased and leads to inaccurate results. In addition to describing the bias and its origin we present an alternative strategy to identify potential biological functions specifically impacted by a miRNA signature. More generally, our study exemplifies the crucial need of relevant negative controls when developing, and using, bioinformatics methods. PMID:25800743

  6. The inland water macro-invertebrate occurrences in Flanders, Belgium.

    PubMed

    Vannevel, Rudy; Brosens, Dimitri; Cooman, Ward De; Gabriels, Wim; Frank Lavens; Mertens, Joost; Vervaeke, Bart

    2018-01-01

    The Flanders Environment Agency (VMM) has been performing biological water quality assessments on inland waters in Flanders (Belgium) since 1989 and sediment quality assessments since 2000. The water quality monitoring network is a combined physico-chemical and biological network, the biological component focusing on macro-invertebrates. The sediment monitoring programme produces biological data to assess the sediment quality. Both monitoring programmes aim to provide index values, applying a similar conceptual methodology based on the presence of macro-invertebrates. The biological data obtained from both monitoring networks are consolidated in the VMM macro-invertebrates database and include identifications at family and genus level of the freshwater phyla Coelenterata, Platyhelminthes, Annelida, Mollusca, and Arthropoda. This paper discusses the content of this database, and the dataset published thereof: 282,309 records of 210 observed taxa from 4,140 monitoring sites located on 657 different water bodies, collected during 22,663 events. This paper provides some background information on the methodology, temporal and spatial coverage, and taxonomy, and describes the content of the dataset. The data are distributed as open data under the Creative Commons CC-BY license.

  7. Vibrational spectroscopy for imaging single microbial cells in complex biological samples

    DOE PAGES

    Harrison, Jesse P.; Berry, David

    2017-04-13

    Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less

  8. Vibrational spectroscopy for imaging single microbial cells in complex biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Jesse P.; Berry, David

    Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less

  9. A Protein in the Palm of Your Hand through Augmented Reality

    ERIC Educational Resources Information Center

    Berry, Colin; Board, Jason

    2014-01-01

    Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for…

  10. Biological Monitoring of 3-Phenoxybenzoic Acid in Urine by an Enzyme -Linked Immunosorbent Assay

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was employed for determination of the pyrethroid biomarker, 3-phenoxybenzoic acid (3-PBA) in human urine samples. The optimized coating antigen concentration was 0.5 ng/mL with a dilution of 1:4000 for the 3-PBA antibody and 1:6...

  11. Protein Analysis by Dynamic Light Scattering: Methods and Techniques for Students

    ERIC Educational Resources Information Center

    Lorber, Bernard; Fischer, Frederic; Bailly, Marc; Roy, Herve; Kern, Daniel

    2012-01-01

    Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who…

  12. Vascular plant and vertebrate inventories in Sonoran Desert National Parks

    Treesearch

    Cecilia A. Schmidt; Eric W. Albrecht; Brian F. Powell; William L. Halvorson

    2005-01-01

    Biological inventories are important for natural resource management and interpretation, and can form a foundation for long-term monitoring programs. We inventoried vascular plants and vertebrates in nine National Parks in southern Arizona and western New Mexico from 2000 to 2004 using repeatable designs, commonly accepted methods, and standardized protocols. At...

  13. Qualification of a rapid readout biological indicator with moist heat sterilization.

    PubMed

    McCormick, Patrick; Finocchario, Catherine; Manchester, Robert; Glasgow, Louis; Costanzo, Stephen

    2003-01-01

    Biological indicators are recognized as an important component in the validation and routine monitoring of moist heat (steam) sterilization processes. Due to the need to allow for the recovery and outgrowth of test organisms that may have been sub-lethally injured, between 2-5 days of incubation are typically required before the outcome of sterilization processing can be reliably interpreted. Rapid readout biological indicators that incorporate the response of a heat resistant enzyme provide a means for assessing the efficacy of moist heat sterilization within hours of processing. This study describes the qualification of the 3M Attest 1292 Rapid Readout Biological Indicator with moist heat sterilization according to the procedures described in the PDA Technical Report No. 33, "Evaluation, Validation and Implementation of New Microbiological Testing Methods".

  14. Gap assessment in current soil monitoring networks across Europe for measuring soil functions

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Saby, N. P. A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R. P. O.; Spiegel, H.; Toth, G.; Creamer, R. E.

    2017-12-01

    Soil is the most important natural resource for life on Earth after water. Given its fundamental role in sustaining the human population, both the availability and quality of soil must be managed sustainably and protected. To ensure sustainable management we need to understand the intrinsic functional capacity of different soils across Europe and how it changes over time. Soil monitoring is needed to support evidence-based policies to incentivise sustainable soil management. To this aim, we assessed which soil attributes can be used as potential indicators of five soil functions; (1) primary production, (2) water purification and regulation, (3) carbon sequestration and climate regulation, (4) soil biodiversity and habitat provisioning and (5) recycling of nutrients. We compared this list of attributes to existing national (regional) and EU-wide soil monitoring networks. The overall picture highlighted a clearly unbalanced dataset, in which predominantly chemical soil parameters were included, and soil biological and physical attributes were severely under represented. Methods applied across countries for indicators also varied. At a European scale, the LUCAS-soil survey was evaluated and again confirmed a lack of important soil biological parameters, such as C mineralisation rate, microbial biomass and earthworm community, and soil physical measures such as bulk density. In summary, no current national or European monitoring system exists which has the capacity to quantify the five soil functions and therefore evaluate multi-functional capacity of a soil and in many countries no data exists at all. This paper calls for the addition of soil biological and some physical parameters within the LUCAS-soil survey at European scale and for further development of national soil monitoring schemes.

  15. A false start in the race against doping in sport: concerns with cycling's biological passport.

    PubMed

    Hailey, Nicholas

    2011-11-01

    Professional cycling has suffered from a number of doping scandals. The sport's governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling's biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist's system. Instead, the biological passport tracks biological variables in a cyclist's blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports.

  16. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  17. System for monitoring an industrial or biological process

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  18. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  19. Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay

    A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.

  20. A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma.

    PubMed

    Pasquarella, C; Balocco, C; Pasquariello, G; Petrone, G; Saccani, E; Manotti, P; Ugolotti, M; Palla, F; Maggi, O; Albertini, R

    2015-12-01

    The aim of this paper is to describe a multidisciplinary approach including biological and particle monitoring, and microclimate analysis associated with the application of the Computational Fluid Dynamic (CFD). This approach was applied at the Palatina historical library in Parma. Monitoring was performed both in July and in December, in the absence of visitors and operators. Air microbial monitoring was performed with active and passive methods. Airborne particles with a diameter of ≥0.3, ≥0.5, ≥1 and ≥5 μm/m3, were counted by a laser particle counter. The surface contamination of shelves and manuscripts was assessed with nitrocellulose membranes. A spore trap sampler was used to identify both viable and non-viable fungal spores by optical microscope. Microbiological contaminants were analyzed through cultural and molecular biology techniques. Microclimatic parameters were also recorded. An infrared thermal camera provided information on the surface temperature of the different building materials, objects and components. Transient simulation models, for coupled heat and mass-moisture transfer, taking into account archivist and general public movements, combined with the related sensible and latent heat released into the environment, were carried out applying the CFD-FE (Finite Elements) method. Simulations of particle tracing were carried out. A wide variability in environmental microbial contamination, both for air and surfaces, was observed. Cladosporium spp., Alternaria spp., Aspergillus spp., and Penicillium spp. were the most frequently found microfungi. Bacteria such as Streptomyces spp., Bacillus spp., Sphingomonas spp., and Pseudoclavibacter as well as unculturable colonies were characterized by molecular investigation. CFD simulation results obtained were consistent with the experimental data on microclimatic conditions. The tracing and distribution of particles showed the different slice planes of diffusion mostly influenced by the convective airflow. This interdisciplinary research represents a contribution towards the definition of standardized methods for assessing the biological and microclimatic quality of indoor cultural heritage environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Monitoring Butterfly Abundance: Beyond Pollard Walks

    PubMed Central

    Pellet, Jérôme; Bried, Jason T.; Parietti, David; Gander, Antoine; Heer, Patrick O.; Cherix, Daniel; Arlettaz, Raphaël

    2012-01-01

    Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly reflect population sizes and trends. This study compares capture-mark-recapture (absolute abundance) and count-index (relative abundance) monitoring methods in three species (Maculinea nausithous and Iolana iolas: Lycaenidae; Minois dryas: Satyridae) in contrasted habitat types. We demonstrate that intraspecific variability in individual detectability under standard monitoring conditions is probably the rule rather than the exception, which questions the reliability of count-based indices to estimate and compare specific population abundance. Our results suggest that the accuracy of count-based methods depends heavily on the ecology and behavior of the target species, as well as on the type of habitat in which surveys take place. Monitoring programs designed to assess the abundance and trends in butterfly populations should incorporate a measure of detectability. We discuss the relative advantages and inconveniences of current monitoring methods and analytical approaches with respect to the characteristics of the species under scrutiny and resources availability. PMID:22859980

  2. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  3. Biological imaging in radiation therapy: role of positron emission tomography.

    PubMed

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  4. TOPICAL REVIEW: Biological imaging in radiation therapy: role of positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-01

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  5. Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelan, Ryan M.; Sachs, Daniel; Petkiewicz, Shayne J.

    Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promotersmore » and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.« less

  6. Activity Based Profiling of Deubiquitylating Enzymes and Inhibitors in Animal Tissues.

    PubMed

    McLellan, Lauren; Forder, Cassie; Cranston, Aaron; Harrigan, Jeanine; Jacq, Xavier

    2016-01-01

    The attachment of ubiquitin or ubiquitin-like modifiers to proteins is an important signal for the regulation of a variety of biological processes including the targeting of substrates for degradation, receptor internalization, regulation of gene expression, and DNA repair. Posttranslational modification of proteins by ubiquitin controls many cellular processes, and aberrant ubiquitylation can contribute to cancer, immunopathologies, and neurodegeneration. Thus, deubiquitylating enzymes (DUBs) that remove ubiquitin from proteins have become attractive therapeutic targets. Monitoring the activity of DUBs in cells or in tissues is critical for understanding the biological function of DUBs in particular pathways and is essential for determining the physiological specificity and potency of small-molecule DUB inhibitors. Here, we describe a method for the homogenization of animal tissues and incubation of tissue lysates with ubiquitin-based activity probes to monitor DUB activity in mouse tissues and target engagement following treatment of animals with small-molecule DUB inhibitors.

  7. Comprehensive analysis of the lipophilic reactive carbonyls present in biological specimens by LC/ESI-MS/MS.

    PubMed

    Tomono, Susumu; Miyoshi, Noriyuki; Ohshima, Hiroshi

    2015-04-15

    A new analytical method has been developed for profiling lipophilic reactive carbonyls (RCs) such as aldehydes and ketones in biological samples using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with selected reaction monitoring (SRM). The method consists of several phases, including (1) extraction of lipophilic RCs with a chloroform/methanol mixture; (2) derivatization of the extracted RCs with dansyl hydrazine (DH); and (3) SRM detection of the characteristic product ion of the 5-dimethylaminonaphthalene-1-sulfonyl moiety (m/z 236.1). The analytical results were expressed as RC maps, which allowed for the occurrence and levels of different lipophilic RCs to be visualized. We also developed a highly reproducible and accurate method to extract, purify and derivatize RCs in small volumes of biological specimens. This method was applied to the detection of free RCs in mice plasma samples, and resulted in the detection of more than 400 RCs in samples obtained from C57BL/6J mice. Thirty-four of these RCs were identified by comparison with authentic RCs. This method could be used to investigate the levels of RCs in biological and environmental samples, as well as studying the role of lipid peroxidation in oxidative stress related-disorders and discovering new biomarkers for the early diagnosis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  9. Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research

    PubMed Central

    Weis, Brenda K.; Balshaw, David; Barr, John R.; Brown, David; Ellisman, Mark; Lioy, Paul; Omenn, Gilbert; Potter, John D.; Smith, Martyn T.; Sohn, Lydia; Suk, William A.; Sumner, Susan; Swenberg, James; Walt, David R.; Watkins, Simon; Thompson, Claudia; Wilson, Samuel H.

    2005-01-01

    New technologies and methods for assessing human exposure to chemicals, dietary and lifestyle factors, infectious agents, and other stressors provide an opportunity to extend the range of human health investigations and advance our understanding of the relationship between environmental exposure and disease. An ad hoc Committee on Environmental Exposure Technology Development was convened to identify new technologies and methods for deriving personalized exposure measurements for application to environmental health studies. The committee identified a “toolbox” of methods for measuring external (environmental) and internal (biologic) exposure and assessing human behaviors that influence the likelihood of exposure to environmental agents. The methods use environmental sensors, geographic information systems, biologic sensors, toxicogenomics, and body burden (biologic) measurements. We discuss each of the methods in relation to current use in human health research; specific gaps in the development, validation, and application of the methods are highlighted. We also present a conceptual framework for moving these technologies into use and acceptance by the scientific community. The framework focuses on understanding complex human diseases using an integrated approach to exposure assessment to define particular exposure–disease relationships and the interaction of genetic and environmental factors in disease occurrence. Improved methods for exposure assessment will result in better means of monitoring and targeting intervention and prevention programs. PMID:16002370

  10. Reference Proteome Extracts for Mass Spec Instrument Performance Validation and Method Development

    PubMed Central

    Rosenblatt, Mike; Urh, Marjeta; Saveliev, Sergei

    2014-01-01

    Biological samples of high complexity are required to test protein mass spec sample preparation procedures and validate mass spec instrument performance. Total cell protein extracts provide the needed sample complexity. However, to be compatible with mass spec applications, such extracts should meet a number of design requirements: compatibility with LC/MS (free of detergents, etc.)high protein integrity (minimal level of protein degradation and non-biological PTMs)compatibility with common sample preparation methods such as proteolysis, PTM enrichment and mass-tag labelingLot-to-lot reproducibility Here we describe total protein extracts from yeast and human cells that meet the above criteria. Two extract formats have been developed: Intact protein extracts with primary use for sample preparation method development and optimizationPre-digested extracts (peptides) with primary use for instrument validation and performance monitoring

  11. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression

    PubMed Central

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-01-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, −206 and −1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications. PMID:24013565

  12. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression.

    PubMed

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-11-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, -206 and -1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications.

  13. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method.

    PubMed

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2004-11-01

    This study was undertaken to investigate the exposure to chromium (Cr) and nickel (Ni) in flux-cored wire (FCW) welders welding on stainless steel (SS). Seven FCW welders were monitored for 3 days to 1 workweek, measuring Cr and Ni in air, blood, and urine. The welders were questioned about exposure to Cr and Ni during their whole working careers, with emphasis on the week of monitoring, about the use of personal protective equipment and their smoking habits. The air concentrations were mean 200 microg/m(3) (range 2.4-2,744) for total Cr, 11.3 microg/m(3) (<0.2-151.3) for Cr(VI), and 50.4 microg/m(3) (<2.0-416.7) for Ni during the workdays for the five welders who were monitored with air measurements. The levels of Cr and Ni in biological fluids varied between different workplaces. For Cr in whole blood, plasma, and erythrocytes, the mean levels after work were 1.25 (<0.4-8.3) and 1.68 (<0.2-8.0) and 0.9 (<0.4-7.2) microg/l, respectively. For Ni most of the measurements in whole blood and plasma were below the detection limits, the mean levels after work being 0.84 (<0.8-3.3) and 0.57 microg/l (<0.4-1.7), respectively. Mean levels for Cr and Ni in the urine after work were 3.96 (0.34-40.7) and 2.50 (0.56-5.0) microg/g creatinine, respectively. Correlations between the Cr(VI) levels measured in air and the levels of total Cr in the measured biological fluids were found. The results seem to support the view that monitoring of Cr in the urine may be versatile for indirect monitoring of the Cr(VI) air level in FCW welders. The results seem to suggest that external and internal exposure to Cr and Ni in FCW welders welding SS is low in general.

  14. Monitoring the aeration efficiency and carbon footprint of a medium-sized WWTP: experimental results on oxidation tank and aerobic digester.

    PubMed

    Caivano, Marianna; Bellandi, Giacomo; Mancini, Ignazio M; Masi, Salvatore; Brienza, Rosanna; Panariello, Simona; Gori, Riccardo; Caniani, Donatella

    2017-03-01

    The efficiency of aeration systems should be monitored to guarantee suitable biological processes. Among the available tools for evaluating the aeration efficiency, the off-gas method is one of the most useful. Increasing interest towards reducing greenhouse gas (GHG) emissions from biological processes has resulted in researchers using this method to quantify N 2 O and CO 2 concentrations in the off-gas. Experimental measurements of direct GHG emissions from aerobic digesters (AeDs) are not available in literature yet. In this study, the floating hood technique was used for the first time to monitor AeDs. The floating hood technique was used to evaluate oxygen transfer rates in an activated sludge (AS) tank of a medium-sized municipal wastewater treatment plant located in Italy. Very low values of oxygen transfer efficiency were found, confirming that small-to-medium-sized plants are often scarcely monitored and wrongly managed. Average CO 2 and N 2 O emissions from the AS tank were 0.14 kg CO2 /kg bCOD and 0.007 kg CO2,eq /kg bCOD , respectively. For an AeD, 3 × 10 -10  kg CO2 /kg bCOD direct CO 2 emissions were measured, while CO 2,eq emissions from N 2 O were 4 × 10 -9  kg CO2,eq /kg bCOD . The results for the AS tank and the AeD were used to estimate the net carbon and energy footprint of the entire plant.

  15. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  16. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    PubMed

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  17. Environmental and biological monitoring of occupational exposure to polynuclear aromatic hydrocarbons during highway pavement construction in Italy.

    PubMed

    Fostinelli, Jacopo; Madeo, Egidio; Toraldo, Emanuele; Sarnico, Michela; Luzzana, Giorgio; Tomasi, Cesare; De Palma, Giuseppe

    2018-06-09

    We performed a cross-sectional study with the main aim of evaluating occupational exposure to polycyclic aromatic hydrocarbons (PAHs) in workers involved in the pavement construction of a new highway in Northern Italy, where modified bitumen was used as binder for Hot Mix Asphalt. We applied a combined approach of air and biological monitoring. Both the aerosol and vapour phases of bitumen were collected applying the NIOSH 5506 method. The 16 PAHs listed as high priority by EPA were determined by HPLC-UV. End-of-shift urine samples were collected from 144 workers to determine 1-hydroxypyrene (1-OHP) and 2-naphthol (2-NAP) concentrations after enzyme digestion and HPLC-UV analysis. Socio-demographic and lifestyle information was collected by a questionnaire. Paving workers were actually exposed to PAHs, including carcinogenic compounds, that were measurable only in the aerosol phase. Higher exposure as well as dose levels were measured for the paver group. Biological monitoring confirmed that 1-OHP was less affected by smoking habits as compared to 2-NAP and showed a higher association with occupational exposure. Carcinogenic PAH compounds were detectable only in the aerosol phase and this must be taken into account in the adoption of preventive measures. Biomonitoring supported the superiority of 1-OHP as compared to 2-NAP in assessing the internal dose in such workers. Copyright © 2018. Published by Elsevier B.V.

  18. Review: Properties of sperm and seminal fluid, informed by research on reproduction and contraception.

    PubMed

    Cotton, Robin W; Fisher, Matthew B

    2015-09-01

    Forensic DNA testing is grounded in molecular biology and population genetics. The technologies that were the basis of restriction length polymorphism testing (RFLP) have given way to PCR based technologies. While PCR has been the pillar of short tandem repeat (STR) methods and will continue to be used as DNA sequencing and analysis of single nucleotide polymorphisms (SNPs) are introduced into human identification, the molecular biology techniques in use today represent significant advances since the introduction of STR testing. Large forensic laboratories with dedicated research teams and forensic laboratories which are part of academic institutions have the resources to keep track of advances which can then be considered for further research or incorporated into current testing methods. However, many laboratories have limited ability to keep up with research advances outside of the immediate area of forensic science and may not have access to a large university library systems. This review focuses on filling this gap with respect to areas of research that intersect with selected methods used in forensic biology. The review summarizes information collected from several areas of the scientific literature where advances in molecular biology have produced information relevant to DNA analysis of sexual assault evidence and methods used in presumptive and confirmatory identification of semen. Older information from the literature is also included where this information may not be commonly known and is relevant to current methods. The topics selected highlight (1) information from applications of proteomics to sperm biology and human reproduction, (2) seminal fluid proteins and prostate cancer diagnostics, (3) developmental biology of sperm from the fertility literature and (4) areas where methods are common to forensic analysis and research in contraceptive use and monitoring. Information and progress made in these areas coincide with the research interests of forensic biology and cross-talk between these disciplines may benefit both. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization.

    PubMed

    van Ditmarsch, Dave; Xavier, João B

    2011-06-17

    Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600) and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of maximum specific growth rates, which were determined with a precision of ~5.4%. Growth curve synchronization allows integration of rich time-resolved data with endpoint measurements to produce time-resolved quantitative measurements. Such data can be valuable to unveil the dynamic regulation of virulence in P. aeruginosa. More generally, growth curve synchronization can be applied to many biological systems thus helping to overcome a key obstacle in dynamic regulation: the scarceness of quantitative time-resolved data.

  20. Dual-use applications of laser remote sensing to the military battlefield and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Leonelli, Joseph

    1994-06-01

    For the past 20 years, the Department of Defense has sponsored investigations and studies on the use of laser remote sensing techniques and light detection and ranging (lidar) methods for the detection, identification, and tracking of toxic and hazardous battlefield materials. The same lidar methods used by NASA, EPA, and several industry research groups to detect and measure the movement and concentration of air pollution near urban centers have been applied to the national security problem of detecting chemical and biological warfare agents that might be used on the modern battlefield. Significant government investment in the technology base and laser technology has resulted in advanced hardware configurations that are now available for demonstration and evaluation for industrial and environmental monitoring.

  1. Microcontroller - Based System for Electrogastrography Monitoring Through Wireless Transmission

    NASA Astrophysics Data System (ADS)

    Haddab, S.; Laghrouche, M.

    2009-01-01

    Electrogastrography (EGG) is a non-invasive method for recording the electrical activity of the stomach. This paper presents a system designed for monitoring the EGG physiological variables of a patient outside the hospital environment. The signal acquisition is achieved by means of an ambulatory system carried by the patient and connected to him through skin electrodes. The acquired signal is transmitted via the Bluetooth to a mobile phone where the data are stored into the memory and then transferred via the GSM network to the processing and diagnostic unit in the hospital. EGG is usually contaminated by artefacts and other signals, which are sometimes difficult to remove. We have used a neural network method for motion artefacts removal and biological signal separation.

  2. Proof of concept for the use of macroinvertebrates as indicators of polychlorinated biphenyls (PCB) contamination in Lake Hartwell

    Treesearch

    James M. Lazorchak; Michael B. Griffith; Marc Mills; Joseph Schubauer-Berigan; Frank McCormick; Richard Brenner; Craig Zeller

    2015-01-01

    The US Environmental Protection Agency (USEPA) develops methods and tools for evaluating risk management strategies for sediments contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other legacy pollutants. Monitored natural recovery is a risk management alternative that relies on existing physical, chemical, and biological...

  3. An investigation of spectral characteristics of water-glucose solutions

    NASA Astrophysics Data System (ADS)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2016-04-01

    One of the problems of modern medical device engineering is the development of an instrument for non-invasive monitoring of glucose levels in the blood. The urgency of this task is ensured by the following facts: the increase in the incidence of diabetes, the need for regular monitoring of blood sugar, and pain of modern methods of glycemia measurement. The problem can be solved with the help of a spectrophotometric method. This report is devoted to the investigation of spectral characteristics of glucose solution with various molar concentrations. The authors proposed the methodology of experimental research and data processing algorithm. The results of the experimental studies confirmed potential opportunity of blood sugar control by spectrophotometric method. Further research is expected to continue by the way of complication of the composition of the object from an aqueous solution of glucose to biological object.

  4. Use of Sensitive and Specific Biomolecular and Mass Spectrometric Techniques to Monitor the Performance of In-Situ Hydrocarbon Biodegradation

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Kane, S. R.; Legler, T. C.

    2008-12-01

    Monitored natural attenuation (MNA) can be a cost-effective and viable approach for remediation of hydrocarbon-contaminated groundwater. However, regulatory acceptance of the approach is often contingent on monitoring that can convincingly demonstrate the role of microbial degradation. Recent advances in anaerobic hydrocarbon biochemistry, analytical chemistry, and molecular biology have fostered the development of powerful techniques that can be applied to MNA of BTEX (benzene, toluene, ethylbenzene, and xylenes). Here, I discuss two independent methods that have been developed to monitor in situ, anaerobic biodegradation of toluene and xylenes. A method has been developed for rapid, sensitive, and highly selective detection of distinctive indicators of anaerobic alkylbenzene metabolism. The target metabolites, benzylsuccinic acid and methylbenzylsuccinic acid isomers, have no known sources other than anaerobic toluene or xylene degradation; thus, their mere presence in groundwater provides definitive evidence of in situ metabolism. The method, which involves small sample size (<1 mL) and no extraction/concentration steps, relies on isotope dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) with selected reaction monitoring. Detection limits for benzylsuccinates were determined to be ca. 0.3 μg/L and accuracy and precision were favorable in a groundwater matrix. A monitoring method based on quantitative Polymerase Chain Reaction (qPCR) analysis has been developed to specifically quantify populations of anaerobic methylbenzene-degrading bacteria in aquifer sediment. The method targets a catabolic gene (bssA) associated with the first step of anaerobic toluene and xylene degradation. The method has proven to be sensitive (detection limit ca. 5 gene copies) and has a linear range of > 7 orders of magnitude. Application of these two methods in field studies will be discussed in the context of the methods' strengths and limitations. Field data will include a side-by-side comparison of the two methods during a controlled release of BTX and ethanol, simulating release of gasohol from a leaking underground storage tank.

  5. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    PubMed Central

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  6. Unbiased and targeted mass spectrometry for the HDL proteome.

    PubMed

    Singh, Sasha A; Aikawa, Masanori

    2017-02-01

    Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.

  7. Direct determination of N-methyl-2-pyrrolidone metabolites in urine by HPLC-electrospray ionization-MS/MS using deuterium-labeled compounds as internal standard.

    PubMed

    Suzuki, Yoshihiro; Endo, Yoko; Ogawa, Masanori; Yamamoto, Shinobu; Takeuchi, Akito; Nakagawa, Tomoo; Onda, Nobuhiko

    2009-11-01

    N-methyl-2-pyrrolidone (NMP) has been used in many industries and biological monitoring of NMP exposure is preferred to atmospheric monitoring in occupational health. We developed an analytical method that did not include solid phase extraction (SPE) but utilized deuterium-labeled compounds as internal standard for high-performance liquid chromatography-electrospray ionization-mass spectrometry using a C30 column. Urinary concentrations of NMP and its known metabolites 5-hydoxy-N-methyl-2-pyrrolidone (5-HNMP), N-methyl-succinimide (MSI), and 2-hydroxy-N-methylsuccinimide (2-HMSI) were determined in a single run. The method provided baseline separation of these compounds. Their limits of detection in 10-fold diluted urine were 0.0001, 0.006, 0.008, and 0.03 mg/L, respectively. Linear calibration covered a biological exposure index (BEI) for urinary concentration. The within-run and total precisions (CV, %) were 5.6% and 9.2% for NMP, 3.4% and 4.2% for 5-HNMP, 3.7% and 6.0% for MSI, and 6.5% and 6.9% for 2-HMSI. The method was evaluated using international external quality assessment samples, and urine samples from workers exposed to NMP in an occupational area.

  8. An improved Pearson's correlation proximity-based hierarchical clustering for mining biological association between genes.

    PubMed

    Booma, P M; Prabhakaran, S; Dhanalakshmi, R

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality.

  9. An Improved Pearson's Correlation Proximity-Based Hierarchical Clustering for Mining Biological Association between Genes

    PubMed Central

    Booma, P. M.; Prabhakaran, S.; Dhanalakshmi, R.

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality. PMID:25136661

  10. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    PubMed

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-05-25

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology.

  11. Ebola virus disease: Biological and diagnostic evolution from 2014 to 2017.

    PubMed

    Mérens, A; Bigaillon, C; Delaune, D

    2018-03-01

    The Ebola virus disease outbreak observed in West Africa from March 2014 to June 2016 has led to many fundamental and applied research works. Knowledge of this virus has substantially increased. Treatment of many patients in epidemic countries and a few imported cases in developed countries led to developing new diagnostic methods and to adapt laboratory organization and biosafety precautions to perform conventional biological analyses. Clinical and biological monitoring of patients infected with Ebola virus disease helped to determine severity criteria and bad prognosis markers. It also contributed to showing the possibility of viral sanctuaries in patients and the risk of transmission after recovery. After a summary of recent knowledge of environmental and clinical viral persistence, we aimed to present new diagnostic methods and other biological tests that led to highlighting the pathophysiological consequences of Ebola virus disease and its prognostic markers. We also aimed to describe our lab experience in the care of Ebola virus-infected patients, especially technical and logistical changes between 2014 and 2017. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  13. Tracing the spatiotemporally resolved inactivation of optically arranged bacteria by photofunctional microparticles at the single-cell level (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barroso Peña, Alvaro; Grüner, Malte; Forbes, Taylor; Denz, Cornelia; Strassert, Cristian A.

    2016-09-01

    Antimicrobial Photodynamic Inactivation (PDI) represents an attractive alternative in the treatment of infections by antibiotic-resistant pathogenic bacteria. In PDI a photosensitizer (PS) is administered to the site of the biological target in order to generate cytotoxic singlet oxygen which reacts with the biological membrane upon application of harmless visible light. Established methods for testing the photoinduced cytotoxicity of PSs rely on the observation of the whole bacterial ensemble providing only a population-averaged information about the overall produced toxicity. However, for a deeper understanding of the processes that take place in PDI, new methods are required that provide simultaneous regulation of the ROS production, monitoring the subsequent damage induced in the bacteria cells, and full control of the distance between the bacteria and the center of the singlet oxygen production. Herein we present a novel method that enables the quantitative spatio-time-resolved analysis at the single cell level of the photoinduced damage produced by transparent microspheres functionalized with PSs. For this purpose, a methodology was introduced to monitor phototriggered changes with spatiotemporal resolution employing holographic optical tweezers and functional fluorescence microscopy. The defined distance between the photoactive particles and individual bacteria can be fixed under the microscope before the photosensitization process, and the photoinduced damage is monitored by tracing the fluorescence turn-on of a suitable marker. Our methodology constitutes a new tool for the in vitro design and analysis of photosensitizers, as it enables a quantitative response evaluation of living systems towards oxidative stress.

  14. Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer.

    PubMed

    Hoffman, Melissa A; Fang, Bin; Haura, Eric B; Rix, Uwe; Koomen, John M

    2018-01-05

    Recent developments in instrumentation and bioinformatics have led to new quantitative mass spectrometry platforms including LC-MS/MS with data-independent acquisition (DIA) and targeted analysis using parallel reaction monitoring mass spectrometry (LC-PRM), which provide alternatives to well-established methods, such as LC-MS/MS with data-dependent acquisition (DDA) and targeted analysis using multiple reaction monitoring mass spectrometry (LC-MRM). These tools have been used to identify signaling perturbations in lung cancers and other malignancies, supporting the development of effective kinase inhibitors and, more recently, providing insights into therapeutic resistance mechanisms and drug repurposing opportunities. However, detection of kinases in biological matrices can be challenging; therefore, activity-based protein profiling enrichment of ATP-utilizing proteins was selected as a test case for exploring the limits of detection of low-abundance analytes in complex biological samples. To examine the impact of different MS acquisition platforms, quantification of kinase ATP uptake following kinase inhibitor treatment was analyzed by four different methods: LC-MS/MS with DDA and DIA, LC-MRM, and LC-PRM. For discovery data sets, DIA increased the number of identified kinases by 21% and reduced missingness when compared with DDA. In this context, MRM and PRM were most effective at identifying global kinome responses to inhibitor treatment, highlighting the value of a priori target identification and manual evaluation of quantitative proteomics data sets. We compare results for a selected set of desthiobiotinylated peptides from PRM, MRM, and DIA and identify considerations for selecting a quantification method and postprocessing steps that should be used for each data acquisition strategy.

  15. Monitoring salivary melatonin concentrations in children with sleep disorders using liquid chromatography-tandem mass spectrometry.

    PubMed

    Khan, Sohil A; George, Rani; Charles, Bruce G; Taylor, Paul J; Heussler, Helen S; Cooper, David M; McGuire, Treasure M; Pache, David; Norris, Ross L G

    2013-06-01

    Melatonin is synthesized in the pineal gland and is an important circadian phase marker, especially in the determination of sleep patterns. Both temporary and permanent abnormal sleep patterns occur in children; therefore, it is desirable to have methods for monitoring melatonin in biological fluids in the diagnosis and treatment of such disorders. The objective of the study is to develop a liquid chromatography-tandem mass spectrometry method for the determination of melatonin in saliva and to apply it to monitoring salivary concentrations in children with sleep disorders. A deuterated internal standard (d7-melatonin) was added to a diluted saliva sample (20 µL) in an autosampler vial insert, and 50 µL were injected. Plasticware was strictly avoided, and all glassware was scrupulously cleaned and then baked at 120°C for at least 48 hours to obtain satisfactory performance. Reverse-phase chromatography was performed on a C8 column using a linear gradient elution profile comprising mobile phases A (0.1% aqueous formic acid) and B (15% methanol in acetonitrile containing 0.1% formic acid), pumped at a total flow rate of 0.8 mL/min. The run time was 8 minutes. After atmospheric pressure chemical ionization, mass spectrometric detection was in positive ion mode. Mass detection was by selected reaction monitoring mode with the following mass transitions used for quantification: melatonin, m/z 233.0 → 173.8 and d7-melatonin, m/z 240.0 → 178.3. Linearity (r > 0.999) was established from 3.9 to 1000 pg/mL. Imprecision (coefficient of variation percent) was less than 11%, and accuracy was 100-105% (7.0-900 pg/mL). The method was selective, and the mean (range) ratio of the slopes of calibrations in water to those in daytime saliva samples collected from 10 healthy adult subjects was 0.989 (0.982-0.997), indicating negligible matrix effects. The application of the assay was demonstrated in healthy adults and in children being clinically investigated for sleep disturbances. A validated liquid chromatography-tandem mass spectrometry method suitable for monitoring salivary melatonin in children with circadian rhythm sleep disorders is reported. The method also has potential application to pediatric population pharmacokinetic studies using sparse sampling of saliva as the biological sample matrix.

  16. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, A S; Kolesnikova, E A; Popov, A P

    2014-07-31

    Dehydration of muscle tissue in vitro under the action of biologically compatible hyperosmotic agents is studied using a laser terahertz spectrometer in the frequency range from 0.25 to 2.5 THz. Broadband terahertz absorption and reflection spectra of the bovine skeletal muscle tissue were obtained under the action of glycerol, polyethylene glycol with the molecular weight 600 (PEG-600), and propylene glycol. The presented results are proposed for application in developing the methods of image contrast enhancement and increasing the depth of biological tissue probing with terahertz radiation. (laser biophotonics)

  17. Multiphoton microscopy for the in-situ investigation of cellular processes and integrity in cryopreservation.

    PubMed

    Doerr, Daniel; Stark, Martin; Ehrhart, Friederike; Zimmermann, Heiko; Stracke, Frank

    2009-08-01

    In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.

  18. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Teacher's Guide.

    ERIC Educational Resources Information Center

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  19. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Student Manual.

    ERIC Educational Resources Information Center

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  20. Online quantitative analysis of multispectral images of human body tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.

    2013-08-01

    A method is developed for online monitoring of structural and morphological parameters of biological tissues (haemoglobin concentration, degree of blood oxygenation, average diameter of capillaries and the parameter characterising the average size of tissue scatterers), which involves multispectral tissue imaging, image normalisation to one of its spectral layers and determination of unknown parameters based on their stable regression relation with the spectral characteristics of the normalised image. Regression is obtained by simulating numerically the diffuse reflectance spectrum of the tissue by the Monte Carlo method at a wide variation of model parameters. The correctness of the model calculations is confirmed by the good agreement with the experimental data. The error of the method is estimated under conditions of general variability of structural and morphological parameters of the tissue. The method developed is compared with the traditional methods of interpretation of multispectral images of biological tissues, based on the solution of the inverse problem for each pixel of the image in the approximation of different analytical models.

  1. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy.

    PubMed

    Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C

    2009-10-01

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.

  2. Technological advances in suspended-sediment surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Gray, John R.; Gartner, Jeffrey W.

    2009-04-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous suspended sediment data by instruments that require only periodic calibration for correlation to mean concentrations in river cross sections. Broad application of proven suspended sediment surrogate technologies has the potential to revolutionize fluvial sediment monitoring. Once applied, benefits could be enormous, providing for safer, more frequent and consistent, arguably more accurate, and ultimately less expensive sediment data for managing the world's sedimentary resources.

  3. Technological advances in suspended‐sediment surrogate monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric‐concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium‐to‐large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single‐frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous suspended sediment data by instruments that require only periodic calibration for correlation to mean concentrations in river cross sections. Broad application of proven suspended sediment surrogate technologies has the potential to revolutionize fluvial sediment monitoring. Once applied, benefits could be enormous, providing for safer, more frequent and consistent, arguably more accurate, and ultimately less expensive sediment data for managing the world's sedimentary resources.

  4. PACFISH/INFISH Biological Opinion (PIBO): Effectiveness Monitoring Program seven-year status report 1998 through 2004

    Treesearch

    Richard C. Henderson; Eric K. Archer; Boyd A Bouwes; Marc S. Coles-Ritchie; Jeffrey L. Kershner

    2005-01-01

    The PACFISH/INFISH Biological Opinion (PIBO) Effectiveness Monitoring Program was initiated in 1998 to provide a consistent framework for monitoring aquatic and riparian resources on most Forest Service and Bureau of Land Management lands within the Upper Columbia River Basin. This 7-year status report gives our funding sources, partners, and the public an overview of...

  5. MINIMIZING COGNITIVE ERRORS IN SITE-SPECIFIC CAUSAL ASSESSMENT

    EPA Science Inventory

    Interest in causal investigations in aquatic systems has been a natural outgrowth of the increased use of biological monitoring to characterize the condition of resources. Although biological monitoring approaches are critical tools for detecting whether effects are occurring, t...

  6. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review

    PubMed Central

    Jaworska, Aleksandra; Fornasaro, Stefano; Sergo, Valter; Bonifacio, Alois

    2016-01-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated. PMID:27657146

  7. New spectrofluorimetric and spectrophotometric methods for the determination of the analgesic drug, nalbuphine in pharmaceutical and biological fluids.

    PubMed

    El-Didamony, Akram M; Ali, Ismail I

    2013-01-01

    We describe the first studies of a simple and sensitive spectrofluorimetric and spectrophotometric methods for the analysis of nalbuphine (NLB) in dosage form and biological fluids. The spectrofluorimetric method was based on the oxidation of NLB with Ce(IV) to produce Ce(III) and its fluorescence was monitored at 352 nm after excitation at 250 nm. The spectrophotometric method involves addition of a known excess of Ce(IV) to NLB in acid medium, followed by determination of residual Ce(IV) by reacting with a fixed amount of methyl orange and measuring absorbance at 510 nm. In both methods, the amount of Ce(IV) reacted corresponds to the amount of NLB and measured fluorescence or absorbance were found to increase linearly with the concentration of NLB, which are corroborated by correlation coefficients of 0.9997 and 0.9999 for spectrofluorimetric and spectrophotometric methods, respectively. Different variables affecting the reaction conditions such as concentrations of Ce(IV), type and concentration of acid medium, reaction time, temperature, and diluting solvents were carefully studied and optimized. The accuracy and precision of the methods were evaluated on intra-day and inter-day basis. The proposed methods were successfully applied for the determination of NLB in pharmaceutical formulation and biological samples with good recoveries. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Real-Time Single Molecule Visualization of SH2 Domain Membrane Recruitment in Growth Factor Stimulated Cells.

    PubMed

    Oh, Dongmyung

    2017-01-01

    In the last decade, single molecule tracking (SMT) techniques have emerged as a versatile tool for molecular cell biology research. This approach allows researchers to monitor the real-time behavior of individual molecules in living cells with nanometer and millisecond resolution. As a result, it is possible to visualize biological processes as they occur at a molecular level in real time. Here we describe a method for the real-time visualization of SH2 domain membrane recruitment from the cytoplasm to epidermal growth factor (EGF) induced phosphotyrosine sites on the EGF receptor. Further, we describe methods that utilize SMT data to define SH2 domain membrane dynamics parameters such as binding (τ), dissociation (k d ), and diffusion (D) rates. Together these methods may allow us to gain greater understanding of signal transduction dynamics and the molecular basis of disease-related aberrant pathways.

  9. Ecological Monitoring and Compliance Program 2007 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Dennis; Anderson, David; Derek, Hall

    2008-03-01

    In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate themore » potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.« less

  10. The National Riparian Core Protocol: A riparian vegetation monitoring protocol for wadeable streams of the conterminous United States

    Treesearch

    David M. Merritt; Mary E. Manning; Nate Hough-Snee

    2017-01-01

    Riparian areas are hotspots of biological diversity that may serve as high quality habitat for fish and wildlife. The National Riparian Core Protocol (NRCP) provides tools and methods to assist natural resource professionals in sampling riparian vegetation and physical characteristics along wadeable streams. Guidance is provided for collecting basic information on...

  11. Has the promise of DNA barcoding been achieved? a critical look at the application of eDNA barcoding to biomonitoring

    Treesearch

    Carolina Penalva-Arana; Erik P. Pilgrim; John Martinson

    2016-01-01

    Biological monitoring programs aim to assess the health of waters and determine the direct impact anthropogenic activities are having on the ecosystems. There is a need for the development of accurate and reproducible methods that can assess biodiversity rapidly and in a cost-effective manner.

  12. Single-molecule two-colour coincidence detection to probe biomolecular associations.

    PubMed

    Orte, Angel; Clarke, Richard; Klenerman, David

    2010-08-01

    Two-colour coincidence detection (TCCD) is a form of single-molecule fluorescence developed to sensitively detect and characterize associated biomolecules without any separation, in solution, on the cell membrane and in live cells. In the present short review, we first explain the principles of the method and then describe the application of TCCD to a range of biomedical problems and how this method may be developed further in the future to try to monitor biological processes in live cells.

  13. Possibilities of surface waters monitoring at mining areas using UAV

    NASA Astrophysics Data System (ADS)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  14. Monitoring stem cells in phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  15. The Colorado Plateau IV: shaping conservation through science and management

    USGS Publications Warehouse

    Wakeling, Brian F.; Sisk, Thomas D.; van Riper, Charles

    2010-01-01

    Roughly centered on the Four Corners region of the southwestern United States, the Colorado Plateau covers some 130,000 square miles of sparsely vegetated plateaus, mesas, canyons, arches, and cliffs in Arizona, Utah, Colorado, and New Mexico. With elevations ranging from 3,000 to 14,000 feet, the natural systems found within the plateau are dramatically varied, from desert to alpine conditions. This book focuses on the integration of science and resource management issues in this unique and highly varied environment. Broken into three subsections, this volume addresses conservation biology, biophysical resources, and inventory and monitoring concerns. The chapters range in content, addressing conservation issues–past, present, and future–on the Colorado Plateau, measurement of human impacts on resources, grazing and wildland-urban interfaces, and tools and methods for monitoring habitats and species. An informative read for people interested in the conservation and natural history of the region, the book will also serve as a valuable reference for those people engaged in the management of cultural and biological resources of the Colorado Plateau, as well as scientists interested in methods and tools for land and resource management throughout the West.

  16. Development and investigation of MOEMS type displacement-pressure sensor for biological information monitoring

    NASA Astrophysics Data System (ADS)

    Ostasevicius, Vytautas; Malinauskas, Karolis; Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas

    2016-04-01

    The aim of this paper is to develop and investigate MOEMS displacement-pressure sensor for biological information monitoring. Developing computational periodical microstructure models using COMSOL Multiphysics modeling software for modal and shape analysis and implementation of these results for design MOEMS displacement-pressure sensor for biological information monitoring was performed. The micro manufacturing technology of periodical microstructure having good diffraction efficiency was proposed. Experimental setup for characterisation of optical properties of periodical microstructure used for design of displacement-pressure sensor was created. Pulsating human artery dynamic characteristics in this paper were analysed.

  17. A biosensor for cadmium based on bioconvective patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.

    1990-01-01

    An 'in vitro' method for monitoring cadmium, one of the most lethal bivalent heavy metals, can detect biologically active levels. The effects of cadmium tend to concentrate in protozoa far above natural levels and therein begin transferring through freshwater food chains to animals and humans. In a small sample volume (approximately 5 ml) the method uses the toxic response to the protozoa, Tetrahymena pyriformis, to cadmium. The assay relies on macroscopic bioconvective patterns to measure the toxic response, giving a sensitivity better than 1 micro-g/1 and a toxicity threshold to 7 micro-g/1 for Cd(2+). Cadmium hinders pattern formation in a dose-dependent manner. Arrested organism growth arises from slowed division and mutation to non-dividing classes. Unlike previous efforts, this method can be performed in a shallow flow device and does not require electronic or chemical analyses to monitor toxicity.

  18. Infection control in healthcare settings: perspectives for mfDNA analysis in monitoring sanitation procedures.

    PubMed

    Valeriani, Federica; Protano, Carmela; Gianfranceschi, Gianluca; Cozza, Paola; Campanella, Vincenzo; Liguori, Giorgio; Vitali, Matteo; Divizia, Maurizio; Romano Spica, Vincenzo

    2016-08-09

    Appropriate sanitation procedures and monitoring of their actual efficacy represent critical points for improving hygiene and reducing the risk of healthcare-associated infections. Presently, surveillance is based on traditional protocols and classical microbiology. Innovation in monitoring is required not only to enhance safety or speed up controls but also to prevent cross infections due to novel or uncultivable pathogens. In order to improve surveillance monitoring, we propose that biological fluid microflora (mf) on reprocessed devices is a potential indicator of sanitation failure, when tested by an mfDNA-based approach. The survey focused on oral microflora traces in dental care settings. Experimental tests (n = 48) and an "in field" trial (n = 83) were performed on dental instruments. Conventional microbiology and amplification of bacterial genes by multiple real-time PCR were applied to detect traces of salivary microflora. Six different sanitation protocols were considered. A monitoring protocol was developed and performance of the mfDNA assay was evaluated by sensitivity and specificity. Contaminated samples resulted positive for saliva traces by the proposed approach (CT < 35). In accordance with guidelines, only fully sanitized samples were considered negative (100 %). Culture-based tests confirmed disinfectant efficacy, but failed in detecting incomplete sanitation. The method provided sensitivity and specificity over 95 %. The principle of detecting biological fluids by mfDNA analysis seems promising for monitoring the effectiveness of instrument reprocessing. The molecular approach is simple, fast and can provide a valid support for surveillance in dental care or other hospital settings.

  19. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate.

    PubMed

    Lee, Henry; Reusser, Deborah A; Olden, Julian D; Smith, Scott S; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S; Piorkowski, Robert J; McPhedran, John

    2008-06-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.

  20. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate

    USGS Publications Warehouse

    Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John

    2008-01-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change

  1. Method for concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2012-09-04

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  2. Physicochemical characterization of silver nanoparticles synthesize using Aloe Vera (Aloe barbadensis)

    NASA Astrophysics Data System (ADS)

    Kuponiyi, Abiola; Kassama, Lamin; Kukhtareva, Tatiana

    2014-08-01

    Production of silver nanoparticles (AgNPs) using different biological methods is gaining recognition due to their multiple applications. Although, several physical and chemical methods have been used for the synthesis and stabilizing of AgNPs, yet, a green chemistry method is preferable because it is cost effective and environmentally friendly. The synthesis was done using Aloe Vera (AV) extract because it has chemical compounds such as "Antrokinon" that are known for its antibacterial, antivirus and anticancer properties. We hypothesize that AV extract can produce a stable nanoparticles within the 100 nm range and be biologically active. The biological compounds were extracted from AV skin with water and ethanol which was used as the reduction agent for the synthesis of nanoparticles. The biological extract and AgNO3 were blended and heated to synthesize AgNPs. The reaction process was monitored using UV-Visible spectroscopy. Fourier Transfer Infrared spectroscopy (FTIR) was used for the characterization of biological compounds and their substituent groups before and after the reaction process. Dynamic Light scattering (DLS) method was used to characterize particle size of AgNPs and their biomolecular stability. Results showed that biological compounds such as aliphatic amines, alkenes (=C-H), alkanes (C-H), alcohol (O-H) and unsaturated esters(C-O), which has an average particle size of 109 and 215.8 nm and polydispersity index of 0.451 and 0.375 for ethanol and water extract, respectively. According to TEM measurements the size of AgNPs are in the range 5-20 nm The results suggested that ethanol derived AgNPs contained higher yield of organic compounds, thus has better solubility power than water. Ag NPs can be used to control salmonella in poultry industry.

  3. RED RIVER BASIN BIOLOGICAL MONITORING WORKGROUP

    EPA Science Inventory

    The goal of this project is to improve coordination of biological monitoring efforts in the Red River Basin. This is to be accomplished through coordination of a study to develop sampling protocols for macroinvertebrates in the main stream and lower tributaries of the Red River....

  4. Optimization of a Precolumn OPA Derivatization HPLC Assay for Monitoring of l-Asparagine Depletion in Serum during l-Asparaginase Therapy.

    PubMed

    Zhang, Mei; Zhang, Yong; Ren, Siqi; Zhang, Zunjian; Wang, Yongren; Song, Rui

    2018-06-06

    A method for monitoring l-asparagine (ASN) depletion in patients' serum using reversed-phase high-performance liquid chromatography with precolumn o-phthalaldehyde and ethanethiol (ET) derivatization is described. In order to improve the signal and stability of analytes, several important factors including precipitant reagent, derivatization conditions and detection wavelengths were optimized. The recovery of the analytes in biological matrix was the highest when 4% sulfosalicylic acid (1:1, v/v) was used as a precipitant reagent. Optimal fluorescence detection parameters were determined as λex = 340 nm and λem = 444 nm for maximal signal. The signal of analytes was the highest when the reagent ET and borate buffer of pH 9.9 were used in the derivatization solution. And the corresponding derivative products were stable up to 19 h. The validated method had been successfully applied to monitor ASN depletion and l-aspartic acid, l-glutamine, l-glutamic acid levels in pediatric patients during l-asparaginase therapy.

  5. Monitoring and controlling ovarian activity in elephants.

    PubMed

    Thitaram, Chatchote; Brown, Janine L

    2018-03-15

    Both Asian (Elephas maximus) and African (Loxodonta africana) elephants are important keystone, umbrella and flagship species. Paradoxically, world population numbers of both species are declining in many of their natural ranges due mainly to poaching, while over population of elephants in some areas is resulting in serious human-elephant conflict, and modifications of natural habitats that impact biodiversity. Understanding mechanisms of reproductive control is vital to effective population management, and for that reason significant advances have been made in endocrine and ultrasonographic monitoring techniques, particularly in studies of elephants ex situ. However, there remains a need to develop new methods to control ovarian activity, both for enhancing and inhibiting reproduction, to maintain population numbers at levels that ensure species survival and their ability to safely cohabitate with humans and other species. We present an overview of reproductive monitoring methods and how they have contributed to our knowledge of elephant reproductive biology, as well as their application for in situ and ex situ conservation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Adduct ion-targeted qualitative and quantitative analysis of polyoxypregnanes by ultra-high pressure liquid chromatography coupled with triple quadrupole mass spectrometry.

    PubMed

    Wu, Xu; Zhu, Lin; Ma, Jiang; Ye, Yang; Lin, Ge

    2017-10-25

    Polyoxypregnane and its glycosides (POPs) are frequently present in plants of Asclepiadaceae family, and have a variety of biological activities. There is a great need to comprehensively profile these phytochemicals and to quantify them for monitoring their contents in the herbs and the biological samples. However, POPs undergo extensive adduct ion formation in ESI-MS, which has posed a challenge for qualitative and quantitative analysis of POPs. In the present study, we took the advantage of such extensive adduct ion formation to investigate the suitability of adduct ion-targeted analysis of POPs. For the qualitative analysis, we firstly demonstrated that the sodium and ammonium adduct ion-targeted product ion scans (PIS) provided adequate MS/MS fragmentations for structural characterization of POPs. Aided with precursor ion (PI) scans, which showed high selectivity and sensitivity and improved peak assignment confidence in conjunction with full scan (FS), the informative adduct ion-targeted PIS enabled rapid POPs profiling. For the quantification, we used formic acid rather than ammonium acetate as an additive in the mobile phase to avoid simultaneous formation of sodium and ammonium adduct ions, and greatly improved reproducibility of MS response of POPs. By monitoring the solely formed sodium adduct ions [M+Na] + , a method for simultaneous quantification of 25 POPs in the dynamic multiple reaction monitoring mode was then developed and validated. Finally, the aforementioned methods were applied to qualitative and quantitative analysis of POPs in the extract of a traditional Chinses medicinal herb, Marsdenia tenacissima (Roxb.) Wight et Arn., and in the plasma obtained from the rats treated with this herb. The results demonstrated that adduct ion formation could be optimized for the qualitative and quantitative analysis of POPs, and our developed PI/FS-PIS scanning and sole [M+Na] + ion monitoring significantly improved the analysis of POPs in both herbal and biological samples. This study also provides implications for the analysis of other compounds which undergo extensive adduct ion formation in ESI-MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Deconstructing autofluorescence: non-invasive detection and monitoring of biochemistry in cells and tissues (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.

    2016-03-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.

  8. Evaluation of a bioluminescence method, contact angle measurements and topography for testing the cleanability of plastic surfaces under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Redsven, I.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Kuisma, R.; Ojala-Paloposki, T.; Hautala, M.; Sjöberg, A.-M.

    2007-04-01

    Detection of adenosine triphosphate (ATP) by bioluminescence is used, for instance, in the food industry and in hospitals to assess the hygiene status of surfaces. The aim of this laboratory study was to investigate the feasibility of the ATP method for estimating the cleanability of resilient floor coverings from biological soil. The surfaces were worn using a Soiling and Wearing Drum Tester, and soiled and cleaned with an Erichsen Washability and Scrubbing Resistance Tester. In the laboratory test carried out with the bioluminescence method, most of the new and worn floor coverings that were biologically soiled were cleaned efficiently. According to this study, the semiquantitative ATP screening method can be used for hygiene monitoring of flooring materials. No correlation was found between cleanability and contact angles or surface topography measured using a profilometer. However, by revealing local irregularities and damage on surfaces, scanning electron micrographs appeared useful in explaining differences in cleanability.

  9. EVALUATION OF REAL-TIME INNOVATIVE BIOLOGICAL AND CHEMICAL MONITORING SYSTEMS TO PROTECT SOURCE WATERS

    EPA Science Inventory

    Evaluation of Real-Time Innovative Biological and Chemical Monitoring Systems
    To Protect Source Waters

    Drinking water supplies have in recent years come under increasing pressure from regulatory concerns regarding TMDL designations and restoration strategies as well ...

  10. Clinical review: Neuromonitoring - an update

    PubMed Central

    2013-01-01

    Critically ill patients are frequently at risk of neurological dysfunction as a result of primary neurological conditions or secondary insults. Determining which aspects of brain function are affected and how best to manage the neurological dysfunction can often be difficult and is complicated by the limited information that can be gained from clinical examination in such patients and the effects of therapies, notably sedation, on neurological function. Methods to measure and monitor brain function have evolved considerably in recent years and now play an important role in the evaluation and management of patients with brain injury. Importantly, no single technique is ideal for all patients and different variables will need to be monitored in different patients; in many patients, a combination of monitoring techniques will be needed. Although clinical studies support the physiologic feasibility and biologic plausibility of management based on information from various monitors, data supporting this concept from randomized trials are still required. PMID:23320763

  11. Analysis of Circadian Leaf Movements.

    PubMed

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato.

  12. From Here to Autonomicity: Self-Managing Agents and the Biological Metaphors that Inspire Them

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    We seek inspiration for self-managing systems from (obviously, pre-existing) biological mechanisms. Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward for integrating and designing reliable systems, while agent technologies have been identified as a key enabler for engineering autonomicity in systems. This paper looks at other biological metaphors such as reflex and healing, heart- beat monitors, pulse monitors and apoptosis for assisting in the realization of autonomicity.

  13. Perspectives on the Use of Algae as Biological Indicators for Monitoring and Protecting Aquatic Environments, with Special Reference to Malaysian Freshwater Ecosystems

    PubMed Central

    Omar, Wan Maznah Wan

    2010-01-01

    Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators. PMID:24575199

  14. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe.

    PubMed

    Su, Pai-Hsiang; Lai, Yen-Hsun

    2017-01-01

    The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpH env ), whether the concentration of ionophores used can effectively abolish the ΔpH env is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpH env can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6)-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma), BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r -square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpH env can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore nigericin required to collapse the ΔpH env was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpH env in chloroplast physiology.

  15. Applications and biomonitoring issues of recombinant erythropoietins for doping control.

    PubMed

    Tsitsimpikou, Christina; Kouretas, Demetrios; Tsarouhas, Konstantinos; Fitch, Kenneth; Spandidos, Demetrios A; Tsatsakis, Aristides

    2011-02-01

    The biochemical actions and side effects of recombinant erythropoietins (rhEPOs), their analogs and mimetics, their misuse as doping agents, and the principal analytical strategies developed to identify them in athletes' biologic fluids are reviewed. Patients who experience a range of pathologies have benefited from the administration of rhEPOs to correct severe anemia. Currently, monitoring the biologic effect of rhEPO in patients under treatment is by measuring the hemoglobin concentration. However, it may be valuable to directly monitor the actual levels of the administered drug and determine a dose-dependent correlation with any clinical adverse effect observed. This may permit the adoption of a patient-specific administration regime. Currently, the method of detecting EPO approved for doping control is an isoelectric-focusing, double-blotting, chemiluminescence assay based on charge differences between isoforms of rhEPOs and endogenous EPO in urine. The advantages and limitations of this method are presented. A new approach using sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a complementary tool to the established method is discussed. The application of matrix-assisted laser desorption/ionization mass spectrometry and liquid chromatography combined with tandem mass spectrometry for the direct detection of the rhEPO molecules may prove to be promising. Indirect evidence of rhEPO abuse by athletes is based on the analysis of blood parameters (hemoglobin hematocrit, reticulocytes, macrocytes, etc) and serum markers (concentration of EPO and serum transferrin receptors, etc). Enrichment of the screened parameters with gene or biochemical markers revealing altered erythropoiesis and adoption of longitudinal monitoring of athletes' hematologic and biochemical parameters could also be a complementary approach in the fight against doping.

  16. A multitrophic approach to monitoring the effects of metal mining in otherwise pristine and ecologically sensitive rivers in northern Canada.

    PubMed

    Spencer, Paula; Bowman, Michelle F; Dubé, Monique G

    2008-07-01

    It is not known if current chemical and biological monitoring methods are appropriate for assessing the impacts of growing industrial development on ecologically sensitive northern waters. We used a multitrophic level approach to evaluate current monitoring methods and to determine whether metal-mining activities had affected 2 otherwise pristine rivers that flow into the South Nahanni River, Northwest Territories, a World Heritage Site. We compared upstream reference conditions in the rivers to sites downstream and further downstream of mines. The endpoints we evaluated included concentrations of metals in river water, sediments, and liver and flesh of slimy sculpin (Cottus cognatus); benthic algal and macroinvertebrate abundance, richness, diversity, and community composition; and various slimy sculpin measures, our sentinel forage fish species. Elevated concentrations of copper and iron in liver tissue of sculpin from the Flat River were associated with high concentrations of mine-derived iron in river water and copper in sediments that were above national guidelines. In addition, sites downstream of the mine on the Flat River had increased algal abundances and altered benthic macroinvertebrate communities, whereas the sites downstream of the mine on Prairie Creek had increased benthic macroinvertebrate taxa richness and improved sculpin condition. Biological differences in both rivers were consistent with mild enrichment of the rivers downstream of current and historical mining activity. We recommend that monitoring in these northern rivers focus on indicators in epilithon and benthic macroinvertebrate communities due to their responsiveness and as alternatives to lethal fish sampling in habitats with low fish abundance. We also recommend monitoring of metal burdens in periphyton and benthic invertebrates for assessment of exposure to mine effluent and causal association. Although the effects of mining activities on riverine biota currently are limited, our results show that there is potential for effects to occur with proposed growth in mining activities.

  17. Carbon dioxide evolution rate as a method to monitor and control an aerobic biological waste treatment system

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Shuler, M. L.

    1986-01-01

    An experimental system was developed to study the microbial growth kinetic of an undefined mixed culture in an erobic biological waste treatment process. The experimental results were used to develop a mathematical model that can predict the performance of a bioreactor. The bioreactor will be used to regeneratively treat waste material which is expected to be generated during a long term manned space mission. Since the presence of insoluble particles in the chemically undefined complex media made estimating biomass very difficult in the real system, a clean system was devised to study the microbial growth from the soluble substrate.

  18. Ribosome profiling reveals the what, when, where and how of protein synthesis.

    PubMed

    Brar, Gloria A; Weissman, Jonathan S

    2015-11-01

    Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.

  19. A new xanthene-based two-photon fluorescent probe for the imaging of 1,4-dithiothreitol (DTT) in living cells.

    PubMed

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Zhang, Nan; Song, Wenhui; Lin, Weiying

    2018-06-21

    1,4-Dithiothreitol (DTT) has wide applications in cell biology and biochemistry. Development of effective methods for monitoring DTT in biological systems is important for the safe handling and study of toxicity to humans. Herein, we describe a two-photon fluorescence probe (Rh-DTT) to detect DTT in living systems for the first time. Rh-DTT showed high selectivity and sensitivity to DTT. Rh-DTT can be successfully used for the two-photon imaging of DTT in living cells, and also can detect DTT in living tissues and mice. © 2018 John Wiley & Sons, Ltd.

  20. Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures.

    PubMed

    Dass, Rupashree; Grudzia Ż, Katarzyna; Ishikawa, Takao; Nowakowski, Michał; Dȩbowska, Renata; Kazimierczuk, Krzysztof

    2017-01-01

    The biological toolbox is full of techniques developed originally for analytical chemistry. Among them, spectroscopic experiments are very important source of atomic-level structural information. Nuclear magnetic resonance (NMR) spectroscopy, although very advanced in chemical and biophysical applications, has been used in microbiology only in a limited manner. So far, mostly one-dimensional 1 H experiments have been reported in studies of bacterial metabolism monitored in situ . However, low spectral resolution and limited information on molecular topology limits the usability of these methods. These problems are particularly evident in the case of complex mixtures, where spectral peaks originating from many compounds overlap and make the interpretation of changes in a spectrum difficult or even impossible. Often a suite of two-dimensional (2D) NMR experiments is used to improve resolution and extract structural information from internuclear correlations. However, for dynamically changing sample, like bacterial culture, the time-consuming sampling of so-called indirect time dimensions in 2D experiments is inefficient. Here, we propose the technique known from analytical chemistry and structural biology of proteins, i.e., time-resolved non-uniform sampling. The method allows application of 2D (and multi-D) experiments in the case of quickly varying samples. The indirect dimension here is sparsely sampled resulting in significant reduction of experimental time. Compared to conventional approach based on a series of 1D measurements, this method provides extraordinary resolution and is a real-time approach to process monitoring. In this study, we demonstrate the usability of the method on a sample of Escherichia coli culture affected by ampicillin and on a sample of Propionibacterium acnes , an acne causing bacterium, mixed with a dose of face tonic, which is a complicated, multi-component mixture providing complex NMR spectrum. Through our experiments we determine the exact concentration and time at which the anti-bacterial agents affect the bacterial metabolism. We show, that it is worth to extend the NMR toolbox for microbiology by including techniques of 2D z-TOCSY, for total "fingerprinting" of a sample and 2D 13 C-edited HSQC to monitor changes in concentration of metabolites in selected metabolic pathways.

  1. Clarification of the Use of Biological Data and Information in the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance

    EPA Pesticide Factsheets

    The memorandum modifies the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance to provide clarity and promote consistency in the manner in which states use biological data and information in developing their 2002 submissions.

  2. LASER BIOLOGY AND MEDICINE: Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation

    NASA Astrophysics Data System (ADS)

    Fedosov, I. V.; Tuchin, Valerii V.; Galanzha, E. I.; Solov'eva, A. V.; Stepanova, T. V.

    2002-11-01

    The direction-sensitive method of microflow velocity measurements based on the space — time correlation properties of the dynamic speckle field is described and used for in vivo monitoring of lymph flow in the vessels of rat mesentery. The results of measurements are compared with the data obtained from functional video microscopy of the microvessel region.

  3. Gauging the Gaps in Student Problem-Solving Skills: Assessment of Individual and Group Use of Problem-Solving Strategies Using Online Discussions

    ERIC Educational Resources Information Center

    Anderson, William L.; Mitchell, Steven M.; Osgood, Marcy P.

    2008-01-01

    For the past 3 yr, faculty at the University of New Mexico, Department of Biochemistry and Molecular Biology have been using interactive online Problem-Based Learning (PBL) case discussions in our large-enrollment classes. We have developed an illustrative tracking method to monitor student use of problem-solving strategies to provide targeted…

  4. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    DTIC Science & Technology

    2008-01-01

    profound impacts on coastal ecosystems. Although the causes of jellyfish blooms are not well understood, correlations have been made between...changes in jellyfish density and changes in physical factors, such as temperature and salinity, and biological factors, such as prey abundance and...Current sampling methods for jellyfish populations are done with net collections by hand at stations weekly, monthly, or seasonally. These time scales

  5. Compilation of annual reports of the Navy ELF (Extremely Low Frequency) communications system ecological monitoring program. Volume 1: Tabs A-E

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Bruhn, J.; Cattelino, P.; Janke, R.; Jurgensen, M.; Mroz, G.; Reed, E. J.; Trettin, C.

    1984-07-01

    A long-term program of studying ELF electromagnetic influences on ecosystems in northwestern Wisconsin and the Upper Peninsula of Michigan is being conducted. Selection of study sites, monitoring protocols, and analytical methods were initiated in 1982. Data collection was initiated in 1983. Progress is described for studying the terrestrial, aquatic, and wetland ecosystems for the 10 projects comprising the ecological monitoring program. The 10 projects contain Herbaceous Plant Cover and Tree Studies; Litter Decomposition and Microflora; The Effects of Exposing the Slime Mold Physarum polycephalum; Soil Amoeba; Soil and Litter Arthropoda and Earthworm Studies; Biological Studies on Pollinating Insects (Megachilid Bees); Small Vertebrates (Small Mammals and Nesting Birds); Aquatic Ecosystems; Wetland Studies; and Field Studies of Effects of ELF on Migrating Birds.

  6. Elimination and Concentration Correlations between Edible Tissues and Biological Fluids and Hair of Ractopamine in Pigs and Goats Fed with Ractopamine-Medicated Feed.

    PubMed

    Huang, Lingli; Shi, Jingfei; Pan, Yuanhu; Wang, Liye; Chen, Dongmei; Xie, Shuyu; Liu, Zhenli; Yuan, Zonghui

    2016-03-09

    Ractopamine (RAC), a β-adrenergic leanness-enhancing agent, endangers the food safety of animal products because of overdosing and illegal use in food animals. Excretion and residue depletion of RAC in pigs and goats were investigated to determine a representative biological fluid or surface tissue for preslaughter monitoring. After a single oral gavage of RAC, 64-67% of the dose was excreted from the urine of pigs and goats within 12-24 h. RAC persisted the longest in the hair of pigs and goats but depleted rapidly in the plasma, muscle, and fat. Urine and hair were excellent for predicting RAC residues in edible tissues of pigs, whereas plasma and urine were satisfactory body fluids for the prediction of RAC concentrations in edible tissues of goats. These data provided a simple and economical preslaughter living monitoring method for the illegal use and violative residue of RAC in food animals.

  7. Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution.

    PubMed

    Xiao, Xingqing; Kuang, Zhifeng; Slocik, Joseph M; Tadepalli, Sirimuvva; Brothers, Michael; Kim, Steve; Mirau, Peter A; Butkus, Claire; Farmer, Barry L; Singamaneni, Srikanth; Hall, Carol K; Naik, Rajesh R

    2018-05-25

    Sensors for human health and performance monitoring require biological recognition elements (BREs) at device interfaces for the detection of key molecular biomarkers that are measurable biological state indicators. BREs, including peptides, antibodies, and nucleic acids, bind to biomarkers in the vicinity of the sensor surface to create a signal proportional to the biomarker concentration. The discovery of BREs with the required sensitivity and selectivity to bind biomarkers at low concentrations remains a fundamental challenge. In this study, we describe an in-silico approach to evolve higher sensitivity peptide-based BREs for the detection of cardiac event marker protein troponin I (cTnI) from a previously identified BRE as the parental affinity peptide. The P2 affinity peptide, evolved using our in-silico method, was found to have ∼16-fold higher affinity compared to the parent BRE and ∼10 fM (0.23 pg/mL) limit of detection. The approach described here can be applied towards designing BREs for other biomarkers for human health monitoring.

  8. n-hexane polyneuropathy in Japan: a review of n-hexane poisoning and its preventive measures.

    PubMed

    Takeuchi, Y

    1993-07-01

    n-Hexane is used in industry as a solvent for adhesive, dry cleaning, and vegetable oil extraction. In 1963, the first case of severe polyneuropathy suspected to be caused by n-hexane was referred to us. Case studies, animal experiments, and field surveys on n-hexane poisoning were conducted, and preventive measures like threshold limit value revision and biological monitoring were also studied. I review a brief history of our investigations on n-hexane poisoning and its preventive measures in Japan. n-Hexane could cause overt polyneuropathy in workers exposed to more than 100 ppm time-weighted average concentrations [TWA]. The present threshold limit value of 40 ppm in Japan is considered low enough to prevent subclinical impairment of peripheral nerve caused by n-hexane. Urinary 2,5-hexanedione could be a good indicator for biological monitoring of n-hexane exposure. About 2.2 mg/liter of 2,5-hexanedione measured by our improved method corresponds to exposure of 40 ppm (TWA) of n-hexane.

  9. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  10. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator.

    PubMed

    Domingo, José L; García, Francisco; Nadal, Martí; Schuhmacher, Marta

    2017-04-01

    Human biomonitoring is of tremendous importance to prevent potential adverse effects derived from human exposure to chemicals. Blood and urine are among the biological monitors more frequently used. However, biological matrices such as breast milk, hair, nails, saliva, feces, teeth, and expired air are also often used. In addition, and focused mainly on long-term exposure, adipose tissue and other human tissues like bone, liver, brain or kidney, are also used as biological monitors of certain substances, especially for long-term biomonitoring. However, for this kind of tissues sampling is always a limiting factor. In this paper, we have examined the role of autopsy tissues as biological monitors of human exposure to environmental pollutants. For it, we have used a case study conducted near a hazardous waste incinerator (HWI) in Catalonia (Spain), in which the concentrations of metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), have been periodically determined in autopsy tissues of subjects living in the area under potential influence of the facility. This case study does not show advantages -in comparison to other appropriate biomonitors such as blood- in using autopsy tissues in the monitoring of long-term exposure to metals and PCDD/Fs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01006c

  12. Mapping Nearshore Seagrass and Colonized Hard Bottom Spatial Distribution and Percent Biological Cover in Florida, USA Using Object Based Image Analysis of WorldView-2 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Baumstark, R. D.; Duffey, R.; Pu, R.

    2016-12-01

    The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps depicting the spatial distribution and percent biological cover were created from WorldView-2 satellite imagery using Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study presents an alternative for mapping deeper, offshore habitats capable of producing higher thematic (percent biological cover) and spatial resolution maps compared to those created with the traditional photo-interpretation method.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belinsky, Steven A; Palmisano, William A

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection ofmore » lung and other cancers.« less

  14. Clinical methods for the assessment of the effects of environmental stress on fish health

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Yasutake, William T.

    1977-01-01

    Clinical methods are presented for biological monitoring of hatchery and native fish populations to assess the effects of environmental stress on fish health. The choice of methods is based on the experience of the authors and the judgment of colleagues at fishery laboratories of the U.S. Fish and Wildlife Service. Detailed analysis methods, together with guidelines for sample collection and for the interpretation of results, are given for tests on blood (cell counts, chloride, cholesterol, clotting time, cortisol, glucose, hematocrit, hemoglobin, lactic acid, methemoglobin, osmolality, and total protein); water (ammonia and nitrite content); and liver and muscle (glycogen content).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BECHTEL NEVADA ECOLOGICAL SERVICES

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test andmore » Evaluation Complex (NPTEC).« less

  16. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction.

    PubMed

    Deng, Fenfang; Yu, Hong; Pan, Xinhong; Hu, Guoyuan; Wang, Qiqin; Peng, Rongfei; Tan, Lei; Yang, Zhicong

    2018-02-23

    This paper demonstrated the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of five glycopeptide antibiotics in food and biological samples. The target glycopeptide antibiotics were isolated from the samples by solvent extraction, and the extracts were cleaned with a tandem solid-phase extraction step using mixed strong cation exchange and hydrophilic/lipophilic balance cartridges. Subsequently, the analytes were eluted with different solvents, and then quantified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. Under optimal conditions, good linear correlations were obtained for the five glycopeptide antibiotics in the concentration range of 1.0 μg/L to 20.0 μg/L, and with linear correlation coefficients >0.998. Employing this method, the target glycopeptide antibiotics in food and biological samples were identified with a recovery of 83.0-102%, and a low quantitation limit of 1.0 μg/kg in food and 2.0 μg/L in biological samples with low matrix effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Biologically-Inspired Microrobots. Volume 3. Micro-Robot Based on Abstracted Biological Principles

    DTIC Science & Technology

    2006-04-01

    Roy E. Ritzmann, Jeremy Morrey and Andrew Horchler Se. TASK NUMBER Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8...SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Sponsor: Defense Advanced Research Projects Agency (DARPA...Microsystems Technology Office (Elana Ethridge) 3701 North Fairfax Drive Arlington, VA 22203-1714 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) NATICK/TR-05

  18. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    PubMed

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-08

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.

  19. Utilizing high-throughput bioassays associated with US EPA ToxCast Program to assess biological activity of environmental contaminants: A case study of chemical mixtures

    EPA Science Inventory

    Effects-based monitoring and surveillance is increasingly being utilized in conjunction with chemical monitoring to determine potential biological activity associated with environmental contaminants. Supervised approaches targeting specific chemical activity or molecular pathways...

  20. 77 FR 22282 - Draft Guidelines on Biologics Quality Monitoring: Testing for the Detection of Mycoplasma...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ...] Draft Guidelines on Biologics Quality Monitoring: Testing for the Detection of Mycoplasma Contamination... Detection of Mycoplasma Contamination.'' This draft guideline identifies stages of manufacture where... contamination. Because the guidelines apply to final product and master seed/cell testing in veterinary vaccines...

  1. Employing spatial information technologies to monitor biological control of saltcedar in West Texas

    USDA-ARS?s Scientific Manuscript database

    The saltcedar leaf beetle (Diorhadha spp.) has shown promise as a biocontrol agent for saltcedar (Tamarix spp.) invasions in the United States. In Texas, natural resource managers need assistance in monitoring biological control of invasive saltcedars. This study describes application of a medium fo...

  2. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light

    NASA Astrophysics Data System (ADS)

    Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.

    2017-05-01

    A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.

  3. Simple method for self-referenced and lable-free biosensing by using a capillary sensing element.

    PubMed

    Liu, Yun; Chen, Shimeng; Liu, Qiang; Liu, Zigeng; Wei, Peng

    2017-05-15

    We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10 -4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.

  4. Third report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, R.L.; Adams, S.M.; Ashwood, T.L.

    1995-08-01

    As a condition of the modified National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site) on September 11, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream (Mitchell Branch or K-1700 stream). On October 1, 1992, a renewed NPDES permit was issued for the K-25 Site. A biological monitoring plan was submitted for Mitchell Branch, Poplar Creek, Poplar Creek Embayment of the Clinch River and any unnamed tributaries of these streams. The objectives of BMAP are to (1) demonstratemore » that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life and (2) document the effects on stream biota resulting from operation of major new pollution abatement facilities, including the Central Neutralization Facility (CNF) and the Toxic Substances Control Act (TSCA) incinerator. The BMAP consists of four tasks: (1) toxicity monitoring; (2) bioaccumulation monitoring; (3) assessment of fish health; and (4) instream monitoring of biological communities, including benthic macroinvertebrates and fish. This document, the third in a series, reports on the results of the Oak Ridge K-25 Site BMAP; it describes studies that were conducted over various periods of time between June 1990 and December 1993, although monitoring conducted outside this time period is included, as appropriate.« less

  5. CONCEPTS AND APPROACHES FOR THE ...

    EPA Pesticide Factsheets

    This document is intended to assist users in establishing or refining protocols, including the specific methods related to field sampling, laboratory sample processing, taxonomy, data entry, management and analysis, and final assessment and reporting. It also reviews and provides information on development of monitoring designs to address certain types of environmental questions and approaches for documenting and reporting data quality and performance characteristics for large river biological monitoring. The approaches presented are not intended to replace existing program components but may in some cases be useful for refining them. The goal of this research is to develop methods and indicators that are useful for evaluating the condition of aquatic communities, for assessing the restoration of aquatic communities in response to mitigation and best management practices, and for determining the exposure of aquatic communities to different classes of stressors (i.e., pesticides, sedimentation, habitat alteration).

  6. Simultaneous determination of three anticonvulsants using hydrophilic interaction LC-MS.

    PubMed

    Oertel, Reinhard; Arenz, Norman; Pietsch, Jörg; Kirch, Wilhelm

    2009-01-01

    A specific and automated method was developed to quantify the anticonvulsants gabapentin, pregabalin and vigabatrin simultaneously in human serum. Samples were prepared with a protein precipitation. The hydrophilic interaction chromatography (HILIC) with a mobile phase gradient was used to divide off ions of the matrix and for separation of the analytes. Four different HILIC-columns and two different column temperatures were tested. The Tosoh-Amid column gave the best results: single small peaks. The anticonvulsants were detected in the multiple reaction monitoring mode (MRM) with ESI-MS-MS. Using a volume of 100 microL biological sample the lowest point of the standard curve, i.e. the lower LOQs were 312 ng/mL. The described HILIC-MS-MS method is suitable for therapeutic drug monitoring and for clinical and pharmcokinetical investigations of the anticonvulsives.

  7. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A [Albuquerque, NM; Palmisano, William A [Edgewood, NM

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  8. Online, real-time detection of volatile emissions from plant tissue.

    PubMed

    Harren, Frans J M; Cristescu, Simona M

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.

  9. Online, real-time detection of volatile emissions from plant tissue

    PubMed Central

    Harren, Frans J. M.; Cristescu, Simona M.

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants. PMID:23429357

  10. Establishment of a sensor testbed at NIST for plant productivity monitoring

    NASA Astrophysics Data System (ADS)

    Allen, D. W.; Hutyra, L.; Reinmann, A.; Trlica, A.; Marrs, J.; Jones, T.; Whetstone, J. R.; Logan, B.; Reblin, J.

    2017-12-01

    Accurate assessments of biogenic carbon fluxes is challenging. Correlating optical signatures to plant activity allows for monitoring large regions. New methods, including solar-induced fluorescence (SIF), promise to provide more timely and accurate estimate of plant activity, but we are still developing a full understanding of the mechanistic leakage between plant assimilation of carbon and SIF. We have initiated a testbed to facilitate the evaluation of sensors and methods for remote monitoring of plant activity at the NIST headquarters. The test bed utilizes a forested area of mature trees in a mixed urban environment. A 1 hectare plot within the 26 hectare forest has been instrumented for ecophysiological measurements with an edge (100 m long) that is persistently monitored with multimodal optical sensors (SIF spectrometers, hyperspectral imagers, thermal infrared imaging, and lidar). This biological testbed has the advantage of direct access to the national scales maintained by NIST of measurements related to both the physical and optical measurements of interest. We offer a description of the test site, the sensors, and preliminary results from the first season of observations for ecological, physiological, and remote sensing based estimates of ecosystem productivity.

  11. Identification and quantification of cardiac glycosides in blood and urine samples by HPLC/MS/MS.

    PubMed

    Guan, F; Ishii, A; Seno, H; Watanabe-Suzuki, K; Kumazawa, T; Suzuki, O

    1999-09-15

    Cardiac glycosides (CG) are of forensic importance because of their toxicity and the fact that very limited methods are available for identification of CG in biological samples. In this study, we have developed an identification and quantification method for digoxin, digitoxin, deslanoside, digoxigenin, and digitoxigenin by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS). CG formed abundant [M + NH4]+ ions and much less abundant [M + H]+ ions as observed with electrospray ionization (ESI) source and ammonium formate buffer. Under mild conditions for collision-induced dissociation (CID), each [M + NH4]+ ion fragmented to produce a dominant daughter ion, which was essential to the sensitive method of selected reaction monitoring (SRM) quantification of CG achieved in this study. SRM was compared with selected ion monitoring (SIM) regarding the effects of sample matrixes on the methodology. SRM produced lower detection limits with biological samples than SIM, while both methods produced equal detection limits with CG standards. On the basis of the HPLC/MS/MS results for CG, we have proposed some generalized points for conducting sensitive SRM measurements, in view of the property of analytes as well as instrumental conditions such as the type of HPLC/MS interface and CID parameters. Analytes of which the molecular ion can produce one abundant daughter ion with high yield under CID conditions may be sensitively measured by SRM. ESI is the most soft ionization source developed so far and can afford formation of the fragile molecular ions that are necessary for sensitive SRM detection. Mild CID conditions such as low collision energy and low pressure of collision gas favor production of an abundant daughter ion that is essential to sensitive SRM detection. This knowledge may provide some guidelines for conducting sensitive SRM measurements of very low concentrations of drugs or toxicants in biological samples.

  12. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques.

    PubMed

    Volokhov, Dmitriy V; Graham, Laurie J; Brorson, Kurt A; Chizhikov, Vladimir E

    2011-01-01

    Mycoplasmas, particularly species of the genera Mycoplasma and Acholeplasma, are known to be occasional microbial contaminants of cell cultures that produce biologics. This presents a serious concern regarding the risk of mycoplasma contamination for research laboratories and commercial facilities developing and manufacturing cell-derived biological and biopharmaceutical products for therapeutic use. Potential undetected contamination of these products or process intermediates with mycoplasmas represents a potential safety risk for patients and a business risk for producers of biopharmaceuticals. To minimize these risks, monitoring for adventitious agents, such as viruses and mycoplasmas, is performed during the manufacture of biologics produced in cell culture substrates. The "gold standard" microbiological assay, currently recommended by the USP, EP, JP and the US FDA, for the mycoplasma testing of biologics, involves the culture of viable mycoplasmas in broth, agar plates and indicator cells. Although the procedure enables highly efficient mycoplasma detection in cell substrates and cell-derived products, the overall testing strategy is time consuming (a minimum of 28 days) and requires skilled interpretation of the results. The long time period required for these conventional assays does not permit their use for products with short shelf-lives or for timely 'go/no-go' decisions during routine in-process testing. PCR methodology has existed for decades, however PCR based and other alternative methods for mycoplasma detection have only recently been considered for application to biologics manufacture. The application of alternative nucleic acid-based, enzyme-based and/or recombinant cell-culture methods, particularly in combination with efficient sample preparation procedures, could provide advantages over conventional microbiological methods in terms of analytical throughput, simplicity, and turnaround time. However, a challenge to the application of alternative methods for detection of mycoplasmas remains whether these alternative methods can provide a limit of detection comparable or superior to those of the culture methods. An additional challenge is that nucleic acid amplification technique (NAT) methods do not allow for accurate discrimination between viable and non-viable mycoplasma contaminants, which might lead to false-positive results (e.g. from inactivated raw materials, etc.). Our review provides an overview of these alternative methods and discusses the pros and cons of their application for the testing of mycoplasmas in biologics and cell substrates. Published by Elsevier Ltd.

  13. UV-Visible and Infrared Methods for Investigating Lipid-Rhodopsin Membrane Interactions

    PubMed Central

    Brown, Michael F.

    2017-01-01

    Summary Experimental UV-visible and Fourier transform infrared (FTIR) spectroscopic methods are described for characterizing lipid-protein interactions for the example of rhodopsin in a membrane bilayer environment. The combined use of FTIR and UV-visible difference spectroscopy monitors the structural and functional changes during rhodopsin activation. Such studies investigate how membrane lipids stabilize the various rhodopsin photoproducts, analogous to mutating the protein. Interpretation of the results entails a non-specific flexible surface model for explaining the role of membrane lipid-protein interactions in biological functions. PMID:22976026

  14. Non-contact and Unrestrained Respiration Monitoring System for Sleeping Person Using Near-infrared Bright Spots Matrix Irradiation

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Aoki, Hiroichi; Nakajima, Masato

    Measurement of biological information appears to be an effective method to obtain an understanding of health conditions measures to maintain and improve the health of elderly people. However, every conventional bioinstrumentation technique imposes a sense of restraint that results in aversion against measurements that would last over consecutive days. To solve this problem, we propose a system for monitoring the respiration of sleepers, and it uses a fiber grating vision sensor, which is a type of optical range finder, to achieve non-contact and unrestrained monitoring. The signals obtained by the system include the respiration rate, shifts of the ventilation, and the body movement interval of the sleeper. The information enables to investigate the stability of the sleeper throughout the night. We examined the measuring accuracy, validity, and effectiveness of our proposed system. And all-night monitoring performed at elderly care facility revealed that respiratory disturbances during sleep occurred in many of the residents and that sleep apnea is a common syndrome, especially among residents who have senile dementia or have had a stroke. We were able to carry out the all-night monitoring with this system for a total of about 370 times, according to our schedule, without experiencing any failure, accident, or interruption. Our proposed system is highly effective for monitoring elderly dementia patients who are likely to become uncooperative during measurement with existing monitoring methods that use certain amounts of restraint.

  15. Development and validation of MRM methods to quantify protein isoforms of polyphenol oxidase in loquat fruits.

    PubMed

    Martínez-Márquez, Ascensión; Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Esteso, María José; Pineda-Lucas, José Luis; Luque, Ignacio; Bru-Martínez, Roque

    2013-12-06

    Multiple reaction monitoring (MRM) is emerging as a promising technique for the detection and quantification of protein biomarkers in complex biological samples. Compared to Western blotting or enzyme assays, its high sensitivity, specificity, accuracy, assay speed, and sample throughput represent a clear advantage for being the approach of choice for the analysis of proteins. MRM assays are capable of detecting and quantifying proteolytic peptides differing in mass unique to particular proteins, that is, proteotypic peptides, through which different protein isoforms can be distinguished. We have focused on polyphenol oxidase (PPO), a plant conspicuous enzyme encoded by a multigenic family in loquat (Eriobotrya japonica Lindl.) and other related species. PPO is responsible for both the protection of plants from biotic stress as a feeding deterrent for herbivore insects and the enzymatic browning of fruits and vegetables. The latter makes fruit more attractive to seed dispersal agents but is also a major cause of important economic losses in agriculture and food industry. An adequate management of PPO at plant breeding level would maximize the benefits and minimize the disadvantages of this enzyme, but it would require a precise knowledge of the biological role played by each isoform in the plant. Thus, for the functional study of the PPOs, we have cloned and overexpressed fragments of three PPO isoforms from loquat to develop MRM-based methods for the quantification of each isoform. The method was developed using an ion trap instrument and validated in a QQQ instrument. It resulted in the selection of at least two peptides for each isoform that can be monitored by at least three transitions. A combination of SDS-PAGE and MRM lead to detect two out of three monitored isoforms in different gel bands corresponding to different processing stages of PPO. The method was applied to determine the amount of the PPO2 isoform in protein extracts from fruit samples using external calibrants.

  16. Liquid-phase microextraction for rapid AP-MALDI and quantitation of nortriptyline in biological matrices.

    PubMed

    Wu, Hui-Fen; Ku, Hsin-Yi; Yen, Jyh-Hao

    2008-07-01

    A liquid-phase microextraction (LPME) method using a micropipette with disposable tips was demonstrated for coupling to atmospheric pressure MALDI-MS (AP-MALDI/MS) as a concentrating probe for rapid analysis and quantitative determination of nortriptyline drug from biological matrices including human urine and human plasma. This technique was named as micropipette extraction (MPE). The best optimized parameters of MPE coupled to AP-MALDI/MS experiments were extraction solvent, toluene; extraction time, 5 min; sample agitation rate, 480 rpm; sample pH, 7; salt concentration, 30%; hole size of micropipette tips, 0.61 mm (id); and matrix concentration, 1000 ppm using alpha-cyano-4-hydroxycinnamic acid (CHCA) as a matrix. Three detection modes of AP-MALDI/MS analysis including full scan, selective ion monitor (SIM), and selective reaction monitor (SRM) of MS/MS were also compared for the MPE performance. The results clearly demonstrated that the MS/MS method provides a wider linear range and lower LODs but poor RSDs than the full scan and SIM methods. The LOD values for the MPE under SIM and MS/MS modes in water, urine, and plasma were 6.26, 47.5, and 94.9 nM, respectively. The enrichment factors (EFs) of this current approach were 36.5-43.0 fold in water. In addition, compared to single drop microextraction (SDME) and LPME using a dual gauge microsyringe with a hollow fiber (LPME-HF) technique, the LODs acquired by the MPE method under MS/MS modes were comparable to those of LPME-HF and SDME but it is more convenient than both methods. The advantages of this novel method are simple, easy to use, low cost, and no contamination between experiments since disposable tips were used for the micropipettes. The MPE has the potential to be widely used in the future because it only requires a simple micropipette to perform all extraction processes. We believe that this technique can be a powerful tool for MALDI/MS analysis of biological samples and clinical applications.

  17. Bio-medical telemetry: Sensing and transmitting biological information from animals to man

    NASA Technical Reports Server (NTRS)

    Mackay, S.

    1971-01-01

    The application of small radio transmitters for monitoring biological activity in animals and humans is discussed. The microminiaturization of the electronic transmitters makes it possible for them to be swallowed and to operate within the body with no external connections. The small size also makes it possible for the transmitters to be surgically implanted or carried externally to monitor specific bodily functions. The use of satellites to monitor the activity of birds and animals carrying small transmitters is described. Photographs of birds, fish, and reptiles which were equipped with miniature electronic monitors are provided.

  18. Monitoring of occupational and environmental aeroallergens-- EAACI Position Paper. Concerted action of the EAACI IG Occupational Allergy and Aerobiology & Air Pollution.

    PubMed

    Raulf, M; Buters, J; Chapman, M; Cecchi, L; de Blay, F; Doekes, G; Eduard, W; Heederik, D; Jeebhay, M F; Kespohl, S; Krop, E; Moscato, G; Pala, G; Quirce, S; Sander, I; Schlünssen, V; Sigsgaard, T; Walusiak-Skorupa, J; Wiszniewska, M; Wouters, I M; Annesi-Maesano, I

    2014-10-01

    Exposure to high molecular weight sensitizers of biological origin is an important risk factor for the development of asthma and rhinitis. Most of the causal allergens have been defined based on their reactivity with IgE antibodies, and in many cases, the molecular structure and function of the allergens have been established. Significant information on allergen levels that cause sensitization and allergic symptoms for several major environmental and occupational allergens has been reported. Monitoring of high molecular weight allergens and allergen carrier particles is an important part of the management of allergic respiratory diseases and requires standardized allergen assessment methods for occupational and environmental (indoor and outdoor) allergen exposure. The aim of this EAACI task force was to review the essential points for monitoring environmental and occupational allergen exposure including sampling strategies and methods, processing of dust samples, allergen analysis, and quantification. The paper includes a summary of different methods for sampling and allergen quantification, as well as their pros and cons for various exposure settings. Recommendations are being made for different exposure scenarios. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  20. City plants as ecological indicator of environment quality in St. Petersburg

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin; Glazyrina, Tatyana

    2017-04-01

    Under increase of natural hazard activity and anthropogenic pressure the effective and cheep monitoring methods become necessary. Majority of modern methods of monitoring, such as space and air, needs significant foundation. The simplest monitoring method is biological indication, basing on essay of variability, sex ration and sexual dimorphism. Such a method does not need long time efforts and may be realized by short observation. Urban plants are natural indicators of ecological pressure. Check or their state may give us significant information on area pollution by use of principles of phenogenic indication. Genetic and phenotypic variability of different organism have general principles and constants. The per cent of abnormal organisms and coefficient of variability are stable for majority of species under favorable state and increase under unfavorable conditions. The basis for indication is both state of adult trees and morphological variability of pollen grains. The part of dried threes and threes infected by parasites-xylophagous is correlated with toxic pollution. Float asymmetry of lives is measure of mutagenic pollution. Abnormal form of three (dichotomy, curved) is criteria of teratogenic pollution. Importance of such an indication is increased by such incidents as Chernobyl, Fucusima and so on. Algorithm for analyze of such a data is considered. The map of ecological pressure of St. Petersburg is presented.

  1. Biomonitoring of Environmental Status and Trends (BEST) Program: selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems

    USGS Publications Warehouse

    Schmitt, Christopher J.; Dethloff, Gail M.

    2000-01-01

    This document describes the suite of biological methods of the U.S. Geological Survey- Biomonitoring of Environmental Status and Trends program for monitoring chemical contaminants and their effects on fish. The methods, which were selected by panels of experts, are being field-tested in rivers of the Mississippi River, Columbia River, and Rio Grande basins. General health biomarkers include a health assessment index based on gross observation; histopathological examination of selected organs and tissues; condition factor; and the heptosomatic and splenosomatic indices. Immune system indicators are plasma lysozyme activity and measures of splenic macrophage aggregates. Reproductive biomarkers include plasma concentrations of sex steroid hormones (17b-estradiol and 11-ketotestosterone) and vitellogenin, gonadal histopathology (including reproductive stage and, in females, gonadal atresia), and the gonadosomatic index. Indicators of exposure to polycyclic aromatic and polyhalogenated hydrocarbons are the H4IIE rat hepatoma cell bioassay (performed on solvent extracts of composite fish samples) and hepatic ethoxyresorufin-O-deethylase activity. Stable nitrogen isotope ratios are used to assess the trophic position of the fish and their exposure to sewage and other animal wastes. For each indicator we describe endpoint(s) and methods, and discuss the indicator?s value and limitations for contaminant monitoring and assessment.

  2. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART II

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  3. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART I

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  4. Implementing Rapid Bioassessment Protocols (RBP’s) for Watershed Monitoring

    DTIC Science & Technology

    2010-08-01

    rare taxa (Cao et al . 1998, 2001; Marchant 2002 ; and Cao and Williams 1999) may have on subsequent results and conclusions. However, the most recent...investigating abiotic and biotic properties of streams (Plafkin et al . 1989). Subsequent refinement of RBP has resulted in a simple and flexible set of...standard methods for evaluating environmental, biological, and physical habitat characteristics of streams (Barbour et al . 1999). This report discusses

  5. Puncture detecting barrier materials

    DOEpatents

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  6. An improved method for monitoring parasitism and establishment of Oobius agrili (Hymenoptera: Encyrtidae), an egg parasitoid introduced for biological control of the emerald ash borer (Coleoptera: Buprestidae) in North America

    Treesearch

    Jian J. Duan; Leah S. Bauer; Jason A. Hansen; Kristopher J. Abell; Roy Van Driesche

    2012-01-01

    Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) is a solitary egg parasitoid that has been released in the United States since 2007 for biocontrol of the invasive emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Field and laboratory trials with ash logs infested with EAB eggs were conducted...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  8. Puncture detecting barrier materials

    DOEpatents

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  9. Plants as air-pollution indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeuse, B.J.D.

    This paper deals with the use of plants as biological indicators of air pollution. The author acquaints the reader with some sensitive methods of air pollution monitoring which are based on the use of plants. Some of the pollutants considered are sulfur dioxide, ozone, fluorides, chlorine, ethylene, and carbon dioxide. Some of the indicator plants discussed are alfalfa, buckwheat, clovers, gladiolus, june grass, petunia, nettle, rye grass, spinach, tobacco, and tulips.

  10. Sedimentation Velocity Analysis of Large Oligomeric Chromatin Complexes Using Interference Detection.

    PubMed

    Rogge, Ryan A; Hansen, Jeffrey C

    2015-01-01

    Sedimentation velocity experiments measure the transport of molecules in solution under centrifugal force. Here, we describe a method for monitoring the sedimentation of very large biological molecular assemblies using the interference optical systems of the analytical ultracentrifuge. The mass, partial-specific volume, and shape of macromolecules in solution affect their sedimentation rates as reflected in the sedimentation coefficient. The sedimentation coefficient is obtained by measuring the solute concentration as a function of radial distance during centrifugation. Monitoring the concentration can be accomplished using interference optics, absorbance optics, or the fluorescence detection system, each with inherent advantages. The interference optical system captures data much faster than these other optical systems, allowing for sedimentation velocity analysis of extremely large macromolecular complexes that sediment rapidly at very low rotor speeds. Supramolecular oligomeric complexes produced by self-association of 12-mer chromatin fibers are used to illustrate the advantages of the interference optics. Using interference optics, we show that chromatin fibers self-associate at physiological divalent salt concentrations to form structures that sediment between 10,000 and 350,000S. The method for characterizing chromatin oligomers described in this chapter will be generally useful for characterization of any biological structures that are too large to be studied by the absorbance optical system. © 2015 Elsevier Inc. All rights reserved.

  11. A robust two-stage design identifying the optimal biological dose for phase I/II clinical trials.

    PubMed

    Zang, Yong; Lee, J Jack

    2017-01-15

    We propose a robust two-stage design to identify the optimal biological dose for phase I/II clinical trials evaluating both toxicity and efficacy outcomes. In the first stage of dose finding, we use the Bayesian model averaging continual reassessment method to monitor the toxicity outcomes and adopt an isotonic regression method based on the efficacy outcomes to guide dose escalation. When the first stage ends, we use the Dirichlet-multinomial distribution to jointly model the toxicity and efficacy outcomes and pick the candidate doses based on a three-dimensional volume ratio. The selected candidate doses are then seamlessly advanced to the second stage for dose validation. Both toxicity and efficacy outcomes are continuously monitored so that any overly toxic and/or less efficacious dose can be dropped from the study as the trial continues. When the phase I/II trial ends, we select the optimal biological dose as the dose obtaining the minimal value of the volume ratio within the candidate set. An advantage of the proposed design is that it does not impose a monotonically increasing assumption on the shape of the dose-efficacy curve. We conduct extensive simulation studies to examine the operating characteristics of the proposed design. The simulation results show that the proposed design has desirable operating characteristics across different shapes of the underlying true dose-toxicity and dose-efficacy curves. The software to implement the proposed design is available upon request. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. [Analytical quality in biological monitoring of workers exposed to chemicals: experience of the Prevention and Safety at the Workplace Service in Modena].

    PubMed

    Alpaca, R I Paredes; Migliore, A; Di Rico, R; Canali, Claudia; Rota, Cristina; Trenti, T; Cariani, Elisabetta

    2010-01-01

    The quality of laboratory data is one of the main factors in guaranteeing efficacy of biological monitoring. To analyze the quality of laboratory data used for biological monitoring of exposed workers. A survey involving 18 companies employing 945 workers in the area of Modena, Italy, was carried out in 2008. Most of the 9 private laboratories receiving biological samples did not perform directly part or all of the laboratory assessments requested, but this was not indicated in the final report. Major problems were observed in the application of internal quality control, and only one laboratory participated in external quality assessment for blood lead measurements. Our results raise major concerns on the traceability and reliability of laboratory assessments performed for biomonitoring of exposed workers. Systematic evaluation of the quality of analytical data would be highly recommendable.

  13. Environmental and biological monitoring of occupational exposure to organic micropollutants in gasoline.

    PubMed

    Senzolo, C; Frignani, S; Pavoni, B

    2001-07-01

    An exposure risk assessment of workers in a refinery production unit was undertaken. Gasoline and its main components were investigated through environmental and biological monitoring. Measured variables were environmental benzene, toluene, pentane and hexane; benzene and toluene in blood and urine; tt-MA (metabolite of benzene) in urine. Multivariate statistical analysis of the data showed that worker's exposure to the above substances fell within the limits specified by organisations such as ACGIH. Also, biological values complied with reference values (RV) for non-occupationally-exposed population. Different values of biological variables were determined by separating smokers from non-smokers: smokers had hematic and urinary benzene values significantly higher than non-smokers. During a 3-yr sampling, it was possible to identify a significant decrease of benzene in the workplace air and of hematic benzene for non-smokers. The most exposed department, one in which tank-lorries were loaded, needs further investigation and extended monitoring.

  14. Dark-cycle monitoring of biological subjects on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chuang, Sherry; Mian, Arshad

    1992-01-01

    The operational environment for biological research on Space Station Freedom will incorporate video technology for monitoring plant and animal subjects. The video coverage must include dark-cycle monitoring because early experiments will use rodents that are nocturnal and therefore most active during the dark part of the daily cycle. Scientific requirements for monitoring during the dark cycle are exacting. Infrared (IR) or near-IR sensors are required. The trade-offs between these two types of sensors are based on engineering constraints, sensitivity spectra, and the quality of imagery possible from each type. This paper presents results of a study conducted by the Biological Flight Research Projects Office in conjunction with the Spacecraft Data Systems Branch at ARC to investigate the use of charged-coupled-device and IR cameras to meet the scientific requirements. Also examined is the effect of low levels of near-IR illumination on the circadian rhythm in rats.

  15. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    PubMed

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  16. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not unique and many programs may suffer from the same inferential disconnect. Commonly, the survey design is optimized for robust estimates of regional status and trend detection and not necessarily to provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though these relationships are typically used to justify and promote the long-term monitoring of a chosen ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual models and exemplifies the need for such interim assessments in order for programs to evolve and persist.

  17. Case studies of hydrogen sulphide occupational exposure incidents in the UK.

    PubMed

    Jones, Kate

    2014-12-15

    The UK Health and Safety Executive has investigated several incidents of workplace accidents involving hydrogen sulphide exposure in recent years. Biological monitoring has been used in some incidents to determine the cause of unconsciousness resulting from these incidents and as a supporting evidence in regulatory enforcement. This paper reports on three case incidents and discusses the use of biological monitoring in such cases. Biological monitoring has a role in identifying hydrogen sulphide exposure in incidents, whether these are occupational or in the wider environment. Sample type, time of collection and sample storage are important factors in the applicability of this technique. For non-fatal incidents, multiple urine samples are recommended at two or more time points between the incident and 15 h post-exposure. For routine occupational monitoring, post-shift samples should be adequate. Due to endogenous levels of urinary thiosulphate, it is likely that exposures in excess of 12 ppm for 30 min (or 360 ppm/min equivalent) would be detectable using biological monitoring. This is within the Acute Exposure Guideline Level 2 (the level of the chemical in air at or above which there may be irreversible or other serious long-lasting effects or impaired ability to escape) for hydrogen sulphide. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Lessons Learned for the Assessment of Children’s Pesticide Exposure: Critical Sampling and Analytical Issues for Future Studies

    PubMed Central

    Fenske, Richard A.; Bradman, Asa; Whyatt, Robin M.; Wolff, Mary S.; Barr, Dana B.

    2005-01-01

    In this article we examine sampling strategies and analytical methods used in a series of recent studies of children’s exposure to pesticides that may prove useful in the design and implementation of the National Children’s Study. We focus primarily on the experiences of four of the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency/ Children’s Centers and include University of Washington studies that predated these centers. These studies have measured maternal exposures, perinatal exposures, infant and toddler exposures, and exposure among young children through biologic monitoring, personal sampling, and environmental monitoring. Biologic monitoring appears to be the best available method for assessment of children’s exposure to pesticides, with some limitations. It is likely that a combination of biomarkers, environmental measurements, and questionnaires will be needed after careful consideration of the specific hypotheses posed by investigators and the limitations of each exposure metric. The value of environmental measurements, such as surface and toy wipes and indoor air or house dust samples, deserves further investigation. Emphasis on personal rather than environmental sampling in conjunction with urine or blood sampling is likely to be most effective at classifying exposure. For infants and young children, ease of urine collection (possible for extended periods of time) may make these samples the best available approach to capturing exposure variability of nonpersistent pesticides; additional validation studies are needed. Saliva measurements of pesticides, if feasible, would overcome the limitations of urinary metabolite-based exposure analysis. Global positioning system technology appears promising in the delineation of children’s time–location patterns. PMID:16203262

  19. Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis

    PubMed Central

    Nguyen, Lich Thi; Sharma, Ashish Ranjan; Chakraborty, Chiranjib; Saibaba, Balaji; Ahn, Moo-Eob; Lee, Sang-Soo

    2017-01-01

    Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.). PMID:28287489

  20. Analytical Challenge in Postmortem Toxicology Applied to a Human Body Found into a Lake after Three Years Immersion.

    PubMed

    Morini, Luca; Vignali, Claudia; Tricomi, Paolo; Groppi, Angelo

    2015-09-01

    The body of a 30-year-old woman was found in Como lake at a depth of about 120 meters in her own car after 3 years of immersion. The aim of this study was to evaluate psychoactive drugs as well as alcohol biomarkers in biological matrices. The following analyses were initially performed: GC-MS systematic toxicological analysis on biological fluids and tissues; GC-MS analysis of drugs of abuse on pubic hair; direct ethanol metabolite determination in pubic hair by LC-MS/MS. After 7 years, the samples, that had been stored at -20°C, were re-analyzed and submitted to an LC-MS/MS targeted screening method, using multiple reaction monitoring mode. These analyses detected citalopram (150-3000 ng/mL), desmethylcitalopram (50-2300 ng/mL), clotiapine (20-65 ng/mL), and ethyl glucuronide (97 pg/mg). The methods showed an acceptable reproducibility, and the concentrations of citalopram and desmethylcitalopram calculated through the two analytical techniques did not significantly differ in biological fluids. © 2015 American Academy of Forensic Sciences.

  1. Surface tension in human pathophysiology and its application as a medical diagnostic tool

    PubMed Central

    Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem

    2015-01-01

    Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295

  2. Development and implementation of coral reef biocriteria in U.S. jurisdictions.

    PubMed

    Bradley, Patricia; Fisher, William S; Bell, Heidi; Davis, Wayne; Chan, Valerie; LoBue, Charles; Wiltse, Wendy

    2009-03-01

    Coral reefs worldwide are declining at an alarming rate and are under continuous threat from both natural and anthropogenic environmental stressors. Warmer sea temperatures attributed to global climate change and numerous human activities at local scales place these valuable ecosystems at risk. Reefs provide numerous services, including shoreline protection, fishing, tourism and biological diversity, which are lost through physical damage, overfishing, and pollution. Pollution can be controlled under provisions of the Clean Water Act, but these options have not been fully employed to protect coral reefs. No U.S. jurisdiction has implemented coral reef biocriteria, which are narrative or quantitative water quality standards based on the condition of a biological resource or assemblage. The President's Ocean Action Plan directs the U.S. Environmental Protection Agency (EPA) to develop biological assessment methods and biological criteria for evaluating and maintaining the health of coral reef ecosystems. EPA has formed the Coral Reef Biocriteria Working Group (CRBWG) to foster development of coral reef biocriteria through focused research, evaluation and communication among Agency partners and U.S. jurisdictions. Ongoing CRBWG activities include development and evaluation of a rapid bioassessment protocol for application in biocriteria programs; development of a survey design and monitoring strategy for the U.S. Virgin Islands; comprehensive reviews of biocriteria approaches proposed by states and territories; and assembly of data from a variety of monitoring programs for additional metrics. Guidance documents are being prepared to assist U.S. jurisdictions in reaching protective and defensible biocriteria.

  3. Towards fully automated Identification of Vesicle-Membrane Fusion Events in TIRF Microscopy

    NASA Astrophysics Data System (ADS)

    Vallotton, Pascal; James, David E.; Hughes, William E.

    2007-11-01

    Total Internal Reflection Fluorescence Microscopy (TIRFM) is imposing itself as the tool of choice for studying biological activity in close proximity to the plasma membrane. For example, the exquisite selectivity of TIRFM allows monitoring the diffusion of GFP-phogrin vesicles and their recruitment to the plasma membrane in pancreatic β-cells. We present a novel computer vision system for automatically identifying the elusive fusion events of GFP-phogrin vesicles with the plasma membrane. Our method is based on robust object tracking and matched filtering. It should accelerate the quantification of TIRFM data and allow the extraction of more biological information from image data to support research in diabetes and obesity.

  4. Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM.

    PubMed

    Wei, Ru; Li, Guodong; Seymour, Albert B

    2014-01-01

    Targeted metabolomics, which focuses on a subset of known metabolites representative of biologically relevant metabolic pathways, is a valuable tool to discover biomarkers and link disease phenotypes to underlying mechanisms or therapeutic modes of action. A key advantage of targeted metabolomics, compared to discovery metabolomics, is its immediate readiness for extracting biological information derived from known metabolites and quantitative measurements. However, simultaneously analyzing hundreds of endogenous metabolites presents a challenge due to their diverse chemical structures and properties. Here we report a method which combines different chromatographic separation conditions, optimal ionization polarities, and the most sensitive triple-quadrupole MS-based data acquisition mode, multiple reaction monitoring (MRM), to quantitatively profile 205 endogenous metabolites in 10 min.

  5. Monitoring of environmental UV radiation by biological dosimeters

    NASA Astrophysics Data System (ADS)

    Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  6. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  7. Development of a method of clozapine dosage by selective electrode to the iodides.

    PubMed

    Teyeb, Hassen; Douki, Wahiba; Najjar, Mohamed Fadhel

    2012-07-01

    Clozapine (Leponex(®)), the main neuroleptic indicated in the treatment of resistant schizophrenia, requires therapeutic monitoring because of its side effects and the individual variability in metabolism. In addition, several cases of intoxication by this drug were described in the literature. In this work, we studied the indirect dosage of clozapine by selective electrode to the iodides for the optimization of an analytical protocol allowing therapeutic monitoring and the diagnosis of intoxication and/or overdose. Our results showed that the developed method is linear between 0.05 and 12.5 µg/mL (r = 0.980), with a limit of detection of 0.645.10(-3) µg/mL. It presents good precision (coefficient of variation less than 4%) and accuracy (coefficient less than 10%) for all the studied concentrations. With a domain of linearity covering a wide margin of concentrations, this method can be applicable to the dosage of clozapine in tablets and in different biological matrices, such as plasma, urines, and postmortem samples.

  8. [Biological monitoring in the molding of plastics and rubbers].

    PubMed

    Fustinoni, S; Campo, L; Cirla, A M; Cirla, P E; Cutugno, V; Lionetti, C; Martinotti, I; Mossini, E; Foà, V

    2007-01-01

    This survey was carried out in the molding of plastics and rubbers, in the "Professional Cancer Prevention Project" sponsored by the Lombardy region with the objective of developing and implementing protocols for evaluating exposure to carcinogens through the biological monitoring. The realities of molding the thermoplastic polymer ABS, rubber, and thermosetting plastics containing formaldehyde were examined. The carcinogenic substances identified in these processes were: 1,3-butadiene, acrylonitrile and styrene in molding ABS, polycyclic aromatic hydrocarbons (PAH) in molding rubber, and formaldehyde in molding the thermosetting plastics. Only for some of these substances biological indicators are available. The limited exposure to airborne chemicals in molding ABS and the intrinsic characteristics of biological indicators available for 1-3 butadiene have determined the non applicability of biological monitoring to this situation. The absence of a biological indicator of exposure to formaldehyde has made this situation not investigable. Exposure in the rubber molding was studied in 19 subjects applying the determination not metabolized PAH in urine. The levels of these indicators were similar to those measured in other groups of subjects without occupational exposure to PAH, confirming a low airborne contamination in this workplace.

  9. Impact of Tactile-Cued Self-Monitoring on Independent Biology Work for Secondary Students with Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Morrison, Catherine; McDougall, Dennis; Black, Rhonda S.; King-Sears, Margaret E.

    2014-01-01

    Results from a multiple baseline with changing conditions design across high school students with Attention Deficit Hyperactivity Disorder (ADHD) indicated that the students increased the percentage of independent work they completed in their general education biology class after learning tactile-cued self-monitoring. Students maintained high…

  10. Nanomaterial-based electrochemical sensors for arsenic - A review.

    PubMed

    Kempahanumakkagari, Sureshkumar; Deep, Akash; Kim, Ki-Hyun; Kumar Kailasa, Suresh; Yoon, Hye-On

    2017-09-15

    The existence of arsenic in the environment poses severe global health threats. Considering its toxicity, the sensing of arsenic is extremely important. Due to the complexity of environmental and biological samples, many of the available detection methods for arsenic have serious limitations on selectivity and sensitivity. To improve sensitivity and selectivity and to circumvent interferences, different electrode systems have been developed based on surface modification with nanomaterials including carbonaceous nanomaterials, metallic nanoparticles (MNPs), metal nanotubes (MNTs), and even enzymes. Despite the progress made in electrochemical sensing of arsenic, some issues still need to be addressed to realize cost effective, portable, and flow-injection type sensor systems. The present review provides an in-depth evaluation of the nanoparticle-modified electrode (NME) based methods for the electrochemical sensing of arsenic. NME based sensing systems are projected to become an important option for monitoring hazardous pollutants in both environmental and biological media. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Simultaneous Detection of Metalloprotease Activities in Complex Biological Samples Using the PrAMA (Proteolytic Activity Matrix Assay) Method.

    PubMed

    Conrad, Catharina; Miller, Miles A; Bartsch, Jörg W; Schlomann, Uwe; Lauffenburger, Douglas A

    2017-01-01

    Proteolytic Activity Matrix Analysis (PrAMA) is a method for simultaneously determining the activities of specific Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) in complex biological samples. In mixtures of unknown proteases, PrAMA infers selective metalloproteinase activities by using a panel of moderately specific FRET-based polypeptide protease substrates in parallel, typically monitored by a plate-reader in a 96-well format. Fluorescence measurements are then quantitatively compared to a standard table of catalytic efficiencies measured from purified mixtures of individual metalloproteinases and FRET substrates. Computational inference of specific activities is performed with an easily used Matlab program, which is provided herein. Thus, we describe PrAMA as a combined experimental and mathematical approach to determine real-time metalloproteinase activities, which has previously been applied to live-cell cultures, cellular lysates, cell culture supernatants, and body fluids from patients.

  12. Semi-automated 96-well liquid-liquid extraction for quantitation of drugs in biological fluids.

    PubMed

    Zhang, N; Hoffman, K L; Li, W; Rossi, D T

    2000-02-01

    A semi-automated liquid-liquid extraction (LLE) technique for biological fluid sample preparation was introduced for the quantitation of four drugs in rat plasma. All liquid transferring during the sample preparation was automated using a Tomtec Quadra 96 Model 320 liquid handling robot, which processed up to 96 samples in parallel. The samples were either in 96-deep-well plate or tube-rack format. One plate of samples can be prepared in approximately 1.5 h, and the 96-well plate is directly compatible with the autosampler of an LC/MS system. Selection of organic solvents and recoveries are discussed. Also, precision, relative error, linearity and quantitation of the semi automated LLE method are estimated for four example drugs using LC/MS/MS with a multiple reaction monitoring (MRM) approach. The applicability of this method and future directions are evaluated.

  13. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  14. Passive acoustic monitoring of the decline of Mexico's critically endangered vaquita.

    PubMed

    Jaramillo-Legorreta, Armando; Cardenas-Hinojosa, Gustavo; Nieto-Garcia, Edwyna; Rojas-Bracho, Lorenzo; Ver Hoef, Jay; Moore, Jeffrey; Tregenza, Nicholas; Barlow, Jay; Gerrodette, Tim; Thomas, Len; Taylor, Barbara

    2017-02-01

    The vaquita (Phocoena sinus) is the world's most endangered marine mammal with approximately 245 individuals remaining in 2008. This species of porpoise is endemic to the northern Gulf of California, Mexico, and historically the population has declined because of unsustainable bycatch in gillnets. An illegal gillnet fishery for an endangered fish, the totoaba (Totoaba macdonaldi), has recently resurged throughout the vaquita's range. The secretive but lucrative wildlife trade with China for totoaba swim bladders has probably increased vaquita bycatch mortality by an unknown amount. Precise population monitoring by visual surveys is difficult because vaquitas are inherently hard to see and have now become so rare that sighting rates are very low. However, their echolocation clicks can be identified readily on specialized acoustic detectors. Acoustic detections on an array of 46 moored detectors indicated vaquita acoustic activity declined by 80% between 2011 and 2015 in the central part of the species' range. Statistical models estimated an annual rate of decline of 34% (95% Bayesian credible interval -48% to -21%). Based on results from 2011 to 2014, the government of Mexico enacted and is enforcing an emergency 2-year ban on gillnets throughout the species' range to prevent extinction, at a cost of US$74 million to compensate fishers. Developing precise acoustic monitoring methods proved critical to exposing the severity of vaquitas' decline and emphasizes the need for continual monitoring to effectively manage critically endangered species. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  15. Quantification of proteins in urine samples using targeted mass spectrometry methods.

    PubMed

    Khristenko, Nina; Domon, Bruno

    2015-01-01

    Numerous clinical proteomics studies are focused on the development of biomarkers to improve either diagnostics for early disease detection or the monitoring of the response to the treatment. Although, a wealth of biomarker candidates are available, their evaluation and validation in a true clinical setup remains challenging. In biomarkers evaluation studies, a panel of proteins of interest are systematically analyzed in a large cohort of samples. However, in spite of the latest progresses in mass spectrometry, the consistent detection of pertinent proteins in high complex biological samples is still a challenging task. Thus, targeted LC-MS/MS methods are better suited for the systematic analysis of biomarkers rather than shotgun approaches. This chapter describes the workflow used to perform targeted quantitative analyses of proteins in urinary samples. The peptides, as surrogates of the protein of interest, are commonly measured using a triple quadrupole mass spectrometers operated in selected reaction monitoring (SRM) mode. More recently, the advances in targeted LC-MS/MS analysis based on parallel reaction monitoring (PRM) performed on a quadrupole-orbitrap instrument have allowed to increase the specificity and selectivity of the measurements.

  16. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms

    USGS Publications Warehouse

    Goldberg, Caren S.; Strickler, Katherine M.; Pilliod, David S.

    2015-01-01

    The discovery that macroorganisms can be detected from their environmental DNA (eDNA) in aquatic systems has immense potential for the conservation of biological diversity. This special issue contains 11 papers that review and advance the field of eDNA detection of vertebrates and other macroorganisms, including studies of eDNA production, transport, and degradation; sample collection and processing to maximize detection rates; and applications of eDNA for conservation using citizen scientists. This body of work is an important contribution to the ongoing efforts to take eDNA detection of macroorganisms from technical breakthrough to established, reliable method that can be used in survey, monitoring, and research applications worldwide. While the rapid advances in this field are remarkable, important challenges remain, including consensus on best practices for collection and analysis, understanding of eDNA diffusion and transport, and avoidance of inhibition in sample collection and processing. Nonetheless, as demonstrated in this special issue, eDNA techniques for research and monitoring are beginning to realize their potential for contributing to the conservation of biodiversity globally.

  17. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    PubMed

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bactericidal Efficiency of Silver Nanoparticles Synthesized from Annona squamosa

    NASA Astrophysics Data System (ADS)

    Jayavardhanan, R.; Nanda, Anima

    2016-09-01

    Nanotechnology is described as an emerging technology that not only holds promise for society, but also is capable of providing novel approaches to overcome our common problems. The present study focused on the synthesis of silver nanoparticles using the metabolites of Annona squamosa seeds. The biological reduction procedure proposed in this method was considered as better one compared to chemical mediated reduction methods. The advantages include nontoxic to the environment, less energy consuming and highly suitable for further biological applications. The seeds were separated from the fruit pulp, grinded into powder and dissolved in distilled water. The suspension was used as reducing agent and treated with silver nitrate at the concentration of 1mM. The reduction reaction was continuously monitored by UV-visible photo spectrometer. Further the samples were subjected to AFM, SEM and XRD analysis for the confirmation of their size, structure, agglomerations and the arrangements of crystals. Finally the antibacterial properties of nanoparticles were tested against clinically important pathogenic microorganisms using disc diffusion method and compared with the activities of standard antibiotics. The combinational effects of nanoparticles with commercial antibiotics also were tested by the same method.

  19. Near-infrared fluorescence image quality test methods for standardized performance evaluation

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Wang, Bohan; Yang, Charles; Ghassemi, Pejhman; Wang, Quanzeng; Chen, Yu; Pfefer, Joshua

    2017-03-01

    Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance characteristics including spatial resolution, depth of field and sensitivity. Characterization of fluorescence properties was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological solutions and matrix materials. A turbid, fluorophore-doped target was used, along with a resolution target for assessing image sharpness. Multi-well plates filled with either liquid or solid targets were generated to explore best practices for evaluating detection sensitivity. Overall, our results demonstrate the utility of objective, quantitative, target-based testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for NIRF imaging system performance.

  20. Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS.

    PubMed

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  1. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  2. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy.

    PubMed

    Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco

    2018-04-17

    Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  3. Long-term uvb forecasting on the basis of spectral and broad-band measurements

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Gáspár, S.; Kovács, G.; Rontó, G.

    2003-04-01

    The stratospheric ozone concentration has been investigated by several methods, e.g. determinations of the ozone layer using a network of ground based spectrophotometers, of the Dobson and the Brewer types. These data indicate significant decrease of the ozone layer superimposed by much larger seasonal changes at specific geographical locations. The stratospheric ozone plays an important role in the attenuation of the short-wavelength components of the solar spectrum, thus the consequence of the decreased ozone layer is an increased UVB level. Various pyranometers measuring the biological effect of environmental UV radiation have been constructed with spectral sensitivities close to the erythema action spectrum defined by the CIE. Using these erythemally weighted broad-band instruments to detect the tendency of UVB radiation controversial data have been found. To quantify the biological risk due to environmental UV radiation it is reasonable to weight the solar spectrum by the spectral sensitivity of the DNA damage taking into account the high DNA-sensitivity at the short wavelength range of the solar spectrum. Various biological dosimeters have been developed e.g. polycrystalline uracil thin layer. These are usually simple biological systems or components of them. Their UV sensitivity is a consequence of the DNA-damage. Biological dosimeters applied for long-term monitoring are promising tools for the assessment of the biological hazard. Simultaneous application of uracil dosimeters and Robertson-Berger meters can be useful to predict the increasing tendency of the biological UV exposure more precisely. The ratio of the biologically effective dose obtained by the uracil dosimeter (a predominately UVB effect) and by the Robertson-Berger meter (insensitive to changes below 300 nm) is a sensitive method for establishing changes in UVB irradiance due to changes in ozone layer.

  4. A simple LC/MRM-MS-based method to quantify free linker-payload in antibody-drug conjugate preparations.

    PubMed

    Zmolek, Wesley; Bañas, Stefanie; Barfield, Robyn M; Rabuka, David; Drake, Penelope M

    2016-10-01

    Antibody-drug conjugates represent a growing class of biologic drugs that use the targeted specificity of an antibody to direct the localization of a small molecule drug, often a cytotoxic payload. After conjugation, antibody-drug conjugate preparations typically retain a residual amount of free (unconjugated) linker-payload. Monitoring this free small molecule drug component is important due to the potential for free payload to mediate unintended (off-target) toxicity. We developed a simple RP-HPLC/MRM-MS-based assay that can be rapidly employed to quantify free linker-payload. The method uses low sample volumes and offers an LLOQ of 10nM with 370pg on column. This analytical approach was used to monitor free linker-payload removal during optimization of the tangential flow filtration manufacturing step. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Establishing a reliable multiple reaction monitoring-based method for the quantification of obesity-associated comorbidities in serum and adipose tissue requires intensive clinical validation.

    PubMed

    Oberbach, Andreas; Schlichting, Nadine; Neuhaus, Jochen; Kullnick, Yvonne; Lehmann, Stefanie; Heinrich, Marco; Dietrich, Arne; Mohr, Friedrich Wilhelm; von Bergen, Martin; Baumann, Sven

    2014-12-05

    Multiple reaction monitoring (MRM)-based mass spectrometric quantification of peptides and their corresponding proteins has been successfully applied for biomarker validation in serum. The option of multiplexing offers the chance to analyze various proteins in parallel, which is especially important in obesity research. Here, biomarkers that reflect multiple comorbidities and allow monitoring of therapy outcomes are required. Besides the suitability of established MRM assays for serum protein quantification, it is also feasible for analysis of tissues secreting the markers of interest. Surprisingly, studies comparing MRM data sets with established methods are rare, and therefore the biological and clinical value of most analytes remains questionable. A MRM method using nano-UPLC-MS/MS for the quantification of obesity related surrogate markers for several comorbidities in serum, plasma, visceral and subcutaneous adipose tissue was established. Proteotypic peptides for complement C3, adiponectin, angiotensinogen, and plasma retinol binding protein (RBP4) were quantified using isotopic dilution analysis and compared to the standard ELISA method. MRM method variabilities were mainly below 10%. The comparison with other MS-based approaches showed a good correlation. However, large differences in absolute quantification for complement C3 and adiponectin were obtained compared to ELISA, while less marked differences were observed for angiotensinogen and RBP4. The verification of MRM in obesity was performed to discriminate first lean and obese phenotype and second to monitor excessive weight loss after gastric bypass surgery in a seven-month follow-up. The presented MRM assay was able to discriminate obese phenotype from lean and monitor weight loss related changes of surrogate markers. However, inclusion of additional biomarkers was necessary to interpret the MRM data on obesity phenotype properly. In summary, the development of disease-related MRMs should include a step of matching the MRM data with clinically approved standard methods and defining reference values in well-sized representative age, gender, and disease-matched cohorts.

  6. Use of black light traps to monitor the abundance, spread, and flight behavior of Halyomorpha halys (Hemiptera: Pentatomidae).

    PubMed

    Nielsen, Anne L; Holmstrom, Kristian; Hamilton, George C; Cambridge, John; Ingerson-Mahar, Joseph

    2013-06-01

    Monitoring the distribution and abundance of an invasive species is challenging, especially during the initial years of spread when population densities are low and basic biology and monitoring methods are being investigated. Brown marmorated stink bug (Halyomorpha halys (Stål)) is an invasive agricultural and urban pest that was first detected in the United States in the late 1990s. At the time of its detection, no method was available to effectively track H. halys populations, which are highly mobile and polyphagous. One possible solution was the utilization of black light traps, which are nonspecific traps attractive to night flying insects. To determine if black light traps are a reliable monitoring tool for H. halys, a state-wide network of 40-75 traps located on New Jersey farms were monitored from 2004 to 2011 for H. halys. This proved to be a highly effective method of monitoring H. halys populations and their spread at the landscape level. The total number of brown marmorated stink bug caught in New Jersey increased exponentially during this period at a rate of 75% per year. Logistic regression estimates that 2.84 new farms are invaded each year by H. halys. The results indicate that black light traps are attractive to early season populations as well as at low population densities. Weekly trap catch data are being used to generate state-wide population distribution maps made available to farmers in weekly newsletters and online. While no economic threshold currently exists for brown marmorated stink bug, the maps provide farmers with a tool to forecast pest pressure and plan management.

  7. Applying fiber optical methods for toxicological testing in vitro

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe

    1999-04-01

    The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.

  8. Multichannel series piezoelectric quartz crystal cell sensor for real time and quantitative monitoring of the living cell and assessment of cytotoxicity.

    PubMed

    Tong, Feifei; Lian, Yan; Zhou, Huang; Shi, Xiaohong; He, Fengjiao

    2014-10-21

    A new multichannel series piezoelectric quartz crystal (MSPQC) cell sensor for real time monitoring of living cells in vitro was reported in this paper. The constructed sensor was used successfully to monitor adhesion, spreading, proliferation, and apoptosis of MG63 osteosarcoma cells and investigate the effects of different concentrations of cobalt chloride on MG63 cells. Quantitative real time and dynamic cell analyses data were conducted using the MSPQC cell sensor. Compared with methods such as fluorescence staining and morphology observation by microscopy, the MSPQC cell sensor is noninvasive, label free, simple, cheap, and capable of online monitoring. It can automatically record the growth status of cells and quantitatively evaluate cell proliferation and the apoptotic response to drugs. It will be a valuable detection and analysis tool for the acquisition of cellular level information and is anticipated to have application in the field of cell biology research or cytotoxicity testing in the future.

  9. Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Khetani, Altaf; Tiwari, Vidhu S.; Harb, Alaa; Anis, Hanan

    2011-08-01

    The feasibility of using hollow core photonic crystal fiber (HC-PCF) in conjunction with Raman spectroscopy has been explored for real time monitoring of heparin concentration in serum. Heparin is an important blood anti-coagulant whose precise monitoring and controlling in patients undergoing cardiac surgery and dialysis is of utmost importance. Our method of heparin monitoring offers a novel alternative to existing clinical procedures in terms of accuracy, response time and sample volume. The optical design configuration simply involves a 785-nm laser diode whose light is coupled into HC-PCF filled with heparin-serum mixtures. By non-selectively filling HC-PCF, a strong modal field overlap is obtained. Consequently, an enhanced Raman signal (>90 times) is obtained from various heparin-serum mixtures filled HC-PCFs compared to its bulk counterpart (cuvette). The present scheme has the potential to serve as a `generic biosensing tool' for diagnosing a wide range of biological samples.

  10. Overview of 'Omics Technologies for Military Occupational Health Surveillance and Medicine.

    PubMed

    Bradburne, Christopher; Graham, David; Kingston, H M; Brenner, Ruth; Pamuku, Matt; Carruth, Lucy

    2015-10-01

    Systems biology ('omics) technologies are emerging as tools for the comprehensive analysis and monitoring of human health. In order for these tools to be used in military medicine, clinical sampling and biobanking will need to be optimized to be compatible with downstream processing and analysis for each class of molecule measured. This article provides an overview of 'omics technologies, including instrumentation, tools, and methods, and their potential application for warfighter exposure monitoring. We discuss the current state and the potential utility of personalized data from a variety of 'omics sources including genomics, epigenomics, transcriptomics, metabolomics, proteomics, lipidomics, and efforts to combine their use. Issues in the "sample-to-answer" workflow, including collection and biobanking are discussed, as well as national efforts for standardization and clinical interpretation. Establishment of these emerging capabilities, along with accurate xenobiotic monitoring, for the Department of Defense could provide new and effective tools for environmental health monitoring at all duty stations, including deployed locations. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  11. A Residual Chlorine Removal Method to Allow Drinking Water Monitoring by Biological Early Warning Systems

    DTIC Science & Technology

    2005-03-18

    Lepomis macrochirus). have been disinfected with chloramines The threshold for a toxicity alarm by was not determined. Biomonitor users the USACEHR...residual solution. This caused an elevated chlorine from water disinfected with chlorine level (measured at 0.08 FRC) chloramines . In testing with a rapid...have been disinfected A Handbook, Volume 2, 8. Kluwer with chloramines . Academic/Plenum Publishers, New York, NY, pp 123-141. 5. Recommendations

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Open source tools for large-scale neuroscience.

    PubMed

    Freeman, Jeremy

    2015-06-01

    New technologies for monitoring and manipulating the nervous system promise exciting biology but pose challenges for analysis and computation. Solutions can be found in the form of modern approaches to distributed computing, machine learning, and interactive visualization. But embracing these new technologies will require a cultural shift: away from independent efforts and proprietary methods and toward an open source and collaborative neuroscience. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, andmore » (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.« less

  15. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J. M.; Adams, S. M.; Blaylock, B. G.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4)more » instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.« less

  16. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  17. Label-Free Raman Imaging to Monitor Breast Tumor Signatures

    NASA Astrophysics Data System (ADS)

    Ciubuc, John

    Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and modifications of DNA/RNA characteristics. Investigations by gel electrophoresis reveal EGF induction of phosphorylated Akt, agreeing with the Raman results. The analysis presented is a vital step toward Raman-based evaluation of EGF receptors in breast cancer cells. With the goal of clinically applying Raman-guided methods for diagnosis of breast tumors, the current results lay the basis for proving label-free optical alternatives in making prognosis of the disease.

  18. Interagency field manual for the collection of water-quality data

    USGS Publications Warehouse

    Lurry, Dee L.; Kolbe, Christine M.

    2000-01-01

    The USEPA, IBWC, USGS, and Texas Natural Resource Conservation Commission (TNRCC) have been working cooperatively to establish a Water-Quality Monitoring Council for the international reach of the Rio Grande (Río Bravo). A similar effort is occurring along the western international boundary with interested partners including the U.S. Bureau of Reclamation (BOR), Arizona Department of Environmental Quality (ADEQ), and the California Regional Water Quality Control Board (CRWQCB). As of February 1997, the partners agreed to work towards greater cooperation, specifically: 1. to revise the 1977 Joint Report of IBWC Engineers as specified in IBWC Minute No. 289; 2. to implement a binational Intergovernmental Task Force for Water-Quality Monitoring (ITFM) workgroup by inviting the participation of cooperators from Mexico; 3. to review and revise each agency’s existing monitoring network to reduce interagency redundancy; 4. to develop a bilingual manual for water-quality monitoring that would describe various field methods used for sampling water, aquatic biology, and sediment, and for assessing stream habitat; and selection of methods on the basis of DQOs, representativeness, and limitations; 5. to establish a common, easily accessible water-quality database; and 6. to hold joint training programs in water-quality monitoring and data management. Part of the fourth goal—to develop a field manual for water-sample-collection methods—will be accomplished with the publication of this manual.

  19. Assessing Vermont's stream health and biological integrity using artificial neural networks and Bayesian methods

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Fytilis, N.; Stevens, L.

    2012-12-01

    Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The incorporation of a Bayesian classifier allows one to explicitly incorporate existing knowledge and expert opinion into the data analysis. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of proactive adaptive watershed management applications.

  20. Rapid detection and identification of N-acetyl-L-cysteine thioethers using constant neutral loss and theoretical multiple reaction monitoring combined with enhanced product-ion scans on a linear ion trap mass spectrometer.

    PubMed

    Scholz, Karoline; Dekant, Wolfgang; Völkel, Wolfgang; Pähler, Axel

    2005-12-01

    A sensitive and specific liquid chromatography-mass spectrometry (LC-MS) method based on the combination of constant neutral loss scans (CNL) with product ion scans was developed on a linear ion trap. The method is applicable for the detection and identification of analytes with identical chemical substructures (such as conjugates of xenobiotics formed in biological systems) which give common CNLs. A specific CNL was observed for thioethers of N-acetyl-L-cysteine (mercapturic acids, MA) by LC-MS/MS. MS and HPLC parameters were optimized with 16 MAs available as reference compounds. All of these provided a CNL of 129 Da in the negative-ion mode. To assess sensitivity, a multiple reaction monitoring (MRM) mode with 251 theoretical transitions using the CNL of 129 Da combined with a product ion scan (IDA thMRM) was compared with CNL combined with a product ion scan (IDA CNL). An information-dependent acquisition (IDA) uses a survey scan such as MRM (multiple reaction monitoring) to generate "informations" and starting a second acquisition experiment such as a product ion scan using these "informations." Th-MRM means calculated transitions and not transitions generated from an available standard in the tuning mode. The product ion spectra provide additional information on the chemical structure of the unknown analytes. All MA standards were spiked in low concentrations to rat urines and were detected with both methods with LODs ranging from 60 pmol/mL to 1.63 nmol/mL with IDA thMRM. The expected product ion spectra were observed in urine. Application of this screening method to biological samples indicated the presence of a number of MAs in urine of unexposed rats, and resulted in the identification of 1,4-dihydroxynonene mercapturic acid as one of these MAs by negative and positive product ion spectra. These results show that the developed methods have a high potential to serve as both a prescreen to detect unknown MAs and to identify these analytes in complex matrix.

  1. [Weighted gene co-expression network analysis in biomedicine research].

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Tu, Wei

    2017-11-25

    High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.

  2. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World.

    PubMed

    Ray, Sujay; Widom, Julia R; Walter, Nils G

    2018-04-25

    The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.

  3. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0,0001) present good correlation with specific fluorescence peaks and indicators. These indicators derived from 3D spectrofluorescence could be used in order to characterize DOM online and thus to optimize process efficiency in WWTP.

  4. Knowledge of Adverse Drug Reaction Reporting and the Pharmacovigilance of Biological Medicines: A Survey of Healthcare Professionals in Ireland.

    PubMed

    O'Callaghan, J; Griffin, B T; Morris, J M; Bermingham, Margaret

    2018-06-01

    In Europe, changes to pharmacovigilance legislation, which include additional monitoring of medicines, aim to optimise adverse drug reaction (ADR) reporting systems. The legislation also makes provisions related to the traceability of biological medicines. The objective of this study was to assess (i) knowledge and general experience of ADR reporting, (ii) knowledge, behaviours, and attitudes related to the pharmacovigilance of biologicals, and (iii) awareness of additional monitoring among healthcare professionals (HCPs) in Ireland. Hospital doctors (n = 88), general practitioners (GPs) (n = 197), nurses (n = 104) and pharmacists (n = 309) completed an online questionnaire. There were differences in mean knowledge scores relating to ADR reporting and the pharmacovigilance of biologicals among the HCP groups. The majority of HCPs who use biological medicines in their practice generally record biologicals by brand name but practice behaviours relating to batch number recording differed between some professions. HCPs consider batch number recording to be valuable but also regard it as being more difficult than brand name recording. Most respondents were aware of the concept of additional monitoring but awareness rates differed between some groups. Among those who knew about additional monitoring, there was higher awareness of the inverted black triangle symbol among pharmacists (> 86.4%) compared with hospital doctors (35.1%), GPs (35.6%), and nurses (14.9%). Hospital pharmacists had more experience and knowledge of ADR reporting than other practising HCPs. This study highlights the important role hospital pharmacists play in post-marketing surveillance. There is a need to increase pharmacovigilance awareness of biological medicines and improve systems to support their batch traceability.

  5. High-resolution reflectometer for monitoring of biological samples

    NASA Astrophysics Data System (ADS)

    Men, Liqiu; Lu, Ping; Chen, Qiying

    2008-06-01

    High-resolution optical low-coherence reflectometry is applied to monitor biological samples. It has been found that the reflectivity of aged cow's milk is significantly lower than that of the fresh milk with a difference of 5.35dB. During the process of heating the fresh milk at a constant temperature of 80°C, the reflectivity of the milk gradually decreases with the increase of the heating duration. The technique is proved to be effective in monitoring the change in the refractive index of the sample.

  6. Biologic Monitoring of Exposure to Environmental Chemicals throughout the Life Stages: Requirements and Issues for Consideration for the National Children’s Study

    PubMed Central

    Barr, Dana B.; Wang, Richard Y.; Needham, Larry L.

    2005-01-01

    Biomonitoring of exposure is a useful tool for assessing environmental exposures. The matrices available for analyses include blood, urine, breast milk, adipose tissue, and saliva, among others. The sampling can be staged to represent the particular time period of concern: preconceptionally from both parents, from a pregnant woman during each of the three trimesters, during and immediately after childbirth, from the mother postnatally, and from the child as it develops to 21 years of age. The appropriate sample for biomonitoring will depend upon matrix availability, the time period of concern for a particular exposure or health effect, and the different classes of environmental chemicals to be monitored. This article describes the matrices available for biomonitoring during the life stages being evaluated in the National Children’s Study; the best biologic matrices for exposure assessment for each individual chemical class, including consideration of alternative matrices; the analytical methods used for analysis, including quality control procedures and less costly alternatives; the costs of analysis; optimal storage conditions; and chemical and matrix stability during long-term storage. PMID:16079083

  7. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    PubMed Central

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy. PMID:25749473

  8. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    PubMed

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  9. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Hikaru; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp; Saeki, Yasushi, E-mail: saeki-ys@igakuken.or.jp

    2013-06-28

    Highlights: •The parallel reaction monitoring method was applied to ubiquitin quantification. •The ubiquitin PRM method is highly sensitive even in biological samples. •Using the method, we revealed that Ufd4 assembles the K29-linked ubiquitin chain. -- Abstract: Ubiquitylation is an essential posttranslational protein modification that is implicated in a diverse array of cellular functions. Although cells contain eight structurally distinct types of polyubiquitin chains, detailed function of several chain types including K29-linked chains has remained largely unclear. Current mass spectrometry (MS)-based quantification methods are highly inefficient for low abundant atypical chains, such as K29- and M1-linked chains, in complex mixtures thatmore » typically contain highly abundant proteins. In this study, we applied parallel reaction monitoring (PRM), a quantitative, high-resolution MS method, to quantify ubiquitin chains. The ubiquitin PRM method allows us to quantify 100 attomole amounts of all possible ubiquitin chains in cell extracts. Furthermore, we quantified ubiquitylation levels of ubiquitin-proline-β-galactosidase (Ub-P-βgal), a historically known model substrate of the ubiquitin fusion degradation (UFD) pathway. In wild-type cells, Ub-P-βgal is modified with ubiquitin chains consisting of 21% K29- and 78% K48-linked chains. In contrast, K29-linked chains are not detected in UFD4 knockout cells, suggesting that Ufd4 assembles the K29-linked ubiquitin chain(s) on Ub-P-βgal in vivo. Thus, the ubiquitin PRM is a novel, useful, quantitative method for analyzing the highly complicated ubiquitin system.« less

  10. Monitoring biodiversity: quantification and interpretation.

    Treesearch

    William L. Gaines; Richy J. Harrod; John F. Lehmkuhl

    1999-01-01

    Monitoring is necessary for an adaptive management approach and the successful implementation of ecosystem management. In this document, we present an approach to monitoring biological diversity at different levels of ecological organization: landscape, community or ecosystem, population or species, and genetic. Our approach involves identifying monitoring questions...

  11. Ecological Monitoring and Compliance Program Fiscal/Calendar Year 2004 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2005-03-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during the Fiscal Year 2004 and the additional months of October, November, and December 2004, reflecting a change in the monitoring period to a calendar year rather than a fiscal year as reported in the past. This change in the monitoring period was made to better accommodate information requiredmore » for the Nevada Test Site Environmental Report, which reports on a calendar year rather than a fiscal year. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Hazardous Materials Spill Center.« less

  12. Computerized In Vitro Test for Chemical Toxicity Based on Tetrahymena Swimming Patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.; Cronise, Raymond J.; Looger, Loren L.; Relwani, Rachna A.; Johnson, Jacqueline U.

    1994-01-01

    An apparatus and a method for rapidly determining chemical toxicity have been evaluated as an alternative to the rabbit eye initancy test (Draize). The toxicity monitor includes an automated scoring of how motile biological cells (Tetrahymena pyriformis) slow down or otherwise change their swimming patterns in a hostile chemical environment. The method, called the motility assay (MA), is tested for 30 s to determine the chemical toxicity in 20 aqueous samples containing trace organics and salts. With equal or better detection limits, results compare favorably to in vivo animal tests of eye irritancy.

  13. Concepts in ecological risk assessment. Professional paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, R.K.; Seligman, P.F.

    1991-05-01

    Assessing the risk of impact to natural ecosystems from xenobiotic compounds requires an accurate characterization of the threatened ecosystem, direct measures or estimates of environmental exposure, and a comprehensive evaluation of the biological effects from actual and potential contamination. Field and laboratory methods have been developed to obtain direct measures of environmental health. These methods have been implemented in monitoring programs to assess and verify the ecological risks of contamination from past events, such as hazardous waste disposal sites, as well as future scenarios, such as the environmental consequences from the use of biocides in antifouling bottom paints for ships.

  14. [Medical application of nano-materials].

    PubMed

    Jiang, Hui-qing; Chen, Yi-fei

    2002-11-01

    To review the research progress and medical application of nano-materials. The literature review and comprehensive analysis, methods were used in this study. The Nanotechnology is a typical crossing knowledge. It could be extensively applied in the fields of novel biomaterials, effective transmission of bioactive factor; the detection of functions for all vital organ systems, vascular circulation condition, the control of repair of burn trauma wounds will be monitored by the varied methods of nano technology combined with molecular biological engineering. The application of Nanotechnology will play important roles in clinical medicine, wound repair and basic research for the traditional Chinese medicine.

  15. Monitoring programs need to take into account imperfect species detectability

    USGS Publications Warehouse

    Kery, M.; Schmid, Hans

    2004-01-01

    Biodiversiry monitoring is important to identify biological units in need of conservation and to check the effectiveness of conservation actions. Programs generally monitor species richness and its changes (trend). Usually, no correction is made for imperfect species detectability. Instead, it is assumed that each species present has the same probability of being recorded and that there is no difference in this detectability across space and time, e.g. among observers and habitats. Consequently, species richness is determined by enumeration as the sum of species recorded. In Switzerland, the federal government has recently launched a comprehensive program that aims at detecting changes in biodiversity at all levels of biological integration. Birds are an important part of that program. Since 1999, 23 visits per breeding season are made to each of >250 1 km2 squares to map the territories of all detected breeding bird species. Here, we analyse data from three squares to illustrate the use of capture-recapture models in monitoring to obtain detectability-corrected estimates of species richness and trend. Species detectability averaged only 85%. Hence an estimated 15% of species present remained overlooked even after three visits. Within a square, changes in detectability for different years were of the same magnitude when surveys were conducted by the same observer as when they were by different observers. Estimates of trend were usually biased and community turnover was overestimated when based on enumeration. Here we use bird data as an illustration of methods. However, species detectability for any taxon is unlikely ever to be perfect or even constant across categories to be compared. Therefore, monitoring programs should correct for species detectability.

  16. Using citizen science butterfly counts to predict species population trends.

    PubMed

    Dennis, Emily B; Morgan, Byron J T; Brereton, Tom M; Roy, David B; Fox, Richard

    2017-12-01

    Citizen scientists are increasingly engaged in gathering biodiversity information, but trade-offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011-2014) of a short-duration citizen science project (Big Butterfly Count [BBC]) with those from long-running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3-week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3-week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short-duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species' flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass-participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass-participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land-use types), as well as serving to reconnect an increasingly urban human population with nature. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  17. Clinical Trials Targeting Aging and Age-Related Multimorbidity

    PubMed Central

    Crimmins, Eileen M; Grossardt, Brandon R; Crandall, Jill P; Gelfond, Jonathan A L; Harris, Tamara B; Kritchevsky, Stephen B; Manson, JoAnn E; Robinson, Jennifer G; Rocca, Walter A; Temprosa, Marinella; Thomas, Fridtjof; Wallace, Robert; Barzilai, Nir

    2017-01-01

    Abstract Background There is growing interest in identifying interventions that may increase health span by targeting biological processes underlying aging. The design of efficient and rigorous clinical trials to assess these interventions requires careful consideration of eligibility criteria, outcomes, sample size, and monitoring plans. Methods Experienced geriatrics researchers and clinical trialists collaborated to provide advice on clinical trial design. Results Outcomes based on the accumulation and incidence of age-related chronic diseases are attractive for clinical trials targeting aging. Accumulation and incidence rates of multimorbidity outcomes were developed by selecting at-risk subsets of individuals from three large cohort studies of older individuals. These provide representative benchmark data for decisions on eligibility, duration, and assessment protocols. Monitoring rules should be sensitive to targeting aging-related, rather than disease-specific, outcomes. Conclusions Clinical trials targeting aging are feasible, but require careful design consideration and monitoring rules. PMID:28364543

  18. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  19. OCT monitoring of pathophysiological processes

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia D.; Shakhova, Natalia M.; Shakhov, Andrei; Petrova, Galina P.; Zagainova, Elena; Snopova, Ludmila; Kuznetzova, Irina N.; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Kamensky, Vladislav A.; Kuranov, Roman V.; Sergeev, Alexander M.

    1999-04-01

    Based on results of clinical examination of about 200 patients we discuss capabilities of the optical coherence tomography (OCT) in monitoring and diagnosing of various pathophysiological processes. Performed in several clinical areas including dermatology, urology, laryngology, gynecology, and dentistry, our study shows the existence of common optical features in manifestation of a pathophysiological process in different organs. In this paper we focus at such universal tomographic optical signs for processes of inflammation, necrosis and tumor growth. We also present data on dynamical OCT monitoring of evolution of pathophysiological processes, both at the stage of disease development and following-up results of different treatments such as drug application, radiation therapy, cryodestruction, and laser vaporization. The discovered peculiarities of OCT images for structural and functional imaging of biological tissues can be put as a basis for application of this method for diagnosing of pathology, guidance of treatment, estimation of its adequacy and assessing of the healing process.

  20. Physical integrity: the missing link in biological monitoring and TMDLs.

    PubMed

    Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim

    2009-12-01

    The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.

  1. The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process.

    PubMed

    Petrie, Bruce; McAdam, Ewan J; Whelan, Mick J; Lester, John N; Cartmell, Elise

    2013-04-01

    An ultra performance liquid chromatography method coupled to a triple quadrupole mass spectrometer was developed to determine nonylphenol and 15 of its possible precursors (nonylphenol ethoxylates and nonylphenol carboxylates) in aqueous and particulate wastewater matrices. Final effluent method detection limits for all compounds ranged from 1.4 to 17.4 ng l(-1) in aqueous phases and from 1.4 to 39.4 ng g(-1) in particulate phases of samples. The method was used to measure the performance of a trickling filter wastewater treatment works, which are not routinely monitored despite their extensive usage. Relatively good removals of nonylphenol were observed over the biological secondary treatment process, accounting for a 53 % reduction. However, only an 8 % reduction in total nonylphenolic compound load was observed. This was explained by a shortening in ethoxylate chain length which initiated production of shorter polyethoxylates ranging from 1 to 4 ethoxylate units in length in final effluents. Modelling the possible impact of trickling filter discharge demonstrated that the nonylphenol environmental quality standard may be exceeded in receiving waters with low dilution ratios. In addition, there is a possibility that the EQS can be exceeded several kilometres downstream of the mixing zone due to the biotransformation of readily degradable short-chained precursors. This accentuates the need to monitor 'non-priority' parent compounds in wastewater treatment works since monitoring nonylphenol alone can give a false indication of process performance. It is thus recommended that future process performance monitoring and optimisation is undertaken using the full suite of nonylphenolic moieties which this method can facilitate.

  2. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  3. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA.

    PubMed

    Aydin, Suleyman

    2015-10-01

    Playing a critical role in the metabolic homeostasis of living systems, the circulating concentrations of peptides/proteins are influenced by a variety of patho-physiological events. These peptide/protein concentrations in biological fluids are measured using various methods, the most common of which is enzymatic immunoassay EIA/ELISA and which guide the clinicians in diagnosing and monitoring diseases that inflict biological systems. All the techniques where enzymes are employed to show antigen-antibody reactions are generally referred to as enzymatic immunoassay EIA/ELISA method. Since the basic principles of EIA and ELISA are the same. The main objective of this review is to present an overview of the historical journey that had led to the invention of EIA/ELISA, an indispensible method for medical and research laboratories, types of ELISA developed after its invention [direct (the first ELISA method invented), indirect, sandwich and competitive methods], problems encountered during peptide/protein analyses (pre-analytical, analytical and post-analytical), rules to be followed to prevent these problems, and our laboratory experience of more than 15 years. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight)

    NASA Astrophysics Data System (ADS)

    Heinrich, C.; Feldens, P.; Schwarzer, K.

    2017-06-01

    Hydroacoustic surveys are common tools for habitat investigation and monitoring that aid in the realisation of the aims of the EU Marine Directives. However, the creation of habitat maps is difficult, especially when benthic organisms densely populate the seafloor. This study assesses the sensitivity of entropy and homogeneity image texture parameters derived from backscatter strength data to benthic habitats dominated by the tubeworm Lanice conchilega. Side scan sonar backscatter surveys were carried out in 2010 and 2011 in the German Bight (southern North Sea) at two sites approx. 20 km offshore of the island of Sylt. Abiotic and biotic seabed facies, such as sorted bedforms, areas of fine to medium sand and L. conchilega beds with different tube densities, were identified and characterised based on manual expert analysis and image texture analysis. Ground truthing was performed by grab sampling and underwater video observations. Compared to the manual expert analysis, the k- means classification of image textures proves to be a semi-automated method to investigate small-scale differences in a biologically altered seabed from backscatter data. The texture parameters entropy and homogeneity appear linearly interrelated with tube density, the former positively and the latter negatively. Reinvestigation of one site after 1 year showed an extensive change in the distribution of the L. conchilega-altered seabed. Such marked annual fluctuations in L. conchilega tube cover demonstrate the need for dense time series and high spatial coverage to meaningfully monitor ecological patterns on the seafloor with acoustic backscatter methods in the study region and similar settings worldwide, particularly because the sand mason plays a pivotal role in promoting biodiversity. In this context, image texture analysis provides a cost-effective and reproducible method to track biologically altered seabeds from side scan sonar backscatter signatures.

  5. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    PubMed

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  7. Electron Spin Resonance (ESR) for the study of Reactive Oxygen Species (ROS) on the isolated frog skin (Pelophylax bergeri): A non-invasive method for environmental monitoring.

    PubMed

    D'Errico, Gerardino; Vitiello, Giuseppe; De Tommaso, Gaetano; Abdel-Gawad, Fagr Kh; Brundo, Maria Violetta; Ferrante, Margherita; De Maio, Anna; Trocchia, Samantha; Bianchi, Anna Rita; Ciarcia, Gaetano; Guerriero, Giulia

    2018-04-11

    Reactive oxygen species (ROS) in biological tissues of elected biosentinels represent an optimal biomarker for eco-monitoring of polluted areas. Electron spin resonance (ESR) is the most definitive method for detecting, quantifying and possibly identifying radicals in complex systems. A non-invasive method for monitoring polluted areas by the quantitative determination of ROS in frog skin biopsy is presented. We assessed by ESR spectroscopy the ROS level in adult male of Pelophylax bergeri, specie not a risk of extinction, collected from the polluted Sarno River (SA, Italy) basin. The spin-trap ESR method was validated by immunohistochemical analysis of the well-assessed pollution biomarkers cytochrome P450 aromatase 1A (CYP1A) and glutathione S-transferase (GST), and by determining the poly(ADPribose) polymerase (PARP) and GST enzymatic activity. ROS concentration in skin samples from frogs collected in the polluted area is significantly higher than that determined for the unpolluted reference area. Immunohistochemical analysis of CYP1A and GST supported the reliability of our approach, even in the absence of evident morphological and ultrastructural differences. PARP activity assay, connected to possible oxidative DNA damage, and the detoxification index by GST enzymatic assay give statistically significant evidence that higher levels of ROS are associated to alterations of the different biomarkers. ROS concentration, measured by ESR on isolated frog skin, through the presented non-lethal method, is a reliable biomarker for toxicity screening and represents a useful basic datum for future modelling studies on environmental monitoring and biodiversity loss prevention. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  9. Health Risks to Ecological Workers on Contaminated Sites - the Department of Energy as a Case Study

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2016-01-01

    Background At most contaminated sites the risk to workers focuses on those ‘hazardous waste workers’ directly exposed to chemicals or radionuclides, and to the elaborate approaches implemented to protecting their health and safety. Ecological workers generally are not considered. Objectives To explore the risks to the health and safety of ecological workers on sites with potential chemical and radiological exposures before, during or after remediation of contamination. To use the U.S. Department of Energy as a case study, and to develop concepts that apply generally to sites contaminated with hazardous or nuclear wastes, Methods Develop categories of ecological workers, describe their usual jobs, and provide information on the kinds of risks they face. Ecological activities include continued surveillance and monitoring work on any sites with residual contamination, subject to institutional controls and engineered barriers following closure as well as the restoration. Results The categories of ecological workers and their tasks include 1) Ecological characterization, mapping and monitoring, 2) biodiversity studies, 2) Contaminant fate and transport, 3) On-going industrial activities 4) Remediation activities (environmental management), 5) Environmental restoration, 6) Post-cleanup surveillance and monitoring, and 7) Post-closure future site activities. There are a set of functional activities that can occur with different frequencies and intensities, including visual inspection, collecting biological samples, collecting media physical samples, collecting biological debris, restoration planting, and maintaining ecosystems. Conclusions Ecological workers face different exposures and risks than other environmental cleanup workers. Many of their tasks mimic shift work with long hours leading to fatigue, and they are exposed to biological as well as chemical/radiological hazards. DOE and other entities need to examine the risks to ecological workers on site with an eye to risk reduction. PMID:27668128

  10. Organic pollution and its effects in the marine mussel Mytilus galloprovincialis in Eastern Mediterranean coasts.

    PubMed

    Kasiotis, Konstantinos M; Emmanouil, Christina; Anastasiadou, Pelagia; Papadi-Psyllou, Asimina; Papadopoulos, Antonis; Okay, Oya; Machera, Kyriaki

    2015-01-01

    Persistent chemicals and emerging pollutants are continuously detected in marine waters and biota. Out of these, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are significant contaminants with decades of presence in the marine environment. The Mediterranean Sea is an ecosystem directly affected by a variety of anthropogenic activities including industry, municipal, touristic, commercial and agricultural. The Mediterranean mussel (Mytilus galloprovincialis) is a filter feeder, which presents wide distribution. In this regard, the specific organism was used as a biological indicator for the monitoring and evaluation of pollution in the studied areas with focus on the mentioned chemical groups. Pristine Turkish sites with minimum effect from anthropogenic activities, in contrast with Greek sites which were subjected to heavy industrial and shipping activity, were selected. A gas chromatographic tandem mass spectrometric method (GC-MS/MS) was developed and validated to monitor 34 compounds (16 EPA priority PAHs and 18 OCs). Analyses of mussel samples in 2011 from sites with the limited anthropogenic pollution shores have shown the occurrence of 11 pollutants (6 PAHs, 5 OCs), while in the samples from sites with intensive activity and expected pollution, 12 PAHs and 6 OCs were detected. Biochemical and biological responses studied only in mussels samples from the sites with the highest contamination showed a situation that was under strong seasonal influence. The intensity of the response was also influenced by deployment duration. Noteworthy correlations were detected among biochemical/biological effects and between mussel body burden and these effects. Continuous monitoring of priority pollutants of East Mediterranean Sea is vital both for ecological and human risk assessment purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Implementation of a remote oncology-monitoring program for cancer patients in outpatient care unit: A major challenge for the different actors].

    PubMed

    Peyrilles, Elodie; Lepage-Seydoux, Coralie; Sejean, Karine; Bonan, Brigitte

    2018-04-01

    The development of outpatient departments requires health professionals to reorganize practices for a better patient monitoring and a better patient care pathway. To evaluate, using indicators, the impact of an oncology-monitoring program on activity and organizational fluidity in a Cytotoxic Preparation Unit and clinical departments. Method the clinical and biological data are collected between two injections by calling the patient two days prior chemotherapy is performed by a specialist nurse of an outsourced medical call center. After medical and pharmaceutical validation, early preparations (D-1) for expensive and non-expensive molecules are performed. The program is started in February 2016. After 3 months, 382 patients were included into the program. Twenty-three patients on average are called per day related to 1162 completed clinical questionnaires (87%). Among the files, 47% are complete at D-2 (biological and clinical data). The early preparation rate of expensive drugs, zero before the program for financial reasons, has reached 40% at 3 months. The destroyed preparation rate because of non-administration decreased from 5 to 2%. Preliminary results show a significant patient compliance, feasibility of early preparation of expensive and non-expensive chemotherapy. These are preliminary results of a one-year study. They will be completed by an evaluation of patients' and health professionals' satisfaction, evaluation of length of stay, optimization of operations for clinical departments and CPU. The D-2 biological data collection must be improved. A strong doctor/pharmacist collaboration is essential for better patient care pathway. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. Comparative Proteomics of Tandem Mass Spectrometry Analyses for Bacterial Strains Identification and Differentiation

    DTIC Science & Technology

    2012-02-01

    risk, bio -terrorism utility, Homeland Security, agricultural monitoring, quality of foodstuffs, environmental monitoring, and biological warfare agents...CAL19717 Putative surface antigen CAL21872 Putative sigma 54 modulation protein NP_395233 Plasminogen activator protease precursor CAL19882 OMP...S. (2005). Chemical and biological weapons : current concepts for future defenses. Johns Hopkins APL Tech. Digest, 26, 321-333. Dworzanski, J.P

  13. Biological drugs for the treatment of psoriasis in a public health system

    PubMed Central

    Lopes, Luciane Cruz; Silveira, Miriam Sanches do Nascimento; de Camargo, Iara Alves; Barberato, Silvio; Del Fiol, Fernando de Sá; Osorio-de-Castro, Claudia Garcia Serpa

    2014-01-01

    OBJECTIVE To analyze the access and utilization profile of biological medications for psoriasis provided by the judicial system in Brazil. METHODS This is a cross-sectional study. We interviewed a total of 203 patients with psoriasis who were on biological medications obtained by the judicial system of the State of Sao Paulo, from 2004 to 2010. Sociodemographics, medical, and political-administrative characteristics were complemented with data obtained from dispensation orders that included biological medications to treat psoriasis and the legal actions involved. The data was analyzed using an electronic data base and shown as simple variable frequencies. The prescriptions contained in the lawsuits were analyzed according to legal provisions. RESULTS A total of 190 lawsuits requesting several biological drugs (adalimumab, efalizumab, etanercept, and infliximab) were analyzed. Patients obtained these medications as a result of injunctions (59.5%) or without having ever demanded biological medication from any health institution (86.2%), i.e., public or private health services. They used the prerogative of free legal aid (72.6%), even though they were represented by private lawyers (91.1%) and treated in private facilities (69.5%). Most of the patients used a biological medication for more than 13 months (66.0%), and some patients were undergoing treatment with this medication when interviewed (44.9%). Approximately one third of the patients discontinued treatment due to worsening of their illness (26.6%), adverse drug reactions (20.5%), lack of efficacy, or because the doctor discontinued this medication (13.8%). None of the analyzed medical prescriptions matched the legal prescribing requirements. Clinical monitoring results showed that 70.3% of the patients had not undergone laboratory examinations (blood work, liver and kidney function tests) for treatment control purposes. CONCLUSIONS The plaintiffs resorted to legal action to get access to biological medications because they were either unaware or had difficulty in accessing them through institutional public health system procedures. Access by means of legal action facilitated long-term use of this type of medication through irregular prescriptions and led to a high rate of adverse drug reactions as well as inappropriate clinical monitoring. PMID:25210824

  14. U.S. Geological Survey programs in Texas

    USGS Publications Warehouse

    ,

    1996-01-01

    The USGS also continues to monitor geologic conditions in Texas associated with rare but potentially dangerous earthquakes. Recently, the Nation Biological Service (now the Biological Resources Division) joined the USGS to continue their appraisal of the nation's biological resources.

  15. Applicability of ambient toxicity testing to national or regional water-quality assessment

    USGS Publications Warehouse

    Elder, John F.

    1990-01-01

    Comprehensive assessment of the quality of natural waters requires a multifaceted approach. Descriptions of existing conditions may be achieved by various kinds of chemical and hydrologic analyses, whereas information about the effects of such conditions on living organisms depends on biological monitoring. Toxicity testing is one type of biological monitoring that can be used to identify possible effects of toxic contaminants. Based on experimentation designed to monitor responses of organisms to environmental stresses, toxicity testing may have diverse purposes in water-quality assessments. These purposes may include identification of areas that warrant further study because of poor water quality or unusual ecological features, verification of other types of monitoring, or assessment of contaminant effects on aquatic communities. Toxicity-test results are most effective when used as a complement to chemical analyses, hydrologic measurements, and other biological monitoring. However, all toxicity-testing procedures have certain limitations that must be considered in developing the methodology and applications of toxicity testing in any large-scale water-quality-assessment program. A wide variety of toxicity-test methods have been developed to fulfill the needs of diverse applications. The methods differ primarily in the selections made relative to four characteristics: (1) test species, (2) endpoint (acute or chronic), (3) test-enclosure type, and (4) test substance (toxicant) that functions as the environmental stress. Toxicity-test approaches vary in their capacity to meet the needs of large-scale assessments of existing water quality. Ambient testing, whereby the test organism is exposed to naturally occurring substances that contain toxicant mixtures in an organic or inorganic matrix, is more likely to meet these needs than are procedures that call for exposure of the test organisms to known concentrations of a single toxicant. However, meaningful interpretation of ambient test results depends on the existence of accompanying chemical analysis of the ambient media. The ambient test substance may be water or sediments. Sediment tests have had limited application, but they are useful because most toxicants tend to accumulate in sediments and many test species either inhabit the sediments or are in frequent contact with them. Biochemical testing methods, which have been developing rapidly in recent years, are likely to be among the most useful procedures for large-scale water-quality assessments. They are relatively rapid and simple, and more. importantly, they focus on biochemical changes that are the initial responses of virtually all organisms to environmental stimuli. Most species are sensitive to relatively few toxicants, and their sensitivities vary as conditions change. Therefore, each test method has particular uses and limitations, and no single test has universal applicability. One of the most informative approaches to toxicity testing is to combine biochemical tests with other test methods in a 'battery of tests' that is diversified enough to characterize different types of toxicants and different trophic levels. However, such an approach can be costly, and if not carefully designed, it may not yield enough additional information to warrant the additional cost. The application of toxicity tests to large-scale water-quality assessments is hampered by a number of difficulties. Toxicity tests often are not sensitive enough to enable detection of most contaminant problems in the natural environment. Furthermore, because sensitivities among different species and test conditions can be highly variable, conclusions about the toxicant problems of an ecosystem are strongly dependent on the test procedure used. In addition, the experimental systems used in toxicity tests cannot replicate the complexity or variability of natural conditions, and positive test results cannot identify the source or nature of

  16. Airborne microorganisms associated with waste management and recovery: biomonitoring methodologies.

    PubMed

    Coccia, Anna Maria; Gucci, Paola Margherita Bianca; Lacchetti, Ines; Paradiso, Rosa; Scaini, Federica

    2010-01-01

    This paper presents preliminary results from a year-long indoor bioaerosol monitoring performed in three working environments of a municipal composting facility treating green and organic waste. Composting, whereby organic matter is stabilized through aerobic decomposition, requires aeration, causing the dispersion of microbial particles (microorganisms and associated toxins). Waste can, therefore, become a potential source of biological hazard. Bioaerosol samples were collected on a monthly basis. Through a comparison of results obtained using two samplers - the Surface Air System DUO SAS 360 and the BioSampler - the study aimed at assessing the presence of biological pollutants, and at contributing to the definition of standard sampling methods for bioaerosols leading, eventually, to the establishment of exposure limits for these occupational pollutants.

  17. Toxicity assessment using different bioassays and microbial biosensors.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Feasibility study of hidden flow imaging based on laser speckle technique using multiperspectives contrast images

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Moshe, Tomer

    2014-11-01

    This paper demonstrates the insertion of lens array in the front of a CCD camera in a laser speckle imaging (LSI) like-technique to acquire multiple speckle reflectance projections for imaging blood flow in an intact biological tissue. In some of LSI applications, flow imaging is obtained by thinning or removing of the upper tissue layers to access blood vessels. In contrast, with the proposed approach flow imaging can be achieved while the tissue is intact. In the system, each lens from an hexagonal lens array observed the sample from slightly different perspectives and captured with a CCD camera. In the computer, these multiview raw images are converted to speckled contrast maps. Then, a self-deconvolution shift-and-add algorithm is employed for processing yields high contrast flow information. The method is experimentally validated first with a plastic tube filled with scattering liquid running at different controlled flow rates hidden in a biological tissue and then extensively tested for imaging of cerebral blood flow in an intact rodent head experience different conditions. A total of fifteen mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=5) consisted of injured mice experience hypoxic ischemic brain injury monitored for ~40 min. Group 2 (n=5) injured mice experience anoxic brain injury monitored up to 20 min. Group 3 (n=5) experience functional activation monitored up to ~35 min. To increase tissue transparency and the penetration depth of photons through head tissue layers, an optical clearing method was employed. To our knowledge, this work presents for the first time the use of lens array in LSI scheme.

  19. Monitoring osseointegration and developing intelligent systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salvino, Liming W.

    2017-05-01

    Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.

  20. Simultaneous determination of nine neonicotinoids in human urine using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Quan; Wang, Ximing; Li, Zhe; Jin, Hangbiao; Lu, Zhengbiao; Yu, Chang; Huang, Yu-Fang; Zhao, Meirong

    2018-05-14

    Neonicotinoids (neonics), a class of systemic insecticides, have been frequently detected in pollen, vegetables, and fruits. Recently, an increasing concern has been aroused for human exposure to neonics. However, biological monitoring for quantifying body burden of neonics has rarely been reported. In this study, we developed an isotope-dilution ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method to simultaneously quantify nine neonics, including acetamiprid (ACE), thiamethoxam (THIAM), imidacloprid (IMIP), clothianidin (CLO), flonicamid (FLO), thiacloprid (THIAC), dinotefuran (DIN), nitenpyram (NIT), and imidaclothiz (IMIT) in urine. The limits of quantification were 0.1 μg/L for ACE, FLO, DIN, NIT and IMIT, and 0.2 μg/L for THIAM, IMIP, CLO, and THIAC. The overall recoveries were 80.8-103%, 81.5-91.7% and 83.0-92.3% for QA/QC samples fortifying at 1, 25, and 100 μg/L levels, respectively. UPLC/MS/MS method was used to analyze urine samples obtained from 10 children in Hangzhou, China. The detection frequencies were 80% for ACE and IMIP, 70% for THIAM and CLO, 20% for DIN and IMIT and 10% for THIAC. FLO and NIT were not detected in those urine samples. The data provided here will be helpful for conducting biological monitoring of neonics exposure in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The challenges and promises of genetic approaches for ballast water management

    NASA Astrophysics Data System (ADS)

    Rey, Anaïs; Basurko, Oihane C.; Rodríguez-Ezpeleta, Naiara

    2018-03-01

    Ballast water is a main vector of introduction of Harmful Aquatic Organisms and Pathogens, which includes Non-Indigenous Species. Numerous and diversified organisms are transferred daily from a donor to a recipient port. Developed to prevent these introduction events, the International Convention for the Control and Management of Ships' Ballast Water and Sediments will enter into force in 2017. This international convention is asking for the monitoring of Harmful Aquatic Organisms and Pathogens. In this review, we highlight the urgent need to develop cost-effective methods to: (1) perform the biological analyses required by the convention; and (2) assess the effectiveness of two main ballast water management strategies, i.e. the ballast water exchange and the use of ballast water treatment systems. We have compiled the biological analyses required by the convention, and performed a comprehensive evaluation of the potential and challenges of the use of genetic tools in this context. Following an overview of the studies applying genetic tools to ballast water related research, we present metabarcoding as a relevant approach for early detection of Harmful Aquatic Organisms and Pathogens in general and for ballast water monitoring and port risk assessment in particular. Nonetheless, before implementation of genetic tools in the context of the ballast water management convention, benchmarked tests against traditional methods should be performed, and standard, reproducible and easy to apply protocols should be developed.

  2. Sampling and monitoring for the mine life cycle

    USGS Publications Warehouse

    McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.

    2014-01-01

    Sampling and Monitoring for the Mine Life Cycle provides an overview of sampling for environmental purposes and monitoring of environmentally relevant variables at mining sites. It focuses on environmental sampling and monitoring of surface water, and also considers groundwater, process water streams, rock, soil, and other media including air and biological organisms. The handbook includes an appendix of technical summaries written by subject-matter experts that describe field measurements, collection methods, and analytical techniques and procedures relevant to environmental sampling and monitoring.The sixth of a series of handbooks on technologies for management of metal mine and metallurgical process drainage, this handbook supplements and enhances current literature and provides an awareness of the critical components and complexities involved in environmental sampling and monitoring at the mine site. It differs from most information sources by providing an approach to address all types of mining influenced water and other sampling media throughout the mine life cycle.Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices that are an integral part of the handbook. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies, and to suggest resources for further information. Extensive references are included.

  3. Nonpoint Source Monitoring

    EPA Pesticide Factsheets

    Water quality monitoring for nonpoint sources of pollution includes the important element of relating the physical, chemical, and biological characteristics of receiving waters to land use characteristics.

  4. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting

    PubMed Central

    DeBord, D. Gayle; Burgoon, Lyle; Edwards, Stephen W.; Haber, Lynne T.; Kanitz, M. Helen; Kuempel, Eileen; Thomas, Russell S.; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments.( 1 ) This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identi-fication of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely. PMID:26132979

  5. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting.

    PubMed

    DeBord, D Gayle; Burgoon, Lyle; Edwards, Stephen W; Haber, Lynne T; Kanitz, M Helen; Kuempel, Eileen; Thomas, Russell S; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely.

  6. Design and analysis of surface plasmon resonance (SPR) sensor to check the quality of food from adulteration

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Raghuwanshi, Sanjeev Kumar

    2018-02-01

    In recent years, food safety issues caused by contamination of chemical substances or microbial species have raised a major area of concern to mankind. The conventional chromatography-based methods for detection of chemical are based on human-observation and slow for real-time monitoring. The surface plasmon resonance (SPR) sensors offers the capability of detection of very low concentrations of adulterated chemical and biological agents for real-time by monitoring. Thus, adulterant agent in food gives change in refractive index of pure food result in corresponding phase change. These changes can be detected at the output and can be related to the concentration of the chemical species present at the point.

  7. Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2010-10-12

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  8. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  9. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  10. Biological markers of human tumors and monitoring of cancer treatment.

    PubMed

    Tanneberger, S; Nissen, E; Ziegenbein, R

    1979-01-01

    The development of human tumors is accompanied very often by tumor-associated phenomena such as production of tumor-derived substances, production of certian substances in response to the tumor or immunological reactions. Up to now no of these phenomena can be used as a diagnostic cancer test but biological markers are increasingly used for monitoring progression and regression of human tumors. Basing on a number of own studies the value of the determination of CEA-serum level and urinary excretion of hydroxyprolin, spermidin and putrescin for monitoring the tumor behaviour particularly during cancer chemotherapy is demonstrated.

  11. Oak Ridge Reservation annual site environmental report for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koncinski, W.S.

    1996-09-01

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  12. Ecological effects of contaminants in McCoy Branch, 1989-1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryon, M.G.

    1992-01-01

    The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Such a RCRA Facility Investigation (RFI) was required of the Y-12 Plant for their Filled Coal Ash Pond on McCoy Branch. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps were implemented or planned for McCoy Branch to address disposal problems. The McCoy Branch RFI plan included provisions for biological monitoring of the McCoy Branch watershed.more » The objectives of the biological monitoring were to: (1) document changes in biological quality of McCoy Branch after completion of a pipeline and after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program will also determine if the classified uses, as identified by the State of Tennessee, of McCoy Branch are being protected and maintained. This report discusses results from toxicity monitoring of snails fish community assessment, and a Benthic macroinvertebrate community assessment.« less

  13. Optimization of Electrical Methods for Sub -surface Monitoring of Biological Contamination: From Micro-scale to Macroscopic one through Sub-micrometric Topographic and Electrochemical Studies of Oxydation/Reduction Processes Provoked by Bacteria

    NASA Astrophysics Data System (ADS)

    Dhahri, S.; Marliere, C.

    2012-12-01

    The presence of biological matter (bacteria) in deep geological sites for storage of, for instance, radioactive elements or groundwater in aquifers was clearly proved. That biomass triggers physical and chemical processes which greatly modify the durability and the sustainability of the storage sites. These processes, mainly from oxidative/reductive reactions, are poorly understood. This is mainly due to the fact that former studies were done at the macroscopic level far away from the micrometric scale where relevant processes induced by bacteria take place. Investigations at microscopic level are needed. Thus, we developed an experimental set -up based on the combined use of optical microscopy (epifluorescence and transmission), atomic force microscopy (AFM) and scanning electro -chemical microscopy (SECM) in order to get simultaneous information on topographic and electro -chemical processes at different length scales. The first highly sensitive step was to use AFM and optical microscopy with biological samples in liquid environment: We will present a new, non -perturbative method for imaging bacteria in their natural liquid environment using AFM. No immobilization protocol, neither chemical nor mechanical, is needed, contrary to what has been regarded till now as essential. Furthermore we were able to follow the natural gliding movements of bacteria, directly proving their living state during the AFM investigation: we thus directly prove the low impact of these breakthrough AFM observations on the native behavior of the bacteria. The second delicate step was to combine AFM and optical measurements with electrical ones. We mounted a new experimental set-up coupling real -time (i) monitoring of optical properties as the optical density (OD) evolution related to bulk bacterial growth in liquid or as the counting of number of bacteria adhering on the surface of the sample as well and (ii) electrical and electrochemical measurements. We thus will present results on the observed crossed correlations between physical, chemical and biological processes induced by the studied bacteria and the resulting variations of electrical signals as measured at different length scales. We indeed used variable sizes for the electrodes - from 10cm -square (colonies of around 10000 bacteria) to 0.1-1microns -square (the scale of an individual cell) thanks to newly manufactured AFM -SECM probes (using Focused Ion Beam - FIB method). These experiments were done with several bacterial strains, various medias (inoculated by bacteria versus non -inoculated). Furthermore, these results will shortly be applied to the optimized monitoring of the in -situ activity of bacteria consuming oil pollutants, following this way, in real -time, the bioremediation of an oil -contaminated soil (ANR ECOTECH_BIOPHY program).

  14. Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses

    PubMed Central

    Khan, Parvez; Idrees, Danish; Moxley, Michael A.; Corbett, John A.; Ahmad, Faizan; von Figura, Guido; Sly, William S.; Waheed, Abdul

    2015-01-01

    Chemiluminescence (CL) is an important method for quantification and analysis of various macromolecules. A wide range of CL agents such as luminol, hydrogen peroxide, fluorescein, dioxetanes and derivatives of oxalate, and acridinium dyes are used according to their biological specificity and utility. This review describes the application of luminol chemiluminescence (LCL) in forensic, biomedical, and clinical sciences. LCL is a very useful detection method due to its selectivity, simplicity, low cost, and high sensitivity. LCL has a dynamic range of applications, including quantification and detection of macro and micromolecules such as proteins, carbohydrates, DNA, and RNA. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays. Here, we also provide information about different compounds that may enhance or inhibit the LCL along with the effect of pH and concentration on LCL. This review covers most of the significant information related to the applications of luminol in different fields. PMID:24752935

  15. Chromatography/Mass Spectrometry-Based Biomarkers in the Field of Obstructive Sleep Apnea

    PubMed Central

    Xu, Huajun; Zheng, Xiaojiao; Jia, Wei; Yin, Shankai

    2015-01-01

    Abstract Biomarker assessment is based on quantifying several proteins and metabolites. Recent developments in proteomics and metabolomics have enabled detection of these small molecules in biological samples and exploration of the underlying disease mechanisms in obstructive sleep apnea (OSA). This systemic review was performed to identify biomarkers, which were only detected by chromatography and/or mass spectrometry (MS) and to discuss the role of these biomarkers in the field of OSA. We systemically reviewed relevant articles from PubMed and EMBASE referring to proteins and metabolite profiles of biological samples in patients with OSA. The analytical platforms in this review were focused on chromatography and/or MS. In total, 30 studies evaluating biomarkers in patients with OSA using chromatography and/or MS methods were included. Numerous proteins and metabolites, including lipid profiles, adrenergic/dopaminergic biomarkers and derivatives, amino acids, oxidative stress biomarkers, and other micromolecules were identified in patients with OSA. Applying chromatography and/or MS methods to detect biomarkers helps develop an understanding of OSA mechanisms. More proteomic and metabolomic studies are warranted to develop potential diagnostic and clinical monitoring methods for OSA. PMID:26448002

  16. Biomarker monitoring in sports doping control.

    PubMed

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  17. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    PubMed Central

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-01-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan structures was determined to be 30% while it was found to be 35% for either fucosylated or sialylated structures The optimum CE for mannose and complex type N-glycan structures was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan structures in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these structures was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitudes. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan structures enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples. PMID:25698222

  18. Procedures, Requirements and Challenges Associated with Analysis of Environmental Samples for Chemical Warfare Material (CWM)

    DTIC Science & Technology

    2012-03-29

    DOD Environmental Monitoring Data Quality (EMDQ) Workshop John Schwarz, Laboratory Manager; Environmental Monitoring Laboratory ( EML ) March 29, 2012...Center (ECBC),Environmental Monitoring Laboratory ( EML ),5183 Blackhawk RD,Aberdeen Proving Ground,MD,21010-5424 8. PERFORMING ORGANIZATION REPORT...Biological Applications and Risk Reduction (CBARR) Environmental Monitoring Laboratory ( EML ) Approved for Public Release Environmental Monitoring

  19. 77 FR 40090 - Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... NATIONAL SCIENCE FOUNDATION Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification Form AGENCY: National Science Foundation. ACTION: Notice. SUMMARY: The... Biological Sciences has a continuing commitment to monitor its information collection in order to preserve...

  20. Gap Between Official Guidelines and Clinical Practice for the Treatment of Rheumatoid Arthritis in São Paulo, Brazil.

    PubMed

    de Camargo, Iara Alves; Almeida Barros, Bruna Cipriano; do Nascimento Silveira, Miriam Sanches; Osorio-de-Castro, Claudia Garcia Serpa; Guyatt, Gordon; Lopes, Luciane Cruz

    2016-05-01

    Biological agents used for the treatment of rheumatoid arthritis (RA) are associated with serious adverse events. Guidelines provide standards for the prescribing and monitoring of these drugs. In São Paulo, health litigation for access to medicines has fueled the demand for biological therapy. The extent to which biological agents are being appropriately prescribed and patients are being appropriately monitored is uncertain. Our goal was to determine whether RA clinical guidelines are being translated into clinical practice for patients receiving treatment as a result of lawsuits against the government. We identified patients through records of the State Secretary of Health of São Paulo from 2003 to 2011. We consulted guidelines from 5 countries and chose those recommendations endorsed by all of the guidelines reviewed as standards. Pharmacy records provided data regarding biologic use. The guidelines recommended the use of biological agents only when patients had been receiving treatment with at least 1 disease-modifying antirheumatic drug (DMARD) and recommended annual monitoring of laboratory blood tests. Of the 238 patients identified in the database, 216 patients were interviewed, and 124 (57.4%) patients were still using biological agents at the time of the survey. Of the patients interviewed, 167 patients (77.3%) started biological treatment when using ≥2 DMARDs before, 22 patients (10.2%) were using 1 DMARD before, and 27 patients (12.5%) had never taken a DMARD. Of the 124 patients still taking biological drugs, 117 patients (94.3%) had visited a doctor at least once per year, but 28 patients (22.6%) did not undergo the recommended laboratory blood testing. Only 43 of the 124 patients (34.7%) still taking biological agents met the guideline criteria for both the use of previous agents and the appropriate monitoring. An important gap between clinical practice and the national guidelines exists among treatments prescribed for plaintiffs obtaining medicines for RA in São Paulo. The results suggest the need for intervention by health authorities. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  1. Using two classification schemes to develop vegetation indices of biological integrity for wetlands in West Virginia, USA.

    PubMed

    Veselka, Walter; Rentch, James S; Grafton, William N; Kordek, Walter S; Anderson, James T

    2010-11-01

    Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in "biological integrity." These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland's position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1-5 metrics that varied in their sensitivity to the disturbance gradient (R2=0.14-0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.

  2. Assessment and management of soil microbial community structure for disease suppression.

    PubMed

    Mazzola, Mark

    2004-01-01

    Identification of the biological properties contributing to the function of suppressive soils is a necessary first step to the management of such systems for use in the control of soilborne diseases. The development and application of molecular methods for the characterization and monitoring of soil microbial properties will enable a more rapid and detailed assessment of the biological nature of soil suppressiveness. Although suppressive soils have provided a wealth of microbial resources that have subsequently been applied for the biological control of soilborne plant pathogens, the full functional capabilities of the phenomena have not been realized in production agricultural ecosystems. Cultural practices, such as the application of soil amendments, have the capacity to enhance disease suppression, though the biological modes of action may vary from that initially resident to the soil. Plants have a distinct impact on characteristics and activity of resident soil microbial communities, and therefore play an important role in determining the development of the disease-suppressive state. Likewise, plant genotype will modulate these same biological communities, and should be considered when developing strategies to exploit the potential of such a natural disease control system. Implementation of consistently effective practices to manage this resource in an economically and environmentally feasible manner will require more detailed investigation of these biologically complex systems and refinement of currently available methodologies.

  3. Manage habitat, monitor species [Chapter 10

    Treesearch

    Michael K. Schwartz; Jamie S. Sanderlin; William M. Block

    2015-01-01

    Monitoring is the collection of data over time. We monitor many things: temperatures at local weather stations, daily changes in sea level along the coastline, annual prevalence of specific diseases, sunspot cycles, unemployment rates, inflation, commodity futures-the list is virtually endless. In wildlife biology, we also conduct a lot of monitoring, most commonly...

  4. Efficient species-level monitoring at the landscape scale.

    PubMed

    Noon, Barry R; Bailey, Larissa L; Sisk, Thomas D; McKelvey, Kevin S

    2012-06-01

    Monitoring the population trends of multiple animal species at a landscape scale is prohibitively expensive. However, advances in survey design, statistical methods, and the ability to estimate species presence on the basis of detection-nondetection data have greatly increased the feasibility of species-level monitoring. For example, recent advances in monitoring make use of detection-nondetection data that are relatively inexpensive to acquire, historical survey data, and new techniques in genetic evaluation. The ability to use indirect measures of presence for some species greatly increases monitoring efficiency and reduces survey costs. After adjusting for false absences, the proportion of sample units in a landscape where a species is detected (occupancy) is a logical state variable to monitor. Occupancy monitoring can be based on real-time observation of a species at a survey site or on evidence that the species was at the survey location sometime in the recent past. Temporal and spatial patterns in occupancy data are related to changes in animal abundance and provide insights into the probability of a species' persistence. However, even with the efficiencies gained when occupancy is the monitored state variable, the task of species-level monitoring remains daunting due to the large number of species. We propose that a small number of species be monitored on the basis of specific management objectives, their functional role in an ecosystem, their sensitivity to environmental changes likely to occur in the area, or their conservation importance. ©2012 Society for Conservation Biology.

  5. Monitoring of nucleophosmin oligomerization in live cells.

    PubMed

    Holoubek, Ales; Heřman, Petr; Sýkora, Jan; Brodská, Barbora; Humpolíčková, Jana; Kráčmarová, Markéta; Gášková, Dana; Hof, Martin; Kuželová, Kateřina

    2018-06-14

    Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells. © 2018 IOP Publishing Ltd.

  6. Functionality of empirical model-based predictive analytics for the early detection of hemodynamic instabilty.

    PubMed

    Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C

    2014-01-01

    Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.

  7. Changes in optical properties during heating of ex vivo liver tissues

    NASA Astrophysics Data System (ADS)

    Nagarajan, Vivek Krishna; Gogineni, Venkateshwara R.; White, Sarah B.; Yu, Bing

    2017-02-01

    Thermal ablation is the use of heat to induce cell death through coagulative necrosis. Ideally, complete ablation of tumor cells with no damage to surrounding critical structures such as blood vessels, nerves or even organs is desired. Ablation monitoring techniques are often employed to ensure optimal tumor ablation. In thermal tissue ablation, tissue damage is known to be dependent on the temperature and time of exposure. Aptly, current methods for monitoring ablation rely profoundly on local tissue temperature and duration of heating to predict the degree of tissue damage. However, such methods do not take into account the microstructural and physiological changes in tissues as a result of thermocoagulation. Light propagation within biological tissues is known to be dependent on the tissue microstructure and physiology. During tissue denaturation, changes in tissue structure alter light propagations in tissue which could be used to directly assess the extent of thermal tissue damage. We report the use of a spectroscopic system for monitoring the tissue optical properties during heating of ex vivo liver tissues. We observed that during tissue denaturation, continuous changes in wavelength-averaged μa(λ) and μ's(λ) followed a sigmoidal trend and are correlated with damage predicted by Arrhenius model.

  8. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation

    PubMed Central

    Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina

    2016-01-01

    Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766

  9. Data from selected U.S. Geological Survey National Stream Water Quality Monitoring Networks

    USGS Publications Warehouse

    Alexander, Richard B.; Slack, James R.; Ludtke, Amy S.; Fitzgerald, Kathleen K.; Schertz, Terry L.

    1998-01-01

    A nationally consistent and well-documented collection of water quality and quantity data compiled during the past 30 years for streams and rivers in the United States is now available on CD-ROM and accessible over the World Wide Web. The data include measurements from two U.S. Geological Survey (USGS) national networks for 122 physical, chemical, and biological properties of water collected at 680 monitoring stations from 1962 to 1995, quality assurance information that describes the sample collection agencies, laboratories, analytical methods, and estimates of laboratory measurement error (bias and variance), and information on selected cultural and natural characteristics of the station watersheds. The data are easily accessed via user-supplied software including Web browser, spreadsheet, and word processor, or may be queried and printed according to user-specified criteria using the supplied retrieval software on CD-ROM. The water quality data serve a variety of scientific uses including research and educational applications related to trend detection, flux estimation, investigations of the effects of the natural environment and cultural sources on water quality, and the development of statistical methods for designing efficient monitoring networks and interpreting water resources data.

  10. Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO.

    PubMed

    Ekman, Drew R; Keteles, Kristen; Beihoffer, Jon; Cavallin, Jenna E; Dahlin, Kenneth; Davis, John M; Jastrow, Aaron; Lazorchak, James M; Mills, Marc A; Murphy, Mark; Nguyen, David; Vajda, Alan M; Villeneuve, Daniel L; Winkelman, Dana L; Collette, Timothy W

    2018-08-01

    Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are increasingly being used to complement routine chemical monitoring. This study was initiated to assess the ability of both targeted and untargeted biologically-based monitoring tools to discriminate impacts of two adjacent wastewater treatment plants (WWTPs) on Colorado's South Platte River. A cell-based estrogen assay (in vitro, targeted) determined that water samples collected downstream of the larger of the two WWTPs displayed considerable estrogenic activity in its two separate effluent streams. Hepatic vitellogenin mRNA expression (in vivo, targeted) and NMR-based metabolomic analyses (in vivo, untargeted) from caged male fathead minnows also suggested estrogenic activity downstream of the larger WWTP, but detected significant differences in responses from its two effluent streams. The metabolomic results suggested that these differences were associated with oxidative stress levels. Finally, partial least squares regression was used to explore linkages between the metabolomics responses and the chemical contaminants that were detected at the sites. This analysis, along with univariate statistical approaches, identified significant covariance between the biological endpoints and estrone concentrations, suggesting the importance of this contaminant and recommending increased focus on its presence in the environment. These results underscore the benefits of a combined targeted and untargeted biologically-based monitoring strategy when used alongside contaminant monitoring to more effectively assess ecological impacts of exposures to complex mixtures in surface waters. Published by Elsevier Ltd.

  11. Antibody Epitope Analysis to Investigate Folded Structure, Allosteric Conformation, and Evolutionary Lineage of Proteins.

    PubMed

    Wong, Sienna; Jin, J-P

    2017-01-01

    Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Labeling and Magnetic Resonance Imaging of Exosomes Isolated from Adipose Stem Cells.

    PubMed

    Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella

    2017-06-19

    Adipose stem cells (ASC) represent a promising therapeutic approach for neurodegenerative diseases. Most biological effects of ASC are probably mediated by extracellular vesicles, such as exosomes, which influence the surrounding cells. Current development of exosome therapies requires efficient and noninvasive methods to localize, monitor, and track the exosomes. Among imaging methods used for this purpose, magnetic resonance imaging (MRI) has advantages: high spatial resolution, rapid in vivo acquisition, and radiation-free operation. To be detectable with MRI, exosomes must be labeled with MR contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIO). Here, we set up an innovative approach for exosome labeling that preserves their morphology and physiological characteristics. We show that by labeling ASC with USPIO before extraction of nanovesicles, the isolated exosomes retain nanoparticles and can be visualized by MRI. The current work aims at validating this novel USPIO-based exosome labeling method by monitoring the efficiency of the labeling with MRI both in ASC and in exosomes. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  13. High resolution SEM imaging of gold nanoparticles in cells and tissues.

    PubMed

    Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R

    2014-12-01

    The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high conductivity without application of surface coating and requires less time and a reduced use of toxic chemicals. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  14. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... two separate components. The first data collection component demonstrates that the open biological... each zone of the open biological treatment unit. After the first two components of data collection are... determined using actual sampling data from the open biological treatment unit. This is done during the...

  15. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... two separate components. The first data collection component demonstrates that the open biological... each zone of the open biological treatment unit. After the first two components of data collection are... determined using actual sampling data from the open biological treatment unit. This is done during the...

  16. Compilation of Annual Reports of the Navy ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program. Volume 1. Tabs A-E.

    DTIC Science & Technology

    1984-07-01

    mhhhhmhhmmm EEmhohEEmhmhEE EohhEohEEEEohI 1111 11111_L25 1.18 6 MICROCOPY RESOLUTION TESI CHART 95. Pedon Classification: Typic Dystrochrept, sandy, mixed...prepared by team researchers in the MTU Forestry Department and delivered to the Environmental Microbiology lab in the Department of Biological Sciences...unsuccessful. Using methods given in a presentation at the 1982 American Society for Microbiology Annual Meetings, virtually no bacteria of any type were

  17. Biological monitoring to determine worker dose in a butadiene processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, W.E.; Hayes, R.B.

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to bettermore » assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.« less

  18. Biological monitoring results for cadmium exposed workers.

    PubMed

    McDiarmid, M A; Freeman, C S; Grossman, E A; Martonik, J

    1996-11-01

    As part of a settlement agreement with the Occupational Safety and Health Administration (OSHA) involving exposure to cadmium (Cd), a battery production facility provided medical surveillance data to OSHA for review. Measurements of cadmium in blood, cadmium in urine, and beta 2-microglobulin in urine were obtained for more than 100 workers over an 18-month period. Some airborne Cd exposure data were also made available. Two subpopulations of this cohort were of primary interest in evaluating compliance with the medical surveillance provisions of the Cadmium Standard. These were a group of 16 workers medically removed from cadmium exposure due to elevations in some biological parameter, and a group of platemakers. Platemaking had presented a particularly high exposure opportunity and had recently undergone engineering interventions to minimize exposure. The effect on three biological monitoring parameters of medical removal protection in the first group and engineering controls in platemakers is reported. Results reveal that both medical removal from cadmium exposures and exposure abatement through the use of engineering and work practice controls generally result in declines in biological monitoring parameters of exposed workers. Implications for the success of interventions are discussed.

  19. Pollution monitoring using networks of honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.

    1983-08-01

    Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiablemore » sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.« less

  20. Telemonitoring with respect to Mood Disorders and Information and Communication Technologies: Overview and Presentation of the PSYCHE Project

    PubMed Central

    Javelot, Hervé; Spadazzi, Anne; Weiner, Luisa; Garcia, Sonia; Gentili, Claudio; Kosel, Markus; Bertschy, Gilles

    2014-01-01

    This paper reviews what we know about prediction in relation to mood disorders from the perspective of clinical, biological, and physiological markers. It then also presents how information and communication technologies have developed in the field of mood disorders, from the first steps, for example, the transition from paper and pencil to more sophisticated methods, to the development of ecological momentary assessment methods and, more recently, wearable systems. These recent developments have paved the way for the use of integrative approaches capable of assessing multiple variables. The PSYCHE project stands for Personalised monitoring SYstems for Care in mental HEalth. PMID:25050321

  1. Telemonitoring with respect to mood disorders and information and communication technologies: overview and presentation of the PSYCHE project.

    PubMed

    Javelot, Hervé; Spadazzi, Anne; Weiner, Luisa; Garcia, Sonia; Gentili, Claudio; Kosel, Markus; Bertschy, Gilles

    2014-01-01

    This paper reviews what we know about prediction in relation to mood disorders from the perspective of clinical, biological, and physiological markers. It then also presents how information and communication technologies have developed in the field of mood disorders, from the first steps, for example, the transition from paper and pencil to more sophisticated methods, to the development of ecological momentary assessment methods and, more recently, wearable systems. These recent developments have paved the way for the use of integrative approaches capable of assessing multiple variables. The PSYCHE project stands for Personalised monitoring SYstems for Care in mental HEalth.

  2. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  3. A Three Dimensional Electronic Retina Architecture.

    DTIC Science & Technology

    1987-12-01

    not guarantee that a biological entity is in fact the best design because of the unique constraining factors of a biological organism and the associated...4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) AFIT/GCS/ENG/87D-23 6a. NAME OF PERFORMING ORGANIZATION 6b...OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable) School of Engineering AFIT/ENG 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS

  4. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.

    PubMed

    Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S

    2017-04-13

    This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

  5. Data Integration for Health and Stress Monitoring: Biological Metabolites, Wearables Data, and Self-Reporting

    NASA Astrophysics Data System (ADS)

    Dunn, Jocelyn T.

    Integrative and unobtrusive approaches to monitoring health and stress can assist in preventative medicine and disease management, and provide capabilities for complex work environments, such as military deployments and long-duration human space exploration missions. With many data streams that could potentially provide critical information about the health, behavior, and psychosocial states of individuals or small groups, the central question of this research is how to reliably measure health and stress states over time. This integrative approach to health and stress monitoring has implemented biological metabolite profiling, wearables data analysis, and survey assessment for comparing biological, behavioral, and psychological perspectives. Health monitoring technologies aim to provide objective data about health status. Providing objective information can help mitigate biases or blind spots in an individual's perception. Consider an individual who is unwilling to openly admit to psychosocial distress and unhealthy habits, or an individual who has habituated to long-term stressors and is unable to recognize a chronic state of high stress. Both honesty and self-awareness are required for accurate self-reporting. Digital health technologies, such as wearable devices, provide objective data for health monitoring. Compared to surveys, wearables are less influenced by participant openness, and compared to biological samples, wearables require less equipment and less labor for analysis. However, inherent to every data stream are limitations due to uncertainty and sensitivity. This research has been conducted in collaboration with Hawaii Space Exploration Analog and Simulation (HI-SEAS), which is a Mars analog research site on the slopes on Mauna Loa volcano in Hawaii. During 8-month and 12-month HI-SEAS missions in the 2014-2016 timeframe, twelve individuals provided hair and urine samples for metabolite profiling, utilized consumer-grade wearables to monitor sleep and activity behaviors, and responded to surveys for recording perceived health and stress levels. This work has developed a self-report instrument for stress characterization, efficient protocols for metabolite profiling, novel measures of sleep quality and activity levels, and has evaluated performance differences of JawboneRTM and FitbitRTM wearable devices that were worn in tandem. There is considerable debate about the accuracy of data collected from wearable devices. Therefore, the success of next-generation wearable devices is hinging on the ability to reliably process wearables data into meaningful health information. By simultaneously quantifying biological metabolites, sleep and activity behaviors, and psychological perceptions of health, this research is evaluating possible predictors of health and stress, such as evaluating if activity and sleep behaviors recorded by wearables can be predictive of biological metabolites and perceived health. This research has developed data-driven insights for advancing the next-generation of biological, behavioral, and psychological health monitoring capabilities.

  6. Analysis of spatiotemporal metabolomic dynamics for sensitively monitoring biological alterations in cisplatin-induced acute kidney injury.

    PubMed

    Irie, Miho; Hayakawa, Eisuke; Fujimura, Yoshinori; Honda, Youhei; Setoyama, Daiki; Wariishi, Hiroyuki; Hyodo, Fuminori; Miura, Daisuke

    2018-01-29

    Clinical application of the major anticancer drug, cisplatin, is limited by severe side effects, especially acute kidney injury (AKI) caused by nephrotoxicity. The detailed metabolic mechanism is still largely unknown. Here, we used an integrated technique combining mass spectrometry imaging (MSI) and liquid chromatography-mass spectrometry (LC-MS) to visualize the diverse spatiotemporal metabolic dynamics in the mouse kidney after cisplatin dosing. Biological responses to cisplatin was more sensitively detected within 24 h as a metabolic alteration, which is much earlier than possible with the conventional clinical chemistry method of blood urea nitrogen (BUN) measurement. Region-specific changes (e.g., medulla and cortex) in metabolites related to DNA damage and energy generation were observed over the 72-h exposure period. Therefore, this metabolomics approach may become a novel strategy for elucidating early renal responses to cisplatin, prior to the detection of kidney damage evaluated by conventional method. Copyright © 2018. Published by Elsevier Inc.

  7. Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy

    PubMed Central

    Xu, Junzhong; Does, Mark D.; Gore, John C.

    2009-01-01

    The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979

  8. Infrared and Raman Microscopy in Cell Biology

    PubMed Central

    Matthäus, Christian; Bird, Benjamin; Miljković, Miloš; Chernenko, Tatyana; Romeo, Melissa; Diem, Max

    2009-01-01

    This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have been developed for this task. One of them is infrared micro-spectroscopy, in which an average snapshot of a cell’s biochemical composition is collected at a spatial resolution of typically 25 mm. This technique, which is extremely sensitive and can collect such a snapshot in fractions of a second, is particularly suited for studying gross biochemical changes. The other technique, Raman microscopy (also known as Raman micro-spectroscopy), is ideally suited to study variations of cellular composition on the scale of subcellular organelles, since its spatial resolution is as good as that of fluorescence microscopy. Both techniques exhibit the fingerprint sensitivity of vibrational spectroscopy toward biochemical composition, and can be used to follow a variety of cellular processes. PMID:19118679

  9. Function of terahertz spectra in monitoring the decomposing process of biological macromolecules and in investigating the causes of photoinhibition.

    PubMed

    Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun

    2017-03-01

    Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.

  10. 'Treat to Target' - Lessons Learnt.

    PubMed

    Kurti, Zsuzsanna; Vegh, Zsuzsanna; Golovics, Petra Anna; Lakatos, Peter Laszlo

    2016-01-01

    Therapeutic management in inflammatory bowel diseases (IBD) has significantly changed in the last decades with the advent of biological therapy resulting in new treatment targets other than clinical symptoms. Patient stratification in the early stage of the disease is an important step to identify patients with poor prognosis, who might benefit from early aggressive treatment to avoid complications in the later disease course. Recent randomized and hypothesis driven (e.g., Randomized Evaluation of an Algorithm for Crohn's Treatment, Post-Operative Crohn's Endoscopic Recurrence) clinical trials conducted in the biological era underscore the need of objective disease monitoring including assessment of biomarkers (e.g., C-reactive protein and calprotectin), mucosal healing and, for biologically treated patients, therapeutic drug monitoring beside clinical symptom assessment in both Crohn's disease and ulcerative colitis. Assessing the treatment efficacy objectively has become an important element of patient monitoring besides clinical symptom assessment. Further clinical studies are needed to assess whether implementation of new therapeutic algorithms based on these targets and tight monitoring in clinical practice have the potential to further improve long-term disease outcomes in IBD. © 2016 S. Karger AG, Basel.

  11. Polycyclic aromatic hydrocarbons pollution effect on soil biological activity in the anthropogenic contaminated area

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik; Sushkova, Svetlana; Minkina, Tatiana; Antonenko, Elena; Salamova, Anzhelika; Gimp, Alina; Deryabkina, Irina

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant environmental contaminants with mutagenic and carcinogenic properties to all living organisms. The changes in microbial community structure in technogenic polluted soil may be used as tools for predicting and monitoring natural degradation and for search the most effective and appropriate pathways of bioremediation. The present study is aimed to research the biological activity of the soil in the emission zone of Novocherkassk Power station (NPs) (Russia) polluted by PAHs in 2015. The NPs is one of the largest thermal power stations in the south of Russia burning low-quality coal appurtenant the enterprises of I hazardous class. Monitoring plots were located on virgin or no-till fallow areas and not subject to the sanitary-protection zone of the NPs. Soil samples were taken from a depth of 0- to 20-cm, because the major part of PAHs are accumulated in the surface soil layer. The soils of the plots mainly include Chernozems Calcic (plots 1, 4, 5, 7, 9 and 10), Phaeozems Haplic (plots 3, 6, 8 and 11) Fluvisols Umbric (plots 2 and 12). In the soil of 12 monitoring plots located around NPs there were determined the main enzymes, abundance of soil bacteria and 17 priority PAHs. PAHs extraction from soil was performed by new developed ecologically clean method of subcritical water extraction without organic solvents (Sushkova et al., 2015). The level of PAHs around NPs is high at the nearest to factory monitoring plots situated at distance 1,0-1,2 km and reaches from 1600,1±14,7 up to 373,6±7,1 mkg/kg in the 20-cm soil layer. Gradually decrease of PAHs contamination is observed while increasing the distance from the NPs. The level of highmolecular PAHs (4-6 aromatic rings) exceeds the level of lowmolecular (2-3 aromatic rings) PAHs in all monitoring plots situated though the prevailing wind direction from NPs. The close correlations were found between PAHs content and biological activity parameters in the monitoring plots situated through the prevailing wind direction from NPs. Level of dehydrogenases has high positive correlation with technogenic accumulated biphenyl, acenaphthene and negative correlation with anthracene content in studied soil. The lowmolecular PAHs content of soil influenced activity of dehydrogenases positively. Urease activity of monitoring plots has a high positive correlation with 12 PAHs exclude biphenyl, benzo(a)anthracene, naphthalene. Negative dependence of urease activity was observed for lowmolecular PAHs. The abundance of soil bacteria has a negative correlation with PAHs level. Anthracene has no correlations with abundance of soil bacteria and negatively influences on dehydrogenase, urease. Thus, the most subjected to technogenic pollution in 2015 were monitoring plots situated through the prevailing wind direction from NPs. It was established that ratio of low- and highmolecular PAHs content in soils of monitoring plots is the indicator of technogenic pollution soils. Contamination by PAHs in the affected zone has negative influence at the abundance of soil bacteria. The most number of PAHs has positive correlation with biological activity parameters of soil. This work was supported by grant of the Russian Scientific Foundation № 16-14-10217.

  12. Evaluation of the health impact of aerosols emitted from different combustion sources: Comprehensive characterization of the aerosol physicochemical properties as well as the molecular biological and toxicological effects of the aerosols on human lung cells and macrophages.

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.

    2016-12-01

    A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.

  13. Evaluation of the health impact of aerosols emitted from different combustion sources: Comprehensive characterization of the aerosol physicochemical properties as well as the molecular biological and toxicological effects of the aerosols on human lung cells and macrophages.

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.

    2017-12-01

    A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.

  14. The impact of landsat satellite monitoring on conservation biology.

    PubMed

    Leimgruber, Peter; Christen, Catherine A; Laborderie, Alison

    2005-07-01

    Landsat 7's recent malfunctioning will result in significant gaps in long-term satellite monitoring of Earth, affecting not only the research of the Earth science community but also conservation users of these data. To determine whether or how important Landsat monitoring is for conservation and natural resource management, we reviewed the Landsat program's history with special emphasis on the development of user groups. We also conducted a bibliographic search to determine the extent to which conservation research has been based on Landsat data. Conservation biologists were not an early user group of Landsat data because a) biologists lacked technical capacity--computers and software--to analyze these data; b) Landsat's 1980s commercialization rendered images too costly for biologists' budgets; and c) the broad-scale disciplines of conservation biology and landscape ecology did not develop until the mid-to-late 1980s. All these conditions had changed by the 1990s and Landsat imagery became an important tool for conservation biology. Satellite monitoring and Landsat continuity are mandated by the Land Remote Sensing Act of 1992. This legislation leaves open commercial options. However, past experiments with commercial operations were neither viable nor economical, and severely reduced the quality of monitoring, archiving and data access for academia and the public. Future satellite monitoring programs are essential for conservation and natural resource management, must provide continuity with Landsat, and should be government operated.

  15. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    USGS Publications Warehouse

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.

    2017-01-01

    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  16. [Application of lysosomal detection in marine pollution monitoring: research progress].

    PubMed

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  17. A survey of analytical methods employed for monitoring of Advanced Oxidation/Reduction Processes for decomposition of selected perfluorinated environmental pollutants.

    PubMed

    Trojanowicz, Marek; Bobrowski, Krzysztof; Szostek, Bogdan; Bojanowska-Czajka, Anna; Szreder, Tomasz; Bartoszewicz, Iwona; Kulisa, Krzysztof

    2018-01-15

    The monitoring of Advanced Oxidation/Reduction Processes (AO/RPs) for the evaluation of the yield and mechanisms of decomposition of perfluorinated compounds (PFCs) is often a more difficult task than their determination in the environmental, biological or food samples with complex matrices. This is mostly due to the formation of hundreds, or even thousands, of both intermediate and final products. The considered AO/RPs, involving free radical reactions, include photolytic and photocatalytic processes, Fenton reactions, sonolysis, ozonation, application of ionizing radiation and several wet oxidation processes. The main attention is paid to the most commonly occurring PFCs in the environment, namely PFOA and PFOS. The most powerful and widely exploited method for this purpose is without a doubt LC/MS/MS, which allows the identification and trace quantitation of all species with detectability and resolution power depending on the particular instrumental configurations. The GC/MS is often employed for the monitoring of volatile fluorocarbons, confirming the formation of radicals in the processes of C‒C and C‒S bonds cleavage. For the direct monitoring of radicals participating in the reactions of PFCs decomposition, the molecular spectrophotometry is employed, especially electron paramagnetic resonance (EPR). The UV/Vis spectrophotometry as a detection method is of special importance in the evaluation of kinetics of radical reactions with the use of pulse radiolysis methods. The most commonly employed for the determination of the yield of mineralization of PFCs is ion-chromatography, but there is also potentiometry with ion-selective electrode and the measurements of general parameters such as Total Organic Carbon and Total Organic Fluoride. The presented review is based on about 100 original papers published in both analytical and environmental journals. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ground truth methods for optical cross-section modeling of biological aerosols

    NASA Astrophysics Data System (ADS)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  19. Environmental exposure modeling and monitoring of human pharmaceutical concentrations in the environment

    USGS Publications Warehouse

    Versteeg, D.J.; Alder, A. C.; Cunningham, V. L.; Kolpin, D.W.; Murray-Smith, R.; Ternes, T.

    2005-01-01

    Human pharmaceuticals are receiving increased attention as environmental contaminants. This is due to their biological activity and the number of monitoring programs focusing on analysis of these compounds in various environmental media and compartments. Risk assessments are needed to understand the implications of reported concentrations; a fundamental part of the risk assessment is an assessment of environmental exposures. The purpose of this chapter is to provide guidance on the use of predictive tools (e.g., models) and monitoring data in exposure assessments for pharmaceuticals in the environment. Methods to predict environmental concentrations from equations based on first principles are presented. These equations form the basis of existing GIS (geographic information systems)-based systems for understanding the spatial distribution of pharmaceuticals in the environment. The pharmaceutical assessment and transport (PhATE), georeferenced regional exposure assessment tool for European rivers (GREAT-ER), and geographical information system (GIS)-ROUT models are reviewed and recommendations are provided concerning the design and execution of monitoring studies. Model predictions and monitoring data are compared to evaluate the relative utility of each approach in environmental exposure assessments. In summary, both models and monitoring data can be used to define representative exposure concentrations of pharmaceuticals in the environment in support of environmental risk assessments.

  20. REAL-TIME MONITORING FOR TOXICITY CAUSED BY HARMFUL ALGAL BLOOMS AND OTHER WATER QUALITY PERTURBATIONS

    EPA Science Inventory

    This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability of an automated biological monitoring system that measures fish ventilatory responses (ventilatory rate, ventilatory depth, and cough rate) t...

  1. Towards the establishment of landbird migration monitoring networks in the United States

    Treesearch

    Jay D. Carlisle; C. John Ralph

    2005-01-01

    Migration monitoring of landbirds, in its various forms, is a well-established research endeavor across much of North America. While monitoring efforts at individual sites have contributed much to our knowledge of the biology of migrants, these studies have limited potential for population monitoring and for addressing certain broader questions about migrants....

  2. INEL Geothermal Environmental Program. Final environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Cahn, L.S.

    1982-09-01

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs aremore » summarized.« less

  3. Photonic crystal materials and their application in biomedicine.

    PubMed

    Chen, Huadong; Lou, Rong; Chen, Yanxiao; Chen, Lili; Lu, Jingya; Dong, Qianqian

    2017-11-01

    Photonic crystal (PC) materials exhibit unique structural colors that originate from their intrinsic photonic band gap. Because of their highly ordered structure and distinct optical characteristics, PC-based biomaterials have advantages in the multiplex detection, biomolecular screening and real-time monitoring of biomolecules. In addition, PCs provide good platforms for drug loading and biomolecule modification, which could be applied to biosensors and biological carriers. A number of methods are now available to fabricate PC materials with variable structure colors, which could be applied in biomedicine. Emphasis is given to the description of various applications of PC materials in biomedicine, including drug delivery, biodetection and tumor screening. We believe that this article will promote greater communication among researchers in the fields of chemistry, material science, biology, medicine and pharmacy.

  4. Sex pheromone monitoring as a versatile tool for determining presence and abundance of Cydia pomonella (Lep.: Tortricidae) in German apple orchards.

    PubMed

    Hummel, H E; Czyrt, T; Schmid, S; Leithold, G; Vilcinskas, A

    2012-01-01

    Cydia pomonella (Lep.: Tortricidae), the codling moth, is an apple, pear, quince and walnut pest with considerable impact on horticultural production systems in many parts of the world. In commercial apple production, it is responsible for a yearly damage level of 40 billion dollars. In response to the need of tight codling moth control there are several options for intervention by pest managers in commercially operated orchards. Spray and count methods have been used for decades with success, but at considerable external costs for the integrity of ecological cycles. Also, problems with pesticide residues and with resistant strains are an issue of concern. For environmental reasons, toxicological means are discounted here. Instead, flight curves based on sex pheromone trapping and monitoring are preferred means towards determining the optimal timing of interventions by biotechnical and biological control methods. Finally, ecological reasons are discussed for vastly different population levels of C. pomonella developing in closely neighboring field sections which operated under different environmental management.

  5. Effects of ozone exposure on `Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening

    NASA Astrophysics Data System (ADS)

    Corrêa, Savio Figueira; Mota, Leonardo; Paiva, Luisa Brito; Couto, Flávio Mota do; Silva, Marcelo Gomes da; Oliveira, Jurandi Gonçalves de; Sthel, Marcelo Silva; Vargas, Helion; Miklós, András

    2011-06-01

    This work addresses the effects of ozone activity on the physiology of `Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

  6. Emerging methods for the study of coastal ecosystem landscape structure and change

    USGS Publications Warehouse

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  7. Advances in targeted proteomics and applications to biomedical research

    PubMed Central

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  8. Fabrication and optimization of a conducting polymer sensor array using stored grain model volatiles.

    PubMed

    Hossain, Md Eftekhar; Rahman, G M Aminur; Freund, Michael S; Jayas, Digvir S; White, Noel D G; Shafai, Cyrus; Thomson, Douglas J

    2012-03-21

    During storage, grain can experience significant degradation in quality due to a variety of physical, chemical, and biological interactions. Most commonly, these losses are associated with insects or fungi. Continuous monitoring and an ability to differentiate between sources of spoilage are critical for rapid and effective intervention to minimize deterioration or losses. Therefore, there is a keen interest in developing a straightforward, cost-effective, and efficient method for monitoring of stored grain. Sensor arrays are currently used for classifying liquors, perfumes, and the quality of food products by mimicking the mammalian olfactory system. The use of this technology for monitoring of stored grain and identification of the source of spoilage is a new application, which has the potential for broad impact. The main focus of the work described herein is on the fabrication and optimization of a carbon black (CB) polymer sensor array to monitor stored grain model volatiles associated with insect secretions (benzene derivatives) and fungi (aliphatic hydrocarbon derivatives). Various methods of statistical analysis (RSD, PCA, LDA, t test) were used to select polymers for the array that were optimum for distinguishing between important compound classes (quinones, alcohols) and to minimize the sensitivity for other parameters such as humidity. The performance of the developed sensor array was satisfactory to demonstrate identification and separation of stored grain model volatiles at ambient conditions.

  9. Advances in targeted proteomics and applications to biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Song, Ehwang; Nie, Song

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications inmore » human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.« less

  10. Biological monitoring of workers exposed to benzene in the coke oven industry.

    PubMed Central

    Drummond, L; Luck, R; Afacan, A S; Wilson, H K

    1988-01-01

    Workers in the coke oven industry are potentially exposed to low concentrations of benzene. There is a need to establish a well validated biological monitoring procedure for low level benzene exposure. The use of breath and blood benzene and urinary phenol has been explored in conjunction with personal monitoring data. At exposures of about 1 ppm benzene, urinary phenol is of no value as an indicator of uptake/exposure. Benzene in blood was measured by head space gas chromatography but the concentrations were only just above the detection limit. The determination of breath benzene collected before the next shift is non-specific in the case of smokers. The most useful monitor at low concentrations appears to be breath benzene measured at the end-of-shift. PMID:3378002

  11. Current trends in molecular sensing

    NASA Astrophysics Data System (ADS)

    Wlodarski, Wojtek

    1992-08-01

    The biosphere contains a myriad of substances which can influence or stimulate various aspects of the health and behavior of living organisms. Not surprisingly, in the last decade or so researchers have appreciated the potential of developing a range of molecular sensor technologies, designed to estimate and monitor biological and chemical substances with a view to eventually controlling the biological processes themselves. This development has been accelerated recently by the realization that molecular sensors offer considerable commercial potential. At the same time, it was quickly appreciated that such sensors could revolutionize several areas, including health care, pollution and contamination monitoring, agriculture, on-line monitoring and control of industrial chemical processing, and strategic and tactical monitoring of chemical warfare. This brief review considers the changing scene in molecular sensor research by reference to a few key examples.

  12. Determination of serum levels of imatinib mesylate in patients with chronic myeloid leukemia: validation and application of a new analytical method to monitor treatment compliance

    PubMed Central

    Rezende, Vinícius Marcondes; Rivellis, Ariane Julio; Gomes, Melissa Medrano; Dörr, Felipe Augusto; Novaes, Mafalda Megumi Yoshinaga; Nardinelli, Luciana; Costa, Ariel Lais de Lima; Chamone, Dalton de Alencar Fisher; Bendit, Israel

    2013-01-01

    Objective The goal of this study was to monitor imatinib mesylate therapeutically in the Tumor Biology Laboratory, Department of Hematology and Hemotherapy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP). A simple and sensitive method to quantify imatinib and its metabolite (CGP74588) in human serum was developed and fully validated in order to monitor treatment compliance. Methods The method used to quantify these compounds in serum included protein precipitation extraction followed by instrumental analysis using high performance liquid chromatography coupled with mass spectrometry. The method was validated for several parameters, including selectivity, precision, accuracy, recovery and linearity. Results The parameters evaluated during the validation stage exhibited satisfactory results based on the Food and Drug Administration and the Brazilian Health Surveillance Agency (ANVISA) guidelines for validating bioanalytical methods. These parameters also showed a linear correlation greater than 0.99 for the concentration range between 0.500 µg/mL and 10.0 µg/mL and a total analysis time of 13 minutes per sample. This study includes results (imatinib serum concentrations) for 308 samples from patients being treated with imatinib mesylate. Conclusion The method developed in this study was successfully validated and is being efficiently used to measure imatinib concentrations in samples from chronic myeloid leukemia patients to check treatment compliance. The imatinib serum levels of patients achieving a major molecular response were significantly higher than those of patients who did not achieve this result. These results are thus consistent with published reports concerning other populations. PMID:23741187

  13. Application of Gas Chromatography-Tandem Mass Spectrometry (GC/MS/MS) for the Analysis of Deuterium Enrichment of Water

    PubMed Central

    Walker, Dillon K.; Thaden, John J.; Deutz, Nicolaas E.P.

    2015-01-01

    Incorporation of deuterium from deuterium oxide (2H2O) into biological components is a commonly used approach in metabolic studies. Determining the dilution of deuterium in the body water pool (BW) can be used to estimate body composition. We describe three sensitive GC-MS/MS methods to measure water enrichment in BW . Samples were reacted with NaOH and U-13C3-acetone in an autosampler vial to promote deuterium exchange with U-13C3-acetone hydrogens. Headspace injections were made of U-13C3-acetone-saturated air onto a 30m DB-1MS column in EI-mode. Subjects ingested 30ml 2H2O and plasma samples were collected. BW was determined by standard equation. DXA scans were performed to calculate body mass, body volume and bone mineral content. A 4 compartmental model was used to estimate body composition (fat and fat free mass). Full scan experiments generated a m/z 45 peak and to a lesser extent a m/z 61 peak. Product fragment ions further monitored included 45 and 46 using selected ion monitoring (SIM;Method1), the 61>45 and 62>46 transition using multiple reaction monitoring (MRM;Method2) and the Neutral Loss, 62>45, transition (Method3). MRM methods were optimized for collision energy (CE) and collision-induced dissociation (CID) argon gas pressure with 6eV CE and 1.5 mTorr CID gas being optimal. Method2 was used for finally determination of 2H2O enrichment of subjects due to lower natural background. We have developed a sensitive method to determine 2H2O enrichment in body water to enable measurement of FM and FFM. PMID:26169138

  14. A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes.

    PubMed

    Mondol, Samrat; Navya, R; Athreya, Vidya; Sunagar, Kartik; Selvaraj, Velu Mani; Ramakrishnan, Uma

    2009-12-04

    Leopards are the most widely distributed of the large cats, ranging from Africa to the Russian Far East. Because of habitat fragmentation, high human population densities and the inherent adaptability of this species, they now occupy landscapes close to human settlements. As a result, they are the most common species involved in human wildlife conflict in India, necessitating their monitoring. However, their elusive nature makes such monitoring difficult. Recent advances in DNA methods along with non-invasive sampling techniques can be used to monitor populations and individuals across large landscapes including human dominated ones. In this paper, we describe a DNA-based method for leopard individual identification where we used fecal DNA samples to obtain genetic material. Further, we apply our methods to non-invasive samples collected in a human-dominated landscape to estimate the minimum number of leopards in this human-leopard conflict area in Western India. In this study, 25 of the 29 tested cross-specific microsatellite markers showed positive amplification in 37 wild-caught leopards. These loci revealed varied levels of polymorphism (four-12 alleles) and heterozygosity (0.05-0.79). Combining data on amplification success (including non-invasive samples) and locus specific polymorphisms, we showed that eight loci provide a sibling probability of identity of 0.0005, suggesting that this panel can be used to discriminate individuals in the wild. When this microsatellite panel was applied to fecal samples collected from a human-dominated landscape, we identified 7 individuals, with a sibling probability of identity of 0.001. Amplification success of field collected scats was up to 72%, and genotype error ranged from 0-7.4%. Our results demonstrated that the selected panel of eight microsatellite loci can conclusively identify leopards from various kinds of biological samples. Our methods can be used to monitor leopards over small and large landscapes to assess population trends, as well as could be tested for population assignment in forensic applications.

  15. A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes

    PubMed Central

    2009-01-01

    Background Leopards are the most widely distributed of the large cats, ranging from Africa to the Russian Far East. Because of habitat fragmentation, high human population densities and the inherent adaptability of this species, they now occupy landscapes close to human settlements. As a result, they are the most common species involved in human wildlife conflict in India, necessitating their monitoring. However, their elusive nature makes such monitoring difficult. Recent advances in DNA methods along with non-invasive sampling techniques can be used to monitor populations and individuals across large landscapes including human dominated ones. In this paper, we describe a DNA-based method for leopard individual identification where we used fecal DNA samples to obtain genetic material. Further, we apply our methods to non-invasive samples collected in a human-dominated landscape to estimate the minimum number of leopards in this human-leopard conflict area in Western India. Results In this study, 25 of the 29 tested cross-specific microsatellite markers showed positive amplification in 37 wild-caught leopards. These loci revealed varied levels of polymorphism (four-12 alleles) and heterozygosity (0.05-0.79). Combining data on amplification success (including non-invasive samples) and locus specific polymorphisms, we showed that eight loci provide a sibling probability of identity of 0.0005, suggesting that this panel can be used to discriminate individuals in the wild. When this microsatellite panel was applied to fecal samples collected from a human-dominated landscape, we identified 7 individuals, with a sibling probability of identity of 0.001. Amplification success of field collected scats was up to 72%, and genotype error ranged from 0-7.4%. Conclusion Our results demonstrated that the selected panel of eight microsatellite loci can conclusively identify leopards from various kinds of biological samples. Our methods can be used to monitor leopards over small and large landscapes to assess population trends, as well as could be tested for population assignment in forensic applications. PMID:19961605

  16. Thin layer chromatography coupled with surface-enhanced Raman scattering as a facile method for on-site quantitative monitoring of chemical reactions.

    PubMed

    Zhang, Zong-Mian; Liu, Jing-Fu; Liu, Rui; Sun, Jie-Fang; Wei, Guo-Hua

    2014-08-05

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 × 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.

  17. Breathing life into fisheries stock assessments with citizen science

    PubMed Central

    Fairclough, D. V.; Brown, J. I.; Carlish, B. J.; Crisafulli, B. M.; Keay, I. S.

    2014-01-01

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions. PMID:25431103

  18. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  19. Breathing life into fisheries stock assessments with citizen science.

    PubMed

    Fairclough, D V; Brown, J I; Carlish, B J; Crisafulli, B M; Keay, I S

    2014-11-28

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions.

  20. A multiple index integrating different levels of organization.

    PubMed

    Cortes, Rui; Hughes, Samantha; Coimbra, Ana; Monteiro, Sandra; Pereira, Vítor; Lopes, Marisa; Pereira, Sandra; Pinto, Ana; Sampaio, Ana; Santos, Cátia; Carrola, João; de Jesus, Joaquim; Varandas, Simone

    2016-10-01

    Many methods in freshwater biomonitoring tend to be restricted to a few levels of biological organization, limiting the potential spectrum of measurable of cause-effect responses to different anthropogenic impacts. We combined distinct organisational levels, covering biological biomarkers (histopathological and biochemical reactions in liver and fish gills), community based bioindicators (fish guilds, invertebrate metrics/traits and chironomid pupal exuviae) and ecosystem functional indicators (decomposition rates) to assess ecological status at designated Water Framework Directive monitoring sites, covering a gradient of human impact across several rivers in northern Portugal. We used Random Forest to rank the variables that contributed more significantly to successfully predict the different classes of ecological status and also to provide specific cut levels to discriminate each WFD class based on reference condition. A total of 59 Biological Quality Elements and functional indicators were determined using this procedure and subsequently applied to develop the integrated Multiple Ecological Level Index (MELI Index), a potentially powerful bioassessment tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test.

    PubMed

    Dolezalova, Jaroslava; Rumlova, Lubomira

    2014-11-01

    This new biological test of water toxicity is based on monitoring of specific conductivity changes of yeast Saccharomyces cerevisiae suspension as a result of yeast fermentation activity inhibition in toxic conditions. The test was verified on ten substances with various mechanisms of toxic effect and the results were compared with two standard toxicity tests based on Daphnia magna mobility inhibition (EN ISO 6341) and Vibrio fischeri bioluminescence inhibition (EN ISO 11348-2) and with the results of the S. cerevisiae lethal test (Rumlova and Dolezalova, 2012). The new biological test - S. cerevisiae conductometric test - is an express method developed primarily for field conditions. It is applicable in case of need of immediate information about water toxicity. Fast completion is an advantage of this test (time necessary for test completion is about 60min), the test is simple and the test organism - dried instant yeast - belongs among its biggest advantages because of its long-term storage life and broad availability. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Western pond turtle: Biology, sampling techniques, inventory and monitoring, conservation, and management: Northwest Fauna No. 7

    USGS Publications Warehouse

    Bury, R.B.; Welsh, Hartwell H.; Germano, David J.; Ashton, Donald T.

    2012-01-01

    One of only two native, freshwater turtle species in the western United States, western pond turtles are declining in portions of their original range. Declines are mostly due to habitat loss, introduction of non-native species, pollution, and lack of connectivity among populations. USGS zoologist R. Bruce Bury and colleagues from the U.S. Forest Service, California State University, and other agencies compiled and edited a new review and field manual of this charismatic species. Objectives were to determine its current distribution and abundance, summarize and evaluate population features, review techniques to detect population and habitat changes, and improve monitoring for long-term trends. Methods described in the manual should improve consistency, efficiency, and accuracy of survey data, resulting in improved management and conservation efforts.

  3. Sensitive and simultaneous determination of HIV protease inhibitors in rat biological samples by liquid chromatography-mass spectrometry.

    PubMed

    Gao, Weihua; Kishida, Tomoyuki; Kimura, Keisuke; Kageyama, Michiharu; Sumi, Masaki; Yoshikawa, Yukako; Shibata, Nobuhito; Takada, Kanji

    2002-06-01

    A sensitive and simultaneous liquid chromatographic-mass spectrometric (LC/MS) method for the determination of current four HIV protease inhibitors (PIs), indinavir (IDV), saquinavir (SQV), nelfinavir (NFV) and amprenavir (APV) in rat plasma and liver dialysate by a microdialysis method was described. An isocratic LC/MS method in combination with atmospheric pressure chemical ionization was developed for the determination of these four PIs in biological samples in the same run. The analytes including an internal standard were extracted from 100 microL of plasma or 150 microL of liver dialysate samples by salting-out with 100 microL of ice-cold 2 M K(3)PO(4) followed by ether extraction. The separation of analytes was carried out on a reversed-phase semi-micro column using 50% of acetonitrile containing 1% acetic acid as mobile phase at a flow rate of 0.2mL/min(-1). The separation was completed within 5 min. Precision, recovery and limits of detection indicated that the method was suitable for the quantitative determination of these PIs in rat plasma or liver dialysate. This simple, sensitive and highly specific LC/MS method is suitable for pharmacokinetic studies and therapeutic drug monitoring in AIDS patients who receive double protease therapy. Copyright 2002 John Wiley & Sons, Ltd.

  4. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum.

    PubMed

    Syed, Asad; Ahmad, Absar

    2012-09-01

    Nanoscience is a blooming field and promises a better future. In order to fabricate nanoparticles in an eco-friendly and inexpensive manner, significant efforts are being made to replace the chemical and physical methods currently being used with the biological methods. Chemical methods are toxic while the physical ones are very expensive. Biological methods, apart from being cost-effective, also provide protein capped nanoparticles which are thus very stable, have good dispersity and do not flocculate, and may find use in various applications. The present work emphasizes on platinum nanoparticles synthesis protocol which occurs at ambient conditions. The fungus Fusarium oxysporum when incubated with hexachloroplatinic acid (H(2)PtCl(6)) in ambient conditions reduces the precursor and leads to the formation of stable extracellular platinum nanoparticles. The biosynthesis of platinum nanoparticles was monitored by UV-visible spectroscopy and these nanoparticles were completely characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The nanoparticles are in the size range of 5-30 nm and are stabilized by proteins present in the solution. The reduction process is believed to occur enzymatically, thus creating the possibility of a rational, fungal-based method for the synthesis of nanoparticles over a wide range of chemical compositions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Two-Year Water Quality Monitoring Curriculum.

    ERIC Educational Resources Information Center

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  6. Metabolite profiling of fish skin mucus: a novel approach for minimally-invasive environmental exposure monitoring and surveillance

    EPA Science Inventory

    The application of 'omics tools to biologically based monitoring and surveillance of aquatic environments shows considerable promise for complementing chemical monitoring in ecological risk assessments. However, few of the current approaches offer the ability to sample ecological...

  7. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  8. Study of the relaxation rate of photoexcited indole molecules by the interferometric pump-and-probe method at picosecond resolution

    NASA Astrophysics Data System (ADS)

    Glazov, A. L.; Il'ina, A. D.; Sukharev, A. A.; Vasyutinskii, O. S.

    2017-09-01

    We present a new interferometric method that can be used for studying the dynamics of photoinduced processes in biologically important molecules at ultrahigh temporal resolution. The method is based upon the detection of changes in the refractive index of a substance excited by pulsed radiation of a femtosecond laser, which are measured by the pump-and-probe technique using time-delayed pulses of the same laser. The high sensitivity and stability of the interferometer allow this method to be used for monitoring variation of the concentration of short-lived excited states of biomolecules in solution. The proposed method has been verified by application to indole solutions in propylene glycol. The upper estimate of the lifetime of photoexcited indole molecules in solution amounted to about 40 ps.

  9. Simultaneous monitoring of biofilm growth, microbial activity, and inorganic deposits on surfaces with an in situ, online, real-time, non-destructive, optical sensor.

    PubMed

    Strathmann, Martin; Mittenzwey, Klaus-Henrik; Sinn, Gert; Papadakis, Wassilios; Flemming, Hans-Curt

    2013-01-01

    Deposits on surfaces in water-bearing systems, also known as 'fouling', can lead to substantial losses in the performance of industrial processes as well as a decreased product quality. Early detection and localization of such deposits can, to a considerable extent, save such losses. However, most of the surfaces that become fouled, for example, in process water pipes, membrane systems, power plants, and food and beverage industries, are difficult to access and analyses conducted on the water phase do not reveal the site or extent of deposits. Furthermore, it is of interest to distinguish biological from non-biological deposits. Although they usually occur together, different countermeasures are necessary. Therefore, sensors are required that indicate the development of surface fouling in real-time, non-destructively, and in situ, preferably allowing for discrimination between chemical and/or biological deposits. In this paper, an optical deposit sensor is presented which fulfills these requirements. Based on multiple fluorescence excitation emission matrix analysis, it detects autofluorescence of amino acids as indicators of biomass. Autofluorescence of nicotinamide adenine dinucleotide + hydrogen is interpreted as an indicator of biological activity, thus it acts as a viability marker, making the method suited for assessing the efficacy of disinfection treatments. Scattering signals from abiotic deposits such as calcium carbonate or corrosion products can clearly be distinguished from biotic substances and monitored separately. The sensor provides an early warning of fouling, allowing for timely countermeasures to be deployed. It also provides an assessment of the success of cleaning treatments and is a promising tool for integrated antifouling strategies.

  10. Definition of a near real time microbiological monitor for space vehicles

    NASA Technical Reports Server (NTRS)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.

    1989-01-01

    Efforts to identify the ideal candidate to serve as the biological monitor on the space station Freedom are discussed. The literature review, the evaluation scheme, descriptions of candidate monitors, experimental studies, test beds, and culture techniques are discussed. Particular attention is given to descriptions of five candidate monitors or monitoring techniques: laser light scattering, primary fluorescence, secondary fluorescence, the volatile product detector, and the surface acoustic wave detector.

  11. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry.

    PubMed

    Kopf, Thomas; Schmitz, Gerd

    2013-11-01

    The determination of the fatty acid (FA) profile of lipid classes is essential for lipidomic analysis. We recently developed a GC/MS-method for the analysis of the FA profile of total FAs, i.e. the totality of bound and unbound FAs, in any given biological sample (TOFAs). Here, we present a method for the analysis of non-esterified fatty acids (NEFAs) in biological samples, i.e. the fraction that is present as extractable free fatty acids. Lipid extraction is performed according to Dole using 80/20 2-propanol/n-hexane (v/v), with 0.1% H2SO4. The fatty acid-species composition of this NEFA-fraction is determined as FAME after derivatization with our GC/MS-method on a BPX column (Shimadzu). Validation of the NEFA-method presented was performed in human plasma samples. The validated method has been used with human plasma, cells and tissues, as well as mammalian body fluids and tissue samples. The newly developed solid-phase-extraction (SPE)-GC-MS method allows the rapid separation of the NEFA-fraction from a neutral lipid extract of plasma samples. As a major advantage compared to G-FID-methods, GC-MS allows the use of stable isotope labeled fatty acid precursors to monitor fatty acid metabolism. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Monitoring of human populations for early markers of cadmium toxicity: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Bruce A.

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure.more » Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.« less

  13. Monitoring of human populations for early markers of cadmium toxicity: a review.

    PubMed

    Fowler, Bruce A

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure. Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.

  14. Quantitation of quinapril in human plasma by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with quinolone matrix additives.

    PubMed

    Lu, Chi-Yu; Liu, Fei-Tsui; Feng, Chia-Hsien

    2011-09-15

    The renin-angiotensin-aldosterone system (RAAS) is an essential body fluid maintenance system that controls pressure in the human body. The conversion of angiotensin I to angiotensin II by angiotensin-converting enzyme (ACE) is a key process in the RAAS because angiotensin II causes the vasoconstriction association with hypertension. Because of its effectiveness as an ACE blocker, quinipril is widely used for clinical treatment of hypertension and chronic congestive heart failure(.) Matrix-assisted laser desorption/ionization coupled with time-of-flight analyzer (MALDI-TOF) is a high throughput instrument for biological sample analysis. This study developed a micro-scale approach for using MALDI-TOF to detect quinapril in biological samples. A micro-liquid-liquid-extraction strategy combined with ion-pair interaction successfully extracted quinapril from aqueous layer to organic layer. Quinolones were then used as matrix additives to suppress undesired substances in plasma produce signals. Several factors affecting extraction efficiency were investigated in a biosample with a volume of only 10 μL. This method is successful to monitor quinapril in the clinical therapeutic range. The proposed method proved effective for monitoring the trace amounts of quinapril typically used for clinical therapy. The relative standard deviation (R.S.D.) and relative error (R.E.) used for evaluating within- and between-day assays of quinapril in plasma consistently remained below 15%. Copyright © 2011. Published by Elsevier B.V.

  15. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  16. Evaluation of Biological Activity of Cellulose Pulp by Means of the Static Respiration Index (At4)/ Ocena Aktywności Biologicznej Pulpy Celulozowej Testem Respiracyjnym At4

    NASA Astrophysics Data System (ADS)

    Myszograj, Sylwia; Kozłowska, Katarzyna; Krochmal, Agata

    2014-09-01

    In the countries of the European Union, work is presently being conducted on the standardisation of the limit values and test methods for the determination of the biological activity of waste. The aim of conducting the tests is to monitor the effectiveness of waste biodegradation during composting, the evaluate any decrease in the biological activity of the waste before its landfilling and control processes taking place at landfills. The evaluation of the waste's biological activity can be performed, among others, by testing respiration. One such method is AT4 (Static Respiration Index) determination. The results of respirometric tests depict the availability of substrates for microorganisms, that is, the biodegradability. The article describes the tests of the biological activity of the cellulose pulp, the impact of the degree of compost inoculation on the value of this parameter and the dependence on the content of organic mass and total organic carbon in the tested substrate. The measurements of the oxygen demand were made using the OxiTop® Control measuring system. W krajach UE prowadzone są obecnie prace nad ujednoliceniem wartości granicznych oraz metod testowych oznaczania aktywności biologicznej odpadów. Celem prowadzenia testów jest monitoring efektywności biologicznego rozkładu odpadów podczas kompostowania, ocena zmniejszenia aktywności biologicznej odpadów przed ich składowaniem, kontrola procesów zachodzących na składowiskach. Ocenę aktywności biologicznej odpadów można przeprowadzić m.in. poprzez badanie respiracji. Jedną z takich metod jest oznaczenie AT4 (Static Respiration Index). Wyniki badań respirometrycznych obrazują dostępność substratów dla mikroorganizmów, czyli podatność na biodegradację. W artykule opisano badania aktywności biologicznej pulpy celulozowej testem AT4, wpływ stopnia zaczepienia kompostem na wartość tego parametru oraz zależność od zawartości masy organicznej i OWO w badanym substracie. Pomiarów zapotrzebowania na tlen dokonano przy pomocy systemu pomiarowego OxiTop® Control.

  17. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.

    2017-05-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.

  18. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.

    PubMed

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-05-21

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.

  19. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    PubMed Central

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-01-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasiplanar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions. PMID:28426437

  20. Long-term monitoring of high-elevation white pine communities in Pacific West Region National Parks

    Treesearch

    Shawn T. McKinney; Tom Rodhouse; Les Chow; Penelope Latham; Daniel Sarr; Lisa Garrett; Linda Mutch

    2011-01-01

    National Park Service Inventory and Monitoring (I&M) networks conduct long-term monitoring to provide park managers information on the status and trends in key biological and environmental attributes (Vital Signs). Here we present an overview of a collaborative approach to long-term monitoring of high-elevation white pine forest dynamics among three Pacific West...

Top