Sample records for biological parametric mapping

  1. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  2. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  3. Parametric tools over crowdsourced maps as means for participatory consideration of environmental issues in cities

    NASA Astrophysics Data System (ADS)

    Montoya, Paula; Ballesteros, José; Gervás, Pablo

    2015-04-01

    The increasing complexity of space use and resource cycles in cities, demands an understanding of the built environment as "ecological": enabling mutation while remaining balanced and biologically sustainable. Designing man`s environment is no longer a question of defining types, but rather an act of inserting changes within a complex system. Architecture and urban planning have become increasingly aware of their condition as system-oriented disciplines, and they are in the process of developing the necessary languages, design tools, and alliances. We will argue the relevance of parametric maps as one of the most powerful of those tools, in terms of their potential for adaptive prototype design, convergence of disciplines, and collaborative work. Cities need to change in order to survive. As the main human landscape (by 2050 75% of the world's population will live in urban areas) cities follow biological patterns of behaviour, constantly replacing their cells, renovating infrastructure systems and refining methods for energy provision and waste management. They need to adapt constantly. As responsive entities, they develop their own protocols for reaction to environmental change and challenge the increasing pressure of several issues related to scale: population, mobility, water and energy supply, pollution... The representation of these urban issues on maps becomes crucial for understanding and addressing them in design. Maps enhanced with parametric tools are relational and not only they register environmental dynamics but they allow adaptation of the system through interwoven parameters of mutation. Citizens are taking part in decisions and becoming aware of their role as urban experts in a bottom-up design process of the cities where they live. Modern tools for dynamic visualisation and collaborative edition of maps have an important role to play in this process. More and more people consult maps on hand-held devices as part of their daily routine. The advent of open access collaborative maps allows them to actively extend and modify these maps by uploading data of their own design. This can generate an immense amount of unique information that is publicly available. The work of architects, planners, and political agents can be informed by the contributions of a community of volunteer cartographers. Counter-cartographies built through collaboration arise from spontaneous processes of knowledge and data collection, and demand continuous non-commercial revision. Both scientific and non-academic users have direct access to geostrategic information and actively take part in exploring, recording and inserting their contrasted contributions into the way in which our world is described. This proposal explores the idea of a counter-cartography as a collection of maps that unveil territorial environmental conditions different from those shown in official maps. By using parametric tools we can incorporate information of this type directly into architectural documents and generate interlaced changes in the design. A parametric map is a flexible yet accurate tool for design and discovery: it integrates multiple particular views into a precise physical context that culminates in a generative design. Working with complex maps in this way is gradually becoming the ultimate document for designing the city in an integrated manner.

  4. Joint reconstruction of dynamic PET activity and kinetic parametric images using total variation constrained dictionary sparse coding

    NASA Astrophysics Data System (ADS)

    Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng

    2017-05-01

    Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.

  5. Machine learning-based dual-energy CT parametric mapping

    NASA Astrophysics Data System (ADS)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W.; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Helo, Rose Al; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C.; Rassouli, Negin; Gilkeson, Robert C.; Traughber, Bryan J.; Cheng, Chee-Wai; Muzic, Raymond F., Jr.

    2018-06-01

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρ e), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.

  6. Machine learning-based dual-energy CT parametric mapping.

    PubMed

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-06-08

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Z eff ), relative electron density (ρ e ), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.

  7. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses.

    PubMed

    Seo, Seongho; Kim, Su Jin; Lee, Dong Soo; Lee, Jae Sung

    2014-10-01

    Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

  8. A study of an orbital radar mapping mission to Venus. Volume 3: Parametric studies and subsystem comparisons

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.

  9. Occupancy Grid Map Merging Using Feature Maps

    DTIC Science & Technology

    2010-11-01

    each robot begins exploring at different starting points, once two robots can communicate, they send their odometry data, LIDAR observations, and maps...robots [11]. Moreover, it is relevant to mention that significant success has been achieved in solving SLAM problems when using hybrid maps [12...represents the environment by parametric features. Our method is capable of representing a LIDAR scanned environment map in a parametric fashion. In general

  10. Parametric mapping using spectral analysis for 11C-PBR28 PET reveals neuroinflammation in mild cognitive impairment subjects.

    PubMed

    Fan, Zhen; Dani, Melanie; Femminella, Grazia D; Wood, Melanie; Calsolaro, Valeria; Veronese, Mattia; Turkheimer, Federico; Gentleman, Steve; Brooks, David J; Hinz, Rainer; Edison, Paul

    2018-07-01

    Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and Alzheimer's disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral analysis (SA) to generate parametric maps and quantify 11 C-PBR28 PET, and compared these with compartmental and other kinetic models of quantification. Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11 C-PBR28 PET scans with arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11 C-PBR28 parametric maps. These maps were then compared with regional 11 C-PBR28 V T (volume of distribution) using a two-tissue compartment model and Logan graphic analysis. Amyloid load was also assessed with 18 F-Flutemetamol PET. With SA, three component peaks were identified in addition to blood volume. The 11 C-PBR28 impulse response function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake revealed a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical association areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11 C-PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well. This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11 C-PBR28 uptake, and is able to detect microglial activation in amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.

  11. 3-D Quantitative Dynamic Contrast Ultrasound for Prostate Cancer Localization.

    PubMed

    Schalk, Stefan G; Huang, Jing; Li, Jia; Demi, Libertario; Wijkstra, Hessel; Huang, Pintong; Mischi, Massimo

    2018-04-01

    To investigate quantitative 3-D dynamic contrast-enhanced ultrasound (DCE-US) and, in particular 3-D contrast-ultrasound dispersion imaging (CUDI), for prostate cancer detection and localization, 43 patients referred for 10-12-core systematic biopsy underwent 3-D DCE-US. For each 3-D DCE-US recording, parametric maps of CUDI-based and perfusion-based parameters were computed. The parametric maps were divided in regions, each corresponding to a biopsy core. The obtained parameters were validated per biopsy location and after combining two or more adjacent regions. For CUDI by correlation (r) and for the wash-in time (WIT), a significant difference in parameter values between benign and malignant biopsy cores was found (p < 0.001). In a per-prostate analysis, sensitivity and specificity were 94% and 50% for r, and 53% and 81% for WIT. Based on these results, it can be concluded that quantitative 3-D DCE-US could aid in localizing prostate cancer. Therefore, we recommend follow-up studies to investigate its value for targeting biopsies. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  12. ACCELERATING MR PARAMETER MAPPING USING SPARSITY-PROMOTING REGULARIZATION IN PARAMETRIC DIMENSION

    PubMed Central

    Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey

    2013-01-01

    MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which utilizes smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. PMID:23213053

  13. Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch

    2016-07-01

    We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less

  14. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    NASA Astrophysics Data System (ADS)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  15. Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-[eta]-accretive mappings

    NASA Astrophysics Data System (ADS)

    Kazmi, K. R.; Khan, F. A.

    2008-01-01

    In this paper, using proximal-point mapping technique of P-[eta]-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-[eta]-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. MathE Lett. 13 (2002) 19-24; S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988) 421-434; X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett. 17 (2) (2004) 225-235; X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182 (2) (2005) 252-269; X.-P. Ding, C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999) 195-205; Z. Liu, L. Debnath, S.M. Kang, J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277 (1) (2003) 142-154; R.N. Mukherjee, H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992) 299-304; M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002) 1175-1181; M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999) 290-299; J.Y. Park, J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004) 43-48].

  16. Chaotic map clustering algorithm for EEG analysis

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; De Carlo, F.; Stramaglia, S.

    2004-03-01

    The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.

  17. TU-H-CAMPUS-IeP3-02: Neurovascular 4D Parametric Imaging Using Co-Registration of Biplane DSA Sequences with 3D Vascular Geometry Obtained From Cone Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramoniam, A; Bednarek, D; Rudin, S

    Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  18. Rapid computation of single PET scan rest-stress myocardial blood flow parametric images by table look up.

    PubMed

    Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Ruskin, Jeremy N; Shoup, Timothy M; Woo, Jonghye; Ptaszek, Leon M; Fakhri, Georges El; Alpert, Nathaniel M

    2017-09-01

    We have recently reported a method for measuring rest-stress myocardial blood flow (MBF) using a single, relatively short, PET scan session. The method requires two IV tracer injections, one to initiate rest imaging and one at peak stress. We previously validated absolute flow quantitation in ml/min/cc for standard bull's eye, segmental analysis. In this work, we extend the method for fast computation of rest-stress MBF parametric images. We provide an analytic solution to the single-scan rest-stress flow model which is then solved using a two-dimensional table lookup method (LM). Simulations were performed to compare the accuracy and precision of the lookup method with the original nonlinear method (NLM). Then the method was applied to 16 single scan rest/stress measurements made in 12 pigs: seven studied after infarction of the left anterior descending artery (LAD) territory, and nine imaged in the native state. Parametric maps of rest and stress MBF as well as maps of left (f LV ) and right (f RV ) ventricular spill-over fractions were generated. Regions of interest (ROIs) for 17 myocardial segments were defined in bull's eye fashion on the parametric maps. The mean of each ROI was then compared to the rest (K 1r ) and stress (K 1s ) MBF estimates obtained from fitting the 17 regional TACs with the NLM. In simulation, the LM performed as well as the NLM in terms of precision and accuracy. The simulation did not show that bias was introduced by the use of a predefined two-dimensional lookup table. In experimental data, parametric maps demonstrated good statistical quality and the LM was computationally much more efficient than the original NLM. Very good agreement was obtained between the mean MBF calculated on the parametric maps for each of the 17 ROIs and the regional MBF values estimated by the NLM (K 1map LM  = 1.019 × K 1 ROI NLM  + 0.019, R 2  = 0.986; mean difference = 0.034 ± 0.036 mL/min/cc). We developed a table lookup method for fast computation of parametric imaging of rest and stress MBF. Our results show the feasibility of obtaining good quality MBF maps using modest computational resources, thus demonstrating that the method can be applied in a clinical environment to obtain full quantitative MBF information. © 2017 American Association of Physicists in Medicine.

  19. A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area

    Treesearch

    Donald Gagliasso; Susan Hummel; Hailemariam Temesgen

    2014-01-01

    Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which could lead them to make poorer decisions in their future...

  20. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.

    PubMed

    Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J

    2017-10-20

    This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.

  1. A Semiparametric Approach for Composite Functional Mapping of Dynamic Quantitative Traits

    PubMed Central

    Yang, Runqing; Gao, Huijiang; Wang, Xin; Zhang, Ji; Zeng, Zhao-Bang; Wu, Rongling

    2007-01-01

    Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age. PMID:17947431

  2. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  3. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio

    2018-04-01

    We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.

  4. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques

    PubMed Central

    Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter

    2012-01-01

    Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365

  5. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies.

    PubMed

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-07

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18 F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans-each containing 1/8th of the total number of events-were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18 F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other side, which incorporates a quadratic penalty function. The parametric images were then calculated using voxel-wise weighted least-square fitting of the reconstructed myocardial PET TACs. For the direct method, parametric images were estimated directly from the dynamic PET sinograms using a maximum a posteriori (MAP) parametric reconstruction algorithm which optimizes an objective function comprised of the Poisson log-likelihood term, the kinetic model and a quadratic penalty function. Maximization of the objective function with respect to each set of parameters was achieved using a preconditioned conjugate gradient algorithm with a specifically developed pre-conditioner. The performance of the direct method was evaluated by comparing voxel- and segment-wise estimates of [Formula: see text], the tracer transport rate (ml · min -1 · ml -1 ), to those obtained using the indirect method applied to both OSEM and OSL-MAP dynamic reconstructions. The proposed direct reconstruction method produced [Formula: see text] maps with visibly lower noise than the indirect method based on OSEM and OSL-MAP reconstructions. At normal count levels, the direct method was shown to outperform the indirect method based on OSL-MAP in the sense that at matched level of bias, reduced regional noise levels were obtained. At lower count levels, the direct method produced [Formula: see text] estimates with significantly lower standard deviation across noise realizations than the indirect method based on OSL-MAP at matched bias level. In all cases, the direct method yielded lower noise and standard deviation than the indirect method based on OSEM. Overall, the proposed direct reconstruction offered a better bias-variance tradeoff than the indirect method applied to either OSEM and OSL-MAP. Direct parametric reconstruction as applied to in vivo dynamic PET MPI data is therefore a promising method for producing MBF maps with lower variance.

  6. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in-vivo studies

    PubMed Central

    Petibon, Yoann; Rakvongthai, Yothin; Fakhri, Georges El; Ouyang, Jinsong

    2017-01-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves -TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in-vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans - each containing 1/8th of the total number of events - were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard Ordered Subset Expectation Maximization (OSEM) reconstruction algorithm on one side, and the One-Step Late Maximum a Posteriori (OSL-MAP) algorithm on the other side, which incorporates a quadratic penalty function. The parametric images were then calculated using voxel-wise weighted least-square fitting of the reconstructed myocardial PET TACs. For the direct method, parametric images were estimated directly from the dynamic PET sinograms using a maximum a posteriori (MAP) parametric reconstruction algorithm which optimizes an objective function comprised of the Poisson log-likelihood term, the kinetic model and a quadratic penalty function. Maximization of the objective function with respect to each set of parameters was achieved using a preconditioned conjugate gradient algorithm with a specifically developed pre-conditioner. The performance of the direct method was evaluated by comparing voxel- and segment-wise estimates of K1, the tracer transport rate (mL.min−1.mL−1), to those obtained using the indirect method applied to both OSEM and OSL-MAP dynamic reconstructions. The proposed direct reconstruction method produced K1 maps with visibly lower noise than the indirect method based on OSEM and OSL-MAP reconstructions. At normal count levels, the direct method was shown to outperform the indirect method based on OSL-MAP in the sense that at matched level of bias, reduced regional noise levels were obtained. At lower count levels, the direct method produced K1 estimates with significantly lower standard deviation across noise realizations than the indirect method based on OSL-MAP at matched bias level. In all cases, the direct method yielded lower noise and standard deviation than the indirect method based on OSEM. Overall, the proposed direct reconstruction offered a better bias-variance tradeoff than the indirect method applied to either OSEM and OSL-MAP. Direct parametric reconstruction as applied to in-vivo dynamic PET MPI data is therefore a promising method for producing MBF maps with lower variance. PMID:28379843

  7. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies

    NASA Astrophysics Data System (ADS)

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans—each containing 1/8th of the total number of events—were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other side, which incorporates a quadratic penalty function. The parametric images were then calculated using voxel-wise weighted least-square fitting of the reconstructed myocardial PET TACs. For the direct method, parametric images were estimated directly from the dynamic PET sinograms using a maximum a posteriori (MAP) parametric reconstruction algorithm which optimizes an objective function comprised of the Poisson log-likelihood term, the kinetic model and a quadratic penalty function. Maximization of the objective function with respect to each set of parameters was achieved using a preconditioned conjugate gradient algorithm with a specifically developed pre-conditioner. The performance of the direct method was evaluated by comparing voxel- and segment-wise estimates of {{K}1} , the tracer transport rate (ml · min-1 · ml-1), to those obtained using the indirect method applied to both OSEM and OSL-MAP dynamic reconstructions. The proposed direct reconstruction method produced {{K}1} maps with visibly lower noise than the indirect method based on OSEM and OSL-MAP reconstructions. At normal count levels, the direct method was shown to outperform the indirect method based on OSL-MAP in the sense that at matched level of bias, reduced regional noise levels were obtained. At lower count levels, the direct method produced {{K}1} estimates with significantly lower standard deviation across noise realizations than the indirect method based on OSL-MAP at matched bias level. In all cases, the direct method yielded lower noise and standard deviation than the indirect method based on OSEM. Overall, the proposed direct reconstruction offered a better bias-variance tradeoff than the indirect method applied to either OSEM and OSL-MAP. Direct parametric reconstruction as applied to in vivo dynamic PET MPI data is therefore a promising method for producing MBF maps with lower variance.

  8. Mapping the Chevallier-Polarski-Linder parametrization onto physical dark energy Models

    NASA Astrophysics Data System (ADS)

    Scherrer, Robert J.

    2015-08-01

    We examine the Chevallier-Polarski-Linder (CPL) parametrization, in the context of quintessence and barotropic dark energy models, to determine the subset of such models to which it can provide a good fit. The CPL parametrization gives the equation of state parameter w for the dark energy as a linear function of the scale factor a , namely w =w0+wa(1 -a ). In the case of quintessence models, we find that over most of the w0, wa parameter space the CPL parametrization maps onto a fairly narrow form of behavior for the potential V (ϕ ), while a one-dimensional subset of parameter space, for which wa=κ (1 +w0) , with κ constant, corresponds to a wide range of functional forms for V (ϕ ). For barotropic models, we show that the functional dependence of the pressure on the density, up to a multiplicative constant, depends only on wi=wa+w0 and not on w0 and wa separately. Our results suggest that the CPL parametrization may not be optimal for testing either type of model.

  9. Parametrization of local CR automorphisms by finite jets and applications

    NASA Astrophysics Data System (ADS)

    Lamel, Bernhard; Mir, Nordine

    2007-04-01

    For any real-analytic hypersurface Msubset {C}^N , which does not contain any complex-analytic subvariety of positive dimension, we show that for every point pin M the local real-analytic CR automorphisms of M fixing p can be parametrized real-analytically by their ell_p jets at p . As a direct application, we derive a Lie group structure for the topological group operatorname{Aut}(M,p) . Furthermore, we also show that the order ell_p of the jet space in which the group operatorname{Aut}(M,p) embeds can be chosen to depend upper-semicontinuously on p . As a first consequence, it follows that given any compact real-analytic hypersurface M in {C}^N , there exists an integer k depending only on M such that for every point pin M germs at p of CR diffeomorphisms mapping M into another real-analytic hypersurface in {C}^N are uniquely determined by their k -jet at that point. Another consequence is the following boundary version of H. Cartan's uniqueness theorem: given any bounded domain Ω with smooth real-analytic boundary, there exists an integer k depending only on partial Ω such that if H\\colon Ωto Ω is a proper holomorphic mapping extending smoothly up to partial Ω near some point pin partial Ω with the same k -jet at p with that of the identity mapping, then necessarily H=Id . Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.

  10. Complex mapping of aerofoils - a different perspective

    NASA Astrophysics Data System (ADS)

    Matthews, Miccal T.

    2012-01-01

    In this article an application of conformal mapping to aerofoil theory is studied from a geometric and calculus point of view. The problem is suitable for undergraduate teaching in terms of a project or extended piece of work, and brings together the concepts of geometric mapping, parametric equations, complex numbers and calculus. The Joukowski and Karman-Trefftz aerofoils are studied, and it is shown that the Karman-Trefftz aerofoil is an improvement over the Joukowski aerofoil from a practical point of view. For the most part only a spreadsheet program and pen and paper is required, only for the last portion of the study of the Karman-Trefftz aerofoils a symbolic computer package is employed. Ignoring the concept of a conformal mapping and instead viewing the problem from a parametric point of view, some interesting mappings are obtained. By considering the derivative of the mapped mapping via the chain rule, some new and interesting analytical results are obtained for the Joukowski aerofoil, and numerical results for the Karman-Trefftz aerofoil.

  11. Linkage mapping of beta 2 EEG waves via non-parametric regression.

    PubMed

    Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore

    2003-04-01

    Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.

  12. TU-H-CAMPUS-IeP3-04: Evaluation of Changes in Quantitative Ultrasound Parameters During Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, M; El Kaffas, A; Han, B

    Purpose: Clarity Autoscan ultrasound monitoring system allows acquisition of raw radiofrequency (RF) ultrasound data prior and during radiotherapy. This enables the computation of 3D Quantitative Ultrasound (QUS) tissue parametric maps from. We aim to evaluate whether QUS parameters undergo changes with radiotherapy and thus potentially be used as early predictors and/or markers of treatment response in prostate cancer patients. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. QUS spectroscopy analysis was carried out by computing a tissue power spectrummore » normalized to the power spectrum obtained from a quartz to remove system transfer function effects. A ROI was selected within the 3D image volume of the prostate. Because longitudinal registration was optimal, the same features could be used to select ROIs at roughly the same location in images acquired on different days. Parametric maps were generated within the rectangular ROIs with window sizes that were approximately 8 times the wavelength of the ultrasound. The mid-band fit (MBF), spectral slope (SS) and spectral intercept (SI) QUS parameters were computed for each window within the ROI and displayed as parametric maps. Quantitative parameters were obtained by averaging each of the spectral parameters over the whole ROI. Results: Data was acquired for over 21 treatment fractions. Preliminary results show changes in the parametric maps. MBF values decreased from −33.9 dB to −38.7 dB from pre-treatment to the last day of treatment. The spectral slope increased from −1.1 a.u. to −0.5 a.u., and spectral intercept decreased from −28.2 dB to −36.3 dB over the 21 treatment regimen. Conclusion: QUS parametric maps change over the course of treatment which warrants further investigation in their potential use for treatment planning and predicting treatment outcomes. Research was supported by Elekta.« less

  13. Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions.

    PubMed

    Hong, Young T; Beech, John S; Smith, Rob; Baron, Jean-Claude; Fryer, Tim D

    2011-02-01

    In this study, we show a basis function method (BAFPIC) for voxelwise calculation of kinetic parameters (K(1), k(2), k(3), K(i)) and blood volume using an irreversible two-tissue compartment model. BAFPIC was applied to rat ischaemic stroke micro-positron emission tomography data acquired with the hypoxia tracer [(18)F]fluoromisonidazole because irreversible two-tissue compartmental modelling provided good fits to data from both hypoxic and normoxic tissues. Simulated data show that BAFPIC produces kinetic parameters with significantly lower variability and bias than nonlinear least squares (NLLS) modelling in hypoxic tissue. The advantage of BAFPIC over NLLS is less pronounced in normoxic tissue. K(i) determined from BAFPIC has lower variability than that from the Patlak-Gjedde graphical analysis (PGA) by up to 40% and lower bias, except for normoxic tissue at mid-high noise levels. Consistent with the simulation results, BAFPIC parametric maps of real data suffer less noise-induced variability than do NLLS and PGA. Delineation of hypoxia on BAFPIC k(3) maps is aided by low variability in normoxic tissue, which matches that in K(i) maps. BAFPIC produces K(i) values that correlate well with those from PGA (r(2)=0.93 to 0.97; slope 0.99 to 1.05, absolute intercept <0.00002 mL/g per min). BAFPIC is a computationally efficient method of determining parametric maps with low bias and variance.

  14. Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography?

    PubMed

    Baltzer, P A; Dietzel, M; Vag, T; Beger, S; Freiberg, C; Herzog, A B; Gajda, M; Camara, O; Kaiser, W A

    2010-03-01

    Post-contrast enhancement characteristics (PEC) are a major criterion for differential diagnosis in MR mammography (MRM). Manual placement of regions of interest (ROIs) to obtain time/signal intensity curves (TSIC) is the standard approach to assess dynamic enhancement data. Computers can automatically calculate the TSIC in every lesion voxel and combine this data to form one color-coded parametric map (CCPM). Thus, the TSIC of the whole lesion can be assessed. This investigation was conducted to compare the diagnostic accuracy (DA) of CCPM with TSIC for the assessment of PEC. 329 consecutive patients with 469 histologically verified lesions were examined. MRM was performed according to a standard protocol (1.5 T, 0.1 mmol/kgbw Gd-DTPA). ROIs were drawn manually within any lesion to calculate the TSIC. CCPMs were created in all patients using dedicated software (CAD Sciences). Both methods were rated by 2 observers in consensus on an ordinal scale. Receiver operating characteristics (ROC) analysis was used to compare both methods. The area under the curve (AUC) was significantly (p=0.026) higher for CCPM (0.829) than TSIC (0.749). The sensitivity was 88.5% (CCPM) vs. 82.8% (TSIC), whereas equal specificity levels were found (CCPM: 63.7%, TSIC: 63.0%). The color-coded parametric maps (CCPMs) showed a significantly higher DA compared to TSIC, in particular the sensitivity could be increased. Therefore, the CCPM method is a feasible approach to assessing dynamic data in MRM and condenses several imaging series into one parametric map. © Georg Thieme Verlag KG Stuttgart · New York.

  15. SPM analysis of parametric (R)-[11C]PK11195 binding images: plasma input versus reference tissue parametric methods.

    PubMed

    Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald

    2007-05-01

    (R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).

  16. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Altabella, L.; Boschi, F.; Spinelli, A. E.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5-6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure.

  17. Multiscale Reconstruction for Magnetic Resonance Fingerprinting

    PubMed Central

    Pierre, Eric Y.; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A.

    2015-01-01

    Purpose To reduce acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in-vivo data using the highly-undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD) and B0 field variations in the brain was achieved in vivo for a 256×256 matrix for a total acquisition time of 10.2s, representing a 3-fold reduction in acquisition time. Conclusions The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. PMID:26132462

  18. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies.

    PubMed

    Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C

    2018-01-01

    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

  19. The use of analysis of variance procedures in biological studies

    USGS Publications Warehouse

    Williams, B.K.

    1987-01-01

    The analysis of variance (ANOVA) is widely used in biological studies, yet there remains considerable confusion among researchers about the interpretation of hypotheses being tested. Ambiguities arise when statistical designs are unbalanced, and in particular when not all combinations of design factors are represented in the data. This paper clarifies the relationship among hypothesis testing, statistical modelling and computing procedures in ANOVA for unbalanced data. A simple two-factor fixed effects design is used to illustrate three common parametrizations for ANOVA models, and some associations among these parametrizations are developed. Biologically meaningful hypotheses for main effects and interactions are given in terms of each parametrization, and procedures for testing the hypotheses are described. The standard statistical computing procedures in ANOVA are given along with their corresponding hypotheses. Throughout the development unbalanced designs are assumed and attention is given to problems that arise with missing cells.

  20. Physics, Techniques and Review of Neuroradiological Applications of Diffusion Kurtosis Imaging (DKI).

    PubMed

    Marrale, M; Collura, G; Brai, M; Toschi, N; Midiri, F; La Tona, G; Lo Casto, A; Gagliardo, C

    2016-12-01

    In recent years many papers about diagnostic applications of diffusion tensor imaging (DTI) have been published. This is because DTI allows to evaluate in vivo and in a non-invasive way the process of diffusion of water molecules in biological tissues. However, the simplified description of the diffusion process assumed in DTI does not permit to completely map the complex underlying cellular components and structures, which hinder and restrict the diffusion of water molecules. These limitations can be partially overcome by means of diffusion kurtosis imaging (DKI). The aim of this paper is the description of the theory of DKI, a new topic of growing interest in radiology. DKI is a higher order diffusion model that is a straightforward extension of the DTI model. Here, we analyze the physics underlying this method, we report our MRI acquisition protocol with the preprocessing pipeline used and the DKI parametric maps obtained on a 1.5 T scanner, and we review the most relevant clinical applications of this technique in various neurological diseases.

  1. Mapping female bodily features of attractiveness

    PubMed Central

    Bovet, Jeanne; Lao, Junpeng; Bartholomée, Océane; Caldara, Roberto; Raymond, Michel

    2016-01-01

    “Beauty is bought by judgment of the eye” (Shakespeare, Love’s Labour’s Lost), but the bodily features governing this critical biological choice are still debated. Eye movement studies have demonstrated that males sample coarse body regions expanding from the face, the breasts and the midriff, while making female attractiveness judgements with natural vision. However, the visual system ubiquitously extracts diagnostic extra-foveal information in natural conditions, thus the visual information actually used by men is still unknown. We thus used a parametric gaze-contingent design while males rated attractiveness of female front- and back-view bodies. Males used extra-foveal information when available. Critically, when bodily features were only visible through restricted apertures, fixations strongly shifted to the hips, to potentially extract hip-width and curvature, then the breast and face. Our hierarchical mapping suggests that the visual system primary uses hip information to compute the waist-to-hip ratio and the body mass index, the crucial factors in determining sexual attractiveness and mate selection. PMID:26791105

  2. A generalized parametric response mapping method for analysis of multi-parametric imaging: A feasibility study with application to glioblastoma.

    PubMed

    Lausch, Anthony; Yeung, Timothy Pok-Chi; Chen, Jeff; Law, Elton; Wang, Yong; Urbini, Benedetta; Donelli, Filippo; Manco, Luigi; Fainardi, Enrico; Lee, Ting-Yim; Wong, Eugene

    2017-11-01

    Parametric response map (PRM) analysis of functional imaging has been shown to be an effective tool for early prediction of cancer treatment outcomes and may also be well-suited toward guiding personalized adaptive radiotherapy (RT) strategies such as sub-volume boosting. However, the PRM method was primarily designed for analysis of longitudinally acquired pairs of single-parameter image data. The purpose of this study was to demonstrate the feasibility of a generalized parametric response map analysis framework, which enables analysis of multi-parametric data while maintaining the key advantages of the original PRM method. MRI-derived apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps acquired at 1 and 3-months post-RT for 19 patients with high-grade glioma were used to demonstrate the algorithm. Images were first co-registered and then standardized using normal tissue image intensity values. Tumor voxels were then plotted in a four-dimensional Cartesian space with coordinate values equal to a voxel's image intensity in each of the image volumes and an origin defined as the multi-parametric mean of normal tissue image intensity values. Voxel positions were orthogonally projected onto a line defined by the origin and a pre-determined response vector. The voxels are subsequently classified as positive, negative or nil, according to whether projected positions along the response vector exceeded a threshold distance from the origin. The response vector was selected by identifying the direction in which the standard deviation of tumor image intensity values was maximally different between responding and non-responding patients within a training dataset. Voxel classifications were visualized via familiar three-class response maps and then the fraction of tumor voxels associated with each of the classes was investigated for predictive utility analogous to the original PRM method. Independent PRM and MPRM analyses of the contrast-enhancing lesion (CEL) and a 1 cm shell of surrounding peri-tumoral tissue were performed. Prediction using tumor volume metrics was also investigated. Leave-one-out cross validation (LOOCV) was used in combination with permutation testing to assess preliminary predictive efficacy and estimate statistically robust P-values. The predictive endpoint was overall survival (OS) greater than or equal to the median OS of 18.2 months. Single-parameter PRM and multi-parametric response maps (MPRMs) were generated for each patient and used to predict OS via the LOOCV. Tumor volume metrics (P ≥ 0.071 ± 0.01) and single-parameter PRM analyses (P ≥ 0.170 ± 0.01) were not found to be predictive of OS within this study. MPRM analysis of the peri-tumoral region but not the CEL was found to be predictive of OS with a classification sensitivity, specificity and accuracy of 80%, 100%, and 89%, respectively (P = 0.001 ± 0.01). The feasibility of a generalized MPRM analysis framework was demonstrated with improved prediction of overall survival compared to the original single-parameter method when applied to a glioblastoma dataset. The proposed algorithm takes the spatial heterogeneity in multi-parametric response into consideration and enables visualization. MPRM analysis of peri-tumoral regions was shown to have predictive potential supporting further investigation of a larger glioblastoma dataset. © 2017 American Association of Physicists in Medicine.

  3. Statistical parametric mapping of LORETA using high density EEG and individual MRI: application to mismatch negativities in schizophrenia.

    PubMed

    Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob

    2002-11-01

    We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. Copyright 2002 Wiley-Liss, Inc.

  4. Complex Mapping of Aerofoils--A Different Perspective

    ERIC Educational Resources Information Center

    Matthews, Miccal T.

    2012-01-01

    In this article an application of conformal mapping to aerofoil theory is studied from a geometric and calculus point of view. The problem is suitable for undergraduate teaching in terms of a project or extended piece of work, and brings together the concepts of geometric mapping, parametric equations, complex numbers and calculus. The Joukowski…

  5. The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucher, Martin; Racine, Benjamin; Tent, Bartjan van, E-mail: bucher@apc.univ-paris7.fr, E-mail: benjar@uio.no, E-mail: vantent@th.u-psud.fr

    2016-05-01

    We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlation function) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called f NL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in ordermore » to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.« less

  6. Multiscale reconstruction for MR fingerprinting.

    PubMed

    Pierre, Eric Y; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A

    2016-06-01

    To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Establishment of Biological Reference Intervals and Reference Curve for Urea by Exploratory Parametric and Non-Parametric Quantile Regression Models.

    PubMed

    Sarkar, Rajarshi

    2013-07-01

    The validity of the entire renal function tests as a diagnostic tool depends substantially on the Biological Reference Interval (BRI) of urea. Establishment of BRI of urea is difficult partly because exclusion criteria for selection of reference data are quite rigid and partly due to the compartmentalization considerations regarding age and sex of the reference individuals. Moreover, construction of Biological Reference Curve (BRC) of urea is imperative to highlight the partitioning requirements. This a priori study examines the data collected by measuring serum urea of 3202 age and sex matched individuals, aged between 1 and 80 years, by a kinetic UV Urease/GLDH method on a Roche Cobas 6000 auto-analyzer. Mann-Whitney U test of the reference data confirmed the partitioning requirement by both age and sex. Further statistical analysis revealed the incompatibility of the data for a proposed parametric model. Hence the data was non-parametrically analysed. BRI was found to be identical for both sexes till the 2(nd) decade, and the BRI for males increased progressively 6(th) decade onwards. Four non-parametric models were postulated for construction of BRC: Gaussian kernel, double kernel, local mean and local constant, of which the last one generated the best-fitting curves. Clinical decision making should become easier and diagnostic implications of renal function tests should become more meaningful if this BRI is followed and the BRC is used as a desktop tool in conjunction with similar data for serum creatinine.

  8. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  9. Functional mapping of reaction norms to multiple environmental signals through nonparametric covariance estimation

    PubMed Central

    2011-01-01

    Background The identification of genes or quantitative trait loci that are expressed in response to different environmental factors such as temperature and light, through functional mapping, critically relies on precise modeling of the covariance structure. Previous work used separable parametric covariance structures, such as a Kronecker product of autoregressive one [AR(1)] matrices, that do not account for interaction effects of different environmental factors. Results We implement a more robust nonparametric covariance estimator to model these interactions within the framework of functional mapping of reaction norms to two signals. Our results from Monte Carlo simulations show that this estimator can be useful in modeling interactions that exist between two environmental signals. The interactions are simulated using nonseparable covariance models with spatio-temporal structural forms that mimic interaction effects. Conclusions The nonparametric covariance estimator has an advantage over separable parametric covariance estimators in the detection of QTL location, thus extending the breadth of use of functional mapping in practical settings. PMID:21269481

  10. A Theoretical Approach to Analyze the Parametric Influence on Spatial Patterns of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) Populations.

    PubMed

    Garcia, A G; Godoy, W A C

    2017-06-01

    Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.

  11. Convergence optimization of parametric MLEM reconstruction for estimation of Patlak plot parameters.

    PubMed

    Angelis, Georgios I; Thielemans, Kris; Tziortzi, Andri C; Turkheimer, Federico E; Tsoumpas, Charalampos

    2011-07-01

    In dynamic positron emission tomography data many researchers have attempted to exploit kinetic models within reconstruction such that parametric images are estimated directly from measurements. This work studies a direct parametric maximum likelihood expectation maximization algorithm applied to [(18)F]DOPA data using reference-tissue input function. We use a modified version for direct reconstruction with a gradually descending scheme of subsets (i.e. 18-6-1) initialized with the FBP parametric image for faster convergence and higher accuracy. The results compared with analytic reconstructions show quantitative robustness (i.e. minimal bias) and clinical reproducibility within six human acquisitions in the region of clinical interest. Bland-Altman plots for all the studies showed sufficient quantitative agreement between the direct reconstructed parametric maps and the indirect FBP (--0.035x+0.48E--5). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Integrating diffusion maps with umbrella sampling: Application to alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2011-04-01

    Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few kBT, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.

  13. NIRS-SPM: statistical parametric mapping for near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tak, Sungho; Jang, Kwang Eun; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul

    2008-02-01

    Even though there exists a powerful statistical parametric mapping (SPM) tool for fMRI, similar public domain tools are not available for near infrared spectroscopy (NIRS). In this paper, we describe a new public domain statistical toolbox called NIRS-SPM for quantitative analysis of NIRS signals. Specifically, NIRS-SPM statistically analyzes the NIRS data using GLM and makes inference as the excursion probability which comes from the random field that are interpolated from the sparse measurement. In order to obtain correct inference, NIRS-SPM offers the pre-coloring and pre-whitening method for temporal correlation estimation. For simultaneous recording NIRS signal with fMRI, the spatial mapping between fMRI image and real coordinate in 3-D digitizer is estimated using Horn's algorithm. These powerful tools allows us the super-resolution localization of the brain activation which is not possible using the conventional NIRS analysis tools.

  14. Pooling sexes when assessing ground reaction forces during walking: Statistical Parametric Mapping versus traditional approach.

    PubMed

    Castro, Marcelo P; Pataky, Todd C; Sole, Gisela; Vilas-Boas, Joao Paulo

    2015-07-16

    Ground reaction force (GRF) data from men and women are commonly pooled for analyses. However, it may not be justifiable to pool sexes on the basis of discrete parameters extracted from continuous GRF gait waveforms because this can miss continuous effects. Forty healthy participants (20 men and 20 women) walked at a cadence of 100 steps per minute across two force plates, recording GRFs. Two statistical methods were used to test the null hypothesis of no mean GRF differences between sexes: (i) Statistical Parametric Mapping-using the entire three-component GRF waveform; and (ii) traditional approach-using the first and second vertical GRF peaks. Statistical Parametric Mapping results suggested large sex differences, which post-hoc analyses suggested were due predominantly to higher anterior-posterior and vertical GRFs in early stance in women compared to men. Statistically significant differences were observed for the first GRF peak and similar values for the second GRF peak. These contrasting results emphasise that different parts of the waveform have different signal strengths and thus that one may use the traditional approach to choose arbitrary metrics and make arbitrary conclusions. We suggest that researchers and clinicians consider both the entire gait waveforms and sex-specificity when analysing GRF data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Parametric imaging using subharmonic signals from ultrasound contrast agents in patients with breast lesions.

    PubMed

    Eisenbrey, John R; Dave, Jaydev K; Merton, Daniel A; Palazzo, Juan P; Hall, Anne L; Forsberg, Flemming

    2011-01-01

    Parametric maps showing perfusion of contrast media can be useful tools for characterizing lesions in breast tissue. In this study we show the feasibility of parametric subharmonic imaging (SHI), which allows imaging of a vascular marker (the ultrasound contrast agent) while providing near complete tissue suppression. Digital SHI clips of 16 breast lesions from 14 women were acquired. Patients were scanned using a modified LOGIQ 9 scanner (GE Healthcare, Waukesha, WI) transmitting/receiving at 4.4/2.2 MHz. Using motion-compensated cumulative maximum intensity (CMI) sequences, parametric maps were generated for each lesion showing the time to peak (TTP), estimated perfusion (EP), and area under the time-intensity curve (AUC). Findings were grouped and compared according to biopsy results as benign lesions (n = 12, including 5 fibroadenomas and 3 cysts) and carcinomas (n = 4). For each lesion CMI, TTP, EP, and AUC parametric images were generated. No significant variations were detected with CMI (P = .80), TTP (P = .35), or AUC (P = .65). A statistically significant variation was detected for the average pixel EP (P = .002). Especially, differences were seen between carcinoma and benign lesions (mean ± SD, 0.10 ± 0.03 versus 0.05 ± 0.02 intensity units [IU]/s; P = .0014) and between carcinoma and fibroadenoma (0.10 ± 0.03 versus 0.04 ± 0.01 IU/s; P = .0044), whereas differences between carcinomas and cysts were found to be nonsignificant. In conclusion, a parametric imaging method for characterization of breast lesions using the high contrast to tissue signal provided by SHI has been developed. While the preliminary sample size was limited, results show potential for breast lesion characterization based on perfusion flow parameters.

  16. A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine.

    PubMed

    Bahrami, Sheyda; Shamsi, Mousa

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.

  17. Hybrid semi-parametric mathematical systems: bridging the gap between systems biology and process engineering.

    PubMed

    Teixeira, Ana P; Carinhas, Nuno; Dias, João M L; Cruz, Pedro; Alves, Paula M; Carrondo, Manuel J T; Oliveira, Rui

    2007-12-01

    Systems biology is an integrative science that aims at the global characterization of biological systems. Huge amounts of data regarding gene expression, proteins activity and metabolite concentrations are collected by designing systematic genetic or environmental perturbations. Then the challenge is to integrate such data in a global model in order to provide a global picture of the cell. The analysis of these data is largely dominated by nonparametric modelling tools. In contrast, classical bioprocess engineering has been primarily founded on first principles models, but it has systematically overlooked the details of the embedded biological system. The full complexity of biological systems is currently assumed by systems biology and this knowledge can now be taken by engineers to decide how to optimally design and operate their processes. This paper discusses possible methodologies for the integration of systems biology and bioprocess engineering with emphasis on applications involving animal cell cultures. At the mathematical systems level, the discussion is focused on hybrid semi-parametric systems as a way to bridge systems biology and bioprocess engineering.

  18. Oxidative response of human monocytes and macrophages cultured under low oxygen culture conditions to ion parametric resonance magnetic fields.

    EPA Science Inventory

    INTRODUCTION One proposed mechanism of action of electromagnetic fields (EMFs) on biological systems is the Ion Parametric Resonance (IPR) model, which has been experimentally validated in neuronal PC-12 cells [1, 2]. It proposes that when applied EMFs are tuned to resonate with...

  19. Systematics in lensing reconstruction: dark matter rings in the sky?

    NASA Astrophysics Data System (ADS)

    Ponente, P. P.; Diego, J. M.

    2011-11-01

    Context. Non-parametric lensing methods are a useful way of reconstructing the lensing mass of a cluster without making assumptions about the way the mass is distributed in the cluster. These methods are particularly powerful in the case of galaxy clusters with a large number of constraints. The advantage of not assuming implicitly that the luminous matter follows the dark matter is particularly interesting in those cases where the cluster is in a non-relaxed dynamical state. On the other hand, non-parametric methods have several limitations that should be taken into account carefully. Aims: We explore some of these limitations and focus on their implications for the possible ring of dark matter around the galaxy cluster CL0024+17. Methods: We project three background galaxies through a mock cluster of known radial profile density and obtain a map for the arcs (θ map). We also calculate the shear field associated with the mock cluster across the whole field of view (3.3 arcmin). Combining the positions of the arcs and the two-direction shear, we perform an inversion of the lens equation using two separate methods, the biconjugate gradient, and the quadratic programming (QADP) to reconstruct the convergence map of the mock cluster. Results: We explore the space of the solutions of the convergence map and compare the radial density profiles to the density profile of the mock cluster. When the inversion matrix algorithms are forced to find the exact solution, we encounter systematic effects resembling ring structures, that clearly depart from the original convergence map. Conclusions: Overfitting lensing data with a non-parametric method can produce ring-like structures similar to the alleged one in CL0024.

  20. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2010-03-07

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  1. Parametric inference for biological sequence analysis.

    PubMed

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  2. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  3. Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity.

    PubMed

    Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N

    2010-01-01

    Solving problems often requires seeing new connections between concepts or events that seemed unrelated at first. Innovative solutions of this kind depend on analogical reasoning, a relational reasoning process that involves mapping similarities between concepts. Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key characteristic of the kind of analogical mapping that can support innovation (i.e., identifying similarities across greater semantic distance reveals connections that support more innovative solutions and models). However, the neural substrates of semantically distant analogical mapping are not well understood. Here, we used functional magnetic resonance imaging (fMRI) to measure brain activity during an analogical reasoning task, in which we parametrically varied the semantic distance between the items in the analogies. Semantic distance was derived quantitatively from latent semantic analysis. Across 23 participants, activity in an a priori region of interest (ROI) in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. This ROI was centered on a functional peak that we previously associated with analogical mapping. To our knowledge, these data represent a first empirical characterization of how the brain mediates semantically distant analogical mapping.

  4. Analysis of terrain map matching using multisensing techniques for applications to autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Page, Lance; Shen, C. N.

    1991-01-01

    This paper describes skyline-based terrain matching, a new method for locating the vantage point of laser range-finding measurements on a global map previously prepared by satellite or aerial mapping. Skylines can be extracted from the range-finding measurements and modelled from the global map, and are represented in parametric, cylindrical form with azimuth angle as the independent variable. The three translational parameters of the vantage point are determined with a three-dimensional matching of these two sets of skylines.

  5. A tool for the estimation of the distribution of landslide area in R

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.

    2012-04-01

    We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.

  6. Regional cerebral blood flow changes in female to male gender identity disorder.

    PubMed

    Nawata, Hideyuki; Ogomori, Koji; Tanaka, Mariko; Nishimura, Ryoji; Urashima, Hajime; Yano, Rika; Takano, Koichi; Kuwabara, Yasuo

    2010-04-01

    Despite a range of research on gender identity disorder (GID), at present there is no scientific consensus on whether the etiology of GID is mental or physical. In particular recent advances in the technology of neuroimaging research have led to an increased understanding of the biological basis of various mental disorders. GID also should be evaluated from this perspective. The aim of the present study was therefore to do the first trial to examine the regional cerebral blood flow (rCBF) in GID. Persons considered biologically male fulfilling the GID criteria are termed male to female (MTF) and, conversely, persons considered biological female are termed female to male (FTM). We compared 11 FTM subjects and nine age- and handedness-matched female control subjects. None of the subjects was regularly taking medication and none had any kind of physical or psychiatric comorbidity. To evaluate rCBF in GID subjects and control subjects, statistical parametric mapping analysis of (99m)Tc-ethyl-cysteinate dimer single-photon emission computed tomography was used. GID subjects had a significant decrease in rCBF in the left anterior cingulate cortex (ACC) and a significant increase in the right insula compared to control subjects. The ACC and insula are regions that have been noted as being related to human sexual behavior and consciousness. From these findings, useful insights into the biological basis of GID were suggested.

  7. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  8. Parametrization of DFTB3/3OB for Magnesium and Zinc for Chemical and Biological Applications

    PubMed Central

    2015-01-01

    We report the parametrization of the approximate density functional theory, DFTB3, for magnesium and zinc for chemical and biological applications. The parametrization strategy follows that established in previous work that parametrized several key main group elements (O, N, C, H, P, and S). This 3OB set of parameters can thus be used to study many chemical and biochemical systems. The parameters are benchmarked using both gas-phase and condensed-phase systems. The gas-phase results are compared to DFT (mostly B3LYP), ab initio (MP2 and G3B3), and PM6, as well as to a previous DFTB parametrization (MIO). The results indicate that DFTB3/3OB is particularly successful at predicting structures, including rather complex dinuclear metalloenzyme active sites, while being semiquantitative (with a typical mean absolute deviation (MAD) of ∼3–5 kcal/mol) for energetics. Single-point calculations with high-level quantum mechanics (QM) methods generally lead to very satisfying (a typical MAD of ∼1 kcal/mol) energetic properties. DFTB3/MM simulations for solution and two enzyme systems also lead to encouraging structural and energetic properties in comparison to available experimental data. The remaining limitations of DFTB3, such as the treatment of interaction between metal ions and highly charged/polarizable ligands, are also discussed. PMID:25178644

  9. An application of quantile random forests for predictive mapping of forest attributes

    Treesearch

    E.A. Freeman; G.G. Moisen

    2015-01-01

    Increasingly, random forest models are used in predictive mapping of forest attributes. Traditional random forests output the mean prediction from the random trees. Quantile regression forests (QRF) is an extension of random forests developed by Nicolai Meinshausen that provides non-parametric estimates of the median predicted value as well as prediction quantiles. It...

  10. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  11. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    PubMed

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  12. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks

    PubMed Central

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-01-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is “non-intrusive” and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design. PMID:26317784

  13. Vectoring of parallel synthetic jets: A parametric study

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Gomit, Guillaume; Ganapathisubramani, Bharathram

    2016-11-01

    The vectoring of a pair of parallel synthetic jets can be described using five dimensionless parameters: the aspect ratio of the slots, the Strouhal number, the Reynolds number, the phase difference between the jets and the spacing between the slots. In the present study, the influence of the latter four on the vectoring behaviour of the jets is examined experimentally using particle image velocimetry. Time-averaged velocity maps are used to study the variations in vectoring behaviour for a parametric sweep of each of the four parameters independently. A topological map is constructed for the full four-dimensional parameter space. The vectoring behaviour is described both qualitatively and quantitatively. A vectoring mechanism is proposed, based on measured vortex positions. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472).

  14. One-dimensional statistical parametric mapping in Python.

    PubMed

    Pataky, Todd C

    2012-01-01

    Statistical parametric mapping (SPM) is a topological methodology for detecting field changes in smooth n-dimensional continua. Many classes of biomechanical data are smooth and contained within discrete bounds and as such are well suited to SPM analyses. The current paper accompanies release of 'SPM1D', a free and open-source Python package for conducting SPM analyses on a set of registered 1D curves. Three example applications are presented: (i) kinematics, (ii) ground reaction forces and (iii) contact pressure distribution in probabilistic finite element modelling. In addition to offering a high-level interface to a variety of common statistical tests like t tests, regression and ANOVA, SPM1D also emphasises fundamental concepts of SPM theory through stand-alone example scripts. Source code and documentation are available at: www.tpataky.net/spm1d/.

  15. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    PubMed

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  16. Fitting C 2 Continuous Parametric Surfaces to Frontiers Delimiting Physiologic Structures

    PubMed Central

    Bayer, Jason D.

    2014-01-01

    We present a technique to fit C 2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C 2 continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C 2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C 2 continuous. PMID:24782911

  17. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography

    PubMed Central

    Packham, B; Barnes, G; dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-01-01

    Abstract Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity. PMID:27203477

  18. Neural network representation and learning of mappings and their derivatives

    NASA Technical Reports Server (NTRS)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  19. sfDM: Open-Source Software for Temporal Analysis and Visualization of Brain Tumor Diffusion MR Using Serial Functional Diffusion Mapping.

    PubMed

    Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi

    2015-01-01

    A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility.

  20. Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS)

    NASA Astrophysics Data System (ADS)

    Durmaz, Murat; Karslioglu, Mahmut Onur

    2015-04-01

    There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.

  1. Approximating prediction uncertainty for random forest regression models

    Treesearch

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  2. On the dualization of scalars into ( d - 2)-forms in supergravity. Momentum maps, R-symmetry and gauged supergravity

    NASA Astrophysics Data System (ADS)

    Bandos, Igor A.; Ortín, Tomás

    2016-08-01

    We review and investigate different aspects of scalar fields in supergravity theories both when they parametrize symmetric spaces and when they parametrize spaces of special holonomy which are not necessarily symmetric (Kähler and Quaternionic-Kähler spaces): their rôle in the definition of derivatives of the fermions covariant under the R-symmetry group and (in gauged supergravities) under some gauge group, their dualization into ( d - 2)-forms, their role in the supersymmetry transformation rules (via fermion shifts, for instance) etc. We find a general definition of momentum map that applies to any manifold admitting a Killing vector and coincides with those of the holomorphic and tri-holomorphic momentum maps in Kähler and quaternionic-Kähler spaces and with an independent definition that can be given in symmetric spaces. We show how the momen-tum map occurs ubiquitously: in gauge-covariant derivatives of fermions, in fermion shifts, in the supersymmetry transformation rules of ( d - 2)-forms etc. We also give the general structure of the Noether-Gaillard-Zumino conserved currents in theories with fields of different ranks in any dimension.

  3. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  4. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    PubMed

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  5. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  6. Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis.

    PubMed

    Nakayama, N; Okumura, A; Shinoda, J; Nakashima, T; Iwama, T

    2006-07-01

    The cerebral metabolism of patients in the chronic stage of traumatic diffuse brain injury (TDBI) has not been fully investigated. To study the relationship between regional cerebral metabolism (rCM) and consciousness disturbance in patients with TDBI. 52 patients with TDBI in the chronic stage without large focal lesions were enrolled, and rCM was evaluated by fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) with statistical parametric mapping (SPM). All the patients were found to have disturbed consciousness or cognitive function and were divided into the following three groups: group A (n = 22), patients in a state with higher brain dysfunction; group B (n = 13), patients in a minimally conscious state; and group C (n = 17), patients in a vegetative state. rCM patterns on FDG-PET among these groups were evaluated and compared with those of normal control subjects on statistical parametric maps. Hypometabolism was consistently indicated bilaterally in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus. Hypometabolism in these regions was the most widespread and prominent in group C, and that in group B was more widespread and prominent than that in group A. Bilateral hypometabolism in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus may reflect the clinical deterioration of TDBI, which is due to functional and structural disconnections of neural networks rather than due to direct cerebral focal contusion.

  7. Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre; von Lilienfeld, O. Anatole

    2018-06-01

    Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters—optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes—essential but challenging due to their directional nature—where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.

  8. Two-component Thermal Dust Emission Model: Application to the Planck HFI Maps

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-06-01

    We present full-sky, 6.1 arcminute resolution maps of dust optical depth and temperature derived by fitting the Finkbeiner et al. (1999) two-component dust emission model to the Planck HFI and IRAS 100 micron maps. This parametrization of the far infrared thermal dust SED as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody dust emission model. We expect our Planck-based maps of dust temperature and optical depth to form the basis for a next-generation, high-resolution extinction map which will additionally incorporate small-scale detail from WISE imaging.

  9. Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation

    NASA Technical Reports Server (NTRS)

    Cunningham, H. A.; Welch, Robert B.

    1994-01-01

    Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.

  10. 18F-FLT uptake kinetics in head and neck squamous cell carcinoma: a PET imaging study.

    PubMed

    Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D

    2014-04-01

    To analyze the kinetics of 3(')-deoxy-3(')-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k3-2tiss and k5 of the two- and three-tissue models were studied alongside the flux parameters KFLT- 2tiss and KFLT of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion ("EM-BIC clustering") was used to distil the information from noisy parametric images. Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps of KFLT and KFLT- 2tiss are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for KFLT- 2tiss, 0.64 for KFLT). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k3-2tiss vs KFLT- 2tiss and r = 0.68 for k5 vs KFLT); however, neither phosphorylation rate-constant correlates significantly with SUV. EM-BIC clustering reduces the parametric maps to a small number of levels--on average 5.8, 3.5, 3.4, and 1.4 for KFLT- 2tiss, KFLT, k3-2tiss, and k5. This large simplification is potentially useful for radiotherapy dose-painting, but demonstrates the high noise in some maps. Statistical simulations show that voxel level noise degrades TACs generated from the 3C6K model sufficiently that the average AIC score, parameter bias, and total uncertainty of 2C4K model fits are similar to those of 3C6K fits, whereas at the whole tumor level the scores are lower for 3C6K fits. For the patients studied here, whole tumor FLT uptake time-courses are represented better overall by a three-tissue than by a two-tissue model. EM-BIC clustering simplifies noisy parametric maps, providing the best description of the underlying information they contain and is potentially useful for radiotherapy dose-painting. However, the clustering highlights the large degree of noise present in maps of the phosphorylation rate-constantsk5 and k3-2tiss, which are conceptually tightly linked to cellular proliferation. Methods must be found to make these maps more robust-either by constraining other model parameters or modifying dynamic imaging protocols. © 2014 American Association of Physicists in Medicine.

  11. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    PubMed Central

    Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization. PMID:24621588

  12. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    PubMed

    Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization.

  13. 4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties

    NASA Astrophysics Data System (ADS)

    Ralli, George P.; Chappell, Michael A.; McGowan, Daniel R.; Sharma, Ricky A.; Higgins, Geoff S.; Fenwick, John D.

    2018-05-01

    4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains an open question. We propose a spline-residue model, which describes TACs as weighted sums of convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the input function constrains the spline-residue model at early time-points, potentially enhancing noise suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire imaged time-course, thus limiting bias. Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D reconstructions were carried out using a nested-MAP algorithm including spatial and temporal roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images with the 2C3K model. Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved  >50% improvements for five of the eight combinations of the four kinetics parameters for which parametric maps were created with the bias and noise measures used to analyse them, and produced better results for 5/8 combinations than any of the other reconstruction algorithms studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D reconstruction generated the most biased parametric maps. Inclusion of a temporal roughness penalty function improved the performance of 4D reconstruction based on the cubic B-spline, spectral and spline-residue models.

  14. Stochastic climate dynamics: Stochastic parametrizations and their global effects

    NASA Astrophysics Data System (ADS)

    Ghil, Michael

    2010-05-01

    A well-known difficulty in modeling the atmosphere and oceans' general circulation is the limited, albeit increasing resolution possible in the numerical solution of the governing partial differential equations. While the mass, energy and momentum of an individual cloud, in the atmosphere, or convection chimney, in the oceans, is negligible, their combined effects over long times are not. Until recently, small, subgrid-scale processes were represented in general circulation models (GCMs) by deterministic "parametrizations." While A. Arakawa and associates had realized over three decades ago the conceptual need for ensembles of clouds in such parametrizations, it is only very recently that truly stochastic parametrizations have been introduced into GCMs and weather prediction models. These parametrizations essentially transform a deterministic autonomous system into a non-autonomous one, subject to random forcing. To study systematically the long-term effects of such a forcing has to rely on theory of random dynamical systems (RDS). This theory allows one to consider the detailed geometric structure of the random attractors associated with nonlinear, stochastically perturbed systems. These attractors extend the concept of strange attractors from autonomous dynamical systems to non-autonomous systems with random forcing. To illustrate the essence of the theory, its concepts and methods, we carry out a high-resolution numerical study of two "toy" models in their respective phase spaces. This study allows one to obtain a good approximation of their global random attractors, as well as of the time-dependent invariant measures supported by these attractors. The first of the two models studied herein is the Arnol'd family of circle maps in the presence of noise. The maps' fine-grained, resonant landscape --- associated with Arnol'd tongues --- is smoothed by the noise, thus permitting a comparison with the observable aspects of the "Devil's staircase" that arises in modeling the El Nino-Southern Oscillation (ENSO). These results are confirmed by studying a "French garden" that is obtained by smoothing a "Devil's quarry." Such a quarry results from coupling two circle maps, and random forcing leads to a smoothed version thereof. We thus suspect that stochastic parametrizations will stabilize the sensitive dependence on parameters that has been noticed in the development of GCMs. This talk represents joint work with Mickael D. Chekroun, D. Kondrashov, Eric Simonnet and I. Zaliapin. Several other talks and posters complement the results presented here and provide further insights into RDS theory and its application to the geosciences.

  15. PET image reconstruction using multi-parametric anato-functional priors

    NASA Astrophysics Data System (ADS)

    Mehranian, Abolfazl; Belzunce, Martin A.; Niccolini, Flavia; Politis, Marios; Prieto, Claudia; Turkheimer, Federico; Hammers, Alexander; Reader, Andrew J.

    2017-08-01

    In this study, we investigate the application of multi-parametric anato-functional (MR-PET) priors for the maximum a posteriori (MAP) reconstruction of brain PET data in order to address the limitations of the conventional anatomical priors in the presence of PET-MR mismatches. In addition to partial volume correction benefits, the suitability of these priors for reconstruction of low-count PET data is also introduced and demonstrated, comparing to standard maximum-likelihood (ML) reconstruction of high-count data. The conventional local Tikhonov and total variation (TV) priors and current state-of-the-art anatomical priors including the Kaipio, non-local Tikhonov prior with Bowsher and Gaussian similarity kernels are investigated and presented in a unified framework. The Gaussian kernels are calculated using both voxel- and patch-based feature vectors. To cope with PET and MR mismatches, the Bowsher and Gaussian priors are extended to multi-parametric priors. In addition, we propose a modified joint Burg entropy prior that by definition exploits all parametric information in the MAP reconstruction of PET data. The performance of the priors was extensively evaluated using 3D simulations and two clinical brain datasets of [18F]florbetaben and [18F]FDG radiotracers. For simulations, several anato-functional mismatches were intentionally introduced between the PET and MR images, and furthermore, for the FDG clinical dataset, two PET-unique active tumours were embedded in the PET data. Our simulation results showed that the joint Burg entropy prior far outperformed the conventional anatomical priors in terms of preserving PET unique lesions, while still reconstructing functional boundaries with corresponding MR boundaries. In addition, the multi-parametric extension of the Gaussian and Bowsher priors led to enhanced preservation of edge and PET unique features and also an improved bias-variance performance. In agreement with the simulation results, the clinical results also showed that the Gaussian prior with voxel-based feature vectors, the Bowsher and the joint Burg entropy priors were the best performing priors. However, for the FDG dataset with simulated tumours, the TV and proposed priors were capable of preserving the PET-unique tumours. Finally, an important outcome was the demonstration that the MAP reconstruction of a low-count FDG PET dataset using the proposed joint entropy prior can lead to comparable image quality to a conventional ML reconstruction with up to 5 times more counts. In conclusion, multi-parametric anato-functional priors provide a solution to address the pitfalls of the conventional priors and are therefore likely to increase the diagnostic confidence in MR-guided PET image reconstructions.

  16. Towards the Optimal Pixel Size of dem for Automatic Mapping of Landslide Areas

    NASA Astrophysics Data System (ADS)

    Pawłuszek, K.; Borkowski, A.; Tarolli, P.

    2017-05-01

    Determining appropriate spatial resolution of digital elevation model (DEM) is a key step for effective landslide analysis based on remote sensing data. Several studies demonstrated that choosing the finest DEM resolution is not always the best solution. Various DEM resolutions can be applicable for diverse landslide applications. Thus, this study aims to assess the influence of special resolution on automatic landslide mapping. Pixel-based approach using parametric and non-parametric classification methods, namely feed forward neural network (FFNN) and maximum likelihood classification (ML), were applied in this study. Additionally, this allowed to determine the impact of used classification method for selection of DEM resolution. Landslide affected areas were mapped based on four DEMs generated at 1 m, 2 m, 5 m and 10 m spatial resolution from airborne laser scanning (ALS) data. The performance of the landslide mapping was then evaluated by applying landslide inventory map and computation of confusion matrix. The results of this study suggests that the finest scale of DEM is not always the best fit, however working at 1 m DEM resolution on micro-topography scale, can show different results. The best performance was found at 5 m DEM-resolution for FFNN and 1 m DEM resolution for results. The best performance was found to be using 5 m DEM-resolution for FFNN and 1 m DEM resolution for ML classification.

  17. Admixture mapping of serum vitamin D and parathyroid hormone concentrations in the African American-Diabetes Heart Study

    PubMed Central

    Palmer, Nicholette D.; Divers, Jasmin; Lu, Lingyi; Register, Thomas C.; Carr, J. Jeffrey; Hicks, Pamela J.; Smith, S. Carrie; Xu, Jianzhao; Judd, Suzanne E.; Irvin, Marguerite R.; Gutierrez, Orlando M.; Bowden, Donald W.; Wagenknecht, Lynne E.; Langefeld, Carl D.; Freedman, Barry I.

    2016-01-01

    Vitamin D and intact parathyroid hormone (iPTH) concentrations differ between individuals of African and European descent and may play a role in observed racial differences in bone mineral density (BMD). These findings suggest that mapping by admixture linkage disequilibrium (MALD) may be informative for identifying genetic variants contributing to these ethnic disparities. Admixture mapping was performed for serum 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, vitamin D-binding protein (VDBP), bioavailable vitamin D, and iPTH concentrations and computed tomography measured thoracic and lumbar vertebral volumetric BMD in 552 unrelated African Americans with type 2 diabetes from the African American-Diabetes Heart Study. Genotyping was performed using a custom Illumina ancestry informative marker (AIM) panel. For each AIM, the probability of inheriting 0, 1, or 2 copies of a European-derived allele was determined. Non-parametric linkage analysis was performed by testing for association between each AIM using these probabilities among phenotypes, accounting for global ancestry, age, and gender. Fine-mapping of MALD peaks was facilitated by genome-wide association study (GWAS) data. VDBP levels were significantly linked in proximity to the protein coding locus (rs7689609, LOD=11.05). Two loci exhibited significant linkage signals for 1,25-dihydroxyvitamin D on 13q21.2 (rs1622710, LOD=3.20) and 12q13.2 (rs11171526, LOD=3.10). iPTH was significantly linked on 9q31.3 (rs7854368, LOD=3.14). Fine-mapping with GWAS data revealed significant known (rs7041 with VDBP, P=1.38×10−82) and novel (rs12741813 and rs10863774 with VDBP, P<6.43×10−5) loci with plausible biological roles. Admixture mapping in combination with fine-mapping has focused efforts to identify loci contributing to ethnic differences in vitamin D-related traits. PMID:27032714

  18. More than the sum of its parts: Coarse-grained peptide-lipid interactions from a simple cross-parametrization

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Wang, Zun-Jing; Deserno, Markus

    2014-03-01

    Interfacial systems are at the core of fascinating phenomena in many disciplines, such as biochemistry, soft-matter physics, and food science. However, the parametrization of accurate, reliable, and consistent coarse-grained (CG) models for systems at interfaces remains a challenging endeavor. In the present work, we explore to what extent two independently developed solvent-free CG models of peptides and lipids—of different mapping schemes, parametrization methods, target functions, and validation criteria—can be combined by only tuning the cross-interactions. Our results show that the cross-parametrization can reproduce a number of structural properties of membrane peptides (for example, tilt and hydrophobic mismatch), in agreement with existing peptide-lipid CG force fields. We find encouraging results for two challenging biophysical problems: (i) membrane pore formation mediated by the cooperative action of several antimicrobial peptides, and (ii) the insertion and folding of the helix-forming peptide WALP23 in the membrane.

  19. Perceptual reversals during binocular rivalry: ERP components and their concomitant source differences.

    PubMed

    Britz, Juliane; Pitts, Michael A

    2011-11-01

    We used an intermittent stimulus presentation to investigate event-related potential (ERP) components associated with perceptual reversals during binocular rivalry. The combination of spatiotemporal ERP analysis with source imaging and statistical parametric mapping of the concomitant source differences yielded differences in three time windows: reversals showed increased activity in early visual (∼120 ms) and in inferior frontal and anterior temporal areas (∼400-600 ms) and decreased activity in the ventral stream (∼250-350 ms). The combination of source imaging and statistical parametric mapping suggests that these differences were due to differences in generator strength and not generator configuration, unlike the initiation of reversals in right inferior parietal areas. These results are discussed within the context of the extensive network of brain areas that has been implicated in the initiation, implementation, and appraisal of bistable perceptual reversals. Copyright © 2011 Society for Psychophysiological Research.

  20. Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder S.; Kinney, Justin B.

    2016-03-01

    A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.

  1. Gravity-Driven Thin Film Flow of an Ellis Fluid.

    PubMed

    Kheyfets, Vitaly O; Kieweg, Sarah L

    2013-12-01

    The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity ( η 0 ), τ 1/2 , and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ , on the front velocity saturation depended on τ 1/2 . This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications.

  2. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  3. Heating and thermal squeezing in parametrically driven oscillators with added noise.

    PubMed

    Batista, Adriano A

    2012-11-01

    In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.

  4. Correlation-based perfusion mapping using time-resolved MR angiography: A feasibility study for patients with suspicions of steno-occlusive craniocervical arteries.

    PubMed

    Nam, Yoonho; Jang, Jinhee; Park, Sonya Youngju; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo

    2018-05-22

    To explore the feasibility of using correlation-based time-delay (CTD) maps produced from time-resolved MR angiography (TRMRA) to diagnose perfusion abnormalities in patients suspected to have steno-occlusive lesions in the craniocervical arteries. Twenty-seven patients who were suspected to have steno-occlusive lesions in the craniocervical arteries underwent both TRMRA and brain single-photon emission computed tomography (SPECT). TRMRA was performed on the supra-aortic area after intravenous injection of a 0.03 mmol/kg gadolinium-based contrast agent. Time-to-peak (TTP) maps and CTD maps of the brain were automatically generated from TRMRA data, and their quality was assessed. Detection of perfusion abnormalities was compared between CTD maps and the time-series maximal intensity projection (MIP) images from TRMRA and TTP maps. Correlation coefficients between quantitative changes in SPECT and parametric maps for the abnormal perfusion areas were calculated. The CTD maps were of significantly superior quality than TTP maps (p < 0.01). For perfusion abnormality detection, CTD maps (kappa 0.84, 95% confidence interval [CI] 0.67-1.00) showed better agreement with SPECT than TTP maps (0.66, 0.46-0.85). For perfusion deficit detection, CTD maps showed higher accuracy (85.2%, 95% CI 66.3-95.8) than MIP images (66.7%, 46-83.5), with marginal significance (p = 0.07). In abnormal perfusion areas, correlation coefficients between SPECT and CTD (r = 0.74, 95% CI 0.34-0.91) were higher than those between SPECT and TTP (r = 0.66, 0.20-0.88). CTD maps generated from TRMRA were of high quality and offered good diagnostic performance for detecting perfusion abnormalities associated with steno-occlusive arterial lesions in the craniocervical area. • Generation of perfusion parametric maps from time-resolved MR angiography is clinically useful. • Correlation-based delay maps can be used to detect perfusion abnormalities associated with steno-occlusive craniocervical arteries. • Estimation of correlation-based delay is robust for low signal-to-noise 4D MR data.

  5. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044; Pu, Huangsheng

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but alsomore » make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.« less

  6. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning.

    PubMed

    Andersen, Flemming; Watanabe, Hideaki; Bjarkam, Carsten; Danielsen, Erik H; Cumming, Paul

    2005-07-15

    The analysis of physiological processes in brain by position emission tomography (PET) is facilitated when images are spatially normalized to a standard coordinate system. Thus, PET activation studies of human brain frequently employ the common stereotaxic coordinates of Talairach. We have developed an analogous stereotaxic coordinate system for the brain of the Gottingen miniature pig, based on automatic co-registration of magnetic resonance (MR) images obtained in 22 male pigs. The origin of the pig brain stereotaxic space (0, 0, 0) was arbitrarily placed in the centroid of the pineal gland as identified on the average MRI template. The orthogonal planes were imposed using the line between stereotaxic zero and the optic chiasm. A series of mean MR images in the coronal, sagittal and horizontal planes were generated. To test the utility of the common coordinate system for functional imaging studies of minipig brain, we calculated cerebral blood flow (CBF) maps from normal minipigs and from minipigs with a syndrome of parkisonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-poisoning. These maps were transformed from the native space into the common stereotaxic space. After global normalization of these maps, an undirected search for differences between the groups was then performed using statistical parametric mapping. Using this method, we detected a statistically significant focal increase in CBF in the left cerebellum of the MPTP-lesioned group. We expect the present approach to be of general use in the statistical parametric mapping of CBF and other physiological parameters in living pig brain.

  7. Simple heterogeneity parametrization for sea surface temperature and chlorophyll

    NASA Astrophysics Data System (ADS)

    Skákala, Jozef; Smyth, Timothy J.

    2016-06-01

    Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.

  8. A case study in programming a quantum annealer for hard operational planning problems

    NASA Astrophysics Data System (ADS)

    Rieffel, Eleanor G.; Venturelli, Davide; O'Gorman, Bryan; Do, Minh B.; Prystay, Elicia M.; Smelyanskiy, Vadim N.

    2015-01-01

    We report on a case study in programming an early quantum annealer to attack optimization problems related to operational planning. While a number of studies have looked at the performance of quantum annealers on problems native to their architecture, and others have examined performance of select problems stemming from an application area, ours is one of the first studies of a quantum annealer's performance on parametrized families of hard problems from a practical domain. We explore two different general mappings of planning problems to quadratic unconstrained binary optimization (QUBO) problems, and apply them to two parametrized families of planning problems, navigation-type and scheduling-type. We also examine two more compact, but problem-type specific, mappings to QUBO, one for the navigation-type planning problems and one for the scheduling-type planning problems. We study embedding properties and parameter setting and examine their effect on the efficiency with which the quantum annealer solves these problems. From these results, we derive insights useful for the programming and design of future quantum annealers: problem choice, the mapping used, the properties of the embedding, and the annealing profile all matter, each significantly affecting the performance.

  9. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

    EPA Pesticide Factsheets

    Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

  10. An open source multivariate framework for n-tissue segmentation with evaluation on public data.

    PubMed

    Avants, Brian B; Tustison, Nicholas J; Wu, Jue; Cook, Philip A; Gee, James C

    2011-12-01

    We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs ( http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.

  11. An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data

    PubMed Central

    Tustison, Nicholas J.; Wu, Jue; Cook, Philip A.; Gee, James C.

    2012-01-01

    We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs (http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool. PMID:21373993

  12. Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo

    2016-03-01

    Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.

  13. HAPRAP: a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics.

    PubMed

    Zheng, Jie; Rodriguez, Santiago; Laurin, Charles; Baird, Denis; Trela-Larsen, Lea; Erzurumluoglu, Mesut A; Zheng, Yi; White, Jon; Giambartolomei, Claudia; Zabaneh, Delilah; Morris, Richard; Kumari, Meena; Casas, Juan P; Hingorani, Aroon D; Evans, David M; Gaunt, Tom R; Day, Ian N M

    2017-01-01

    Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients ([Formula: see text]) of the variants. However, haplotypes rather than pairwise [Formula: see text], are the true biological representation of linkage disequilibrium (LD) among multiple loci. In this article, we present an empirical iterative method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine mapping using summary statistics and haplotype information from an individual-level reference panel. Simulations with individual-level genotypes show that the results of HAPRAP and multiple regression are highly consistent. In simulation with summary-level data, we demonstrate that HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic Investigation of ANthropometric Traits height data, HAPRAP performs well with a small training sample size (N < 2000) while other methods become suboptimal. Moreover, HAPRAP's performance is not affected substantially by single nucleotide polymorphisms (SNPs) with low minor allele frequencies. We applied the method to existing quantitative trait and binary outcome meta-analyses (human height, QTc interval and gallbladder disease); all previous reported association signals were replicated and two additional variants were independently associated with human height. Due to the growing availability of summary level data, the value of HAPRAP is likely to increase markedly for future analyses (e.g. functional prediction and identification of instruments for Mendelian randomization). The HAPRAP package and documentation are available at http://apps.biocompute.org.uk/haprap/ CONTACT: : jie.zheng@bristol.ac.uk or tom.gaunt@bristol.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. Strategies for the generation of parametric images of [11C]PIB with plasma input functions considering discriminations and reproducibility.

    PubMed

    Edison, Paul; Brooks, David J; Turkheimer, Federico E; Archer, Hilary A; Hinz, Rainer

    2009-11-01

    Pittsburgh compound B or [11C]PIB is an amyloid imaging agent which shows a clear differentiation between subjects with Alzheimer's disease (AD) and controls. However the observed signal difference in other forms of dementia such as dementia with Lewy bodies (DLB) is smaller, and mild cognitively impaired (MCI) subjects and some healthy elderly normals may show intermediate levels of [11C]PIB binding. The cerebellum, a commonly used reference region for non-specific tracer uptake in [11C]PIB studies in AD may not be valid in Prion disorders or monogenic forms of AD. The aim of this work was to: 1-compare methods for generating parametric maps of [11C]PIB retention in tissue using a plasma input function in respect of their ability to discriminate between AD subjects and controls and 2-estimate the test-retest reproducibility in AD subjects. 12 AD subjects (5 of which underwent a repeat scan within 6 weeks) and 10 control subjects had 90 minute [11C]PIB dynamic PET scans, and arterial plasma input functions were measured. Parametric maps were generated with graphical analysis of reversible binding (Logan plot), irreversible binding (Patlak plot), and spectral analysis. Between group differentiation was calculated using Student's t-test and comparisons between different methods were made using p values. Reproducibility was assessed by intraclass correlation coefficients (ICC). We found that the 75 min value of the impulse response function showed the best group differentiation and had a higher ICC than volume of distribution maps generated from Logan and spectral analysis. Patlak analysis of [11C]PIB binding was the least reproducible.

  15. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers.

    PubMed

    Sekine, Yoshimoto; Ouchi, Yasuomi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Futatsubashi, Masami; Okada, Hiroyuki; Minabe, Yoshio; Suzuki, Katsuaki; Iwata, Yasuhide; Tsuchiya, Kenji J; Tsukada, Hideo; Iyo, Masaomi; Mori, Norio

    2006-01-01

    In animals, methamphetamine is known to have a neurotoxic effect on serotonin neurons, which have been implicated in the regulation of mood, anxiety, and aggression. It remains unknown whether methamphetamine damages serotonin neurons in humans. To investigate the status of brain serotonin neurons and their possible relationship with clinical characteristics in currently abstinent methamphetamine abusers. Case-control analysis. A hospital research center. Twelve currently abstinent former methamphetamine abusers (5 women and 7 men) and 12 age-, sex-, and education-matched control subjects recruited from the community. The brain regional density of the serotonin transporter, a structural component of serotonin neurons, was estimated using positron emission tomography and trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652). Estimates were derived from region-of-interest and statistical parametric mapping methods, followed by within-case analysis using the measures of clinical variables. The duration of methamphetamine use, the magnitude of aggression and depressive symptoms, and changes in serotonin transporter density represented by the [(11)C](+)McN-5652 distribution volume. Methamphetamine abusers showed increased levels of aggression compared with controls. Region-of-interest and statistical parametric mapping analyses revealed that the serotonin transporter density in global brain regions (eg, the midbrain, thalamus, caudate, putamen, cerebral cortex, and cerebellum) was significantly lower in methamphetamine abusers than in control subjects, and this reduction was significantly inversely correlated with the duration of methamphetamine use. Furthermore, statistical parametric mapping analyses indicated that the density in the orbitofrontal, temporal, and anterior cingulate areas was closely associated with the magnitude of aggression in methamphetamine abusers. Protracted abuse of methamphetamine may reduce the density of the serotonin transporter in the brain, leading to elevated aggression, even in currently abstinent abusers.

  16. Validation of a Parametric Approach for 3d Fortification Modelling: Application to Scale Models

    NASA Astrophysics Data System (ADS)

    Jacquot, K.; Chevrier, C.; Halin, G.

    2013-02-01

    Parametric modelling approach applied to cultural heritage virtual representation is a field of research explored for years since it can address many limitations of digitising tools. For example, essential historical sources for fortification virtual reconstructions like plans-reliefs have several shortcomings when they are scanned. To overcome those problems, knowledge based-modelling can be used: knowledge models based on the analysis of theoretical literature of a specific domain such as bastioned fortification treatises can be the cornerstone of the creation of a parametric library of fortification components. Implemented in Grasshopper, these components are manually adjusted on the data available (i.e. 3D surveys of plans-reliefs or scanned maps). Most of the fortification area is now modelled and the question of accuracy assessment is raised. A specific method is used to evaluate the accuracy of the parametric components. The results of the assessment process will allow us to validate the parametric approach. The automation of the adjustment process can finally be planned. The virtual model of fortification is part of a larger project aimed at valorising and diffusing a very unique cultural heritage item: the collection of plans-reliefs. As such, knowledge models are precious assets when automation and semantic enhancements will be considered.

  17. {sup 18}F-FLT uptake kinetics in head and neck squamous cell carcinoma: A PET imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dan, E-mail: dan.liu@oncology.ox.ac.uk; Fenwick, John D.; Chalkidou, Anastasia

    2014-04-15

    Purpose: To analyze the kinetics of 3{sup ′}-deoxy-3{sup ′}-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Methods: Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels.more » Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k{sub 3-2tiss} and k{sub 5} of the two- and three-tissue models were studied alongside the flux parameters K{sub FLT-2tiss} and K{sub FLT} of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion (“EM-BIC clustering”) was used to distil the information from noisy parametric images. Results: Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps ofK{sub FLT} and K{sub FLT-2tiss} are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for K{sub FLT-2tiss}, 0.64 for K{sub FLT}). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k{sub 3-2tiss} vs K{sub FLT-2tiss} and r = 0.68 for k{sub 5} vs K{sub FLT}); however, neither phosphorylation rate-constant correlates significantly with SUV. EM-BIC clustering reduces the parametric maps to a small number of levels—on average 5.8, 3.5, 3.4, and 1.4 for K{sub FLT-2tiss}, K{sub FLT}, k{sub 3-2tiss}, and k{sub 5.} This large simplification is potentially useful for radiotherapy dose-painting, but demonstrates the high noise in some maps. Statistical simulations show that voxel level noise degrades TACs generated from the 3C6K model sufficiently that the average AIC score, parameter bias, and total uncertainty of 2C4K model fits are similar to those of 3C6K fits, whereas at the whole tumor level the scores are lower for 3C6K fits. Conclusions: For the patients studied here, whole tumor FLT uptake time-courses are represented better overall by a three-tissue than by a two-tissue model. EM-BIC clustering simplifies noisy parametric maps, providing the best description of the underlying information they contain and is potentially useful for radiotherapy dose-painting. However, the clustering highlights the large degree of noise present in maps of the phosphorylation rate-constantsk{sub 5} and k{sub 3-2tiss}, which are conceptually tightly linked to cellular proliferation. Methods must be found to make these maps more robust—either by constraining other model parameters or modifying dynamic imaging protocols.« less

  18. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  19. Global multiresolution models of surface wave propagation: comparing equivalently regularized Born and ray theoretical solutions

    NASA Astrophysics Data System (ADS)

    Boschi, Lapo

    2006-10-01

    I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.

  20. [Detection of cerebral hypoperfusion using single photon emission computed tomography image analysis and statistical parametric mapping in patients with Parkinson's disease or progressive supranuclear palsy].

    PubMed

    Harada, Kengo; Saeki, Hiroshi; Matsuya, Eiji; Okita, Izumi

    2013-11-01

    We carried out differential diagnosis of brain blood flow images using single-photon emission computed tomography (SPECT) for patients with Parkinson's disease (PD) or progressive supranuclear paralysis (PSP) using statistical parametric mapping (SPM) and to whom we had applied anatomical standardization. We studied two groups and compared brain blood flow images using SPECT (N-isopropyl-4-iodoamphetamine [(123)I] hydrochloride injection, 222 MGq dosage i.v.). A total of 27 patients were studied using SPM: 18 with PD and 9 with PSP; humming bird sign on MRI was from moderate to medium. The decline of brain bloodstream in the PSP group was more notable in the midbrain, near the domain where the humming bird sign was observable, than in the PD group. The observable differences in brain bloodstream decline in the midbrain of PSP and PD patients suggest the potential usefulness of this technique's clinical application to distinction diagnosis.

  1. Space biology initiative program definition review. Trade study 3: Hardware miniaturization versus cost

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided.

  2. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian

    In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less

  3. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules

    DOE PAGES

    Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian; ...

    2017-12-12

    In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less

  4. Graded-threshold parametric response maps: towards a strategy for adaptive dose painting

    NASA Astrophysics Data System (ADS)

    Lausch, A.; Jensen, N.; Chen, J.; Lee, T. Y.; Lock, M.; Wong, E.

    2014-03-01

    Purpose: To modify the single-threshold parametric response map (ST-PRM) method for predicting treatment outcomes in order to facilitate its use for guidance of adaptive dose painting in intensity-modulated radiotherapy. Methods: Multiple graded thresholds were used to extend the ST-PRM method (Nat. Med. 2009;15(5):572-576) such that the full functional change distribution within tumours could be represented with respect to multiple confidence interval estimates for functional changes in similar healthy tissue. The ST-PRM and graded-threshold PRM (GT-PRM) methods were applied to functional imaging scans of 5 patients treated for hepatocellular carcinoma. Pre and post-radiotherapy arterial blood flow maps (ABF) were generated from CT-perfusion scans of each patient. ABF maps were rigidly registered based on aligning tumour centres of mass. ST-PRM and GT-PRM analyses were then performed on overlapping tumour regions within the registered ABF maps. Main findings: The ST-PRMs contained many disconnected clusters of voxels classified as having a significant change in function. While this may be useful to predict treatment response, it may pose challenges for identifying boost volumes or for informing dose-painting by numbers strategies. The GT-PRMs included all of the same information as ST-PRMs but also visualized the full tumour functional change distribution. Heterogeneous clusters in the ST-PRMs often became more connected in the GT-PRMs by voxels with similar functional changes. Conclusions: GT-PRMs provided additional information which helped to visualize relationships between significant functional changes identified by ST-PRMs. This may enhance ST-PRM utility for guiding adaptive dose painting.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization.more » The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.« less

  6. A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming

    2016-11-01

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (I.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  7. From Neutron Star Observables to the Equation of State. I. An Optimal Parametrization

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2016-11-01

    The increasing number and precision of measurements of neutron star masses, radii, and, in the near future, moments of inertia offer the possibility of precisely determining the neutron star equation of state (EOS). One way to facilitate the mapping of observables to the EOS is through a parametrization of the latter. We present here a generic method for optimizing the parametrization of any physically allowed EOS. We use mock EOS that incorporate physically diverse and extreme behavior to test how well our parametrization reproduces the global properties of the stars, by minimizing the errors in the observables of mass, radius, and the moment of inertia. We find that using piecewise polytropes and sampling the EOS with five fiducial densities between ˜1-8 times the nuclear saturation density results in optimal errors for the smallest number of parameters. Specifically, it recreates the radii of the assumed EOS to within less than 0.5 km for the extreme mock EOS and to within less than 0.12 km for 95% of a sample of 42 proposed, physically motivated EOS. Such a parametrization is also able to reproduce the maximum mass to within 0.04 {M}⊙ and the moment of inertia of a 1.338 {M}⊙ neutron star to within less than 10% for 95% of the proposed sample of EOS.

  8. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  9. A physiology-based parametric imaging method for FDG-PET data

    NASA Astrophysics Data System (ADS)

    Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele

    2017-12-01

    Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.

  10. Preprocessing: Geocoding of AVIRIS data using navigation, engineering, DEM, and radar tracking system data

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Larson, Steven A.; Hansen, Earl G.; Itten, Klaus I.

    1993-01-01

    Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.

  11. Professional development strategies for teaching urban biology teachers to use concept maps effectively

    NASA Astrophysics Data System (ADS)

    McGregor Petgrave, Dahlia M.

    Many teachers are not adequately prepared to help urban students who have trouble understanding conceptual ideas in biology because these students have little connection to the natural world. This study explored potential professional development strategies to help urban biology teachers use concept maps effectively with various topics in the biology curriculum. A grounded theory approach was used to develop a substantive professional development model for urban biology teachers. Qualitative data were collected through 16 semi-structured interviews of professional developers experienced in working with concept maps in the urban context. An anonymous online survey was used to collect quantitative data from 56 professional developers and teachers to support the qualitative data. The participants were from New York City, recruited through the NY Biology-Chemistry Professional Development Mentor Network and the NY Biology Teachers' Association. According to the participants, map construction, classroom applications, lesson planning, action research, follow-up workshops, and the creation of learning communities are the most effective professional development strategies. The interviewees also proposed English language learning strategies such as picture maps, native word maps, and content reading materials with underlined words. This study contributes to social change by providing a professional development model to use in planning workshops for urban teachers. Urban teachers improve their own conceptual understanding of biology while learning how to implement concept mapping strategies in the classroom. Students whose teachers are better prepared to teach biology in a conceptual manner have the potential of growing into more scientifically literate citizens.

  12. Multi-parametric MRI findings of granulomatous prostatitis developing after intravesical bacillus calmette-guérin therapy.

    PubMed

    Gottlieb, Josh; Princenthal, Robert; Cohen, Martin I

    2017-07-01

    To evaluate the multi-parametric MRI (mpMRI) findings in patients with biopsy-proven granulomatous prostatitis and prior Bacillus Calmette-Guérin (BCG) exposure. MRI was performed in six patients with pathologically proven granulomatous prostatitis and a prior history of bladder cancer treated with intravesical BCG therapy. Multi-parametric prostate MRI images were recorded on a GE 750W or Philips Achieva 3.0 Tesla MRI scanner with high-resolution, small-field-of-view imaging consisting of axial T2, axial T1, coronal T2, sagittal T2, axial multiple b-value diffusion (multiple values up to 1200 or 1400), and dynamic contrast-enhanced 3D axial T1 with fat suppression sequence. Two different patterns of MR findings were observed. Five of the six patients had a low mean ADC value <1000 (decreased signal on ADC map images) and isointense signal on high-b-value imaging (b = 1200 or 1400), consistent with nonspecific granulomatous prostatitis. The other pattern seen in one of the six patients was decreased signal on the ADC map images with increased signal on the high-b-value sequence, revealing true restricted diffusion indistinguishable from aggressive prostate cancer. This patient had biopsy-confirmed acute BCG prostatitis. Our study suggests that patients with known BCG exposure and PI-RADS v2 scores ≤3, showing similar mpMRI findings as demonstrated, may not require prostate biopsy.

  13. Assessment of three different software systems in the evaluation of dynamic MRI of the breast.

    PubMed

    Kurz, K D; Steinhaus, D; Klar, V; Cohnen, M; Wittsack, H J; Saleh, A; Mödder, U; Blondin, D

    2009-02-01

    The aim was to compare the diagnostic performance and handling of dynamic contrast-enhanced MRI of the breast with two commercial software solutions ("CADstream" and "3TP") and one self-developed software system ("Mammatool"). Identical data sets of dynamic breast MRI from 21 patients were evaluated retrospectively with all three software systems. The exams were classified according to the BI-RADS classification. The number of lesions in the parametric mapping was compared to histology or follow-up of more than 2 years. In addition, 25 quality criteria were judged by 3 independent investigators with a score from 0 to 5. Statistical analysis was performed to document the quality ranking of the different software systems. There were 9 invasive carcinomas, one pure DCIS, one papilloma, one radial scar, three histologically proven changes due to mastopathy, one adenosis and two fibroadenomas. Additionally two patients with enhancing parenchyma followed with MRI for more than 3 years and one scar after breast conserving therapy were included. All malignant lesions were classified as BI-RADS 4 or 5 using all software systems and showed significant enhancement in the parametric mapping. "CADstream" showed the best score on subjective quality criteria. "3TP" showed the lowest number of false-positive results. "Mammatool" produced the lowest number of benign tissues indicated with parametric overlay. All three software programs tested were adequate for sensitive and efficient assessment of dynamic MRI of the breast. Improvements in specificity may be achievable.

  14. Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmeijer, R.

    1994-11-01

    A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less

  15. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    PubMed Central

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-01-01

    Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639

  16. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping.

    PubMed

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-02-29

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  17. Modularity, quaternion-Kähler spaces, and mirror symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Sergei; Banerjee, Sibasish

    2013-10-15

    We provide an explicit twistorial construction of quaternion-Kähler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

  18. Spectral analysis for nonstationary and nonlinear systems: a discrete-time-model-based approach.

    PubMed

    He, Fei; Billings, Stephen A; Wei, Hua-Liang; Sarrigiannis, Ptolemaios G; Zhao, Yifan

    2013-08-01

    A new frequency-domain analysis framework for nonlinear time-varying systems is introduced based on parametric time-varying nonlinear autoregressive with exogenous input models. It is shown how the time-varying effects can be mapped to the generalized frequency response functions (FRFs) to track nonlinear features in frequency, such as intermodulation and energy transfer effects. A new mapping to the nonlinear output FRF is also introduced. A simulated example and the application to intracranial electroencephalogram data are used to illustrate the theoretical results.

  19. Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation

    NASA Astrophysics Data System (ADS)

    Ellinas, Demosthenes; Konstandakis, Christos

    2016-02-01

    Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.

  20. Estimating parametric phenotypes that determine anthesis date in zea mays: Challenges in combining ecophysiological models with genetics

    USDA-ARS?s Scientific Manuscript database

    Ecophysiological crop models encode intra-species behaviors using parameters that are presumed to summarize genotypic properties of individual lines or cultivars. These genotype-specific parameters (GSP’s) can be interpreted as quantitative traits that can be mapped or otherwise analyzed, as are mor...

  1. Dynamic-contrast-enhanced-MRI with extravasating contrast reagent: Rat cerebral glioma blood volume determination

    NASA Astrophysics Data System (ADS)

    Li, Xin; Rooney, William D.; Várallyay, Csanád G.; Gahramanov, Seymur; Muldoon, Leslie L.; Goodman, James A.; Tagge, Ian J.; Selzer, Audrey H.; Pike, Martin M.; Neuwelt, Edward A.; Springer, Charles S.

    2010-10-01

    The accurate mapping of the tumor blood volume (TBV) fraction ( vb) is a highly desired imaging biometric goal. It is commonly thought that achieving this is difficult, if not impossible, when small molecule contrast reagents (CRs) are used for the T1-weighted (Dynamic-Contrast-Enhanced) DCE-MRI technique. This is because angiogenic malignant tumor vessels allow facile CR extravasation. Here, a three-site equilibrium water exchange model is applied to DCE-MRI data from the cerebrally-implanted rat brain U87 glioma, a tumor exhibiting rapid CR extravasation. Analyses of segments of the (and the entire) DCE data time-course with this "shutter-speed" pharmacokinetic model, which admits finite water exchange kinetics, allow TBV estimation from the first-pass segment. Pairwise parameter determinances were tested with grid searches of 2D parametric error surfaces. Tumor blood volume ( vb), as well as ve (the extracellular, extravascular space volume fraction), and Ktrans (a CR extravasation rate measure) parametric maps are presented. The role of the Patlak Plot in DCE-MRI is also considered.

  2. Elastostatic stress analysis of orthotropic rectangular center-cracked plates

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, G. S.; Mendelson, A.

    1972-01-01

    A mapping-collocation method was developed for the elastostatic stress analysis of finite, anisotropic plates with centrally located traction-free cracks. The method essentially consists of mapping the crack into the unit circle and satisfying the crack boundary conditions exactly with the help of Muskhelishvili's function extension concept. The conditions on the outer boundary are satisfied approximately by applying the method of least-squares boundary collocation. A parametric study of finite-plate stress intensity factors, employing this mapping-collocation method, is presented. It shows the effects of varying material properties, orientation angle, and crack-length-to-plate-width and plate-height-to-plate-width ratios for rectangular orthotropic plates under constant tensile and shear loads.

  3. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  4. Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications

    PubMed Central

    2015-01-01

    We report the parametrization of the approximate density functional tight binding method, DFTB3, for sulfur and phosphorus. The parametrization is done in a framework consistent with our previous 3OB set established for O, N, C, and H, thus the resulting parameters can be used to describe a broad set of organic and biologically relevant molecules. The 3d orbitals are included in the parametrization, and the electronic parameters are chosen to minimize errors in the atomization energies. The parameters are tested using a fairly diverse set of molecules of biological relevance, focusing on the geometries, reaction energies, proton affinities, and hydrogen bonding interactions of these molecules; vibrational frequencies are also examined, although less systematically. The results of DFTB3/3OB are compared to those from DFT (B3LYP and PBE), ab initio (MP2, G3B3), and several popular semiempirical methods (PM6 and PDDG), as well as predictions of DFTB3 with the older parametrization (the MIO set). In general, DFTB3/3OB is a major improvement over the previous parametrization (DFTB3/MIO), and for the majority cases tested here, it also outperforms PM6 and PDDG, especially for structural properties, vibrational frequencies, hydrogen bonding interactions, and proton affinities. For reaction energies, DFTB3/3OB exhibits major improvement over DFTB3/MIO, due mainly to significant reduction of errors in atomization energies; compared to PM6 and PDDG, DFTB3/3OB also generally performs better, although the magnitude of improvement is more modest. Compared to high-level calculations, DFTB3/3OB is most successful at predicting geometries; larger errors are found in the energies, although the results can be greatly improved by computing single point energies at a high level with DFTB3 geometries. There are several remaining issues with the DFTB3/3OB approach, most notably its difficulty in describing phosphate hydrolysis reactions involving a change in the coordination number of the phosphorus, for which a specific parametrization (3OB/OPhyd) is developed as a temporary solution; this suggests that the current DFTB3 methodology has limited transferability for complex phosphorus chemistry at the level of accuracy required for detailed mechanistic investigations. Therefore, fundamental improvements in the DFTB3 methodology are needed for a reliable method that describes phosphorus chemistry without ad hoc parameters. Nevertheless, DFTB3/3OB is expected to be a competitive QM method in QM/MM calculations for studying phosphorus/sulfur chemistry in condensed phase systems, especially as a low-level method that drives the sampling in a dual-level QM/MM framework. PMID:24803865

  5. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy.

    PubMed

    Nieuwenhuys, Angela; Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with 'no or minor gait deviations' (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with 'no or minor gait deviations' differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made.

  6. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy

    PubMed Central

    Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made. PMID:28081229

  7. SU-G-JeP2-02: A Unifying Multi-Atlas Approach to Electron Density Mapping Using Multi-Parametric MRI for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, S; Tianjin University, Tianjin; Hara, W

    Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less

  8. Phase Transitions in Planning Problems: Design and Analysis of Parameterized Families of Hard Planning Problems

    NASA Technical Reports Server (NTRS)

    Hen, Itay; Rieffel, Eleanor G.; Do, Minh; Venturelli, Davide

    2014-01-01

    There are two common ways to evaluate algorithms: performance on benchmark problems derived from real applications and analysis of performance on parametrized families of problems. The two approaches complement each other, each having its advantages and disadvantages. The planning community has concentrated on the first approach, with few ways of generating parametrized families of hard problems known prior to this work. Our group's main interest is in comparing approaches to solving planning problems using a novel type of computational device - a quantum annealer - to existing state-of-the-art planning algorithms. Because only small-scale quantum annealers are available, we must compare on small problem sizes. Small problems are primarily useful for comparison only if they are instances of parametrized families of problems for which scaling analysis can be done. In this technical report, we discuss our approach to the generation of hard planning problems from classes of well-studied NP-complete problems that map naturally to planning problems or to aspects of planning problems that many practical planning problems share. These problem classes exhibit a phase transition between easy-to-solve and easy-to-show-unsolvable planning problems. The parametrized families of hard planning problems lie at the phase transition. The exponential scaling of hardness with problem size is apparent in these families even at very small problem sizes, thus enabling us to characterize even very small problems as hard. The families we developed will prove generally useful to the planning community in analyzing the performance of planning algorithms, providing a complementary approach to existing evaluation methods. We illustrate the hardness of these problems and their scaling with results on four state-of-the-art planners, observing significant differences between these planners on these problem families. Finally, we describe two general, and quite different, mappings of planning problems to QUBOs, the form of input required for a quantum annealing machine such as the D-Wave II.

  9. Entangled Parametric Hierarchies: Problems for an Overspecified Universal Grammar

    PubMed Central

    Boeckx, Cedric; Leivada, Evelina

    2013-01-01

    This study addresses the feasibility of the classical notion of parameter in linguistic theory from the perspective of parametric hierarchies. A novel program-based analysis is implemented in order to show certain empirical problems related to these hierarchies. The program was developed on the basis of an enriched data base spanning 23 contemporary and 5 ancient languages. The empirical issues uncovered cast doubt on classical parametric models of language acquisition as well as on the conceptualization of an overspecified Universal Grammar that has parameters among its primitives. Pinpointing these issues leads to the proposal that (i) the (bio)logical problem of language acquisition does not amount to a process of triggering innately pre-wired values of parameters and (ii) it paves the way for viewing language, epigenetic (‘parametric’) variation as an externalization-related epiphenomenon, whose learning component may be more important than what sometimes is assumed. PMID:24019867

  10. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Determination of Mechanical Properties of Spatially Heterogeneous Breast Tissue Specimens Using Contact Mode Atomic Force Microscopy (AFM)

    PubMed Central

    Roy, Rajarshi; Desai, Jaydev P.

    2016-01-01

    This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130

  12. Method for Separation of Blood Vessels on the Three-Color Images of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.

    2017-07-01

    A new technology was developed to improve the visibility of blood vessels on images of tissues of hollow human organs(the alimentary tract and respiratory system) based on the relation between the color components of the image, the scattering properties of the tissue, and its hemoglobin content. A statistical operator was presented to convert the three-color image of the tissue into a parametric map objectively characterizing the concentration of hemoglobin in the tissue regardless of the illumination and shooting conditions. An algorithm for obtaining conversion parameters for image systems with known spectral characteristics was presented. An image of a multilayer multiple-scattering medium modeling bronchial tissue was synthesized and was used to evaluate the efficiency of the proposed conversion system. It was shown that the conversion made it possible to increase the contrast of the blood vessels by almost two orders of magnitude, to significantly improve the clarity of the display of their borders, and to eliminate almost completely the influence of background and nonuniform illumination of the medium in comparison with the original image.

  13. Comparing Pixel and Object-Based Approaches to Map an Understorey Invasive Shrub in Tropical Mixed Forests

    PubMed Central

    Niphadkar, Madhura; Nagendra, Harini; Tarantino, Cristina; Adamo, Maria; Blonda, Palma

    2017-01-01

    The establishment of invasive alien species in varied habitats across the world is now recognized as a genuine threat to the preservation of biodiversity. Specifically, plant invasions in understory tropical forests are detrimental to the persistence of healthy ecosystems. Monitoring such invasions using Very High Resolution (VHR) satellite remote sensing has been shown to be valuable in designing management interventions for conservation of native habitats. Object-based classification methods are very helpful in identifying invasive plants in various habitats, by their inherent nature of imitating the ability of the human brain in pattern recognition. However, these methods have not been tested adequately in dense tropical mixed forests where invasion occurs in the understorey. This study compares a pixel-based and object-based classification method for mapping the understorey invasive shrub Lantana camara (Lantana) in a tropical mixed forest habitat in the Western Ghats biodiversity hotspot in India. Overall, a hierarchical approach of mapping top canopy at first, and then further processing for the understorey shrub, using measures such as texture and vegetation indices proved effective in separating out Lantana from other cover types. In the first method, we implement a simple parametric supervised classification for mapping cover types, and then process within these types for Lantana delineation. In the second method, we use an object-based segmentation algorithm to map cover types, and then perform further processing for separating Lantana. The improved ability of the object-based approach to delineate structurally distinct objects with characteristic spectral and spatial characteristics of their own, as well as with reference to their surroundings, allows for much flexibility in identifying invasive understorey shrubs among the complex vegetation of the tropical forest than that provided by the parametric classifier. Conservation practices in tropical mixed forests can benefit greatly by adopting methods which use high resolution remotely sensed data and advanced techniques to monitor the patterns and effective functioning of native ecosystems by periodically mapping disturbances such as invasion. PMID:28620400

  14. Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device.

    PubMed

    Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A

    2016-12-01

    Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.

  15. Perfusion CT in acute stroke: effectiveness of automatically-generated colour maps.

    PubMed

    Ukmar, Maja; Degrassi, Ferruccio; Pozzi Mucelli, Roberta Antea; Neri, Francesca; Mucelli, Fabio Pozzi; Cova, Maria Assunta

    2017-04-01

    To evaluate the accuracy of perfusion CT (pCT) in the definition of the infarcted core and the penumbra, comparing the data obtained from the evaluation of parametric maps [cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT)] with software-generated colour maps. A retrospective analysis was performed to identify patients with suspected acute ischaemic strokes and who had undergone unenhanced CT and pCT carried out within 4.5 h from the onset of the symptoms. A qualitative evaluation of the CBV, CBF and MTT maps was performed, followed by an analysis of the colour maps automatically generated by the software. 26 patients were identified, but a direct CT follow-up was performed only on 19 patients after 24-48 h. In the qualitative analysis, 14 patients showed perfusion abnormalities. Specifically, 29 perfusion deficit areas were detected, of which 15 areas suggested the penumbra and the remaining 14 areas suggested the infarct. As for automatically software-generated maps, 12 patients showed perfusion abnormalities. 25 perfusion deficit areas were identified, 15 areas of which suggested the penumbra and the other 10 areas the infarct. The McNemar's test showed no statistically significant difference between the two methods of evaluation in highlighting infarcted areas proved later at CT follow-up. We demonstrated how pCT provides good diagnostic accuracy in the identification of acute ischaemic lesions. The limits of identification of the lesions mainly lie at the pons level and in the basal ganglia area. Qualitative analysis has proven to be more efficient in identification of perfusion lesions in comparison with software-generated maps. However, software-generated maps have proven to be very useful in the emergency setting. Advances in knowledge: The use of CT perfusion is requested in increasingly more patients in order to optimize the treatment, thanks also to the technological evolution of CT, which now allows a whole-brain study. The need for performing CT perfusion study also in the emergency setting could represent a problem for physicians who are not used to interpreting the parametric maps (CBV, MTT etc.). The software-generated maps could be of value in these settings, helping the less expert physician in the differentiation between different areas.

  16. A parametric ribcage geometry model accounting for variations among the adult population.

    PubMed

    Wang, Yulong; Cao, Libo; Bai, Zhonghao; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2016-09-06

    The objective of this study is to develop a parametric ribcage model that can account for morphological variations among the adult population. Ribcage geometries, including 12 pair of ribs, sternum, and thoracic spine, were collected from CT scans of 101 adult subjects through image segmentation, landmark identification (1016 for each subject), symmetry adjustment, and template mesh mapping (26,180 elements for each subject). Generalized procrustes analysis (GPA), principal component analysis (PCA), and regression analysis were used to develop a parametric ribcage model, which can predict nodal locations of the template mesh according to age, sex, height, and body mass index (BMI). Two regression models, a quadratic model for estimating the ribcage size and a linear model for estimating the ribcage shape, were developed. The results showed that the ribcage size was dominated by the height (p=0.000) and age-sex-interaction (p=0.007) and the ribcage shape was significantly affected by the age (p=0.0005), sex (p=0.0002), height (p=0.0064) and BMI (p=0.0000). Along with proper assignment of cortical bone thickness, material properties and failure properties, this parametric ribcage model can directly serve as the mesh of finite element ribcage models for quantifying effects of human characteristics on thoracic injury risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. kruX: matrix-based non-parametric eQTL discovery.

    PubMed

    Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom

    2014-01-14

    The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.

  18. A New and General Formulation of the Parametric HFGMC Micromechanical Method for Three-Dimensional Multi-Phase Composites

    NASA Technical Reports Server (NTRS)

    Haj-Ali, Rami; Aboudi, Jacob

    2012-01-01

    The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields. These applications include triply periodic composites with inclusions in the form of a cavity, spherical inclusion, ellipsoidal inclusion, discontinuous aligned short fiber. A 3-D repeating unit-cell for foam material composite is simulated.

  19. Area of Stochastic Scrape-Off Layer for a Single-Null Divertor Tokamak Using Simple Map

    NASA Astrophysics Data System (ADS)

    Fisher, Tiffany; Verma, Arun; Punjabi, Alkesh

    1996-11-01

    The magnetic topology of a single-null divertor tokamak is represented by Simple Map (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). The Simple map is characterized by a single parameter k representing the toroidal asymmetry. The width of the stochastic scrape-off layer and its area varies with the map parameter k. We calculate the area of the stochastic scrape-off layer for different k's and obtain a parametric expression for the area in terms of k and y _LastGoodSurface(k). This work is supported by US DOE OFES. Tiffany Fisher is a HU CFRT Summer Fusion High school Workshop Scholar from New Bern High School in North Carolina. She is supported by NASA SHARP Plus Program.

  20. Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age.

    PubMed

    van Bergen, J M G; Li, X; Quevenco, F C; Gietl, A F; Treyer, V; Meyer, R; Buck, A; Kaufmann, P A; Nitsch, R M; van Zijl, P C M; Hock, C; Unschuld, P G

    2018-03-13

    The accumulation of β-amyloid plaques is a hallmark of Alzheimer's disease (AD), and recently published data suggest that increased brain iron burden may reflect pathologies that synergistically contribute to the development of cognitive dysfunction. While preclinical disease stages are considered most promising for therapeutic intervention, the link between emerging AD-pathology and earliest clinical symptoms remains largely unclear. In the current study we therefore investigated local correlations between iron and β-amyloid plaques, and their possible association with cognitive performance in healthy older adults. 116 older adults (mean age 75 ± 7.4 years) received neuropsychological testing to calculate a composite cognitive score of performance in episodic memory, executive functioning, attention, language and communication. All participants were scanned on a combined PET-MRI instrument and were administered T1-sequences for anatomical mapping, quantitative susceptibility mapping (QSM) for assessing iron, and 18F-Flutemetamol-PET for estimating β-amyloid plaque load. Biological parametric mapping (BPM) was used to generate masks indicating voxels with significant (p < 0.05) correlation between susceptibility and 18F-Flutemetamol-SUVR. We found a bilateral pattern of clusters characterized by a statistical relationship between magnetic susceptibility and 18F-Flutemetamol-SUVR, indicating local correlations between iron and β-amyloid plaque deposition. For two bilateral clusters, located in the frontal and temporal cortex, significant relationships (p<0.05) between local β-amyloid and the composite cognitive performance score could be observed. No relationship between whole-cortex β-amyloid plaque load and cognitive performance was observable. Our data suggest that the local correlation of β-amyloid plaque load and iron deposition may provide relevant information regarding cognitive performance of healthy older adults. Further studies are needed to clarify pathological correlates of the local interaction of β-amyloid, iron and other causes of altered magnetic susceptibility. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The Frontier Fields lens modelling comparison project

    NASA Astrophysics Data System (ADS)

    Meneghetti, M.; Natarajan, P.; Coe, D.; Contini, E.; De Lucia, G.; Giocoli, C.; Acebron, A.; Borgani, S.; Bradac, M.; Diego, J. M.; Hoag, A.; Ishigaki, M.; Johnson, T. L.; Jullo, E.; Kawamata, R.; Lam, D.; Limousin, M.; Liesenborgs, J.; Oguri, M.; Sebesta, K.; Sharon, K.; Williams, L. L. R.; Zitrin, A.

    2017-12-01

    Gravitational lensing by clusters of galaxies offers a powerful probe of their structure and mass distribution. Several research groups have developed techniques independently to achieve this goal. While these methods have all provided remarkably high-precision mass maps, particularly with exquisite imaging data from the Hubble Space Telescope (HST), the reconstructions themselves have never been directly compared. In this paper, we present for the first time a detailed comparison of methodologies for fidelity, accuracy and precision. For this collaborative exercise, the lens modelling community was provided simulated cluster images that mimic the depth and resolution of the ongoing HST Frontier Fields. The results of the submitted reconstructions with the un-blinded true mass profile of these two clusters are presented here. Parametric, free-form and hybrid techniques have been deployed by the participating groups and we detail the strengths and trade-offs in accuracy and systematics that arise for each methodology. We note in conclusion that several properties of the lensing clusters are recovered equally well by most of the lensing techniques compared in this study. For example, the reconstruction of azimuthally averaged density and mass profiles by both parametric and free-form methods matches the input models at the level of ∼10 per cent. Parametric techniques are generally better at recovering the 2D maps of the convergence and of the magnification. For the best-performing algorithms, the accuracy in the magnification estimate is ∼10 per cent at μtrue = 3 and it degrades to ∼30 per cent at μtrue ∼ 10.

  2. A parametric approach for simultaneous bias correction and high-resolution downscaling of climate model rainfall

    NASA Astrophysics Data System (ADS)

    Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino

    2017-03-01

    Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.

  3. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  4. A non-parametric peak calling algorithm for DamID-Seq.

    PubMed

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  5. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.

    PubMed

    Collins, Anne G E; Albrecht, Matthew A; Waltz, James A; Gold, James M; Frank, Michael J

    2017-09-15

    When studying learning, researchers directly observe only the participants' choices, which are often assumed to arise from a unitary learning process. However, a number of separable systems, such as working memory (WM) and reinforcement learning (RL), contribute simultaneously to human learning. Identifying each system's contributions is essential for mapping the neural substrates contributing in parallel to behavior; computational modeling can help to design tasks that allow such a separable identification of processes and infer their contributions in individuals. We present a new experimental protocol that separately identifies the contributions of RL and WM to learning, is sensitive to parametric variations in both, and allows us to investigate whether the processes interact. In experiments 1 and 2, we tested this protocol with healthy young adults (n = 29 and n = 52, respectively). In experiment 3, we used it to investigate learning deficits in medicated individuals with schizophrenia (n = 49 patients, n = 32 control subjects). Experiments 1 and 2 established WM and RL contributions to learning, as evidenced by parametric modulations of choice by load and delay and reward history, respectively. They also showed interactions between WM and RL, where RL was enhanced under high WM load. Moreover, we observed a cost of mental effort when controlling for reinforcement history: participants preferred stimuli they encountered under low WM load. Experiment 3 revealed selective deficits in WM contributions and preserved RL value learning in individuals with schizophrenia compared with control subjects. Computational approaches allow us to disentangle contributions of multiple systems to learning and, consequently, to further our understanding of psychiatric diseases. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  7. [Cybernetics and biology].

    PubMed

    Vasil'ev, G F

    2013-01-01

    Owing to methodical disadvantages, the theory of control still lacks the potential for the analysis of biological systems. To get the full benefit of the method in addition to the algorithmic model of control (as of today the only used model in the theory of control) a parametric model of control is offered to employ. The reasoning for it is explained. The approach suggested provides the possibility to use all potential of the modern theory of control for the analysis of biological systems. The cybernetic approach is shown taking a system of the rise of glucose concentration in blood as an example.

  8. Synthesis and Analysis of Custom Bi-directional Reflectivity Distribution Functions in DIRSIG

    NASA Astrophysics Data System (ADS)

    Dank, J.; Allen, D.

    2016-09-01

    The bi-directional reflectivity distribution (BRDF) function is a fundamental optical property of materials, characterizing important properties of light scattered by a surface. For accurate radiance calculations using synthetic targets and numerical simulations such as the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, fidelity of the target BRDFs is critical. While fits to measured BRDF data can be used in DIRSIG, obtaining high-quality data over a large spectral continuum can be time-consuming and expensive, requiring significant investment in illumination sources, sensors, and other specialized hardware. As a consequence, numerous parametric BRDF models are available to approximate actual behavior; but these all have shortcomings. Further, DIRSIG doesn't allow direct visualization of BRDFs, making it difficult for the user to understand the numerical impact of various models. Here, we discuss the innovative use of "mixture maps" to synthesize custom BRDFs as linear combinations of parametric models and measured data. We also show how DIRSIG's interactive mode can be used to visualize and analyze both available parametric models currently used in DIRSIG and custom BRDFs developed using our methods.

  9. Relative Critical Points

    NASA Astrophysics Data System (ADS)

    Lewis, Debra

    2013-05-01

    Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures - symplectic, Poisson, or variational - generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems - the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids - and generalizations of these systems.

  10. Parametric nonfeedback resonance in period doubling systems

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Corbalán, R.

    1999-02-01

    Slow periodic modulation of a control parameter in a period doubling system leads to an interaction between stable and unstable periodic orbits. This causes a resonance in the system response at the modulation frequency. The conditions for this resonance are studied through numerical simulations of quadratic map and laser equations. The results are confirmed by experiments in a CO2 laser with modulated losses.

  11. Non-parametric analysis of LANDSAT maps using neural nets and parallel computers

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1991-01-01

    Nearest neighbor approaches and a new neural network, the Binary Diamond, are used for the classification of images of ground pixels obtained by LANDSAT satellite. The performances are evaluated by comparing classifications of a scene in the vicinity of Washington DC. The problem of optimal selection of categories is addressed as a step in the classification process.

  12. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo; Andrew O. Finley; Heikkinen Juha

    2007-01-01

    The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease of use. When used with satellite imagery and forest...

  13. Optimization of Empirical Force Fields by Parameter Space Mapping: A Single-Step Perturbation Approach.

    PubMed

    Stroet, Martin; Koziara, Katarzyna B; Malde, Alpeshkumar K; Mark, Alan E

    2017-12-12

    A general method for parametrizing atomic interaction functions is presented. The method is based on an analysis of surfaces corresponding to the difference between calculated and target data as a function of alternative combinations of parameters (parameter space mapping). The consideration of surfaces in parameter space as opposed to local values or gradients leads to a better understanding of the relationships between the parameters being optimized and a given set of target data. This in turn enables for a range of target data from multiple molecules to be combined in a robust manner and for the optimal region of parameter space to be trivially identified. The effectiveness of the approach is illustrated by using the method to refine the chlorine 6-12 Lennard-Jones parameters against experimental solvation free enthalpies in water and hexane as well as the density and heat of vaporization of the liquid at atmospheric pressure for a set of 10 aromatic-chloro compounds simultaneously. Single-step perturbation is used to efficiently calculate solvation free enthalpies for a wide range of parameter combinations. The capacity of this approach to parametrize accurate and transferrable force fields is discussed.

  14. Inferring the three-dimensional distribution of dust in the Galaxy with a non-parametric method . Preparing for Gaia

    NASA Astrophysics Data System (ADS)

    Rezaei Kh., S.; Bailer-Jones, C. A. L.; Hanson, R. J.; Fouesneau, M.

    2017-02-01

    We present a non-parametric model for inferring the three-dimensional (3D) distribution of dust density in the Milky Way. Our approach uses the extinction measured towards stars at different locations in the Galaxy at approximately known distances. Each extinction measurement is proportional to the integrated dust density along its line of sight (LoS). Making simple assumptions about the spatial correlation of the dust density, we can infer the most probable 3D distribution of dust across the entire observed region, including along sight lines which were not observed. This is possible because our model employs a Gaussian process to connect all LoS. We demonstrate the capability of our model to capture detailed dust density variations using mock data and simulated data from the Gaia Universe Model Snapshot. We then apply our method to a sample of giant stars observed by APOGEE and Kepler to construct a 3D dust map over a small region of the Galaxy. Owing to our smoothness constraint and its isotropy, we provide one of the first maps which does not show the "fingers of God" effect.

  15. Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isham, C.J.; Kuchar, K.V.

    The super-Hamiltonian and supermomentum in canonical geometrodynamics or in a parametried field theory on a given Riemannian background have Poisson brackets which obey the Dirac relations. By smearing the supermomentum with vector fields VepsilonL Diff..sigma.. on the space manifold ..sigma.., the Lie algebra L Diff ..sigma.. of the spatial diffeomorphism group Diff ..sigma.. can be mapped antihomomorphically into the Poisson bracket algebra on the phase space of the system. The explicit dependence of the Poisson brackets between two super-Hamiltonians on canonical coordinates (spatial metrics in geometrodynamics and embedding variables in parametrized theories) is usually regarded as an indication that themore » Dirac relations cannot be connected with a representation of the complete Lie algebra L Diff M of spacetime diffeomorphisms.« less

  16. Pechukas-Yukawa approach to the evolution of the quantum state of a parametrically perturbed system

    NASA Astrophysics Data System (ADS)

    Qureshi, Mumnuna A.; Zhong, Johnny; Qureshi, Zihad; Mason, Peter; Betouras, Joseph J.; Zagoskin, Alexandre M.

    2018-03-01

    We consider the evolution of the quantum states of a Hamiltonian that is parametrically perturbed via a term proportional to the adiabatic parameter λ (t ) . Starting with the Pechukas-Yukawa mapping of the energy eigenvalue evolution in a generalized Calogero-Sutherland model of a one-dimensional classical gas, we consider the adiabatic approximation with two different expansions of the quantum state in powers of d λ /d t and compare them with a direct numerical simulation. We show that one of these expansions (Magnus series) is especially convenient for the description of nonadiabatic evolution of the system. Applying the expansion to the exact cover 3-satisfiability problem, we obtain the occupation dynamics, which provides insight into the population of states and sources of decoherence in a quantum system.

  17. Pinching parameters for open (super) strings

    NASA Astrophysics Data System (ADS)

    Playle, Sam; Sciuto, Stefano

    2018-02-01

    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the α ' → 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.

  18. Economic policy optimization based on both one stochastic model and the parametric control theory

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar; Borovskiy, Yuriy; Onalbekov, Mukhit

    2016-06-01

    A nonlinear dynamic stochastic general equilibrium model with financial frictions is developed to describe two interacting national economies in the environment of the rest of the world. Parameters of nonlinear model are estimated based on its log-linearization by the Bayesian approach. The nonlinear model is verified by retroprognosis, estimation of stability indicators of mappings specified by the model, and estimation the degree of coincidence for results of internal and external shocks' effects on macroeconomic indicators on the basis of the estimated nonlinear model and its log-linearization. On the base of the nonlinear model, the parametric control problems of economic growth and volatility of macroeconomic indicators of Kazakhstan are formulated and solved for two exchange rate regimes (free floating and managed floating exchange rates)

  19. Statistical parametric mapping of the regional distribution and ontogenetic scaling of foot pressures during walking in Asian elephants (Elephas maximus).

    PubMed

    Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R

    2012-05-01

    Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet.

  20. Novel cardiac magnetic resonance biomarkers: native T1 and extracellular volume myocardial mapping.

    PubMed

    Cannaò, Paola Maria; Altabella, Luisa; Petrini, Marcello; Alì, Marco; Secchi, Francesco; Sardanelli, Francesco

    2016-04-28

    Cardiac magnetic resonance (CMR) is a non-invasive diagnostic tool playing a key role in the assessment of cardiac morphology and function as well as in tissue characterization. Late gadolinium enhancement is a fundamental CMR technique for detecting focal or regional abnormalities such as scar tissue, replacement fibrosis, or inflammation using qualitative, semi-quantitative, or quantitative methods, but not allowing for evaluating the whole myocardium in the presence of diffuse disease. The novel T1 mapping approach permits a quantitative assessment of the entire myocardium providing a voxel-by-voxel map of native T1 relaxation time, obtained before the intravenous administration of gadolinium-based contrast material. Combining T1 data obtained before and after contrast injection, it is also possible to calculate the voxel-by-voxel extracellular volume (ECV), resulting in another myocardial parametric map. This article describes technical challenges and clinical perspectives of these two novel CMR biomarkers: myocardial native T1 and ECV mapping.

  1. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population

    PubMed Central

    Villanueva, Pia; Newbury, Dianne F; Jara, Lilian; De Barbieri, Zulema; Mirza, Ghazala; Palomino, Hernán M; Fernández, María Angélica; Cazier, Jean-Baptiste; Monaco, Anthony P; Palomino, Hernán

    2011-01-01

    Specific language impairment (SLI) is an unexpected deficit in the acquisition of language skills and affects between 5 and 8% of pre-school children. Despite its prevalence and high heritability, our understanding of the aetiology of this disorder is only emerging. In this paper, we apply genome-wide techniques to investigate an isolated Chilean population who exhibit an increased frequency of SLI. Loss of heterozygosity (LOH) mapping and parametric and non-parametric linkage analyses indicate that complex genetic factors are likely to underlie susceptibility to SLI in this population. Across all analyses performed, the most consistently implicated locus was on chromosome 7q. This locus achieved highly significant linkage under all three non-parametric models (max NPL=6.73, P=4.0 × 10−11). In addition, it yielded a HLOD of 1.24 in the recessive parametric linkage analyses and contained a segment that was homozygous in two affected individuals. Further, investigation of this region identified a two-SNP haplotype that occurs at an increased frequency in language-impaired individuals (P=0.008). We hypothesise that the linkage regions identified here, in particular that on chromosome 7, may contain variants that underlie the high prevalence of SLI observed in this isolated population and may be of relevance to other populations affected by language impairments. PMID:21248734

  2. kruX: matrix-based non-parametric eQTL discovery

    PubMed Central

    2014-01-01

    Background The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. Results We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. Conclusion kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com. PMID:24423115

  3. A discrete epidemic model for bovine Babesiosis disease and tick populations

    NASA Astrophysics Data System (ADS)

    Aranda, Diego F.; Trejos, Deccy Y.; Valverde, Jose C.

    2017-06-01

    In this paper, we provide and study a discrete model for the transmission of Babesiosis disease in bovine and tick populations. This model supposes a discretization of the continuous-time model developed by us previously. The results, here obtained by discrete methods as opposed to continuous ones, show that similar conclusions can be obtained for the discrete model subject to the assumption of some parametric constraints which were not necessary in the continuous case. We prove that these parametric constraints are not artificial and, in fact, they can be deduced from the biological significance of the model. Finally, some numerical simulations are given to validate the model and verify our theoretical study.

  4. Specific cerebral activation due to visual erotic stimuli in male-to-female transsexuals compared with male and female controls: an fMRI study.

    PubMed

    Gizewski, Elke R; Krause, Eva; Schlamann, Marc; Happich, Friederike; Ladd, Mark E; Forsting, Michael; Senf, Wolfgang

    2009-02-01

    Transsexuals harbor the strong feeling of having been born to the wrong sex. There is a continuing controversial discussion of whether or not transsexualism has a biological representation. Differences between males and females in terms of functional imaging during erotic stimuli have been previously described, revealing gender-specific results. Therefore, we postulated that male-to-female (MTF) transsexuals may show specific cerebral activation differing from their biological gender. Cerebral activation patterns during viewing of erotic film excerpts in functional magnetic resonance imaging (fMRI). Twelve male and 12 female heterosexual volunteers and 12 MTF transsexuals before any treatment viewed erotic film excerpts during fMRI. Additionally, subjective rating of sexual arousal was assessed. Statistics were performed using the Statistical Parametric Mapping software. Significantly enhanced activation for men compared with women was revealed in brain areas involved in erotic processing, i.e., the thalamus, the amygdala, and the orbitofrontal and insular cortex, whereas no specific activation for women was found. When comparing MTF transsexuals with male volunteers, activation patterns similar to female volunteers being compared with male volunteers were revealed. Sexual arousal was assessed using standard rating scales and did not differ significantly for the three groups. We revealed a cerebral activation pattern in MTF transsexuals compared with male controls similar to female controls compared with male controls during viewing of erotic stimuli, indicating a tendency of female-like cerebral processing in transsexualism.

  5. Measurement of CIB power spectra with CAM-SPEC from Planck HFI maps

    NASA Astrophysics Data System (ADS)

    Mak, Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine

    2015-08-01

    We present new measurements of the cosmic infrared background (CIB) anisotropies and its first likelihood using Planck HFI data at 353, 545, and 857 GHz. The measurements are based on cross-frequency power spectra and likelihood analysis using the CAM-SPEC package, rather than map based template removal of foregrounds as done in previous Planck CIB analysis. We construct the likelihood of the CIB temperature fluctuations, an extension of CAM-SPEC likelihood as used in CMB analysis to higher frequency, and use it to drive the best estimate of the CIB power spectrum over three decades in multiple moment, l, covering 50 ≤ l ≤ 2500. We adopt parametric models of the CIB and foreground contaminants (Galactic cirrus, infrared point sources, and cosmic microwave background anisotropies), and calibrate the dataset uniformly across frequencies with known Planck beam and noise properties in the likelihood construction. We validate our likelihood through simulations and extensive suite of consistency tests, and assess the impact of instrumental and data selection effects on the final CIB power spectrum constraints. Two approaches are developed for interpreting the CIB power spectrum. The first approach is based on simple parametric model which model the cross frequency power using amplitudes, correlation coefficients, and known multipole dependence. The second approach is based on the physical models for galaxy clustering and the evolution of infrared emission of galaxies. The new approaches fit all auto- and cross- power spectra very well, with the best fit of χ2ν = 1.04 (parametric model). Using the best foreground solution, we find that the cleaned CIB power spectra are in good agreement with previous Planck and Herschel measurements.

  6. Apparatus and Methods for Manipulation and Optimization of Biological Systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2014-01-01

    The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.

  7. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryainov, V V

    2015-01-31

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less

  8. A parametric study of various synthetic aperture telescope configurations for coherent imaging applications

    NASA Technical Reports Server (NTRS)

    Harvey, James E.; Wissinger, Alan B.; Bunner, Alan N.

    1986-01-01

    The comparative advantages of synthetic aperture telescopes (SATs) of segmented primary mirror and common secondary mirror type, on the one hand, and on the other those employing an array of independent telescopes, are discussed. The diffraction-limited optical performance of both redundant and nonredundant subaperture configurations are compared in terms of point spread function characteristics and encircled energy plots. Coherent imaging with afocal telescope SATs involves a pupil-mapping operation followed by a Fourier transform one. A quantitative analysis of the off-axis optical performance degradation due to pupil-mapping errors is presented, together with the field-dependent effects of residual design aberrations of independent telescopes.

  9. A statistical method (cross-validation) for bone loss region detection after spaceflight

    PubMed Central

    Zhao, Qian; Li, Wenjun; Li, Caixia; Chu, Philip W.; Kornak, John; Lang, Thomas F.

    2010-01-01

    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. PMID:20632144

  10. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-03-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.

  11. Investigation of the Effects of High-Intensity, Intermittent Exercise and Unanticipation on Trunk and Lower Limb Biomechanics During a Side-Cutting Maneuver Using Statistical Parametric Mapping.

    PubMed

    Whyte, Enda F; Richter, Chris; OʼConnor, Siobhan; Moran, Kieran A

    2018-06-01

    Whyte, EF, Richter, C, O'Connor, S, and Moran, KA. Investigation of the effects of high-intensity, intermittent exercise and unanticipation on trunk and lower limb biomechanics during a side-cutting maneuver using statistical parametric mapping. J Strength Cond Res 32(6): 1583-1593, 2018-Anterior cruciate ligament (ACL) injuries frequently occur during side-cutting maneuvers when fatigued or reacting to the sporting environment. Trunk and hip biomechanics are proposed to influence ACL loading during these activities. However, the effects of fatigue and unanticipation on the biomechanics of the kinetic chain may be limited by traditional discrete point analysis. We recruited 28 male, varsity, Gaelic footballers (21.7 ± 2.2 years; 178.7 ± 14.6 m; 81.8 ± 11.4 kg) to perform anticipated and unanticipated side-cutting maneuvers before and after a high-intensity, intermittent exercise protocol (HIIP). Statistical parametric mapping (repeated-measures analysis of varience) identified differences in phases of trunk and stance leg biomechanics during weight acceptance. Unanticipation resulted in less trunk flexion (p < 0.001) and greater side flexion away from the direction of cut (p < 0.001). This led to smaller (internal) knee flexor and greater (internal) knee extensor (p = 0.002-0.007), hip adductor (p = 0.005), and hip external rotator (p = 0.007) moments. The HIIP resulted in increased trunk flexion (p < 0.001) and side flexion away from the direction of cut (p = 0.038), resulting in smaller (internal) knee extensor moments (p = 0.006). One interaction effect was noted demonstrating greater hip extensor moments in the unanticipated condition post-HIIP (p = 0.025). Results demonstrate that unanticipation resulted in trunk kinematics considered an ACL injury risk factor. A subsequent increase in frontal and transverse plane hip loading and sagittal plane knee loading was observed, which may increase ACL strain. Conversely, HIIP-induced trunk kinematic alterations resulted in reduced sagittal plane knee and subsequent ACL loading. Therefore, adequate hip and knee control is important during unanticipated side-cutting maneuvers.

  12. Spectral Clustering Predicts Tumor Tissue Heterogeneity Using Dynamic 18F-FDG PET: A Complement to the Standard Compartmental Modeling Approach.

    PubMed

    Katiyar, Prateek; Divine, Mathew R; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Schölkopf, Bernhard; Pichler, Bernd J; Disselhorst, Jonathan A

    2017-04-01

    In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic 18 F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. Methods: An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical 18 F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types. The simulated time-activity curves were corrupted with different levels of noise and used to calculate the tissue-type misclassification errors of spectral clustering (SC), parametric maps, and SUV segmentation. The utility of the inverse noise variance- and Laplacian score-derived frame weighting schemes before SC was also investigated. Finally, the SC scheme with the best results was tested on a dynamic 18 F-FDG measurement of a mouse bearing subcutaneous colon cancer and validated using histology. Results: In the preclinical setup, the inverse noise variance-weighted SC exhibited the lowest misclassification errors (8.09%-28.53%) at all noise levels in contrast to the Laplacian score-weighted SC (16.12%-31.23%), unweighted SC (25.73%-40.03%), parametric maps (28.02%-61.45%), and SUV (45.49%-45.63%) segmentation. The classification efficacy of both weighted SC schemes in the clinical case was comparable to the unweighted SC. When applied to the dynamic 18 F-FDG measurement of colon cancer, the proposed algorithm accurately identified densely vascularized regions from the rest of the tumor. In addition, the segmented regions and clusterwise average time-activity curves showed excellent correlation with the tumor histology. Conclusion: The promising results of SC mark its position as a robust tool for quantification of tumor heterogeneity using dynamic PET studies. Because SC tumor segmentation is based on the intrinsic structure of the underlying data, it can be easily applied to other cancer types as well. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2).

    PubMed

    Duits, R; Boscain, U; Rossi, F; Sachkov, Y

    To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P curve of minimizing [Formula: see text] for a planar curve having fixed initial and final positions and directions. Here κ ( s ) is the curvature of the curve with free total length ℓ . This problem comes from a model of geometry of vision due to Petitot (in J. Physiol. Paris 97:265-309, 2003; Math. Inf. Sci. Humaines 145:5-101, 1999), and Citti & Sarti (in J. Math. Imaging Vis. 24(3):307-326, 2006). In previous work we proved that the range [Formula: see text] of the exponential map of the underlying geometric problem formulated on SE(2) consists of precisely those end-conditions ( x fin , y fin , θ fin ) that can be connected by a globally minimizing geodesic starting at the origin ( x in , y in , θ in )=(0,0,0). From the applied imaging point of view it is relevant to analyze the sub-Riemannian geodesics and [Formula: see text] in detail. In this article we show that [Formula: see text] is contained in half space x ≥0 and (0, y fin )≠(0,0) is reached with angle π ,show that the boundary [Formula: see text] consists of endpoints of minimizers either starting or ending in a cusp,analyze and plot the cones of reachable angles θ fin per spatial endpoint ( x fin , y fin ),relate the endings of association fields to [Formula: see text] and compute the length towards a cusp,analyze the exponential map both with the common arc-length parametrization t in the sub-Riemannian manifold [Formula: see text] and with spatial arc-length parametrization s in the plane [Formula: see text]. Surprisingly, s -parametrization simplifies the exponential map, the curvature formulas, the cusp-surface, and the boundary value problem,present a novel efficient algorithm solving the boundary value problem,show that sub-Riemannian geodesics solve Petitot's circle bundle model (cf. Petitot in J. Physiol. Paris 97:265-309, [2003]),show a clear similarity with association field lines and sub-Riemannian geodesics.

  14. Multi-parametric monitoring and assessment of High Intensity Focused Ultrasound (HIFU) boiling by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): An ex vivo feasibility study

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase-shift during high energy HIFU treatment with tissue boiling. Forty three (n=43) thermal lesions were formed in ex vivo canine liver specimens (n=28). Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-s, 20-s and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and Passive Cavitation Detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δφ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite unpredictable changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property change throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes. PMID:24556974

  15. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-03-07

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.

  16. Space biology initiative program definition review. Trade study 4: Design modularity and commonality

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.

  17. Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens

    2014-03-01

    The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all valuable perfusion information required for a voxel-based tissue outcome prediction, while the complete analysis of the residue functions does not add further benefits for the voxel-wise tissue outcome prediction and is also computationally more expensive.

  18. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    NASA Astrophysics Data System (ADS)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-03-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1) = 21.508; p < .001) and higher-order (F(1) = 42.842, p < .001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.

  19. Documenting the location of systematic transrectal ultrasound-guided prostate biopsies: correlation with multi-parametric MRI.

    PubMed

    Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A

    2011-03-29

    During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.

  20. Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping

    PubMed Central

    Yarnykh, Vasily L.

    2015-01-01

    Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097

  1. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

    PubMed Central

    2016-01-01

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602

  2. Genetic Networks and Anticipation of Gene Expression Patterns

    NASA Astrophysics Data System (ADS)

    Gebert, J.; Lätsch, M.; Pickl, S. W.; Radde, N.; Weber, G.-W.; Wünschiers, R.

    2004-08-01

    An interesting problem for computational biology is the analysis of time-series expression data. Here, the application of modern methods from dynamical systems, optimization theory, numerical algorithms and the utilization of implicit discrete information lead to a deeper understanding. In [1], we suggested to represent the behavior of time-series gene expression patterns by a system of ordinary differential equations, which we analytically and algorithmically investigated under the parametrical aspect of stability or instability. Our algorithm strongly exploited combinatorial information. In this paper, we deepen, extend and exemplify this study from the viewpoint of underlying mathematical modelling. This modelling consists in evaluating DNA-microarray measurements as the basis of anticipatory prediction, in the choice of a smooth model given by differential equations, in an approach of the right-hand side with parametric matrices, and in a discrete approximation which is a least squares optimization problem. We give a mathematical and biological discussion, and pay attention to the special case of a linear system, where the matrices do not depend on the state of expressions. Here, we present first numerical examples.

  3. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence

    PubMed Central

    Schlagenhauf, Florian; Rapp, Michael A.; Huys, Quentin J. M.; Beck, Anne; Wüstenberg, Torsten; Deserno, Lorenz; Buchholz, Hans-Georg; Kalbitzer, Jan; Buchert, Ralph; Kienast, Thorsten; Cumming, Paul; Plotkin, Michail; Kumakura, Yoshitaka; Grace, Anthony A.; Dolan, Raymond J.; Heinz, Andreas

    2013-01-01

    Fluid intelligence represents the capacity for flexible problem solving and rapid behavioral adaptation. Rewards drive flexible behavioral adaptation, in part via a teaching signal expressed as reward prediction errors in the ventral striatum, which has been associated with phasic dopamine release in animal studies. We examined a sample of 28 healthy male adults using multimodal imaging and biological parametric mapping with 1) functional magnetic resonance imaging during a reversal learning task and 2) in a subsample of 17 subjects also with positron emission tomography using 6-[18F]fluoro-L-DOPA to assess dopamine synthesis capacity. Fluid intelligence was measured using a battery of nine standard neuropsychological tests. Ventral striatal BOLD correlates of reward prediction errors were positively correlated with fluid intelligence and, in the right ventral striatum, also inversely correlated with dopamine synthesis capacity (FDOPA Kinapp). When exploring aspects of fluid intelligence, we observed that prediction error signaling correlates with complex attention and reasoning. These findings indicate that individual differences in the capacity for flexible problem solving may be driven by ventral striatal activation during reward-related learning, which in turn proved to be inversely associated with ventral striatal dopamine synthesis capacity. PMID:22344813

  4. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    PubMed

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  5. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Tamate, S.; Yamamoto, Y.; Takesue, H.; Inagaki, T.; Utsunomiya, S.

    2018-01-01

    We present an experimental scheme of implementing multiple spins in a classical XY model using a non-degenerate optical parametric oscillator (NOPO) network. We built an NOPO network to simulate a one-dimensional XY Hamiltonian with 5000 spins and externally controllable effective temperatures. The XY spin variables in our scheme are mapped onto the phases of multiple NOPO pulses in a single ring cavity and interactions between XY spins are implemented by mutual injections between NOPOs. We show the steady-state distribution of optical phases of such NOPO pulses is equivalent to the Boltzmann distribution of the corresponding XY model. Estimated effective temperatures converged to the setting values, and the estimated temperatures and the mean energy exhibited good agreement with the numerical simulations of the Langevin dynamics of NOPO phases.

  6. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    PubMed

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  7. Track structure model for damage to mammalian cell cultures during solar proton events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.

    1992-01-01

    Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.

  8. Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403

    DOE PAGES

    Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad; ...

    2016-06-17

    Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less

  9. Semiautomated Workflow for Clinically Streamlined Glioma Parametric Response Mapping

    PubMed Central

    Keith, Lauren; Ross, Brian D.; Galbán, Craig J.; Luker, Gary D.; Galbán, Stefanie; Zhao, Binsheng; Guo, Xiaotao; Chenevert, Thomas L.; Hoff, Benjamin A.

    2017-01-01

    Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging protocols for determining targeted response. Clinical response assessment for brain tumors is determined by volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging. Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used for patient management; an automated and standardized software for performing the analysis and for the generation of a clinical report document is required for this. We present a semiautomated and seamless workflow for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted magnetic resonance imaging scans. The software solution can be integrated using local hardware or performed remotely in the cloud while providing connectivity to existing picture archive and communication systems. This is an important step toward implementing PRM analysis of solid tumors in routine clinical practice. PMID:28286871

  10. Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad

    Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less

  11. Ground Demonstration of Planetary Gas Lidar Based on Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2012-01-01

    We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has high spectral purity and is widely tunable both at near-infrared and mid-infrared wavelengths, with an optical-optica1 conversion efficiency of up to approx 39 %. Using this laser source, we demonstrated open-path measurements of CH4 (3291 nm and 1651 nm), CO2 (1573 nm), H2O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability. and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology,

  12. LORETA imaging of P300 in schizophrenia with individual MRI and 128-channel EEG.

    PubMed

    Pae, Ji Soo; Kwon, Jun Soo; Youn, Tak; Park, Hae-Jeong; Kim, Myung Sun; Lee, Boreom; Park, Kwang Suk

    2003-11-01

    We investigated the characteristics of P300 generators in schizophrenics by using voxel-based statistical parametric mapping of current density images. P300 generators, produced by a rare target tone of 1500 Hz (15%) under a frequent nontarget tone of 1000 Hz (85%), were measured in 20 right-handed schizophrenics and 21 controls. Low-resolution electromagnetic tomography (LORETA), using a realistic head model of the boundary element method based on individual MRI, was applied to the 128-channel EEG. Three-dimensional current density images were reconstructed from the LORETA intensity maps that covered the whole cortical gray matter. Spatial normalization and intensity normalization of the smoothed current density images were used to reduce anatomical variance and subject-specific global activity and statistical parametric mapping (SPM) was applied for the statistical analysis. We found that the sources of P300 were consistently localized at the left superior parietal area in normal subjects, while those of schizophrenics were diversely distributed. Upon statistical comparison, schizophrenics, with globally reduced current densities, showed a significant P300 current density reduction in the left medial temporal area and in the left inferior parietal area, while both left prefrontal and right orbitofrontal areas were relatively activated. The left parietotemporal area was found to correlate negatively with Positive and Negative Syndrome Scale total scores of schizophrenic patients. In conclusion, the reduced and increased areas of current density in schizophrenic patients suggest that the medial temporal and frontal areas contribute to the pathophysiology of schizophrenia, the frontotemporal circuitry abnormality.

  13. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  14. Optimized statistical parametric mapping procedure for NIRS data contaminated by motion artifacts : Neurometric analysis of body schema extension.

    PubMed

    Suzuki, Satoshi

    2017-09-01

    This study investigated the spatial distribution of brain activity on body schema (BS) modification induced by natural body motion using two versions of a hand-tracing task. In Task 1, participants traced Japanese Hiragana characters using the right forefinger, requiring no BS expansion. In Task 2, participants performed the tracing task with a long stick, requiring BS expansion. Spatial distribution was analyzed using general linear model (GLM)-based statistical parametric mapping of near-infrared spectroscopy data contaminated with motion artifacts caused by the hand-tracing task. Three methods were utilized in series to counter the artifacts, and optimal conditions and modifications were investigated: a model-free method (Step 1), a convolution matrix method (Step 2), and a boxcar-function-based Gaussian convolution method (Step 3). The results revealed four methodological findings: (1) Deoxyhemoglobin was suitable for the GLM because both Akaike information criterion and the variance against the averaged hemodynamic response function were smaller than for other signals, (2) a high-pass filter with a cutoff frequency of .014 Hz was effective, (3) the hemodynamic response function computed from a Gaussian kernel function and its first- and second-derivative terms should be included in the GLM model, and (4) correction of non-autocorrelation and use of effective degrees of freedom were critical. Investigating z-maps computed according to these guidelines revealed that contiguous areas of BA7-BA40-BA21 in the right hemisphere became significantly activated ([Formula: see text], [Formula: see text], and [Formula: see text], respectively) during BS modification while performing the hand-tracing task.

  15. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    PubMed Central

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  16. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  17. An Alternative to Mapping a Word onto a Concept in Language Acquisition: Pragmatic Frames

    PubMed Central

    Rohlfing, Katharina J.; Wrede, Britta; Vollmer, Anna-Lisa; Oudeyer, Pierre-Yves

    2016-01-01

    The classic mapping metaphor posits that children learn a word by mapping it onto a concept of an object or event. However, we believe that a mapping metaphor cannot account for word learning, because even though children focus attention on objects, they do not necessarily remember the connection between the word and the referent unless it is framed pragmatically, that is, within a task. Our theoretical paper proposes an alternative mechanism for word learning. Our main premise is that word learning occurs as children accomplish a goal in cooperation with a partner. We follow Bruner’s (1983) idea and further specify pragmatic frames as the learning units that drive language acquisition and cognitive development. These units consist of a sequence of actions and verbal behaviors that are co-constructed with a partner to achieve a joint goal. We elaborate on this alternative, offer some initial parametrizations of the concept, and embed it in current language learning approaches. PMID:27148105

  18. In Situ Optical Mapping of Voltage and Calcium in the Heart

    PubMed Central

    Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.

    2012-01-01

    Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327

  19. Spatial planning using probabilistic flood maps

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Mukolwe, Micah; Di Baldassarre, Giuliano

    2015-04-01

    Probabilistic flood maps account for uncertainty in flood inundation modelling and convey a degree of certainty in the outputs. Major sources of uncertainty include input data, topographic data, model structure, observation data and parametric uncertainty. Decision makers prefer less ambiguous information from modellers; this implies that uncertainty is suppressed to yield binary flood maps. Though, suppressing information may potentially lead to either surprise or misleading decisions. Inclusion of uncertain information in the decision making process is therefore desirable and transparent. To this end, we utilise the Prospect theory and information from a probabilistic flood map to evaluate potential decisions. Consequences related to the decisions were evaluated using flood risk analysis. Prospect theory explains how choices are made given options for which probabilities of occurrence are known and accounts for decision makers' characteristics such as loss aversion and risk seeking. Our results show that decision making is pronounced when there are high gains and loss, implying higher payoffs and penalties, therefore a higher gamble. Thus the methodology may be appropriately considered when making decisions based on uncertain information.

  20. Ionization of biomolecular targets by ion impact: input data for radiobiological applications

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2013-06-01

    In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.

  1. Comparing the information content of coral reef geomorphological and biological habitat maps, Amirantes Archipelago (Seychelles), Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hamylton, S.; Andréfouët, S.; Spencer, T.

    2012-10-01

    Increasing the use of geomorphological map products in marine spatial planning has the potential to greatly enhance return on mapping investment as they are commonly two orders of magnitude cheaper to produce than biologically-focussed maps of benthic communities and shallow substrates. The efficacy of geomorphological maps derived from remotely sensed imagery as surrogates for habitat diversity is explored by comparing two map sets of the platform reefs and atolls of the Amirantes Archipelago (Seychelles), Western Indian Ocean. One mapping campaign utilised Compact Airborne Spectrographic Imagery (19 wavebands, 1 m spatial resolution) to classify 11 islands and associated reefs into 25 biological habitat classes while the other campaign used Landsat 7 + ETM imagery (7 bands, 30 m spatial resolution) to generate maps of 14 geomorphic classes. The maps were compared across a range of characteristics, including habitat richness (number of classes mapped), diversity (Shannon-Weiner statistic) and thematic content (Cramer's V statistic). Between maps, a strong relationship was revealed for habitat richness (R2 = 0.76), a moderate relationship for class diversity and evenness (R2 = 0.63) and a variable relationship for thematic content, dependent on site complexity (V range 0.43-0.93). Geomorphic maps emerged as robust predictors of the habitat richness in the Amirantes. Such maps therefore demonstrate high potential value for informing coastal management activities and conservation planning by drawing on information beyond their own thematic content and thus maximizing the return on mapping investment.

  2. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    ERIC Educational Resources Information Center

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from…

  3. High-resolution modeling of a marine ecosystem using the FRESCO hydroecological model

    NASA Astrophysics Data System (ADS)

    Zalesny, V. B.; Tamsalu, R.

    2009-02-01

    The FRESCO (Finnish Russian Estonian Cooperation) mathematical model describing a marine hydroecosystem is presented. The methodology of the numerical solution is based on the method of multicomponent splitting into physical and biological processes, spatial coordinates, etc. The model is used for the reproduction of physical and biological processes proceeding in the Baltic Sea. Numerical experiments are performed with different spatial resolutions for four marine basins that are enclosed into one another: the Baltic Sea, the Gulf of Finland, the Tallinn-Helsinki water area, and Tallinn Bay. Physical processes are described by the equations of nonhydrostatic dynamics, including the k-ω parametrization of turbulence. Biological processes are described by the three-dimensional equations of an aquatic ecosystem with the use of a size-dependent parametrization of biochemical reactions. The main goal of this study is to illustrate the efficiency of the developed numerical technique and to demonstrate the importance of a high spatial resolution for water basins that have complex bottom topography, such as the Baltic Sea. Detailed information about the atmospheric forcing, bottom topography, and coastline is very important for the description of coastal dynamics and specific features of a marine ecosystem. Experiments show that the spatial inhomogeneity of hydroecosystem fields is caused by the combined effect of upwelling, turbulent mixing, surface-wave breaking, and temperature variations, which affect biochemical reactions.

  4. Tampa Bay environmental atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunneke, J.T.; Palik, T.F.

    1984-12-01

    Biological and water resource data for Tampa Bay were compiled and mapped at a scale of 1:24,000. This atlas consists of (1) composited information overlain on 18 biological and 20 water resource base maps and (2) an accompanying map narrative. Subjects mapped on the water resource maps are contours of the mean middepth specific conductivity which can be converted to salinity; bathymetry, sediments, tidal currents, the freshwater/saltwater interface, dredge spoil disposal sites; locations of industrial and municipal point source discharges, tide stations, and water quality sampling stations. The point source discharge locations show permitted capacity and the water quality samplingmore » stations show 5-year averages for chlorophyll, conductivity, turbidity, temperature, and total nitrogen. The subjects shown on the biological resource maps are clam and oyster beds, shellfish harvest areas, colonial bird nesting sites, manatee habitat, seagrass beds and artificial reefs. Spawning seasons, nursery habitats, and adult habitats are identified for major fish species. The atlas will provide useful information for coastal planning and management in Tampa Bay.« less

  5. Comparison of Absolute Apparent Diffusion Coefficient (ADC) Values in ADC Maps Generated Across Different Postprocessing Software: Reproducibility in Endometrial Carcinoma.

    PubMed

    Ghosh, Adarsh; Singh, Tulika; Singla, Veenu; Bagga, Rashmi; Khandelwal, Niranjan

    2017-12-01

    Apparent diffusion coefficient (ADC) maps are usually generated by builtin software provided by the MRI scanner vendors; however, various open-source postprocessing software packages are available for image manipulation and parametric map generation. The purpose of this study is to establish the reproducibility of absolute ADC values obtained using different postprocessing software programs. DW images with three b values were obtained with a 1.5-T MRI scanner, and the trace images were obtained. ADC maps were automatically generated by the in-line software provided by the vendor during image generation and were also separately generated on postprocessing software. These ADC maps were compared on the basis of ROIs using paired t test, Bland-Altman plot, mountain plot, and Passing-Bablok regression plot. There was a statistically significant difference in the mean ADC values obtained from the different postprocessing software programs when the same baseline trace DW images were used for the ADC map generation. For using ADC values as a quantitative cutoff for histologic characterization of tissues, standardization of the postprocessing algorithm is essential across processing software packages, especially in view of the implementation of vendor-neutral archiving.

  6. MO-F-CAMPUS-I-04: Magnetic Resonance Imaging of An in Vitro 3D Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, C; Long, T; Siow, B

    Purpose: To investigate the use of an in vitro 3D tumor model (tumoroid) as a bio-phantom for repetitive and sequential magnetic resonance imaging (MRI) studies. Methods: The tissue engineered tumoroid comprised an artificial cancer mass (ACM) containing 30 million HT29 cancer cells seeded in a collagen type I matrix, whose density was increased by plastic compression (dry/wet weight=40%). The ACM was embedded in an uncompressed collagen gel that mimicked the tumor stroma, and the tumoroid was incubated for 24h before imaging. Images were acquired using the 1T ICON™ (Bruker Corporation, Billerica, MA) MRI scanner. T1 maps were calculated using anmore » IR-RARE sequence (TE=12ms, TR=10000ms, 7 inversion times), while for T2 maps a MSME technique (TR=6000ms, 16 echoes) was used. T1 and T2 fittings were performed using a pixel-wise approach to produce relaxometric parametric maps. Results: The images acquired and corresponding T1 and T2 maps indicate contrast between the ACM and the stroma. T1 was 2500 and 2800ms, while T2 was 520 and 760ms, for the ACM and stroma respectively. The ACM construct was not homogenous and internal features were visible, which can be explained by local gradients of cell and/or collagen density. The viability of the cells was confirmed via confocal microscopy for several days after the imaging session, demonstrating the suitability of the tumoroid for sequential imaging studies. Conclusions: We have engineered a tumor model compatible with repetitive and sequential MRI. We found T1 and T2 contrast between the ACM and stroma using a pre-clinical MRI scanner. The model, which enables controllable cell and matrix densities, has potential for a wide range of applications in radiotherapy, such as to study tumor progression and to validate imaging biomarkers. Further work is necessary to understand the mechanisms behind the contrast achieved, and to correlate findings with biology and histology data.« less

  7. Digital double random amplitude image encryption method based on the symmetry property of the parametric discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Bekkouche, Toufik; Bouguezel, Saad

    2018-03-01

    We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.

  8. Fusion of multi-parametric MRI and temporal ultrasound for characterization of prostate cancer: in vivo feasibility study

    NASA Astrophysics Data System (ADS)

    Imani, Farhad; Ghavidel, Sahar; Abolmaesumi, Purang; Khallaghi, Siavash; Gibson, Eli; Khojaste, Amir; Gaed, Mena; Moussa, Madeleine; Gomez, Jose A.; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Kassam, Zahra; Siemens, D. Robert; Leveridge, Michael; Chang, Silvia; Fenster, Aaron; Ward, Aaron D.; Mousavi, Parvin

    2016-03-01

    Recently, multi-parametric Magnetic Resonance Imaging (mp-MRI) has been used to improve the sensitivity of detecting high-risk prostate cancer (PCa). Prior to biopsy, primary and secondary cancer lesions are identified on mp-MRI. The lesions are then targeted using TRUS guidance. In this paper, for the first time, we present a fused mp-MRI-temporal-ultrasound framework for characterization of PCa, in vivo. Cancer classification results obtained using temporal ultrasound are fused with those achieved using consolidated mp-MRI maps determined by multiple observers. We verify the outcome of our study using histopathology following deformable registration of ultrasound and histology images. Fusion of temporal ultrasound and mp-MRI for characterization of the PCa results in an area under the receiver operating characteristic curve (AUC) of 0.86 for cancerous regions with Gleason scores (GSs)>=3+3, and AUC of 0.89 for those with GSs>=3+4.

  9. A Review of Some Superconducting Technologies for AtLAST: Parametric Amplifiers, Kinetic Inductance Detectors, and On-Chip Spectrometers

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    2018-01-01

    The current state of the art for some superconducting technologies will be reviewed in the context of a future single-dish submillimeter telescope called AtLAST. The technologies reviews include: 1) Kinetic Inductance Detectors (KIDs), which have now been demonstrated in large-format kilo-pixel arrays with photon background-limited sensitivity suitable for large field of view cameras for wide-field imaging. 2) Parametric amplifiers - specifically the Traveling-Wave Kinetic Inductance (TKIP) amplifier - which has enormous potential to increase sensitivity, bandwidth, and mapping speed of heterodyne receivers, and 3) On-chip spectrometers, which combined with sensitive direct detectors such as KIDs or TESs could be used as Multi-Object Spectrometers on the AtLAST focal plane, and could provide low-medium resolution spectroscopy of 100 objects at a time in each field of view.

  10. Generalized Convexity and Concavity Properties of the Optimal Value Function in Parametric Nonlinear Programming.

    DTIC Science & Technology

    1983-04-11

    existing ones. * -37- !I T-472 REFERENCES [1] Avriel, M., W. E. Diewert, S. Schaible and W. T. Ziemba (1981). Introduction to concave and generalized concave...functions. In Generalized Concavity in Optimization and Economics (S. Schaible and W. T. Ziemba , eds.), Academic Press, New York, pp. 21-50. (21 Bank...Optimality conditions involving generalized convex mappings. In Generalized Concavity in Optimization and Economics (S. Schaible and W. T. Ziemba

  11. MEqTrees Telescope and Radio-sky Simulations and CPU Benchmarking

    NASA Astrophysics Data System (ADS)

    Shanmugha Sundaram, G. A.

    2009-09-01

    MEqTrees is a Python-based implementation of the classical Measurement Equation, wherein the various 2×2 Jones matrices are parametrized representations in the spatial and sky domains for any generic radio telescope. Customized simulations of radio-source sky models and corrupt Jones terms are demonstrated based on a policy framework, with performance estimates derived for array configurations, ``dirty''-map residuals and processing power requirements for such computations on conventional platforms.

  12. Gaussian process inference for estimating pharmacokinetic parameters of dynamic contrast-enhanced MR images.

    PubMed

    Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M

    2012-01-01

    In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.

  13. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  14. Elastic models: a comparative study applied to retinal images.

    PubMed

    Karali, E; Lambropoulou, S; Koutsouris, D

    2011-01-01

    In this work various methods of parametric elastic models are compared, namely the classical snake, the gradient vector field snake (GVF snake) and the topology-adaptive snake (t-snake), as well as the method of self-affine mapping system as an alternative to elastic models. We also give a brief overview of the methods used. The self-affine mapping system is implemented using an adapting scheme and minimum distance as optimization criterion, which is more suitable for weak edges detection. All methods are applied to glaucomatic retinal images with the purpose of segmenting the optical disk. The methods are compared in terms of segmentation accuracy and speed, as these are derived from cross-correlation coefficients between real and algorithm extracted contours and segmentation time, respectively. As a result, the method of self-affine mapping system presents adequate segmentation time and segmentation accuracy, and significant independence from initialization.

  15. Brain activity correlates with emotional perception induced by dynamic avatars.

    PubMed

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics. Copyright © 2015. Published by Elsevier Inc.

  16. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  17. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    DTIC Science & Technology

    2015-12-31

    biological composites. This includes the chemical mapping of the radular teeth of Cryptochiton stelleri (chiton), the crush resistant exoskeleton ...mapping of the radular teeth of Cryptochiton stelleri (chiton), the crush resistant exoskeleton from Phloeodes diabolicus (the Iron Clad beetle), and the... exoskeleton from Phloeodes diabolicus (the Iron Clad beetle), and the hard and impact resistant dactyl club from the stomatopod Odontodactylus scyllarus

  18. Cloud GPU-based simulations for SQUAREMR.

    PubMed

    Kantasis, George; Xanthis, Christos G; Haris, Kostas; Heiberg, Einar; Aletras, Anthony H

    2017-01-01

    Quantitative Magnetic Resonance Imaging (MRI) is a research tool, used more and more in clinical practice, as it provides objective information with respect to the tissues being imaged. Pixel-wise T 1 quantification (T 1 mapping) of the myocardium is one such application with diagnostic significance. A number of mapping sequences have been developed for myocardial T 1 mapping with a wide range in terms of measurement accuracy and precision. Furthermore, measurement results obtained with these pulse sequences are affected by errors introduced by the particular acquisition parameters used. SQUAREMR is a new method which has the potential of improving the accuracy of these mapping sequences through the use of massively parallel simulations on Graphical Processing Units (GPUs) by taking into account different acquisition parameter sets. This method has been shown to be effective in myocardial T 1 mapping; however, execution times may exceed 30min which is prohibitively long for clinical applications. The purpose of this study was to accelerate the construction of SQUAREMR's multi-parametric database to more clinically acceptable levels. The aim of this study was to develop a cloud-based cluster in order to distribute the computational load to several GPU-enabled nodes and accelerate SQUAREMR. This would accommodate high demands for computational resources without the need for major upfront equipment investment. Moreover, the parameter space explored by the simulations was optimized in order to reduce the computational load without compromising the T 1 estimates compared to a non-optimized parameter space approach. A cloud-based cluster with 16 nodes resulted in a speedup of up to 13.5 times compared to a single-node execution. Finally, the optimized parameter set approach allowed for an execution time of 28s using the 16-node cluster, without compromising the T 1 estimates by more than 10ms. The developed cloud-based cluster and optimization of the parameter set reduced the execution time of the simulations involved in constructing the SQUAREMR multi-parametric database thus bringing SQUAREMR's applicability within time frames that would be likely acceptable in the clinic. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. MSD-MAP: A Network-Based Systems Biology Platform for Predicting Disease-Metabolite Links.

    PubMed

    Wathieu, Henri; Issa, Naiem T; Mohandoss, Manisha; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2017-01-01

    Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform). Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database. Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations. By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope.

    PubMed

    Wu, J S; Kim, A M; Bleher, R; Myers, B D; Marvin, R G; Inada, H; Nakamura, K; Zhang, X F; Roth, E; Li, S Y; Woodruff, T K; O'Halloran, T V; Dravid, Vinayak P

    2013-05-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.

    PubMed

    Milenković, Jana; Hertl, Kristijana; Košir, Andrej; Zibert, Janez; Tasič, Jurij Franc

    2013-06-01

    The early detection of breast cancer is one of the most important predictors in determining the prognosis for women with malignant tumours. Dynamic contrast-enhanced magnetic-resonance imaging (DCE-MRI) is an important imaging modality for detecting and interpreting the different breast lesions from a time sequence of images and has proved to be a very sensitive modality for breast-cancer diagnosis. However, DCE-MRI exhibits only a moderate specificity, thus leading to a high rate of false positives, resulting in unnecessary biopsies that are stressful and physically painful for the patient and lead to an increase in the cost of treatment. There is a strong medical need for a DCE-MRI computer-aided diagnosis tool that would offer a reliable support to the physician's decision providing a high level of sensitivity and specificity. In our study we investigated the possibility of increasing differentiation between the malignant and the benign lesions with respect to the spatial variation of the temporal enhancements of three parametric maps, i.e., the initial enhancement (IE) map, the post-initial enhancement (PIE) map and the signal enhancement ratio (SER) map, by introducing additional methods along with the grey-level co-occurrence matrix, i.e., a second-order statistical method already applied for quantifying the spatiotemporal variations. We introduced the grey-level run-length matrix and the grey-level difference matrix, representing two additional, second-order statistical methods, and the circular Gabor as a frequency-domain-based method. Each of the additional methods is for the first time applied to the DCE-MRI data to differentiate between the malignant and the benign breast lesions. We applied the least-square minimum-distance classifier (LSMD), logistic regression and least-squares support vector machine (LS-SVM) classifiers on a total of 115 (78 malignant and 37 benign) breast DCE-MRI cases. The performances were evaluated using ten experiments of a ten-fold cross-validation. Our experimental analysis revealed the PIE map, together with the feature subset in which the discriminating ability of the co-occurrence features was increased by adding the newly introduced features, to be the most significant for differentiation between the malignant and the benign lesions. That diagnostic test - the aforementioned combination of parametric map and the feature subset achieved the sensitivity of 0.9193 which is statistically significantly higher compared to other diagnostic tests after ten-experiments of a ten-fold cross-validation and gave a statistically significantly higher specificity of 0.7819 for the fixed 95% sensitivity after the receiver operating characteristic (ROC) curve analysis. Combining the information from all the three parametric maps significantly increased the area under the ROC curve (AUC) of the aforementioned diagnostic test for the LSMD and logistic regression; however, not for the LS-SVM. The LSMD classifier yielded the highest area under the ROC curve when using the combined information, increasing the AUC from 0.9651 to 0.9755. Introducing new features to those of the grey-level co-occurrence matrix significantly increased the differentiation between the malignant and the benign breast lesions, thus resulting in a high sensitivity and improved specificity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATION OF THE ELLIPTIC INTEGRAL

    NASA Technical Reports Server (NTRS)

    Wallis, D. E.

    1994-01-01

    This program produces the Gauss-Kruger (constant meridional scale) Transverse Mercator Projection which is used to construct the U.S. Army's Universal Transverse Mercator (UTM) Grid System. The method is capable of mapping the entire northern hemisphere of the earth (and, by symmetry of the projection, the entire earth) accurately with respect to a single principal meridian, and is therefore mathematically insensitive to proximity either to the pole or the equator, or to the departure of the meridian from the central meridian. This program could be useful to any map-making agency. The program overcomes the limitations of the "series" method (Thomas, 1952) presently used to compute the UTM Grid, specifically its complicated derivation, non-convergence near the pole, lack of rigorous error analysis, and difficulty of obtaining increased accuracy. The method is based on the principle that the parametric colatitude of a point is the amplitude of the Elliptic Integral of the 2nd Kind, and this (irreducible) integral is the desired projection. Thus, a specification of the colatitude leads, most directly (and with strongest motivation) to a formulation in terms of amplitude. The most difficult problem to be solved was setting up the method so that the Elliptic Integral of the 2nd Kind could be used elsewhere than on the principal meridian. The point to be mapped is specified in conventional geographic coordinates (geodetic latitude and longitudinal departure from the principal meridian). Using the colatitude (complement of latitude) and the longitude (departure), the initial step is to map the point to the North Polar Stereographic Projection. The closed-form, analytic function that coincides with the North Polar Stereographic Projection of the spheroid along the principal meridian is put into a Newton-Raphson iteration that solves for the tangent of one half the parametric colatitude, generalized to the complex plane. Because the parametric colatitude is the amplitude of the (irreducible) Incomplete Elliptic Integral of the 2nd Kind, the value for the tangent of one half the amplitude of the Elliptic Integral of the 2nd Kind is now known. The elliptic integral may now be computed by any desired method, and the result will be the Gauss-Kruger Transverse Mercator Projection. This result is a consequence of the fact that these steps produce a computation of real distance along the image (in the plane) of the principal meridian, and an analytic continuation of the distance at points that don't lie on the principal meridian. The elliptic-integral method used by this program is one of the "transformations of the elliptic integral" (similar to Landen's Transformation), appearing in standard handbooks of mathematical functions. Only elementary transcendental functions are utilized. The program output is the conventional (as used by the mapping agencies) cartesian coordinates, in meters, of the Transverse Mercator projection. The origin is at the intersection of the principal meridian and the equator. This FORTRAN77 program was developed on an IBM PC series computer equipped with an Intel Math Coprocessor. Double precision complex arithmetic and transcendental functions are needed to support a projection accuracy of 1 mm. Because such functions are not usually part of the FORTRAN library, the needed functions have been explicitly programmed and included in the source code. The program was developed in 1989. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATIONS OF THE ELLIPTIC INTEGRAL is a copyrighted work with all copyright vested in NASA.

  3. Exploring biology with small organic molecules

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550

  4. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.

    PubMed

    Bansal, Ravi; Peterson, Bradley S

    2018-06-01

    Identifying regional effects of interest in MRI datasets usually entails testing a priori hypotheses across many thousands of brain voxels, requiring control for false positive findings in these multiple hypotheses testing. Recent studies have suggested that parametric statistical methods may have incorrectly modeled functional MRI data, thereby leading to higher false positive rates than their nominal rates. Nonparametric methods for statistical inference when conducting multiple statistical tests, in contrast, are thought to produce false positives at the nominal rate, which has thus led to the suggestion that previously reported studies should reanalyze their fMRI data using nonparametric tools. To understand better why parametric methods may yield excessive false positives, we assessed their performance when applied both to simulated datasets of 1D, 2D, and 3D Gaussian Random Fields (GRFs) and to 710 real-world, resting-state fMRI datasets. We showed that both the simulated 2D and 3D GRFs and the real-world data contain a small percentage (<6%) of very large clusters (on average 60 times larger than the average cluster size), which were not present in 1D GRFs. These unexpectedly large clusters were deemed statistically significant using parametric methods, leading to empirical familywise error rates (FWERs) as high as 65%: the high empirical FWERs were not a consequence of parametric methods failing to model spatial smoothness accurately, but rather of these very large clusters that are inherently present in smooth, high-dimensional random fields. In fact, when discounting these very large clusters, the empirical FWER for parametric methods was 3.24%. Furthermore, even an empirical FWER of 65% would yield on average less than one of those very large clusters in each brain-wide analysis. Nonparametric methods, in contrast, estimated distributions from those large clusters, and therefore, by construct rejected the large clusters as false positives at the nominal FWERs. Those rejected clusters were outlying values in the distribution of cluster size but cannot be distinguished from true positive findings without further analyses, including assessing whether fMRI signal in those regions correlates with other clinical, behavioral, or cognitive measures. Rejecting the large clusters, however, significantly reduced the statistical power of nonparametric methods in detecting true findings compared with parametric methods, which would have detected most true findings that are essential for making valid biological inferences in MRI data. Parametric analyses, in contrast, detected most true findings while generating relatively few false positives: on average, less than one of those very large clusters would be deemed a true finding in each brain-wide analysis. We therefore recommend the continued use of parametric methods that model nonstationary smoothness for cluster-level, familywise control of false positives, particularly when using a Cluster Defining Threshold of 2.5 or higher, and subsequently assessing rigorously the biological plausibility of the findings, even for large clusters. Finally, because nonparametric methods yielded a large reduction in statistical power to detect true positive findings, we conclude that the modest reduction in false positive findings that nonparametric analyses afford does not warrant a re-analysis of previously published fMRI studies using nonparametric techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Biotrichotomy: The Neuroscientific and Neurobiological Systemology, Epistemology, and Methodology of the Tri-Squared Test and Tri-Center Analysis in Biostatistics

    ERIC Educational Resources Information Center

    Osler, James Edward

    2015-01-01

    This monograph provides a neuroscience-based systemological, epistemological, and methodological rational for the design of an advanced and novel parametric statistical analytics designed for the biological sciences referred to as "Biotrichotomy". The aim of this new arena of statistics is to provide dual metrics designed to analyze the…

  6. Color mapping of one specific velocity of a biological fluid flows with complex geometry using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.

  7. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S

    2008-10-27

    A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.

  8. Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues.

    PubMed

    Moore, Julia L; Remais, Justin V

    2014-03-01

    Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.

  9. Predicting climate change: Uncertainties and prospects for surmounting them

    NASA Astrophysics Data System (ADS)

    Ghil, Michael

    2008-03-01

    General circulation models (GCMs) are among the most detailed and sophisticated models of natural phenomena in existence. Still, the lack of robust and efficient subgrid-scale parametrizations for GCMs, along with the inherent sensitivity to initial data and the complex nonlinearities involved, present a major and persistent obstacle to narrowing the range of estimates for end-of-century warming. Estimating future changes in the distribution of climatic extrema is even more difficult. Brute-force tuning the large number of GCM parameters does not appear to help reduce the uncertainties. Andronov and Pontryagin (1937) proposed structural stability as a way to evaluate model robustness. Unfortunately, many real-world systems proved to be structurally unstable. We illustrate these concepts with a very simple model for the El Niño--Southern Oscillation (ENSO). Our model is governed by a differential delay equation with a single delay and periodic (seasonal) forcing. Like many of its more or less detailed and realistic precursors, this model exhibits a Devil's staircase. We study the model's structural stability, describe the mechanisms of the observed instabilities, and connect our findings to ENSO phenomenology. In the model's phase-parameter space, regions of smooth dependence on parameters alternate with rough, fractal ones. We then apply the tools of random dynamical systems and stochastic structural stability to the circle map and a torus map. The effect of noise with compact support on these maps is fairly intuitive: it is the most robust structures in phase-parameter space that survive the smoothing introduced by the noise. The nature of the stochastic forcing matters, thus suggesting that certain types of stochastic parametrizations might be better than others in achieving GCM robustness. This talk represents joint work with M. Chekroun, E. Simonnet and I. Zaliapin.

  10. Cluster analysis of quantitative parametric maps from DCE-MRI: application in evaluating heterogeneity of tumor response to antiangiogenic treatment.

    PubMed

    Longo, Dario Livio; Dastrù, Walter; Consolino, Lorena; Espak, Miklos; Arigoni, Maddalena; Cavallo, Federica; Aime, Silvio

    2015-07-01

    The objective of this study was to compare a clustering approach to conventional analysis methods for assessing changes in pharmacokinetic parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) during antiangiogenic treatment in a breast cancer model. BALB/c mice bearing established transplantable her2+ tumors were treated with a DNA-based antiangiogenic vaccine or with an empty plasmid (untreated group). DCE-MRI was carried out by administering a dose of 0.05 mmol/kg of Gadocoletic acid trisodium salt, a Gd-based blood pool contrast agent (CA) at 1T. Changes in pharmacokinetic estimates (K(trans) and vp) in a nine-day interval were compared between treated and untreated groups on a voxel-by-voxel analysis. The tumor response to therapy was assessed by a clustering approach and compared with conventional summary statistics, with sub-regions analysis and with histogram analysis. Both the K(trans) and vp estimates, following blood-pool CA injection, showed marked and spatial heterogeneous changes with antiangiogenic treatment. Averaged values for the whole tumor region, as well as from the rim/core sub-regions analysis were unable to assess the antiangiogenic response. Histogram analysis resulted in significant changes only in the vp estimates (p<0.05). The proposed clustering approach depicted marked changes in both the K(trans) and vp estimates, with significant spatial heterogeneity in vp maps in response to treatment (p<0.05), provided that DCE-MRI data are properly clustered in three or four sub-regions. This study demonstrated the value of cluster analysis applied to pharmacokinetic DCE-MRI parametric maps for assessing tumor response to antiangiogenic therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The application of statistical parametric mapping to 123I-FP-CIT SPECT in dementia with Lewy bodies, Alzheimer's disease and Parkinson's disease.

    PubMed

    Colloby, Sean J; O'Brien, John T; Fenwick, John D; Firbank, Michael J; Burn, David J; McKeith, Ian G; Williams, E David

    2004-11-01

    Dopaminergic loss can be visualised using (123)I-FP-CIT single photon emission computed tomography (SPECT) in several disorders including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Most previous SPECT studies have adopted region of interest (ROI) methods for analysis, which are subjective and operator-dependent. The purpose of this study was to investigate differences in striatal binding of (123)I-FP-CIT SPECT using the automated technique of statistical parametric mapping (SPM99) in subjects with DLB, Alzheimer's disease (AD), PD and healthy age-matched controls. This involved spatial normalisation of each subject's image to a customised template, followed by smoothing and intensity normalisation of each image to its corresponding mean occipital count per voxel. Group differences were assessed using a two-sample t test. Applying a height threshold of P

  12. Conversion of KEGG metabolic pathways to SBGN maps including automatic layout

    PubMed Central

    2013-01-01

    Background Biologists make frequent use of databases containing large and complex biological networks. One popular database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) which uses its own graphical representation and manual layout for pathways. While some general drawing conventions exist for biological networks, arbitrary graphical representations are very common. Recently, a new standard has been established for displaying biological processes, the Systems Biology Graphical Notation (SBGN), which aims to unify the look of such maps. Ideally, online repositories such as KEGG would automatically provide networks in a variety of notations including SBGN. Unfortunately, this is non‐trivial, since converting between notations may add, remove or otherwise alter map elements so that the existing layout cannot be simply reused. Results Here we describe a methodology for automatic translation of KEGG metabolic pathways into the SBGN format. We infer important properties of the KEGG layout and treat these as layout constraints that are maintained during the conversion to SBGN maps. Conclusions This allows for the drawing and layout conventions of SBGN to be followed while creating maps that are still recognizably the original KEGG pathways. This article details the steps in this process and provides examples of the final result. PMID:23953132

  13. Mapping the biological condition of USA rivers and streams

    EPA Science Inventory

    We predicted the probable (pr) biological condition (BC) of ~5.4 million km of stream within the conterminous USA (CONUS). National maps of prBC could provide an important tool for prioritizing monitoring and restoration of streams. The USEPA uses a spatially balanced survey desi...

  14. Plant MetGenMAP: an integrative analysis system for plant systems biology

    USDA-ARS?s Scientific Manuscript database

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  15. Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems

    EPA Science Inventory

    The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, ...

  16. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features

    PubMed Central

    Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-01-01

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282

  17. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.

    PubMed

    Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-07-18

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.

  18. Techniques for grid manipulation and adaptation. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.

    1992-01-01

    Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.

  19. Optimal design of tilt carrier frequency computer-generated holograms to measure aspherics.

    PubMed

    Peng, Jiantao; Chen, Zhe; Zhang, Xingxiang; Fu, Tianjiao; Ren, Jianyue

    2015-08-20

    Computer-generated holograms (CGHs) provide an approach to high-precision metrology of aspherics. A CGH is designed under the trade-off among size, mapping distortion, and line spacing. This paper describes an optimal design method based on the parametric model for tilt carrier frequency CGHs placed outside the interferometer focus points. Under the condition of retaining an admissible size and a tolerable mapping distortion, the optimal design method has two advantages: (1) separating the parasitic diffraction orders to improve the contrast of the interferograms and (2) achieving the largest line spacing to minimize sensitivity to fabrication errors. This optimal design method is applicable to common concave aspherical surfaces and illustrated with CGH design examples.

  20. Quantum annealing with parametrically driven nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Puri, Shruti

    While progress has been made towards building Ising machines to solve hard combinatorial optimization problems, quantum speedups have so far been elusive. Furthermore, protecting annealers against decoherence and achieving long-range connectivity remain important outstanding challenges. With the hope of overcoming these challenges, I introduce a new paradigm for quantum annealing that relies on continuous variable states. Unlike the more conventional approach based on two-level systems, in this approach, quantum information is encoded in two coherent states that are stabilized by parametrically driving a nonlinear resonator. I will show that a fully connected Ising problem can be mapped onto a network of such resonators, and outline an annealing protocol based on adiabatic quantum computing. During the protocol, the resonators in the network evolve from vacuum to coherent states representing the ground state configuration of the encoded problem. In short, the system evolves between two classical states following non-classical dynamics. As will be supported by numerical results, this new annealing paradigm leads to superior noise resilience. Finally, I will discuss a realistic circuit QED realization of an all-to-all connected network of parametrically driven nonlinear resonators. The continuous variable nature of the states in the large Hilbert space of the resonator provides new opportunities for exploring quantum phase transitions and non-stoquastic dynamics during the annealing schedule.

  1. Facial Performance Transfer via Deformable Models and Parametric Correspondence.

    PubMed

    Asthana, Akshay; de la Hunty, Miles; Dhall, Abhinav; Goecke, Roland

    2012-09-01

    The issue of transferring facial performance from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active Appearance Model (AAM), have made it possible to track and synthesize faces in real time. Not surprisingly, deformable face model-based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance transfer in a more realistic manner than previous approaches. The main advantage of modeling this parametric correspondence is that it allows a "meaningful" transfer of both the nonrigid shape and texture across faces irrespective of the speakers' gender, shape, and size of the faces, and illumination conditions. We explore linear and nonlinear methods for modeling the parametric correspondence between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry.

  2. Petrophysical evaluation of the hydrocarbon potential of the Lower Cretaceous Kharita clastics, North Qarun oil field, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Teama, Mostafa A.; Nabawy, Bassem S.

    2016-09-01

    Based on the available well log data of six wells chosen in the North Qarun oil field in the Western Desert of Egypt, the petrophysical evaluation for the Lower Cretaceous Kharita Formation was accomplished. The lithology of Kharita Formation was analyzed using the neutron porosity-density and the neutron porosity-gamma ray crossplots as well as the litho-saturation plot. The petrophysical parameters, include shale volume, effective porosity, water saturation and hydrocarbon pore volume, were determined and traced laterally in the studied field through the iso-parametric maps. The lithology crossplots of the studied wells show that the sandstone is the main lithology of the Kharita Formation intercalated with some calcareous shale. The cutoff values of shale volume, porosity and water saturation for the productive hydrocarbon pay zones are defined to be 40%, 10% and 50%, respectively, which were determined, based on the applied crossplots approach and their limits. The iso-parametric contour maps for the average reservoir parameters; such as net-pay thickness, average porosity, shale volume, water saturation and the hydrocarbon pore volume were illustrated. From the present study, it is found that the Kharita Formation in the North Qarun oil field has promising reservoir characteristics, particularly in the northwestern part of the study area, which is considered as a prospective area for oil accumulation.

  3. A generalized exponential link function to map a conflict indicator into severity index within safety continuum framework.

    PubMed

    Zheng, Lai; Ismail, Karim

    2017-05-01

    Traffic conflict indicators measure the temporal and spatial proximity of conflict-involved road users. These indicators can reflect the severity of traffic conflicts to a reliable extent. Instead of using the indicator value directly as a severity index, many link functions have been developed to map the conflict indicator to a severity index. However, little information is available about the choice of a particular link function. To guard against link misspecification or subjectivity, a generalized exponential link function was developed. The severity index generated by this link was introduced to a parametric safety continuum model which objectively models the centre and tail regions. An empirical method, together with full Bayesian estimation method was adopted to estimate model parameters. The safety implication of return level was calculated based on the model parameters. The proposed approach was applied to the conflict and crash data collected from 21 segments from three freeways located in Guangdong province, China. The Pearson's correlation test between return levels and observed crashes showed that a θ value of 1.2 was the best choice of the generalized parameter for current data set. This provides statistical support for using the generalized exponential link function. With the determined generalized exponential link function, the visualization of parametric safety continuum was found to be a gyroscope-shaped hierarchy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  5. Seismic hazard assessment in the megacity of Blida (Algeria) and its surrounding regions using parametric-historic procedure

    NASA Astrophysics Data System (ADS)

    Bellalem, Fouzi; Talbi, Abdelhak; Djellit, Hamou; Ymmel, Hayet; Mobarki, Mourad

    2018-03-01

    The region of Blida is characterized by a relatively high seismic activity, pointed especially during the past two centuries. Indeed, it experienced a significant number of destructive earthquakes such as the earthquakes of March 2, 1825 and January 2, 1867, with intensity of X and IX, respectively. This study aims to investigate potential seismic hazard in Blida city and its surrounding regions. For this purpose, a typical seismic catalog was compiled using historical macroseismic events that occurred over a period of a few hundred years, and the recent instrumental seismicity dating back to 1900. The parametric-historic procedure introduced by Kijko and Graham (1998, 1999) was applied to assess seismic hazard in the study region. It is adapted to deal with incomplete catalogs and does not use any subjective delineation of active seismic zones. Because of the lack of recorded strong motion data, three ground prediction models have been considered, as they seem the most adapted to the seismicity of the study region. Results are presented as peak ground acceleration (PGA) seismic hazard maps, showing expected peak accelerations with 10% probability of exceedance in 50-year period. As the most significant result, hot spot regions with high PGA values are mapped. For example, a PGA of 0.44 g has been found in a small geographical area centered on Blida city.

  6. Advanced dynamic statistical parametric mapping with MEG in localizing epileptogenicity of the bottom of sulcus dysplasia.

    PubMed

    Nakajima, Midori; Wong, Simeon; Widjaja, Elysa; Baba, Shiro; Okanishi, Tohru; Takada, Lynne; Sato, Yosuke; Iwata, Hiroki; Sogabe, Maya; Morooka, Hikaru; Whitney, Robyn; Ueda, Yuki; Ito, Tomoshiro; Yagyu, Kazuyori; Ochi, Ayako; Carter Snead, O; Rutka, James T; Drake, James M; Doesburg, Sam; Takeuchi, Fumiya; Shiraishi, Hideaki; Otsubo, Hiroshi

    2018-06-01

    To investigate whether advanced dynamic statistical parametric mapping (AdSPM) using magnetoencephalography (MEG) can better localize focal cortical dysplasia at bottom of sulcus (FCDB). We analyzed 15 children with diagnosis of FCDB in surgical specimen and 3 T MRI by using MEG. Using AdSPM, we analyzed a ±50 ms epoch relative to each single moving dipole (SMD) and applied summation technique to estimate the source activity. The most active area in AdSPM was defined as the location of AdSPM spike source. We compared spatial congruence between MRI-visible FCDB and (1) dipole cluster in SMD method; and (2) AdSPM spike source. AdSPM localized FCDB in 12 (80%) of 15 children whereas dipole cluster localized six (40%). AdSPM spike source was concordant within seizure onset zone in nine (82%) of 11 children with intracranial video EEG. Eleven children with resective surgery achieved seizure freedom with follow-up period of 1.9 ± 1.5 years. Ten (91%) of them had an AdSPM spike source in the resection area. AdSPM can noninvasively and neurophysiologically localize epileptogenic FCDB, whether it overlaps with the dipole cluster or not. This is the first study to localize epileptogenic FCDB using MEG. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans

    PubMed Central

    Boes, Jennifer L.; Bule, Maria; Hoff, Benjamin A.; Chamberlain, Ryan; Lynch, David A.; Stojanovska, Jadranka; Martinez, Fernando J.; Han, Meilan K.; Kazerooni, Ella A.; Ross, Brian D.; Galbán, Craig J.

    2015-01-01

    Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented. PMID:26568983

  8. Discrimination of common Mediterranean plant species using field spectroradiometry

    NASA Astrophysics Data System (ADS)

    Manevski, Kiril; Manakos, Ioannis; Petropoulos, George P.; Kalaitzidis, Chariton

    2011-12-01

    Field spectroradiometry of land surface objects supports remote sensing analysis, facilitates the discrimination of vegetation species, and enhances the mapping efficiency. Especially in the Mediterranean, spectral discrimination of common vegetation types, such as phrygana and maquis species, remains a challenge. Both phrygana and maquis may be used as a direct indicator for grazing management, fire history and severity, and the state of the wider ecosystem equilibrium. This study aims to investigate the capability of field spectroradiometry supporting remote sensing analysis of the land cover of a characteristic Mediterranean area. Five common Mediterranean maquis and phrygana species were examined. Spectra acquisition was performed during an intensive field campaign deployed in spring 2010, supported by a novel platform MUFSPEM@MED (Mobile Unit for Field SPEctral Measurements at the MEDiterranean) for high canopy measurements. Parametric and non-parametric statistical tests have been applied to the continuum-removed reflectance of the species in the visible to shortwave infrared spectral range. Interpretation of the results indicated distinct discrimination between the studied species at specific spectral regions. Statistically significant wavelengths were principally found in both the visible and the near infrared regions of the electromagnetic spectrum. Spectral bands in the shortwave infrared demonstrated significant discrimination features for the examined species adapted to Mediterranean drought. All in all, results confirmed the prospect for a more accurate mapping of the species spatial distribution using remote sensing imagery coupled with in situ spectral information.

  9. Parametric Response Mapping as an Indicator of Bronchiolitis Obliterans Syndrome following Hematopoietic Stem Cell Transplantation

    PubMed Central

    Galbán, Craig J.; Boes, Jennifer L.; Bule, Maria; Kitko, Carrie L; Couriel, Daniel R; Johnson, Timothy D.; Lama, Vihba; Telenga, Eef D.; van den Berge, Maarten; Rehemtulla, Alnawaz; Kazerooni, Ella A.; Ponkowski, Michael J.; Ross, Brian D.; Yanik, Gregory A.

    2014-01-01

    The management of bronchiolitis obliterans syndrome (BOS) following hematopoietic cell transplantation (HCT) presents many challenges, both diagnostically and therapeutically. We have developed a computed tomography (CT) voxel-wise methodology termed Parametric Response Mapping (PRM) that quantifies normal parenchyma (PRMNormal), functional small airway disease (PRMfSAD), emphysema (PRMEmph) and parenchymal disease (PRMPD) as relative lung volumes. We now investigate the use of PRM as an imaging biomarker in the diagnosis of BOS. PRM was applied to CT data from four patient cohorts: acute infection (n=11), BOS at onset (n=34), BOS plus infection (n=9), and age-matched, non-transplant controls (n=23). Pulmonary function tests and broncho-alveolar lavage (BAL) were used for group classification. Mean values for PRMfSAD were significantly greater in patients with BOS (38±2%) when compared to those with infection alone (17±4%, p<0.0001) and age-matched controls (8.4±1%, p<0.0001). Patients with BOS had similar PRMfSAD profiles, whether a concurrent infection was present or not. An optimal cut-point for PRMfSAD of 28% of the total lung volume was identified, with values >28% highly indicative of BOS occurrence. PRM may provide a major advance in our ability to identify the small airway obstruction that characterizes BOS, even in the presence of concurrent infection. PMID:24954547

  10. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease.

    PubMed

    Torres, Matthew P; Dewhurst, Henry; Sundararaman, Niveda

    2016-11-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable body of potential regulatory elements that impact hundreds of different biological processes important in eukaryotic biology and human health. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    PubMed

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  12. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    PubMed Central

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  13. Linkage analysis of high myopia susceptibility locus in 26 families.

    PubMed

    Paget, Sandrine; Julia, Sophie; Vitezica, Zulma G; Soler, Vincent; Malecaze, François; Calvas, Patrick

    2008-01-01

    We conducted a linkage analysis in high myopia families to replicate suggestive results from chromosome 7q36 using a model of autosomal dominant inheritance and genetic heterogeneity. We also performed a genome-wide scan to identify novel loci. Twenty-six families, with at least two high-myopic subjects (ie. refractive value in the less affected eye of -5 diopters) in each family, were included. Phenotypic examination included standard autorefractometry, ultrasonographic eye length measurement, and clinical confirmation of the non-syndromic character of the refractive disorder. Nine families were collected de novo including 136 available members of whom 34 were highly myopic subjects. Twenty new subjects were added in 5 of the 17 remaining families. A total of 233 subjects were submitted to a genome scan using ABI linkage mapping set LMSv2-MD-10, additional markers in all regions where preliminary LOD scores were greater than 1.5 were used. Multipoint parametric and non-parametric analyses were conducted with the software packages Genehunter 2.0 and Merlin 1.0.1. Two autosomal recessive, two autosomal dominant, and four autosomal additive models were used in the parametric linkage analyses. No linkage was found using the subset of nine newly collected families. Study of the entire population of 26 families with a parametric model did not yield a significant LOD score (>3), even for the previously suggestive locus on 7q36. A non-parametric model demonstrated significant linkage to chromosome 7p15 in the entire population (Z-NPL=4.07, p=0.00002). The interval is 7.81 centiMorgans (cM) between markers D7S2458 and D7S2515. The significant interval reported here needs confirmation in other cohorts. Among possible susceptibility genes in the interval, certain candidates are likely to be involved in eye growth and development.

  14. The analytical calibration in (bio)imaging/mapping of the metallic elements in biological samples--definitions, nomenclature and strategies: state of the art.

    PubMed

    Jurowski, Kamil; Buszewski, Bogusław; Piekoszewski, Wojciech

    2015-01-01

    Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Reducing Future International Chemical and Biological Dangers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddal, Chad; Bull, Diana L.; Hernandez, Patricia Marie

    The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for furthermore » technology road map development.« less

  16. Cortical Brain Atrophy and Intra-Individual Variability in Neuropsychological Test Performance in HIV Disease

    PubMed Central

    HINES, Lindsay J.; MILLER, Eric N.; HINKIN, Charles H.; ALGER, Jeffery R.; BARKER, Peter; GOODKIN, Karl; MARTIN, Eileen M.; MARUCA, Victoria; RAGIN, Ann; SACKTOR, Ned; SANDERS, Joanne; SELNES, Ola; BECKER, James T.

    2015-01-01

    Objective To characterize the relationship between dispersion-based intra-individual variability (IIVd) in neuropsychological test performance and brain volume among HIV seropositive and seronegative men and to determine the effects of cardiovascular risk and HIV infection on this relationship. Methods Magnetic Resonance Imaging (MRI) was used to acquire high-resolution neuroanatomic data from 147 men age 50 and over, including 80 HIV seropositive (HIV+) and 67 seronegative controls (HIV−) in this cross-sectional cohort study. Voxel Based Morphometry was used to derive volumetric measurements at the level of the individual voxel. These brain structure maps were analyzed using Statistical Parametric Mapping (SPM2). IIVd was measured by computing intra-individual standard deviations (ISD’s) from the standardized performance scores of five neuropsychological tests: Wechsler Memory Scale-III Visual Reproduction I and II, Logical Memory I and II, Wechsler Adult Intelligence Scale-III Letter Number Sequencing. Results Total gray matter (GM) volume was inversely associated with IIVd. Among all subjects, IIVd -related GM atrophy was observed primarily in: 1) the inferior frontal gyrus bilaterally, the left inferior temporal gyrus extending to the supramarginal gyrus, spanning the lateral sulcus; 2) the right superior parietal lobule and intraparietal sulcus; and, 3) dorsal/ventral regions of the posterior section of the transverse temporal gyrus. HIV status, biological, and cardiovascular disease (CVD) variables were not linked to IIVd -related GM atrophy. Conclusions IIVd in neuropsychological test performance may be a sensitive marker of cortical integrity in older adults, regardless of HIV infection status or CVD risk factors, and degree of intra-individual variability links with volume loss in specific cortical regions; independent of mean-level performance on neuropsychological tests. PMID:26303224

  17. Use of wavelet-packet transforms to develop an engineering model for multifractal characterization of mutation dynamics in pathological and nonpathological gene sequences

    NASA Astrophysics Data System (ADS)

    Walker, David Lee

    1999-12-01

    This study uses dynamical analysis to examine in a quantitative fashion the information coding mechanism in DNA sequences. This exceeds the simple dichotomy of either modeling the mechanism by comparing DNA sequence walks as Fractal Brownian Motion (fbm) processes. The 2-D mappings of the DNA sequences for this research are from Iterated Function System (IFS) (Also known as the ``Chaos Game Representation'' (CGR)) mappings of the DNA sequences. This technique converts a 1-D sequence into a 2-D representation that preserves subsequence structure and provides a visual representation. The second step of this analysis involves the application of Wavelet Packet Transforms, a recently developed technique from the field of signal processing. A multi-fractal model is built by using wavelet transforms to estimate the Hurst exponent, H. The Hurst exponent is a non-parametric measurement of the dynamism of a system. This procedure is used to evaluate gene- coding events in the DNA sequence of cystic fibrosis mutations. The H exponent is calculated for various mutation sites in this gene. The results of this study indicate the presence of anti-persistent, random walks and persistent ``sub-periods'' in the sequence. This indicates the hypothesis of a multi-fractal model of DNA information encoding warrants further consideration. This work examines the model's behavior in both pathological (mutations) and non-pathological (healthy) base pair sequences of the cystic fibrosis gene. These mutations both natural and synthetic were introduced by computer manipulation of the original base pair text files. The results show that disease severity and system ``information dynamics'' correlate. These results have implications for genetic engineering as well as in mathematical biology. They suggest that there is scope for more multi-fractal models to be developed.

  18. Protein protein interactions: organization, cooperativity and mapping in a bottom-up Systems Biology approach

    NASA Astrophysics Data System (ADS)

    Keskin, Ozlem; Ma, Buyong; Rogale, Kristina; Gunasekaran, K.; Nussinov, Ruth

    2005-06-01

    Understanding and ultimately predicting protein associations is immensely important for functional genomics and drug design. Here, we propose that binding sites have preferred organizations. First, the hot spots cluster within densely packed 'hot regions'. Within these regions, they form networks of interactions. Thus, hot spots located within a hot region contribute cooperatively to the stability of the complex. However, the contributions of separate, independent hot regions are additive. Moreover, hot spots are often already pre-organized in the unbound (free) protein states. Describing a binding site through independent local hot regions has implications for binding site definition, design and parametrization for prediction. The compactness and cooperativity emphasize the similarity between binding and folding. This proposition is grounded in computation and experiment. It explains why summation of the interactions may over-estimate the stability of the complex. Furthermore, statistically, charge-charge coupling of the hot spots is disfavored. However, since within the highly packed regions the solvent is screened, the electrostatic contributions are strengthened. Thus, we propose a new description of protein binding sites: a site consists of (one or a few) self-contained cooperative regions. Since the residue hot spots are those conserved by evolution, proteins binding multiple partners at the same sites are expected to use all or some combination of these regions.

  19. Model uncertainties of the 2002 update of California seismic hazard maps

    USGS Publications Warehouse

    Cao, T.; Petersen, M.D.; Frankel, A.D.

    2005-01-01

    In this article we present and explore the source and ground-motion model uncertainty and parametric sensitivity for the 2002 update of the California probabilistic seismic hazard maps. Our approach is to implement a Monte Carlo simulation that allows for independent sampling from fault to fault in each simulation. The source-distance dependent characteristics of the uncertainty maps of seismic hazard are explained by the fundamental uncertainty patterns from four basic test cases, in which the uncertainties from one-fault and two-fault systems are studied in detail. The California coefficient of variation (COV, ratio of the standard deviation to the mean) map for peak ground acceleration (10% of exceedance in 50 years) shows lower values (0.1-0.15) along the San Andreas fault system and other class A faults than along class B faults (0.2-0.3). High COV values (0.4-0.6) are found around the Garlock, Anacapa-Dume, and Palos Verdes faults in southern California and around the Maacama fault and Cascadia subduction zone in northern California.

  20. Visual EKF-SLAM from Heterogeneous Landmarks †

    PubMed Central

    Esparza-Jiménez, Jorge Othón; Devy, Michel; Gordillo, José L.

    2016-01-01

    Many applications require the localization of a moving object, e.g., a robot, using sensory data acquired from embedded devices. Simultaneous localization and mapping from vision performs both the spatial and temporal fusion of these data on a map when a camera moves in an unknown environment. Such a SLAM process executes two interleaved functions: the front-end detects and tracks features from images, while the back-end interprets features as landmark observations and estimates both the landmarks and the robot positions with respect to a selected reference frame. This paper describes a complete visual SLAM solution, combining both point and line landmarks on a single map. The proposed method has an impact on both the back-end and the front-end. The contributions comprehend the use of heterogeneous landmark-based EKF-SLAM (the management of a map composed of both point and line landmarks); from this perspective, the comparison between landmark parametrizations and the evaluation of how the heterogeneity improves the accuracy on the camera localization, the development of a front-end active-search process for linear landmarks integrated into SLAM and the experimentation methodology. PMID:27070602

  1. Role of interoceptive accuracy in topographical changes in emotion-induced bodily sensations

    PubMed Central

    Jung, Won-Mo; Ryu, Yeonhee; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2017-01-01

    The emotion-associated bodily sensation map is composed of a specific topographical distribution of bodily sensations to categorical emotions. The present study investigated whether or not interoceptive accuracy was associated with topographical changes in this map following emotion-induced bodily sensations. This study included 31 participants who observed short video clips containing emotional stimuli and then reported their sensations on the body map. Interoceptive accuracy was evaluated with a heartbeat detection task and the spatial patterns of bodily sensations to specific emotions, including anger, fear, disgust, happiness, sadness, and neutral, were visualized using Statistical Parametric Mapping (SPM) analyses. Distinct patterns of bodily sensations were identified for different emotional states. In addition, positive correlations were found between the magnitude of sensation in emotion-specific regions and interoceptive accuracy across individuals. A greater degree of interoceptive accuracy was associated with more specific topographical changes after emotional stimuli. These results suggest that the awareness of one’s internal bodily states might play a crucial role as a required messenger of sensory information during the affective process. PMID:28877218

  2. How Albot0 finds its way home: a novel approach to cognitive mapping using robots.

    PubMed

    Yeap, Wai K

    2011-10-01

    Much of what we know about cognitive mapping comes from observing how biological agents behave in their physical environments, and several of these ideas were implemented on robots, imitating such a process. In this paper a novel approach to cognitive mapping is presented whereby robots are treated as a species of their own and their cognitive mapping is being investigated. Such robots are referred to as Albots. The design of the first Albot, Albot0 , is presented. Albot0 computes an imprecise map and employs a novel method to find its way home. Both the map and the return-home algorithm exhibited characteristics commonly found in biological agents. What we have learned from Albot0 's cognitive mapping are discussed. One major lesson is that the spatiality in a cognitive map affords us rich and useful information and this argues against recent suggestions that the notion of a cognitive map is not a useful one. Copyright © 2011 Cognitive Science Society, Inc.

  3. Comparative evaluation of six parametric Robinson and three parametric Howell's modification of Scarf-BloomRichardson grading method on breast aspirates with histopathology: A prospective study.

    PubMed

    Walke, Vaishali A; Gunjkar, Gajanan

    2017-01-01

    Fine needle aspiration cytology (FNAC) is a quick method to assess the tumor grade before its removal which will help clinicians to decide on the appropriate neo adjuvant therapy. This is essentially true in developing countries where core needle biopsy still is not used as a standard practice to sample breast carcinoma. Assessment of biological aggressiveness by cytological grading (CG) without removing the would be of immense value. The National Cancer Institute, Bethesda, sponsored conference had recommended that tumor grading on FNA material should be incorporated in cytology reports for prognostication. The present study was carried out to evaluate which among the two, five parametric Robinson or three parametric Scarf-BloomRichardson (SBR) cytology grading method corresponds better with the histological grading (HG) in breast carcinoma. FNAC of 150 cases of ductal carcinoma breast with subsequent histological confirmation was studied to assess the tumor grade on cytology by two distinct methods Robinson and Howell's modification of SBRmethod and then correlated with histologic grade. Comparative analysis revealed concordance of 76% by Robinson and 68% by SBR with Kappa value of 0.6683 and 0.4505 and diagnostic accuracy of 86.7% and 78.7%, respectively. We conclude that Robinson method showed a better correlation and higher kappa value of agreement in comparison with SBR method. Robinson method of CG is simpler, objective, and easily reproducible for grading breast carcinomas.

  4. Mapping landscape corridors

    Treesearch

    Peter Vogt; Kurt H. Riitters; Marcin Iwanowski; Christine Estreguil; Jacek Kozak; Pierre Soille

    2007-01-01

    Corridors are important geographic features for biological conservation and biodiversity assessment. The identification and mapping of corridors is usually based on visual interpretations of movement patterns (functional corridors) or habitat maps (structural corridors). We present a method for automated corridor mapping with morphological image processing, and...

  5. Extracting 3D Parametric Curves from 2D Images of Helical Objects.

    PubMed

    Willcocks, Chris G; Jackson, Philip T G; Nelson, Carl J; Obara, Boguslaw

    2017-09-01

    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively.

  6. Dual fiber microprobe for mapping elemental distributions in biological cells

    DOEpatents

    Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN

    2007-07-31

    Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.

  7. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  8. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrell, William C.; Birkel, Garrett W.; Forrer, Mark

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less

  9. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization

    DOE PAGES

    Morrell, William C.; Birkel, Garrett W.; Forrer, Mark; ...

    2017-08-21

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less

  10. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization.

    PubMed

    Morrell, William C; Birkel, Garrett W; Forrer, Mark; Lopez, Teresa; Backman, Tyler W H; Dussault, Michael; Petzold, Christopher J; Baidoo, Edward E K; Costello, Zak; Ando, David; Alonso-Gutierrez, Jorge; George, Kevin W; Mukhopadhyay, Aindrila; Vaino, Ian; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Garcia Martin, Hector

    2017-12-15

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDD and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.

  11. On the Sensitivity of Solutions of Parametrized Equations

    DTIC Science & Technology

    1991-03-22

    that the mapping 0 Sd -+ R’, ~()=y is of class C’ on Sd. Evidently, we have I b(0) =0 and (2.10) 4bD : Sd C Rd +R’, (D(r) =xo±+V-r +Vm(-r), V7 CSd, j...ran~k td d there exists some A C Isomn Rd Such that, I I d LA whence 3n VLd(VdT L’d)’ V~dAA1 d Ud) d(rndd d) 4. Some Geometrical Aspects As, lbefore

  12. Learning inverse kinematics: reduced sampling through decomposition into virtual robots.

    PubMed

    de Angulo, Vicente Ruiz; Torras, Carme

    2008-12-01

    We propose a technique to speedup the learning of the inverse kinematics of a robot manipulator by decomposing it into two or more virtual robot arms. Unlike previous decomposition approaches, this one does not place any requirement on the robot architecture, and thus, it is completely general. Parametrized self-organizing maps are particularly adequate for this type of learning, and permit comparing results directly obtained and through the decomposition. Experimentation shows that time reductions of up to two orders of magnitude are easily attained.

  13. Experimental simulation of decoherence in photonics qudits

    PubMed Central

    Marques, B.; Matoso, A. A.; Pimenta, W. M.; Gutiérrez-Esparza, A. J.; Santos, M. F.; Pádua, S.

    2015-01-01

    We experimentally perform the simulation of open quantum dynamics in single-qudit systems. Using a spatial light modulator as a dissipative optical device, we implement dissipative-dynamical maps onto qudits encoded in the transverse momentum of spontaneous parametric down-converted photon pairs. We show a well-controlled technique to prepare entangled qudits states as well as to implement dissipative local measurements; the latter realize two specific dynamics: dephasing and amplitude damping. Our work represents a new analogy-dynamical experiment for simulating an open quantum system. PMID:26527330

  14. Mapping Nearshore Seagrass and Colonized Hard Bottom Spatial Distribution and Percent Biological Cover in Florida, USA Using Object Based Image Analysis of WorldView-2 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Baumstark, R. D.; Duffey, R.; Pu, R.

    2016-12-01

    The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps depicting the spatial distribution and percent biological cover were created from WorldView-2 satellite imagery using Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study presents an alternative for mapping deeper, offshore habitats capable of producing higher thematic (percent biological cover) and spatial resolution maps compared to those created with the traditional photo-interpretation method.

  15. Navigating 3D electron microscopy maps with EM-SURFER.

    PubMed

    Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke

    2015-05-30

    The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.

  16. Deep Mapping the Biome: The Biology of Place in Don Gayton's "The Wheatgrass Mechanism" and John Janovy Jr.'s "Dunwoody Pond"

    ERIC Educational Resources Information Center

    Maher, Susan Naramore

    2005-01-01

    The term "deep map" is the invention of writer William Least Heat-Moon, whose extended essay "PrairyErth (a deep map)" has given definition to this form. Deep-map writing is marked by its intertextual, interdisciplinary, and multivocal nature. It is also self-consciously cartographic, presenting maps, following maps, and redrawing maps. Deep…

  17. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Serpell, Christopher J.; Rutte, Reida N.; Geraki, Kalotina; Pach, Elzbieta; Martincic, Markus; Kierkowicz, Magdalena; de Munari, Sonia; Wals, Kim; Raj, Ritu; Ballesteros, Belén; Tobias, Gerard; Anthony, Daniel C.; Davis, Benjamin G.

    2016-10-01

    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular `blueprint' this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as `contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.

  18. Integrating Concept Mapping and the Learning Cycle To Teach Diffusion and Osmosis Concepts to High School Biology Students.

    ERIC Educational Resources Information Center

    Odom, Arthur L.; Kelly, Paul V.

    2001-01-01

    Explores the effectiveness of concept mapping, the learning cycle, expository instruction, and a combination of concept mapping/learning cycle in promoting conceptual understanding of diffusion and osmosis. Concludes that the concept mapping/learning cycle and concept mapping treatment groups significantly outperformed the expository treatment…

  19. The synthesis map is a multidimensional educational tool that provides insight into students' mental models and promotes students' synthetic knowledge generation.

    PubMed

    Ortega, Ryan A; Brame, Cynthia J

    2015-01-01

    Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping, which utilizes embedding to layer information within concepts. Prezi's zooming user interface lets the author of the presentation use both depth as well as distance to show connections between data, ideas, and concepts. Students in the class Biology of Cancer created synthesis maps to illustrate their knowledge of tumorigenesis. Students used multiple organizational schemes to build their maps. We present an analysis of student work, placing special emphasis on organization within student maps and how the organization of knowledge structures in student maps can reveal strengths and weaknesses in student understanding or instruction. We also provide a discussion of best practices for instructors who would like to implement synthesis mapping in their classrooms. © 2015 R. A. Ortega and C. J. Brame et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease*

    PubMed Central

    Dewhurst, Henry; Sundararaman, Niveda

    2016-01-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable body of potential regulatory elements that impact hundreds of different biological processes important in eukaryotic biology and human health. PMID:27697855

  1. On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas.

    PubMed

    Hogg, Oliver T; Huvenne, Veerle A I; Griffiths, Huw J; Linse, Katrin

    2018-06-01

    In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management plans. Such scientific underpinning of marine spatial planning is critical in balancing the needs of multiple stakeholders whilst maximising conservation payoff. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Advanced imaging techniques in brain tumors

    PubMed Central

    2009-01-01

    Abstract Perfusion, permeability and magnetic resonance spectroscopy (MRS) are now widely used in the research and clinical settings. In the clinical setting, qualitative, semi-quantitative and quantitative approaches such as review of color-coded maps to region of interest analysis and analysis of signal intensity curves are being applied in practice. There are several pitfalls with all of these approaches. Some of these shortcomings are reviewed, such as the relative low sensitivity of metabolite ratios from MRS and the effect of leakage on the appearance of color-coded maps from dynamic susceptibility contrast (DSC) magnetic resonance (MR) perfusion imaging and what correction and normalization methods can be applied. Combining and applying these different imaging techniques in a multi-parametric algorithmic fashion in the clinical setting can be shown to increase diagnostic specificity and confidence. PMID:19965287

  3. Chaos, Chaos Control and Synchronization of a Gyrostat System

    NASA Astrophysics Data System (ADS)

    GE, Z.-M.; LIN, T.-N.

    2002-03-01

    The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.

  4. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  5. Spontaneous symmetry breaking in coupled parametrically driven waveguides.

    PubMed

    Dror, Nir; Malomed, Boris A

    2009-01-01

    We introduce a system of linearly coupled parametrically driven damped nonlinear Schrödinger equations, which models a laser based on a nonlinear dual-core waveguide with parametric amplification symmetrically applied to both cores. The model may also be realized in terms of parallel ferromagnetic films, in which the parametric gain is provided by an external field. We analyze spontaneous symmetry breaking (SSB) of fundamental and multiple solitons in this system, which was not studied systematically before in linearly coupled dissipative systems with intrinsic nonlinearity. For fundamental solitons, the analysis reveals three distinct SSB scenarios. Unlike the standard dual-core-fiber model, the present system gives rise to a vast bistability region, which may be relevant to applications. Other noteworthy findings are restabilization of the symmetric soliton after it was destabilized by the SSB bifurcation, and the existence of a generic situation with all solitons unstable in the single-component (decoupled) model, while both symmetric and asymmetric solitons may be stable in the coupled system. The stability of the asymmetric solitons is identified via direct simulations, while for symmetric and antisymmetric ones the stability is verified too through the computation of stability eigenvalues, families of antisymmetric solitons being entirely unstable. In this way, full stability maps for the symmetric solitons are produced. We also investigate the SSB bifurcation of two-soliton bound states (it breaks the symmetry between the two components, while the two peaks in the shape of the soliton remain mutually symmetric). The family of the asymmetric double-peak states may decouple from its symmetric counterpart, being no longer connected to it by the bifurcation, with a large portion of the asymmetric family remaining stable.

  6. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data

    NASA Astrophysics Data System (ADS)

    Peres, Leonardo de Faria; Lucena, Andrews José de; Rotunno Filho, Otto Corrêa; França, José Ricardo de Almeida

    2018-02-01

    The aim of this work is to study urban heat island (UHI) in Metropolitan Area of Rio de Janeiro (MARJ) based on the analysis of land-surface temperature (LST) and land-use patterns retrieved from Landsat-5/Thematic Mapper (TM), Landsat-7/Enhanced Thematic Mapper Plus (ETM+) and Landsat-8/Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS) data covering a 32-year period between 1984 and 2015. LST temporal evolution is assessed by comparing the average LST composites for 1984-1999 and 2000-2015 where the parametric Student t-test was conducted at 5% significance level to map the pixels where LST for the more recent period is statistically significantly greater than the previous one. The non-parametric Mann-Whitney-Wilcoxon rank sum test has also confirmed at the same 5% significance level that the more recent period (2000-2015) has higher LST values. UHI intensity between ;urban; and ;rural/urban low density; (;vegetation;) areas for 1984-1999 and 2000-2015 was established and confirmed by both parametric and non-parametric tests at 1% significance level as 3.3 °C (5.1 °C) and 4.4 °C (7.1 °C), respectively. LST has statistically significantly (p-value < 0.01) increased over time in two of three land cover classes (;urban; and ;urban low density;), respectively by 1.9 °C and 0.9 °C, except in ;vegetation; class. A spatial analysis was also performed to identify the urban pixels within MARJ where UHI is more intense by subtracting the LST of these pixels from the LST mean value of ;vegetation; land-use class.

  7. Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping.

    PubMed

    Bien, Nina; Sack, Alexander T

    2014-07-01

    In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Phase transition in the parametric natural visibility graph.

    PubMed

    Snarskii, A A; Bezsudnov, I V

    2016-10-01

    We investigate time series by mapping them to the complex networks using a parametric natural visibility graph (PNVG) algorithm that generates graphs depending on arbitrary continuous parameter-the angle of view. We study the behavior of the relative number of clusters in PNVG near the critical value of the angle of view. Artificial and experimental time series of different nature are used for numerical PNVG investigations to find critical exponents above and below the critical point as well as the exponent in the finite size scaling regime. Altogether, they allow us to find the critical exponent of the correlation length for PNVG. The set of calculated critical exponents satisfies the basic Widom relation. The PNVG is found to demonstrate scaling behavior. Our results reveal the similarity between the behavior of the relative number of clusters in PNVG and the order parameter in the second-order phase transitions theory. We show that the PNVG is another example of a system (in addition to magnetic, percolation, superconductivity, etc.) with observed second-order phase transition.

  9. Acoustic Characteristics of a Model Isolated Tiltrotor in DNW

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; McCluer, Megan; Tadghighi, Hormoz

    1999-01-01

    An aeroacoustic wind tunnel test was conducted using a scaled isolated tiltrotor model. Acoustic data were acquired using an in-flow microphone wing traversed beneath the model to map the directivity of the near-field acoustic radiation of the rotor for a parametric variation of rotor angle-of-attack, tunnel speed, and rotor thrust. Acoustic metric data were examined to show trends of impulsive noise for the parametric variations. BVISPL maximum noise levels were found to increase with alpha for constant mu and C(sub T), although the maximum BVI levels were found at much higher a than for a typical helicopter. BVISPL levels were found to increase with mu for constant alpha and C(sub T. BVISPL was found to decrease with increasing CT for constant a and m, although BVISPL increased with thrust for a constant wake geometry. Metric data were also scaled for M(sub up) to evaluate how well simple power law scaling could be used to correct metric data for M(sub up) effects.

  10. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause

    NASA Technical Reports Server (NTRS)

    Tsyganenko, N. A.

    1995-01-01

    Empirical data-based models of the magnetosphereic magnetic field have been widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) have three serious deficiencies: (1) an unstable de facto magnetopause, (2) a crude parametrization by the K(sub p) index, and (3) inaccuracies in the equatorial magnetotail B(sub z) values. This paper describes a new approach to the problem; the essential new features are (1) a realistic shape and size of the magnetopause, based on fits to a large number of observed crossing (allowing a parametrization by the solar wind pressure), (2) fully controlled shielding of the magnetic field produced by all magnetospheric current systems, (3) new flexible representations for the tail and ring currents, and (4) a new directional criterion for fitting the model field to spacecraft data, providing improved accuracy for field line mapping. Results are presented from initial efforts to create models assembled from these modules and calibrated against spacecraft data sets.

  11. Parental substance abuse and function of the motivation and behavioral inhibition systems in drug-naïve youth.

    PubMed

    Ivanov, Iliyan; Liu, Xun; Shulz, Kurt; Fan, Jin; London, Edythe; Friston, Karl; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2012-02-28

    It is hypothesized that the development of substance abuse (SA) may be due to imbalance in functions of the motivation-reward and behavioral inhibition systems in the brain. This speaks to the search for biological risk factors for SA in drug-naïve children who also exhibit motivational and inhibitory control deficits; however, this type of research is currently lacking. The objective of this study was to establish a neurobiological basis for addiction vulnerability using functional magnetic resonance imaging (fMRI) in drug-naïve youth with attention deficit/hyperactivity disorder (ADHD). We hypothesized that children with ADHD alone would show higher activity in regions of the motivation-reward and behavioral inhibition systems than children with ADHD and a parental history of SA. Toward this goal we scanned 20 drug-naïve children with ADHD ages 8-13 while performing an event-related reward task. High (N=10) and low (N=10) risk subjects were identified, based on parental history of SA. The effects of anticipation, conflict, and reward were assessed with appropriate linear contrasts, and between-group differences were assessed using statistical parametric mapping. The two groups did not differ on behavioral measures of the task. The fMRI results show heightened activation in the brain motivational-reward system and reduced activation of the inhibitory control system in high-risk compared to low-risk children. These results suggest that a functional mismatch between these two systems may represent one possible biological underpinning of SA risk, which is conferred by a parental history of addiction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. On generic obstructions to recovering correct statistics from climate simulations: Homogenization for deterministic maps and multiplicative noise

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg; Melbourne, Ian

    2013-04-01

    Whereas diffusion limits of stochastic multi-scale systems have a long and successful history, the case of constructing stochastic parametrizations of chaotic deterministic systems has been much less studied. We present rigorous results of convergence of a chaotic slow-fast system to a stochastic differential equation with multiplicative noise. Furthermore we present rigorous results for chaotic slow-fast maps, occurring as numerical discretizations of continuous time systems. This raises the issue of how to interpret certain stochastic integrals; surprisingly the resulting integrals of the stochastic limit system are generically neither of Stratonovich nor of Ito type in the case of maps. It is shown that the limit system of a numerical discretisation is different to the associated continuous time system. This has important consequences when interpreting the statistics of long time simulations of multi-scale systems - they may be very different to the one of the original continuous time system which we set out to study.

  13. Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning.

    PubMed

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C

    2013-05-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    PubMed

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  16. Positioning Genomics in Biology Education: Content Mapping of Undergraduate Biology Textbooks†

    PubMed Central

    Wernick, Naomi L. B.; Ndung’u, Eric; Haughton, Dominique; Ledley, Fred D.

    2014-01-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science. PMID:25574293

  17. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    PubMed

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  18. An Integrated Physical, Genetic and Cytogenetic Map of Brachypodium distachyon, a Model System for Grass Research

    PubMed Central

    Febrer, Melanie; Goicoechea, Jose Luis; Wright, Jonathan; McKenzie, Neil; Song, Xiang; Lin, Jinke; Collura, Kristi; Wissotski, Marina; Yu, Yeisoo; Ammiraju, Jetty S. S.; Wolny, Elzbieta; Idziak, Dominika; Betekhtin, Alexander; Kudrna, Dave; Hasterok, Robert; Wing, Rod A.; Bevan, Michael W.

    2010-01-01

    The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent vaildation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation. PMID:20976139

  19. Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.

    2004-05-01

    We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.

  20. Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations

    PubMed Central

    Chaspari, Theodora; Tsiartas, Andreas; Tsilifis, Panagiotis; Narayanan, Shrikanth

    2016-01-01

    Parametric dictionaries can increase the ability of sparse representations to meaningfully capture and interpret the underlying signal information, such as encountered in biomedical problems. Given a mapping function from the atom parameter space to the actual atoms, we propose a sparse Bayesian framework for learning the atom parameters, because of its ability to provide full posterior estimates, take uncertainty into account and generalize on unseen data. Inference is performed with Markov Chain Monte Carlo, that uses block sampling to generate the variables of the Bayesian problem. Since the parameterization of dictionary atoms results in posteriors that cannot be analytically computed, we use a Metropolis-Hastings-within-Gibbs framework, according to which variables with closed-form posteriors are generated with the Gibbs sampler, while the remaining ones with the Metropolis Hastings from appropriate candidate-generating densities. We further show that the corresponding Markov Chain is uniformly ergodic ensuring its convergence to a stationary distribution independently of the initial state. Results on synthetic data and real biomedical signals indicate that our approach offers advantages in terms of signal reconstruction compared to previously proposed Steepest Descent and Equiangular Tight Frame methods. This paper demonstrates the ability of Bayesian learning to generate parametric dictionaries that can reliably represent the exemplar data and provides the foundation towards inferring the entire variable set of the sparse approximation problem for signal denoising, adaptation and other applications. PMID:28649173

  1. When cloud computing meets bioinformatics: a review.

    PubMed

    Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong

    2013-10-01

    In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.

  2. Elemental mapping of biological samples using a scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.

    1988-03-01

    Elemental mapping using a scanning proton microprobe (SPM) can be a powerful technique for probing trace elements in biology, allowing complex interfaces to be studied in detail, identifying contamination and artefacts present in the specimen, and in certain circumstances obtaining indirect chemical information. Examples used to illustrate the advantages of the technique include the elemental mapping of growing pollen tubes, honey bee brain section, a mouse macrophage cell, human liver section exhibiting primary biliary cirrhosis, and the attack by a mildew fungus on a pea leaf.

  3. High School Biology: A Group Approach to Concept Mapping.

    ERIC Educational Resources Information Center

    Brown, David S.

    2003-01-01

    Explains concept mapping as an instructional method in cooperative learning environments, and describes a study investigating the effectiveness of concept mapping on student learning during a photosynthesis and cellular respiration unit. Reports on the positive effects of concept mapping in the experimental group. (Contains 16 references.) (YDS)

  4. CHRONOBIOLOGY OF HIGH BLOOD PRESSURE

    PubMed Central

    Cornélissen, G.; Halberg, F.; Bakken, E. E.; Wang, Z.; Tarquini, R.; Perfetto, F.; Laffi, G.; Maggioni, C.; Kumagai, Y.; Homolka, P.; Havelková, A.; Dušek, J.; Svačinová, H.; Siegelová, J.; Fišer, B.

    2008-01-01

    BIOCOS, the project aimed at studying BIOlogical systems in their COSmos, has obtained a great deal of expertise in the fields of blood pressure (BP) and heart rate (HR) monitoring and of marker rhythmometry for the purposes of screening, diagnosis, treatment, and prognosis. Prolonging the monitoring reduces the uncertainty in the estimation of circadian parameters; the current recommendation of BIOCOS requires monitoring for at least 7 days. The BIOCOS approach consists of a parametric and a non-parametric analysis of the data, in which the results from the individual subject are being compared with gender- and age-specified reference values in health. Chronobiological designs can offer important new information regarding the optimization of treatment by timing its administration as a function of circadian and other rhythms. New technological developments are needed to close the loop between the monitoring of blood pressure and the administration of antihypertensive drugs. PMID:19122770

  5. An augmented parametric response map with consideration of image registration error: towards guidance of locally adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene

    2014-11-01

    Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.

  6. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects.

    PubMed

    Harik, Vasyl Michael

    2017-05-05

    A review of in vivo and in vitro toxicological studies of the potential toxic effects of carbon nanotubes is presented along with the analysis of experimental data and a hypothesis about the nanotube-asbestos similarity. Developments of the structure-activity paradigm have been reviewed along with the size effects and the classification of carbon nanotubes into eleven distinct classes (e.g., the high aspect ratio nanotubes, thick multi-wall nanotubes and short nanotubes). Scaling analysis of similarities between different classes of carbon nanotubes and asbestos fibers in the context of their potential toxicity and the efficiency of phagocytosis has been reviewed. The potential toxic effects of carbon nanotubes have been characterized by their normalized length, their aspect ratio and other parameters related to their inhalability, engulfment by macrophages and the effectiveness of phagocytosis. Geometric scaling parameters and the classification of carbon nanotubes are used to develop an updated parametric map for the extrapolation of the potential toxic effects resulting from the inhalation of long and short carbon nanotubes. An updated parametric map has been applied to the evaluation of the efficiency of phagocytosis involving distinct classes of carbon nanotubes. A critical value of an important nondimensional parameter characterizing the efficiency of phagocytosis for different nanotubes is presented along with its macrophage-based normalization. The present evaluation of the potential toxicological effects of the high aspect ratio carbon nanotubes is found to be in the agreement with other available studies and earlier scaling analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Distinct pattern of cerebral blood flow alterations specific to schizophrenics experiencing auditory verbal hallucinations with and without insight: a pilot study.

    PubMed

    Jing, Rixing; Huang, Jiangjie; Jiang, Deguo; Lin, Xiaodong; Ma, Xiaolei; Tian, Hongjun; Li, Jie; Zhuo, Chuanjun

    2018-01-23

    Schizophrenia is associated with widespread and complex cerebral blood flow (CBF) disturbance. Auditory verbal hallucinations (AVH) and insight are the core symptoms of schizophrenia. However, to the best of our knowledge, very few studies have assessed the CBF characteristics of the AVH suffered by schizophrenic patients with and without insight. Based on our previous findings, Using a 3D pseudo-continuous ASL (pcASL) technique, we investigated the differences in AVH-related CBF alterations in schizophrenia patients with and without insight. We used statistical parametric mapping (SPM8) and statistical non-parametric mapping (SnPM13) to perform the fMRI analysis. We found that AVH-schizophrenia patients without insight showed an increased CBF in the left temporal pole and a decreased CBF in the right middle frontal gyrus when compared to AVH-schizophrenia patients with insight. Our novel findings suggest that AVH-schizophrenia patients without insight possess a more complex CBF disturbance. Simultaneously, our findings also incline to support the idea that the CBF aberrant in some specific brain regions may be the common neural basis of insight and AVH. Our findings support the mostly current hypotheses regarding AVH to some extent. Although our findings come from a small sample, it provide the evidence that indicate us to conduct a larger study to thoroughly explore the mechanisms of schizophrenia, especially the core symptoms of AVHs and insight.

  8. Gray matter abnormalities of the dorsal posterior cingulate in sleep walking.

    PubMed

    Heidbreder, Anna; Stefani, Ambra; Brandauer, Elisabeth; Steiger, Ruth; Kremser, Christian; Gizewski, Elke R; Young, Peter; Poewe, Werner; Högl, Birgit; Scherfler, Christoph

    2017-08-01

    This study aimed to determine whether voxel-based analysis of T1 weighted magnetic resonance imaging (MRI) and diffusion tensor imaging is able to detect alterations of gray and white matter morphometry as well as measures of mean diffusivity and fractional anisotropy in patients with non-rapid eye movement parasomnia. 3 Tesla MRI was performed in 14 drug-free, polysomnography-confirmed adult patients with non-rapid eye movement parasomnia (age: 29 ± 4.2 years; disease duration 19.2 ± 7.7 years) and 14 healthy subjects, matched for age and gender. Statistical parametric mapping was applied to objectively identify focal changes of MRI parameters throughout the entire brain volume. Statistical parametric mapping localized significant decreases of gray matter volume in the left dorsal posterior cingulate cortex (BA23) and posterior midcingulate cortex (BA24) in patients with non-rapid eye movement parasomnias compared to the control group (p < 0.001, corrected for multiple comparisons). No significant differences of mean diffusivity and fractional anisotropy measures were found between the non-rapid eye movement parasomnia group and the healthy control group. Recently, the simultaneous co-existence of arousal or wakefulness originating from the motor and cingulate cortices and persistent sleep in associative cortical regions was suggested as a functional framework of somnambulism. Gray matter volume decline in the dorsal posterior and posterior midcingulate cortex reported in this study might represent the neuroanatomical substrate for this condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series.

    PubMed

    Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel

    2016-05-01

    The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .

  10. STAPP: Spatiotemporal analysis of plantar pressure measurements using statistical parametric mapping.

    PubMed

    Booth, Brian G; Keijsers, Noël L W; Sijbers, Jan; Huysmans, Toon

    2018-05-03

    Pedobarography produces large sets of plantar pressure samples that are routinely subsampled (e.g. using regions of interest) or aggregated (e.g. center of pressure trajectories, peak pressure images) in order to simplify statistical analysis and provide intuitive clinical measures. We hypothesize that these data reductions discard gait information that can be used to differentiate between groups or conditions. To test the hypothesis of null information loss, we created an implementation of statistical parametric mapping (SPM) for dynamic plantar pressure datasets (i.e. plantar pressure videos). Our SPM software framework brings all plantar pressure videos into anatomical and temporal correspondence, then performs statistical tests at each sampling location in space and time. Novelly, we introduce non-linear temporal registration into the framework in order to normalize for timing differences within the stance phase. We refer to our software framework as STAPP: spatiotemporal analysis of plantar pressure measurements. Using STAPP, we tested our hypothesis on plantar pressure videos from 33 healthy subjects walking at different speeds. As walking speed increased, STAPP was able to identify significant decreases in plantar pressure at mid-stance from the heel through the lateral forefoot. The extent of these plantar pressure decreases has not previously been observed using existing plantar pressure analysis techniques. We therefore conclude that the subsampling of plantar pressure videos - a task which led to the discarding of gait information in our study - can be avoided using STAPP. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparison of parametric methods for modeling corneal surfaces

    NASA Astrophysics Data System (ADS)

    Bouazizi, Hala; Brunette, Isabelle; Meunier, Jean

    2017-02-01

    Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces leastsquares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.

  12. Effects of Cooperative Concept Mapping Teaching Approach on Secondary School Students' Motivation in Biology in Gucha District, Kenya

    ERIC Educational Resources Information Center

    Keraro, Fred Nyabuti; Wachanga, Samuel W.; Orora, William

    2007-01-01

    This study investigated the effects of using the cooperative concept mapping (CCM) teaching approach on secondary school students' motivation in biology. A non equivalent control group design under the quasi-experimental research was used in which a random sample of four co-educational secondary schools was used. The four schools were randomly…

  13. The Effect of Concept Mapping and Problem Solving Teaching Strategies on Achievement in Biology among Nigerian Secondary School Students

    ERIC Educational Resources Information Center

    Okoye, Nnamdi S.; Okechukwu, Rose N.

    2010-01-01

    The study examined the effect of concept-mapping and problem-solving teaching strategies on achievement in biology among Nigerian secondary school students. The method used for the study was a quasi-experimental pre-test treatment design. One hundred and thirteen senior secondary three (S.S. 111) students randomly selected from three mixed…

  14. Effects of intravenous and topical laryngeal lidocaine on heart rate, mean arterial pressure and cough response to endotracheal intubation in dogs.

    PubMed

    Thompson, Kate R; Rioja, Eva

    2016-07-01

    To compare the effects of intravenous (IV) and topical laryngeal lidocaine on heart rate (HR), mean arterial pressure (MAP) and cough response to endotracheal intubation (ETI) in dogs. Prospective, randomized, blinded clinical study. Forty-two client-owned dogs (American Society of Anesthesiologists class I and II status) undergoing elective orthopaedic surgery. Dogs were randomized to three groups. Dogs in group SALIV received 0.1 mL kg(-1) IV saline. Dogs in group LIDIV received 2 mg kg(-1) IV 2% lidocaine. Dogs in group LIDTA received 0.4 mg kg(-1) topically sprayed laryngeal 2% lidocaine. All dogs were premedicated with methadone (0.2 mg kg(-1) IV). After 30 minutes, IV propofol was administered to abolish the lateral palpebral reflex and produce jaw relaxation. The allocated treatment was then administered and, after 30 seconds, further propofol was administered to abolish the medial palpebral reflex and facilitate ETI. HR and MAP were measured at four time-points using cardiac auscultation and automated oscillometry, respectively. The cough response at ETI was recorded. One-way anova and post hoc Tukey adjustment were used to analyse parametric data. The Kruskal-Wallis test was used to analyse non-parametric data. Odds ratios were calculated for the cough response. A p-value of ≤0.05 was considered to indicate statistical significance. In response to ETI, changes in MAP differed significantly between groups. In SALIV, MAP increased (4 ± 6 mmHg), whereas it decreased in LIDIV (6 ± 13 mmHg) (p = 0.013) and LIDTA (7 ± 11 mmHg) (p = 0.003). Dogs in SALIV were almost 10 times more likely to cough than dogs in LIDIV (odds ratio 9.75, 95% confidence interval 0.98-96.60; p = 0.05). In propofol-anaesthetized dogs, IV and topical laryngeal lidocaine attenuated the pressor response to ETI, whereas IV lidocaine reduced the cough response. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  15. MIMO: an efficient tool for molecular interaction maps overlap

    PubMed Central

    2013-01-01

    Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344

  16. Multi-parametric monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for focused ultrasound (HMIFU)

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa

    2012-11-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and relative phase-shift during high energy HIFU where tissue boiling occurs. Forty three (n=18) thermal lesions were formed in ex vivo canine liver specimens. Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-, 20-and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W. For the 10-, 20-, and 30-s treatment cases, a steady decrease in the displacement (-8.67±4.80, -14.44±7.77, 24.03±12.11μm), compressive strain -0.16±0.06, -0.71±0.30, -0.68±0.36 %, and phase shift +1.80±6.80, -15.80±9.44, -18.62±13.14 ° were obtained, respectively, indicating overall increase of relative stiffness and decrease of the viscosity-to-stiffness ratio during heating. After treatment, 2D HMI displacement images of the thermal lesions showed an increased lesion-to-background contrast of 1.34±0.19, 1.98±0.30, 2.26±0.80 and lesion size of 40.95±8.06, 47.6±4.87, and 52.23±2.19 mm2, respectively, which was validated again with pathology 25.17±6.99, 42.17±1.77, 47.17±3.10 mm2. Additionally, studies also investigated the performance of mutli-parametric monitoring under the influence of boiling and attenuation change due to tissue boiling, where discrepancies were found such as deteriorated displacement SNR and reversed lesion-to-background displacement contrast with indication on possible increase in attenuation and tissue gelatification or pulverization. Despite the challenge of the boiling mechanism, the relative phase shift served as consist biomechanical tissue response independent of changes in acoustic properties throughout the HIFU treatment. In addition, the 2D HMI displacement images were able to confirm and quantify the change in dimensions of the thermal lesion site. Therefore, the multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU treatment.

  17. The Application of Typology Method in Historical Building Information Modelling (hbim) Taking the Information Surveying and Mapping of Jiayuguan Fortress Town as AN Example

    NASA Astrophysics Data System (ADS)

    Li, D. Y.; Li, K.; Wu, C.

    2017-08-01

    With the promotion of fine degree of the heritage building surveying and mapping, building information modelling technology(BIM) begins to be used in surveying and mapping, renovation, recording and research of heritage building, called historical building information modelling(HBIM). The hierarchical frameworks of parametric component library of BIM, belonging to the same type with the same parameters, has the same internal logic with archaeological typology which is more and more popular in the age identification of ancient buildings. Compared with the common materials, 2D drawings and photos, typology with HBIM has two advantages — (1) comprehensive building information both in collection and representation and (2) uniform and reasonable classification criteria This paper will take the information surveying and mapping of Jiayuguan Fortress Town as an example to introduce the field work method of information surveying and mapping based on HBIM technology and the construction of Revit family library.And then in order to prove the feasibility and advantage of HBIM technology used in typology method, this paper will identify the age of Guanghua gate tower, Rouyuan gate tower, Wenchang pavilion and the theater building of Jiayuguan Fortress Town with HBIM technology and typology method.

  18. Synthetic Biology: Mapping the Scientific Landscape

    PubMed Central

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  19. Network analyses based on comprehensive molecular interaction maps reveal robust control structures in yeast stress response pathways

    PubMed Central

    Kawakami, Eiryo; Singh, Vivek K; Matsubara, Kazuko; Ishii, Takashi; Matsuoka, Yukiko; Hase, Takeshi; Kulkarni, Priya; Siddiqui, Kenaz; Kodilkar, Janhavi; Danve, Nitisha; Subramanian, Indhupriya; Katoh, Manami; Shimizu-Yoshida, Yuki; Ghosh, Samik; Jere, Abhay; Kitano, Hiroaki

    2016-01-01

    Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems. PMID:28725465

  20. Designing and encoding models for synthetic biology.

    PubMed

    Endler, Lukas; Rodriguez, Nicolas; Juty, Nick; Chelliah, Vijayalakshmi; Laibe, Camille; Li, Chen; Le Novère, Nicolas

    2009-08-06

    A key component of any synthetic biology effort is the use of quantitative models. These models and their corresponding simulations allow optimization of a system design, as well as guiding their subsequent analysis. Once a domain mostly reserved for experts, dynamical modelling of gene regulatory and reaction networks has been an area of growth over the last decade. There has been a concomitant increase in the number of software tools and standards, thereby facilitating model exchange and reuse. We give here an overview of the model creation and analysis processes as well as some software tools in common use. Using markup language to encode the model and associated annotation, we describe the mining of components, their integration in relational models, formularization and parametrization. Evaluation of simulation results and validation of the model close the systems biology 'loop'.

  1. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps

    PubMed Central

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless ‘geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses. ACSN may also support patient stratification, prediction of treatment response and resistance to cancer drugs, as well as design of novel treatment strategies. PMID:26192618

  2. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-04-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  3. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-05-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  4. Kinetic Model of Growth of Arthropoda Populations

    NASA Astrophysics Data System (ADS)

    Ershov, Yu. A.; Kuznetsov, M. A.

    2018-05-01

    Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.

  5. The Default Mode Network Differentiates Biological From Non-Biological Motion

    PubMed Central

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A.; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  6. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  7. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline.

    PubMed

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C

    2011-12-21

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.

  8. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    NASA Astrophysics Data System (ADS)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our results highlight the importance of geology and subsurface flow conditions, in addition to snow accumulation. In parallel, the remotely-sensed drought sensitivity can be used as a scalable metric to identify the vulnerable regions to the future climate change, as well as to inform future sampling and characterization.

  9. Technological Innovations in Magnetic Resonance for Early Detection of Cardiovascular Diseases.

    PubMed

    Santarelli, Maria F; Positano, Vincenzo; Martini, Nicola; Valvano, Giuseppe; Landini, Luigi

    2016-01-01

    Most recent technical innovations in cardiovascular MR imaging (CMRI) are presented in this review. They include hardware and software developments, and novelties in parametric mapping. All these recent improvements lead to high spatial and temporal resolution and quantitative information on the heart structure and function. They make it achievable ambitious goals in the field of magnetic resonance, such as the early detection of cardiovascular pathologies. In this review article, we present recent innovations in CMRI, emphasizing the progresses performed and the solutions proposed to some yet opened technical problems.

  10. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Zubareva, O. V.

    2017-06-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  11. Genetic Mapping

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  12. The Human Genome Initiative: First Steps.

    ERIC Educational Resources Information Center

    Newman, Alan R.

    1990-01-01

    Described is the basic biology involved in mapping chromosomes as presented at a symposium at a recent meeting of the American Chemical Association which focused on the Human Genome Initiative. Different types of gene maps and techniques used to produce gene maps are discussed. (CW)

  13. Imaging predictors of poststroke depression: methodological factors in voxel-based analysis

    PubMed Central

    Gozzi, Sophia A; Wood, Amanda G; Chen, Jian; Vaddadi, Krishnarao; Phan, Thanh G

    2014-01-01

    Objective The purpose of this study was to explore the relationship between lesion location and poststroke depression using statistical parametric mapping. Methods First episode patients with stroke were assessed within 12 days and at 1-month poststroke. Patients with an a priori defined cut-off score of 11 on the Hospital Anxiety and Depression Scale (HADS) at follow-up were further assessed using the Mini-International Neuropsychiatric Interview (MINI) to confirm a clinical diagnosis of major or minor depression in accordance with Diagnostic and Statistical Manual-IV (DSM-IV) inclusion criteria. Participants were included if they were aged 18–85 years, proficient in English and eligible for MRI. Patients were excluded if they had a confounding diagnosis such as major depressive disorder at the time of admission, a neurodegenerative disease, epilepsy or an imminently life-threatening comorbid illness, subarachnoid or subdural stroke, a second episode of stroke before follow-up and/or a serious impairment of consciousness or language. Infarcts observed on MRI scans were manually segmented into binary images, linearly registered into a common stereotaxic coordinate space. Using statistical parametric mapping, we compared infarct patterns in patients with stroke with and without depression. Results 27% (15/55 patients) met criteria for depression at follow-up. Mean infarct volume was 19±53 mL and National Institute of Health Stroke Scale (NIHSS) at Time 1 (within 12 days of stroke) was 4±4, indicating a sample of mild strokes. No voxels or clusters were significant after a multiple comparison correction was applied (p>0.05). Examination of infarct maps showed that there was minimal overlap of infarct location between patients, thus invalidating the voxel comparison analysis. Conclusions This study provided inconclusive evidence for the association between infarcts in a specific region and poststroke depression. PMID:25001395

  14. Flow Mapping Based on the Motion-Integration Errors of Autonomous Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Chang, D.; Edwards, C. R.; Zhang, F.

    2016-02-01

    Knowledge of a flow field is crucial in the navigation of autonomous underwater vehicles (AUVs) since the motion of AUVs is affected by ambient flow. Due to the imperfect knowledge of the flow field, it is typical to observe a difference between the actual and predicted trajectories of an AUV, which is referred to as a motion-integration error (also known as a dead-reckoning error if an AUV navigates via dead-reckoning). The motion-integration error has been essential for an underwater glider to compute its flow estimate from the travel information of the last leg and to improve navigation performance by using the estimate for the next leg. However, the estimate by nature exhibits a phase difference compared to ambient flow experienced by gliders, prohibiting its application in a flow field with strong temporal and spatial gradients. In our study, to mitigate the phase problem, we have developed a local ocean model by combining the flow estimate based on the motion-integration error with flow predictions from a tidal ocean model. Our model has been used to create desired trajectories of gliders for guidance. Our method is validated by Long Bay experiments in 2012 and 2013 in which we deployed multiple gliders on the shelf of South Atlantic Bight and near the edge of Gulf Stream. In our recent study, the application of the motion-integration error is further extended to create a spatial flow map. Considering that the motion-integration errors of AUVs accumulate along their trajectories, the motion-integration error is formulated as a line integral of ambient flow which is then reformulated into algebraic equations. By solving an inverse problem for these algebraic equations, we obtain the knowledge of such flow in near real time, allowing more effective and precise guidance of AUVs in a dynamic environment. This method is referred to as motion tomography. We provide the results of non-parametric and parametric flow mapping from both simulated and experimental data.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Yu, H; Jara, H

    Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PDmore » maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in assessing fibrosis, and can potentially serve as an accurate surrogate marker for hepatic fibrosis.« less

  16. Headache in acute ischaemic stroke: a lesion mapping study.

    PubMed

    Seifert, Christian L; Schönbach, Etienne M; Magon, Stefano; Gross, Elena; Zimmer, Claus; Förschler, Anette; Tölle, Thomas R; Mühlau, Mark; Sprenger, Till; Poppert, Holger

    2016-01-01

    Headache is a common symptom in acute ischaemic stroke, but the underlying mechanisms are incompletely understood. The aim of this lesion mapping study was to identify brain regions, which are related to the development of headache in acute ischaemic stroke. Patients with acute ischaemic stroke (n = 100) were assessed by brain MRI at 3 T including diffusion weighted imaging. We included 50 patients with stroke and headache as well as 50 patients with stroke but no headache symptoms. Infarcts were manually outlined and images were transformed into standard stereotaxic space using non-linear warping. Voxel-wise overlap and subtraction analyses of lesions as well as non-parametric statistics were conducted. The same analyses were carried out by flipping of left-sided lesions, so that all strokes were transformed to the same hemisphere. Between the headache group as well as the non-headache there was no difference in infarct volumes, in the distribution of affected vascular beds or in the clinical severity of strokes. The headache phenotype was tension-type like in most cases. Subtraction analysis revealed that in headache sufferers infarctions were more often distributed in two well-known areas of the central pain matrix: the insula and the somatosensory cortex. This result was confirmed in the flipped analysis and by non-parametric statistical testing (whole brain corrected P-value < 0.01). To the best of our knowledge, this is the first lesion mapping study investigating potential lesional patterns associated with headache in acute ischaemic stroke. Insular strokes turned out to be strongly associated with headache. As the insular cortex is a well-established region in pain processing, our results suggest that, at least in a subgroup of patients, acute stroke-related headache might be centrally driven. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A tutorial in displaying mass spectrometry-based proteomic data using heat maps.

    PubMed

    Key, Melissa

    2012-01-01

    Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.

  18. All biology is computational biology.

    PubMed

    Markowetz, Florian

    2017-03-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

  19. Comparing Two Forms of Concept Map Critique Activities to Facilitate Knowledge Integration Processes in Evolution Education

    ERIC Educational Resources Information Center

    Schwendimann, Beat A.; Linn, Marcia C.

    2016-01-01

    Concept map activities often lack a subsequent revision step that facilitates knowledge integration. This study compares two collaborative critique activities using a Knowledge Integration Map (KIM), a form of concept map. Four classes of high school biology students (n?=?81) using an online inquiry-based learning unit on evolution were assigned…

  20. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues

    NASA Astrophysics Data System (ADS)

    Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.

    2016-07-01

    The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.

  1. Fusion of multi-tracer PET images for dose painting.

    PubMed

    Lelandais, Benoît; Ruan, Su; Denœux, Thierry; Vera, Pierre; Gardin, Isabelle

    2014-10-01

    PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs. Our work is to fuse multi-tracer PET images to obtain a good BTV definition and to help the radiation oncologist in dose painting. Due to the noise and the partial volume effect leading, respectively, to the presence of uncertainty and imprecision in PET images, the segmentation and the fusion of PET images is difficult. In this paper, a framework based on Belief Function Theory (BFT) is proposed for the segmentation of BTV from multi-tracer PET images. The first step is based on an extension of the Evidential C-Means (ECM) algorithm, taking advantage of neighboring voxels for dealing with uncertainty and imprecision in each mono-tracer PET image. Then, imprecision and uncertainty are, respectively, reduced using prior knowledge related to defects in the acquisition system and neighborhood information. Finally, a multi-tracer PET image fusion is performed. The results are represented by a set of parametric maps that provide important information for dose painting. The performances are evaluated on PET phantoms and patient data with lung cancer. Quantitative results show good performance of our method compared with other methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    PubMed

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  3. Regional patterns of grey matter atrophy and magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups: a voxel-based analysis study.

    PubMed

    Mallik, Shahrukh; Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2015-04-01

    In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. © The Author(s), 2014.

  4. Global, quantitative and dynamic mapping of protein subcellular localization.

    PubMed

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh

    2016-06-09

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

  5. A biologically inspired neural net for trajectory formation and obstacle avoidance.

    PubMed

    Glasius, R; Komoda, A; Gielen, S C

    1996-06-01

    In this paper we present a biologically inspired two-layered neural network for trajectory formation and obstacle avoidance. The two topographically ordered neural maps consist of analog neurons having continuous dynamics. The first layer, the sensory map, receives sensory information and builds up an activity pattern which contains the optimal solution (i.e. shortest path without collisions) for any given set of current position, target positions and obstacle positions. Targets and obstacles are allowed to move, in which case the activity pattern in the sensory map will change accordingly. The time evolution of the neural activity in the second layer, the motor map, results in a moving cluster of activity, which can be interpreted as a population vector. Through the feedforward connections between the two layers, input of the sensory map directs the movement of the cluster along the optimal path from the current position of the cluster to the target position. The smooth trajectory is the result of the intrinsic dynamics of the network only. No supervisor is required. The output of the motor map can be used for direct control of an autonomous system in a cluttered environment or for control of the actuators of a biological limb or robot manipulator. The system is able to reach a target even in the presence of an external perturbation. Computer simulations of a point robot and a multi-joint manipulator illustrate the theory.

  6. Automated design of genetic toggle switches with predetermined bistability.

    PubMed

    Chen, Shuobing; Zhang, Haoqian; Shi, Handuo; Ji, Weiyue; Feng, Jingchen; Gong, Yan; Yang, Zhenglin; Ouyang, Qi

    2012-07-20

    Synthetic biology aims to rationally construct biological devices with required functionalities. Methods that automate the design of genetic devices without post-hoc adjustment are therefore highly desired. Here we provide a method to predictably design genetic toggle switches with predetermined bistability. To accomplish this task, a biophysical model that links ribosome binding site (RBS) DNA sequence to toggle switch bistability was first developed by integrating a stochastic model with RBS design method. Then, to parametrize the model, a library of genetic toggle switch mutants was experimentally built, followed by establishing the equivalence between RBS DNA sequences and switch bistability. To test this equivalence, RBS nucleotide sequences for different specified bistabilities were in silico designed and experimentally verified. Results show that the deciphered equivalence is highly predictive for the toggle switch design with predetermined bistability. This method can be generalized to quantitative design of other probabilistic genetic devices in synthetic biology.

  7. Mimicking biological stress-strain behaviour with synthetic elastomers

    NASA Astrophysics Data System (ADS)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2017-09-01

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  8. An interactive local flattening operator to support digital investigations on artwork surfaces.

    PubMed

    Pietroni, Nico; Massimiliano, Corsini; Cignoni, Paolo; Scopigno, Roberto

    2011-12-01

    Analyzing either high-frequency shape detail or any other 2D fields (scalar or vector) embedded over a 3D geometry is a complex task, since detaching the detail from the overall shape can be tricky. An alternative approach is to move to the 2D space, resolving shape reasoning to easier image processing techniques. In this paper we propose a novel framework for the analysis of 2D information distributed over 3D geometry, based on a locally smooth parametrization technique that allows us to treat local 3D data in terms of image content. The proposed approach has been implemented as a sketch-based system that allows to design with a few gestures a set of (possibly overlapping) parameterizations of rectangular portions of the surface. We demonstrate that, due to the locality of the parametrization, the distortion is under an acceptable threshold, while discontinuities can be avoided since the parametrized geometry is always homeomorphic to a disk. We show the effectiveness of the proposed technique to solve specific Cultural Heritage (CH) tasks: the analysis of chisel marks over the surface of a unfinished sculpture and the local comparison of multiple photographs mapped over the surface of an artwork. For this very difficult task, we believe that our framework and the corresponding tool are the first steps toward a computer-based shape reasoning system, able to support CH scholars with a medium they are more used to. © 2011 IEEE

  9. Biological Pathways

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  10. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    PubMed

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. Kinetic evaluation and test-retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans.

    PubMed

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Mercier, Joël; Lin, Shu-Fei; Chen, Ming-Kai; Matuskey, David; Gallezot, Jean-Dominique; Henry, Shannan; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2017-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is ubiquitously present in presynaptic terminals. Here we report kinetic modeling and test-retest reproducibility assessment of the SV2A positron emission tomography (PET) radioligand [ 11 C]UCB-J in humans. Five volunteers were examined twice on the HRRT after bolus injection of [ 11 C]UCB-J. Arterial blood samples were collected for measurements of radiometabolites and free fraction. Regional time-activity curves were analyzed with 1-tissue (1T) and 2-tissue (2T) compartment models to estimate volumes of distribution ( V T ). Parametric maps were generated using the 1T model. [ 11 C]UCB-J metabolized fairly quickly, with parent fraction of 36 ± 13% at 15 min after injection. Plasma free fraction was 32 ± 1%. Regional time-activity curves displayed rapid kinetics and were well described by the 1T model, except for the cerebellum and hippocampus. V T values estimated with the 2T model were similar to 1T values. Parametric maps were of high quality and V T values correlated well with time activity curve (TAC)-based estimates. Shortening of acquisition time from 120 min to 60 min had a negligible effect on V T values. The mean absolute test-retest reproducibility for V T was 3-9% across regions. In conclusion, [ 11 C]UCB-J exhibited excellent PET tracer characteristics and has potential as a general purpose tool for measuring synaptic density in neurodegenerative disorders.

  12. Gender differences in cerebral metabolism for color processing in mice: A PET/MRI Study.

    PubMed

    Njemanze, Philip C; Kranz, Mathias; Amend, Mario; Hauser, Jens; Wehrl, Hans; Brust, Peter

    2017-01-01

    Color processing is a central component of mammalian vision. Gender-related differences of color processing revealed by non-invasive functional transcranial Doppler ultrasound suggested right hemisphere pattern for blue/yellow chromatic opponency by men, and a left hemisphere pattern by women. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) with statistical parametric mapping (SPM) during light stimulation with blue and yellow filters compared to darkness condition. PET revealed a reverse pattern relative to dark condition compared to previous human studies: Male mice presented with left visual cortex dominance for blue through the right eye, while female mice presented with right visual cortex dominance for blue through the left eye. We applied statistical parametric mapping (SPM) to examine gender differences in activated architectonic areas within the orbital and medial prefrontal cortex and related cortical and sub-cortical areas that lead to the striatum, medial thalamus and other brain areas. The metabolic connectivity of the orbital and medial prefrontal cortex evoked by blue stimulation spread through a wide range of brain structures implicated in viscerosensory and visceromotor systems in the left intra-hemispheric regions in male, but in the right-to-left inter-hemispheric regions in female mice. Color functional ocular dominance plasticity was noted in the right eye in male mice but in the left eye in female mice. This study of color processing in an animal model could be applied in the study of the role of gender differences in brain disease.

  13. Effects of Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Gkiatis, K.; Bromis, K.; Kakkos, I.; Karanasiou, I. S.; Matsopoulos, G. K.; Garganis, K.

    2017-11-01

    Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone. Nevertheless, there are still some concerns about its reliability concerning BOLD changes correlated with IEDs. Even though IEDs are identified by an experienced neurologist-epiliptologist, the reliability and concordance of the mark-ups is depending on many factors including the level of fatigue, the amount of time that he spent or, in some cases, even the screen that is being used for the display of timeseries. This investigation is aiming to unravel the effect of misidentification or inaccuracy in the mark-ups of IEDs in the fMRI statistical parametric maps. Concurrent EEG-fMRI was conducted in six subjects with various types of epilepsy. IEDs were identified by an experienced neurologist-epiliptologist. Analysis of EEG was performed with EEGLAB and analysis of fMRI was conducted in FSL. Preliminary results revealed lower statistical significance for missing events or larger period of IEDs than the actual ones and the introduction of false positives and false negatives in statistical parametric maps when random events were included in the GLM on top of the IEDs. Our results suggest that mark-ups in EEG for simultaneous EEG-fMRI should be done with caution from an experienced and restful neurologist as it affects the fMRI results in various and unpredicted ways.

  14. Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters.

    PubMed

    Riches, S F; Payne, G S; Morgan, V A; Dearnaley, D; Morgan, S; Partridge, M; Livni, N; Ogden, C; deSouza, N M

    2015-05-01

    The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T2-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T2, Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K(trans),Kep,Ve), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. • The combined model increases diagnostic accuracy in prostate cancer compared with individual parameters • The optimal combined model includes parameters from diffusion, spectroscopy, perfusion, and anatominal MRI • The computed model improves tumour detection compared to an expert viewing parametric maps.

  15. Relationship between white matter lesions and regional cerebral blood flow changes during longitudinal follow up in Alzheimer's disease.

    PubMed

    Hanaoka, Takuya; Kimura, Noriyuki; Aso, Yasuhiro; Takemaru, Makoto; Kimura, Yuki; Ishibashi, Masato; Matsubara, Etsuro

    2016-07-01

    The aim of the present study was to evaluate the relationship between baseline white matter lesions (WML) and changes in regional cerebral blood flow during longitudinal follow up of patients with Alzheimer's disease (AD). A total of 38 patients with AD were included in the study (16 men, 22 women; mean age 77.8 years). All patients were evaluated using the Mini-Mental State Examination and brain perfusion single-photon emission computed tomography at baseline with an approximately 2-year follow up. The patients were divided into two subgroups according to the presence of WML on magnetic resonance imaging. Single-photon emission computed tomography data were analyzed using a voxel-by-voxel group analysis with Statistical Parametric Mapping 8 and region of interest analysis using FineSRT. Changes in Mini-Mental State Examination scores and regional cerebral blood flow were analyzed using the Wilcoxon signed-rank test. Mean Mini-Mental State Examination scores in AD patients with WML significantly decreased from 19.4 ± 4.8 to 15.5 ± 6.5 (P = 0.003). Statistical Parametric Mapping 8 and FineSRT analysis showed more severe and widespread regional cerebral blood flow reduction, mainly in the frontal and mesial temporal regions in AD patients with WML compared with those without WML. Baseline WML could predict a rapid progression of cognitive and brain functional impairment during longitudinal follow up in AD. Geriatr Gerontol Int 2016; 16: 836-842. © 2015 Japan Geriatrics Society.

  16. Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization.

    PubMed

    Ferles, Christos; Beaufort, William-Scott; Ferle, Vanessa

    2017-01-01

    The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.

  17. Efficient Posterior Probability Mapping Using Savage-Dickey Ratios

    PubMed Central

    Penny, William D.; Ridgway, Gerard R.

    2013-01-01

    Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO) procedure which separately fits null and alternative models. This paper proposes a more computationally efficient procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows users to implement model comparison in a truly interactive manner. PMID:23533640

  18. Symbolic Regression for the Estimation of Transfer Functions of Hydrological Models

    NASA Astrophysics Data System (ADS)

    Klotz, D.; Herrnegger, M.; Schulz, K.

    2017-11-01

    Current concepts for parameter regionalization of spatially distributed rainfall-runoff models rely on the a priori definition of transfer functions that globally map land surface characteristics (such as soil texture, land use, and digital elevation) into the model parameter space. However, these transfer functions are often chosen ad hoc or derived from small-scale experiments. This study proposes and tests an approach for inferring the structure and parametrization of possible transfer functions from runoff data to potentially circumvent these difficulties. The concept uses context-free grammars to generate possible proposition for transfer functions. The resulting structure can then be parametrized with classical optimization techniques. Several virtual experiments are performed to examine the potential for an appropriate estimation of transfer function, all of them using a very simple conceptual rainfall-runoff model with data from the Austrian Mur catchment. The results suggest that a priori defined transfer functions are in general well identifiable by the method. However, the deduction process might be inhibited, e.g., by noise in the runoff observation data, often leading to transfer function estimates of lower structural complexity.

  19. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    PubMed Central

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  20. Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics

    NASA Astrophysics Data System (ADS)

    Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene

    2017-01-01

    Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.

  1. Parametric Cost Analysis: A Design Function

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1989-01-01

    Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.

  2. Delineation and segmentation of cerebral tumors by mapping blood-brain barrier disruption with dynamic contrast-enhanced CT and tracer kinetics modeling-a feasibility study.

    PubMed

    Bisdas, S; Yang, X; Lim, C C T; Vogl, T J; Koh, T S

    2008-01-01

    Dynamic contrast-enhanced (DCE) imaging is a promising approach for in vivo assessment of tissue microcirculation. Twenty patients with clinical and routine computed tomography (CT) evidence of intracerebral neoplasm were examined with DCE-CT imaging. Using a distributed-parameter model for tracer kinetics modeling of DCE-CT data, voxel-level maps of cerebral blood flow (F), intravascular blood volume (vi) and intravascular mean transit time (t1) were generated. Permeability-surface area product (PS), extravascular extracellular blood volume (ve) and extraction ratio (E) maps were also calculated to reveal pathologic locations of tracer extravasation, which are indicative of disruptions in the blood-brain barrier (BBB). All maps were visually assessed for quality of tumor delineation and measurement of tumor extent by two radiologists. Kappa (kappa) coefficients and their 95% confidence intervals (CI) were calculated to determine the interobserver agreement for each DCE-CT map. There was a substantial agreement for the tumor delineation quality in the F, ve and t1 maps. The agreement for the quality of the tumor delineation was excellent for the vi, PS and E maps. Concerning the measurement of tumor extent, excellent and nearly excellent agreement was achieved only for E and PS maps, respectively. According to these results, we performed a segmentation of the cerebral tumors on the base of the E maps. The interobserver agreement for the tumor extent quantification based on manual segmentation of tumor in the E maps vs. the computer-assisted segmentation was excellent (kappa = 0.96, CI: 0.93-0.99). The interobserver agreement for the tumor extent quantification based on computer segmentation in the mean images and the E maps was substantial (kappa = 0.52, CI: 0.42-0.59). This study illustrates the diagnostic usefulness of parametric maps associated with BBB disruption on a physiology-based approach and highlights the feasibility for automatic segmentation of cerebral tumors.

  3. An early and late peak in microglial activation in Alzheimer's disease trajectory.

    PubMed

    Fan, Zhen; Brooks, David J; Okello, Aren; Edison, Paul

    2017-03-01

    Amyloid-β deposition, neuroinflammation and tau tangle formation all play a significant role in Alzheimer's disease. We hypothesized that there is microglial activation early on in Alzheimer's disease trajectory, where in the initial phase, microglia may be trying to repair the damage, while later on in the disease these microglia could be ineffective and produce proinflammatory cytokines leading to progressive neuronal damage. In this longitudinal study, we have evaluated the temporal profile of microglial activation and its relationship between fibrillar amyloid load at baseline and follow-up in subjects with mild cognitive impairment, and this was compared with subjects with Alzheimer's disease. Thirty subjects (eight mild cognitive impairment, eight Alzheimer's disease and 14 controls) aged between 54 and 77 years underwent 11C-(R)PK11195, 11C-PIB positron emission tomography and magnetic resonance imaging scans. Patients were followed-up after 14 ± 4 months. Region of interest and Statistical Parametric Mapping analysis were used to determine longitudinal alterations. Single subject analysis was performed to evaluate the individualized pathological changes over time. Correlations between levels of microglial activation and amyloid deposition at a voxel level were assessed using Biological Parametric Mapping. We demonstrated that both baseline and follow-up microglial activation in the mild cognitive impairment cohort compared to controls were increased by 41% and 21%, respectively. There was a longitudinal reduction of 18% in microglial activation in mild cognitive impairment cohort over 14 months, which was associated with a mild elevation in fibrillar amyloid load. Cortical clusters of microglial activation and amyloid deposition spatially overlapped in the subjects with mild cognitive impairment. Baseline microglial activation was increased by 36% in Alzheimer's disease subjects compared with controls. Longitudinally, Alzheimer's disease subjects showed an increase in microglial activation. In conclusion, this is one of the first longitudinal positron emission tomography studies evaluating longitudinal changes in microglial activation in mild cognitive impairment and Alzheimer's disease subjects. We found there is an initial longitudinal reduction in microglial activation in subjects with mild cognitive impairment, while subjects with Alzheimer's disease showed an increase in microglial activation. This could reflect that activated microglia in mild cognitive impairment initially may adopt a protective activation phenotype, which later change to a cidal pro-inflammatory phenotype as disease progresses and amyloid clearance fails. Thus, we speculate that there might be two peaks of microglial activation in the Alzheimer's disease trajectory; an early protective peak and a later pro-inflammatory peak. If so, anti-microglial agents targeting the pro-inflammatory phenotype would be most beneficial in the later stages of the disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A hierarchical framework of aquatic ecological units in North America (Nearctic Zone).

    Treesearch

    James R. Maxwell; Clayton J. Edwards; Mark E. Jensen; Steven J. Paustian; Harry Parrott; Donley M. Hill

    1995-01-01

    Proposes a framework for classifying and mapping aquatic systems at various scales using ecologically significant physical and biological criteria. Classification and mapping concepts follow tenets of hierarchical theory, pattern recognition, and driving variables. Criteria are provided for the hierarchical classification and mapping of aquatic ecological units of...

  5. Can Good Concept Mappers Be Good Problem Solvers in Science?

    ERIC Educational Resources Information Center

    Okebukola, Peter Akinsola

    1992-01-01

    Describes a study of concept mapping as a means of learning problem-solving skills. Concludes that the concept mapping subjects were significantly more successful at solving biological test questions than were the controls. Reports no significant differences between cooperative and individual mapping and mixed results for gender. (DK)

  6. Genome Annotation in a Community College Cell Biology Lab

    ERIC Educational Resources Information Center

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  7. Inference on periodicity of circadian time series.

    PubMed

    Costa, Maria J; Finkenstädt, Bärbel; Roche, Véronique; Lévi, Francis; Gould, Peter D; Foreman, Julia; Halliday, Karen; Hall, Anthony; Rand, David A

    2013-09-01

    Estimation of the period length of time-course data from cyclical biological processes, such as those driven by the circadian pacemaker, is crucial for inferring the properties of the biological clock found in many living organisms. We propose a methodology for period estimation based on spectrum resampling (SR) techniques. Simulation studies show that SR is superior and more robust to non-sinusoidal and noisy cycles than a currently used routine based on Fourier approximations. In addition, a simple fit to the oscillations using linear least squares is available, together with a non-parametric test for detecting changes in period length which allows for period estimates with different variances, as frequently encountered in practice. The proposed methods are motivated by and applied to various data examples from chronobiology.

  8. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.).

    PubMed

    Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K

    2013-01-01

    We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.

  9. Mapping of multiple parameter m-health scenarios to mobile WiMAX QoS variables.

    PubMed

    Alinejad, Ali; Philip, N; Istepanian, R S H

    2011-01-01

    Multiparameter m-health scenarios with bandwidth demanding requirements will be one of key applications in future 4 G mobile communication systems. These applications will potentially require specific spectrum allocations with higher quality of service requirements. Furthermore, one of the key 4 G technologies targeting m-health will be medical applications based on WiMAX systems. Hence, it is timely to evaluate such multiple parametric m-health scenarios over mobile WiMAX networks. In this paper, we address the preliminary performance analysis of mobile WiMAX network for multiparametric telemedical scenarios. In particular, we map the medical QoS to typical WiMAX QoS parameters to optimise the performance of these parameters in typical m-health scenario. Preliminary performance analyses of the proposed multiparametric scenarios are evaluated to provide essential information for future medical QoS requirements and constraints in these telemedical network environments.

  10. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  11. Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Szalai, Robert; Ehrhardt, David; Haller, George

    2017-06-01

    In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude-frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here, a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. This model identification utilizes Taken's delay-embedding theorem, as well as a least square fit to the Taylor expansion of the sampling map associated with that embedding. The SSMs are then constructed for the sampling map using the parametrization method for invariant manifolds, which assumes that the manifold is an embedding of, rather than a graph over, a spectral subspace. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy.

  12. Bayesian component separation: The Planck experience

    NASA Astrophysics Data System (ADS)

    Wehus, Ingunn Kathrine; Eriksen, Hans Kristian

    2018-05-01

    Bayesian component separation techniques have played a central role in the data reduction process of Planck. The most important strength of this approach is its global nature, in which a parametric and physical model is fitted to the data. Such physical modeling allows the user to constrain very general data models, and jointly probe cosmological, astrophysical and instrumental parameters. This approach also supports statistically robust goodness-of-fit tests in terms of data-minus-model residual maps, which are essential for identifying residual systematic effects in the data. The main challenges are high code complexity and computational cost. Whether or not these costs are justified for a given experiment depends on its final uncertainty budget. We therefore predict that the importance of Bayesian component separation techniques is likely to increase with time for intensity mapping experiments, similar to what has happened in the CMB field, as observational techniques mature, and their overall sensitivity improves.

  13. On the interaction structure of linear multi-input feedback control systems. M.S. Thesis; [problem solving, lattices (mathematics)

    NASA Technical Reports Server (NTRS)

    Wong, P. K.

    1975-01-01

    The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.

  14. ADME-Space: a new tool for medicinal chemists to explore ADME properties.

    PubMed

    Bocci, Giovanni; Carosati, Emanuele; Vayer, Philippe; Arrault, Alban; Lozano, Sylvain; Cruciani, Gabriele

    2017-07-25

    We introduce a new chemical space for drugs and drug-like molecules, exclusively based on their in silico ADME behaviour. This ADME-Space is based on self-organizing map (SOM) applied to 26,000 molecules. Twenty accurate QSPR models, describing important ADME properties, were developed and, successively, used as new molecular descriptors not related to molecular structure. Applications include permeability, active transport, metabolism and bioavailability studies, but the method can be even used to discuss drug-drug interactions (DDIs) or it can be extended to additional ADME properties. Thus, the ADME-Space opens a new framework for the multi-parametric data analysis in drug discovery where all ADME behaviours of molecules are condensed in one map: it allows medicinal chemists to simultaneously monitor several ADME properties, to rapidly select optimal ADME profiles, retrieve warning on potential ADME problems and DDIs or select proper in vitro experiments.

  15. A comparative study of the effect of student and instructor cognitive mapping on student achievement and attitudes in introductory college biology for nonmajors

    NASA Astrophysics Data System (ADS)

    Dardis, Deborah J. Athas

    Within a single research design, this investigation compared the effects of student and instructor cognitive mapping on student achievement and attitudes in introductory college biology for nonmajors. Subjects self-selected into either a Control Group that experienced no cognitive mapping, an Experimental Group 1 that experienced instructor cognitive mapping, or an Experimental Group 2 in which students constructed cognitive maps. Data were collected by a Students' Opinions of Teaching Poll and instructor prepared tests that included objective questions representing all levels of the cognitive domain. An ANCOVA revealed no significant differences in the academic achievement of students in the control and experimental groups. The academic performance of males and females was similar among all three groups of students and data confirmed a lack of interaction between gender and instructional strategy. This investigation confirmed that cognitive mapping will not disrupt a gender-neutral classroom environment. Students' opinions of teaching were overwhelmingly positive. A Kruskal Wallis analysis, followed by a nonparametric Tukey-type multiple comparison, revealed that students who experienced no mapping consistently rated the instructor with higher scores than did students who experienced instructor mapping. Students who cooperatively constructed cognitive maps reported the lowest scores on the opinion polls.

  16. The pig genome project has plenty to squeal about.

    PubMed

    Fan, B; Gorbach, D M; Rothschild, M F

    2011-01-01

    Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed. Copyright © 2011 S. Karger AG, Basel.

  17. SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies

    PubMed Central

    Bouaziz, Matthieu; Paccard, Caroline; Guedj, Mickael; Ambroise, Christophe

    2012-01-01

    Inferring the structure of populations has many applications for genetic research. In addition to providing information for evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study. SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost and its ease of use make this method a promising solution to infer fine-scale genetic patterns. PMID:23077494

  18. A nonparametric mean-variance smoothing method to assess Arabidopsis cold stress transcriptional regulator CBF2 overexpression microarray data.

    PubMed

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.

  19. A Nonparametric Mean-Variance Smoothing Method to Assess Arabidopsis Cold Stress Transcriptional Regulator CBF2 Overexpression Microarray Data

    PubMed Central

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request. PMID:21611181

  20. The Default Mode Network Differentiates Biological From Non-Biological Motion.

    PubMed

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Mapping interictal epileptic discharges using mutual information between concurrent EEG and fMRI.

    PubMed

    Caballero-Gaudes, César; Van de Ville, Dimitri; Grouiller, Frédéric; Thornton, Rachel; Lemieux, Louis; Seeck, Margitta; Lazeyras, François; Vulliemoz, Serge

    2013-03-01

    The mapping of haemodynamic changes related to interictal epileptic discharges (IED) in simultaneous electroencephalography (EEG) and functional MRI (fMRI) studies is usually carried out by means of EEG-correlated fMRI analyses where the EEG information specifies the model to test on the fMRI signal. The sensitivity and specificity critically depend on the accuracy of EEG detection and the validity of the haemodynamic model. In this study we investigated whether an information theoretic analysis based on the mutual information (MI) between the presence of epileptic activity on EEG and the fMRI data can provide further insights into the haemodynamic changes related to interictal epileptic activity. The important features of MI are that: 1) both recording modalities are treated symmetrically; 2) no requirement for a-priori models for the haemodynamic response function, or assumption of a linear relationship between the spiking activity and BOLD responses, and 3) no parametric model for the type of noise or its probability distribution is necessary for the computation of MI. Fourteen patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI and intracranial EEG and/or surgical resection with positive postoperative outcome (seizure freedom or considerable reduction in seizure frequency) was available in 7/14 patients. We used nonparametric statistical assessment of the MI maps based on a four-dimensional wavelet packet resampling method. The results of MI were compared to the statistical parametric maps obtained with two conventional General Linear Model (GLM) analyses based on the informed basis set (canonical HRF and its temporal and dispersion derivatives) and the Finite Impulse Response (FIR) models. The MI results were concordant with the electro-clinically or surgically defined epileptogenic area in 8/14 patients and showed the same degree of concordance as the results obtained with the GLM-based methods in 12 patients (7 concordant and 5 discordant). In one patient, the information theoretic analysis improved the delineation of the irritative zone compared with the GLM-based methods. Our findings suggest that an information theoretic analysis can provide clinically relevant information about the BOLD signal changes associated with the generation and propagation of interictal epileptic discharges. The concordance between the MI, GLM and FIR maps support the validity of the assumptions adopted in GLM-based analyses of interictal epileptic activity with EEG-fMRI in such a manner that they do not significantly constrain the localization of the epileptogenic zone. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Effect of spatial smoothing on t-maps: arguments for going back from t-maps to masked contrast images.

    PubMed

    Reimold, Matthias; Slifstein, Mark; Heinz, Andreas; Mueller-Schauenburg, Wolfgang; Bares, Roland

    2006-06-01

    Voxelwise statistical analysis has become popular in explorative functional brain mapping with fMRI or PET. Usually, results are presented as voxelwise levels of significance (t-maps), and for clusters that survive correction for multiple testing the coordinates of the maximum t-value are reported. Before calculating a voxelwise statistical test, spatial smoothing is required to achieve a reasonable statistical power. Little attention is being given to the fact that smoothing has a nonlinear effect on the voxel variances and thus the local characteristics of a t-map, which becomes most evident after smoothing over different types of tissue. We investigated the related artifacts, for example, white matter peaks whose position depend on the relative variance (variance over contrast) of the surrounding regions, and suggest improving spatial precision with 'masked contrast images': color-codes are attributed to the voxelwise contrast, and significant clusters (e.g., detected with statistical parametric mapping, SPM) are enlarged by including contiguous pixels with a contrast above the mean contrast in the original cluster, provided they satisfy P < 0.05. The potential benefit is demonstrated with simulations and data from a [11C]Carfentanil PET study. We conclude that spatial smoothing may lead to critical, sometimes-counterintuitive artifacts in t-maps, especially in subcortical brain regions. If significant clusters are detected, for example, with SPM, the suggested method is one way to improve spatial precision and may give the investigator a more direct sense of the underlying data. Its simplicity and the fact that no further assumptions are needed make it a useful complement for standard methods of statistical mapping.

  3. An agent-based model evaluation of economic control strategies for paratuberculosis in a dairy herd.

    PubMed

    Verteramo Chiu, Leslie J; Tauer, Loren W; Al-Mamun, Mohammad A; Kaniyamattam, Karun; Smith, Rebecca L; Grohn, Yrjo T

    2018-04-25

    This paper uses an agent-based simulation model to estimate the costs associated with Mycobacterium avium ssp. paratuberculosis (MAP), or Johne's disease, in a milking herd, and to determine the net benefits of implementing various control strategies. The net present value (NPV) of a 1,000-cow milking herd is calculated over 20 yr, parametrized to a representative US commercial herd. The revenues of the herd are generated from sales of milk and culled animals. The costs include all variable and fixed costs necessary to operate a representative 1,000-cow milking herd. We estimate the NPV of the herd with no MAP infection, under an expected endemic infection distribution with no controls, and under an expected endemic infection distribution with various controls. The initial number of cows in a herd with an endemic MAP infection is distributed as 75% susceptible, 13% latent, 9% low MAP shedding, and 3% high MAP shedding. Control strategies include testing using ELISA and fecal culture tests and culling of cows that test positive, and culling based on observable milk production decrease. Results show that culling cows based on test results does not increase the herd's NPV and in most cases decreases NPV due to test costs as well as false positives and negatives with their associated costs (e.g., culling healthy cows and keeping infected cows). Culling consistently low producing cows when MAP is believed to be present in the herd produces higher NPV over the strategy of testing and culling MAP infected animals, and over the case of no MAP control. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Parametric Dependencies in Aero-Elastic, Articulated, Flapping Flight

    NASA Astrophysics Data System (ADS)

    Willis, D. J.; Persson, P.; Peraire, J.; Breuer, K. S.

    2006-11-01

    Aero-elastic coupling and wing articulation both play a vital role in the generation of lift and propulsion in birds, bats and fish. We present results from a computational study that employs several tools of varying fidelity to explore the role of flexible structures on the performance and efficiency of bird and bat flight mechanics. The tools (both 2-D and 3-D) include a Wake only ``Betz'' analysis following the work of Hall, Pigott and Hall (J. Aircaft, 1998), a potential flow model coupled to a free-vortex wake (Willis, Peraire & White, AIAA 2005-0854), and lastly, a discontinuous Galerkin solver (Persson & Peraire, AIAA 2006-0113) for the full Navier-Stokes equations. Structural models include springs, beams and membranes to represent compliant biological structures. The results demonstrate the changes in efficiency that can be achieved by different parametric variations in the flight behavior, including the effects of increasing kinematic degrees of freedom (e.g. articulated wings) and the effect of compliance in wing and skeletal structures.

  5. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Nitrate contamination risk assessment in groundwater at regional scale

    NASA Astrophysics Data System (ADS)

    Daniela, Ducci

    2016-04-01

    Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully applied in a large flat area of southern Italy, with high concentrations in NO3.

  7. Ultrafast polarisation spectroscopy of photoinduced charges in a conjugated polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A A; Loosdrecht, P van; Pshenichnikov, M S

    2009-07-31

    Tunable optical parametric generators and amplifiers (OPA), proposed and developed by Akhmanov and his colleagues, have become the working horses in exploration of dynamical processes in physics, chemistry, and biology. In this paper, we demonstrate the possibility of using ultrafast polarisation-sensitive two-colour spectroscopy, performed with a set of two OPAs, to study charge photogeneration and transport in conjugated polymers and their donor-acceptor blends. (special issue devoted to the 80th birthday of S.A. Akhmanov)

  8. Testing primates with joystick-based automated apparatus - Lessons from the Language Research Center's Computerized Test System

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Rumbaugh, Duane M.

    1992-01-01

    Nonhuman primates provide useful models for studying a variety of medical, biological, and behavioral topics. Four years of joystick-based automated testing of monkeys using the Language Research Center's Computerized Test System (LRC-CTS) are examined to derive hints and principles for comparable testing with other species - including humans. The results of multiple parametric studies are reviewed, and reliability data are presented to reveal the surprises and pitfalls associated with video-task testing of performance.

  9. Constrained H1-regularization schemes for diffeomorphic image registration

    PubMed Central

    Mang, Andreas; Biros, George

    2017-01-01

    We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361

  10. An Overview and Parametric Evaluation of the CGS ShakeMap Automated System in CISN

    NASA Astrophysics Data System (ADS)

    Hagos, L. Z.; Haddadi, H. R.; Shakal, A. F.

    2014-12-01

    In the recent years, ShakeMap has been extensively used in California for earthquake rapid response. Serving as a backup to the Northern and Southern seismic regions of the California Integrated Seismic Network (CISN), the California Geological Survey (CGS) is running a ShakeMap system configured such that it effectively produces ShakeMaps for earthquakes occurring in both regions. In achieving this goal, CGS has worked to improve the robustness of its ShakeMap system and the quality of its products. Peak ground motion amplitude data are exchanged between the CISN data centers to provide robust generation of ShakeMap. Most exchanged ground motion packets come associated with an earthquake by the authoritative network. However, for ground motion packets that come unassociated, CGS employs an event association scheme to associate them with the corresponding earthquake. The generated ShakeMap products are published to the CGS server which can also be accessed through the CISN website. The backup function is designed to publish ShakeMap products to the USGS NEIC server without collision with the regional networks, only acting in cases where the authoritative region encounters a system failure. Depending on the size, location and significance of the earthquake, review of ShakeMap products by a seismologist may involve changes to ShakeMap parameters from the default. We present an overview of the CGS ShakeMap system and highlight some of the parameters a seismologist may adjust including parameters related to basin effects, directivity effects when finite fault models are available, site corrections, etc. We also analyze the sensitivity and dependence of the ShakeMap intensity and ground motion maps on the number of observed data included in the computation. In light of the available strong motion amplitude data, we attempt to address the question of what constitutes an adequate quality ShakeMap in the tradeoff between rapidity and completeness. We also present a brief comparative study of the available Ground Motion to Intensity Conversion Equations (GMICE) by studying selected earthquakes in California region. Results of these studies can be used as a tool in ShakeMap generation for California earthquakes when the use of non-default parameters is required.

  11. Stability and Existence Results for Quasimonotone Quasivariational Inequalities in Finite Dimensional Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellani, Marco; Giuli, Massimiliano, E-mail: massimiliano.giuli@univaq.it

    2016-02-15

    We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered.

  12. The Stack of Yang-Mills Fields on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Benini, Marco; Schenkel, Alexander; Schreiber, Urs

    2018-03-01

    We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang-Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang-Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93-124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BG con.

  13. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    NASA Astrophysics Data System (ADS)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe. An inversion method that iteratively uses the forward model is then developed to form a map of wall thickness for the entire pipe section comprised between two ring arrays of ultrasonic transducers that encircle the pipe. It is shown that time independent parametric uncertainties relative to the pipe manufacturing tolerances, transducers position, and ultrasonic properties of the material of the pipe can be minimized through a differential approach that is aimed at determining the change in state of the pipe relative to a reference condition. On the other hand, time dependent parametric uncertainties, such as those caused by temperature variations, can be addressed by exploiting the spatial diversity of array measurements and the non-contact nature of electromagnetic acoustic transducers (EMATs). The range of possible applications of GWT to pipes is investigated through theoretical and numerical studies aimed at developing an understanding of how the performance of GWT varies depending on damage morphology, pipe geometry, and array configuration.

  14. NaviCell Web Service for network-based data visualization.

    PubMed

    Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P A; Barillot, Emmanuel; Zinovyev, Andrei

    2015-07-01

    Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of 'omics' data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. NaviCell Web Service for network-based data visualization

    PubMed Central

    Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P. A.; Barillot, Emmanuel; Zinovyev, Andrei

    2015-01-01

    Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of ‘omics’ data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. PMID:25958393

  16. The scurs inheritance: new insights from the French Charolais breed.

    PubMed

    Capitan, Aurélien; Grohs, Cécile; Gautier, Mathieu; Eggen, André

    2009-07-06

    Polled animals are valued in cattle industry because the absence of horns has a significant economic impact. However, some cattle are neither polled nor horned but have so-called scurs on their heads, which are corneous growths loosely attached to the skull. A better understanding of the genetic determinism of the scurs phenotype would help to fine map the polled locus. To date, only one study has attempted to map the scurs locus in cattle. Here, we have investigated the inheritance of the scurs phenotype in the French Charolais breed and examined whether the previously proposed localisation of the scurs locus on bovine chromosome 19 could be confirmed or not. Our results indicate that the inheritance pattern of the scurs phenotype in the French Charolais breed is autosomal recessive with complete penetrance in both sexes, which is different from what is reported for other breeds. The frequency of the scurs allele (Sc) reaches 69.9% in the French Charolais population. Eleven microsatellite markers on bovine chromosome 19 were genotyped in 267 offspring (33 half-sib and full-sib families). Both non-parametric and parametric linkage analyses suggest that in the French Charolais population the scurs locus may not map to the previously identified region. A new analysis of an Angus-Hereford and Hereford-Hereford pedigree published in 1978 enabled us to calculate the frequency of the Sc allele in the Hereford breed (89.4%) and to study the penetrance of this allele in males heterozygous for both polled and scurs loci (40%). This led us to revise the inheritance pattern of the scurs phenotype proposed for the Hereford breed and to suggest that allele Sc is not fully but partially dominant in double heterozygous males while it is always recessive in females. Crossbreeding involving the Charolais breed and other breeds gave results similar to those reported in the Hereford breed. Our results suggest the existence of unknown genetics factors modifying the expression of the scurs locus in double heterozygous Hereford and Angus males. The specific inheritance pattern of the scurs locus in the French Charolais breed represents an opportunity to map this gene and to identify the molecular mechanisms regulating the growth of horns in cattle.

  17. The scurs inheritance: new insights from the French Charolais breed

    PubMed Central

    Capitan, Aurélien; Grohs, Cécile; Gautier, Mathieu; Eggen, André

    2009-01-01

    Background Polled animals are valued in cattle industry because the absence of horns has a significant economic impact. However, some cattle are neither polled nor horned but have so-called scurs on their heads, which are corneous growths loosely attached to the skull. A better understanding of the genetic determinism of the scurs phenotype would help to fine map the polled locus. To date, only one study has attempted to map the scurs locus in cattle. Here, we have investigated the inheritance of the scurs phenotype in the French Charolais breed and examined whether the previously proposed localisation of the scurs locus on bovine chromosome 19 could be confirmed or not. Results Our results indicate that the inheritance pattern of the scurs phenotype in the French Charolais breed is autosomal recessive with complete penetrance in both sexes, which is different from what is reported for other breeds. The frequency of the scurs allele (Sc) reaches 69.9% in the French Charolais population. Eleven microsatellite markers on bovine chromosome 19 were genotyped in 267 offspring (33 half-sib and full-sib families). Both non-parametric and parametric linkage analyses suggest that in the French Charolais population the scurs locus may not map to the previously identified region. A new analysis of an Angus-Hereford and Hereford-Hereford pedigree published in 1978 enabled us to calculate the frequency of the Sc allele in the Hereford breed (89.4%) and to study the penetrance of this allele in males heterozygous for both polled and scurs loci (40%). This led us to revise the inheritance pattern of the scurs phenotype proposed for the Hereford breed and to suggest that allele Sc is not fully but partially dominant in double heterozygous males while it is always recessive in females. Crossbreeding involving the Charolais breed and other breeds gave results similar to those reported in the Hereford breed. Conclusion Our results suggest the existence of unknown genetics factors modifying the expression of the scurs locus in double heterozygous Hereford and Angus males. The specific inheritance pattern of the scurs locus in the French Charolais breed represents an opportunity to map this gene and to identify the molecular mechanisms regulating the growth of horns in cattle. PMID:19575823

  18. Estimating solar ultraviolet irradiance (290-385 nm) by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    NASA Astrophysics Data System (ADS)

    Foyo-Moreno, I.; Vida, J.; Olmo, F. J.; Alados-Arboledas, L.

    2000-11-01

    Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290-385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.

  19. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  20. Preliminary Geologic Map of the Laredo, Crystal City-Eagle Pass, San Antonio, and Del Rio 1 x 2 Quadrangles, Texas, and the Nuevo Laredo, Ciudad Acuna, Piedras Negras, and Nueva Rosita 1 x 2 Quadrangles, Mexico

    USGS Publications Warehouse

    Page, William R.; Berry, Margaret E.; VanSistine, D. Paco; Snyders, Scott R.

    2009-01-01

    The purpose of this map is to provide an integrated, bi-national geologic map dataset for display and analyses on an Arc Internet Map Service (IMS) dedicated to environmental health studies in the United States-Mexico border region. The IMS web site was designed by the US-Mexico Border Environmental Health Initiative project and collaborators, and the IMS and project web site address is http://borderhealth.cr.usgs.gov/. The objective of the project is to acquire, evaluate, analyze, and provide earth, biologic, and human health resources data within a GIS framework (IMS) to further our understanding of possible linkages between the physical environment and public health issues. The geologic map dataset is just one of many datasets included in the web site; other datasets include biologic, hydrologic, geographic, and human health themes.

  1. MareyMap Online: A User-Friendly Web Application and Database Service for Estimating Recombination Rates Using Physical and Genetic Maps.

    PubMed

    Siberchicot, Aurélie; Bessy, Adrien; Guéguen, Laurent; Marais, Gabriel A B

    2017-10-01

    Given the importance of meiotic recombination in biology, there is a need to develop robust methods to estimate meiotic recombination rates. A popular approach, called the Marey map approach, relies on comparing genetic and physical maps of a chromosome to estimate local recombination rates. In the past, we have implemented this approach in an R package called MareyMap, which includes many functionalities useful to get reliable recombination rate estimates in a semi-automated way. MareyMap has been used repeatedly in studies looking at the effect of recombination on genome evolution. Here, we propose a simpler user-friendly web service version of MareyMap, called MareyMap Online, which allows a user to get recombination rates from her/his own data or from a publicly available database that we offer in a few clicks. When the analysis is done, the user is asked whether her/his curated data can be placed in the database and shared with other users, which we hope will make meta-analysis on recombination rates including many species easy in the future. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. High-resolution multibeam mapping and submersible surveys of topographic features in the northwestern Gulf of Mexico

    USGS Publications Warehouse

    Hickerson, E.L.; Schmahl, G.P.; Weaver, D.C.; Gardner, J.V.

    2003-01-01

    The Flower Garden Banks National Marine Sanctuary (FGBNMS) and the USGS Pacific Seafloor Mapping Project mapped about 2000 km2 of the northwestern Gulf of Mexico continental shelf during June 2002, using a Kongsberg Simrad EM1000 multibeam echosounder. Mapping focused on select topographic highs thave hae been idetnnfied as biological features warranting protection from oil and gas activities by the Minerals Management Service (MMS). The base maps will be used for all future ROV and submersible missions.

  3. Student Perceptions of Their Biology Teacher's Interpersonal Teaching Behaviors and Student Achievement

    NASA Astrophysics Data System (ADS)

    Madike, Victor N.

    Inadequate student-teacher interactions in undergraduate courses have been linked to poor student performance. Researchers have noted that students' perceptions of student-teacher relationships may be an important factor related to student performance. The administration of a Mid-Atlantic community college prioritized increasing undergraduate biology student performance. The purpose of this quantitative study was to examine the relationship between students' biology achievement and their perceptions of interpersonal teaching behaviors and student-teacher interactions in introductory biology courses. Leary's theory on interpersonal communication and the systems communication theory of Watzlawick, Beavin, and Jackson served as the theoretical foundation. The Wubbel's Likert-scale questionnaire on student-teacher interactions was administered to 318 undergraduate biology students. Non-parametric Spearman's rank correlations revealed a significant direct correlation between students' grades and their perceptions of teachers' interpersonal teaching behaviors. The relationship between student achievement and students' perceptions of student-teacher interactions prompted the recommendation for additional study on the importance of student-teacher interactions in undergraduate programs. A recommendation for local practice included faculty development on strategies for improving student-teacher interactions. The study's implications for positive social change include increased understanding for administrators and instructors on the importance of teacher-student interactions at the community college level.

  4. Software support for SBGN maps: SBGN-ML and LibSBGN.

    PubMed

    van Iersel, Martijn P; Villéger, Alice C; Czauderna, Tobias; Boyd, Sarah E; Bergmann, Frank T; Luna, Augustin; Demir, Emek; Sorokin, Anatoly; Dogrusoz, Ugur; Matsuoka, Yukiko; Funahashi, Akira; Aladjem, Mirit I; Mi, Huaiyu; Moodie, Stuart L; Kitano, Hiroaki; Le Novère, Nicolas; Schreiber, Falk

    2012-08-01

    LibSBGN is a software library for reading, writing and manipulating Systems Biology Graphical Notation (SBGN) maps stored using the recently developed SBGN-ML file format. The library (available in C++ and Java) makes it easy for developers to add SBGN support to their tools, whereas the file format facilitates the exchange of maps between compatible software applications. The library also supports validation of maps, which simplifies the task of ensuring compliance with the detailed SBGN specifications. With this effort we hope to increase the adoption of SBGN in bioinformatics tools, ultimately enabling more researchers to visualize biological knowledge in a precise and unambiguous manner. Milestone 2 was released in December 2011. Source code, example files and binaries are freely available under the terms of either the LGPL v2.1+ or Apache v2.0 open source licenses from http://libsbgn.sourceforge.net. sbgn-libsbgn@lists.sourceforge.net.

  5. Deriving health utilities from the MacNew Heart Disease Quality of Life Questionnaire.

    PubMed

    Chen, Gang; McKie, John; Khan, Munir A; Richardson, Jeff R

    2015-10-01

    Quality of life is included in the economic evaluation of health services by measuring the preference for health states, i.e. health state utilities. However, most intervention studies include a disease-specific, not a utility, instrument. Consequently, there has been increasing use of statistical mapping algorithms which permit utilities to be estimated from a disease-specific instrument. The present paper provides such algorithms between the MacNew Heart Disease Quality of Life Questionnaire (MacNew) instrument and six multi-attribute utility (MAU) instruments, the Euroqol (EQ-5D), the Short Form 6D (SF-6D), the Health Utilities Index (HUI) 3, the Quality of Wellbeing (QWB), the 15D (15 Dimension) and the Assessment of Quality of Life (AQoL-8D). Heart disease patients and members of the healthy public were recruited from six countries. Non-parametric rank tests were used to compare subgroup utilities and MacNew scores. Mapping algorithms were estimated using three separate statistical techniques. Mapping algorithms achieved a high degree of precision. Based on the mean absolute error and the intra class correlation the preferred mapping is MacNew into SF-6D or 15D. Using the R squared statistic the preferred mapping is MacNew into AQoL-8D. The algorithms reported in this paper enable MacNew data to be mapped into utilities predicted from any of six instruments. This permits studies which have included the MacNew to be used in cost utility analyses which, in turn, allows the comparison of services with interventions across the health system. © The European Society of Cardiology 2014.

  6. Monopole and dipole estimation for multi-frequency sky maps by linear regression

    NASA Astrophysics Data System (ADS)

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.; Banday, A. J.; Dickinson, C.; Ghosh, T.; Górski, K. M.; Lawrence, C. R.; Leahy, J. P.; Maino, D.; Reich, P.; Reich, W.

    2017-01-01

    We describe a simple but efficient method for deriving a consistent set of monopole and dipole corrections for multi-frequency sky map data sets, allowing robust parametric component separation with the same data set. The computational core of this method is linear regression between pairs of frequency maps, often called T-T plots. Individual contributions from monopole and dipole terms are determined by performing the regression locally in patches on the sky, while the degeneracy between different frequencies is lifted whenever the dominant foreground component exhibits a significant spatial spectral index variation. Based on this method, we present two different, but each internally consistent, sets of monopole and dipole coefficients for the nine-year WMAP, Planck 2013, SFD 100 μm, Haslam 408 MHz and Reich & Reich 1420 MHz maps. The two sets have been derived with different analysis assumptions and data selection, and provide an estimate of residual systematic uncertainties. In general, our values are in good agreement with previously published results. Among the most notable results are a relative dipole between the WMAP and Planck experiments of 10-15μK (depending on frequency), an estimate of the 408 MHz map monopole of 8.9 ± 1.3 K, and a non-zero dipole in the 1420 MHz map of 0.15 ± 0.03 K pointing towards Galactic coordinates (l,b) = (308°,-36°) ± 14°. These values represent the sum of any instrumental and data processing offsets, as well as any Galactic or extra-Galactic component that is spectrally uniform over the full sky.

  7. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.

    PubMed

    Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis

    2017-12-01

    Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT.

    PubMed

    Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T

    2014-05-01

    Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.

  9. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  10. Sci-Thur PM - Colourful Interactions: Highlights 04: A Fast Quantitative MRI Acquisition and Processing Pipeline for Radiation Treatment Planning and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jutras, Jean-David

    MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less

  11. Parametric response mapping cut-off values that predict survival of hepatocellular carcinoma patients after TACE.

    PubMed

    Nörthen, Aventinus; Asendorf, Thomas; Shin, Hoen-Oh; Hinrichs, Jan B; Werncke, Thomas; Vogel, Arndt; Kirstein, Martha M; Wacker, Frank K; Rodt, Thomas

    2018-04-21

    Parametric response mapping (PRM) is a novel image-analysis technique applicable to assess tumor viability and predict intrahepatic recurrence of hepatocellular carcinoma (HCC) patients treated with transarterial chemoembolization (TACE). However, to date, the prognostic value of PRM for prediction of overall survival in HCC patients undergoing TACE is unclear. The objective of this explorative, single-center study was to identify cut-off values for voxel-specific PRM parameters that predict the post TACE overall survival in HCC patients. PRM was applied to biphasic CT data obtained at baseline and following 3 TACE treatments of 20 patients with HCC tumors ≥ 2 cm. The individual portal venous phases were registered to the arterial phases followed by segmentation of the largest lesion, i.e., the region of interest (ROI). Segmented voxels with their respective arterial and portal venous phase density values were displayed as a scatter plot. Voxel-specific PRM parameters were calculated and compared to patients' survival at 1, 2, and 3 years post treatment to identify the maximal predictive parameters. The hypervascularized tissue portion of the ROI was found to represent an independent predictor of the post TACE overall survival. For this parameter, cut-off values of 3650, 2057, and 2057 voxels, respectively, were determined to be optimal to predict overall survival at 1, 2, and 3 years after TACE. Using these cut points, patients were correctly classified as having died with a sensitivity of 80, 92, and 86% and as still being alive with a specificity of 60, 75, and 83%, respectively. The prognostic accuracy measured by area under the curve (AUC) values ranged from 0.73 to 0.87. PRM may have prognostic value to predict post TACE overall survival in HCC patients.

  12. Statistical parametric mapping for analyzing interictal magnetoencephalography in patients with left frontal lobe epilepsy.

    PubMed

    Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2016-01-01

    Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Principal component analysis of the CT density histogram to generate parametric response maps of COPD

    NASA Astrophysics Data System (ADS)

    Zha, N.; Capaldi, D. P. I.; Pike, D.; McCormack, D. G.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Pulmonary x-ray computed tomography (CT) may be used to characterize emphysema and airways disease in patients with chronic obstructive pulmonary disease (COPD). One analysis approach - parametric response mapping (PMR) utilizes registered inspiratory and expiratory CT image volumes and CT-density-histogram thresholds, but there is no consensus regarding the threshold values used, or their clinical meaning. Principal-component-analysis (PCA) of the CT density histogram can be exploited to quantify emphysema using data-driven CT-density-histogram thresholds. Thus, the objective of this proof-of-concept demonstration was to develop a PRM approach using PCA-derived thresholds in COPD patients and ex-smokers without airflow limitation. Methods: Fifteen COPD ex-smokers and 5 normal ex-smokers were evaluated. Thoracic CT images were also acquired at full inspiration and full expiration and these images were non-rigidly co-registered. PCA was performed for the CT density histograms, from which the components with the highest eigenvalues greater than one were summed. Since the values of the principal component curve correlate directly with the variability in the sample, the maximum and minimum points on the curve were used as threshold values for the PCA-adjusted PRM technique. Results: A significant correlation was determined between conventional and PCA-adjusted PRM with 3He MRI apparent diffusion coefficient (p<0.001), with CT RA950 (p<0.0001), as well as with 3He MRI ventilation defect percent, a measurement of both small airways disease (p=0.049 and p=0.06, respectively) and emphysema (p=0.02). Conclusions: PRM generated using PCA thresholds of the CT density histogram showed significant correlations with CT and 3He MRI measurements of emphysema, but not airways disease.

  14. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping.

    PubMed

    Nishiyama, Yuichi; Kanayama, Hidekazu; Mori, Hiroshi; Tada, Keiji; Yamamoto, Yasushi; Katsube, Takashi; Takeshita, Haruo; Kawakami, Kazunori; Kitagaki, Hajime

    2017-06-01

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. • The original brain CT template achieved successful normalization of brain morphology. • Postmortem changes in the brain were independent of sex. • Cortical GM density decreased rapidly after death. • WM and deep GM densities increased following cortical GM density change. • SPM could be useful for assessment of whole brain postmortem changes.

  15. Age- and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography.

    PubMed

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki

    2009-12-01

    The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Seventy-eight healthy subjects (32 males, mean age 46.6+/-18.2 years; 46 females, mean age 40.6+/-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake.

  16. Whole-body diffusion kurtosis imaging: initial experience on non-Gaussian diffusion in various organs.

    PubMed

    Filli, Lukas; Wurnig, Moritz; Nanz, Daniel; Luechinger, Roger; Kenkel, David; Boss, Andreas

    2014-12-01

    Diffusion kurtosis imaging (DKI) is based on a non-Gaussian diffusion model that should inherently better account for restricted water diffusion within the complex microstructure of most tissues than the conventional diffusion-weighted imaging (DWI), which presumes Gaussian distributed water molecule displacement probability. The aim of this investigation was to test the technical feasibility of in vivo whole-body DKI, probe for organ-specific differences, and compare whole-body DKI and DWI results. Eight healthy subjects underwent whole-body DWI on a clinical 3.0 T magnetic resonance imaging system. Echo-planar images in the axial orientation were acquired at b-values of 0, 150, 300, 500, and 800 mm²/s. Parametrical whole-body maps of the diffusion coefficient (D), the kurtosis (K), and the traditional apparent diffusion coefficient (ADC) were generated. Goodness of fit was compared between DKI and DWI fits using the sums of squared residuals. Data groups were tested for significant differences of the mean by paired Student t tests. Good-quality parametrical whole-body maps of D, K, and ADC could be computed. Compared with ADC values, D values were significantly higher in the cerebral gray matter (by 30%) and white matter (27%), renal cortex (23%) and medulla (21%), spleen (101%), as well as erector spinae muscle (34%) (each P value <0.001). No significant differences between D and ADC were found in the cerebrospinal fluid (P = 0.08) and in the liver (P = 0.13). Curves of DKI fitted the measurement points significantly better than DWI curves did in most organs. Whole-body DKI is technically feasible and may reflect tissue microstructure more meaningfully than whole-body DWI.

  17. Discrimination of dementia with Lewy bodies from Alzheimer's disease using voxel-based morphometry of white matter by statistical parametric mapping 8 plus diffeomorphic anatomic registration through exponentiated Lie algebra.

    PubMed

    Nakatsuka, Tomoya; Imabayashi, Etsuko; Matsuda, Hiroshi; Sakakibara, Ryuji; Inaoka, Tsutomu; Terada, Hitoshi

    2013-05-01

    The purpose of this study was to identify brain atrophy specific for dementia with Lewy bodies (DLB) and to evaluate the discriminatory performance of this specific atrophy between DLB and Alzheimer's disease (AD). We retrospectively reviewed 60 DLB and 30 AD patients who had undergone 3D T1-weighted MRI. We randomly divided the DLB patients into two equal groups (A and B). First, we obtained a target volume of interest (VOI) for DLB-specific atrophy using correlation analysis of the percentage rate of significant whole white matter (WM) atrophy calculated using the Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD) based on statistical parametric mapping 8 (SPM8) plus diffeomorphic anatomic registration through exponentiated Lie algebra, with segmented WM images in group A. We then evaluated the usefulness of this target VOI for discriminating the remaining 30 DLB patients in group B from the 30 AD patients. Z score values in this target VOI obtained from VSRAD were used as the determinant in receiver operating characteristic (ROC) analysis. Specific target VOIs for DLB were determined in the right-side dominant dorsal midbrain, right-side dominant dorsal pons, and bilateral cerebellum. ROC analysis revealed that the target VOI limited to the midbrain exhibited the highest area under the ROC curves of 0.75. DLB patients showed specific atrophy in the midbrain, pons, and cerebellum. Midbrain atrophy demonstrated the highest power for discriminating DLB and AD. This approach may be useful for determining the contributions of DLB and AD pathologies to the dementia syndrome.

  18. Biomechanical analysis of gait waveform data: exploring differences between shod and barefoot running in habitually shod runners.

    PubMed

    Tam, Nicholas; Prins, Danielle; Divekar, Nikhil V; Lamberts, Robert P

    2017-10-01

    The aim of this study was to utilise one-dimensional statistical parametric mapping to compare differences between biomechanical and electromyographical waveforms in runners when running in barefoot or shod conditions. Fifty habitually shod runners were assessed during overground running at their current 10-km race running speed. Electromyography, kinematics and ground reaction forces were collected during these running trials. Joint kinetics were calculated using inverse dynamics. One-dimensional statistical parametric mapping one sample t-test was conducted to assess differences over an entire gait cycle on the variables of interest when barefoot or shod (p<0.05). Only sagittal plane differences were found between barefoot and shod conditions at the knee during late stance (18-23% of the gait cycle) and swing phase (74-90%); at the ankle early stance (0-6%), mid-stance (28-38%) and swing phase (81-100%). Differences in sagittal plane moments were also found at the ankle during early stance (2, 4-5%) and knee during early stance (5-11%). Condition differences were also found in vertical ground reaction force during early stance between (3-10%). An acute bout of barefoot running in habitual shod runners invokes temporal differences throughout the gait cycle. Specifically, a co-ordinative responses between the knee and ankle joint in the sagittal plane with a delay in the impact transient peak; onset of the knee extension and ankle plantarflexion moment in the shod compared to barefoot condition was found. This appears to affect the delay in knee extension and ankle plantarflexion during late stance. This study provides a glimpse into the co-ordination of the lower limb when running in differing footwear. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology.

    PubMed

    Briggs, Amy G; Morgan, Stephanie K; Sanderson, Seth K; Schulting, Molly C; Wieseman, Laramie J

    2016-12-01

    The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids) and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein). Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  20. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    PubMed

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-07

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  1. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies.

    PubMed

    Leu, Costin; de Kovel, Carolien G F; Zara, Federico; Striano, Pasquale; Pezzella, Marianna; Robbiano, Angela; Bianchi, Amedeo; Bisulli, Francesca; Coppola, Antonietta; Giallonardo, Anna Teresa; Beccaria, Francesca; Trenité, Dorothée Kasteleijn-Nolst; Lindhout, Dick; Gaus, Verena; Schmitz, Bettina; Janz, Dieter; Weber, Yvonne G; Becker, Felicitas; Lerche, Holger; Kleefuss-Lie, Ailing A; Hallman, Kerstin; Kunz, Wolfram S; Elger, Christian E; Muhle, Hiltrud; Stephani, Ulrich; Møller, Rikke S; Hjalgrim, Helle; Mullen, Saul; Scheffer, Ingrid E; Berkovic, Samuel F; Everett, Kate V; Gardiner, Mark R; Marini, Carla; Guerrini, Renzo; Lehesjoki, Anna-Elina; Siren, Auli; Nabbout, Rima; Baulac, Stephanie; Leguern, Eric; Serratosa, Jose M; Rosenow, Felix; Feucht, Martha; Unterberger, Iris; Covanis, Athanasios; Suls, Arvid; Weckhuysen, Sarah; Kaneva, Radka; Caglayan, Hande; Turkdogan, Dilsad; Baykan, Betul; Bebek, Nerses; Ozbek, Ugur; Hempelmann, Anne; Schulz, Herbert; Rüschendorf, Franz; Trucks, Holger; Nürnberg, Peter; Avanzini, Giuliano; Koeleman, Bobby P C; Sander, Thomas

    2012-02-01

    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31.3 preferentially predispose to myoclonic seizures or absence seizures, respectively. Phenotype- genotype strategies applying narrow trait definitions in phenotypic homogeneous subgroups of families improve the prospects of disentangling the genetic basis of common familial GGE syndromes. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  2. Independent Assessment of ITRF Site Velocities using GPS Imaging

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Kreemer, C.; Altamimi, Z.

    2015-12-01

    The long-term stability of ITRF is critical to the most challenging scientific applications such as the slow variation of sea level, and of ice sheet loading in Greenland and Antarctica. In 2010, the National Research Council recommended aiming for stability at the level of 1 mm/decade in the ITRF origin and scale. This requires that the ITRF include many globally-distributed sites with motions that are predictable to within a few mm/decade, with a significant number of sites having collocated stations of multiple techniques. Quantifying the stability of ITRF stations can be useful to understand stability of ITRF parameters, and to help the selection and weighting of ITRF stations. Here we apply a new suite of techniques for an independent assessment of ITRF site velocities. Our "GPS Imaging" suite is founded on the principle that, for the case of large numbers of data, the trend can be estimated objectively, automatically, robustly, and accurately by applying non-parametric techniques, which use quantile statistics (e.g., the median). At the foundation of GPS Imaging is the estimator "MIDAS" (Median Interannual Difference Adjusted for Skewness). MIDAS estimates the velocity with a realistic error bar based on sub-sampling the coordinate time series. MIDAS is robust to step discontinuities, outliers, seasonality, and heteroscedasticity. Common-mode noise filters enhance regional- to continental-scale precision in MIDAS estimates, just as they do for standard estimation techniques. Secondly, in regions where there is sufficient spatial sampling, GPS Imaging uses MIDAS velocity estimates to generate a regionally-representative velocity map. For this we apply a median spatial filter to despeckle the maps. We use GPS Imaging to address two questions: (1) How well do the ITRF site velocities derived by parametric estimation agree with non-parametric techniques? (2) Are ITRF site velocities regionally representative? These questions aim to get a handle on (1) the accuracy of ITRF site velocities as a function of characteristics of contributing station data, such as number of step parameters and total time span; and (2) evidence of local processes affecting site velocity, which may impact site stability. Such quantification can be used to rank stations in terms the risk that they may pose to the stability of ITRF.

  3. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  4. EMDataBank unified data resource for 3DEM.

    PubMed

    Lawson, Catherine L; Patwardhan, Ardan; Baker, Matthew L; Hryc, Corey; Garcia, Eduardo Sanz; Hudson, Brian P; Lagerstedt, Ingvar; Ludtke, Steven J; Pintilie, Grigore; Sala, Raul; Westbrook, John D; Berman, Helen M; Kleywegt, Gerard J; Chiu, Wah

    2016-01-04

    Three-dimensional Electron Microscopy (3DEM) has become a key experimental method in structural biology for a broad spectrum of biological specimens from molecules to cells. The EMDataBank project provides a unified portal for deposition, retrieval and analysis of 3DEM density maps, atomic models and associated metadata (emdatabank.org). We provide here an overview of the rapidly growing 3DEM structural data archives, which include maps in EM Data Bank and map-derived models in the Protein Data Bank. In addition, we describe progress and approaches toward development of validation protocols and methods, working with the scientific community, in order to create a validation pipeline for 3DEM data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Scientific Approaches | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    CPTAC employs two complementary scientific approaches, a "Targeting Genome to Proteome" (Targeting G2P) approach and a "Mapping Proteome to Genome" (Mapping P2G) approach, in order to address biological questions from data generated on a sample.

  6. A comparison of top-down and bottom-up approaches to benthic habitat mapping to inform offshore wind energy development

    NASA Astrophysics Data System (ADS)

    LaFrance, Monique; King, John W.; Oakley, Bryan A.; Pratt, Sheldon

    2014-07-01

    Recent interest in offshore renewable energy within the United States has amplified the need for marine spatial planning to direct management strategies and address competing user demands. To assist this effort in Rhode Island, benthic habitat classification maps were developed for two sites in offshore waters being considered for wind turbine installation. Maps characterizing and representing the distribution and extent of benthic habitats are valuable tools for improving understanding of ecosystem patterns and processes, and promoting scientifically-sound management decisions. This project presented the opportunity to conduct a comparison of the methodologies and resulting map outputs of two classification approaches, “top-down” and “bottom-up” in the two study areas. This comparison was undertaken to improve understanding of mapping methodologies and their applicability, including the bottom-up approach in offshore environments where data density tends to be lower, as well as to provide case studies for scientists and managers to consider for their own areas of interest. Such case studies can offer guidance for future work for assessing methodologies and translating them to other areas. The traditional top-down mapping approach identifies biological community patterns based on communities occurring within geologically defined habitat map units, under the concept that geologic environments contain distinct biological assemblages. Alternatively, the bottom-up approach aims to establish habitat map units centered on biological similarity and then uses statistics to identify relationships with associated environmental parameters and determine habitat boundaries. When applied to the two study areas, both mapping approaches produced habitat classes with distinct macrofaunal assemblages and each established statistically strong and significant biotic-abiotic relationships with geologic features, sediment characteristics, water depth, and/or habitat heterogeneity over various spatial scales. The approaches were also able to integrate various data at differing spatial resolutions. The classification outputs exhibited similar results, including the number of habitat classes generated, the number of species defining the classes, the level of distinction of the biological communities, and dominance by tube-building amphipods. These results indicate that both approaches are able to discern a comparable degree of habitat variability and produce cohesive macrofaunal assemblages. The mapping approaches identify broadly similar benthic habitats at the two study sites and methods were able to distinguish the differing levels of heterogeneity between them. The top-down approach to habitat classification was faster and simpler to accomplish with the data available in this study when compared to the bottom-up approach. Additionally, the top-down approach generated full-coverage habitat classes that are clearly delineated and can easily be interpreted by the map user, which is desirable from a management perspective for providing a more complete assessment of the areas of interest. However, a higher level of biological variability was noted in some of the habitat classes created, indicating that the biological communities present in this area are influenced by factors not captured in the broad-scale geological habitat units used in this approach. The bottom-up approach was valuable in its ability to more clearly define macrofaunal assemblages among habitats, discern finer-scale habitat characteristics, and directly assess the degree of macrofaunal assemblage variability captured by the environmental parameters. From a user perspective, the map is more complex, which may be perceived as a limitation, though likely reflects natural gradations in habitat structure and likely presents a more ecologically realistic portrayal of the study areas. Though more comprehensive, the bottom-up approach in this study was limited by the reliance on full-coverage data to create full-coverage habitat classes. Such classes could only be developed when sediment data was excluded, since this point-sample dataset could not be interpolated due to high spatial heterogeneity of the study areas. Given a higher density of bottom samples, this issue could be rectified. While the top-down approach was more appropriate for this study, both approaches were found to be suitable for mapping and classifying benthic habitats. In the United States, objectives for mapping and classification for renewable energy development have not been well established. Therefore, at this time, the best-suited approach primarily depends on mapping objectives, resource availability, data quality and coverage, and geographical location, as these factors impact the types of data included, the analyses and modeling that can be performed, and the biotic-abiotic relationships identified.

  7. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.D.; Siniscalco, M.

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  8. Analyzing Change in Students' Gene-to-Evolution Models in College-Level Introductory Biology

    ERIC Educational Resources Information Center

    Dauer, Joseph T.; Momsen, Jennifer L.; Speth, Elena Bray; Makohon-Moore, Sasha C.; Long, Tammy M.

    2013-01-01

    Research in contemporary biology has become increasingly complex and organized around understanding biological processes in the context of systems. To better reflect the ways of thinking required for learning about systems, we developed and implemented a pedagogical approach using box-and-arrow models (similar to concept maps) as a foundational…

  9. Grammatical Gender and Inferences about Biological Properties in German-Speaking Children

    ERIC Educational Resources Information Center

    Saalbach, Henrik; Imai, Mutsumi; Schalk, Lennart

    2012-01-01

    In German, nouns are assigned to one of the three gender classes. For most animal names, however, the assignment is independent of the referent's biological sex. We examined whether German-speaking children understand this independence of grammar from semantics or whether they assume that grammatical gender is mapped onto biological sex when…

  10. Unbiased Protein Association Study on the Public Human Proteome Reveals Biological Connections between Co-Occurring Protein Pairs

    PubMed Central

    2017-01-01

    Mass-spectrometry-based, high-throughput proteomics experiments produce large amounts of data. While typically acquired to answer specific biological questions, these data can also be reused in orthogonal ways to reveal new biological knowledge. We here present a novel method for such orthogonal data reuse of public proteomics data. Our method elucidates biological relationships between proteins based on the co-occurrence of these proteins across human experiments in the PRIDE database. The majority of the significantly co-occurring protein pairs that were detected by our method have been successfully mapped to existing biological knowledge. The validity of our novel method is substantiated by the extremely few pairs that can be mapped to existing knowledge based on random associations between the same set of proteins. Moreover, using literature searches and the STRING database, we were able to derive meaningful biological associations for unannotated protein pairs that were detected using our method, further illustrating that as-yet unknown associations present highly interesting targets for follow-up analysis. PMID:28480704

  11. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    PubMed

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  12. Regional patterns of grey matter atrophy and magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups: A voxel-based analysis study

    PubMed Central

    Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia AM; Miller, David H; Chard, Declan T

    2015-01-01

    Background: In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing–remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). Methods: A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. Results: MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. Conclusions: These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. PMID:25145689

  13. The role of fractional calculus in modeling biological phenomena: A review

    NASA Astrophysics Data System (ADS)

    Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. A. T.; Bates, J. H. T.

    2017-10-01

    This review provides the latest developments and trends in the application of fractional calculus (FC) in biomedicine and biology. Nature has often showed to follow rather simple rules that lead to the emergence of complex phenomena as a result. Of these, the paper addresses the properties in respiratory lung tissue, whose natural solutions arise from the midst of FC in the form of non-integer differ-integral solutions and non-integer parametric models. Diffusion of substances in human body, e.g. drug diffusion, is also a phenomena well known to be captured with such mathematical models. FC has been employed in neuroscience to characterize the generation of action potentials and spiking patters but also in characterizing bio-systems (e.g. vegetable tissues). Despite the natural complexity, biological systems belong as well to this class of systems, where FC has offered parsimonious yet accurate models. This review paper is a collection of results and literature reports who are essential to any versed engineer with multidisciplinary applications and bio-medical in particular.

  14. Mapping of species richness for conservation of biological diversity: conceptual and methodological issues

    Treesearch

    M.J. Conroy; B.R. Noon

    1996-01-01

    Biodiversity mapping (e.g., the Gap Analysis Program [GAP]), in which vegetative features and categories of land use are mapped at coarse spatial scales, has been proposed as a reliable tool for land use decisions (e.g., reserve identification, selection, and design). This implicitly assumes that species richness data collected at coarse spatiotemporal scales provide a...

  15. Diagnosing and Mapping Pulmonary Emphysema on X-Ray Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging

    PubMed Central

    Meinel, Felix G.; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö.; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F.; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    Purpose To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections. PMID:23555692

  16. Diagnosing and mapping pulmonary emphysema on X-ray projection images: incremental value of grating-based X-ray dark-field imaging.

    PubMed

    Meinel, Felix G; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.

  17. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes

    PubMed Central

    Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the auditory system appear to process or extract a number of quantifiable low-order signal attributes that are characteristic of action events perceived as being object-like, representing stages that may begin to dissociate different perceptual dimensions and categories of every-day, real-world action sounds. PMID:22582038

  18. An Example of Unsupervised Networks Kohonen's Self-Organizing Feature Map

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    Kohonen's self-organizing feature map belongs to a class of unsupervised artificial neural network commonly referred to as topographic maps. It serves two purposes, the quantization and dimensionality reduction of date. A short description of its history and its biological context is given. We show that the inherent classification properties of the feature map make it a suitable candidate for solving the classification task in power system areas like load forecasting, fault diagnosis and security assessment.

  19. Mapping biological ideas: Concept maps as knowledge integration tools for evolution education

    NASA Astrophysics Data System (ADS)

    Schwendimann, Beat Adrian

    Many students leave school with a fragmented understanding of biology that does not allow them to connect their ideas to their everyday lives (Wandersee, 1989; Mintzes, Wandersee, & Novak, 1998; Mintzes, Wandersee, & Novak, 2000a). Understanding evolution ideas is seen as central to building an integrated knowledge of biology (Blackwell, Powell, & Dukes, 2003; Thagard & Findlay, 2010). However, the theory of evolution has been found difficult to understand as it incorporates a wide range of ideas from different areas (Bahar et al., 1999; Tsui & Treagust, 2003) and multiple interacting levels (Wilensky & Resnick, 1999; Duncan & Reiser, 2007; Hmelo-Silver et al., 2007). Research suggests that learners can hold a rich repertoire of co-existing alternative ideas of evolution (for example, Bishop & Anderson, 1990; Demastes, Good, & Peebles, 1996; Evans, 2008), especially of human evolution (for example, Nelson, 1986; Sinatra et al., 2003; Poling & Evans, 2004). Evolution ideas are difficult to understand because they often contradict existing alternative ideas (Mayr, 1982; Wolpert, 1994; Evans, 2008). Research suggests that understanding human evolution is a key to evolution education (for example, Blackwell et al., 2003; Besterman & Baggott la Velle, 2007). This dissertation research investigates how different concept mapping forms embedded in a collaborative technology-enhanced learning environment can support students' integration of evolution ideas using case studies of human evolution. Knowledge Integration (KI) (Linn et al., 2000; Linn et al., 2004) is used as the operational framework to explore concept maps as knowledge integration tools to elicit, add, critically distinguish, group, connect, and sort out alternative evolution ideas. Concept maps are a form of node-link diagram for organizing and representing connections between ideas as a semantic network (Novak & Gowin, 1984). This dissertation research describes the iterative development of a novel biology-specific form of concept map, called Knowledge Integration Map (KIM), which aims to help learners connect ideas across levels (for example, genotype and phenotype levels) towards an integrated understanding of evolution. Using a design-based research approach (Brown, 1992; Cobb et al., 2003), three iterative studies were implemented in ethically and economically diverse public high schools classrooms using the web-based inquiry science environment (WISE) (Linn et al., 2003; Linn et al., 2004). Study 1 investigates concept maps as generative assessment tools. Study 1A compares the concept map generation and critique process of biology novices and experts. Findings suggest that concept maps are sensitive to different levels of knowledge integration but require scaffolding and revision. Study 1B investigates the implementation of concept maps as summative assessment tools in a WISE evolution module. Results indicate that concept maps can reveal connections between students' alternative ideas of evolution. Study 2 introduces KIMs as embedded collaborative learning tools. After generating KIMs, student dyads revise KIMs through two different critique activities (comparison against an expert or peer generated KIM). Findings indicate that different critique activities can promote the use of different criteria for critique. Results suggest that the combination of generating and critiquing KIMs can support integrating evolution ideas but can be time-consuming. As time in biology classrooms is limited, study 3 distinguishes the learning effects from either generating or critiquing KIMs as more time efficient embedded learning tools. Findings suggest that critiquing KIMs can be more time efficient than generating KIMs. Using KIMs that include common alternative ideas for critique activities can create genuine opportunities for students to critically reflect on new and existing ideas. Critiquing KIMs can encourage knowledge integration by fostering self-monitoring of students' learning progress, identifying knowledge gaps, and distinguishing alternative evolution ideas. This dissertation research demonstrates that science instruction of complex topics, such as human evolution, can succeed through a combination of scaffolded inquiry activities using dynamic visualizations, explanation activities, and collaborative KIM activities. This research contributes to educational research and practice by describing ways to make KIMs effective and time efficient learning tools for evolution education. Supporting students' building of a more coherent understanding of core ideas of biology can foster their life-long interest and learning of science.

  20. Extending the Coyote emulator to dark energy models with standard w {sub 0}- w {sub a} parametrization of the equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casarini, L.; Bonometto, S.A.; Tessarotto, E.

    2016-08-01

    We discuss an extension of the Coyote emulator to predict non-linear matter power spectra of dark energy (DE) models with a scale factor dependent equation of state of the form w = w {sub 0}+(1- a ) w {sub a} . The extension is based on the mapping rule between non-linear spectra of DE models with constant equation of state and those with time varying one originally introduced in ref. [40]. Using a series of N-body simulations we show that the spectral equivalence is accurate to sub-percent level across the same range of modes and redshift covered by the Coyotemore » suite. Thus, the extended emulator provides a very efficient and accurate tool to predict non-linear power spectra for DE models with w {sub 0}- w {sub a} parametrization. According to the same criteria we have developed a numerical code that we have implemented in a dedicated module for the CAMB code, that can be used in combination with the Coyote Emulator in likelihood analyses of non-linear matter power spectrum measurements. All codes can be found at https://github.com/luciano-casarini/pkequal.« less

  1. Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Watkins, Anthony N.; Korzun, Ashley M.; Edquist, Karl T.

    2013-01-01

    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations.

  2. Direct Bio-printing with Heterogeneous Topology Design.

    PubMed

    Ahsan, Amm Nazmul; Xie, Ruinan; Khoda, Bashir

    2017-01-01

    Bio-additive manufacturing is a promising tool to fabricate porous scaffold structures for expediting the tissue regeneration processes. Unlike the most traditional bulk material objects, the microstructures of tissue and organs are mostly highly anisotropic, heterogeneous, and porous in nature. However, modelling the internal heterogeneity of tissues/organs structures in the traditional CAD environment is difficult and oftentimes inaccurate. Besides, the de facto STL conversion of bio-models introduces loss of information and piles up more errors in each subsequent step (build orientation, slicing, tool-path planning) of the bio-printing process plan. We are proposing a topology based scaffold design methodology to accurately represent the heterogeneous internal architecture of tissues/organs. An image analysis technique is used that digitizes the topology information contained in medical images of tissues/organs. A weighted topology reconstruction algorithm is implemented to represent the heterogeneity with parametric functions. The parametric functions are then used to map the spatial material distribution. The generated information is directly transferred to the 3D bio-printer and heterogeneous porous tissue scaffold structure is manufactured without STL file. The proposed methodology is implemented to verify the effectiveness of the approach and the designed example structure is bio-fabricated with a deposition based bio-additive manufacturing system.

  3. Ultrasound-aided Multi-parametric Photoacoustic Microscopy of the Mouse Brain.

    PubMed

    Ning, Bo; Sun, Naidi; Cao, Rui; Chen, Ruimin; Kirk Shung, K; Hossack, John A; Lee, Jin-Moo; Zhou, Qifa; Hu, Song

    2015-12-21

    High-resolution quantitative imaging of cerebral oxygen metabolism in mice is crucial for understanding brain functions and formulating new strategies to treat neurological disorders, but remains a challenge. Here, we report on our newly developed ultrasound-aided multi-parametric photoacoustic microscopy (PAM), which enables simultaneous quantification of the total concentration of hemoglobin (CHb), the oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF) at the microscopic level and through the intact mouse skull. The three-dimensional skull and vascular anatomies delineated by the dual-contrast (i.e., ultrasonic and photoacoustic) system provide important guidance for dynamically focused contour scan and vessel orientation-dependent correction of CBF, respectively. Moreover, bi-directional raster scan allows determining the direction of blood flow in individual vessels. Capable of imaging all three hemodynamic parameters at the same spatiotemporal scale, our ultrasound-aided PAM fills a critical gap in preclinical neuroimaging and lays the foundation for high-resolution mapping of the cerebral metabolic rate of oxygen (CMRO2)-a quantitative index of cerebral oxygen metabolism. This technical innovation is expected to shed new light on the mechanism and treatment of a broad spectrum of neurological disorders, including Alzheimer's disease and ischemic stroke.

  4. Numerical investigation of galloping instabilities in Z-shaped profiles.

    PubMed

    Gomez, Ignacio; Chavez, Miguel; Alonso, Gustavo; Valero, Eusebio

    2014-01-01

    Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A typical cross-section for such elements is a Z-shaped profile, made out of a central web and two-side wings. Galloping instabilities are often determined in practice using the Glauert-Den Hartog criterion. This criterion relies on accurate predictions of the dependence of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper. These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry, has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes and turbulence models.

  5. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

    PubMed

    López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.

  6. Elliptic surface grid generation on minimal and parmetrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.

  7. Current State of the Art Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2017-08-01

    In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.

  8. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    USDA-ARS?s Scientific Manuscript database

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  9. SU-F-BRD-07: Fast Monte Carlo-Based Biological Optimization of Proton Therapy Treatment Plans for Thyroid Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Chan Tseung, H; Ma, J; Ma, D

    2015-06-15

    Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) based biological planning for the treatment of thyroid tumors in spot-scanning proton therapy. Methods: Recently, we developed a fast and accurate GPU-based MC simulation of proton transport that was benchmarked against Geant4.9.6 and used as the dose calculation engine in a clinically-applicable GPU-accelerated IMPT optimizer. Besides dose, it can simultaneously score the dose-averaged LET (LETd), which makes fast biological dose (BD) estimates possible. To convert from LETd to BD, we used a linear relation based on cellular irradiation data. Given a thyroid patient with a 93cc tumor volume, we createdmore » a 2-field IMPT plan in Eclipse (Varian Medical Systems). This plan was re-calculated with our MC to obtain the BD distribution. A second 5-field plan was made with our in-house optimizer, using pre-generated MC dose and LETd maps. Constraints were placed to maintain the target dose to within 25% of the prescription, while maximizing the BD. The plan optimization and calculation of dose and LETd maps were performed on a GPU cluster. The conventional IMPT and biologically-optimized plans were compared. Results: The mean target physical and biological doses from our biologically-optimized plan were, respectively, 5% and 14% higher than those from the MC re-calculation of the IMPT plan. Dose sparing to critical structures in our plan was also improved. The biological optimization, including the initial dose and LETd map calculations, can be completed in a clinically viable time (∼30 minutes) on a cluster of 25 GPUs. Conclusion: Taking advantage of GPU acceleration, we created a MC-based, biologically optimized treatment plan for a thyroid patient. Compared to a standard IMPT plan, a 5% increase in the target’s physical dose resulted in ∼3 times as much increase in the BD. Biological planning was thus effective in escalating the target BD.« less

  10. From globally coupled maps to complex-systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  11. LMSD: LIPID MAPS structure database

    PubMed Central

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933

  12. Concept Maps for Improved Science Reasoning and Writing: Complexity Isn't Everything.

    PubMed

    Dowd, Jason E; Duncan, Tanya; Reynolds, Julie A

    2015-01-01

    A pervasive notion in the literature is that complex concept maps reflect greater knowledge and/or more expert-like thinking than less complex concept maps. We show that concept maps used to structure scientific writing and clarify scientific reasoning do not adhere to this notion. In an undergraduate course for thesis writers, students use concept maps instead of traditional outlines to define the boundaries and scope of their research and to construct an argument for the significance of their research. Students generate maps at the beginning of the semester, revise after peer review, and revise once more at the end of the semester. Although some students revised their maps to make them more complex, a significant proportion of students simplified their maps. We found no correlation between increased complexity and improved scientific reasoning and writing skills, suggesting that sometimes students simplify their understanding as they develop more expert-like thinking. These results suggest that concept maps, when used as an intervention, can meet the varying needs of a diverse population of student writers. © 2015 J. E. Dowd et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Epistasis and Pleiotropy Affect the Modularity of the Genotype-Phenotype Map of Cross-Resistance in HIV-1.

    PubMed

    Polster, Robert; Petropoulos, Christos J; Bonhoeffer, Sebastian; Guillaume, Frédéric

    2016-12-01

    The genotype-phenotype (GP) map is a central concept in evolutionary biology as it describes the mapping of molecular genetic variation onto phenotypic trait variation. Our understanding of that mapping remains partial, especially when trying to link functional clustering of pleiotropic gene effects with patterns of phenotypic trait co-variation. Only on rare occasions have studies been able to fully explore that link and tend to show poor correspondence between modular structures within the GP map and among phenotypes. By dissecting the structure of the GP map of the replicative capacity of HIV-1 in 15 drug environments, we provide a detailed view of that mapping from mutational pleiotropic variation to phenotypic co-variation, including epistatic effects of a set of amino-acid substitutions in the reverse transcriptase and protease genes. We show that epistasis increases the pleiotropic degree of single mutations and provides modularity to the GP map of drug resistance in HIV-1. Moreover, modules of epistatic pleiotropic effects within the GP map match the phenotypic modules of correlated replicative capacity among drug classes. Epistasis thus increases the evolvability of cross-resistance in HIV by providing more drug- and class-specific pleiotropic profiles to the main effects of the mutations. We discuss the implications for the evolution of cross-resistance in HIV. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    PubMed Central

    2013-01-01

    Background Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. Results NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. Conclusions NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps. PMID:24099179

  15. NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps.

    PubMed

    Kuperstein, Inna; Cohen, David P A; Pook, Stuart; Viara, Eric; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2013-10-07

    Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps.

  16. RAMICS: trainable, high-speed and biologically relevant alignment of high-throughput sequencing reads to coding DNA

    PubMed Central

    Wright, Imogen A.; Travers, Simon A.

    2014-01-01

    The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618

  17. A parametric study of the value of hydrological information for irrigation and hydropower management of the Feather River

    NASA Technical Reports Server (NTRS)

    Wetzler, E.; Sand, F.; Stevenson, P.; Putnam, M.

    1975-01-01

    A case study analysis is presented of the relationships between improvements in the accuracy, frequency, and timeliness of information used in making hydrological forecasts and economic benefits in the areas of hydropower and irrigation. The area chosen for the case study is the Oroville Dam and Reservoir. Emphasis is placed on the use of timely and accurate mapping of the aerial extent of snow in the basin by earth resources survey systems such as LANDSAT. The subject of benefits resulting from improved runoff forecasts is treated in a generalized way without specifying the source of the improvements.

  18. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  19. Comparison of animated jet stream visualizations

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  20. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.

    PubMed

    Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H

    2017-09-18

    A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

  1. Automatic Aircraft Structural Topology Generation for Multidisciplinary Optimization and Weight Estimation

    NASA Technical Reports Server (NTRS)

    Sensmeier, Mark D.; Samareh, Jamshid A.

    2005-01-01

    An approach is proposed for the application of rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process. This should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. A demonstration of this process is shown for two sample aircraft wing designs.

  2. An analysis of regional cerebral blood flow in impulsive murderers using single photon emission computed tomography.

    PubMed

    Amen, Daniel G; Hanks, Chris; Prunella, Jill R; Green, Aisa

    2007-01-01

    The authors explored differences in regional cerebral blood flow in 11 impulsive murderers and 11 healthy comparison subjects using single photon emission computed tomography. The authors assessed subjects at rest and during a computerized go/no-go concentration task. Using statistical parametric mapping software, the authors performed voxel-by-voxel t tests to assess significant differences, making family-wide error corrections for multiple comparisons. Murderers were found to have significantly lower relative rCBF during concentration, particularly in areas associated with concentration and impulse control. These results indicate that nonemotionally laden stimuli may result in frontotemporal dysregulation in people predisposed to impulsive violence.

  3. Apparatus and methods for manipulation and optimization of biological systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2012-01-01

    The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manem, V; Paganetti, H

    Purpose: Evaluate the excess relative risk (ERR) induced by photons and protons in each voxel of the lung, and display it as a three-dimensional map, known as the ERRM (i.e. excess relative risk map) along with the dose distribution map. In addition, we also study the effect of variations in the linear energy transfer (LET) distribution on ERRM for a given proton plan. Methods: The excess relative risk due to radiation is estimated using the initiation-inactivation-proliferation formalism. This framework accounts for three biological phenomenon: mutation induction, cell kill and proliferation. Cell kill and mutation induction are taken as a functionmore » of LET using experimental data. LET distributions are calculated using a Monte Carlo algorithm. ERR is then estimated for each voxel in the organ, and displayed as a three dimensional carcinogenic map. Results: The differences in the ERR’s between photons and protons is seen from the three-dimensional ERR map. In addition, we also varied the LET of a proton plan and observed the differences in the corresponding ERR maps demonstrating variations in the ERR maps depend on features of a proton plan. Additionally, our results suggest that any two proton plans that have the same integral dose does not necessarily imply identical ERR maps, and these changes are due to the variations in the LET distribution map. Conclusion: Clinically, it is important to have a three dimensional display of biological end points. This study is an effort to introduce 3D ERR maps into the treatment planning workflow for certain sites such as pediatric head and neck tumors.« less

  5. Sensitivity of the Halstead and Wechsler Test Batteries to brain damage: Evidence from Reitan's original validation sample.

    PubMed

    Loring, David W; Larrabee, Glenn J

    2006-06-01

    The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.

  6. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    NASA Astrophysics Data System (ADS)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  7. Undular bore theory for the Gardner equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.

    2012-09-01

    We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.

  8. Centrifugal and Axial Pump Design and Off-Design Performance Prediction

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1995-01-01

    A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.

  9. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.

    PubMed

    Burton, T M W; Vaidyanathan, R; Burgess, S C; Turton, A J; Melhuish, C

    2011-01-01

    This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion. A computer aided design environment is used to allow the exoskeleton to be rapidly customized to the hand dimensions of a specific patient. Trials comparing the kinematic model to observed data of hand movement show the model to be capable of mapping thumb and finger joint flexion angles during grasping motions. Simulations show the exoskeleton to be capable of reproducing the complex motion of the thumb to oppose the fingers during cylindrical and pinch grip motions. © 2011 IEEE

  10. Non-Parametric Blur Map Regression for Depth of Field Extension.

    PubMed

    D'Andres, Laurent; Salvador, Jordi; Kochale, Axel; Susstrunk, Sabine

    2016-04-01

    Real camera systems have a limited depth of field (DOF) which may cause an image to be degraded due to visible misfocus or too shallow DOF. In this paper, we present a blind deblurring pipeline able to restore such images by slightly extending their DOF and recovering sharpness in regions slightly out of focus. To address this severely ill-posed problem, our algorithm relies first on the estimation of the spatially varying defocus blur. Drawing on local frequency image features, a machine learning approach based on the recently introduced regression tree fields is used to train a model able to regress a coherent defocus blur map of the image, labeling each pixel by the scale of a defocus point spread function. A non-blind spatially varying deblurring algorithm is then used to properly extend the DOF of the image. The good performance of our algorithm is assessed both quantitatively, using realistic ground truth data obtained with a novel approach based on a plenoptic camera, and qualitatively with real images.

  11. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  12. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    PubMed

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  13. The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs, and Diseases.

    PubMed

    Yang, Haixiu; Shang, Desi; Xu, Yanjun; Zhang, Chunlong; Feng, Li; Sun, Zeguo; Shi, Xinrui; Zhang, Yunpeng; Han, Junwei; Su, Fei; Li, Chunquan; Li, Xia

    2017-07-27

    Well characterized the connections among diseases, long non-coding RNAs (lncRNAs) and drugs are important for elucidating the key roles of lncRNAs in biological mechanisms in various biological states. In this study, we constructed a database called LNCmap (LncRNA Connectivity Map), available at http://www.bio-bigdata.com/LNCmap/ , to establish the correlations among diseases, physiological processes, and the action of small molecule therapeutics by attempting to describe all biological states in terms of lncRNA signatures. By reannotating the microarray data from the Connectivity Map database, the LNCmap obtained 237 lncRNA signatures of 5916 instances corresponding to 1262 small molecular drugs. We provided a user-friendly interface for the convenient browsing, retrieval and download of the database, including detailed information and the associations of drugs and corresponding affected lncRNAs. Additionally, we developed two enrichment analysis methods for users to identify candidate drugs for a particular disease by inputting the corresponding lncRNA expression profiles or an associated lncRNA list and then comparing them to the lncRNA signatures in our database. Overall, LNCmap could significantly improve our understanding of the biological roles of lncRNAs and provide a unique resource to reveal the connections among drugs, lncRNAs and diseases.

  14. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  15. Imaging Electric Properties of Biological Tissues by RF Field Mapping in MRI

    PubMed Central

    Zhang, Xiaotong; Zhu, Shanan; He, Bin

    2010-01-01

    The electric properties (EPs) of biological tissue, i.e., the electric conductivity and permittivity, can provide important information in the diagnosis of various diseases. The EPs also play an important role in specific absorption rate (SAR) calculation, a major concern in high-field Magnetic Resonance Imaging (MRI), as well as in non-medical areas such as wireless-telecommunications. The high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on the EPs of biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we propose a dual-excitation algorithm, which uses two sets of measured B1 data to noninvasively reconstruct the electric properties of biological tissues. The Finite Element Method (FEM) was utilized in three-dimensional (3D) modeling and B1 field calculation. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3D head model within a transverse electromagnetic (TEM) coil and a birdcage (BC) coil. Using a TEM coil, when noise free, the reconstructed EP distribution of tissues in the brain has relative errors of 12% ∼ 28% and correlated coefficients of greater than 0.91. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results suggest that good reconstruction of electric properties from B1 mapping can be achieved. PMID:20129847

  16. Hybrid PET/MR imaging: physics and technical considerations.

    PubMed

    Shah, Shetal N; Huang, Steve S

    2015-08-01

    In just over a decade, hybrid imaging with FDG PET/CT has become a standard bearer in the management of cancer patients. An exquisitely sensitive whole-body imaging modality, it combines the ability to detect subtle biologic changes with FDG PET and the anatomic information offered by CT scans. With advances in MR technology and advent of novel targeted PET radiotracers, hybrid PET/MRI is an evolutionary technique that is poised to revolutionize hybrid imaging. It offers unparalleled spatial resolution and functional multi-parametric data combined with biologic information in the non-invasive detection and characterization of diseases, without the deleterious effects of ionizing radiation. This article reviews the basic principles of FDG PET and MR imaging, discusses the salient technical developments of hybrid PET/MR systems, and provides an introduction to FDG PET/MR image acquisition.

  17. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  18. Mapping and Sequencing the Human Genome

    DOE R&D Accomplishments Database

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  19. Kansas Students Enjoy Summertime "Mountain Ventures"

    ERIC Educational Resources Information Center

    Highfill, Kenneth M.

    1974-01-01

    Describes an elective biology program offered at Lawrence High School (Kansas) that emphasizes basic field biology, ecology, conservation, camping, first aid, mountaineering, and map reading. Groups of students spend two weeks in the Rocky Mountains developing knowledge and skills in these areas. (JR)

  20. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data

    NASA Astrophysics Data System (ADS)

    Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.

    2009-07-01

    Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.

Top