Science.gov

Sample records for biological properties issledovanie

  1. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  2. Predicting Soil Biological and Physical Properties Using Hydrological Properties

    NASA Astrophysics Data System (ADS)

    Geiger, L.; Hofmockel, K.; Kaleita, A.; Hargreaves, S.

    2012-12-01

    Soil biological and chemical properties vary at different spatial scales, which make predicting processes associated with these properties difficult. However, soil biological and chemical properties are important to fertility and ecosystem functioning. In this study, we used a Self Organizing Map (SOM) to determine whether soil hydrological characteristics can be used to characterize the distribution of a suite of soil biological and chemical properties. From a row crop field in south-central Iowa, we generated 36 sampling locations via a SOM, which were grouped into three categories according to hydrological properties by the SOM. Soil samples were then analyzed for microbial biomass, carbon and nitrogen mineralization potential, and organic and inorganic pools of carbon and nitrogen. We found that sampling locations in category 1 (potholes and toe slopes) had greater microbial biomass, total carbon, total nitrogen, and extractable organic carbon than compared locations in the two well-drained categories. Nitrogen and carbon mineralization and inorganic nitrogen pools did not differ significantly among the categories. These results demonstrate that hydrological characteristics can be used to predict relatively stable biological and chemical soil properties. However, prediction of nitrogen and carbon fluxes remains a challenge.

  3. Physical and biological properties of Bazna waters

    PubMed Central

    TRÂMBIŢAŞ, DAN

    2013-01-01

    The healing properties of Bazna waters and their therapeutic indications have been well known since the 18th century. The objective of the present study was to characterize these waters from physical and biological points of view, and to further analyze the nitrogen compounds, especially NH4+. The following physical parameters of the water were analyzed: density (g/cm3), electric resistivity (Ω·m), electric conductivity (cm−1o−1), salinity, The pH analysis of the biological component was performed on samples from 4 basins. Nitrogen compounds were dosed in the form of ammonium ion (NH4+). The physical and chemical proprieties are similar across the basins. Flora and fauna biological components were identified. Ammonium ions were identified in large quantities, but this did not lead to hygienicaly unclean waters. PMID:26527972

  4. Biological Properties and Therapeutic Applications of Propolis.

    PubMed

    Sforcin, José M

    2016-06-01

    Propolis is a resinous material collected by bees from bud and exudates of the plants, mixed with bee enzymes, pollen and wax. In this review, the biological properties of propolis and some therapeutic applications are discussed. The same biological activities have been investigated until today, using samples from different geographic regions. Thus, the study of the biological properties of a given sample should always be associated with its chemical composition and botanical source, representing a particular sample of a given geographic area, exploring its biological potential and the role of its constituents. Efforts have been carried out to explain propolis' mechanisms of action in vivo and in vitro, but the majority of propolis' targets and actions are still unclear. The number of formulations containing propolis and patents have increased, although propolis extracts have been used deliberately with different recommendations, not always mentioning the chemical composition, vegetal source and the methods of extraction. Clinical studies will help to obtain criterious recommendations in view of the expected outcomes. Further investigation should explore the effects of common compounds found in the samples from all over the world in an attempt to standardize the research on propolis and to obtain new drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26988443

  5. Biological Properties and Therapeutic Applications of Propolis.

    PubMed

    Sforcin, José M

    2016-06-01

    Propolis is a resinous material collected by bees from bud and exudates of the plants, mixed with bee enzymes, pollen and wax. In this review, the biological properties of propolis and some therapeutic applications are discussed. The same biological activities have been investigated until today, using samples from different geographic regions. Thus, the study of the biological properties of a given sample should always be associated with its chemical composition and botanical source, representing a particular sample of a given geographic area, exploring its biological potential and the role of its constituents. Efforts have been carried out to explain propolis' mechanisms of action in vivo and in vitro, but the majority of propolis' targets and actions are still unclear. The number of formulations containing propolis and patents have increased, although propolis extracts have been used deliberately with different recommendations, not always mentioning the chemical composition, vegetal source and the methods of extraction. Clinical studies will help to obtain criterious recommendations in view of the expected outcomes. Further investigation should explore the effects of common compounds found in the samples from all over the world in an attempt to standardize the research on propolis and to obtain new drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Phytochemistry and Biological Properties of Glabridin

    PubMed Central

    Simmler, Charlotte; Pauli, Guido F.; Chen, Shao-Nong

    2013-01-01

    Glabridin, a prenylated isoflavonoid of G. glabra L. roots (European licorice, Fabaceae), has been associated with a wide range of biological properties such as antioxidant, anti-inflammatory, anti-atherogenic, regulation of energy metabolism, estrogenic, neuroprotective, anti-osteoporotic, skin-whitening. While glabridin is one of the most studied licorice flavonoids, a comprehensive literature survey linked to its numerous bioactivities is unavailable. The present review provides a comprehensive description of glabridin as a key chemical and biological marker of G. glabra, by covering both its phytochemical characterization and reported biological activities. Both glabridin and standardized licorice extracts have significant impact on food, dietary supplements (DSs) and cosmetic markets, as evidenced by the amount of available patents and scientific articles since 1976, when glabridin was first described. Nevertheless, a thorough literature survey also reveals that information about the isolation and chemical characterization of this important marker is scattered and less detailed than expected. Accordingly, the first part of this review gathers all analytical and spectroscopic data required for the comprehensive phytochemical characterization of glabridin. The four most frequently described and most relevant bioactivities of glabridin are its anti-inflammatory, anti-atherogenic, estrogenic-like effects, and its capacity to regulate energy metabolism. While all bioactivities reported for glabridin belong to a wide array of targets, its principal biological properties are likely interconnected. To this end, the current state of the literature suggests that the biological activity of glabridin mainly results from its capacity to down-regulate intracellular reactive oxygen species, bind to antioxidant effectors, and act on estrogen receptors, potentially as a plant-based Selective Estrogen Receptor Modulator (phytoSERM). PMID:23850540

  7. [BIOLOGICAL AND IMMUNOCHEMICAL PROPERTIES OF POLYREACTIVE IMMUNOGLOBULINS].

    PubMed

    Bobrovnik, S A; Demchenko, M A; Komisarenko, S V

    2015-01-01

    A previously unknown phenomenon of acquired polyreactivity for serum immunoglobulins, which were subjected either to solutions of KSCN (3.0-5.0 M), low/high pH (pH 2.2-3.0), or heating to 58-60 degrees C, was described by us in 1990 year. Much later, eleven years after that, similar data were published by others, which completely confirmed our results concerning the influence of either chaotropic ions or the drastic shift of pH on immunoglobulins polyreactive properties. Our further investigations of polyreactive serum immunoglobulins (PRIG) properties have shown that the mechanism of non-specific interaction between PRIG and antigens much differs from the mechanism of interaction between specific antibodies and corresponding antigens. Later we have shown that the increasing of PRIG reactivity could be induced in vivo, and PRIG are one of serum components for human or animal sera. Then, it could be suggested that PRIG can perform certain biological functions. Studying of PRIG's effect on the phagocytosis of microbes by peritoneal cells or the tumor growth have shown that PRIG can play a certain role in protecting the body from infections and probably can influence on the development of various pathological processes. Recently we have also found that PRIG IgG contents significantly increases in aged people. These data demonstrate that further investigations of PRIG's immunochemical properties and studying of their biological role in organism protection from various diseases is very intriguing and important.

  8. [BIOLOGICAL AND IMMUNOCHEMICAL PROPERTIES OF POLYREACTIVE IMMUNOGLOBULINS].

    PubMed

    Bobrovnik, S A; Demchenko, M A; Komisarenko, S V

    2015-01-01

    A previously unknown phenomenon of acquired polyreactivity for serum immunoglobulins, which were subjected either to solutions of KSCN (3.0-5.0 M), low/high pH (pH 2.2-3.0), or heating to 58-60 degrees C, was described by us in 1990 year. Much later, eleven years after that, similar data were published by others, which completely confirmed our results concerning the influence of either chaotropic ions or the drastic shift of pH on immunoglobulins polyreactive properties. Our further investigations of polyreactive serum immunoglobulins (PRIG) properties have shown that the mechanism of non-specific interaction between PRIG and antigens much differs from the mechanism of interaction between specific antibodies and corresponding antigens. Later we have shown that the increasing of PRIG reactivity could be induced in vivo, and PRIG are one of serum components for human or animal sera. Then, it could be suggested that PRIG can perform certain biological functions. Studying of PRIG's effect on the phagocytosis of microbes by peritoneal cells or the tumor growth have shown that PRIG can play a certain role in protecting the body from infections and probably can influence on the development of various pathological processes. Recently we have also found that PRIG IgG contents significantly increases in aged people. These data demonstrate that further investigations of PRIG's immunochemical properties and studying of their biological role in organism protection from various diseases is very intriguing and important. PMID:26502695

  9. Arbutus unedo L.: chemical and biological properties.

    PubMed

    Miguel, Maria G; Faleiro, Maria L; Guerreiro, Adriana C; Antunes, Maria D

    2014-01-01

    Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed. PMID:25271425

  10. Mechanical and biological properties of keratose biomaterials.

    PubMed

    de Guzman, Roche C; Merrill, Michelle R; Richter, Jillian R; Hamzi, Rawad I; Greengauz-Roberts, Olga K; Van Dyke, Mark E

    2011-11-01

    The oxidized form of extractable human hair keratin proteins, commonly referred to as keratose, is gaining interest as a biomaterial for multiple tissue engineering studies including those directed toward peripheral nerve, spinal cord, skin, and bone regeneration. Unlike its disulfide cross-linked counterpart, kerateine, keratose does not possess a covalently cross-linked network structure and consequently displays substantially different characteristics. In order to understand its mode(s) of action and potential for clinical translatability, detailed characterization of the composition, physical properties, and biological responses of keratose biomaterials are needed. Keratose was obtained from end-cut human hair fibers by peracetic acid treatment, followed by base extraction, and subsequent dialysis. Analysis of lyophilized keratose powder determined that it contains 99% proteins by mass with amino acid content similar to human hair cortex. Metallic elements were also found in minute quantities. Protein oxidation led to disulfide bond cleavage and drastic reduction of free thiols due to conversion of sulfhydryl to sulfonic acid, chain fragmentation, and amino acid modifications. Mass spectrometry identified the major protein constituents as a heterogeneous mixture of 15 hair keratins (type I: K31-35 and K37-39, and type II: K81-86) with small amounts of epithelial keratins which exist in monomeric, dimeric, multimeric, and even degraded forms. Re-hydration with PBS enabled molecular assembly into an elastic solid-like hydrogel. Highly-porous scaffolds formed by lyophilization of the gel had the compression behavior of a cellular foam material and reverted back to gel upon wetting. Cytotoxicity assays showed that the EC50 for various cell lines were attained at 8-10 mg/mL keratose, indicating the non-toxic nature of the material. Implantation in mouse subcutaneous tissue pockets demonstrated that keratose resorption follows a rectangular hyperbolic regression

  11. NANOSILVER MOVEMENT THROUGH BIOLOGICAL BARRIERS RELATES TO PHYSICOCHEMICAL PROPERTIES

    EPA Science Inventory

    Linking the physicochemical (PC) properties of engineered nanomaterials (NM) to their biological activity is critical for identifying their (toxic) mode of action, and developing appropriate and effective risk assessment guidelines. Particle surface charge (zeta potential), surfa...

  12. Dynamic and rheological properties of soft biological cell suspensions

    PubMed Central

    Yazdani, Alireza; Li, Xuejin

    2016-01-01

    Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271

  13. Synthetic biology and intellectual property rights: six recommendations.

    PubMed

    Minssen, Timo; Rutz, Berthold; van Zimmeren, Esther

    2015-02-01

    On 26th November 2013, the Danish Agency for Science, Technology and Innovation organized an expert meeting on "Synthetic Biology & Intellectual Property Rights" in Copenhagen sponsored by the European Research Area Network in Synthetic Biology (ERASynBio). The meeting brought together ten experts from different countries with a variety of professional backgrounds to discuss emerging challenges and opportunities at the interface of synthetic biology and intellectual property rights. The aim of this article is to provide a summary of the major issues and recommendations discussed during the meeting.

  14. SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY

    EPA Science Inventory

    ABSTRACT

    In this paper some of the chemical properties of arsenicals (atomic
    and molecular orbitals, electronegativity, valence state, changes between
    valence state, nucleophilicity, the hard/soft acid/base principle) that may
    account for some of the b...

  15. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    PubMed Central

    Liu, Quan; Matinlinna, Jukka Pekka; Chen, Zhuofan; Pan, Haobo

    2013-01-01

    Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite. PMID:24078928

  16. The diverse biological properties of the chemically inert noble gases.

    PubMed

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira

    2016-04-01

    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms.

  17. The diverse biological properties of the chemically inert noble gases.

    PubMed

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira

    2016-04-01

    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms. PMID:26896563

  18. A method to measure nanomechanical properties of biological objects

    SciTech Connect

    Ploscariu, Nicoleta; Szoszkiewicz, Robert

    2013-12-23

    We postulate that one will be able to quantitatively infer changes in the mechanical properties of proteins, cells, and other biological objects (BO) by measuring the shifts of several thermally excited resonance frequencies of atomic force microscopy cantilevers in contact with BOs. Here, we provide a method to extract spring constants and molecular damping factors of BOs in biologically relevant phosphate buffered saline medium and using compliant AFM cantilevers with a small aspect ratio (a ratio of length to width)

  19. [Oregano: properties, composition and biological activity].

    PubMed

    Arcila-Lozano, Cynthia Cristina; Loarca-Piña, Guadalupe; Lecona-Uribe, Salvador; González de Mejía, Elvira

    2004-03-01

    The oregano spice includes various plant species. The most common are the genus Origanum, native of Europe, and the Lippia, native of Mexico. Among the species of Origanum. their most important components are the limonene, gamma-cariofilene, rho-cymenene, canfor, linalol, alpha-pinene, carvacrol and thymol. In the genus Lippia, the same compounds can be found. The oregano composition depends on the specie, climate, altitude, time of recollection and the stage of growth. Some of the properties of this plant's extracts are being currently studied due to the growing interest for substituting synthetic additives commonly found in foods. Oregano has a good antioxidant capacity and also presents antimicrobial activity against pathogenic microorganisms like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, among others. These are all characteristics of interest for the food industry because they may enhance the safety and stability of foods. There are also some reports regarding the antimutagenic and anticarcinogenic effect of oregano; representing an alternative for the potential treatment and/or prevention of certain chronic ailments, like cancer. PMID:15332363

  20. Relating Nanoparticle Properties to Biological Outcomes in Exposure Escalation Experiments

    PubMed Central

    Patel, T.; Telesca, D.; Low-Kam, C.; Ji, ZX.; Zhang, HY.; Xia, T.; Zinc, J.I.; Nel, A. E.

    2014-01-01

    A fundamental goal in nano-toxicology is that of identifying particle physical and chemical properties, which are likely to explain biological hazard. The first line of screening for potentially adverse outcomes often consists of exposure escalation experiments, involving the exposure of micro-organisms or cell lines to a library of nanomaterials. We discuss a modeling strategy, that relates the outcome of an exposure escalation experiment to nanoparticle properties. Our approach makes use of a hierarchical decision process, where we jointly identify particles that initiate adverse biological outcomes and explain the probability of this event in terms of the particle physicochemical descriptors. The proposed inferential framework results in summaries that are easily interpretable as simple probability statements. We present the application of the proposed method to a data set on 24 metal oxides nanoparticles, characterized in relation to their electrical, crystal and dissolution properties. PMID:24764692

  1. Dynamics of hydraulic properties due to biological clogging

    NASA Astrophysics Data System (ADS)

    Rosenzweig, R.; Shavit, U.; Furman, A.

    2012-04-01

    Classic treatment of soil-water flow is described by the unsaturated version of Darcy's law and Richards' equation, assuming time invariant hydraulic properties, e.g. the saturated hydraulic conductivity, Ks, and van Genuchten-Mualem's α and n. However, when bacteria is present the soil is quite far from being time invariant and biological activity constantly alters the pore-scale structure, leading to macro-scale alteration of the hydraulic properties. This may be of high relevance to processes such as subsurface bioremediation, soil aquifer treatment, wastewater irrigation, and more. In this work we explore the dynamic alteration of soil hydraulic properties by a combination of column experiments and pore-network modeling. We experimentally demonstrate how biological activity clogs an unsaturated soil column and reduces its hydraulic conductivity, while a similar column where biological activity is limited does not clog. Further, we demonstrate that the clogging is preferential to the nutrient input. Next, we develop a pore-network model that uses triangular shape channels. This allows a dual occupancy (water-air) of each channel and high connectivity. The model solves the flow of water, nutrient transport, and biological dynamics. It includes biofilm growth and decay, attachment and detachment, and nutrient exchange between the water and biofilm phases. We perform a sensitivity analysis of the model and qualitatively show through the loss of connectivity how the clogging that was observed in our experiment can be explained.

  2. Physicochemical Properties of Ion Pairs of Biological Macromolecules

    PubMed Central

    Iwahara, Junji; Esadze, Alexandre; Zandarashvili, Levani

    2015-01-01

    Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules. PMID:26437440

  3. Topological properties of robust biological and computational networks

    PubMed Central

    Navlakha, Saket; He, Xin; Faloutsos, Christos; Bar-Joseph, Ziv

    2014-01-01

    Network robustness is an important principle in biology and engineering. Previous studies of global networks have identified both redundancy and sparseness as topological properties used by robust networks. By focusing on molecular subnetworks, or modules, we show that module topology is tightly linked to the level of environmental variability (noise) the module expects to encounter. Modules internal to the cell that are less exposed to environmental noise are more connected and less robust than external modules. A similar design principle is used by several other biological networks. We propose a simple change to the evolutionary gene duplication model which gives rise to the rich range of module topologies observed within real networks. We apply these observations to evaluate and design communication networks that are specifically optimized for noisy or malicious environments. Combined, joint analysis of biological and computational networks leads to novel algorithms and insights benefiting both fields. PMID:24789562

  4. Physicochemical Properties of Ion Pairs of Biological Macromolecules.

    PubMed

    Iwahara, Junji; Esadze, Alexandre; Zandarashvili, Levani

    2015-09-30

    Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules.

  5. Physicochemical Properties of Ion Pairs of Biological Macromolecules.

    PubMed

    Iwahara, Junji; Esadze, Alexandre; Zandarashvili, Levani

    2015-01-01

    Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules. PMID:26437440

  6. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    PubMed

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  7. Chrysotile: its occurrence and properties as variables controlling biological effects.

    PubMed

    Langer, A M; Nolan, R P

    1994-08-01

    Chrysotile formation arises through serpentinization of ultramafics and silicified dolomitic limestones. Rock types tend to control the trace metal content and both the nature and amounts of admixed minerals in the ore, such as fibrous brucite (nemalite) and tremolite. Some associated minerals and trace metals are thought to play a role in biological potential. Tremolite, one of the important associated minerals, may occur with different morphological forms, called habits. These habits range from asbestiform (tremolite asbestos) to common blocky or non-fibrous form (tremolite cleavage fragments). The latter is most common in nature. Tremolite in chrysotile ore varies in habit and concentration, both factors determining the degree of risk following inhalation. Tremolite fibre is thought to be important in relation to the occurrence of mesothelioma. Chrysotile fibrils may vary in diameter. Dust clouds generated following manipulation vary in fibre number and surface area. Chrysotile fibres exhibit a range of physical characteristics. The fibre may be non-flexible ('stiff') and low in tensile strength ('brittle'), and may lack an ability to curl. This fibre, referred to as 'harsh', sheds water more quickly than its curly, flexible 'soft' variety. The behaviour of the harsh fibres is more amphibole-like and their splintery nature suggests an enhanced inhalation potential. Slip fibre ore from Canada tends to contain more fibrous brucite (nemalite) than cross-fibre ore in the same mine. Industrial manipulation, which includes chemical treatment, heating and milling, may impart new surface properties to chrysotile dusts. Biological potential may be enhanced (opening of fibre bundles) or reduced (disruption of surface bonds and lessened ability to interact with organic moieties). Leaching of magnesium from chrysotile occurs at a pH less than about 10. Chrysotile has been demonstrated to lose magnesium in vivo and undergo clearance from the lung. The biological potential of

  8. Biological activities and medicinal properties of Gokhru (Pedalium murex L.).

    PubMed

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-07-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation.

  9. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    PubMed Central

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation. PMID:23569975

  10. [Mechanical properties and biological evaluation of buffalo horn material].

    PubMed

    Zhang, Quanbin; Zhou, Qunfei; Shan, Guanghua; Cao, Ping; Huang, Yaoxiong; Ao, Ningjian

    2014-12-01

    Mechanical properties and biological evaluation of buffalo horn material were examined in this study. The effects of sampling position of buffalo horn on mechanical properties were investigated with uniaxial tension and micron indentation tests. Meanwhile, the variation of element contents in different parts of buffalo horn was determined with elemental analysis, and the microstructure of the horn was measured with scanning electron microscopy. In addition, biological evaluation of buffalo horn was studied with hemolytic test, erythrocyte morphology, platelet and erythrocyte count, and implantation into mouse. Results showed that the buffalo horn had good mechanical properties and mechanical characteristic values of it gradually increased along with the growth direction of the horn, which may be closely related to its microstructure and element content of C, N, and S in different parts of the buffalo horn. On the other hand, because the buffalo horn does not have toxicity, it therefore does not cause hemolysis of erythrocyte and has a good affinity with it. Buffalo horn has good histocompatibility but meanwhile it may induce the platelet adhesion and aggregation. Even so, it does not continue to rise to induce a large number of platelet to aggregate with resulting blood clotting. Therefore, the buffalo horn material has been proved to possess good blood compatibility according to the preliminary evaluation. PMID:25868248

  11. Bioactive compounds in cranberries and their biological properties.

    PubMed

    Côté, J; Caillet, S; Doyon, G; Sylvain, J-F; Lacroix, M

    2010-08-01

    Cranberries are healthy fruit that contribute color, flavor, nutritional value, and functionality. They are one of only three fruits native to America. Over the past decade, public interest for the North American cranberry (Vaccinium macrocarpon) has been rising with reports of their potential health benefits linked to the numerous phytochemicals present in the fruit--the anthocyanins, the flavonols, the flavan-3-ols, the proanthocyanidins, and the phenolic acid derivatives. The presence of these phytochemicals appears to be responsible for the cranberry property of preventing many diseases and infections, including cardiovascular diseases, various cancers, and infections involving the urinary tract, dental health, and Helicobacter pylori-induced stomach ulcers and cancers. Recent years have seen important breakthroughs in our understanding of the mechanisms through which these compounds exert their beneficial biological effects, yet these remain to be scientifically substantiated. In this paper these characteristics, as well as the antioxidant, radical scavenging, antibacterial, antimutagen, and anticarcinogen properties of cranberry major bioactive compounds are explained.

  12. Dielectric properties of certain biological materials at microwave frequencies.

    PubMed

    Kumar, S B; Mathew, K T; Raveendranath, U; Augustine, P

    2001-01-01

    In the medical field, microwaves play a larger role for treatment than diagnosis. For the detection of diseases by microwave methods, it is essential to know the dielectric properties of biological materials. For the present study, a cavity perturbation technique was employed to determine the dielectric properties of these materials. Rectangular cavity resonators were used to measure the complex permittivity of human bile, bile stones, gastric juice and saliva. The measurements were carried out in the S and J bands. It is observed that normal and infected bile have different dielectric constant and loss tangent. Dielectric constant of infected bile and gastric juice varies from patient to patient. Detection and extraction of bile stone with possible method of treatment is also discussed.

  13. Physical Properties of Biological Entities: An Introduction to the Ontology of Physics for Biology

    PubMed Central

    Cook, Daniel L.; Bookstein, Fred L.; Gennari, John H.

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities—molecules, cells, organs—are well-established, there are no principled ontologies of physical properties—energies, volumes, flow rates—of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. PMID:22216106

  14. Biological glass fibers: Correlation between optical and structural properties

    PubMed Central

    Aizenberg, Joanna; Sundar, Vikram C.; Yablon, Andrew D.; Weaver, James C.; Chen, Gang

    2004-01-01

    Biological systems have, through the course of time, evolved unique solutions for complex optical problems. These solutions are often achieved through a sophisticated control of fine structural features. Here we present a detailed study of the optical properties of basalia spicules from the glass sponge Euplectella aspergillum and reconcile them with structural characteristics. We show these biosilica fibers to have a distinctive layered design with specific compositional variations in the glass/organic composite and a corresponding nonuniform refractive index profile with a high-index core and a low-index cladding. The spicules can function as single-mode, few-mode, or multimode fibers, with spines serving as illumination points along the spicule shaft. The presence of a lens-like structure at the end of the fiber increases its light-collecting efficiency. Although free-space coupling experiments emphasize the similarity of these spicules to commercial optical fibers, the absence of any birefringence, the presence of technologically inaccessible dopants in the fibers, and their improved mechanical properties highlight the advantages of the low-temperature synthesis used by biology to construct these remarkable structures. PMID:14993612

  15. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  16. Probing mechanical properties of fully hydrated gels and biological tissues.

    PubMed

    Constantinides, Georgios; Kalcioglu, Z Ilke; McFarland, Meredith; Smith, James F; Van Vliet, Krystyn J

    2008-11-14

    A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times.

  17. Probing mechanical properties of fully hydrated gels and biological tissues.

    PubMed

    Constantinides, Georgios; Kalcioglu, Z Ilke; McFarland, Meredith; Smith, James F; Van Vliet, Krystyn J

    2008-11-14

    A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times. PMID:18922534

  18. Correlating the morphological and light scattering properties of biological cells

    NASA Astrophysics Data System (ADS)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness

  19. Biologic properties of surgical scaffold materials derived from dermal ECM.

    PubMed

    Kulig, Katherine M; Luo, Xiao; Finkelstein, Eric B; Liu, Xiang-Hong; Goldman, Scott M; Sundback, Cathryn A; Vacanti, Joseph P; Neville, Craig M

    2013-07-01

    Surgical scaffold materials manufactured from donor human or animal tissue are increasingly being used to promote soft tissue repair and regeneration. The clinical product consists of the residual extracellular matrix remaining after a rigorous decellularization process. Optimally, the material provides both structural support during the repair period and cell guidance cues for effective incorporation into the regenerating tissue. Surgical scaffold materials are available from several companies and are unique products manufactured by proprietary methodology. A significant need exists for a more thorough understanding of scaffold properties that impact the early steps of host cell recruitment and infiltration. In this study, a panel of in vitro assays was used to make direct comparisons of several similar, commercially-available materials: Alloderm, Medeor Matrix, Permacol, and Strattice. Differences in the materials were detected for both cell signaling and scaffold architecture-dependent cell invasion. Material-conditioned media studies found Medeor Matrix to have the greatest positive effect upon cell proliferation and induction of migration. Strattice provided the greatest chemotaxis signaling and best suppressed apoptotic induction. Among assays measuring structure-dependent properties, Medeor Matrix was superior for cell attachment, followed by Permacol. Only Alloderm and Medeor Matrix supported chemotaxis-driven cell invasion beyond the most superficial zone. Medeor Matrix was the only material in the chorioallantoic membrane assay to support substantial cell invasion. These results indicate that both biologic and structural properties need to be carefully assessed in the considerable ongoing efforts to develop new uses and products in this important class of biomaterials.

  20. Secondary metabolites and biological properties of Gesneriaceae species.

    PubMed

    Verdan, Maria Helena; Stefanello, Maria Élida Alves

    2012-12-01

    The family Gesneriaceae comprises ca. 150 genera and 3000 species, distributed in the tropics around the world. It is constituted of herbs, lianas, or shrubs, frequently with ornamental potential, due to the beauty of their flowers. Some species have been used in traditional medicine, mainly against fever, cough, colds, snakebite, pains, and infectious and inflammatory diseases. Although Gesneriaceae are a large family, only few species were chemically investigated, and this took place mainly in the last decade. In the present work, chemical and pharmacological studies on Gesneriaceae are reviewed based on original articles published. Altogether 300 compounds have been reported in Gesneriaceae species, including flavonoids, terpenes and steroids, phenolic glucosides, simple phenolics, quinones, lignans, xanthones, and compounds with unusual skeletons. Several species had been used in folk medicine, and some constituents have shown biological activities, such as antimicrobial, anti-inflamatory, antioxidant, and antitumor properties.

  1. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  2. Menthol: a simple monoterpene with remarkable biological properties.

    PubMed

    Kamatou, Guy P P; Vermaak, Ilze; Viljoen, Alvaro M; Lawrence, Brian M

    2013-12-01

    Menthol is a cyclic monoterpene alcohol which possesses well-known cooling characteristics and a residual minty smell of the oil remnants from which it was obtained. Because of these attributes it is one of the most important flavouring additives besides vanilla and citrus. Due to this reason it is used in a variety of consumer products ranging from confections such as chocolate and chewing gum to oral-care products such as toothpaste as well as in over-the-counter medicinal products for its cooling and biological effects. Its cooling effects are not exclusive to medicinal use. Approximately one quarter of the cigarettes on the market contain menthol and small amounts of menthol are even included in non-mentholated cigarettes. Natural menthol is isolated exclusively from Mentha canadensis, but can also be synthesised on industrial scale through various processes. Although menthol exists in eight stereoisomeric forms, (-)-menthol from the natural source and synthesised menthol with the same structure is the most preferred isomer. The demand for menthol is high and it was previously estimated that the worldwide use of menthol was 30-32,000 metric tonnes per annum. Menthol is not a predominant compound of the essential oils as it can only be found as a constituent of a limited number of aromatic plants. These plants are known to exhibit biological activity in vitro and in vivo such as antibacterial, antifungal, antipruritic, anticancer and analgesic effects, and are also an effective fumigant. In addition, menthol is one of the most effective terpenes used to enhance the dermal penetration of pharmaceuticals. This review summarises the chemical and biological properties of menthol and highlights its cooling effects and toxicity. PMID:24054028

  3. Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors.

    PubMed

    Gorbunov, V; Fuchigami, N; Stone, M; Grace, M; Tsukruk, V V

    2002-01-01

    Bioinspired design of biomimetic sensors relies upon the complete understanding of properties and functioning of biological analogues in conjunction with an understanding of their microstructural organization at various length scales. In the spirit of this approach, the microscopic properties of infrared (IR) receptors of snakes with "infrared vision" were studied with scanning thermal microscopy and micromechanical analysis. Low surface thermal conductivity of 0.11 W/(m K) was measured for the IR receptor surfaces as compared to the nonspecific skin areas. This difference in surface thermal conductivity should result in a significant local temperature gradient around the receptor areas. Micromechanical analysis showed that pit organs were more compliant than surrounding skin areas with an elastic modulus close to 40 MPa. In addition, the maximum elastic modulus was detected for the outermost layer with gradually reduced elastic resistance for the interior. The porous microstructure of the underlying tissue combined with the highly branched microfibrillar network (Biomacromolecules 2001, 2, 757) is thought to be responsible for such a combination of biomaterial properties. Considering these biomaterials features, we postulated a possible design of an artificial photothermal detector inspired by the microstructure of natural receptors. This bioinspired design would include a microfabricated cavity filled with an ordered lattice of microspheres with a gradient periodicity from the surface to the interior. Such a "photonic cavity" could provide an opportunity for multiple scattering at wavelength tuned to 8-12 microm as a range of highest sensitivity.

  4. Biological and therapeutic properties of bee pollen: a review.

    PubMed

    Denisow, Bożena; Denisow-Pietrzyk, Marta

    2016-10-01

    Natural products, including bee products, are particularly appreciated by consumers and are used for therapeutic purposes as alternative drugs. However, it is not known whether treatments with bee products are safe and how to minimise the health risks of such products. Among others, bee pollen is a natural honeybee product promoted as a valuable source of nourishing substances and energy. The health-enhancing value of bee pollen is expected due to the wide range of secondary plant metabolites (tocopherol, niacin, thiamine, biotin and folic acid, polyphenols, carotenoid pigments, phytosterols), besides enzymes and co-enzymes, contained in bee pollen. The promising reports on the antioxidant, anti-inflammatory, anticariogenic antibacterial, antifungicidal, hepatoprotective, anti-atherosclerotic, immune enhancing potential require long-term and large cohort clinical studies. The main difficulty in the application of bee pollen in modern phytomedicine is related to the wide species-specific variation in its composition. Therefore, the variations may differently contribute to bee-pollen properties and biological activity and thus in therapeutic effects. In principle, we can unequivocally recommend bee pollen as a valuable dietary supplement. Although the bee-pollen components have potential bioactive and therapeutic properties, extensive research is required before bee pollen can be used in therapy. © 2016 Society of Chemical Industry. PMID:27013064

  5. Biological and therapeutic properties of bee pollen: a review.

    PubMed

    Denisow, Bożena; Denisow-Pietrzyk, Marta

    2016-10-01

    Natural products, including bee products, are particularly appreciated by consumers and are used for therapeutic purposes as alternative drugs. However, it is not known whether treatments with bee products are safe and how to minimise the health risks of such products. Among others, bee pollen is a natural honeybee product promoted as a valuable source of nourishing substances and energy. The health-enhancing value of bee pollen is expected due to the wide range of secondary plant metabolites (tocopherol, niacin, thiamine, biotin and folic acid, polyphenols, carotenoid pigments, phytosterols), besides enzymes and co-enzymes, contained in bee pollen. The promising reports on the antioxidant, anti-inflammatory, anticariogenic antibacterial, antifungicidal, hepatoprotective, anti-atherosclerotic, immune enhancing potential require long-term and large cohort clinical studies. The main difficulty in the application of bee pollen in modern phytomedicine is related to the wide species-specific variation in its composition. Therefore, the variations may differently contribute to bee-pollen properties and biological activity and thus in therapeutic effects. In principle, we can unequivocally recommend bee pollen as a valuable dietary supplement. Although the bee-pollen components have potential bioactive and therapeutic properties, extensive research is required before bee pollen can be used in therapy. © 2016 Society of Chemical Industry.

  6. Comparison of biological chromophores: photophysical properties of cyanophenylalanine derivatives.

    PubMed

    Martin, Joshua P; Fetto, Natalie R; Tucker, Matthew J

    2016-07-27

    Within this work, the family of cyanophenylalanine spectroscopic reporters is extended by showing the ortho and meta derivatives have intrinsic photophysical properties that are useful for studies of protein structure and dynamics. The molar absorptivities of 2-cyanophenylalanine and 3-cyanophenylalanine are shown to be comparable to that of 4-cyanophenylalanine with similar spectral features in their absorbance and emission profiles, demonstrating that these probes can be utilized interchangeably. The fluorescence quantum yields are also on the same scale as commonly used fluorophores in peptides and proteins, tyrosine and tryptophan. These new cyano-fluorophores can be paired with either 4-cyanophenylalanine or tryptophan to capture distances in peptide structure through Förster resonance energy transfer. Additionally, the spectroscopic properties of these chromophores can report the local solvent environment via changes in fluorescence emission intensity as a result of hydrogen bonding and/or hydration. A decrease in the quantum yield is also observed in basic environments due to photoinduced electron transfer from a deprotonated amine in the free PheCN species and at the N-terminus of a short peptide, providing an avenue to detect pH in biological systems. Our results show the potential of these probes, 2-cyanophenylalanine and 3-cyanophenylalanine, to be incorporated into a single peptide chain, either individually or in tandem with 4-cyanophenylalanine, tryptophan, or tyrosine, in order to obtain information about peptide structure and dynamics. PMID:27412819

  7. Plant polyphenols: chemical properties, biological activities, and synthesis.

    PubMed

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research.

  8. Impact of temperature on the biological properties of soil

    NASA Astrophysics Data System (ADS)

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  9. Plant polyphenols: chemical properties, biological activities, and synthesis.

    PubMed

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. PMID:21226137

  10. Chenopodium album Linn: review of nutritive value and biological properties.

    PubMed

    Poonia, Amrita; Upadhayay, Ashutosh

    2015-07-01

    Green leafy vegetables have generated interest worldwide as they exhibit multiple benefits for health of human beings. Vegetables can form the cheapest and most readily available sources of important vitamins, minerals, fibres and essential amino acids particularly. In most of the developing countries where the daily diet is dominated by starchy staple foods, vegetables can form the cheapest and most readily available sources of important vitamins, minerals, fibres and essential amino acids. Across the globe there are several local and wild vegetables which are under-exploited because of inadequate scientific information on knowledge of their nutritional potentials. A resurgence of interest has developed in wild vegetables for their possible medicinal values in diets. C. album is under exploited vegetable which has high functional potential apart from basic nutritional benefits. The plant is used in diet not only to provide minerals, fibre, vitamins and essential fatty acids but also enhance sensory and functional value of the food. The plant has been traditionally used as a bloodpurifier, diuretic, sedative, hepatoprotective, antiscorbutic laxative and as an anthelmentic against round and hookworms. Pharmacological studies have revealed that the plant possesses anthelmentic, sperm immobilizing and contraceptive properties. It is also claimed to be antipruritic and antinociceptive in action. Therefore C. album holds a great potential for in depth biological evaluation. No significant work has ever been carried out for processing parameters for this potentially useful plant. Significance and future scope of C. album for public and dietary awareness of its nutritional status has been discussed in this review. PMID:26139865

  11. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  12. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  13. Optical Properties and Biological Applications of Electromagnetically Coupled Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Sassan Nathan

    The optical properties of metallic particles change dramatically as the size shrinks to the nanoscale. The familiar mirror-like sheen of bulk metals is replaced by the bright, sharp, colorful plasmonic resonances of nanoparticles. The resonances of plasmonic metal nanoparticles are highly tunable throughout the visible spectrum, depending on the size, shape, local dielectric environment, and proximity to other optical resonances. Fundamental and applied research in the nanoscience community in the past few decades has sought to understand and exploit these phenomena for biological applications. In this work, discrete nanoparticle assemblies were produced through biomolecular interactions and studied at the single particle level with darkfield spectroscopy. Pairs of gold nanoparticles tethered by DNA were utilized as molecular rulers to study the dynamics of DNA bending by the restriction enzyme EcoRV. These results substantiated that nanoparticle rulers, deemed "plasmon rulers", could measure the dynamics of single biomolecules with high throughput, long lifetime, and high temporal resolution. To extend these concepts for live cell studies, a plasmon ruler comprised of peptide-linked gold nanoparticle satellites around a core particle was synthesized and utilized to optically follow cell signaling pathways in vivo at the single molecule level. The signal provided by these plasmon rulers allowed continuous observation of caspase-3 activation at the single molecule level in living cells for over 2 hours, unambiguously identifying early stage activation of caspase-3 in apoptotic cells. In the last section of this dissertation, an experimental and theoretical study of electomagnetic coupling in asymmetric metal nanoparticle dimers is presented. A "heterodimer" composed of a silver particle and a gold particle is observed to have a novel coupling between a plasmon mode (free electron oscillations) and an inter-band absorption process (bound electron transitions). The

  14. Body and Soul: Do Children Distinguish between Foods When Generalizing Biological and Psychological Properties?

    ERIC Educational Resources Information Center

    Thibaut, Jean-Pierre; Nguyen, Simone P.; Murphy, Gregory L.

    2016-01-01

    Research Findings: In 2 experiments, we tested whether children generalize psychological and biological properties to novel foods. We used an induction task in which a property (either biological or psychological) was associated with a target food. Children were then asked whether a taxonomically related and a script-related food would also have…

  15. Mechanical properties of the beetle elytron, a biological composite material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  16. Optical properties and cross-sections of biological aerosols

    NASA Astrophysics Data System (ADS)

    Thrush, E.; Brown, D. M.; Salciccioli, N.; Gomes, J.; Brown, A.; Siegrist, K.; Thomas, M. E.; Boggs, N. T.; Carter, C. C.

    2010-04-01

    There is an urgent need to develop standoff sensing of biological agents in aerosolized clouds. In support of the Joint Biological Standoff Detection System (JBSDS) program, lidar systems have been a dominant technology and have shown significant capability in field tests conducted in the Joint Ambient Breeze Tunnel (JABT) at Dugway Proving Ground (DPG). The release of biological agents in the open air is forbidden. Therefore, indirect methods must be developed to determine agent cross-sections in order to validate sensor against biological agents. A method has been developed that begins with laboratory measurements of thin films and liquid suspensions of biological material to obtain the complex index of refraction from the ultraviolet (UV) to the long wave infrared (LWIR). Using that result and the aerosols' particle size distribution as inputs to Mie calculations yields the backscatter and extinction cross-sections as a function of wavelength. Recent efforts to model field measurements from the UV to the IR have been successful. Measurements with aerodynamic and geometric particle sizers show evidence of particle clustering. Backscatter simulations of these aerosols show these clustered particles dominate the aerosol backscatter and depolarization signals. In addition, these large particles create spectral signatures in the backscatter signal due to material absorption. Spectral signatures from the UV to the IR have been observed in simulations of field releases. This method has been demonstrated for a variety of biological simulant materials such as Ovalbumin (OV), Erwinia (EH), Bacillus atrophaeus (BG) and male specific bacteriophage (MS2). These spectral signatures may offer new methods for biological discrimination for both stand-off sensing and point detection systems.

  17. [Effect of low-energy helium-neon laser on the biological properties of Mycobacterium tuberculosis].

    PubMed

    Dolzhanskiĭ, V M; Kaliuk, A N; Maliev, B M; Levchenko, T N

    1990-01-01

    The results of experimental studies of M. tuberculosis biological properties tested in guinea pigs which were subjected to different doses of helium-neon laser radiation are given. The functional evidence is compared with the results of electron microscopic study of the irradiated culture. The investigation revealed that laser radiation caused changes in biological properties of M. tuberculosis. A decrease in growth properties and virulence was found to be related to a radiation dose. It is suggested that a drop in the biological activity of M. tuberculosis under laser radiation be associated with its influence on the Mycobacterium lipid layer which contains a cord-factor and responsible for their virulence.

  18. Tip110: Physical properties, primary structure, and biological functions.

    PubMed

    Whitmill, Amanda; Timani, Khalid Amine; Liu, Ying; He, Johnny J

    2016-03-15

    HIV-1 Tat-interacting protein of 110kDa (Tip110), also referred to as squamous cell carcinoma antigen recognized by T cells 3 (Sart3), p110 or p110(nrb), was initially identified as a cDNA clone (KIAA0156) without annotated functions. Over the past twenty years, several functions have been attributed to this protein. The proposed biological functions include roles for Tip110 in pre-mRNA splicing, gene transcription, stem cell biology, and development. Dysregulation of Tip110 is also a contributing factor in the development of cancer and other human diseases. It is clear that our understanding of this protein is rapidly evolving. In this review, we aimed to provide a summary of all the existing literature on this gene/protein and its proposed biological functions. PMID:26896687

  19. Fungal Polysaccharides: Biological Activity Beyond the Usual Structural Properties

    PubMed Central

    Rodrigues, Marcio L.; Nimrichter, Leonardo; Cordero, Radames J. B.; Casadevall, Arturo

    2011-01-01

    Studies on structure and function of polysaccharides in biological systems classically involve sequence and compositional analyses, anomeric configuration, type of glycosidic linkage, and presence of substituents. Recent studies, however, indicates that other structural parameters, so far little explored, can directly influence the biological activity of microbial polysaccharides. Among these parameters, we highlight the molecular dimensions of Cryptococcus neoformans polysaccharides, which appear to be inversely correlated with their immunobiological activity. These recent observations raise new concepts about the structure and function of polysaccharides, which stimulates the design of new experimental approaches and suggests previously unknown applications. PMID:21886639

  20. Predictive Models of Nanotoxicity: Relationship of Physicochemical Properties to Particle Movement Through Biological Barriers

    EPA Science Inventory

    Understanding the linkage between the physicochemical (PC) properties of nanoparticles (NP) and their activation of biological systems is poorly understood, yet fundamental to predicting nanotoxicity, idenitifying mode of actions and developing appropriate and effective regul...

  1. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    PubMed

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  2. Multiple biological properties of macelignan and its pharmacological implications.

    PubMed

    Paul, Saswati; Hwang, Jae Kwan; Kim, Hahn Young; Jeon, Won Kyung; Chung, ChiHye; Han, Jung-Soo

    2013-03-01

    Macelignan found in the nutmeg mace of Myristica fragrans obtains increasing attention as a new avenue in treating various diseases. Macelignan has been shown to possess a spectrum of pharmacological activities, including anti-bacterial, anti-inflammatory, anti-cancer, anti-diabetes, and hepatoprotective activities; recently, it has also been shown to have neuroprotective activities. This review summarizes the current research on the biological effects of macelignan derived from M. fragrans, with emphasis on the importance in understanding and treating complex diseases such as cancer and Alzheimer's disease.

  3. Multiple biological properties of macelignan and its pharmacological implications.

    PubMed

    Paul, Saswati; Hwang, Jae Kwan; Kim, Hahn Young; Jeon, Won Kyung; Chung, ChiHye; Han, Jung-Soo

    2013-03-01

    Macelignan found in the nutmeg mace of Myristica fragrans obtains increasing attention as a new avenue in treating various diseases. Macelignan has been shown to possess a spectrum of pharmacological activities, including anti-bacterial, anti-inflammatory, anti-cancer, anti-diabetes, and hepatoprotective activities; recently, it has also been shown to have neuroprotective activities. This review summarizes the current research on the biological effects of macelignan derived from M. fragrans, with emphasis on the importance in understanding and treating complex diseases such as cancer and Alzheimer's disease. PMID:23435944

  4. Biological properties of extracellular vesicles and their physiological functions.

    PubMed

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  5. Biological properties of extracellular vesicles and their physiological functions

    PubMed Central

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  6. Biological properties of extracellular vesicles and their physiological functions.

    PubMed

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  7. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  8. Occult breast tumor reservoir: biological properties and clinical significance.

    PubMed

    Santen, Richard J; Yue, Wei; Heitjan, Daniel F

    2013-08-01

    Small, occult, undiagnosed breast cancers are found at autopsy in up to 15.6 % of women dying from unrelated causes with an average of 7 % from eight separate studies. The mammographic detection threshold of breast tumors ranges from 0.88 to 1.66 cm in diameter based on the patient's age. Tumor growth rates, expressed as "effective doubling times," vary from 10 to >700 days. We previously reported two models, based on iterative analysis of these parameters, to describe the biologic behavior of undiagnosed, occult breast tumors. Our models facilitate interpretation of the Women's Health Initiative (WHI) and antiestrogen breast cancer prevention studies. A nude mouse xenograft model was used to validate our assumption that breast tumors grow in a log-linear fashion. We then used our previously reported occult tumor growth (OTG) and computer-simulated tumor growth models to analyze various clinical trial data. Parameters used in the OTG model included a 200-day effective doubling time, 7 % prevalence of occult tumors, and 1.16 cm detection threshold. These models had been validated by comparing predicted with observed incidence of breast cancer in eight different populations of women. Our model suggests that menopausal hormone therapy with estrogens plus a progestogen (E + P) in the WHI trial primarily promoted the growth of pre-existing, occult lesions and minimally initiated de novo tumors. We provide a potential explanation for the lack of an increase in breast cancer incidence in the subgroup of women in the WHI who had not received E + P prior to randomization. This result may have reflected a leftward skew in the distribution of occult tumor doublings and insufficient time for stimulated tumors to reach the detection threshold. Our model predicted that estrogen alone reduced the incidence of breast cancer as a result of apoptosis. Understanding of the biology of occult tumors suggests that breast cancer "prevention" with antiestrogens or aromatase

  9. Terahertz vibrational properties of water nanoclusters relevant to biology.

    PubMed

    Johnson, Keith

    2012-01-01

    Water nanoclusters are shown from first-principles calculations to possess unique terahertz-frequency vibrational modes in the 1-6 THz range, corresponding to O-O-O "bending," "squashing," and "twisting" "surface" distortions of the clusters. The cluster molecular-orbital LUMOs are huge Rydberg-like "S," "P," "D," and "F" orbitals that accept an extra electron via optical excitation, ionization, or electron donation from interacting biomolecules. Dynamic Jahn-Teller coupling of these "hydrated-electron" orbitals to the THz vibrations promotes such water clusters as vibronically active "structured water" essential to biomolecular function such as protein folding. In biological microtubules, confined water-cluster THz vibrations may induce their "quantum coherence" communicated by Jahn-Teller phonons via coupling of the THz electromagnetic field to the water clusters' large electric dipole moments. PMID:23277672

  10. Ecdysteroid glycosides: identification, chromatographic properties, and biological significance.

    PubMed

    Maria, Annick; Girault, Jean-Pierre; Saatov, Ziyadilla; Harmatha, Juraj; Dinan, Laurence; Lafont, René

    2005-03-01

    Ecdysteroid glycosides are found in both animals and plants. The chromatographic behavior of these molecules is characteristic, as they appear much more polar than their corresponding free aglycones when analyzed by normal-phase high-performance liquid chromatography (HPLC), whereas the presence of glycosidic moieties has a very limited (if any) impact on polarity when using reversed-phase HPLC. Biological activity is greatly reduced because the presence of this bulky substituent probably impairs the interaction with ecdysteroid receptor(s). 2-Deoxy-20-hydroxyecdysone 22-O-beta-D-glucopyranoside, which has been isolated from the dried aerial parts of Silene nutans (Caryophyllaceae), is used as a model compound to describe the rationale of ecdysteroid glycoside purification and identification.

  11. Chemical and biological properties related to toxicity of heated fats.

    PubMed

    Alexander, J C

    1981-01-01

    Heating of fats brings about measurable changes in their chemical and physical characteristics. Heat is applied in processing for food manufacture, such as during hydrogenation of oils with a catalyst, and in frying for meal preparation. Partially hydrogenated products generally contain substantial quantities of geometric and positional isomers of the original unsaturated fatty acids. During deep-fat frying, when the fat is used repeatedly, oxidative and thermal effects result in the formation of many volatile and nonvolatile products, some of which are potentially toxic, depending on the level of intake. Because of concern about the types of changes that take place in fats during oxidative and thermal deterioration and the effects the derivatives could have on the consumer, many chemical and biological studies have been carried out. Experimental findings indicate that any potential danger to the consumer is relative to the severity of the overall treatment of the fat. In some studies we evaluated biological effects on rats of trans fatty acid in the diet and of concentrates of fatty acid derivatives produced in thermally oxidized fats. trans-Octadecenoic acid changed the concentrations of the phospholipid classes in the liver lipids, and interfered with conversion of the essential n - 6 series of fatty acids to higher members. Compared to oleic acid, elaidic acid was preferentially incorporated into the phospholipids instead of the triacylglycerols and was also concentrated in the lipoprotein fractions. Administration of non-urea-adductable concentrates from thermally oxidized fats produced cellular damage in hearts, livers, and kidneys of the animals. Since even practical processing and frying conditions can produce some nutritionally undesirable products, a concerted effort should be made to minimize substantial accumulation of these in our dietary fats.

  12. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  13. Phytochrome from Green Plants: Properties and biological Function

    SciTech Connect

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosic biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy

  14. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  15. Antioxidant properties of violacein: possible relation on its biological function.

    PubMed

    Konzen, Marlon; De Marco, Daniela; Cordova, Clarissa A S; Vieira, Tiago O; Antônio, Regina V; Creczynski-Pasa, Tânia B

    2006-12-15

    Violacein, a violet pigment produced by Chromobacterium violaceum, has attracted much attention in recent literature due to its pharmacological properties. In this work, the antioxidant properties of violacein were investigated. The reactivity with oxygen and nitrogen reactive species and 1,1-diphenyl-2-picryl-hydrazyl (DPPH), a stable free radical, was evaluated. EPR studies were carried out to evaluate the reactivity with the hydroxyl radical. The action of violacein against lipid peroxidation in three models of lipid membranes, including rat liver microsomes, Egg and Soy bean phosphathidylcholine liposomes were also evaluated. The compound reacted with DPPH (IC(50)=30microM), nitric oxide (IC(50)=21microM), superoxide radicals (IC(50)=125microM) and decreased the hydroxyl radical EPR signal. The compound protected the studied membranes against peroxidation induced by reactive species in the micromolar range. The reconstitution of violacein into the membranes increased its antioxidant effect. These results indicate that the compound has strong antioxidant potential. Based on these results we suggest violacein plays an important role with the microorganism membrane in defense against oxidative stress.

  16. Including physical and biological soil crusts properties in gully prediction

    NASA Astrophysics Data System (ADS)

    Gay, A.; Cerdan, O.; Desprats, J. F.; Malam Issa, O.; Valentin, C.; Rajot, J. L.; Descroix, L.

    2012-04-01

    In Sahelian region, concentrated overland flow often leads to the formation of gullies. Although this phenomenon is widespread in those regions, research efforts are still needed to be able to model their spatial distribution and the role of the different parameters involved in this process. In this context, the objectives of this study are twofold. The first step is to investigate to what extent the role of Sahelian soil surface crusts (biological and/or physical) on soil surface infiltrability and detachment affect the formation and development of gullies. The second step is to integrate the results of these investigations in a simple geomorphological model to predict gully location at the watershed scale. The evaluation of the resulting model on two test catchments demonstrated that the integration of soil crusting is a key parameter to insure the quality and relevance of gully prediction. The model is able to distinguish between two types of gullies, those whose width range between 0.5m and 4m and those whose width exceeds 4m. The application of the model at the regional scale is however limited by the resolution of available regional digital elevation model (i.e. the 90m resolution SRTM DEM) which only permits the prediction of large gullies (width > 4m).

  17. [Lysozyme--occurrence in nature, biological properties and possible applications].

    PubMed

    Gajda, Ewa; Bugla-Płoskońska, Gabriela

    2014-01-01

    Lysozyme (LZ, muramidase, N-acetylmuramylhydrolase) is a protein occuring in animals, plants, bacteria and viruses. It can be found e.g. in granules of neutrophils, macrophages and in serum, saliva, milk, honey and hen egg white. The enzyme hydrolyzes the β-1,4 glycosidic bonds between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) of cell wall peptidoglycan (PG) in Gram-positive and Gram-negative bacteria. In the animal kingdom, three muramidase types have been identified: the c-type (chicken type), the g-type (goose-type) and the i-type (invertebrates). The c-type LZ from hen egg white is a model for the study of protein structure and function. Muramidase shows bactericidal activity mainly against Gram-positive bacteria. Cytolytic activity against cells of Gram-negative bacteria has not been proved. Bacterial cells have developed defense mechanisms that allow them to avoid the action of LZ. They are based e.g. on the production of enzyme inhibitors or modification of the PG. LZ is one of the most studied enzymes and yet not all aspects characterizing this protein are fully understood. One of the most important unresolved issues concerning the biological function of LZ is the role of muramidase in the bactericidal action of serum against Gram-negative bacteria. In order to clarify the function of LZ, the enzyme is e.g. removed from the serum by adsorption onto bentonite (montmorillonite, MMT). By using X-ray diffraction techniques it has been shown that MMT after contact with the serum is delaminated. The problems associated with folding of muramidase and LZ participation in the development of amyloidoses also await explanation. PMID:25531714

  18. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review

    PubMed Central

    Radha, Maharjan H.; Laxmipriya, Nampoothiri P.

    2014-01-01

    Aloe vera (蘆薈 lú huì) is well known for its considerable medicinal properties. This plant is one of the richest natural sources of health for human beings coming. The chemistry of the plant has revealed the presence of more than 200 different biologically active substances. Many biological properties associated with Aloe species are contributed by inner gel of the leaves. Most research has been centralized on the biological activities of the various species of Aloe, which include antibacterial and antimicrobial activities of the nonvolatile constituents of the leaf gel. Aloe species are widely distributed in the African and the eastern European continents, and are spread almost throughout the world. The genus Aloe has more than 400 species but few, such as A. vera, Aloe ferox, and Aloe arborescens, are globally used for trade. A. vera has various medicinal properties such as antitumor, antiarthritic, antirheumatoid, anticancer, and antidiabetic properties. In addition, A. vera has also been promoted for constipation, gastrointestinal disorders, and for immune system deficiencies. However, not much convincing information is available on properties of the gel. The present review focuses on the detailed composition of Aloe gel, its various phytocomponents having various biological properties that help to improve health and prevent disease conditions. PMID:26151005

  19. A Property-Driven Methodology for Formal Analysis of Synthetic Biology Systems.

    PubMed

    Konur, Savas; Gheorghe, Marian

    2015-01-01

    This paper proposes a formal methodology to analyse bio-systems, in particular synthetic biology systems. An integrative analysis perspective combining different model checking approaches based on different property categories is provided. The methodology is applied to the synthetic pulse generator system and several verification experiments are carried out to demonstrate the use of our approach to formally analyse various aspects of synthetic biology systems.

  20. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    PubMed

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth.

  1. [Photosensitizing properties of 3,3'-diethylthiacarbocyanine in biological media].

    PubMed

    Andreev, V M; Kuznetsova, N V; Shevelev, A B; Kudykina, Iu K; Guseva, M A; Epremian, A S; Lisitsyna, E S; Kuz'min, V A

    2014-01-01

    The objective of the study is elucidation of perspectives of 3,3'-diathylcarbocyaine application as a photosensitizer for curing viral infections by photodynamic therapy. Lipid-containing bacteriophage PM-2 of Pseudoalteromonas espejiana was used as a model. The testing was carried out at a special installation modeling photodynamic exposure conditions towards a non-fractionated phage lysate. 3,3'-DECC demonstrated a rapid photo-bleaching when added tothe phage lysate but not to water. The initial rate of PM-2 phage photoinactivation was proportional to the square concentration of the dye in the range of 0.5-9 μmol/L. This confirms a hypothesis that the dimer is the principal photochemically active form of the dye. An improved ability to form dimers was found in the dye in the phage lysate (10-folds better than in the water). The dye formed a stable adduct with the bacteriophage material. This adduct had an extinction maximum at λ(max) = 594 nm and demonstrated the properties of a polymer (sedimentation under a low-speed centrifugation). PMID:25775825

  2. The species concept as an emergent property of population biology.

    PubMed

    Hart, Michael W

    2011-03-01

    Resurgent interest in the genetics of population divergence and speciation coincides with recent critical evaluation of species concepts and proposals for species delimitation. An important result of these parallel trends is a slight but important conceptual shift in focus away from species diagnoses based on prior species concepts or definitions, and toward analyses of the processes acting on lineages of metapopulations that eventually lead to differences recognizable as species taxa. An advantage of this approach is that it identifies quantitative metapopulation differences in continuous variables, rather than discrete entities that do or do not conform to a prior species concept, and species taxa are recognized as an emergent property of population-level processes. The tension between species concepts and diagnosis versus emergent recognition of species taxa is at least as old as Darwin, and is unlikely to be resolved soon in favor of either view, because the products of both approaches (discrete utilitarian taxon names for species, process-based understanding of the origins of differentiated metapopulations) continue to have important applications.

  3. Physicochemical and biological properties of biomimetic mineralo-protein nanoparticles formed spontaneously in biological fluids.

    PubMed

    Peng, Hsin-Hsin; Wu, Cheng-Yeu; Young, David; Martel, Jan; Young, Andrew; Ojcius, David M; Lee, Yu-Hsiu; Young, John D

    2013-07-01

    Recent studies indicate that mineral nanoparticles (NPs) form spontaneously in human body fluids. These biological NPs represent mineral precursors that are associated with ectopic calcifications seen in various human diseases. However, the parameters that control the formation of mineral NPs and their possible effects on human cells remain poorly understood. Here a nanomaterial approach to study the formation of biomimetic calcium phosphate NPs comparable to their physiological counterparts is described. Particle sizing using dynamic light scattering reveals that serum and ion concentrations within the physiological range yield NPs below 100 nm in diameter. While the particles are phagocytosed by macrophages in a size-independent manner, only large particles or NP aggregates in the micrometer range induce cellular responses that include production of mitochondrial reactive oxygen species, caspase-1 activation, and secretion of interleukin-1β (IL-1β). A comprehensive proteomic analysis reveals that the particle-bound proteins are similar in terms of their identity and number, regardless of particle size, suggesting that protein adsorption is independent of particle size and curvature. In conclusion, the conditions underlying the formation of mineralo-protein particles are similar to the ones that form in vivo. While mineral NPs do not activate immune cells, they may become pro-inflammatory and contribute to pathological processes once they aggregate and form larger mineral particles. PMID:23255529

  4. Diacylglycerol Kinase-ε: Properties and Biological Roles

    PubMed Central

    Epand, Richard M.; So, Vincent; Jennings, William; Khadka, Bijendra; Gupta, Radhey S.; Lemaire, Mathieu

    2016-01-01

    In mammals there are at least 10 isoforms of diacylglycerol kinases (DGK). All catalyze the phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PA). Among DGK isoforms, DGKε has several unique features. It is the only DGK isoform with specificity for a particular species of DAG, i.e., 1-stearoyl-2-arachidonoyl glycerol. The smallest of all known DGK isoforms, DGKε, is also the only DGK devoid of a regulatory domain. DGKε is the only DGK isoform that has a hydrophobic segment that is predicted to form a transmembrane helix. As the only membrane-bound, constitutively active DGK isoform with exquisite specificity for particular molecular species of DAG, the functional overlap between DGKε and other DGKs is predicted to be minimal. DGKε exhibits specificity for DAG containing the same acyl chains as those found in the lipid intermediates of the phosphatidylinositol-cycle. It has also been shown that DGKε affects the acyl chain composition of phosphatidylinositol in whole cells. It is thus likely that DGKε is responsible for catalyzing one step in the phosphatidylinositol-cycle. Steps of this cycle take place in both the plasma membrane and the endoplasmic reticulum membrane. DGKε is likely present in both of these membranes. DGKε is the only DGK isoform that is associated with a human disease. Indeed, recessive loss-of-function mutations in DGKε cause atypical hemolytic-uremic syndrome (aHUS). This condition is characterized by thrombosis in the small vessels of the kidney. It causes acute renal insufficiency in infancy and most patients develop end-stage renal failure before adulthood. Disease pathophysiology is poorly understood and there is no therapy. There are also data suggesting that DGKε may play a role in epilepsy and Huntington disease. Thus, DGKε has many unique molecular and biochemical properties when compared to all other DGK isoforms. DGKε homologs also contain a number of conserved sequence features that are distinctive

  5. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG is a thermo-responsive gel, and it exhibited viscoelastic behavior above 2% (wt.%) at roo...

  6. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation

    USGS Publications Warehouse

    Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian

    2016-01-01

    Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.

  7. Role of temperature dependence of optical properties in laser irradiation of biological tissue

    NASA Astrophysics Data System (ADS)

    Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.

    1992-08-01

    Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.

  8. Biological Responses to Diesel Exhaust Particles (DEPs) Depend on the Physicochemical Properties of the DEPs

    PubMed Central

    Park, Eun-Jung; Roh, Jinkyu; Kang, Min-Sung; Kim, Soo Nam; Kim, Younghun; Choi, Sangdun

    2011-01-01

    Diesel exhaust particles (DEPs) are the main components of ambient particulate materials, including polyaromatic hydrocarbons (PAHs), n-PAHs, heavy metals, and gaseous materials. Many epidemiological, clinical, and toxicological studies have shown that ambient particles, including DEPs, are associated with respiratory disorders, such as asthma, allergic rhinitis, and lung cancer. However, the relationship between the biological response to DEPs and their chemical composition remains unclear. In this study, we investigated the physicochemical properties of DEPs before toxicological studies, and then administered a single intratracheal instillation of DEPs to mice. The mice were then killed 1, 7, 14 and 28 days after DEP exposure to observe the biological responses induced by DEPs over time. Our findings suggest that DEPs engulfed into cells induced a Th2-type inflammatory response followed by DNA damage, whereas DEPs not engulfed into cells induced a Th1-type inflammatory response. Further, the physicochemical properties, including surface charge, particle size, and chemical composition, of DEPs play a crucial role in determining the biological responses to DEPs. Consequently, we suggest that the biological response to DEPs depend on cell-particle interaction and the physicochemical properties of the particles. PMID:22039547

  9. Biological Properties of Single Chemical–DNA Adducts: A Twenty Year Perspective

    PubMed Central

    Delaney, James C.; Essigmann, John M.

    2010-01-01

    The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions. PMID:18072751

  10. Effects of amendment of different biochars on soil physical and biological properties related to carbon mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Renduo; Zhu, Shuzhi; Ouyang, Lei

    2014-05-01

    Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates.

  11. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    PubMed

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications.

  12. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids.

    PubMed

    Janmey, Paul A; Slochower, David R; Wang, Yu-Hsiu; Wen, Qi; Cēbers, Andrejs

    2014-03-14

    Anionic polyelectrolyte filaments are common in biological cells. DNA, RNA, the cytoskeletal filaments F-actin, microtubules, and intermediate filaments, and polysaccharides such as hyaluronan that form the pericellular matrix all have large net negative charge densities distributed over their surfaces. Several filamentous viruses with diameters and stiffnesses similar to those of cytoskeletal polymers also have similar negative charge densities. Extracellular protein filaments such collagen, fibrin and elastin, in contrast, have notably smaller charge densities and do not behave as highly charged polyelectrolytes in solution. This review summarizes data that demonstrate generic counterion-mediated effects on four structurally unrelated biopolymers of similar charge density: F-actin, vimentin, Pf1 virus, and DNA, and explores the possible biological and pathophysiological consequences of the polyelectrolyte properties of biological filaments.

  13. Predicting spiral wave patterns from cell properties in a model of biological self-organization

    NASA Astrophysics Data System (ADS)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  14. Effects of mussel shell addition on the chemical and biological properties of a Cambisol.

    PubMed

    Paz-Ferreiro, J; Baez-Bernal, D; Castro Insúa, J; García Pomar, M I

    2012-03-01

    The use of a by-product of the fisheries industry (mussel shell) combined with cattle slurry was evaluated as soil amendment, with special attention to the biological component of soil. A wide number of properties related to soil quality were measured: microbial biomass, soil respiration, net N mineralization, dissolved organic carbon, dissolved organic nitrogen, dissolved inorganic nitrogen, dehydrogenase, β-glucosidase, urease and phosphomonoesterase activities. The amendments showed an enhancement of soil biological activity and a decrease of aluminium held in the cation exchange complex. No adverse effects were observed on soil properties. Given that mussel shells are produced in coastal areas as a by-product and have to be managed as a waste and the fertility constraints in the local soils due to their low pH, our research suggest that there is an opportunity for disposing a residue into the soil and improving soil fertility.

  15. Biological and physiocochemical properties of purified anti-DNP guinea-pig non-precipitating antibodies

    PubMed Central

    Margni, R. A.; Hajos, Silvia

    1973-01-01

    Methods for isolation and purification of precipitating and non-precipitating guinea-pig antibodies are described. The physicochemical properties of γ1 and γ2 non-precipitating antibodies are similar to γ1 and γ2 precipitating ones. Biological properties are also similar excepting the reverse Arthus reaction, which is positive with the precipitating and negative with the non-precipitating antibodies. Bivalence of these antibodies was experimentally demonstrated. Precipitating antibodies K0 do not differ greatly from those obtained with the corresponding non-precipitating ones. The incapacity to precipitates with the antigen may be a consequence of a steric impediment. ImagesFIG. 1 PMID:4267511

  16. Imaging material properties of biological samples with a force feedback microscope.

    PubMed

    Costa, Luca; Rodrigues, Mario S; Newman, Emily; Zubieta, Chloe; Chevrier, Joёl; Comin, Fabio

    2013-12-01

    Mechanical properties of biological samples have been imaged with a force feedback microscope. Force, force gradient, and dissipation are measured simultaneously and quantitatively, merely knowing the atomic force microscopy cantilever spring constant. Our first results demonstrate that this robust method provides quantitative high resolution force measurements of the interaction. The small oscillation imposed on the cantilever and the small value of its stiffness result in vibrational energies much smaller than the thermal energy, reducing interaction with the sample to a minimum. We show that the observed mechanical properties of the sample depend on the force applied by the tip and consequently on the sample indentation.

  17. Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement.

    PubMed

    Yan, D; Jones, J; Yuan, X Y; Xu, X H; Sheng, J; Lee, J C-M; Ma, G Q; Yu, Q S

    2013-04-01

    In this article, the plasma surface modification effects on the chemical, mechanical, and biological properties of electrospun poly (ε-caprolactone) (PCL) random nanofiber meshes (NFMs) were investigated by adjusting plasma chemistry, that is, using glow discharges of N(2) +H(2), NH(3) +O(2), and Ar+O(2) gas mixtures. The surface property changes of electrospun PCL NFMs after those plasma treatments were examined by water contact angle measurements and X-ray photoelectron spectroscopy. The experimental results showed that the plasma treatments introduced polar groups onto the surfaces and thus increased the surface hydrophilicity. From tensile test data, plasma treatment had limited effect on the mechanical properties of PCL random NFMs. The biological properties of the plasma-treated PCL NFMs were examined by cell proliferation assays using mouse osteoblast cells (MC3T3-E1). It was found that the plasma-treated PCL NFMs gave a higher proliferation rate and improved cell adhesion properties as compared with the untreated controls. PMID:22965926

  18. Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius.

    PubMed

    Yue, Shijun; Tang, Yuping; Li, Shujiao; Duan, Jin-Ao

    2013-12-10

    Quinochalcone C-glycosides are regarded as characteristic components that have only been isolated from the florets of Carthamus tinctorius. Recently, quinochalcone C-glycosides were found to have multiple pharmacological activities, which has attracted the attention of many researchers to explore these compounds. This review aims to summarize quinochalcone C-glycosides' physicochemical properties, chromatographic behavior, spectroscopic characteristics, as well as their biological activities, which will be helpful for further study and development of quinochalcone C-glycosides.

  19. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    PubMed

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  20. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures

    PubMed Central

    Rossmann, Christian; Haemmerich, Dieter

    2016-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  1. Impact of physicochemical properties of engineered fullerenes on key biological responses

    SciTech Connect

    Rebecca, Martin; Hsing-Lin, Wang; Jun, Gao; Srinivas, Iyer; Gabriel, Montano A.; Jennifer, Martinez; Andrew, Shreve P.; Bao Yuping; Wang, C.-C.; Chang Zhong; Gao Yuan; Rashi, Iyer

    2009-01-01

    Engineered fullerenes are widely integrated into several commercial and medical products and are now also being recognized as byproducts of many industrial activities. For most applications fullerenes have to be chemically modified. Surface modification of fullerenes can potentially impact their effect on biosystems. The purpose of the current study was to establish criteria to correlate fullerene structure to biological responses. We report studies of cellular responses induced by three different types of fullerenes that provide varying chemical and physical properties such as electronic behavior, solubility, and degree of agglomeration. Using a systematic and multipronged approach for material characterization and employing critical biological endpoints, we determined the impact of the physicochemical properties of fullerenes on cellular interactions. We examined the ability of these fullerenes to regulate intracellular oxidative stress, necrosis and apoptosis in human monocytic THP1 cells. Results indicate that the carboxylate derivatization of fullerenes was the determining factor in their ability to induce apoptosis. In contrast, the dispersion characteristics of fullerenes were found to be more relevant when considering their redox function. We also established a significant role for functionalization-dependent fullerene-regulation of the caspase proteases in the elicited responses. In addition, there was a notable increase in the level of several anti-oxidant enzymes. Collectively, the results clearly indicate that the physicochemical properties of fullerenes significantly influence the elicited biological response, thus impacting future applications. This study is an initial effort to lay the groundwork for routine correlation and predictive analysis on engineered fullerenes, thus expediting their use.

  2. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    NASA Technical Reports Server (NTRS)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  3. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    PubMed

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. PMID:27068802

  4. Biological properties of a thermally crosslinked gelatin film as a novel anti-adhesive material: Relationship between the biological properties and the extent of thermal crosslinking.

    PubMed

    Tsujimoto, Hiroyuki; Tanzawa, Ayumi; Miyamoto, Hiroe; Horii, Tsunehito; Tsuji, Misaki; Kawasumi, Akari; Tamura, Atsushi; Wang, Zhen; Abe, Rie; Tanaka, Shota; Yamanaka, Kouki; Matoba, Mari; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Suzuki, Shuko; Morita, Shinichiro; Ikada, Yoshito; Hagiwara, Akeo

    2015-10-01

    In order to prevent postoperative adhesion and the related complications, a thermally crosslinked gelatin (TCG) film was developed and the basic biological properties were examined, paying special attention to the relationship between these properties and the extent of crosslinking of the film. The gelatin films crosslinked thermally for five different time periods (0, 1, 3, 8, and 14 hours) were developed and the following tests were performed. Regarding the material characterization of the films, the water content, the water solubility, and the enzymatic degradation for collagenase were found to be closely related to the duration of thermal crosslinking. In an in vitro study conducted to examine the cell growth of fibroblasts cultured on the films, the degree of cell growth, except no crosslinked film, was less than that observed in the control group, thus suggesting that such effects of the films on fibroblast cell growth may be related with their anti-adhesive effects. In in vivo tests, the films crosslinked for longer time periods (3, 8, and 14 hours) were retained for longer after being implanted into the abdominal cavity in rats and showed a significant anti-adhesive effect in the rat cecum adhesion models, indicating that the biodegradability and anti-adhesive effects of the TCG films depend on the duration of thermal crosslinking. In order to develop useful and effective anti-adhesive gelatin film, it is very important to optimize duration of the thermal crosslinking.

  5. Structural Features and Biological Properties of Ellagitannins in Some Plant Families of the Order Myrtales

    PubMed Central

    Yoshida, Takashi; Amakura, Yoshiaki; Yoshimura, Morio

    2010-01-01

    Plant tannins, including hydrolysable and condensed varieties, are well known antioxidants in medicinal plants, foods, and edible fruits. Their diverse biological properties and potential for disease prevention have been demonstrated by various in vitro and in vivo assays. A number of ellagitannins, the largest group of hydrolysable tannins, have been isolated from dicotyledoneous angiosperms and characterized. This diverse class of tannins is sub-grouped into simple ellagitannins, C-glycosidic ellagitannins, complex tannins (condensates of C-glycosidic tannins with flavan-3-ol), and oligomers up to pentamers. This review outlines and describes the chemotaxonomic significance of structural features in various types of ellagitannins found in plants belonging to the Myrtaceae, Onagraceae, and Melastomataceae families, which are all included in the order Myrtales. Any biological activities that have been reported, including antitumor and antibacterial effects as well as enzyme inhibition, are also reviewed. PMID:20162003

  6. Soil physicochemical and biological properties of paddy-upland rotation: a review.

    PubMed

    Zhou, Wei; Lv, Teng-Fei; Chen, Yong; Westby, Anthony P; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  7. Microwave processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties

    PubMed Central

    Bose, Susmita; Dasgupta, Sudip; Tarafder, Solaiman; Bandyopadhyay, Amit

    2010-01-01

    Despite excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited its applications primarily to coatings and other non-load bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in nanometers to micrometers were processed via microwave sintering between 1000 and 1150 °C for 20 minutes. Here we demonstrate that mechanical properties, such as compressive strength, hardness and indentation fracture toughness of HA compacts increased with a decrease in grain size. HA with 168± 86 nm grain size showed the highest compressive strength of 395±42 MPa, hardness of 8.4±0.4 GPa and indentation fracture toughness of 1.9 ±0.2 MPam1/2. To study the in vitro biological properties, HA compacts with grain size between 168 nm and 1.16 µm were assessed for in vitro bone cell-materials interactions with human osteoblast cell line. Vinculin protein expression for cell attachment and bone cell proliferation using MTT assay showed surfaces with finer grains provided better bone cell-materials interactions than coarse grained samples. Our results indicate simultaneous improvements in mechanical and biological properties in microwave sintered HA compacts with nanoscale grain size. PMID:20230922

  8. The cohesion of water in biology: a property not to be forgotten.

    PubMed

    Widdas, W F

    2005-12-16

    Gases and crystalline solids are states of matter that have been understood for nearly two centuries but liquid as a state of matter is still unclear. As a third state of matter there have been many anomalies uncovered in the twentieth century such as dipoles and different properties from changed molecular structures. In consequence liquids can no longer be grouped into a separate state of matter. Liquid water, the most abundant material in the Universe has a number of discrete characteristics. The liquid surface and the cohesive forces of liquid water are two of the more general properties that have unique importance in molecular biology. It is shown here that Coulomb forces over short distances can stabilize water molecules that are rapidly spinning dipoles or dipoles which have lost their rotational energy and form semi-crystal-like solids when confined to the restricted spaces of cells and proteins. The surface energy of liquids, extensively studied since the 19th century, can do mechanical work and this is clearest with liquid mercury. But it is surprising that this remarkable property has been neglected in the case of water in biology, and particularly not envisaged as a work supplementary to ATP hydrolysis in muscle contractions, which merits further study.

  9. Evaluation of meat products from cloned cattle: biological and biochemical properties.

    PubMed

    Takahashi, Seiya; Ito, Yoshihiko

    2004-01-01

    Agricultural utilization of cloned livestock produced by nuclear transfer and their products for food will require public and governmental acceptance. A series of studies of properties of meat derived from cloned cattle was carried out to collect data for the safety assessment of cloned cattle products. Meat samples obtained from embryonic cloned, somatic cloned and non-cloned cattle were analyzed for chemical composition, as well as amino acids and fatty acids. Digestibility, allergenicity, and mutagenicity of meat were also examined. There were no significant differences in these properties among embryonic cloned, somatic cloned and non-cloned cattle. The analyses and tests revealed that there were no significant biological differences in meat from a non-cloned, an embryonic cloned, or a somatic cloned animal. A 14-week feeding trial in rats showed there were no abnormalities in body growth, general condition, locomotor activity, reflexes, sexual cycle, urinalysis, hematology, blood biochemistry, and histology. This study showed for the first time that the biological/biochemical properties of meat of cloned cattle are similar to those of non-cloned cattle.

  10. Some reactions and properties of nitro radical-anions important in biology and medicine.

    PubMed Central

    Wardman, P

    1985-01-01

    Nitroaromatic compounds, ArNO2 have widespread actual or potential use in medicine and cancer therapy. There is direct proof that free-radical metabolites are involved in many applications, and an appreciation of the conceptual basis for their therapeutic differential; however, an understanding of the detailed mechanisms involved is lacking. Redox properties control most biological responses of nitro compounds, and the characteristics of the one-electron couple: ArNO2/ArNO2- are detailed. The "futile metabolism" of nitroaryl compounds characteristic of most aerobic nitroreductase systems reflects competition between natural radical-decay pathways and a one-electron transfer reaction to yield superoxide ion, O2-. Prototropic properties control the rate of radical decay, and redox properties control the rate of electron transfer to O2 or other acceptors. There are clear parallels in the chemistry of ArNO2- and O2-. While nitro radicals have frequently been invoked as damaging species, they are very unreactive (except as simple reductants). It seems likely that reductive metabolism of nitroaryl compounds, although generally involving nitro radical-anions as obligate intermediates (and this is required for therapeutic selectivity towards anaerobes), results in biological damage via reductive metabolites of higher reduction order than the one-electron product. PMID:3830700

  11. Three-Dimensional Aggregates of Mesenchymal Stem Cells: Cellular Mechanisms, Biological Properties, and Applications

    PubMed Central

    Sart, Sébastien; Tsai, Ang-Chen; Li, Yan

    2014-01-01

    Mesenchymal stem cells (MSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, MSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates reminiscent of skeletal condensation in vivo. Recent studies have shown that MSC 3D aggregation improved a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. Hence, the formation of 3D MSC aggregates has been explored as a novel strategy to improve cell delivery, functional activation, and in vivo retention to enhance therapeutic outcomes. This article summarizes recent reports of MSC aggregate self-assembly, characterization of biological properties, and their applications in preclinical models. The cellular and molecular mechanisms underlying MSC aggregate formation and functional activation are discussed, and the areas that warrant further investigation are highlighted. These analyses are combined to provide perspectives for identifying the controlling mechanisms and refining the methods of aggregate fabrication and expansion for clinical applications. PMID:24168395

  12. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review

    PubMed Central

    Lv, Teng-Fei; Chen, Yong; Westby, Anthony P.; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  13. Chemical analysis and biological properties of two different formulations of white portland cements.

    PubMed

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2016-07-01

    White Portland cement (WPC) has generated research interests in the field of endodontics. This study compared between the properties of two formulations of white Portland cement (WPC) of different origin (Malaysia [MA] and Egypt [EG]). WPCs with and without calcium chloride dihydrate were prepared. Scanning electron microscope (SEM), energy dispersive X-ray micro-analysis, and X-ray diffraction were used for surface morphology evaluation, elemental, and phase analysis, respectively. After the preparation of optimized serial dilutions, the cytotoxicity was evaluated on human periodontal ligament fibroblasts (HPLFs) and dental pulp stem cells (DPSCs) using methyl-thiazol-diphenyltetrazolium assay after 24 and 72 h. Cell attachment properties were examined under SEM after 24 and 72 h. Results showed that the surface morphology and chemical composition of both formulations demonstrated detectable variations. The cytotoxicity evaluation showed different cellular responses of HPLFs compared to DSPCs. Both formulations favored the viability of HPLFs. However, the fast set formulations demonstrated severe cytotoxicity on DPSCs. Significant differences between EGWPC and MAWPC were identified (p < 0.05). The cell attachment properties were favorable; however, HPLFs attached and spread over the samples better than DPSCs. In conclusion, WPC of different origin may show differences in chemical and biological properties. The addition of CaCl2 ·2H2 O to WPC can affect its properties. Human cell types may react differently towards different formulations of WPCs. SCANNING 38:303-316, 2016. © 2015 Wiley Periodicals, Inc. PMID:26382064

  14. Synthesis and biological properties of thiazole-analogues of pyochelin, a siderophore of Pseudomonas aeruginosa.

    PubMed

    Noël, Sabrina; Hoegy, Françoise; Rivault, Freddy; Rognan, Didier; Schalk, Isabelle J; Mislin, Gaëtan L A

    2014-01-01

    Pyochelin is a siderophore common to all strains of Pseudomonas aeruginosa utilized by this Gram-negative bacterium to acquire iron(III). FptA is the outer membrane transporter responsible of ferric-pyochelin uptake in P. aeruginosa. We describe in this Letter the synthesis and the biological properties ((55)Fe uptake, binding to FptA) of several thiazole analogues of pyochelin. Among them we report in this Letter the two first pyochelin analogues able to bind FptA without promoting any iron uptake in P. aeruginosa. PMID:24332092

  15. Lubricin: a versatile, biological anti-adhesive with properties comparable to polyethylene glycol.

    PubMed

    Greene, George W; Martin, Lisandra L; Tabor, Rico F; Michalczyk, Agnes; Ackland, Leigh M; Horn, Roger

    2015-06-01

    Lubricin is a glycoprotein found in articular joints which has been recognized as being an important biological boundary lubricant molecule. Besides providing lubrication, we demonstrate, using a quartz crystal microbalance, that lubricin also exhibits anti-adhesive properties and is highly effective at preventing the non-specific adsorption of representative globular proteins and constituents of blood plasma. This impressive anti-adhesive property, combined with lubricin's ability to readily self-assemble to form dense, highly stable telechelic polymer brush layers on virtually any substrates, and its innate biocompatibility, makes it an attractive candidate for anti-adhesive and anti-fouling coatings. We show that coatings of lubricin protein are as effective as, or better than, self-assembled monolayers of polyethylene glycol over a wide range of pH and that this provides a simple, versatile, highly stable, and highly effective method of controlling unwanted adhesion to surfaces.

  16. Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine

    NASA Astrophysics Data System (ADS)

    Shekhovtseva, O. G.; Mal'tseva, I. A.

    2015-12-01

    Physicochemical and biological properties of urbanized soils in the city of Mariupol have been considered in comparison with the background soils. The parametrical characteristics (abundance and biomass) of soil algal groups, the content of humus, the reaction of soil solution, the content of heavy metals, and the particle size distributions of soils under different anthropogenic impacts have been assessed. The physicochemical properties of soils developing under urboecosystem conditions affect the number of structure-forming species, biomass, and proportions of soil algae. According to the particle size distribution, urban soils are classified among the medium and heavy loamy soils with the predominance of the clay and coarse silt fractions. The fractions of physical clay and clay are of highest importance for the existence of algae. The accumulation of heavy metals in the surface horizons of soils can stimulate or inhibit the development of algae depending on the metal concentration.

  17. A few nascent methods for measuring mechanical properties of the biological cell.

    SciTech Connect

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos; Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  18. Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales.

    PubMed

    Allison, P G; Chandler, M Q; Rodriguez, R I; Williams, B A; Moser, R D; Weiss, C A; Poda, A R; Lafferty, B J; Kennedy, A J; Seiter, J M; Hodo, W D; Cook, R F

    2013-02-01

    During recent decades, research on biological systems such as abalone shell and fish armor has revealed that these biological systems employ carefully arranged hierarchical multilayered structures to achieve properties of high strength, high ductility and light weight. Knowledge of such structures may enable pathways to design bio-inspired materials for various applications. This study was conducted to investigate the spatial distribution of structure, chemical composition and mechanical properties in mineralized fish scales of the species Atractosteus spatula. Microindentation tests were conducted, and cracking patterns and damage sites in the scales were examined to investigate the underlying protective mechanisms of fish scales under impact and penetration loads. A difference in nanomechanical properties was observed, with a thinner, stiffer and harder outer layer (indentation modulus ∼69 GPa and hardness ∼3.3 GPa) on a more compliant and thicker inner layer (indentation modulus ∼14.3 GPa and hardness ∼0.5 GPa). High-resolution scanning electron microscopy imaging of a fracture surface revealed that the outer layer contained oriented nanorods embedded in a matrix, and that the nanostructure of the inner layer contained fiber-like structures organized in a complex layered pattern. Damage patterns formed during microindentation show complex deformation mechanisms. Images of cracks identify growth through the outer layer, then deflection along the interface before growing and arresting in the inner layer. High-magnification images of the crack tip in the inner layer show void-linking and fiber-bridging exhibiting inelastic behavior. The observed difference in mechanical properties and unique nanostructures of different layers may have contributed to the resistance of fish scales to failure by impact and penetration loading. PMID:23149253

  19. Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications

    PubMed Central

    2016-01-01

    Carbon nanotubes (CNTs) are cylindrical sheets of hexagonally ordered carbon atoms, giving tubes with diameters on the order of a few nanometers and lengths typically in the micrometer range. They may be single- or multiwalled (SWCNTs and MWCNTs respectively). Since the seminal report of their synthesis in 1991, CNTs have fascinated scientists of all stripes. Physicists have been intrigued by their electrical, thermal, and vibrational potential. Materials scientists have worked on integrating them into ultrastrong composites and electronic devices, while chemists have been fascinated by the effects of curvature on reactivity and have developed new synthesis and purification techniques. However, to date no large-scale, real-life biotechnological CNT breakthrough has been industrially adopted and it is proving difficult to justify taking these materials forward into the clinic. We believe that these challenges are not the end of the story, but that a viable carbon nanotube biotechnology is one in which the unique properties of nanotubes bring about an effect that would be otherwise impossible. In this Outlook, we therefore seek to reframe the field by highlighting those biological applications in which the singular properties of CNTs provide some entirely new activity or biological effect as a pointer to “what could be”. PMID:27163049

  20. Investigation of natural lipid-phenolic interactions on biological properties of virgin olive oil.

    PubMed

    Alu'datt, Muhammad H; Rababah, Taha; Ereifej, Khalil; Gammoh, Sana; Alhamad, Mohammad N; Mhaidat, Nizar; Kubow, Stan; Johargy, Ayman; Alnaiemi, Ola J

    2014-12-10

    There is limited knowledge regarding the impact of naturally occurring lipid-phenolic interactions on the biological properties of phenolics in virgin olive oil. Free and bound phenolics were isolated via sequential methanolic extraction at 30 and 60 °C, and were identified and quantified using reversed phase high performance liquid chromatography, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and gas chromatography. Decreased oleic acid concentrations and increased concentrations of palmitoleic acid, stearic, linoleic, and linolenic acids were observed in virgin olive oil after removal of free and bound lipid phenolic compounds. The presence of p-hydroxybenzoic acid and tyrosol bound to glycerides was determined via LC-MS/MS, which indicates natural lipid-phenolic interactions in virgin olive oil. Both free and lipid bound phenolic extracts exerted antiproliferative activities against the CRC1 and CRC5 colorectal cancer cell lines. The present work indicates that naturally occurring lipid-phenolic interactions can affect the biological properties of phenolics in virgin olive oil.

  1. BIOLOGICAL PROPERTIES (IN VITRO) EXHIBITED BY FREE-LIVING AND SYMBIOTIC VIBRIO ISOLATES

    PubMed Central

    NAIR, V.; NISHIGUCHI, M. K.

    2010-01-01

    Adhesion and biofilm forming ability of symbiotic bacteria play a crucial role in host colonization and tissue infection. Bacteria benefit by adhering to their host in a manner that allows them to successfully maintain contact for the exchange of nutrients, hormones, or other necessary products. This study examined pili morphology, motility, and biofilm formation exhibited by Vibrio fischeri strains (free-living and symbiotic). Since these symbiotic factors contribute in some fashion to the interaction between V. fischeri and their squid host, variation between strains may be a contributing factor that leads to specificity among different hosts. V. fischeri strains examined in this study demonstrated considerable variation in their biological properties when observed in vitro. In addition to differences observed between strains isolated from several different host species, we observed variation between strains isolated from the same host species from diverse geographical locations. This study suggests that subtle differences in the biological properties of closely related V. fischeri strains may influence the nature of the interaction among V. fischeri and their sepiolid hosts. PMID:20725603

  2. Biocorrosion properties of antibacterial Ti-10Cu sintered alloy in several simulated biological solutions.

    PubMed

    Liu, Cong; Zhang, Erlin

    2015-03-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility, which displays potential application in dental application. The corrosion behaviors of the alloy in five different simulated biological solutions have been investigated by electrochemical technology, surface observation, roughness measurement and immersion test. Five different simulated solutions were chosen to simulate oral condition, oral condition with F(-) ion, human body fluids with different pH values and blood system. It has been shown that Ti-10Cu alloy exhibits high corrosion rate in Saliva pH 3.5 solution and Saliva pH 6.8 + 0.2F solution but low corrosion rate in Hank's, Tyrode's and Saliva pH 6.8 solutions. The corrosion rate of Ti-10Cu alloy was in a order of Hank's, Tyrode's, Saliva pH 6.8, Saliva-pH 3.5 and Saliva pH 6.8 + 0.2F from slow to fast. All results indicated acid and F(-) containing conditions prompt the corrosion reaction of Ti-Cu alloy. It was suggested that the Cu ion release in the biological environments, especially in the acid and F(-) containing condition would lead to high antibacterial properties without any cell toxicity, displaying wide potential application of this alloy.

  3. Synthesis and biological properties of caffeic acid-PNA dimers containing guanine.

    PubMed

    Gaglione, Maria; Malgieri, Gaetano; Pacifico, Severina; Severino, Valeria; D'Abrosca, Brigida; Russo, Luigi; Fiorentino, Antonio; Messere, Anna

    2013-01-01

    Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is endowed with high antioxidant activity. CA derivatives (such as amides) have gained a lot of attention due to their antioxidative, antitumor and antimicrobial properties as well as stable characteristics. Caffeoyl-peptide derivatives showed different antioxidant activity depending on the type and the sequence of amino acid used. For these reasons, we decided to combine CA with Peptide Nucleic Acid (PNA) to test whether the new PNA-CA amide derivatives would result in an improvement or gain of CA's biological (i.e., antioxidant, cytotoxic, cytoprotective) properties. We performed the synthesis and characterization of seven dimer conjugates with various combinations of nucleic acid bases and focused NMR studies on the model compound ga-CA dimer. We demonstrate that PNA dimers containing guanine conjugated to CA exhibited different biological activities depending on composition and sequence of the nucleobases. The dimer ag-CA protected HepG2, SK-B-NE(2), and C6 cells from a cytotoxic dose of hydrogen peroxide (H₂O₂). PMID:23912270

  4. Physical Effects of Buckwheat Extract on Biological Membrane In Vitro and Its Protective Properties.

    PubMed

    Włoch, Aleksandra; Strugała, Paulina; Pruchnik, Hanna; Żyłka, Romuald; Oszmiański, Jan; Kleszczyńska, Halina

    2016-04-01

    Buckwheat is a valuable source of many biologically active compounds and nutrients. It has properties that reduce blood cholesterol levels, and so reduces the risk of atherosclerosis, seals the capillaries, and lowers blood pressure. The aim of the study was to determine quantitative and qualitative characteristics of polyphenols contained in extracts from buckwheat husks and stalks, the biological activity of the extracts, and biophysical effects of their interaction with the erythrocyte membrane, treated as a model of the cell. An analysis of the extract's composition has shown that buckwheat husk and stalk extracts are a rich source of polyphenolic compounds, the stalk extracts showing more compounds than the husk extract. The study allowed to determine the location which incorporated polyphenols occupy in the erythrocyte membrane and changes in the membrane properties caused by them. It was found that the extracts do not induce hemolysis of red blood cells, causing an increase in osmotic resistance of erythrocytes. They affect mainly the hydrophilic region by changing the degree of order of the polar heads of lipids, but do little to change the fluidity of the membrane and its hydration. The results showed also that polyphenolic substances included in the extracts well protect the membranes of red blood cells against oxidation and exhibit anti-inflammatory effect. PMID:26581904

  5. [Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review].

    PubMed

    Li, Yu-jie; Wang, Hui; Zhao, Jian-ning; Huangfu, Chao-he; Yang, Dian-lin

    2015-03-01

    Tillage methods affect soil heat, water, nutrients and soil biology in different ways. Reasonable soil management system can not only improve physical and chemical properties of the soil, but also change the ecological process of farmland soil. Conservation tillage can improve the quality of the soil to different degrees. For example, no-tillage system can effectively improve soil enzyme activity. No tillage and subsoiling tillage can provide abundant resources for soil microbe' s growth and reproduction. No tillage, minimum tillage and other conservation tillage methods exert little disturbance to soil animals, and in turn affect the quantity and diversity of the soil animals as well as their population structure. Effects of different tillage methods on soil physical and chemical properties as well as biological characteristics were reviewed in this article, with the soil physical and chemical indices, enzyme activities, soil microbe diversity and soil animals under different tillage patterns analyzed. The possibility of soil quality restoration with appropriate tillage methods and the future research direction were pointed out.

  6. Physico-chemical properties and biological effects of diesel and biomass particles.

    PubMed

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. PMID:27194366

  7. Physico-chemical properties and biological effects of diesel and biomass particles.

    PubMed

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  8. Physical-chemical determinant properties of biological communities in continental semi-arid waters.

    PubMed

    da Rocha, Francisco Cleiton; de Andrade, Eunice Maia; Lopes, Fernando Bezerra; de Paula Filho, Francisco José; Filho, José Hamilton Costa; da Silva, Merivalda Doroteu

    2016-08-01

    Throughout human history, water has undergone changes in quality. This problem is more serious in dry areas, where there is a natural water deficit due to climatic factors. The aims of this study, therefore, were (i) to verify correlations between physical attributes, chemical attributes and biological metrics and (ii) from the biological attributes, to verify the similarity between different points of a body of water in a tropical semi-arid region. Samples were collected every 2 months, from July 2009 to July 2011, at seven points. Four physical attributes, five chemical attributes and four biological metrics were investigated. To identify the correlations between the physicochemical properties and the biological metrics, hierarchical cluster analysis (HCA) and canonical correlation analysis (CCA) were applied. Nine classes of phytoplankton were identified, with the predominance of species of cyanobacteria, and ten families of macroinvertebrates. The use of HCA resulted in the formation of three similar groups, showing that it was possible to reduce the number of sampling points when monitoring water quality with a consequent reduction in cost. Group I was formed from the waters at the high end of the reservoir (points P1, P2 and P3), group II by the waters from the middle third (points P4 and P5), and group III by the waters from the lower part of the reservoir (points P6 and P7). Richness of the phytoplanktons Cyanophyceae, Chorophyceae and Bacillariophyceae was the attribute which determined dissimilarity in water quality. Using CCA, it was possible to identify the spatial variability of the physicochemical attributes (TSS, TKN, nitrate and total phosphorus) that most influence the metrics of the macroinvertebrates and phytoplankton present in the water. Low macroinvertebrate diversity, with a predominance of indicator families for deterioration in water quality, and the composition of phytoplankton showing a predominance of cyanobacteria, suggests greater

  9. Physical-chemical determinant properties of biological communities in continental semi-arid waters.

    PubMed

    da Rocha, Francisco Cleiton; de Andrade, Eunice Maia; Lopes, Fernando Bezerra; de Paula Filho, Francisco José; Filho, José Hamilton Costa; da Silva, Merivalda Doroteu

    2016-08-01

    Throughout human history, water has undergone changes in quality. This problem is more serious in dry areas, where there is a natural water deficit due to climatic factors. The aims of this study, therefore, were (i) to verify correlations between physical attributes, chemical attributes and biological metrics and (ii) from the biological attributes, to verify the similarity between different points of a body of water in a tropical semi-arid region. Samples were collected every 2 months, from July 2009 to July 2011, at seven points. Four physical attributes, five chemical attributes and four biological metrics were investigated. To identify the correlations between the physicochemical properties and the biological metrics, hierarchical cluster analysis (HCA) and canonical correlation analysis (CCA) were applied. Nine classes of phytoplankton were identified, with the predominance of species of cyanobacteria, and ten families of macroinvertebrates. The use of HCA resulted in the formation of three similar groups, showing that it was possible to reduce the number of sampling points when monitoring water quality with a consequent reduction in cost. Group I was formed from the waters at the high end of the reservoir (points P1, P2 and P3), group II by the waters from the middle third (points P4 and P5), and group III by the waters from the lower part of the reservoir (points P6 and P7). Richness of the phytoplanktons Cyanophyceae, Chorophyceae and Bacillariophyceae was the attribute which determined dissimilarity in water quality. Using CCA, it was possible to identify the spatial variability of the physicochemical attributes (TSS, TKN, nitrate and total phosphorus) that most influence the metrics of the macroinvertebrates and phytoplankton present in the water. Low macroinvertebrate diversity, with a predominance of indicator families for deterioration in water quality, and the composition of phytoplankton showing a predominance of cyanobacteria, suggests greater

  10. Dependence of Temporal Diffusion Spectra on Microstructural Properties of Biological Tissues

    PubMed Central

    Xu, Junzhong; Does, Mark D.; Gore, John C.

    2010-01-01

    The apparent diffusion coefficient (ADC) measured using magnetic resonance imaging (MRI) methods provides information on micro-structural properties of biological tissues, and thus has found applications as a useful biomarker for assessing changes such as those that occur in ischemic stroke and cancer. Conventional pulsed gradient spin echo (PGSE) methods are in widespread use and provide information on, for example, variations in cell density. The oscillating gradient spin echo (OGSE) method has the additional ability to probe diffusion behaviors more readily at short diffusion times, and the temporal diffusion spectrum obtained by the OGSE method provides a unique tool for characterizing tissues over different length scales, including structural features of intra-cellular spaces. It has previously been reported that several tissue properties can affect ADC measurements significantly, and the precise biophysical mechanisms that account for ADC changes in different situations are still unclear. Those factors may vary in importance depending on the time and length scale over which measurements are made. In the present work, a comprehensive numerical simulation is used to investigate the dependence of the temporal diffusion spectra measured by OGSE methods on different micro-structural properties of biological tissues, including cell size, cell membrane permeability, intracellular volume fraction, intra-nucleus and intra-cytoplasm diffusion coefficients, nuclear size and T2 relaxation times. Some unique characteristics of the OGSE method at relatively high frequencies are revealed. The results presented in the paper offer a framework for better understanding possible causes of diffusion changes and may be useful to assist the interpretation of diffusion data from OGSE measurements. PMID:21129880

  11. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties.

    PubMed

    Osińska-Jaroszuk, Monika; Jarosz-Wilkołazka, Anna; Jaroszuk-Ściseł, Jolanta; Szałapata, Katarzyna; Nowak, Artur; Jaszek, Magdalena; Ozimek, Ewa; Majewska, Małgorzata

    2015-12-01

    Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs

  12. Biological and functional properties of proteolytic enzyme-modified egg protein by-products

    PubMed Central

    Pokora, Marta; Eckert, Ewelina; Zambrowicz, Aleksandra; Bobak, Łukasz; Szołtysik, Marek; Dąbrowska, Anna; Chrzanowska, Józefa; Polanowski, Antoni; Trziszka, Tadeusz

    2013-01-01

    Enzymatic hydrolysis led to improve functional properties and biological activity of protein by-products, which can be further used as protein ingredients for food and feed applications. The effects of proteolytic enzyme modification of egg-yolk protein preparation (YP) and white protein preparation (WP), obtained as the by-products left during the course of lecithin, lysozyme, and cystatin isolation on their biological and functional properties, were evaluated by treating a commercial Neutrase. The antihypertensive and antioxidative properties of YP and WP hydrolysates were evaluated based on their angiotensin-converting enzyme (ACE)-inhibitory activity and radical scavenging (DPPH) capacity, ferric reducing power, and chelating of iron activity. The functionality of obtained hydrolysates was also determined. Neutrase caused a degree of hydrolysis (DH) of YP and WP by-products: 27.6% and 20.9%, respectively. In each of them, mixture of peptides with different molecular masses were also observed. YP hydrolysate showed high levels of antioxidant activity. The scavenging capacity, ferric reducing power, and chelating capacity were observed at the level: 0.44 μmol/L Trolox mg−1, 177.35 μg Fe2+ mg−1, and 549.87 μg Fe2+ mg−1, respectively. YP hydrolysate also exhibited significant ACE-inhibitory activity, in which the level was 59.2 μg. Protein solubility was significantly improved as the DH increased. WP hydrolysate showed high water-holding capacity of 43.2. This study indicated that YP and WP hydrolysates could be used in foods as natural antioxidants and functionality enhancers. PMID:24804027

  13. Biological and physical properties of autogenous vascularized fibular grafts in dogs

    SciTech Connect

    Goldberg, V.M.; Stevenson, S.; Shaffer, J.W.; Davy, D.; Klein, L.; Zika, J.; Field, G. )

    1990-07-01

    The biological and biomechanical properties of normal fibulae, fibulae that had had a sham operation, and both vascularized and non-vascularized autogenous grafts were studied in dogs at three months after the operation. The study was designed to quantify and correlate changes in these properties in orthotopic, stably fixed, weight-bearing grafts and to provide a baseline for additional studies of allografts. The grafts were eight centimeters long and internally fixed. The mechanical properties of the grafts were studied by torsional testing. Metabolic turnover of the grafts was evaluated by preoperative labeling of the dogs with 3H-tetracycline for resorption of bone mineral and with 3H-proline for turnover of collagen. Cortical bone area and porosity were measured. Postoperative formation of bone was evaluated by sequential labeling with fluorochrome. The vascularized grafts resembled the fibulae that had had a sham operation and those that had not had an operation with regard to the total number of osteons and the remodeling process, as measured both morphometrically and metabolically. The vascularized grafts were stronger and stiffer than the non-vascularized grafts and were not different from the bones that had had a sham operation. In contrast, the non-vascularized grafts were smaller, weaker, less stiff, and more porotic, had fewer osteons, and demonstrated increased turnover and resorption compared with the vascularized grafts, the bones that had had a sham operation, and the bones that had not been operated on.

  14. Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA

    NASA Technical Reports Server (NTRS)

    Baeza, I.; Ibanez, M.; Wong, C.; Chavez, P.; Gariglio, P.; Oro, J.

    1991-01-01

    Some properties of DNA condensed with spermidine have been compared with the properties of DNA condensed with Co3+(NH3)6 to determine whether condensation of DNA with these trivalent cations protects DNA against the action of DNase I and increases transcription and encapsulation of DNA into liposomes. It was shown that DNA condensed with Co3+(NH3)6 was resistant to the action of the endonuclease DNase I such as DNA condensed with spermidine was. However, DNA condensed with Co3+(NH3)6 was significantly less active in transcription with the E. coli RNA polymerase than DNA-spermidine condensed forms. In addition, it was demonstrated that both compacted forms of DNA were more efficiently encapsulated into neutral liposomes; however, negatively, charged liposomes were scarcely formed in the presence of DNA condensed with Co3+(NH3)6. These experiments and the well documented properties of polyamines increasing the resistance to radiations and hydrolysis of nucleic acids, as well as their biological activities, such as replication, transcription, and translation, together with the low concentration of Co3+ in the environment, lead us to propose spermidine as a plausible prebiotic DNA condensing agent rather than Co3+ and the basic proteins proposed by other authors. Then, we consider the possible role and relevance of the polyamine-nucleic acids complexes in the evolution of life.

  15. Insights on the Optical Properties of Estuarine DOM – Hydrological and Biological Influences

    PubMed Central

    Santos, Luísa; Pinto, António; Filipe, Olga; Cunha, Ângela; Santos, Eduarda B. H.

    2016-01-01

    Dissolved organic matter (DOM) in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal), the seasonality and the sources of the fraction of DOM that absorbs light (CDOM) were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems. PMID:27195702

  16. Seasonal variations of phenolic compounds and biological properties in sage (Salvia officinalis L.).

    PubMed

    Generalić, Ivana; Skroza, Danijela; Surjak, Jana; Možina, Sonja Smole; Ljubenkov, Ivica; Katalinić, Ana; Simat, Vida; Katalinić, Višnja

    2012-02-01

    The aim was to investigate the phenolic content, antioxidant capacity, and antibacterial activity of Dalmatian sage (Salvia officinalis L.) leaves collected during different vegetation periods. Separation and quantification of the individual phenols were performed by reversed-phase (RP)-HPLC coupled with a PDA (photodiode array) detector and using an internal standard, while the contents of total phenols, flavonoids, flavones, and flavonols were determined spectrophotometrically. The antioxidant properties of the sage leaf extracts were evaluated using five different antioxidant assays (FRAP, DPPH, ABTS, Briggs-Rauscher reaction, and β-carotene bleaching). The antimicrobial activity of the extracts was tested against two Gram-positive (Bacillus cereus and Staphylococcus aureus) and two Gram-negative (Salmonella Infantis and Escherichia coli) bacterial reference strains. All extracts were extremely rich in phenolic compounds, and provided good antioxidant and antibacterial properties, but the phenophase in which the leaves were collected affected the phenolic composition of the sage extracts and consequently their biological activity. The May Extract, the richest in total flavonoids, showed the best antioxidant properties and the highest antimicrobial activity. Thus, collection of the plants during May seems the best choice for further use of them in the pharmaceutical and food industry.

  17. Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite.

    PubMed

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool; Fatemi, Seyyed Mostafa

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  18. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties.

    PubMed

    Sant, Shilpa; Hwang, Chang Mo; Lee, Sang-Hoon; Khademhosseini, Ali

    2011-04-01

    Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has generated great interest as a scaffold material due to its desirable mechanical properties. However, the use of PGS in tissue engineering is limited by difficulties in casting micro- and nanofibrous structures, due to high temperatures and vacuum required for its curing and limited solubility of the cured polymer. In this paper, we developed microfibrous scaffolds made from blends of PGS and poly(ε-caprolactone) (PCL) using a standard electrospinning set-up. At a given PGS:PCL ratio, higher voltage resulted in significantly smaller fibre diameters (reduced from ∼4 µm to 2.8 µm; p < 0.05). Further increase in voltage resulted in the fusion of fibres. Similarly, higher PGS concentrations in the polymer blend resulted in significantly increased fibre diameter (p < 0.01). We further compared the mechanical properties of electrospun PGS:PCL scaffolds with those made from PCL. Scaffolds with higher PGS concentrations showed higher elastic modulus (EM), ultimate tensile strength (UTS) and ultimate elongation (UE) (p < 0.01) without the need for thermal curing or photocrosslinking. Biological evaluation of these scaffolds showed significantly improved HUVEC attachment and proliferation compared to PCL-only scaffolds (p < 0.05). Thus, we have demonstrated that simple blends of PGS prepolymer with PCL can be used to fabricate microfibrous scaffolds with mechanical properties in the range of a human aortic valve leaflet. PMID:20669260

  19. Insights on the Optical Properties of Estuarine DOM - Hydrological and Biological Influences.

    PubMed

    Santos, Luísa; Pinto, António; Filipe, Olga; Cunha, Ângela; Santos, Eduarda B H; Almeida, Adelaide

    2016-01-01

    Dissolved organic matter (DOM) in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal), the seasonality and the sources of the fraction of DOM that absorbs light (CDOM) were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems. PMID:27195702

  20. Ultramicrostructure and microthermomechanics of biological IR detectors: materials properties from a biomimetic perspective.

    PubMed

    Hazel, J; Fuchigami, N; Gorbunov, V; Schmitz, H; Stone, M; Tsukruk, V V

    2001-01-01

    Microstructural organization of the biological infrared (IR) receptors was studied to elucidate their materials properties useful for prospective biomimetic design of artificial IR sensors from organic/polymeric materials. The IR receptors in Melanophila acuminata beetles were studied with ultrahigh-resolution scanning probe microscopy (SPM) in a range of temperatures. By application of micromechanical mapping and thermal stage, we made attempts to reveal the micromechanical and thermomechanical properties of the cuticular apparatus of the IR sensillum. The main component of the cuticular apparatus is an internal endocuticular sphere with a diameter of about 15-20 microm. Highly ordered multilayered organization of the lamellated peripheral mantle of the sphere was confirmed and characterized. We observed that the interlayer spacing of this microstructure varied along the circumference and decreased to 300 nm in the vertex of the sphere. We demonstrated that the microlayered structure is composed of nanolayers with very different micromechanical properties and thermal behaviors. Thermal expansion of the outer mantle was observed, and the local thermal expansion coefficient under given preparation conditions was estimated to be below 1.5 x 10(-4) grad(-1).

  1. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    PubMed Central

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  2. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films

    PubMed Central

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2015-01-01

    In this paper, different concentrations of multi-walled carbon nanotube (MWCNT) were homogeneously dispersed throughout the chitosan (CS) matrix. A simple solvent-cast method was used to fabricate chitosan films with 0.1, 0.5, and 1% of MWCNT with the average diameter around 30 nm. The CS/MWCNT films were characterized for structural, viscous and mechanical properties with optical microscopy, wide-angle X-ray diffraction, Raman spectroscopy, tensile test machine, and microindentation testing machine. Murine osteoblasts were used to examine the cell viability and attachment of the nanocomposite films at two time points. In comparison to the pure chitosan film, the mechanical properties, including the tensile modulus and strength of the films were greatly improved by increasing the percentage of MWCNT. Furthermore, adding MWCNT up to 1% increased the viscosity of the chitosan solution by 15%. However, adding MWCNT decreased the samples ductility and transparency. In biological point of view, no toxic effect on osteoblasts was observed in the presence of different percentages of MWCNT at day 3 and day 7. This investigation suggested MWCNT could be a promising candidate for improving chitosan mechanical properties without inducing remarkable cytotoxicity on bone cells. PMID:24108584

  3. Production and Analysis of Biological Properties of Recombinant Human Apolipoprotein A-I.

    PubMed

    Ryabchenko, A V; Kotova, M V; Tverdohleb, N V; Knyazev, R A; Polyakov, L M

    2015-11-01

    Production of recombinant human apolipoprotein A-I (apoA-I) in E. coli cells is described and its biological properties are compared with those of natural protein. Recombinant apoA-I was isolated as a chimeric polypeptide and then processed to a mature form apoA-I (rapo-I). We studied the ability of the resulting protein to penetrate into hepatocyte nuclei and regulate the rate of DNA biosynthesis in complex with estriol. Penetration of rapoA-I conjugated with FITC into hepatocyte nuclei was demonstrated. rapoA-I-estriol and apoA-I-estriol complexes induced similar increase in DNA biosynthesis rate in isolated hepatocytes, which confi rms functional similarity of the obtained recombinant mature protein (rapoA-I) and native human apoA-I.

  4. Investigation of physical and biological properties of polypyrrole nanotubes-chitosan nanocomposites.

    PubMed

    Upadhyay, J; Kumar, A; Gupta, K; Mandal, M

    2015-11-01

    Polypyrrole nanotubes-chitosan (PPy-NTs:chitosan) nanocomposite films have been synthesized with varying concentration of polypyrrole nanotubes (PPy-NTs) and their physical and biological properties have been investigated. Scanning electron microscopy (SEM) micrographs exhibit the increase in surface roughness of the nanocomposite films with increasing concentration of PPy-NTs. Enhancement in hydrophilicity of the nanocomposite films has been observed after surface functionalization with glutaraldehyde which is attributed to increase in surface energy due to the incorporation of polar groups on the films surface. The increasing amount of PPy-NTs in the nanocomposite leads to an increase in haemolysis activity, while the treatment with glutaraldehyde results in the decrease in haemolysis activity giving rise to higher biocompatibility. Urease immobilization in glutaraldehyde treated films exhibits higher enzymatic activity as compared to that of the untreated films, which is attributed to the enhancement in hydrophilicity and biocompatibility of the PPy-NTs:chitosan nanocomposites after functionalization with glutaraldehyde. PMID:26256373

  5. Signal initiation in biological systems: the properties and detection of transient extracellular protein interactions.

    PubMed

    Wright, Gavin J

    2009-12-01

    Individual cells within biological systems frequently coordinate their functions through signals initiated by specific extracellular protein interactions involving receptors that bridge the cellular membrane. Due to their biochemical nature, these membrane-embedded receptor proteins are difficult to manipulate and their interactions are characterised by very weak binding strengths that cannot be detected using popular high throughput assays. This review will provide a general outline of the biochemical attributes of receptor proteins focussing in particular on the biophysical properties of their transient interactions. Methods that are able to detect these weak extracellular binding events and especially those that can be used for identifying novel interactions will be compared. Finally, I discuss the feasibility of constructing a complete and accurate extracellular protein interaction map, and the methods that are likely to be useful in achieving this goal.

  6. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens.

    PubMed

    Russo, Christopher J; Passmore, Lori A

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope.

  7. [Modeling and experimental study on frequency-domain electricity properties of biological materials].

    PubMed

    Tian, Hua; Luo, Shiqiang; Zhang, Rui; Yang, Gang; Huang, Hua

    2009-12-01

    Frequency-domain electricity properties of four objects, including bullfrog skin, bullfrog muscle, triply distilled water and 0.9% NaCl, were tested in the range of 100Hz-10MHz using home-made electrode and measuring system. The experimental results showed that the resistance of 0.9% NaCl decreased dramatically, that the amplitude frequency characteristics of bullfrog's muscle and skin were similar, but that of triply distilled water did not change significantly. The frequency dependence of 0.9% NaCl showed that the electrode had great influence on the measuring system, so a new equivalent circuit model based on the electrode system was needed. These findings suggest that the new five-parameter equivalent circuit model, which embodies considerations on the interaction between electrodes and tissues, is a reasonable equivalent circuit for studying the electrical characteristics of biological materials.

  8. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  9. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications

    PubMed Central

    Garidel, Patrick; Kaconis, Yani; Heinbockel, Lena; Wulf, Matthias; Gerber, Sven; Munk, Ariane; Vill, Volkmar; Brandenburg, Klaus

    2015-01-01

    Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance. PMID:26464591

  10. Spin-labeled amphotericin B: synthesis, characterization, biological and spectroscopic properties.

    PubMed

    Urbina, J A; Cohen, B E; Perozo, E; Cornivelli, L

    1987-03-12

    A biologically active spin-labeled derivative of amphotericin B has been synthesized by the nucleophilic addition of amphotericin B to 4-(2-iodoacetamido)-2,2',6,6'-tetramethylpiperadine-N-oxyl in dimethyl-sulphoxide at 40 degrees C. The derivative is a moderately water-soluble compound which displays the same biological activity of the parental compound against the sensitive organism Leishmania mexicana; also, the rates of proton-cation exchange induced by the two compounds in large unilamellar liposomes are indistinguishable. The ESR spectra of spin-labeled amphotericin B in lipid vesicles indicate a high degree of motion, very similar to that encountered for the compound in aqueous solutions at neutral pH and in deoxycholate micelles, and suggest that the structures formed by the antibiotic in membranes are composed by a small number of molecules. In contrast, the spectra of the labeled antibiotic in ethanol, diethyl ether and dimethylformamide indicate restricted motion and exchange interactions, probably resulting from the micellar aggregation induced in these media. Ascorbate at 10 mM is able to reduce completely the nitroxide group of the labeled antibiotic in lipid vesicles in less than 30 s, indicating that an asymmetric disposition of the antibiotic molecules across the membrane is capable of inducing its biological and ionophoric properties. Ni2+ and Cu2+ produce moderate exchange broadening of the ESR signal of spin-labeled amphotericin B in lipid vesicles; the comparison of this phenomenom with the exchange broadening produced by the same ions in the ESR spectrum of 2,2',6,6'-tetramethylpiperidine-N-oxyl in water solution suggests an specific Cu2+-amphotericin B interaction in membranes.

  11. Force per cross-sectional area from molecules to muscles: a general property of biological motors

    PubMed Central

    Meyer-Vernet, Nicole

    2016-01-01

    We propose to formally extend the notion of specific tension, i.e. force per cross-sectional area—classically used for muscles, to quantify forces in molecular motors exerting various biological functions. In doing so, we review and compare the maximum tensions exerted by about 265 biological motors operated by about 150 species of different taxonomic groups. The motors considered range from single molecules and motile appendages of microorganisms to whole muscles of large animals. We show that specific tensions exerted by molecular and non-molecular motors follow similar statistical distributions, with in particular, similar medians and (logarithmic) means. Over the 1019 mass (M) range of the cell or body from which the motors are extracted, their specific tensions vary as Mα with α not significantly different from zero. The typical specific tension found in most motors is about 200 kPa, which generalizes to individual molecular motors and microorganisms a classical property of macroscopic muscles. We propose a basic order-of-magnitude interpretation of this result. PMID:27493785

  12. Lipopolysaccharide of Yersinia pestis, the Cause of Plague: Structure, Genetics, Biological Properties

    PubMed Central

    Knirel, Y.A.; Anisimov, A.P.

    2012-01-01

    The present review summarizes data pertaining to the composition and structure of the carbohydrate moiety (core oligosaccharide) and lipid component (lipid A) of the various forms of lipopolysaccharide (LPS), one of the major pathogenicity factors ofYersinia pestis, the cause of plague. The review addresses the functions and the biological significance of genes for the biosynthesis of LPS, as well as the biological properties of LPS in strains from various intraspecies groups ofY. pestis and their mutants, including the contribution of LPS to the resistance of bacteria to factors of the innate immunity of both insect-vectors and mammal-hosts. Special attention is paid to temperature-dependent variations in the LPS structure, their genetic control and roles in the pathogenesis of plague. The evolutionary aspect is considered based on a comparison of the structure and genetics of the LPS ofY. pestis and other enteric bacteria, including otherYersinia species. The prospects of development of live plague vaccines created on the basis ofY. pestis strains with the genetically modified LPS are discussed. PMID:23150803

  13. Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering.

    PubMed

    Li, Zhong; Thompson, Brianna C; Dong, Zhili; Khor, Khiam Aik

    2016-12-01

    Transparent bioceramics have attracted a large amount of research interest as they facilitate direct observation of biointerfacial reactions. Thus far, attempts to achieve transparent hydroxyapatite have been focused on augmenting the sintering pressure and/or extending the sintering duration. This study aims at fabricating transparent HA using a direct and fast spark plasma sintering process with appropriate starting powder and moderate sintering pressure. Three types of raw powder, namely micro-spheres, nano-rods and nano-spheres, were sintered to investigate the optical and biological properties of the compacted pellets. It was found that in terms of transparency, the micro-sphere pellet sintered at 1000°C stood out with an in-line transmittance as high as 84% achieved at 1300nm for a 2mm thick sample. In addition, pellets fabricated from micro-spheres demonstrated the highest cell viability in in vitro biological tests with L929 cells. Living cells cultured on a transparent micro-sphere pellet could be directly and clearly observed by light microscopy. It is thus concluded that the micro-sphere powder is the most desirable raw material to manufacture transparent hydroxyapatite because it could enable dense pellets with notably high transparency and outstanding in vitro biocompatibility to be readily obtained. PMID:27612791

  14. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

    PubMed

    Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno

    2013-09-18

    Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.

  15. Proton and gallium(III) binding properties of a biologically active salicylidene acylhydrazide.

    PubMed

    Hakobyan, Shoghik; Boily, Jean-François; Ramstedt, Madeleine

    2014-09-01

    Bacterial biofilm formation causes a range of problems in our society, especially in health care. Salicylidene acylhydrazides (hydrazones) are promising antivirulence drugs targeting secretion systems used during bacterial infection of host cells. When mixed with the gallium ion they become especially potent as bacterial and biofilm growth-suppressing agents, although the mechanisms through which this occurs are not fully understood. At the base of this uncertainty lies the nature of hydrazone-metal interactions. This study addresses this issue by resolving the equilibrium speciation of hydrazone-gallium aqueous solutions. The protonation constants of the target 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (ME0163) hydrazone species and of its 2,4,6-trihydroxybenzaldehyde and oxamic acid hydrazide building blocks were determined by UV-visible spectrophotometry to achieve this goal. These studies show that the hydrazone is an excessively strong complexing agent for gallium and that its antivirulence properties are predominantly ascribed to monomeric 1:1Ga-ME0163 complexes of various Ga hydrolysis and ME0163 protonation states. The chelation of Ga(III) to the hydrazone also increased the stability of the compounds against acid-induced hydrolysis, making this group of compounds very interesting for biological applications where the Fe-antagonist action of both Ga(III) and the hydrazone can be combined for enhanced biological effect.

  16. Physical and biological properties of U. S. standard endotoxin EC after exposure to ionizing radiation

    SciTech Connect

    Csako, G.; Elin, R.J.; Hochstein, H.D.; Tsai, C.M.

    1983-07-01

    Techniques that reduce the toxicity of bacterial endotoxins are useful for studying the relationship between structure and biological activity. We used ionizing radiation to detoxify a highly refined endotoxin preparation. U.S. standard endotoxin EC. Dose-dependent changes occurred by exposure to /sup 60/Co-radiation in the physical properties and biological activities of the endotoxin. Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis showed gradual loss of the polysaccharide components (O-side chain and R-core) from the endotoxin molecules. In contrast, although endotoxin revealed a complex absorption pattern in the UV range, radiation treatment failed to modify that pattern. Dose-related destruction of the primary toxic component, lipid A, was suggested by the results of activity tests: both the pyrogenicity and limulus reactivity of the endotoxin were destroyed by increasing doses of radiation. The results indicate that the detoxification is probably due to multiple effects of the ionizing radiation on bacterial lipopolysaccharides, and the action involves (i) the destruction of polysaccharide moieties and possibly (ii) the alteration of lipid A component of the endotoxin molecule.

  17. Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications.

    PubMed

    Cifra, Michal; Pospíšil, Pavel

    2014-10-01

    This review attempts to summarize molecular mechanisms, spectral and intensity properties, detection techniques and applications of ultra-weak photon emission. Ultra-weak photon emission is the chemiluminescence from biological systems where electronically excited species are formed during oxidative metabolic or oxidative stress processes. It is generally accepted that photons are emitted (1) at near UVA, visible, and near IR spectral ranges from 350 to 1300nm and (2) at the intensity of photon emission in the range of several units to several hundreds (oxidative metabolic process) and several hundreds to several thousands (oxidative stress process) photons s(-1)cm(-2). Current development in detection using low-noise photomultiplier tubes and imaging using highly sensitive charge coupled device cameras allows temporal and spatial visualization of oxidative metabolic or oxidative stress processes, respectively. As the phenomenon of ultra-weak photon emission reflects oxidative metabolic or oxidative stress processes, it can be widely used as a non-invasive tool for monitoring of the physiological state of biological systems.

  18. Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus

    PubMed Central

    Pereira, Renato B.; Andrade, Paula B.; Valentão, Patrícia

    2016-01-01

    The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties. PMID:26907303

  19. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation.

    PubMed

    Adrover, Maria; Farrús, Edelweïss; Moyà, Gabriel; Vadell, Jaume

    2012-03-01

    On the Mediterranean island of Mallorca, the use of secondary-treated municipal wastewater in irrigation was introduced with the construction of the first wastewater treatment plants in the 1970s. In this study, the chemical properties and biological activity of 21 arable soils, irrigated for more than 20 years with secondary-treated wastewater, were tested in order to assess their quality. Soil quality was evaluated by measuring cation exchange capacity, pH, calcium carbonate equivalent, soil organic matter, total nitrogen, available phosphorus, water-soluble organic carbon, soil microbial biomass, soil basal respiration, and the activities of the enzymes dehydrogenase, β-glucosidase and alkaline phosphatase. No negative effects of the irrigation treatment were observed on the measured soil parameters. Indeed, soil water-soluble organic carbon, soil microbial biomass and β-glucosidase and alkaline phosphatase activities increased under treated wastewater irrigation. Biological activity of soils irrigated with treated wastewater was affected mainly by soil organic matter content. Although the typical crop management of alfalfa, and other forage crops associated with treated wastewater irrigation, may have contributed to the increase of these parameters, the results suggest that irrigation with treated wastewater is a strategy with many benefits to agricultural land management.

  20. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

    PubMed

    Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno

    2013-09-18

    Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks. PMID:24048833

  1. Biological properties of carbon powders synthesized using chemical vapour deposition and detonation methods.

    PubMed

    Batory, M; Batory, D; Grabarczyk, J; Kaczorowski, W; Kupcewicz, B; Mitura, K; Nasti, T H; Yusuf, N; Niedzielski, P

    2012-12-01

    Carbon powders can be synthesized using variety of CVD and detonation methods. Several interesting properties of carbon powder particles make them a very attractive material examined in many laboratories all over the world. However there is a lack of information discussing investigation of carbon powders directed to its application in pharmaceutical-cosmetic industry and medicine. Earlier investigation results proved that diamond powders present properties fighting free radicals. Presented work discusses the influence of carbon powder particles manufactured using MW/RF PACVD, RF PACVD and detonation methods onto hydro-lipid skin coat. Before the biological examinations physicochemical properties of carbon powders were determined. Grain size, shape and chemical composition of carbon powders were determined using the scanning electron microscopy. Surface functional groups were characterized by IR Fourier-transform spectroscopy and X-ray photoelectron spectroscopy. Structure and phase composition were investigated by means of the Raman spectroscopy. Results of allergy tests performed on laboratory mice proved that carbon powder particles synthesized using different methods do not cause allergy. In the following stage, the group of 20 patients applied the formula including carbon powder on their face skin. The influence of carbon powder onto hydro-lipid skin coat was determined by measurement of such parameters as: pH reaction, skin temperature, lipid fotometry and level of hydration. Additionally, macro pictures of places where the cream had been applied were registered. As the result of the investigation it was found that powders synthesized using various methods present different physicochemical properties which may individually affect the face skin parameters. The noticeable improvement of hydro-lipid skin coat kilter was observed. PMID:23447955

  2. Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: Evaluation of physicochemical and biological properties.

    PubMed

    Silva, Guilherme F; Bosso, Roberta; Ferino, Rafael V; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S

    2014-12-01

    The physicochemical and biological properties of calcium silicate-based cement (CS) associated to microparticulated (micro) or nanoparticulated (nano) zirconium oxide (ZrO2 ) were compared with CS and bismuth oxide (BO) with CS. The pH, release of calcium ions, radiopacity, setting time, and compression strength of the materials were evaluated. The tissue reaction promoted by these materials in the subcutaneous was also investigated by morphological, immunohistochemical, and quantitative analyses. For this purpose, polyethylene tubes filled with materials were implanted into rat subcutaneous. After 7, 15, 30, and 60 days, the tubes surrounded by capsules were fixed and embedded in paraffin. In the H&E-stained sections, the number of inflammatory cells (ICs) in the capsule was obtained. Moreover, detection of interleukin-6 (IL-6) by immunohistochemistry and number of IL-6 immunolabeled cells were carried out. von Kossa method was also performed. The differences among the groups were subjected to Tukey test (p ≤ 0.05). The solutions containing the materials presented an alkaline pH and released calcium ions. The addition of radiopacifiers increased setting time and radiopacity of CS. A higher compressive strength in the CS + ZrO2 (micro and nano) was found compared with CS + BO. The number of IC and IL-6 positive cells in the materials with ZrO2 was significantly reduced in comparison with CS + BO. von Kossa-positive structures were observed adjacent to implanted materials. The ZrO2 associated to the CS provides satisfactory physicochemical properties and better biological response than BO. Thus, ZrO2 may be a good alternative for use as radiopacifying agent in substitution to BO.

  3. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction

    PubMed Central

    Periaswamy Sivagnanam, Saravana; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo

    2015-01-01

    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process. PMID:26035021

  4. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction.

    PubMed

    Sivagnanam, Saravana Periaswamy; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo

    2015-06-01

    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process. PMID:26035021

  5. [Biological properties of the isolate of Trichinella spp. from a jackal in the North-Caucasian Region].

    PubMed

    Odoevskaia, I M; Kurnosova, O P; Klinkov, A V; Bocharova, M M

    2009-01-01

    The biological properties of the isolate from Trichinella from ajackal in the North-Caucasian Region of the Russian Federation were studied. The jackal's muscle tissue showed two Trichinella species preserving their genetic isolation during 5 passages on mice. Oval capsules containing live larvae (on day 90 after infection) in the rat muscles corresponds to the conventional description of the species Trichinella spiralis in their morphometric and biological properties. The morphological data, biological properties, and poor adaptation of round capsule-enclosed parasites to rats indirectly show their affiliation to the other Trichinella species--T. native or T. britovi. There was a negative test for outbred albino rat muscle Trichinella resistance to freezing, which, might be associated with the poor adaptation of this Trichinella isolate to this species of rodents. PMID:19830913

  6. [Biological properties of the isolate of Trichinella spp. from a jackal in the North-Caucasian Region].

    PubMed

    Odoevskaia, I M; Kurnosova, O P; Klinkov, A V; Bocharova, M M

    2009-01-01

    The biological properties of the isolate from Trichinella from ajackal in the North-Caucasian Region of the Russian Federation were studied. The jackal's muscle tissue showed two Trichinella species preserving their genetic isolation during 5 passages on mice. Oval capsules containing live larvae (on day 90 after infection) in the rat muscles corresponds to the conventional description of the species Trichinella spiralis in their morphometric and biological properties. The morphological data, biological properties, and poor adaptation of round capsule-enclosed parasites to rats indirectly show their affiliation to the other Trichinella species--T. native or T. britovi. There was a negative test for outbred albino rat muscle Trichinella resistance to freezing, which, might be associated with the poor adaptation of this Trichinella isolate to this species of rodents.

  7. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.

    PubMed

    Vogt, William C; Jia, Congxian; Wear, Keith A; Garra, Brian S; Joshua Pfefer, T

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison.

  8. Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices.

    PubMed

    Bailey, J L; Critser, P J; Whittington, C; Kuske, J L; Yoder, M C; Voytik-Harbin, S L

    2011-02-01

    Elucidation of mechanisms underlying collagen fibril assembly and matrix-induced guidance of cell fate will contribute to the design and expanded use of this biopolymer for research and clinical applications. Here, we define how Type I collagen oligomers affect in-vitro polymerization kinetics as well as fibril microstructure and mechanical properties of formed matrices. Monomers and oligomers were fractionated from acid-solubilized pig skin collagen and used to generate formulations varying in monomer/oligomer content or average polymer molecular weight (AMW). Polymerization half-times decreased with increasing collagen AMW and closely paralleled lag times, indicating that oligomers effectively served as nucleation sites. Furthermore, increasing AMW yielded matrices with increased interfibril branching and had no correlative effect on fibril density or diameter. These microstructure changes increased the stiffness of matrices as evidenced by increases in both shear storage and compressive moduli. Finally, the biological relevance of modulating collagen AMW was evidenced by the ability of cultured endothelial colony forming cells to sense associated changes in matrix physical properties and alter vacuole and capillary-like network formation. This work documents the importance of oligomers as another physiologically-relevant design parameter for development and standardization of polymerizable collagen formulations to be used for cell culture, regenerative medicine, and engineered tissue applications. PMID:20740490

  9. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs.

    PubMed

    Kumar, Suresh; Jitendra, Kumar; Singh, Kusum; Kapoor, Vaishali; Sinha, Mou; Xess, Immaculata; Das, Satya N; Sharma, Sujata; Singh, Tej P; Dey, Sharmistha

    2015-08-01

    Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments. PMID:26043852

  10. Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV).

    PubMed

    Hofmann, M; Wyler, R

    1989-06-01

    The porcine epidemic coronavirus (PEDV), tentatively classified as a coronavirus, was adapted to Vero cells and a plaque test developed for infectivity titration, allowing us to test the biological and biophysical properties of the virus. Growth kinetics showed peak titers of 10(5.5) plaque-forming units ml-1 15 h after infection. Filtration experiments and electron microscopy revealed a particle diameter between 100 and 200 nm. The buoyant density of the virus was 1.18. The particle lost its infectivity on treatment with lipid solvents. Virus replication could not be inhibited by 5-iodo-2'-deoxyuridine. PEDV was moderately stable at 50 degrees C, but heat sensitivity was not altered by divalent cations. At 4 degrees C, the virus was stable between pH 5.0 and 9.0, but at 37 degrees C stability was restricted to the pH range 6.5-7.5. Viral infectivity was not impaired by ultrasonication or by multiple freezing and thawing. PEDV was not neutralized by transmissible gastroenteritis virus antiserum. On the basis of the tests carried out, PEDV is a pleomorphic, enveloped RNA virus with a particle diameter of approximately 150 nm and a buoyant density of 1.18. Infectivity depends on the presence of trypsin, and infected cells show a tendency to fuse and to form syncytia. All of these properties, as well as its physicochemical characteristics, allow PEDV to be classified as a coronavirus.

  11. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.

    PubMed

    Vogt, William C; Jia, Congxian; Wear, Keith A; Garra, Brian S; Joshua Pfefer, T

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  12. An optimized molecular inclusion complex of diferuloylmethane: enhanced physical properties and biological activity

    PubMed Central

    Tan, Qunyou; Li, Yi; Wu, Jianyong; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2012-01-01

    Objective The purpose of this study was to explore and evaluate the enhanced physical properties and biological activity of a molecular inclusion complex (MICDH) comprising diferuloylmethane (DFM) and hydroxypropyl-β-cyclodextrin. Methods The preparation conditions of MICDH were optimized using an orthogonal experimental design. The solubility, in vitro release and model fitting, microscopic morphology, molecular structure simulation, anti-lung cancer activity, and action mechanism of MICDH were evaluated. Results The solubility of DFM was improved 4400-fold upon complexation with hydroxypropyl-β-cyclodextrin. The release rate of DFM was significantly higher from MICDH than from free DFM. MICDH exhibited higher antitumor activity against human lung adenocarcinoma A549 cells than free DFM. More cells were arrested in the S/G2 phase of the cell cycle or were induced to undergo apoptosis when treated with MICDH than when treated with free DFM. Furthermore, increased reactive oxygen species and intracellular calcium ion levels and decreased mitochondrial membrane potential were observed in cells treated with MICDH. Conclusion MICDH markedly improved the physical properties and antitumor activity of DFM. MICDH may prove to be a preferred alternative to free DFM as a formulation for DFM delivery in lung cancer treatment. PMID:23091376

  13. Lunar Rhythms In Forestry Traditions - Lunar-Correlated Phenomena In Tree Biology And Wood Properties

    NASA Astrophysics Data System (ADS)

    Zürcher, Ernst

    For more than 2000 years, certain forestry practices and rules regarding tree felling have been carried out in observance to Moon cycles. A general review of the different types of rules followed (known in Europe and on other continents and stemming from both written sources and current practitioners) shows that special timber uses are mentioned in relation to a specific felling date which supposedly ensures advantageous wood properties. These empirical forestry traditions apply to a range of wood uses as diverse as building timber, shingles, wooden chimneys, fuel wood, resonance wood for harmony tables of violins, cheese-boxes, barrels and ploughs. In each of these cases, felling at the ``right date'' is thought to be an important factor to ensure the required properties of the product. Moreover, the rafting of timber used to be limited to certain days of the Moon cycle, when the water was supposed to carry the wood in the best way. The second part presents scientific studies concerned, on the one hand, with ``Moon phases'' factor. They deal with elements of tree biology such as germination and initial growth of tropical trees (where strong and systematic variations and their complicating aspects have been observed), insect attacks on trees and reversible fluctuations of stem diameters. On the other hand, some works concentrate on wood properties and the relation between wood and water. They deal with the durability of wood, with systematic density variations after kiln-drying and with variations in the compression strength of the corresponding samples. An overview tries to find a common link between empirical practices and the scientific results.

  14. Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties.

    PubMed

    Kalinowska, Monika; Bielawska, Aleksandra; Lewandowska-Siwkiewicz, Hanna; Priebe, Waldemar; Lewandowski, Włodzimierz

    2014-11-01

    Apples are among the most popular fruits in the world. They are rich in phenolic compounds, pectin, sugar, macro- and microelements. Applying different extraction techniques it is possible to isolate a particular group of compounds or individual chemicals and then test their biological properties. Many reports point to the antioxidant, antimicrobial, anticancer and many other beneficial effects of apple components that may have potential applications in food, pharmaceutical and cosmetic industries. This paper summarizes and compiles information about apple phenolic compounds, their biological properties with particular emphasis on health-related aspects. The data are reviewed with regard to different apple varieties, part of apple, cultivation model and methods of extraction. PMID:25282014

  15. Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties.

    PubMed

    Kalinowska, Monika; Bielawska, Aleksandra; Lewandowska-Siwkiewicz, Hanna; Priebe, Waldemar; Lewandowski, Włodzimierz

    2014-11-01

    Apples are among the most popular fruits in the world. They are rich in phenolic compounds, pectin, sugar, macro- and microelements. Applying different extraction techniques it is possible to isolate a particular group of compounds or individual chemicals and then test their biological properties. Many reports point to the antioxidant, antimicrobial, anticancer and many other beneficial effects of apple components that may have potential applications in food, pharmaceutical and cosmetic industries. This paper summarizes and compiles information about apple phenolic compounds, their biological properties with particular emphasis on health-related aspects. The data are reviewed with regard to different apple varieties, part of apple, cultivation model and methods of extraction.

  16. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    PubMed Central

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D.; Simmons, Breana L.; Wall, Diana H.

    2009-01-01

    Background Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. Methodology/Principal Findings We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not

  17. Mapping the functional properties of soft biological tissues under shear loading

    NASA Astrophysics Data System (ADS)

    Buckley, Mark Raymond

    The structure and composition of articular cartilage and other load-bearing biological tissues are highly complex and heterogeneous. As a result, their functional mechanical properties exhibit clear spatial variations. Unlocking the structure-function relationship in these materials is critical for devising strategies to restore tissue impaired by injury or disease and can provide a template for successful implant design. Here, we describe a tissue deformation imaging stage (TDIS) allowing for simultaneous force measurement and visualization of microscale deformation in soft biological tissues under controlled shear strain. In combination with a fast confocal microscope, the TDIS is used to test the microscale response of articular cartilage to shear loading. To obtain the location-specific shear modulus of this tissue, we employ a high-resolution technique that involves tracking the deformation of a line photobleached into a fluorescently stained sample loaded in the TDIS. We find that the quasi-static and dynamic shear moduli are lowest roughly 100 mum below the articular surface. Here, articular cartilage is highly nonlinear, stiffening under increased shear strain and becoming more compliant under increased compressive strain. Using a simple thought model, we relate these results to structural features of the collagen network in articular cartilage. Furthermore, we demonstrate that the region of maximum compliance is also the primary site of shear energy dissipation in articular cartilage. Our findings suggest that damage to or surgical removal of the surface of this tissue will increase the joint's susceptibility to shear-induced damage. Finally, similar experiments are performed on intervertebral disc and growth plate, demonstrating the versatility of our in-situ strain mapping techniques.

  18. Path-Integration Computation of the Transport Properties of Polymers Nanoparticles and Complex Biological Structures

    NASA Astrophysics Data System (ADS)

    Douglas, Jack

    2014-03-01

    finite cross-section, DNA, nanoparticles with grafted chain layers and knotted polymers. The path-integration method, which grew up from research in Karl Freed's group, is evidently a powerful tool for computing basic transport properties of complex-shaped objects and should find increasing application in polymer science, nanotechnological applications and biology.

  19. Physical and biological properties of a novel siloxane adhesive for soft tissue applications.

    PubMed

    Wilson, D J; Chenery, D H; Bowring, H K; Wilson, K; Turner, R; Maughan, J; West, P J; Ansell, C W G

    2005-01-01

    The aim of this study was to investigate the adhesive properties of an in-house aminopropyltrimethoxysilane-methylenebisacrylamide (APTMS-MBA) siloxane system and compare them with a commercially available adhesive, n-butyl cyanoacrylate (nBCA). The ability of the material to perform as a soft tissue adhesive was established by measuring the physical (bond strength, curing time) and biological (cytotoxicity) properties of the adhesives on cartilage. Complementary physical techniques, X-ray photoelectron spectroscopy, Raman and infrared imaging, enabled the mode of action of the adhesive to the cartilage surface to be determined. Adhesion strength to cartilage was measured using a simple butt joint test after storage in phosphate-buffered saline solution at 37 degrees C for periods up to 1 month. The adhesives were also characterised using two in vitro biological techniques. A live/dead stain assay enabled a measure of the viability of chondrocytes attached to the two adhesives to be made. A water-soluble tetrazolium assay was carried out using two different cell types, human dermal fibroblasts and ovine meniscal chondrocytes, in order to measure material cytotoxicity as a function of both supernatant concentration and time. IR imaging of the surface of cartilage treated with APTMS-MBA siloxane adhesive indicated that the adhesive penetrated the tissue surface marginally compared to nBCA which showed a greater depth of penetration. The curing time and adhesion strength values for APTMS-MBA siloxane and nBCA adhesives were measured to be 60 s/0.23 MPa and 38 min/0.62 MPa, respectively. These materials were found to be significantly stronger than either commercially available fibrin (0.02 MPa) or gelatin resorcinol formaldehyde (GRF) adhesives (0.1 MPa) (P < 0.01). Cell culture experiments revealed that APTMS-MBA siloxane adhesive induced 2% cell death compared to 95% for the nBCA adhesive, which extended to a depth of approximately 100-150 microm into the cartilage

  20. Fab-based bispecific antibody formats with robust biophysical properties and biological activity.

    PubMed

    Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J

    2015-01-01

    A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.

  1. Methods for evaluation of structural and biological properties of antiinvasive natural products.

    PubMed

    Mudit, Mudit; Khanfar, Mohammad; Shah, Girish V; Sayed, Khalid A El

    2011-01-01

    Prostate cancer is considered the most common cancer form among males in Western countries. Very limited options are available for the treatment of advanced metastatic prostate cancer. More than 50% of today's anticancer drugs are natural products or derived from a natural origin. To discover new entities with potential to treat prostate cancer at androgen-refractory stages, 36 structurally diverse natural products were screened using functional-based assays. The tested compounds were selected broadly from major secondary metabolites of plants, marine invertebrates, and fungi. These diverse entities were prescreened for their antiinvasive ability against prostate cancer cells, PC-3M, using spheroid disaggregation assay. Active representatives including three selected structural classes, a macrolide, a β-carboline alkaloid, and a phenylmethylene hydantoin (PMH), were then tested for their ability to stabilize junctional complexes and enhance cell-cell adhesion of androgen independent prostate cancer cells. Transepithelial resistance (TER) and paracellular permeability assays were used to elicit the aforementioned properties. These studies led to the emergence of PMHs as a small molecule class from the marine sponge Hemimycale arabica with a unique potential to attenuate CT-stimulated prostate cancer growth, metastasis, paracellular permeability, and enhance TER and cell-cell adhesion of prostate cancer cells. The unique activities of PMHs were validated using several in vitro assays followed by in vivo testing in two mice models. A 3D QSAR was established using SYBYL 8.1-Comparative Molecular Field Analysis (CoMFA) model. This chapter includes the methodology for evaluation of structural and biological properties of new antiinvasive molecules with an exceptional potential to stabilize junctional complexes from diverse natural product sources. PMID:21318900

  2. Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration

    PubMed Central

    Singh, Rajendra K.; Patel, Kapil D.; Lee, Jae Ho; Lee, Eun-Jung; Kim, Joong-Hyun; Kim, Tae-Hyun; Kim, Hae-Won

    2014-01-01

    Magnetic nanofibrous scaffolds of poly(caprolactone) (PCL) incorporating magnetic nanoparticles (MNP) were produced, and their effects on physico-chemical, mechanical and biological properties were extensively addressed to find efficacy for bone regeneration purpose. MNPs 12 nm in diameter were citrated and evenly distributed in PCL solutions up to 20% and then were electrospun into nonwoven nanofibrous webs. Incorporation of MNPs greatly improved the hydrophilicity of the nanofibers. Tensile mechanical properties of the nanofibers (tensile strength, yield strength, elastic modulus and elongation) were significantly enhanced with the addition of MNPs up to 15%. In particular, the tensile strength increase was as high as ∼25 MPa at 15% MNPs vs. ∼10 MPa in pure PCL. PCL-MNP nanofibers exhibited magnetic behaviors, with a high saturation point and hysteresis loop area, which increased gradually with MNP content. The incorporation of MNPs substantially increased the degradation of the nanofibers, with a weight loss of ∼20% in pure PCL, ∼45% in 10% MNPs and ∼60% in 20% MNPs. Apatite forming ability of the nanofibers tested in vitro in simulated body fluid confirmed the substantial improvement gained by the addition of MNPs. Osteoblastic cells favored the MNPs-incorporated nanofibers with significantly improved initial cell adhesion and subsequent penetration through the nanofibers, compared to pure PCL. Alkaline phosphatase activity and expression of genes associated with bone (collagen I, osteopontin and bone sialoprotein) were significantly up-regulated in cells cultured on PCL-MNP nanofibers than those on pure PCL. PCL-MNP nanofibers subcutaneously implanted in rats exhibited minimal adverse tissue reactions, while inducing substantial neoblood vessel formation, which however, greatly limited in pure PCL. In vivo study in radial segmental defects also signified the bone regeneration ability of the PCL-MNP nanofibrous scaffolds. The magnetic, bone

  3. Role of the physical state of Salmonella lipopolysaccharide in expression of biological and endotoxic properties.

    PubMed Central

    Shnyra, A; Hultenby, K; Lindberg, A A

    1993-01-01

    Lipopolysaccharide (LPS) extracted from three strains of Salmonella typhimurium, i.e., the rough Re mutant SL1102, the rough Ra mutant TV119, and the smooth strain SH4809, was first electrodialyzed (eLPS) and then divalent cation deprived by EDTA treatment and finally made monomeric by deoxycholate solubilization. The removal of excess detergent by extensive dialysis in the absence of mineral cations resulted in the reassociation of LPS subunits into monodisperse micelles of reduced aggregation number (dLPS) as estimated by electron microscopy and gel filtration chromatography. For all LPS chemotypes tested, the developed procedure reproducibly results in stable and clear solutions of dLPS in concentrations of up to 100 mg/ml. The dLPS and eLPS preparations possessed the same reactivity with monoclonal antibodies (MAbs) raised against different LPS domains. The 100% lethal dose in galactosamine-sensitized mice of 0.01 microgram for the smooth eLPS was from 10- to 100-fold lower than that of dLPS at 0.1 to 1.0 microgram. dLPS from both the smooth strain and the Ra mutant had a significantly reduced capacity to activate the proenzyme cascade in the Limulus amoebocyte lysate assay in comparison with the slightly reduced activity of dLPS from the Re mutant. In contrast, dLPS as well as the deoxycholate-dispersed and then diluted eLPS from the smooth strain had a higher mitogenic activity on splenocytes than eLPS. The results indicate that the biological and endotoxic properties of LPS are significantly influenced by the physical state of its aggregates in aqueous solutions. The approach developed for production of a stable and dispersed form of LPS should further assist in investigation of LPS properties and interpretation of the data of endotoxic research. Images PMID:8225609

  4. Biology in a gray box: targeting the emergent properties of protein complexes: 2011 Yale Chemical Biology Symposium.

    PubMed

    Wong, Victor

    2011-12-01

    At the 2011 Yale Chemical Biology Symposium, Jason Gestwicki presented a novel yet intuitive approach to drug screening. This method, which he termed "gray box" screening, targets protein complexes that have been reconstituted in vitro. Therefore, the gray box screen can achieve greater phenotypic complexity than biochemical assays but avoids the need for target identification that follows cell-based assays. Dr. Gestwicki's research group was able to use the gray box screen to identify myricetin as an inhibitor of the DnaK-DnaJ chaperone complex. This review will discuss Dr. Gestwicki's approach to identifying DnaK-DnaJ inhibitors as well as where the gray box screen fits among traditional techniques in drug discovery.

  5. LASER METHODS IN BIOLOGY: Optical anisotropy of fibrous biological tissues: analysis of the influence of structural properties

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.

    2007-08-01

    The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.

  6. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds. PMID:20429776

  7. CARBON LOSS AND OPTICAL PROPERTY CHANGES DURING LONG-TERM PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Terrestrially derived dissolved organic matter (DOM) impacts the optical properties of coastal seawater and affects carbon cycling on a global scale. We studied sequential long-term photochemical and biological degradation of estuarine dissolved organic matter from the
    Satilla...

  8. [Assessment of the viscoelastic properties of biological membranes by measurements on bilayers].

    PubMed

    Pasechnik, V I; Gianik, T

    1978-01-01

    The frequency characteristic of the complex Young modulus along the normal to surface is measured for the bilayer lipid membranes (BLM). For egg lecithin membranes the absolute value of the modulus (formula: see text) rises from 4.10(6) to 10(8) dyn/cm2 (n-decane) and from 10(8) to 10(9) dyn/cm2 (n-hexadecane) with the frequency change from 20 Hz to 15 000 Hz depending on different membrane solvents. (formula: see text) also rises several times if cholesterol is added or lipid hydrocarbon chains are longer or more saturated. If the solvent--n-hexadecane is freezed out in the region of 14 degrees C,(formula: see text) increases up to 10(10) dyn/cm2. The loss angle is measured and real and imaginary parts of (formula: see text) are determined. (formula: see text) posesses the relaxtion times spectrum in the range 10(-5)--10(-3) s. The conclusion is made that biological membranes like BLM have polymer properties, their (formula: see text) values may achieve 10(10) dyn/cm2 and the relaxation times are greater than 10(-3) s.

  9. Porous Tantalum Structures for Bone Implants: Fabrication, Mechanical and In vitro Biological Properties

    PubMed Central

    Balla, Vamsi Krishna; Bodhak, Subhadip; Bose, Susmita; Bandyopadhyay, Amit

    2010-01-01

    Relatively high cost of manufacturing and inability to produce modular all tantalum implants has limited its widespread acceptance, in spite of its excellent in vitro and in vivo biocompatibility. In this article, we report how to process Ta to create net shape porous structures with varying porosity using Laser Engineered Net Shaping (LENS™) for the first time. Porous Ta samples with relative densities between 45 to 73% have been successfully fabricated and characterized for their mechanical properties. In vitro cell materials interactions, using human osteoblast cell line hFOB, have been accessed on these porous Ta structures and compared with porous Ti control samples. The results show that the Young’s modulus of porous Ta can be tailored between 1.5 to 20 GPa by changing the pore volume fraction between 27 and 55%. In vitro biocompatibility in terms of MTT assay and immunochemistry study showed excellent cellular adherence, growth and differentitation with abundant extracellular matrix formation on porous Ta structures compared to porous Ti control. These results indicate that porous Ta structures can promote enhanced/early biological fixation. The enhanced in vitro cell-materials interactions on porous Ta surface are attributed to chemistry and its high wettability and surface energy relative to porous Ti. Our results show that these laser processed porous Ta structures can find numerous applications, particularly among older patients, for metallic implants because of their excellent bioactivity. PMID:20132912

  10. The impact of antibiotics (benzylpenicillin, and nystatin) on the biological properties of ordinary chernozems

    NASA Astrophysics Data System (ADS)

    Akimenko, Yu. V.; Kazeev, K. Sh.; Kolesnikov, S. I.

    2014-09-01

    In recent years, the input of antibiotics into soils has sharply increased. We studied the impact antibiotics (benzylpenicillin, pharmasin, and nystatin) at different concentrations (100 and 600 mg/kg) on population densities of microorganisms and enzymatic activity of ordinary chernozems in model experiments. The applied doses of antibiotics had definite suppressing effects on population densities of microorganisms (up to 30-70% of the control) and on the soil enzymatic activity (20-70% of the control). Correlation analysis showed close correlation between the concentrations of antibiotics and the population densities of soil microorganisms ( r = -0.68-0.86). Amylolytic bacteria had the highest resistance to the antibiotics, whereas ammonifying bacteria had the lowest resistance. Among the studied enzymes belonging to oxidoreductases and hydrolases, catalase and phosphatase had the highest and the lowest resistance to the antibiotics, respectively. The effect of antibiotics on the biological properties of the chernozem lasted for a long time. The studied parameters were not completely recovered in 120 days.

  11. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    PubMed

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment. PMID:26484394

  12. Biological and chemical-physical properties of root-end filling materials: A comparative study

    PubMed Central

    Ceci, Matteo; Beltrami, Riccardo; Chiesa, Marco; Colombo, Marco; Poggio, Claudio

    2015-01-01

    Aim: The purpose of the study is to evaluate and compare the biological and chemical-physical properties of four different root-end filling materials. Materials and Methods: Cytotoxicity towards murine odontoblasts cells (MDPC-23) was evaluated using the Transwell insert methodology by Alamar blue test. Streptococcus salivarius, S. sanguis, and S. mutans strains were selected to evaluate the antimicrobial activity by agar disc diffusion test. Solubility was determined after 24 h and 2 months. pH values were measured after 3 and 24 h. To evaluate radiopacity, all materials were scanned on a GE Healthcare Lunar Prodigy. Results: Excellent percentage of vitality were obtained by mineral trioxide aggregate (MTA)-based materials and Biodentine. MTA-Angelus, ProRoot MTA, and Intermediate Restorative Material (IRM) showed the highest values for the inhibition zones when tested for S. mutans, while Biodentine showed the largest inhibition zone when tested for S. sanguis. All the materials fulfilled the requirements of the International Standard 6876, demonstrating low solubility with a weight loss of less than 3%. No significant reduction in pH value was demonstrated after 24 h. ProRoot MTA and MTA-Angelus showed the highest values of radiographic density. Conclusions: The differences showed by the root-end filling materials tested do not cover completely the ideal clinical requests. PMID:25829684

  13. Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin.

    PubMed

    Sangpheak, Waratchada; Kicuntod, Jintawee; Schuster, Roswitha; Rungrotmongkol, Thanyada; Wolschann, Peter; Kungwan, Nawee; Viernstein, Helmut; Mueller, Monika; Pongsawasdi, Piamsook

    2015-01-01

    The aim of this work is to improve physical properties and biological activities of the two flavanones hesperetin and naringenin by complexation with β-cyclodextrin (β-CD) and its methylated derivatives (2,6-di-O-methyl-β-cyclodextrin, DM-β-CD and randomly methylated-β-CD, RAMEB). The free energies of inclusion complexes between hesperetin with cyclodextrins (β-CD and DM-β-CD) were theoretically investigated by molecular dynamics simulation. The free energy values obtained suggested a more stable inclusion complex with DM-β-CD. The vdW force is the main guest-host interaction when hesperetin binds with CDs. The phase solubility diagram showed the formation of a soluble complex of AL type, with higher increase in solubility and stability when hesperetin and naringenin were complexed with RAMEB. Solid complexes were prepared by freeze-drying, and the data from differential scanning calorimetry (DSC) confirmed the formation of inclusion complexes. The data obtained by the dissolution method showed that complexation with RAMEB resulted in a better release of both flavanones to aqueous solution. The flavanones-β-CD/DM-β-CD complexes demonstrated a similar or a slight increase in anti-inflammatory activity and cytotoxicity towards three different cancer cell lines. The overall results suggested that solubilities and bioactivities of both flavanones were increased by complexation with methylated β-CDs.

  14. Effects of barriers on chemical and biological properties of two dual resin cements.

    PubMed

    Nocca, Giuseppina; Iori, Andrea; Rossini, Carlo; Martorana, Giuseppe E; Ciasca, Gabriele; Arcovito, Alessandro; Cordaro, Massimo; Lupi, Alessandro; Marigo, Luca

    2015-06-01

    The aim of this study was to investigate the degree of conversion, monomer release, and cytotoxicity of two dual-cure resin cements (Cement-One and SmartCem2), light-cured across two indirect restorative materials in an attempt to simulate in vitro the clinical conditions. The results obtained show that the degree of conversion was influenced by both barriers, but the effect of the composite material was greater than that of the ceramic one. The amount of monomers released from the polymerized materials in the absence of barriers was significantly lower than that released in the presence of either the ceramic or the composite barrier. However, a higher amount of monomers was released in the presence of the ceramic barrier. All materials, in all the experimental conditions employed, induced slight cytotoxicity (5-10%) on human pulp cells. Our examinations showed that the two resin cements had similar chemical and biological properties. The decreased degree of conversion of the dual-curing self-adhesive composite showed that the light-curing component of these materials has an important role in the polymerization process. In clinical practice, it is therefore important to pay attention to the thickness of the material used for the reconstruction.

  15. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation, and photothermal effects†

    PubMed Central

    Tong, Ling; Wei, Qingshan; Wei, Alexander; Cheng, Ji-Xin

    2009-01-01

    Gold nanorods (NRs) have plasmon-resonant absorption and scattering in the near-infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two-photon luminescence (TPL) due to plasmon-enhanced two-photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography (OCT) or photoacoustic tomography (PAT). Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell-specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, and inflict localized damage to tumor cells. Laser-induced heating of NRs can disrupt cell membrane integrity and homeostasis, resulting in Ca2+ influx and the depolymerization of the intracellular actin network. The combination of plasmon-resonant optical properties, intense local photothermal effects, and robust surface chemistry render gold NRs as promising theragnostic agents. PMID:19161395

  16. Bauhinia forficata Link authenticity using flavonoids profile: relation with their biological properties.

    PubMed

    Ferreres, Federico; Gil-Izquierdo, Angel; Vinholes, Juliana; Silva, Sara T; Valentão, Patrícia; Andrade, Paula B

    2012-09-15

    HPLC-DAD-ESI/MS(n) was used to ascertain the authenticity of two certified and two commercial Bauhinia forficata Link samples. Different flavonoids profiles were obtained, involving 39 compounds. Just kaempferol-3-O-(2-rhamnosyl)rutinoside was found in all analysed samples. Five compounds were common to the certified samples of B. forficata Link and B. forficata Link subsp. pruinosa (Vogel) Fortunato & Wunderlin, being kaempferol derivatives the most representative ones. The phenolic composition of B. forficata Link subsp. pruinosa (Vogel) Fortunato & Wunderlin is described herein for the first time, accounting for eight compounds, while 10 new compounds were identified in B. forficata Link. Commercial B. forficata Link showed higher contents of quercetin derivatives, in addition to the presence of myricetin derivatives and flavonoids-(galloyl)glycosides, for which the MS fragmentation pattern is reported for the first time. B. forficata Link and the two commercial samples were able to inhibit α-glucosidase, with EC(50) values lower than that found for acarbose. Mild effects on cholinesterases were observed with the certified samples, while commercial ones were more effective. The same behaviour was observed concerning the scavenging of DPPH, nitric oxide and superoxide radicals. The presence of high contents of quercetin derivatives in commercial samples seems to directly influence their biological properties. The differences between phenolic profiles and their relation with the authenticity of commercial samples are discussed.

  17. The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC.

    PubMed

    Carbone, C; Campisi, A; Manno, D; Serra, A; Spatuzza, M; Musumeci, T; Bonfanti, R; Puglisi, G

    2014-09-01

    Exploiting the experimental factorial design and the potentiality of Turbiscan AG Station, we developed and characterized unmodified and DDAB-coated NLC prepared by a low energy organic solvent free phase inversion temperature technique. A 22 full factorial experimental design was developed in order to study the effects of two independent variables (DDAB and ferulic acid) and their interaction on mean particle size and zeta potential values. The factorial planning was validated by ANOVA analysis; the correspondence between the predicted values of size and zeta and those measured experimentally confirmed the validity of the design and the equation applied for its resolution. The DDAB-coated NLC were significantly affected in their physico-chemical properties by the presence of DDAB, as showed by the results of the experimental design. The coated NLC showed higher physical stability with no particles aggregation compared to the unmodified NLC, as demonstrated by Turbiscan(®) AGS measurements. X-ray diffraction, Raman spectroscopy and Cryo-TEM images allowed us to assert that DDAB plays a critical role in increasing the lipids structural order with a consequent enhancement of the NLC physical stability. Furthermore, the results of the in vitro biological studies allow the revisiting of the role of DDAB to the benefit of glioblastoma treatment, due to its efficacy in increasing the NLC uptake and reducing the viability of human glioblastoma cancer cells (U87MG). PMID:24929522

  18. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    SciTech Connect

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  19. Biological and Immunogenicity Property of IgY Anti S. mutans ComD

    PubMed Central

    Bachtiar, E.W.; Bachtiar, B.M.; Soejoedono, R.D.; Wibawan, I.W.; Afdhal, A.

    2016-01-01

    Objective: This study aims to elucidate the effect of IgY anti ComD on the biological properties of Streptococcus mutans. (S. mutans) ComD is an interspecies quorum-sensing signaling receptor that plays an important role in biofilm formation by S. mutans. Materials and Methodology: Egg yolk IgY was produced by the immunization of chickens with a DNA vaccine containing the ComD DNA coding region. We evaluated the effect of the antibody on biofilm formation by S. mutans isolated from subjects with or without dental caries. We also assessed the immunoreactivity of the antibody against all isolates, and analyzed the protein profile of S. mutans by SDS-PAGE. Results: The ComD antibody was successfully induced in the hens’ eggs. It inhibited biofilm formation by all S. mutans isolates. In addition, the expression of some protein bands was affected after exposure to the antibody. Conclusion: IgY anti-S. mutans ComD reduces biofilm formation by this bacterium and alters the protein profile of S. mutans. PMID:27386013

  20. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages

    PubMed Central

    Wan, W. Brad; Migawa, Michael T.; Vasquez, Guillermo; Murray, Heather M.; Nichols, Josh G.; Gaus, Hans; Berdeja, Andres; Lee, Sam; Hart, Christopher E.; Lima, Walt F.; Swayze, Eric E.; Seth, Punit P.

    2014-01-01

    Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability. PMID:25398895

  1. Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin

    PubMed Central

    Sangpheak, Waratchada; Kicuntod, Jintawee; Schuster, Roswitha; Rungrotmongkol, Thanyada; Wolschann, Peter; Kungwan, Nawee; Viernstein, Helmut

    2015-01-01

    Summary The aim of this work is to improve physical properties and biological activities of the two flavanones hesperetin and naringenin by complexation with β-cyclodextrin (β-CD) and its methylated derivatives (2,6-di-O-methyl-β-cyclodextrin, DM-β-CD and randomly methylated-β-CD, RAMEB). The free energies of inclusion complexes between hesperetin with cyclodextrins (β-CD and DM-β-CD) were theoretically investigated by molecular dynamics simulation. The free energy values obtained suggested a more stable inclusion complex with DM-β-CD. The vdW force is the main guest–host interaction when hesperetin binds with CDs. The phase solubility diagram showed the formation of a soluble complex of AL type, with higher increase in solubility and stability when hesperetin and naringenin were complexed with RAMEB. Solid complexes were prepared by freeze-drying, and the data from differential scanning calorimetry (DSC) confirmed the formation of inclusion complexes. The data obtained by the dissolution method showed that complexation with RAMEB resulted in a better release of both flavanones to aqueous solution. The flavanones-β-CD/DM-β-CD complexes demonstrated a similar or a slight increase in anti-inflammatory activity and cytotoxicity towards three different cancer cell lines. The overall results suggested that solubilities and bioactivities of both flavanones were increased by complexation with methylated β-CDs. PMID:26877798

  2. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  3. Near infrared fluorescence quenching properties of copper (II) ions for potential applications in biological imaging

    NASA Astrophysics Data System (ADS)

    Maji, Dolonchampa; Zhou, Mingzhou; Sarder, Pinaki; Achilefu, Samuel

    2014-03-01

    Fluorescence quenching properties of copper(II) ions have been used for designing Cu(II) sensitive fluorescent molecular probes. In this paper, we demonstrate that static quenching plays a key role in free Cu(II)-mediated fluorescence quenching of a near infrared (NIR) fluorescent dye cypate. The Stern-Volmer quenching constant was calculated to be KSV = 970,000 M-1 in 25 mM MES buffer, pH 6.5 at room temperature. We synthesized LS835, a compound containing cypate attached covalently to chelated Cu(II) to study fluorescence quenching by chelated Cu(II). The fluorescence quenching mechanism of chelated Cu(II) is predominantly dynamic or collisional quenching. The quenching efficiency of chelated Cu(II) was calculated to be 58% ± 6% in dimethylsulfoxide at room temperature. Future work will involve further characterization of the mechanism of NIR fluorescence quenching by Cu(II) and testing its reversibility for potential applications in designing fluorophore-quencher based molecular probes for biological imaging.

  4. Evaluation of microbial loads, physical characteristics, chemical constituents and biological properties of radiation processed Fagonia arabica

    NASA Astrophysics Data System (ADS)

    Khattak, Khanzadi Fatima

    2012-06-01

    Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1-10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.

  5. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    PubMed

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.

  6. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps.

    PubMed

    Greenbury, S F; Ahnert, S E

    2015-12-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype-phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into 'constrained' and 'unconstrained' sequences, in the broadest possible sense. As 'constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. 'Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with 'coding' and 'non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps.

  7. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype–phenotype maps

    PubMed Central

    Greenbury, S. F.; Ahnert, S. E.

    2015-01-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype–phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into ‘constrained' and ‘unconstrained' sequences, in the broadest possible sense. As ‘constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. ‘Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with ‘coding' and ‘non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. PMID:26609063

  8. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps.

    PubMed

    Greenbury, S F; Ahnert, S E

    2015-12-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype-phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into 'constrained' and 'unconstrained' sequences, in the broadest possible sense. As 'constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. 'Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with 'coding' and 'non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. PMID:26609063

  9. A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy.

    PubMed

    Coleman, A J; Saunders, J E

    1993-01-01

    Extracorporeal shockwave lithotripsy (ESWL) has now been used for more than a decade in the treatment of urinary stone disease. During this period there has been a wide range of studies on the physical properties of the high-amplitude focussed fields used in ESWL and the biological effects of exposure to such fields, including their ability to fragment hard concretions. These studies form a distinct body of knowledge whose relevance to the broader literature on biological effects from lower amplitude exposures has yet to be fully evaluated. This review attempts to present the main results of biological-effects studies in ESWL along with what is known of the physical properties of lithotripsy fields with the aim of assisting this evaluation. In general, the reported biological effects of lithotripsy fields are compatible with those that have been observed at those lower amplitudes of focussed pulsed ultrasound in which transient cavitation is the dominant mechanism of interaction. The relatively large amplitudes and low frequencies in ESWL, however, make it a more potent generator of transient cavitation than most other forms of medical ultrasound. Biological-effects studies with lithotripsy fields may, therefore, be expected to extend our understanding of the nature of transient cavitation and, in particular, its effects in mammalian tissue.

  10. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    NASA Astrophysics Data System (ADS)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the

  11. Crop residue management and fertilization effects on soil organic matter and associated biological properties.

    PubMed

    Zhao, Bingzi; Zhang, Jiabao; Yu, Yueyue; Karlen, Douglas L; Hao, Xiying

    2016-09-01

    Returning crop residue may result in nutrient reduction in soil in the first few years. A two-year field experiment was conducted to assess whether this negative effect is alleviated by improved crop residue management (CRM). Nine treatments (3 CRM and 3 N fertilizer rates) were used. The CRM treatments were (1) R0: 100 % of the N using mineral fertilizer with no crop residues return; (2) R: crop residue plus mineral fertilizer as for the R0; and (3) Rc: crop residue plus 83 % of the N using mineral and 17 % manure fertilizer. Each CRM received N fertilizer rates at 270, 360, and 450 kg N ha(-1) year(-1). At the end of the experiment, soil NO3-N was reduced by 33 % from the R relative to the R0 treatment, while the Rc treatment resulted in a 21 to 44 % increase in occluded particulate organic C and N, and 80 °C extracted dissolved organic N, 19 to 32 % increase in microbial biomass C and protease activity, and higher monounsaturated phospholipid fatty acid (PLFA):saturated PLFA ratio from stimulating growth of indigenous bacteria when compared with the R treatment. Principal component analysis showed that the Biolog and PLFA profiles in the three CRM treatments were different from each other. Overall, these properties were not influenced by the used N fertilizer rates. Our results indicated that application of 17 % of the total N using manure in a field with crop residues return was effective for improving potential plant N availability and labile soil organic matter, primarily due to a shift in the dominant microorganisms. PMID:27234834

  12. Effects of selenium on biological and physiological properties of the duckweed Landoltia punctata.

    PubMed

    Zhong, Y; Cheng, J J

    2016-09-01

    Duckweed can be used for bioremediation of selenium (Se) polluted water because of its capability of absorbing minerals from growing media. However, the presence of Se in the media may affect the growth of the duckweed. Landoltia punctata 7449 has been studied for its changes in chemical and biological properties with the presence of Se in the media. The duckweed was cultivated over a 12-day period at different initial concentrations of selenite (Na2 SeO3 ) from 0 to 80 μmol·l(-1) . The growth rate, the organic and total Se contents, the activity of antioxidant enzymes, the photosynthetic pigment contents, the chlorophyll a fluorescence OJIP transient, and the ultrastructure of the duckweed were monitored during the experiment. The results have shown that Se at low concentrations of ≤20 μmol·l(-1) promoted the growth of the L. punctata and inhibited lipid peroxidation. Substantial increases in duckweed growth rate and organic Se content in the duckweed were observed at low Se concentrations. The anti-oxidative effect occurred likely with the increases in guaiacol peroxidase, catalase and superoxide dismutase activities as well as the amount of photosynthetic pigments. However, negative impact to the duckweed was observed when the L. punctata was exposed to high Se concentrations (≥40 μmol·l(-1) ), in which the duckweed growth was inhibited by the selenium. The results indicate that L. punctata 7449 can be used for bioremediation of selenium (Se) polluted water when the Se concentration is ≤20 μmol·l(-1) . PMID:27284791

  13. An investigation of hemopexin redox properties by spectroelectrochemistry: biological relevance for heme uptake.

    PubMed

    Flaherty, Meghan M; Rish, Kimberley R; Smith, Ann; Crumbliss, Alvin L

    2008-06-01

    Hemopexin (HPX) has two principal roles: it sequesters free heme in vivo for the purpose of preventing the toxic effects of this moiety, which is largely due to heme's ability to catalyze free radical formation, and it transports heme intracellularly thus limiting its availability as an iron source for pathogens. Spectroelectrochemistry was used to determine the redox potential for heme and meso-heme (mH) when bound by HPX. At pH 7.2, the heme-HPX assembly exhibits E (1/2) values in the range 45-90 mV and the mH-HPX assembly in the range 5-55 mV, depending on environmental electrolyte identity. The E (1/2) value exhibits a 100 mV positive shift with a change in pH from 7.2 to 5.5 for mH-HPX, suggesting a single proton dependent equilibrium. The E (1/2) values for heme-HPX are more positive in the presence of NaCl than KCl indicating that Na(+), as well as low pH (5.5) stabilizes ferro-heme-HPX. Furthermore, comparing KCl with K(2)HPO(4), the chloride salt containing system has a lower potential, indicating that heme-HPX is easier to oxidize. These physical properties related to ferri-/ferro-heme reduction are both structurally and biologically relevant for heme release from HPX for transport and regulation of heme oxygenase expression. Consistent with this, when the acidification of endosomes is prevented by bafilomycin then heme oxygenase-1 induction by heme-HPX no longer occurs. PMID:17712531

  14. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae).

    PubMed

    Kumar, Dinesh; Kumar, Sunil; Gupta, Jyoti; Arya, Renu; Gupta, Ankit

    2011-07-01

    Cayratia trifolia Linn. Domin Syn. Vitis trifolia (Family: Vitaceae) is commonly known as Fox grape in English; Amlabel, Ramchana in Hindi and Amlavetash in Sanskrit. It is native to India, Asia and Australia. It is a perennial climber having trifoliated leaves with 2-3 cm long petioles and ovate to oblong-ovate leaflets. Flowers are small greenish white and brown in color. Fruits are fleshy, juicy, dark purple or black, nearly spherical, about 1 cm in diameter. It is found throughout the hills in India. This perennial climber is also found in the hotter part of India from Jammu and Rajasthan to Assam extending into the peninusular India upto 600 m height. Whole plant of Cayratia trifolia has been reported to contain yellow waxy oil, steroids/terpenoids, flavonoids, tannins upon preliminary phytochemical screening. Leaves contain stilbenes (piceid, reveratrol, viniferin, ampelopsin). Stem, leaves, roots are reported to possess hydrocyanic acid, delphinidin and several flavonoids such as cyanidin is reported in the leaves. This plant also contains kaempferol, myricetin, quercetin, triterpenes and epifriedelanol. Infusion of seeds along with extract of tubers is traditionally given orally to diabetic patients to check sugar level of blood. Paste of tuberous is applied on the affected part in the treatment of snake bite. Whole plant is used as diuretic, in tumors, neuralgia and splenopathy. Its climbers wrapped around the neck of frantic bullock and poultice of leaves are used to yoke sores of bullock. The bark extract shows the antiviral, antibacterial, antiprotozoal, hypoglycemic, anticancer and diuretic activity. This article focuses on the upgraded review on chemical and biological properties of Cayratia trifolia Linn. and triggers further investigation on this plant. PMID:22279376

  15. Crop residue management and fertilization effects on soil organic matter and associated biological properties.

    PubMed

    Zhao, Bingzi; Zhang, Jiabao; Yu, Yueyue; Karlen, Douglas L; Hao, Xiying

    2016-09-01

    Returning crop residue may result in nutrient reduction in soil in the first few years. A two-year field experiment was conducted to assess whether this negative effect is alleviated by improved crop residue management (CRM). Nine treatments (3 CRM and 3 N fertilizer rates) were used. The CRM treatments were (1) R0: 100 % of the N using mineral fertilizer with no crop residues return; (2) R: crop residue plus mineral fertilizer as for the R0; and (3) Rc: crop residue plus 83 % of the N using mineral and 17 % manure fertilizer. Each CRM received N fertilizer rates at 270, 360, and 450 kg N ha(-1) year(-1). At the end of the experiment, soil NO3-N was reduced by 33 % from the R relative to the R0 treatment, while the Rc treatment resulted in a 21 to 44 % increase in occluded particulate organic C and N, and 80 °C extracted dissolved organic N, 19 to 32 % increase in microbial biomass C and protease activity, and higher monounsaturated phospholipid fatty acid (PLFA):saturated PLFA ratio from stimulating growth of indigenous bacteria when compared with the R treatment. Principal component analysis showed that the Biolog and PLFA profiles in the three CRM treatments were different from each other. Overall, these properties were not influenced by the used N fertilizer rates. Our results indicated that application of 17 % of the total N using manure in a field with crop residues return was effective for improving potential plant N availability and labile soil organic matter, primarily due to a shift in the dominant microorganisms.

  16. Quantitation and biological properties of released and cell-bound lipooligosaccharides from nontypeable Haemophilus influenzae.

    PubMed Central

    Gu, X X; Tsai, C M; Apicella, M A; Lim, D J

    1995-01-01

    Nontypeable Haemophilus influenzae (NTHi) is a major pathogen causing otitis media in children. NTHi releases lipooligosaccharide (LOS) as outer membrane fragments during its growth. The release of LOS may play an important role in the pathogenicity of otitis media caused by this organism. The amounts of LOS in bacterial cells and growth media for five NTHi strains were determined by quantitative silver staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These strains were estimated to have 1.6 x 10(6) to 4.8 x 10(6) LOS molecules per bacterium. During a 3-day growth period, these NTHi strains released variable but significant amounts of LOS into the growth medium. Cells started to release detectable amounts of LOS into the medium at 2 to 5 h and continued to do so for up to 48 or 72 h. The concentrations of LOS in the culture supernatants released by these five strains were 10 to 55 micrograms/ml at 24 h and 40 to 100 micrograms/ml at 72 h, which was 34 to 189% of the cell-bound LOS concentration. The biological properties of released and cell-bound LOSs from two representative strains were compared. Released LOS showed an approximately 10-fold increase in inducing human monocytes to produce tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6, a 13- to 28-fold increase in mouse lethal toxicity, and a 16- to 37-fold increase in the clotting of Limulus amebocyte lysate. These results suggested that released LOS or its inflammatory mediators play a more important role than the LOS in bacteria in the pathogenicity of otitis media caused by this organism. PMID:7558327

  17. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae)

    PubMed Central

    Kumar, Dinesh; Kumar, Sunil; Gupta, Jyoti; Arya, Renu; Gupta, Ankit

    2011-01-01

    Cayratia trifolia Linn. Domin Syn. Vitis trifolia (Family: Vitaceae) is commonly known as Fox grape in English; Amlabel, Ramchana in Hindi and Amlavetash in Sanskrit. It is native to India, Asia and Australia. It is a perennial climber having trifoliated leaves with 2-3 cm long petioles and ovate to oblong-ovate leaflets. Flowers are small greenish white and brown in color. Fruits are fleshy, juicy, dark purple or black, nearly spherical, about 1 cm in diameter. It is found throughout the hills in India. This perennial climber is also found in the hotter part of India from Jammu and Rajasthan to Assam extending into the peninusular India upto 600 m height. Whole plant of Cayratia trifolia has been reported to contain yellow waxy oil, steroids/terpenoids, flavonoids, tannins upon preliminary phytochemical screening. Leaves contain stilbenes (piceid, reveratrol, viniferin, ampelopsin). Stem, leaves, roots are reported to possess hydrocyanic acid, delphinidin and several flavonoids such as cyanidin is reported in the leaves. This plant also contains kaempferol, myricetin, quercetin, triterpenes and epifriedelanol. Infusion of seeds along with extract of tubers is traditionally given orally to diabetic patients to check sugar level of blood. Paste of tuberous is applied on the affected part in the treatment of snake bite. Whole plant is used as diuretic, in tumors, neuralgia and splenopathy. Its climbers wrapped around the neck of frantic bullock and poultice of leaves are used to yoke sores of bullock. The bark extract shows the antiviral, antibacterial, antiprotozoal, hypoglycemic, anticancer and diuretic activity. This article focuses on the upgraded review on chemical and biological properties of Cayratia trifolia Linn. and triggers further investigation on this plant. PMID:22279376

  18. Effects of selenium on biological and physiological properties of the duckweed Landoltia punctata.

    PubMed

    Zhong, Y; Cheng, J J

    2016-09-01

    Duckweed can be used for bioremediation of selenium (Se) polluted water because of its capability of absorbing minerals from growing media. However, the presence of Se in the media may affect the growth of the duckweed. Landoltia punctata 7449 has been studied for its changes in chemical and biological properties with the presence of Se in the media. The duckweed was cultivated over a 12-day period at different initial concentrations of selenite (Na2 SeO3 ) from 0 to 80 μmol·l(-1) . The growth rate, the organic and total Se contents, the activity of antioxidant enzymes, the photosynthetic pigment contents, the chlorophyll a fluorescence OJIP transient, and the ultrastructure of the duckweed were monitored during the experiment. The results have shown that Se at low concentrations of ≤20 μmol·l(-1) promoted the growth of the L. punctata and inhibited lipid peroxidation. Substantial increases in duckweed growth rate and organic Se content in the duckweed were observed at low Se concentrations. The anti-oxidative effect occurred likely with the increases in guaiacol peroxidase, catalase and superoxide dismutase activities as well as the amount of photosynthetic pigments. However, negative impact to the duckweed was observed when the L. punctata was exposed to high Se concentrations (≥40 μmol·l(-1) ), in which the duckweed growth was inhibited by the selenium. The results indicate that L. punctata 7449 can be used for bioremediation of selenium (Se) polluted water when the Se concentration is ≤20 μmol·l(-1) .

  19. The influence comparing of activated biochar and conventional biochar on the soil biological properties

    NASA Astrophysics Data System (ADS)

    Dvořáčková, Helena; Mykajlo, Irina; Záhora, Jaroslav

    2016-04-01

    In our experiment we have used biochar. This material is the product of the pyrolysis that has shown a positive effect on numerous physical and chemical soil properties. However, its influence on the biological component of the soil is very variable. A number of toxic substances that inhibit the soil productivity may be produced during pyrolysis process. The experiment dealt with the hypothesis concerning biochar toxicity reduction by simulating natural processes in the soil. Biochar has been exposed to aeration in the aquatic environment, enriched with nutrients and a source of native soil microflora. It has been created 6 variants in total, each with four replications. The soils samples have been placed in a phytotron for 90 days. Variants consisted of the soil with fertilizers adding (compost, biochar, activated biochar) and have been prepared as well as variants containing compost and biochar and activated biochar optionally. The highest aboveground biomass production has been estimated in variants containing compost, while the lowest production - in the variants containing conventional biochar. During production comparing of the variants with the conventional biochar, activated biochar and control samples it has been evident that activated biochar promotes plant growth, and in contradiction conventional biochar inhibits it. We will approach to the same conclusions when comparing variants with a combination of conventional biochar + compost and activated biochar + compost. Mineral nitrogen leaching has been another investigated parameter. The highest leaching has occurred in the control variant, while the lowest - in the variant with activated biochar (the leaching of nitrate nitrogen has been negligeable). Our results suggest that activated biochar has the potential; however, it is necessary to carry out similar experiments in the field conditions.

  20. Humatrix, a novel myoepithelial matrical gel with unique biochemical and biological properties.

    PubMed

    Kedeshian, P; Sternlicht, M D; Nguyen, M; Shao, Z M; Barsky, S H

    1998-01-30

    Myoepithelial cells in situ and in vitro exert important paracrine effects on carcinoma cells which are mediated by high expression of extracellular matrix molecules, proteinase inhibitors and angiogenic inhibitors. Myoepithelial xenografts (human matrix secreting (HMS)-X, HMS-3X and HMS-4X) established from benign human salivary gland and breast myoepithelial tumors accumulate an abundant extracellular matrix which can be extracted with 6 M urea and 2 M guanidinium hydrochloride to form a gel at 25-37 degrees C. This gel, termed Humatrix, exhibits different biochemical and biological properties than the conventional non-human matrical gels in existence, i.e. Matrigel and Vitrogen 100. Whereas Matrigel consists mainly of basement membrane molecules, e.g. laminin, type IV collagen and heparan sulfate proteoglycan, and Vitrogen 100 consists mainly of non-basement membrane molecules, e.g. type I and type III collagen, Humatrix contains significant amounts of both basement membrane and non-basement membrane molecules, including large amounts of chondroitin sulfate proteoglycan. Like Matrigel, Humatrix contains bound growth factors, including epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I); unlike Matrigel, which contains predominantly significant quantities of bound proteinases, including tissue-type plasminogen activator (tPA), matrix metalloproteinase (MMP)-2 and MMP-9, and angiogenic factors, including basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta, Humatrix contains predominantly bound proteinase inhibitors such as protease nexin II (PN-II) and alpha1-antitrypsin and angiogenic inhibitors such as thrombospondin-1. Humatrix selectively stimulates the growth and tumorigenicity of human myoepithelial cell lines but inhibits invasion, angiogenesis and metastasis of other non-myoepithelial malignant cell lines. Because of its myoepithelial origin Humatrix represents a more natural source of extracellular matrix

  1. [Biological properties of lateritic red soil and their relationships with soil fertility in Southern China under different land use types].

    PubMed

    Zhang, Jing; Gao, Yun-Hua; Zhang, Chi; Zhou, Bo; Li, Jing-Juan; Yang, Xiao-Xue; Xu, Huan; Dai, Jun

    2013-12-01

    Taking the lateritic red soil on a typical slopeland in Southern China as test object, this paper studied the soil microbial properties, enzyme activities, and their relationships with soil fertility under four land use types (newly cultivated dryland, shrub land, Eucalyptus land, and orchard). There existed significant differences in the soil biological properties under different land use types, among which, orchard soil had the highest microbial quantity and enzyme activities, newly cultivated dryland soil had the fastest soil respiration rate, the fewest soil microorganism quantity, and the lowest enzyme activities, whereas shrub land and woodland soils had the biological properties ranged between newly cultivated dryland and orchard soils, and there was a high similarity in the biological properties between shrub land and woodland soils. Under different land use types, the soil microbial quantity and enzyme activities were positively correlated with soil organic carbon and most of the soil nutrients. It was suggested the soils with high soil organic matter content and high fertility level were beneficial to the soil microbial growth and enzyme activities.

  2. Grammatical Gender and Inferences about Biological Properties in German-Speaking Children

    ERIC Educational Resources Information Center

    Saalbach, Henrik; Imai, Mutsumi; Schalk, Lennart

    2012-01-01

    In German, nouns are assigned to one of the three gender classes. For most animal names, however, the assignment is independent of the referent's biological sex. We examined whether German-speaking children understand this independence of grammar from semantics or whether they assume that grammatical gender is mapped onto biological sex when…

  3. Biological Motion Preference in Humans at Birth: Role of Dynamic and Configural Properties

    ERIC Educational Resources Information Center

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2011-01-01

    The present study addresses the hypothesis that detection of biological motion is an intrinsic capacity of the visual system guided by a non-species-specific predisposition for the pattern of vertebrate movement and investigates the role of global vs. local information in biological motion detection. Two-day-old babies exposed to a biological…

  4. Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium.

    PubMed

    Sugita, Yoshihiko; Ishizaki, Ken; Iwasa, Fuminori; Ueno, Takeshi; Minamikawa, Hajime; Yamada, Masahiro; Suzuki, Takeo; Ogawa, Takahiro

    2011-11-01

    The independent, genuine role of surface chemistry in the biological properties of titanium is unknown. Although microtopography has been established as a standard surface feature in osseous titanium implants, unfavorable behavior and reactions of osteogenic cells are still observed on the surfaces. To further enhance the biological properties of microfeatured titanium surfaces, this study tested the hypotheses that (1) the surface chemistry of microroughened titanium surfaces can be controllably varied by coating with a very thin layer of TiO(2), without altering the existing topographical and roughness features; and (2) the change in the surface chemistry affects the biological properties of the titanium substrates. Using a slow-rate sputter deposition of molten TiO(2) nanoparticles, acid-etched microroughened titanium surfaces were coated with a TiO(2) layer of 300-pm to 6.3-nm thickness that increased the surface oxygen levels without altering the existing microtopography. The attachment, spreading behavior, and proliferation of osteoblasts, which are considered to be significantly impaired on microroughened surfaces compared with relatively smooth surfaces, were considerably increased on TiO(2)-coated microroughened surfaces. The rate of osteoblastic differentiation was represented by the increased levels of alkaline phosphatase activity and mineral deposition as well as by the upregulated expression of bone-related genes. These biological effects were exponentially correlated with the thickness of TiO(2) and surface oxygen percentage, implying that even a picometer-thin TiO(2) coating is effective in rapidly increasing the biological property of titanium followed by an additional mild increase or plateau induced by a nanometer-thick coating. These data suggest that a super-thin TiO(2) coating of pico-to-nanometer thickness enhances the biological properties of the proven microroughened titanium surfaces by controllably and exclusively modulating their surface

  5. Physicochemical and biological properties of oxovanadium(IV), cobalt(II) and nickel(II) complexes with oxydiacetate anions.

    PubMed

    Wyrzykowski, Dariusz; Kloska, Anna; Pranczk, Joanna; Szczepańska, Aneta; Tesmar, Aleksandra; Jacewicz, Dagmara; Pilarski, Bogusław; Chmurzyński, Lech

    2015-03-01

    The potentiometric and conductometric titration methods have been used to characterize the stability of series of VO(IV)-, Co(II)- and Ni(II)-oxydiacetato complexes in DMSO-water solutions containing 0-50 % (v/v) DMSO. The influence of DMSO as a co-solvent on the stability of the complexes as well as the oxydiacetic acid was evaluated. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the nitro blue tetrazolium (NBT) assay. The biological properties of the complexes were investigated in relation to their cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the Human Dermal Fibroblasts adult (HDFa) cell line as well as to their antimicrobial activity against the bacteria (Bacillus subtilis, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis). The relationship between physicochemical and biological properties of the complexes was discussed. PMID:25488702

  6. Nanomechanical control of properties of biological membranes achieved by rodlike magnetic nanoparticles in a superlow-frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Klyachko, N. L.; Gribanovskii, S. L.; Golovin, D. Yu.; Samodurov, A. A.; Majouga, A. G.; Sokolsky-Papkov, M.; Kabanov, A. V.

    2015-05-01

    It is proposed to use single-domain rodlike magnetic nanoparticles (MNPs) as mediators for nanomechanical control of properties of biological membranes and cells on the molecular or cellular level by exposing them to a homogeneous nonheating low-frequency magnetic field (AC MF). The trigger effect is achieved due to rotatory-oscillatory motion of MNPs in the AC MF, which causes the needed deformations in macromolecules of the membrane interacting with these MNPs.

  7. Biological properties and molecular targets of umbelliprenin--a mini-review.

    PubMed

    Shakeri, Abolfazl; Iranshahy, Milad; Iranshahi, Mehrdad

    2014-01-01

    7-Prenyloxycoumarins are a group of secondary metabolites found mainly in plants belonging to the families Rutaceae and Apiaceae. Auraptene, umbelliprenin (UM), and 7-isopentenyloxycoumarin are some examples of prenylated coumarins. UM occurs in various edible plant species including celery, coriander, angelica, lemon, and particularly, Ferula species. Although UM was isolated more than 50 years ago, its biological activities have been studied since the last two decades. Besides anticancer activities, biological activities including anti-inflammatory, antioxidant, and antileishmanial activities have been reported from this natural compound. The present mini-review deals with the biological activities and mechanism of actions reported for UM.

  8. [Effects of composting with earthworm on the chemical and biological properties of agricultural organic wastes: a principal component analysis].

    PubMed

    Liu, Ting; Ren, Zong-Ling; Zhang, Chi; Chen, Xu-Fei; Zhou, Bo; Dai, Jun

    2012-03-01

    Taking mixed agricultural organic wastes cattle manure and rice straw (C:N = 28.7:1) as the substrate of earthworm Eisenia foetida, an experiment was conducted to study the effects of earthworm on the changes of the chemical and biological properties of wastes during vermi-composting. After 30 days of vermi-composting, the substrate' s pH and C/N decreased while the total P content increased significantly, and the total N, available N, dissolved organic carbon, available P content, microbial biomass-C, respiration rate, and microbial quotient increased by 8.5% , 2.6%, 1.8%, 6.3%, 21.2%, 4.4%, and 30.0% whereas the organic matter content and metabolic quotient decreased by 5.0% and 21.9%, respectively, as compared with natural composting. Vermi-composting made the substrate have higher invertase, acid phosphatase, and alkaline phosphatase activities but lower catalase and urease activities. Principal component analysis and discriminant analysis confirmed the significant differences in the substrate' s chemical and biological properties between vermi-composting and natural composting. This study indicated that vermi-composting was superior to natural composting, which could obviously improve the chemical and biological properties of composted organic materials, being a high efficient technology for the management of agricultural organic wastes. PMID:22720625

  9. Using Petri Net Tools to Study Properties and Dynamics of Biological Systems

    PubMed Central

    Peleg, Mor; Rubin, Daniel; Altman, Russ B.

    2005-01-01

    Petri Nets (PNs) and their extensions are promising methods for modeling and simulating biological systems. We surveyed PN formalisms and tools and compared them based on their mathematical capabilities as well as by their appropriateness to represent typical biological processes. We measured the ability of these tools to model specific features of biological systems and answer a set of biological questions that we defined. We found that different tools are required to provide all capabilities that we assessed. We created software to translate a generic PN model into most of the formalisms and tools discussed. We have also made available three models and suggest that a library of such models would catalyze progress in qualitative modeling via PNs. Development and wide adoption of common formats would enable researchers to share models and use different tools to analyze them without the need to convert to proprietary formats. PMID:15561791

  10. Characterizing and optimizing human anticancer drug targets based on topological properties in the context of biological pathways.

    PubMed

    Zhang, Jian; Wang, Yan; Shang, Desi; Yu, Fulong; Liu, Wei; Zhang, Yan; Feng, Chenchen; Wang, Qiuyu; Xu, Yanjun; Liu, Yuejuan; Bai, Xuefeng; Li, Xuecang; Li, Chunquan

    2015-04-01

    One of the challenging problems in drug discovery is to identify the novel targets for drugs. Most of the traditional methods for drug targets optimization focused on identifying the particular families of "druggable targets", but ignored their topological properties based on the biological pathways. In this study, we characterized the topological properties of human anticancer drug targets (ADTs) in the context of biological pathways. We found that the ADTs tended to present the following seven topological properties: influence the number of the pathways related to cancer, be localized at the start or end of the pathways, interact with cancer related genes, exhibit higher connectivity, vulnerability, betweenness, and closeness than other genes. We first ranked ADTs based on their topological property values respectively, then fused them into one global-rank using the joint cumulative distribution of an N-dimensional order statistic to optimize human ADTs. We applied the optimization method to 13 anticancer drugs, respectively. Results demonstrated that over 70% of known ADTs were ranked in the top 20%. Furthermore, the performance for mercaptopurine was significant: 6 known targets (ADSL, GMPR2, GMPR, HPRT1, AMPD3, AMPD2) were ranked in the top 15 and other four out of the top 15 (MAT2A, CDKN1A, AREG, JUN) have the potentialities to become new targets for cancer therapy. PMID:25724580

  11. Near infrared spectra are more sensitive to land use changes than physical, chemical and biological soil properties

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Scow, K.

    2009-04-01

    We studied the sensibility of the near infrared spectra (NIR) of soils to the changes caused by land use, and we compared with the sensibility of different sets of physical, chemical and biological soil properties. For this purpose, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations from the province of Alicante (SE Spain). We used discriminant analysis (DA) using different sets of soil properties. The different sets tested in this study using DA were: (1) physical and chemical properties (organic carbon, total nitrogen, available phosphorus, pH, electrical conductivity, cation exchange capacity, aggregate stability, water holding capacity, and available Ca, Mg, K and Na), (2) biochemical properties (microbial biomass carbon, basal respiration and urease, phosphatase and β-glucosidase activities), (3) phospholipids fatty acids (PLFAs), (4) physical, chemical and biochemical properties (all properties of the previous sets), and (5) the NIR spectra of soils (scores of the principal components). In general, all sets of properties were sensible to land use. This was observed in the DAs by the separation (more or less clear) of samples in groups defined by land use (irrespective of site). The worst results were obtained using soil physical and chemical properties. The combination of physical, chemical and biological properties enhanced the separation of samples in groups, indicating higher sensibility. It is accepted than combination of properties of different nature is more effective to evaluate the soil quality. The microbial community structure (PLFAs) was highly sensible to the land use, grouping correctly the 100% of the samples according with the land use. The NIR spectra were also sensitive to land use. The scores of the first 5 components, which explained 99.97% of the variance, grouped correctly the 85% of the soil

  12. Mobility as an emergent property of biological organization: Insights from experimental evolution.

    PubMed

    Wallace, Ian J; Garland, Theodore

    2016-05-01

    Anthropologists accept that mobility is a critical dimension of human culture, one that links economy, technology, and social relations. Less often acknowledged is that mobility depends on complex and dynamic interactions between multiple levels of our biological organization, including anatomy, physiology, neurobiology, and genetics. Here, we describe a novel experimental approach to examining the biological foundations of mobility, using mice from a long-term artificial selection experiment for high levels of voluntary exercise on wheels. In this experiment, mice from selectively bred lines have evolved to run roughly three times as far per day as those from nonselected control lines. We consider three insights gleaned from this experiment as foundational principles for the study of mobility from the perspective of biological evolution. First, an evolutionary change in mobility will necessarily be associated with alterations in biological traits both directly and indirectly connected to mobility. Second, changing mobility will result in trade-offs and constraints among some of the affected traits. Third, multiple solutions exist to altering mobility, so that various combinations of adjustments to traits linked with mobility can achieve the same overall behavioral outcome. We suggest that anthropological knowledge of variation in human mobility might be improved by greater research attention to its biological dimensions. PMID:27312181

  13. The effect of model soil contamination with Cr, Cu, Ni, and Pb on the biological properties of soils in the dry steppe and semidesert regions of southern Russia

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. I.; Spivakova, N. A.; Kazeev, K. Sh.

    2011-09-01

    Model soil contamination with Cr, Cu, Ni, and Pb in the dry steppes and semideserts of southern Russia has worsened the biological soil properties. With respect to the degree of deterioration of the biological properties, the soils can be arranged in the following sequence: dark chestnut soils > chestnut soils > light chestnut soils > brown semidesert soils > sandy brown semidesert soils. The sequence of metal oxides according to the adverse effect on the biological soil properties is as follows: CrO3 > CuO ≥ PbO ≥ NiO.

  14. Biological and Chemical Properties of the Epidioxide Isomer of Abscisic Acid and its Rearrangement Products

    PubMed Central

    Sondheimer, Ernest; Michniewicz, Barbara M.; Powell, Loyd E.

    1969-01-01

    The growth inhibitory activity of the epidioxide (II), a precursor in the synthesis of abscisic acid (ABA), has been confirmed with additional assay systems. Under physiological conditions the epidioxide is rearranged to give ABA and an isomer of ABA which has probably the structure V. This major product has very low, if any, biological activity. The biological activity of the epidioxide is explained by its partial conversion (about 20%) to ABA. The reaction rate was enhanced by heavy metal ions and decreased by EDTA. At pH 12.5, the decomposition of the epidioxide is slower than it is near neutrality and ABA is the predominant product. In the biological systems studied the activity of the epidioxide can be accounted for by nonenzymatic conversion to ABA. PMID:16657047

  15. Interaction of silver nanoparticles with biological objects: antimicrobial properties and toxicity for the other living organisms

    NASA Astrophysics Data System (ADS)

    Egorova, E. M.

    2011-04-01

    This paper presents several examples of the biological effects of small-sized silver nanoparticles (10.5±3.5nm) observed in experiments on bacteria, slim mold, unicellular alga and plant seeds. The nanoparticles were prepared by the biochemical synthesis, based on the reduction of metal ions in reverse vicelles by biological reductants - natural plant pigments (flavonoids). It is found that, except for the plant seeds, silver nanoparticles (SNP) act as a strong toxic agent, both in water solution and as part of liquid-phase material. It is shown also that the biological action of silver nanoparticles can not be reduced to the toxic action of silver ions in equivalent concentrations or to that of the surfactant (the SNP stabilizer) present in the SNP water solution. Possible SNP applications are suggested.

  16. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  17. Development of soil chemical and biological properties in the initial stages of post-mining deposition sites.

    PubMed

    Monokrousos, Nikolaos; Boutsis, George; Diamantopoulos, John D

    2014-12-01

    The aim of this study was to assess the seasonal development of the physicochemical (pH, organic C, organic N, extractable P, Ca(2+), Mg(2+)) and biological soil properties (microbial biomass, activities of urease, dehydrogenase and alkaline phosphatase) of the topsoil of mine deposition sites that differed based on the material used exclusively for their creation: (a) marlstones, (b) red-grey formations (RGF), and (c) fly ash (FA), during the first year after their creation. Our hypothesis was that all deposition sites, regardless the material they consist of, present equal opportunities for the establishment of spontaneous vegetation. All macronutrients concentrations (P, Ca(2+), and Mg(2+)) remained constant with time and were found to be higher in the FA sites. Organic C, organic N, all enzyme activities, and microbial biomass were higher in the RGF and marl depositions, with marl sites presenting the highest values. All values of biological variables, with the exception of alkaline phosphatase, increased with time. The alkaline environment along with the slow improvement in soil biological properties of the FA sites seemed to present the most unfavorable conditions for spontaneous vegetation growth. On the contrary, the other two spoil materials presented significant improvement in the initial stages of soil formation in terms of soil functionality. PMID:25249044

  18. Observed impact of upwelling events on water properties and biological activity off the southwest coast of New Caledonia.

    PubMed

    Ganachaud, Alexandre; Vega, Andrés; Rodier, Martine; Dupouy, Cécile; Maes, Christophe; Marchesiello, Patrick; Eldin, Gerard; Ridgway, Ken; Le Borgne, Robert

    2010-01-01

    The upwelling events that follow strong trade wind episodes have been described in terms of their remarkable signature in the sea surface temperature southwest off New Caledonia. Upwelling brings deeper, and colder waters to the surface, causing 2-4 degrees C drops in temperature in a few hours, followed by a slower relaxation over several days. Upwelling may sporadically bring nutrients to the surface under certain conditions, and increase the biological productivity. Two multidisciplinary hydrographic cruises allow the impact of upwelling on the chemical and biological properties of the water to be documented. Both cruises took place in austral summer (December 2004 and December 2005), but the first cruise occurred during a strong upwelling event, while the second cruise occurred in calm conditions. The water properties and planktonic composition show important contrasts, with a strong southeastward current (the "ALIS current of New Caledonia") competing with the upwelling system. Our analysis suggests that, while observed productivities are far less than those of typical upwelling systems, some wind events in New Caledonia may contribute to biological activity. A currentmeter mooring, deployed during the second cruise, documents the ocean response to a changing wind field and the local impact of upwelling on currents and temperatures on the water column. The results are discussed, with the help of climatology, Argo float profiler data, satellite data and of a high-resolution numerical simulation. PMID:20723944

  19. Comparison of biological and physical properties of human and animal A(H1N1) influenza viruses.

    PubMed

    Fiszon, B; Hannoun, C; Garcia-Sastre, A; Villar, E; Cabezas, J A

    1989-01-01

    The study of biological properties of influenza virus strains belonging to the same subtype A(H1N1) and closely antigenically related, but isolated from different animal species (man, pig and duck), demonstrated that avian strains were more resistant than those isolated from mammals to high temperature and low pH, as shown by titration of residual infectivity in cell cultures (MDCK) and by sialidase assay. The difference in behaviour could be correlated to biological adaptation of the virus to its host. Avian body temperature is 40 degrees C and influenza virus, in ducks, is enterotropic and therefore capable of passing through the low pH values in the upper digestive tract of the animal. These results do not contradict the hypothesis of a possible filiation between avian and mammalian orthomyxoviruses.

  20. Biological Properties of Solid Free Form Designed Ceramic Scaffolds with BMP-2: In Vitro and In Vivo Evaluation

    PubMed Central

    Abarrategi, Ander; Moreno-Vicente, Carolina; Martínez-Vázquez, Francisco Javier; Civantos, Ana; Ramos, Viviana; Sanz-Casado, José Vicente; Martínez-Corriá, Ramón; Perera, Fidel Hugo; Mulero, Francisca; Miranda, Pedro; López-Lacomba, José Luís

    2012-01-01

    Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures. PMID:22470527

  1. TH-A-19A-05: Modeling Physics Properties and Biologic Effects Induced by Proton and Helium Ions

    SciTech Connect

    Taleei, R; Titt, U; Peeler, C; Guan, F; Mirkovic, D; Grosshans, D; Mohan, R

    2014-06-15

    Purpose: Currently, proton and carbon ions are used for cancer treatment. More recently, other light ions including helium ions have shown interesting physical and biological properties. The purpose of this work is to study the biological and physical properties of helium ions (He-3) in comparison to protons. Methods: Monte Carlo simulations with FLUKA, GEANT4 and MCNPX were used to calculate proton and He-3 dose distributions in water phantoms. The energy spectra of proton and He-3 beams were calculated with high resolution for use in biological models. The repair-misrepairfixation (RMF) model was subsequently used to calculate the RBE. Results: The proton Bragg curve calculations show good agreement between the three general purpose Monte Carlo codes. In contrast, the He-3 Bragg curve calculations show disagreement (for the magnitude of the Bragg peak) between FLUKA and the other two Monte Carlo codes. The differences in the magnitude of the Bragg peak are mainly due to the discrepancy in the secondary fragmentation cross sections used by the codes. The RBE for V79 cell lines is about 0.96 and 0.98 at the entrance of proton and He-3 ions depth dose respectively. The RBE increases to 1.06 and 1.59 at the Bragg peak of proton and He-3 ions. The results demonstrated that LET, microdosimetric parameters (such as dose-mean lineal energy) and RBE are nearly constant along the plateau region of Bragg curve, while all parameters increase within the Bragg peak and at the distal edge for both proton and He-3 ions. Conclusion: The Monte Carlo codes should revise the fragmentation cross sections to more accurately simulate the physical properties of He-3 ions. The increase in RBE for He-3 ions is higher than for proton beams at the Bragg peak.

  2. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    PubMed

    Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  3. Characterization of Mechanical and Biological Properties of 3-D Scaffolds Reinforced with Zinc Oxide for Bone Tissue Engineering

    PubMed Central

    Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially. PMID:24498185

  4. Ti-Ag-Pd alloy with good mechanical properties and high potential for biological applications.

    PubMed

    Zadorozhnyy, V Yu; Shi, X; Gorshenkov, M V; Kozak, D S; Wada, T; Louzguine-Luzgin, D V; Inoue, A; Kato, H

    2016-01-01

    Ti-based alloys containing Ag were produced by tilt-casting method and their properties were studied. Even in its as-cast state, Ti94Ag3Pd3 showed relatively high tensile properties, good electrochemical behavior, and good biocompatibility. The relatively good mechanical properties of the as-cast α-Ti-type Ti94Ag3Pd3 alloy (tensile strength up to 850 MPa and elongation of ~10%) can be explained by its severely deformed, fine crystalline structure. The high biocompatibility of Ti94Ag3Pd3 can be explained by the Ag-Pd interaction, which inhibits the release of Ag ions from the surface. Ag, in combination with Pd has no toxic effects and demonstrates useful antimicrobial properties. The Ti94Ag3Pd3 alloy shows a good potential to be applied as a biomedical implant alloy. PMID:27122177

  5. Ti-Ag-Pd alloy with good mechanical properties and high potential for biological applications

    NASA Astrophysics Data System (ADS)

    Zadorozhnyy, V. Yu.; Shi, X.; Gorshenkov, M. V.; Kozak, D. S.; Wada, T.; Louzguine-Luzgin, D. V.; Inoue, A.; Kato, H.

    2016-04-01

    Ti-based alloys containing Ag were produced by tilt-casting method and their properties were studied. Even in its as-cast state, Ti94Ag3Pd3 showed relatively high tensile properties, good electrochemical behavior, and good biocompatibility. The relatively good mechanical properties of the as-cast α-Ti-type Ti94Ag3Pd3 alloy (tensile strength up to 850 MPa and elongation of ~10%) can be explained by its severely deformed, fine crystalline structure. The high biocompatibility of Ti94Ag3Pd3 can be explained by the Ag-Pd interaction, which inhibits the release of Ag ions from the surface. Ag, in combination with Pd has no toxic effects and demonstrates useful antimicrobial properties. The Ti94Ag3Pd3 alloy shows a good potential to be applied as a biomedical implant alloy.

  6. Ti–Ag–Pd alloy with good mechanical properties and high potential for biological applications

    PubMed Central

    Zadorozhnyy, V. Yu.; Shi, X.; Gorshenkov, M. V.; Kozak, D. S.; Wada, T.; Louzguine-Luzgin, D. V.; Inoue, A.; Kato, H.

    2016-01-01

    Ti-based alloys containing Ag were produced by tilt-casting method and their properties were studied. Even in its as-cast state, Ti94Ag3Pd3 showed relatively high tensile properties, good electrochemical behavior, and good biocompatibility. The relatively good mechanical properties of the as-cast α-Ti-type Ti94Ag3Pd3 alloy (tensile strength up to 850 MPa and elongation of ~10%) can be explained by its severely deformed, fine crystalline structure. The high biocompatibility of Ti94Ag3Pd3 can be explained by the Ag–Pd interaction, which inhibits the release of Ag ions from the surface. Ag, in combination with Pd has no toxic effects and demonstrates useful antimicrobial properties. The Ti94Ag3Pd3 alloy shows a good potential to be applied as a biomedical implant alloy. PMID:27122177

  7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

    PubMed

    Jain, Prashant K; Huang, Xiaohua; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2008-12-01

    Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, taking advantage of the strong LSPR scattering of gold nanoparticles conjugated with specific targeting molecules allows the molecule-specific imaging and diagnosis of diseases such as cancer. We emphasize in particular how the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications. We discuss some interesting nanostructure geometries, including nanorods, nanoshells, and nanoparticle pairs, that exhibit dramatically enhanced and tunable plasmon resonances, making them highly suitable for bio-applications. Tuning the nanostructure shape (e.g., nanoprisms, nanorods, or nanoshells) is another means of enhancing the sensitivity of the LSPR to the nanoparticle environment and, thereby, designing effective biosensing agents. Metal nanoparticle pairs or assemblies display distance-dependent plasmon resonances as a

  8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

    PubMed

    Jain, Prashant K; Huang, Xiaohua; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2008-12-01

    Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, taking advantage of the strong LSPR scattering of gold nanoparticles conjugated with specific targeting molecules allows the molecule-specific imaging and diagnosis of diseases such as cancer. We emphasize in particular how the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications. We discuss some interesting nanostructure geometries, including nanorods, nanoshells, and nanoparticle pairs, that exhibit dramatically enhanced and tunable plasmon resonances, making them highly suitable for bio-applications. Tuning the nanostructure shape (e.g., nanoprisms, nanorods, or nanoshells) is another means of enhancing the sensitivity of the LSPR to the nanoparticle environment and, thereby, designing effective biosensing agents. Metal nanoparticle pairs or assemblies display distance-dependent plasmon resonances as a

  9. On alterations in the refractive index and scattering properties of biological tissue caused by histological processing

    NASA Astrophysics Data System (ADS)

    Aung, Htet; DeAngelo, Bianca; Soldano, John; Kostyk, Piotr; Rodriguez, Braulio; Xu, M.

    2013-02-01

    Clinical tissue processing such as formalin fixing, paraffin-embedding and histological staining alters significantly the optical properties of the tissue. We document the alterations in the optical properties of prostate cancer tissue specimens in the 500nm to 700nm spectral range caused by histological processing with quantitative differential interference contrast (qDIC) microscopy. A simple model to explain these alterations is presented at the end.

  10. Biological control of crystal texture: A widespread strategy for adapting crystal properties to function

    SciTech Connect

    Berman, A.; Leiserowitz, L.; Weiner, S.; Addadi, L. ); Hanson, J.; Koetzle, T.F. )

    1993-02-05

    Textures of calcite crystals from a variety of mineralized tissues belong to organisms from four phyla were examined with high-resolution synchrotron x-ray radiation. Significant differences in coherence length and angular spread were observed between taxonomic groups. Crystals from polycrystalline skeletal ensembles were more perfect than those that function as single-crystal elements. Different anistropic effects on crystal texture were observed for sea urchin and mollusk calcite crystals, whereas none was found for the foraminifer, Patellina, and the control calcite crystals. These results show that the manipulation of crystal texture in different organisms is under biological control and that crystal textures in some tissues are adapted to function. A better understanding of this apparently widespread biological phenomenon may provide new insights for improving synthetic crystal-containing materials. 18 refs., 3 figs., 1 tab.

  11. A Remarkably Simple Class of Imidazolium-Based Lipids and Their Biological Properties.

    PubMed

    Wang, Da; Richter, Christian; Rühling, Andreas; Drücker, Patrick; Siegmund, Daniel; Metzler-Nolte, Nils; Glorius, Frank; Galla, Hans-Joachim

    2015-10-19

    A series of imidazolium salts bearing two alkyl chains in the backbone of the imidazolium core were synthesized, resembling the structure of lipids. Their antibacterial activity and cytotoxicity were evaluated using Gram-positive and Gram-negative bacteria and eukaryotic cell lines including tumor cells. It is shown that the length of alkyl chains in the backbone is vital for the antibiofilm activities of these lipid-mimicking components. In addition to their biological activity, their surface activity and their membrane interactions are shown by film balance and quartz crystal microbalance (QCM) measurements. The structure-activity relationship indicates that the distinctive chemical structure contributes considerably to the biological activities of this novel class of lipids. PMID:26332168

  12. Optical anisotropy of fibrous biological tissues: analysis of the influence of structural properties

    SciTech Connect

    Zimnyakov, D A; Sinichkin, Yu P; Ushakova, O V

    2007-08-31

    The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range. (laser methods in biology)

  13. Microplatforms for gradient field generation of various properties and biological applications.

    PubMed

    Kim, Sung-Hwan; Lee, Gi-Hun; Park, Joong Yull; Lee, Sang-Hoon

    2015-04-01

    Well-designed microfluidic platforms can be excellent tools to eliminate bottleneck problems or issues that have arisen in biological fields by providing unprecedented high-resolution control of mechanical and chemical microenvironments for cell culture. Among such microtechnologies, the precise generation of biochemical concentration gradients has been highly regarded in the biorelated scientific fields; even today, the principles and mechanisms for gradient generation continue to be refined, and the number of applications for this technique is growing. Here, we review the current status of the concentration gradient generation technologies achieved in various microplatforms and how they have been and will be applied to biological issues, particularly those that have arisen from cancer research, stem cell research, and tissue engineering. We also provide information about the advances and future challenges in the technological aspects of microscale concentration gradient generation.

  14. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    SciTech Connect

    Tambone, Fulvia Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  15. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-11-01

    Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV-vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and antidiabetic activity against α-amylase enzyme found to be exhibited highest by ZnO-PEG nanoparticles.

  16. Effectiveness and properties of the biological prosthesis Permacol™ in pediatric surgery: A large single center experience

    PubMed Central

    Filisetti, Claudia; Costanzo, Sara; Marinoni, Federica; Vella, Claudio; Klersy, Catherine; Riccipetitoni, Giovanna

    2016-01-01

    Introduction The use of prosthetic patches of non-absorbable materials represents a valid tool in the treatment of abdominal wall and diaphragmatic defects in pediatric age. In recent years research has developed biological dermal scaffolds made from a sheet of acellular matrix that can provide the desired support and reduce the occurrence of complications from non-absorbable implant. We present our experience and a systematic review to evaluate the use of biologic prosthesis for abdominal wall closure in pediatric patients. Methods The study from January 2009 to January 2015 involved 20 patients treated with Permacol™ implant. We observed postoperative complications only in patients treated for abdominal wall closure, which is the major indication for the use of Permacol™. We conducted a systematic review and meta-analysis (according to PRISMA) on PubMed/Medline, Scopus and EMBASE regarding the use of biological prosthesis in pediatric population considering the incidence of complications as the primary outcome. Results 3/20 patients experienced complications: 2 patients with skin necrosis healed conservatively and 1 of them developed laparocele. Thus only 1 patient with incisional hernia had significant surgery complication. In patients who were permanently implanted with Permacol™ it has not determined adverse reactions with optimal functional outcome. Conclusions In accordance with the few data (case reports and case series) reported in literature about pediatric patients, our experience in different pathologies and applications has shown the effectiveness of Permacol™, in particular for the non-occurrence of infections, that often affect the use of prosthesis. PMID:27054034

  17. [Effect of biologically active compounds of divalent platinum on the properties of the liquid crystal "microphase" of DNA].

    PubMed

    Akimenko, N M; Kleinwächter, V; Evdokimov, Iu M

    1983-07-01

    The optical properties of the "microphases" modeling the state of the DNA molecule in the cell and formed of both the low molecular DNA and the DNA complexes with cis- and trans-isomers of dichlorodiamine platininum (II) were studied. It was shown that the intensive band characteristic of the circular dichroism spectrum of the initial DNA "microphase" was decreasing with binding of DNA to cis-Pt (II) or trans-Pt (II). The effect of cis-Pt (II) on the "microphase" optical properties was more significant than that of trans-Pt (II). The effect correlated with the biological activity of the cis- and trans-compounds of platinum. Possible causes of the decrease in the optical activity of the DNA "microphase" are discussed.

  18. Viscoelastic Properties of a Hierarchical Model of Soft Biological Tissue: Two-Dimensional and Three-Dimensional Cases

    NASA Astrophysics Data System (ADS)

    Posnansky, Oleg

    2016-09-01

    The measuring of viscoelastic response is widely used for revealing information about soft matter and biological tissue noninvasively. This information encodes intrinsic dynamic correlations and depends on relations between macroscopic viscoelasticity and structure at the mesoscopic scale. Here we show numerically that the frequency dependent dynamical shear moduli distinguish between the mesoscopic architectural complexities and sensitive to the Euclidean dimensionality. Our approach enables the explanation of two- and three-dimensional viscoelastic experiments by objectively choosing and modeling the most relevant architectural features such as the concentration of compounds and intra-model hierarchical characteristics of physical parameters. Current work provides a link between the macroscopical effective viscoelastic properties to viscoelastic constants and network geometry on the mesoscale. Besides of this we also pay attention to the analytical properties of generalized susceptibility function of considered constitutive model accounting principles of causality.

  19. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    PubMed

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.

  20. Toxicant content, physical properties and biological activity of waterpipe tobacco smoke and its tobacco-free alternatives

    PubMed Central

    Shihadeh, Alan; Schubert, Jens; Klaiany, Joanne; El Sabban, Marwan; Luch, Andreas; Saliba, Najat A

    2015-01-01

    Objectives Waterpipe smoking using sweetened, flavoured tobacco products has become a widespread global phenomenon. In this paper, we review chemical, physical and biological properties of waterpipe smoke. Data sources Peer-reviewed publications indexed in major databases between 1991 and 2014. Search keywords included a combination of: waterpipe, narghile, hookah, shisha along with names of chemical compounds and classes of compounds, in addition to terms commonly used in cellular biology and aerosol sizing. Study selection The search was limited to articles published in English which reported novel data on waterpipe tobacco smoke (WTS) toxicant content, biological activity or particle size and which met various criteria for analytical rigour including: method specificity and selectivity, precision, accuracy and recovery, linearity, range, and stability. Data extraction Multiple researchers reviewed the reports and collectively agreed on which data were pertinent for inclusion. Data synthesis Waterpipe smoke contains significant concentrations of toxicants thought to cause dependence, heart disease, lung disease and cancer in cigarette smokers, and includes 27 known or suspected carcinogens. Waterpipe smoke is a respirable aerosol that induces cellular responses associated with pulmonary and arterial diseases. Except nicotine, smoke generated using tobacco-free preparations marketed for ‘health conscious’ users contains the same or greater doses of toxicants, with the same cellular effects as conventional products. Toxicant yield data from the analytical laboratory are consistent with studies of exposure biomarkers in waterpipe users. Conclusions A sufficient evidence base exists to support public health interventions that highlight the fact that WTS presents a serious inhalation hazard. PMID:25666550

  1. The influence of halogen substituents on the biological properties of sulfur-containing flavonoids.

    PubMed

    Bahrin, Lucian Gabriel; Sarbu, Laura Gabriela; Hopf, Henning; Jones, Peter G; Babii, Cornelia; Stefan, Marius; Birsa, Mihail Lucian

    2016-07-15

    A series of halogen-substituted tricyclic flavonoids containing a 1,3-dithiol-2-ylium moiety has been synthesized from the corresponding 3-dithiocarbamic flavanones. The influence of halogen substituents on the antibacterial properties of the tricyclic flavonoids has been investigated against Staphylococcus aureus and Escherichia coli. On going from fluorine to iodine, these compounds exhibit good to excellent inhibitory properties against both Gram-positive and Gram-negative pathogens. These results suggest that size is the main factor for the change in potency rather than polarity/electronics. PMID:27259400

  2. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing.

    PubMed

    Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey

    2013-10-01

    Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests

  3. YS-822A, a new polyene macrolide antibiotic. I. Production, isolation, characterization and biological properties.

    PubMed

    Itoh, A; Ido, J; Iwamoto, Y; Goshima, E; Miki, T; Hasuda, K; Hirota, H

    1990-08-01

    A new polyene macrolide antibiotic, YS-822A was isolated from the culture filtrate of a mutant strain H-8 of Streptoverticillium eurocidicum var. asterocidicus S-822. Whereas the original S-822 strain produced not only YS-822 substances but also teleocidin as by-product which is well-known as a strong carcinogenic promoter, the mutagenized H-8 strain produced the antibiotic with only a trace amount of teleocidin. Chemical and biological characterizations of the antibiotic revealed that YS-822A (molecular formula: C37H59NO14) is a new polyene macrolide with a wide antifungal spectrum and a low acute toxicity. PMID:2211361

  4. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans

    PubMed Central

    Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K. M.; Gomez-Cabrera, M. C.; Vina, J.; Borras, C.

    2015-01-01

    Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, both in vitro and in vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol. PMID:26221416

  5. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration.

    PubMed

    Hu, Xin; Wei, Qiang; Li, Chang-Yi; Deng, Jia-Yin; Liu, Shuang; Zhang, Lian-Yun

    2010-10-01

    A new titanium alloy (Ti-12.5Zr-3Nb-2.5Sn) was developed to meet the needs of clinical requirements for medical titanium alloys and improve the properties of existing titanium alloys. The as-prepared alloy was solution treated at 500 °C for 3 h in vacuum followed by water quenching. Tensile, wear and hardness tests were carried out to examine the mechanical properties of the Ti-Zr-Nb-Sn alloy. Oral mucous membrane irritation test was performed to evaluate the surface biological properties of the Ti-Zr-Nb-Sn alloy. The results suggested that the surface hardness and wear-resistant properties of the Ti-12.5Zr-3Nb-2.5Sn alloy were superior to commercially pure Ti. The oral mucous irritation test showed that all samples had no mucous membrane irritation. It indicates that Ti-12.5Zr-3Nb-2.5Sn has large potential to be used as dental restoration material.

  6. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans.

    PubMed

    Gambini, J; Inglés, M; Olaso, G; Lopez-Grueso, R; Bonet-Costa, V; Gimeno-Mallench, L; Mas-Bargues, C; Abdelaziz, K M; Gomez-Cabrera, M C; Vina, J; Borras, C

    2015-01-01

    Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, both in vitro and in vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol.

  7. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17.

    PubMed Central

    Walz, C; Schlehofer, J R

    1992-01-01

    Parvoviruses are known to interfere with cellular transformation and carcinogenesis. Since infecting adeno-associated virus (AAV) frequently integrates its DNA into the cellular genome, we analyzed whether this integration influences the transformed phenotype of the human tumor cell line HeLa. Analysis of three independent HeLa cell clones with integrated AAV DNA (HA-3x, HA-16, and HA-28) revealed the following phenotypic changes of these cells: (i) reduced growth rate, (ii) increased serum requirement, (iii) reduced capacity for colony formation in soft agar, (iv) reduced cloning efficiency on plastic, (v) elevated sensitivity to genotoxic agents (N-methyl-N'-nitro-N-nitrosoguanidine, 7,12-dimethylbenz[a]anthracene, human tumor necrosis factor alpha, UV irradiation [256 nm], and heat [42 degrees C]), and (vi) reduced sensitivity to the cytolytic effect of parvovirus H-1. Reduced growth rate and enhanced sensitivity to gamma irradiation were also observed in vivo when tumors from AAV DNA-containing HeLa cells were transplanted into nude mice. This alteration of the biological properties of HeLa cells was independent of the number of AAV genomes integrated, the physical structure of integrated AAV DNA, and the transcription of AAV genes. Integration of AAV DNA was found to occur preferentially on the long arm of chromosome 17 in the three HeLa cell clones analyzed. These findings demonstrate that genomic integration of AAV DNA can alter the biological properties of human tumor cells. Images PMID:1313913

  8. Impact of an intensive management on soil biochemical and biological properties in an agricultural soil of Southern Italy

    NASA Astrophysics Data System (ADS)

    Scotti, R.; D'Ascoli, R.; Rao, M. A.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    An intensive management of agricultural soils is widely carried out to increase vegetation productivity. Nevertheless, the large use of machineries, chemical fertilizers and pesticides can often cause, in time, a substantial decline in soil fertility by affecting soil physical and chemical properties and, in turn, growth and activity of soil microbial community. In fact, alteration in soil structure, nutrient losses and, in particular, changes in quality and quantity of soil organic matter are some of the principal soil degradation processes deriving from an intensive agricultural management that can affect, in different ways, soil biochemical and biological properties. The aim of this research was to assess the impact of intensive management on agricultural soils by measuring soil physical, chemical and biochemical/biological properties. The use of appropriate indicators as quantitative tools could allow to assess soil quality. Moreover, although soil physical and chemical properties have received great attention, soil biochemical/biological properties, such as enzyme activities and microbial biomass, functionally related properties involved in the nutrient cycles, can be considered as sensitive indicators of soil quality and health changes because, they show a faster turn over compared to soil organic matter. Our attention was focused on the Plane of Sele river (Campania region, Italy), an area characterized by an intensive agriculture and greenhouse cultures. Twenty-five farms were chosen, with the aid of regional soil map, in order to get soils with different physical and chemical properties. As common trait, the selected farms, all with greenhouse cultures, used no organic amendments but only mineral compounds to fertilize soils. Moreover, to better understand the impact of intensive agricultural practices on soil of each farm, control soils from orchards or uncultivated plots were chosen. In each farm soil samples were collected in three different plots

  9. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    PubMed

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's. PMID:26518012

  10. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    PubMed

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's.

  11. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    PubMed

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay.

  12. Rheological properties of a biological thermo-responsive hydrogel prepared from vegetable oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogel is a colloidal gel in which water is the dispersion medium. The unique properties of hydrogels make this kind of materials have many utilization potentials, such as drug delivery, gene therapy, wound care products, breast implant materials, cosmetic products, and tissue engineering. Hydroge...

  13. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches

    PubMed Central

    Rahimi, Hamid Reza; Arastoo, Mohammad; Ostad, Seyed Nasser

    2012-01-01

    Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiogenesis activities. They also show inhibitory effects on invasion/motility, cell cycle, apoptosis, and vital enzymes such as cyclooxygenase (COX), lipooxygenase (LOX), cytochrome P450 (CYP450), phospholipase A2 (PLA2), ornithine decarboxylase (ODC), carbonic anhydrase (CA), 17beta-hydroxysteroid dehydrogenase (17β-HSDs) and serine protease (SP). Furthermore, they can stimulate cell differentiation and possess anti-mutagenic effects. Pg can also interfere with several signaling pathways including PI3K/AKT, mTOR, PI3K, Bcl-X, Bax, Bad, MAPK, ERK1/2, P38, JNK, and caspase. However, the exact mechanisms for its pharmacological and toxicological properties remain to be unclear and need further evaluation. These properties strongly suggest a wide range use of Pg for clinical applications. This review will discuss the areas for which Pg has shown therapeutic properties in different mechanisms. PMID:24250463

  14. Sequence-dependent collective properties of DNAs and their role in biological systems

    NASA Astrophysics Data System (ADS)

    De Santis, Pasquale; Scipioni, Anita

    2013-03-01

    DNA actively interacts with proteins involved in replication, transcription, repair, and regulation processes inside the cell. The base sequence encodes the dynamics of these transformations from the atomic to the nanometre scale length, and over higher spatial scales. In fact, although an important part of the DNA informational content acts locally, it exerts its functions as collective properties of relatively long sequences and manifests as static and dynamic curvature. Physical models that explore different aspects of DNA collective properties associated to such superstructural properties encoded in the sequence will be reviewed. The B-DNA periodicity operates as band-pass-filter; only the local physical-chemical variance associated to the sequence, in phase with the helical periodicity, sums up and reveals at higher scale. In this light, the gel electrophoresis behaviour of DNAs, the nucleosome thermodynamic stability and positioning along genomes were interpreted and discussed. Finally, a part of this review is reserved to describe the ability of some inorganic crystal surfaces to recognize and stabilize certain DNA tracts with peculiar sequences. The collective superstructural properties of DNAs could be involved in the selective interaction between DNA sequence and particular crystal surfaces. It may be conceived that sequences strongly adsorbed on surface could nucleate and expand bits of information in primeval DNA (and/or RNA) chains, early characterized by random sequences, since more protected against the physical-chemical injuries by the environment, and therefore involved in the evolution of their informational content.

  15. Chemical, physical, and biological properties of compounds present at hazardous-waste sites. Final report

    SciTech Connect

    Not Available

    1985-09-27

    The chemical profiles are intended to serve as a concise reference with information on the physicochemical properties, transport and fate, toxicity, and regulatory standards for individual chemicals identified by the EPA Office of Waste Program Enforcement at hazardous-waste sites. The profiles can be used in conjunction with the Toxicology and Endangerment Assessment Handbooks.

  16. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  17. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    NASA Astrophysics Data System (ADS)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  18. [Metabolic properties of the microbial community in the biofilters using biolog microplates].

    PubMed

    Xi, Jin-Ying; Hu, Hong-Ying; Jiang, Jian; Qian, Yi

    2005-07-01

    It is very important to know the structure and metabolic function of the microbial community in a bioreactor in order to improve its performance. In this study, two biofilters, packed with wood chips and granular activated carbons respectively, were operated for 160 days to treat toluene gas. The metabolic profiles of the microbial communities in the biofilters were monitored using Biolog microplates periodically during the experiments. The metabolic activities of the microorganisms in both biofilters were observed to decrease during long-term operation. According to the results of principle components analysis, the metabolic profiles of the microbial communities did not change much in the former period of the operation, but they changed in the inlet layers on day 103 and changed throughout the filter beds on day 160. The variation of the metabolic profiles in both biofilters showed little difference, which suggested that the packing media had little effect on them during long-term operation. Among the 95 carbon sources in Biolog microplate, carboxylic acids and amino acids were much easier to be utilized by the microorganisms in the biofilters than the other carbon

  19. Effects of seasonal olive mill wastewater applications on hydrological and biological soil properties in an olive orchard in Israel

    NASA Astrophysics Data System (ADS)

    Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.

    2014-05-01

    During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in

  20. Non-contact, Ultrasound-based Indentation Method for Measuring Elastic Properties of Biological Tissues Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-01-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by Harmonic Motion Imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking RF signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the actual Young’s modulus and the HMI modulus in the numerical study (r2>0.99, relative error <10%) and on polyacrylamide gels (r2=0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI=2.62±0.41 kPa, compared to EMechTesting=4.2±2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  1. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    PubMed

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  2. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young’s modulus and the HMI modulus in the numerical study (r2 > 0.99, relative error <10%) and on polyacrylamide gels (r2 = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  3. Impact of ionizing radiation on physicochemical and biological properties of an amphiphilic macromolecule

    PubMed Central

    Gu, Li; Zablocki, Kyle; Lavelle, Linda; Bodnar, Stanko; Halperin, Frederick; Harper, Ike; Moghe, Prabhas V.; Uhrich, Kathryn E.

    2012-01-01

    An amphiphilic macromolecule (AM) was exposed to ionizing radiation (both electron beam and gamma) at doses of 25 kGy and 50 kGy to study the impact of these sterilization methods on the physicochemical properties and bioactivity of the AM. Proton nuclear magnetic resonance and gel permeation chromatography were used to determine the chemical structure and molecular weight, respectively. Size and zeta potential of the micelles formed from AMs in aqueous media were evaluated by dynamic light scattering. Bioactivity of irradiated AMs was evaluated by measuring inhibition of oxidized low-density lipoprotein uptake in macrophages. From these studies, no significant changes in the physicochemical properties or bioactivity were observed after the irradiation, demonstrating that the AMs can withstand typical radiation doses used to sterilize materials. PMID:23162175

  4. Exploiting the Physicochemical Properties of Dendritic Polymers for Environmental and Biological Applications

    SciTech Connect

    Bhattacharya, Priyanka; Geitner, Nicholas K.; Sarupria, Sapna; Ke, Pu Chun

    2013-04-07

    In this Perspective we first examine the rich physicochemical properties of dendritic polymers for hosting cations, anions, and polyaromatic hydrocarbons. We then extrapolate these conceptual discussions to the use of dendritic polymers for humic acid antifouling, oil dispersion, copper sensing, and fullerenol remediation. In addition, we review the state-of-the-art of dendrimer research and elaborate on their 10 implications for water purification, environmental remediation, nanomedicine, and energy harvesting.

  5. Mars Primordial Crust: Unique Sites for Investigating Proto-biologic Properties

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Hartmann, William K.

    2006-12-01

    The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet’s environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal “missing link” proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.

  6. Investigation on biological properties of tacrolimus-loaded poly(1,3-trimethylene carbonate) in vitro

    NASA Astrophysics Data System (ADS)

    Hou, Ruixia; Wu, Leigang; Wang, Jin; Huang, Nan

    2010-06-01

    The drug-eluting stents have been regarded as a milestone in inhibiting the restenosis of coronary arteries. However, adverse reactions caused by bare-metal stents and non-biodegradable polymer coatings may result in some clinical problems. In this study, a new tacrolimus-eluting stent coated with biodegradable poly(1,3-trimethylene carbonate) (PTMC) is developed. The structures are characterized by Fourier transform infrared (FTIR) analysis, and the wettability is measured by contact angle assay. The biological behaviors are evaluated by the in vitro platelets adhesion test, APTT test, the human umbilical cord artery smooth muscle cells (HUCASMCs), 4',6-diamidine-2-phenylindole (DAPI) and actin immunofluorescence staining, MTT colorimetric assay. These results show that after blending tacrolimus into PTMC, the anticoagulant behavior is improved, and the adhesion and proliferation of HUCASMCs on samples are inhibited. This work aims to find one kind of surface erosion biodegradable polymers that can be applied as drug-eluting stent coatings.

  7. Mars primordial crust: unique sites for investigating proto-biologic properties.

    PubMed

    Perry, Randall S; Hartmann, William K

    2006-12-01

    The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet's environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal "missing link" proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.

  8. Biological properties of aspartame. I. Evaluation of central nervous system effects.

    PubMed

    Potts, W J; Bloss, J L; Nutting, E F

    1980-01-01

    Aspartame was administered intragastrically to rodents at doses between 10 and 550 times the expected daily human intake to evaluate the effects on central nervous system function. No biologically meaningful effects were observed in either rats or mice following acute administration by the intragastric route. Aspartame administered as 9% of the diet (about 11 g/kg/day) for thirteen weeks to weanling rats altered the learning behavior of male rats. This effect of impaired learning behavior was nearly identical to that observed for an approximately equimolar amount of L-phenylalanine. The learning behavior of the female rats was not altered by either L-phenylalanine or aspartame at these extremely large doses. It was concluded that prolonged dietary ingestion of aspartame at levels approximately 550 times that expected for normal human daily ingestion was necessary to elicit a behavioral deficit.

  9. Plankton and particle size and packaging: from determining optical properties to driving the biological pump.

    PubMed

    Stemmann, L; Boss, E

    2012-01-01

    Understanding pelagic ecology and quantifying energy fluxes through the trophic web and from the surface to the deep ocean requires the ability to detect and identify all organisms and particles in situ and in a synoptic manner. An idealized sensor should observe both the very small living or dead particles such as picoplankton and detritus, respectively, and the large particles such as aggregates and meso- to macroplankton. Such an instrument would reveal an astonishing amount and diversity of living and nonliving particles present in a parcel of water. Unfortunately such sensors do not exist. However, complex interactions constrain the space, temporal, and size distributions of these objects in such ways that general rules can be inferred from the measurement of their optical properties. Recent technological developments allow for the in situ measurement of the optical properties and size distributions of particles and plankton in a way such that synoptic surveys are possible. This review deals with particle and plankton size distributions (PSDs) as well as how particles' geometry and nature affect their optical properties. Finally, we propose the integration of the PSD into size-structured mathematical models of biogeochemical fluxes. PMID:22457976

  10. Plankton and Particle Size and Packaging: From Determining Optical Properties to Driving the Biological Pump

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Boss, E.

    2012-01-01

    Understanding pelagic ecology and quantifying energy fluxes through the trophic web and from the surface to the deep ocean requires the ability to detect and identify all organisms and particles in situ and in a synoptic manner. An idealized sensor should observe both the very small living or dead particles such as picoplankton and detritus, respectively, and the large particles such as aggregates and meso- to macroplankton. Such an instrument would reveal an astonishing amount and diversity of living and nonliving particles present in a parcel of water. Unfortunately such sensors do not exist. However, complex interactions constrain the space, temporal, and size distributions of these objects in such ways that general rules can be inferred from the measurement of their optical properties. Recent technological developments allow for the in situ measurement of the optical properties and size distributions of particles and plankton in a way such that synoptic surveys are possible. This review deals with particle and plankton size distributions (PSDs) as well as how particles' geometry and nature affect their optical properties. Finally, we propose the integration of the PSD into size-structured mathematical models of biogeochemical fluxes.

  11. Improving fundamental abilities of atomic force microscopy for investigating quantitative nanoscale physical properties of complex biological systems

    NASA Astrophysics Data System (ADS)

    Cartagena-Rivera, Alexander X.

    Measurements of local material properties of complex biological systems (e.g. live cells and viruses) in their respective physiological conditions are extremely important in the fields of biophysics, nanotechnology, material science, and nanomedicine. Yet, little is known about the structure-function-property relationship of live cells and viruses. In the case of live cells, the measurements of progressive variations in viscoelastic properties in vitro can provide insight to the mechanistic processes underpinning morphogenesis, mechano-transduction, motility, metastasis, and many more fundamental cellular processes. In the case of living viruses, the relationship between capsid structural framework and the role of the DNA molecule interaction within viruses influencing their stiffness, damping and electrostatic properties can shed light in virological processes like protein subunits assembly/dissassembly, maturation, and infection. The study of mechanics of live cells and viruses has been limited in part due to the lack of technology capable of acquiring high-resolution (nanoscale, subcellular) images of its heterogeneous material properties which vary widely depending on origin and physical interaction. The capabilities of the atomic force microscope (AFM) for measuring forces and topography with sub-nm precision have greatly contributed to research related to biophysics and biomechanics during the past two decades. AFM based biomechanical studies have the unique advantage of resolving/mapping spatially the local material properties over living cells and viruses. However, conventional AFM techniques such as force-volume and quasi-static force-distance curves are too low resolution and low speed to resolve interesting biophysical processes such as cytoskeletal dynamics for cells or assembly/dissasembly of viruses. To overcome this bottleneck, a novel atomic force microscopy mode is developed, that leads to sub-10-nm resolution and sub-15-minutes mapping of local

  12. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    NASA Astrophysics Data System (ADS)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  13. Influence of Space-Flight Factors on the Properties of Microorganisms, Producers of Biologically Active Substances

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, T. K.; Kanaeva, E. N.; Ukraintsev, A. D.; Smolyanaya, G. L.; Kuznetsov, N. V.; Panasyuk, M. I.; Shcherbakov, G. Ya.

    2001-07-01

    The following substances were isolated under the influence of space-flight factors in cosmic experiments aboard the Mirorbital station: an MIB-90 monoisolant, which is distinguished by its morphological and biochemical properties and enhanced productivity, was isolated from the Bacillus thuringiensis ssp. Kurstaki var. Z-52culture, which is a producer of the plant protection agent Lepidocide; and MIA-74 and MIP-89 monoisolants, which are highly active toward heavy petroleum fractions (C23 C33), were isolated from the Arthrobacter OC-1culture, which is a producer of biodegradants for petroleum.

  14. A new class of conjugated strigolactone analogues with fluorescent properties: synthesis and biological activity.

    PubMed

    Bhattacharya, Chaitali; Bonfante, Paola; Deagostino, Annamaria; Kapulnik, Yoram; Larini, Paolo; Occhiato, Ernesto G; Prandi, Cristina; Venturello, Paolo

    2009-09-01

    A new class of strigolactone analogues has been synthesized. They differ from known molecules, both of natural and synthetic origin, in two main features. The conjugated system extends from the enol ether bridge to the A ring, the B ring is a heterocycle while the C ring is a cyclic ketone instead of a gamma-lactone. The key step of the synthesis is a Nazarov cyclization on activated substrates. Bioassays using Orobanche seeds have revealed that all the molecules strongly stimulate germination; in particular the oxygen containing analogues are the most active. Interestingly, some of the new molecules show fluorescent properties. PMID:19675895

  15. A Monte-Carlo maplet for the study of the optical properties of biological tissues

    NASA Astrophysics Data System (ADS)

    Yip, Man Ho; Carvalho, M. J.

    2007-12-01

    Monte-Carlo simulations are commonly used to study complex physical processes in various fields of physics. In this paper we present a Maple program intended for Monte-Carlo simulations of photon transport in biological tissues. The program has been designed so that the input data and output display can be handled by a maplet (an easy and user-friendly graphical interface), named the MonteCarloMaplet. A thorough explanation of the programming steps and how to use the maplet is given. Results obtained with the Maple program are compared with corresponding results available in the literature. Program summaryProgram title:MonteCarloMaplet Catalogue identifier:ADZU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3251 No. of bytes in distributed program, including test data, etc.:296 465 Distribution format: tar.gz Programming language:Maple 10 Computer: Acer Aspire 5610 (any running Maple 10) Operating system: Windows XP professional (any running Maple 10) Classification: 3.1, 5 Nature of problem: Simulate the transport of radiation in biological tissues. Solution method: The Maple program follows the steps of the C program of L. Wang et al. [L. Wang, S.L. Jacques, L. Zheng, Computer Methods and Programs in Biomedicine 47 (1995) 131-146]; The Maple library routine for random number generation is used [Maple 10 User Manual c Maplesoft, a division of Waterloo Maple Inc., 2005]. Restrictions: Running time increases rapidly with the number of photons used in the simulation. Unusual features: A maplet (graphical user interface) has been programmed for data input and output. Note that the Monte-Carlo simulation was programmed with Maple 10. If attempting to run the simulation with an earlier version of Maple

  16. Physicochemical and biological properties of a novel injectable polyurethane system for root canal filling

    PubMed Central

    Wang, Jian; Zuo, Yi; Zhao, Minghui; Jiang, Jiaxing; Man, Yi; Wu, Jun; Hu, Yunjiu; Liu, Changlei; Li, Yubao; Li, Jidong

    2015-01-01

    A root canal sealer with antibacterial activity can be efficacious in preventing reinfection that results from residual microorganisms and/or the leakage of microorganisms. In the present study, a series of injectable, self-curing polyurethane (PU)-based antibacterial sealers with different concentrations of silver phosphate (Ag3PO4) were fabricated. Subsequently, their physicochemical properties, antibacterial abilities, and preliminary cytocompatibilities were evaluated. The results indicated that the fabricated PU-based sealers can achieve a high conversion rate in a short amount of time. More than 95% of the isocyanate group of PU sealers with 3 wt% (PU3) and 5 wt% (PU5) concentrations of Ag3PO4 were included in the curing reaction after 7 hours. With the exception of those for film thickness for PU5, the results of setting time, film thickness, and solubility were able to meet the requirements of the International Organization for Standardization. The antibacterial tests showed that PU3 and PU5 exhibit stronger antimicrobial effects than that achieved with 1 wt% Ag3PO4 (PU1) and AH Plus (positive control) against Streptococcus mutans. The cytocompatibility evaluation revealed that the PU1 and PU3 sealers possess good cytocompatibility and low cytotoxicity. These results demonstrate that the PU3 sealer offers good physicochemical and antimicrobial properties along with cytocompatibility, which may hold great application potential in the field of root canal fillings. PMID:25653518

  17. Synthesis, physicochemical properties of allopurinol derivatives and their biological activity against Trypanosoma cruzi.

    PubMed

    Raviolo, M A; Solana, M E; Novoa, M M; Gualdesi, M S; Alba-Soto, C D; Briñón, M C

    2013-11-01

    Chagas disease is caused by Trypanosoma cruzi (T. cruzi) leading to a huge number of infections and deaths per year, because in addition to many sufferers only having limited access to health services only an inefficient chemotherapy is available using drugs such as benznidazole and nifurtimox. Here, C6-alkyl (2a-c) and N1-acyl (3a-c) derivatives of Allopurinol (Allop, compound with activity against T. cruzi) were synthesized in good yields and their structures were unambiguously characterized. Only 2a, 2b and 3c showed inhibitory activity against the proliferative stages of the parasite when tested at 1 μg mL(-1) with the 3c derivative exhibiting an IC50 value similar to that of Allop and not being toxic for mammalian cells. Relevant pharmaceutical physicochemical properties (pKa, stability, solubility, lipophilicity) were also determined as well by using Lipinski's rule, polar surface area and molecular rigidity. Taken together, the results demonstrated that the studied derivatives had optimal properties for bioavailability and oral absorption. For the stability studies, Micellar Liquid Chromatography was used as the analytical method which was fully validated according to the FDA guidelines and shown to be a suitable, sensitive and simple method for routine analysis of these Allop derivatives.

  18. Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation.

    PubMed

    Rosselin, Marie; Meyer, Grégory; Guillet, Pierre; Cheviet, Thomas; Walther, Guillaume; Meister, Annette; Hadjipavlou-Litina, Dimitra; Durand, Grégory

    2016-03-16

    We report herein the synthesis of a divalent amphiphilic carrier onto which α-phenyl-N-tert-butyl nitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) antioxidants were grafted to give the divalent derivative called FATxPBN. The divalent carrier consists of two lysine amino acids as a scaffold upon which the antioxidant moieties are grafted, a perfluorinated chain that supplies hydrophobicity, and a sugar-based polar headgroup that ensures water solubility. For the sake of comparison, a divalent PBN derivative called FADiPBN was also synthesized. The self-aggregation properties of FATxPBN and FADiPBN were studied by means of surface tension, dynamic light scattering, and transmission electron microscopy methods, and showed they form small micelles (i.e., 12 and 6 nm diameter, respectively) at submillimolar concentrations (i.e., 0.01 and 0.05 mM, respectively), in agreement with partition coefficient values. The superior antioxidant properties of FATxPBN over FADiPBN and the parent compounds PBN and Trolox were demonstrated using in vitro ABTS(•+) reduction (98%) and soybean lipoxygenase inhibition (94%) assays. Finally, FATxPBN was found to significantly inhibit hyperglycemia-induced toxicity on an ex-vivo rat model, demonstrating its potency as a bioactive antioxidant against oxidative stress-induced damage. PMID:26850367

  19. Some biological properties of flurbiprofen, an anti-inflammatory, analgesic and antipyretic agent.

    PubMed

    Adams, S S; McCullough, K F; Nicholson, J S

    1975-11-01

    2-(2-Fluoro-4-biphenyl)propionic acid (flurbiprofen) possesses peripheral analgesic, anti-inflammatory and antipyretic properties. It does not possess glucocorticoid or adrenocortical-stimulating properties. It is a highly potent agent which in acute pharmacological test systems produced a significant pharmacological effect in single oral doses varying from 0.04 to 0.47 mg/kg. The peak plasma concentrations attained after these doses were generally of the order of 1 to 3 mug/ml. Doses of 0.33 mg/kg/day, which gave peak plasma concentrations of 0.6 mug/ml, produced a significant inhibition of rat adjuvant arthritis, both developing and established. The very shallow dose-response curves for flurbiprofen compared with acetylsalicylic acid, especially in the mouse and the rat test systems, are not due to an unreliable or abnormal absorption, which suggests that in these species the mode of action of flurbiprofen is not identical with that of acetylsalicylic acid.

  20. Mechanical properties of complex biological systems using AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John Stephen

    An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.

  1. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  2. Unusual luminescent properties of water: the major component of biological fluids

    NASA Astrophysics Data System (ADS)

    Lobyshev, Valentin I.; Shihlinskaya, Rogneda E.

    1997-05-01

    It was found that distilled water possesses weak luminescence in the near UV and visible regions of the spectrum. The excitation spectrum is complex and has two main maxima, at 270 and 310 nm. The corresponding emission spectra apart from a narrow lines due to Raman scattering are represented by wide lines at 360 and 410 nm and are determined by the inherent properties of water. The intensity of luminescence depends on the time of holding of a sample in a closed vessel and the addition of a small amount of both luminescent and non-luminescent dipeptides. The observed phenomena can not be reduced to the luminescence of admixtures in water, but is a result of unique properties of water, its structure and polymorphism. The effect of water 'hardening' occurring upon rapid cooling of a hot sample to a room temperature, in contrast to slow cooling, is discovered. It is attributed to the formation of a new steady state of an aqueous structure, indicating by very intensive luminescence band at 5450 nm. Relative intensities of the described bands of emission are greatly sensitive to weak fields of electromagnetic nature. The phenomena observed lead to the conclusion that water and aqueous solutions should be regarded as a continuous polymorphous containing defects structures which are in general non-equilibrium self-organizing systems.

  3. Water-soluble polysaccharides from agro-industrial by-products: functional and biological properties.

    PubMed

    Sila, Assaâd; Bayar, Nadia; Ghazala, Imen; Bougatef, Ali; Ellouz-Ghorbel, Raoudha; Ellouz-Chaabouni, Semia

    2014-08-01

    Water-soluble polysaccharides were isolated from almond (AWSP) and pistachio (PWSP) juice processing by-products. Their chemical and physical characteristics were determined using NMR and Infrared spectroscopic analysis. The complexities of the spectra reflected the heterogeneity of these polysaccharides. The ACE inhibitory activities (IC50 AWSP=2.81mgmL(-1) and IC50 PWSP=2.59mgmL(-1)) and antioxidant properties of AWSP and PWSP were investigated based on the DPPH radical-scavenging capacity assay (IC50 AWSP=2.87mgmL(-1) and IC50 PWSP=1.61mgmL(-1)). Reducing power, β-carotene bleaching inhibition (IC50AWSP=4.46mgmL(-1) and IC50 PWSP=3.39mgmL(-1)), and ferrous chelating assays (IC50 AWSP=0.22mgmL(-1) and IC50 PWSP=0.19mgmL(-1)) were also performed. The findings revealed that water-soluble polysaccharides exhibited antioxidant and antihypertensive activities. AWSP and PWSP showed excellent interfacial concentration-dependent properties. Overall, the results suggested that both AWSP and PWSP are promising sources of natural antioxidants and ACE inhibitory agents and could, therefore, be used as alternative additives in food, pharmaceutical and cosmetic preparations.

  4. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    PubMed Central

    Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742

  5. Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation.

    PubMed

    Rosselin, Marie; Meyer, Grégory; Guillet, Pierre; Cheviet, Thomas; Walther, Guillaume; Meister, Annette; Hadjipavlou-Litina, Dimitra; Durand, Grégory

    2016-03-16

    We report herein the synthesis of a divalent amphiphilic carrier onto which α-phenyl-N-tert-butyl nitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) antioxidants were grafted to give the divalent derivative called FATxPBN. The divalent carrier consists of two lysine amino acids as a scaffold upon which the antioxidant moieties are grafted, a perfluorinated chain that supplies hydrophobicity, and a sugar-based polar headgroup that ensures water solubility. For the sake of comparison, a divalent PBN derivative called FADiPBN was also synthesized. The self-aggregation properties of FATxPBN and FADiPBN were studied by means of surface tension, dynamic light scattering, and transmission electron microscopy methods, and showed they form small micelles (i.e., 12 and 6 nm diameter, respectively) at submillimolar concentrations (i.e., 0.01 and 0.05 mM, respectively), in agreement with partition coefficient values. The superior antioxidant properties of FATxPBN over FADiPBN and the parent compounds PBN and Trolox were demonstrated using in vitro ABTS(•+) reduction (98%) and soybean lipoxygenase inhibition (94%) assays. Finally, FATxPBN was found to significantly inhibit hyperglycemia-induced toxicity on an ex-vivo rat model, demonstrating its potency as a bioactive antioxidant against oxidative stress-induced damage.

  6. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating.

    PubMed

    Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-03-01

    Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings.

  7. Biological and biochemical properties of two Xenopus laevis N-acetylgalactosaminyltransferases with contrasting roles in embryogenesis

    PubMed Central

    Voglmeir, Josef; Laurent, Nicolas; Flitsch, Sabine L.; Oelgeschläger, Michael; Wilson, Iain B.H.

    2015-01-01

    The biosynthesis of mucin-type O-linked glycans in animals is initiated by members of the large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts), which play important roles in embryogenesis, organogenesis, adult tissue homeostasis and carcinogenesis. Until now, the mammalian forms of these enzymes have been the best characterized. However, two N-acetylgalactosaminyltransferases (xGalNAc-T6 and xGalNAc-T16) from the African clawed frog (Xenopus laevis), which are most homologous to those encoded by the human GALNT6 and GALNT16 (GALNTL1) genes, were shown to have contrasting roles in TGF-β/BMP signaling in embryogenesis. In this study we have examined these two enzymes further and show differences in their in vivo function during X. laevis embyrogenesis as evidenced by in situ hybridization and overexpression experiments. In terms of enzymatic activity, both enzymes were found to be active towards the EA2 peptide, but display differential activity towards a peptide based on the sequence of ActR-IIB, a receptor relevant to TGF-β/BMP signaling. In summary, these data demonstrate that these two enzymes from different branches of the N-acetylgalactosaminyltransferase do not only display differential substrate specificities, but also specific and distinct expression pattern and biological activities in vivo. PMID:25447273

  8. Conjugates of ferrocene with biological compounds. Coordination to gold complexes and antitumoral properties.

    PubMed

    Gimeno, M Concepción; Goitia, Helen; Laguna, Antonio; Luque, M Elvira; Villacampa, M Dolores; Sepúlveda, Catarina; Meireles, Margarida

    2011-11-01

    Several bioconjugates of ferrocene with biological compounds such as aminoacid esters and related species have been prepared by reaction of chlorocarbonyl ferrocene with the corresponding amino acid ester (histidine methyl ester, tryptophan methyl ester, methionine methyl ester and lysine ethyl ester) or histamine or prolinamide in the presence of NEt(3). The reaction of the tryptophan or prolinamide ferrocene conjugates with [Au(acac)(PR(3))] (acac=acetylacetonate) results in the substitution of the proton of the cyclic NH groups by the fragment AuPR(3)(+) affording the complexes [Au(FcCO-tryptophan-OMe)(PR(3))] or [Au(FcCO-prolinamide)(PR(3))] (Fc=ferrocenyl group). The reaction of FcCO-Met-OMe with [Au(OTf)(PR(3))] (OTF=trifluoromethysulfonate) or [Au(C(6)F(5))(3)(OEt(2))] yields the gold(I) or gold(III) derivatives [Au(FcCO-Met-OMe)(PR(3))]OTf or [Au(C(6)F(5))(3)(FcCO-Met-OMe)], respectively. Cytotoxicity studies towards several cancer lines such as MCF-7, HeLa or NIE-115 have been performed. The ferrocene bioconjugates show no activity whereas the gold complexes exhibit antiproliferative effect. Preliminary studies of interaction of compounds with cells were carried out with the goal of increasing our knowledge on the mechanism of action of these potential drugs.

  9. Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties.

    PubMed

    Gonçalves, Rui F; Silva, Artur M S; Silva, Ana Margarida; Valentão, Patrícia; Ferreres, Federico; Gil-Izquierdo, Angel; Silva, João B; Santos, Delfim; Andrade, Paula B

    2013-12-15

    Colocasia esculenta (L.) Shott, commonly known as taro, is an essential food for millions of people. The leaves are consumed in sauces, purees, stews, and soups, being also used in wound healing treatment. Nowadays, the consumers' demand for bioactive compounds from the diet led to the development of new agricultural strategies for the production of health-promoting constituents in vegetables. In this work, two strategies (variety choice and irrigation conditions) were considered in the cultivation of C. esculenta. The effect on the phenolic composition of the leaves was evaluated. Furthermore, a correlation between the biological activity of the different varieties and their chemical composition was established. Qualitative and quantitative differences in the phenolic composition were observed between varieties; furthermore, the irrigation conditions also influenced the composition. C. esculenta varieties were able to scavenge several oxidant species and to inhibit hyaluronidase, but data suggest that metabolites other than phenolics are involved. The results show that cultivation strategies can effectively modulate the accumulation of these types of bioactive compounds. Furthermore C. esculenta wound healing potential can be attributed, at least in part, to the protection of the wound site against oxidative/nitrosative damage and prevention of hyaluronic acid degradation.

  10. Biological properties of different type carbon particles in vitro study on primary culture of endothelial cells.

    PubMed

    Czerniak-Reczulska, M; Niedzielski, P; Balcerczyk, A; Bartosz, G; Karowicz-Bilińska, A; Mitura, K

    2010-02-01

    Carbon powders have extended surface of carbon layers, which is of significant biomedical importance since the powders are employed to cover implants material. Carbon Powder Particles are produced by different methods: by a detonation method, by RF PACVD (Radio Frequency Plasma Activated Chemical Vapour Deposition) or MW/RF PCVD (Microwave/Radio Frequency Plasma Activated Chemical Vapour Deposition) and others. Our previous data showed that Carbon Powder Particles may act as antioxidant and/or anti-inflammatory factor. However the mechanism of such behavior has been not fully understood. The aim of the work was tested influence carbon powders manufactured by Radio Frequency Plasma Activated Chemical Vapour Deposition RFPACVD method and detonation method on selected parameters of human endothelial cells, which play a crucial role in the regulation of the circulation and vascular wall homeostasis. Graphite powder was used as a control substance. Endothelial cells are actively involved in a wide variety of processes e.g., inflammatory responses to a different type of stimuli (ILs, TNF-alpha) or regulating vasomotor tone via production of vasorelaxants and vasocontrictors. Biological activation is dependent on the type and quantity of chemical bonds on the surface of the powders. The effect of powders on the proliferation of HUVECs (Human Umbilical Vein Endothelial Cells) was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay. We found decreased cell proliferation after 72 h treatment with graphite as well as Carbon Powder Particles. PMID:20352757

  11. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    PubMed Central

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  12. [Biologically active peptides derived from food proteins as the food components with cardioprotective properties].

    PubMed

    Iwaniak, Anna; Darewicz, Małgorzata; Minkiewicz, Piotr; Protasiewicz, Monika; Borawska, Justyna

    2014-06-01

    Food proteins are the source of peptides with many biological activities. One of them is their impact on blood circulatory system. This group of peptides includes the ones with the ability to reduce the blood pressure (inhibitors of angiotensin converting enzyme--ACE), antithrombotic, and to lower the cholesterol level. Among the above-mentioned peptides' bioactivities, the most of them act as the ACE inhibitors. Some of them are the functional food components and nutraceuticals and possess the status of food with special use. The main known source of antithrombotic and cholesterol lowering peptides are milk and soy proteins, respectively. However, the scientists make the efforts to find new alternative sources of peptides with the above-mentioned activities. It should be noted, that although the bioactive peptides are considered as the safe food components and thus be supportive in the cardiovascular diseases therapy, they cannot substitute the drugs. This review shows the characteristics of selected peptides with: blood pressure reducing, antithrombotic, and cholesterol level reducing activities. We focused on the sequences that were identified in food proteins as well as were tested on humans or animals.

  13. [B17-D-leucine]insulin and [B17-norleucine]insulin: synthesis and biological properties.

    PubMed

    Knorr, R; Danho, W; Büllesbach, E E; Gattner, H G; Zahn, H; King, G L; Kahn, C R

    1983-11-01

    The chemical synthesis of two porcine insulin analogues is described. Leucine in position B17 of the native molecule was substituted by its D-enantiomer and by L-norleucine, respectively. Both B-chain derivatives were synthesized by fragment condensation and purified as di-S-sulphonates by gel filtration followed by ion exchange chromatography on SP-Sephadex at pH3. Combination with native sulphhydryl A-chain yielded [DLeuB17]insulin and [NleB17]insulin. Both insulin analogues were isolated by gel filtration followed by ion exchange chromatography on CM-cellulose at pH 4.0. Biological activities of the analogues were determined relative to native pork insulin: 1) glucose oxidation in rat epididymal adipocytes was 6% for [DLeuB17]insulin and 16% for [NleB17]insulin, 2) receptor-binding affinity tested with cultured human fibroblasts and with rat adipocytes was 3% for [DLeuB17]insulin and 26% for [NleB17]insulin, and 3) thymidine incorporation into DNA of human fibroblasts was 35% for [DLeuB17]insulin and 100% for [NleB17]insulin.

  14. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles.

    PubMed

    Novak, Maria S; Büchel, Gabriel E; Keppler, Bernhard K; Jakupec, Michael A

    2016-06-01

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed. PMID:26961253

  15. Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides.

    PubMed

    Gonec, Tomas; Kos, Jiri; Nevin, Eoghan; Govender, Rodney; Pesko, Matus; Tengler, Jan; Kushkevych, Ivan; Stastna, Vendula; Oravec, Michal; Kollar, Peter; O'Mahony, Jim; Kralova, Katarina; Coffey, Aidan; Jampilek, Josef

    2014-01-01

    In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenyl)naphthalene-1-carboxamide, N-(3-methoxy-phenyl)naphthalene-1-carboxamide, N-(3-methylphenyl)naphthalene-1-carboxamide, N-(4-methylphenyl)naphthalene-1-carboxamide and N-(3-fluorophenyl)naphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET) inhibition in isolated spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethyl)phenyl]naphthalene-1-carboxamide was 59 μmol/L. The structure-activity relationships are discussed.

  16. Properties of biological and biochemical effects of the Iranian saw-scaled viper (Echis carinatus) venom.

    PubMed

    Babaie, M; Salmanizadeh, H; Zolfagharian, H; Alizadeh, H

    2014-01-01

    The venom of Echis carinatus is rich in proteins and peptides effective on the hemostatic system. This venom is contains metalloproteinase which convert prothrombin to meizothrombin. The prothrombin activator which leads to the formation of small blood clots inside the blood vessels throughout the body. To understand the mechanism of the effects of Iranian Echis carinatus venom, the effects of E. carinatus on human and Wistar rat plasma, plasma proteins (prothrombin and fibrinogen) and blood coagulation were studied. Proteolytic activity of the crude venom on blood coagulation factors such as prothrombin, partial thromboplastin and fibrinogen times were studied. In the present study the PT test for human plasma was reduced from 13.4 s (±0.59) to 8.6 s (±0.64) when human plasma was treated with crude venom (concentration of venom was 1 mg/ml) and for rat plasma PT was reduced from 14.5 s (±0.47) to 8 s (±0.49). Some possible biological and biochemical effects of IEc crude venom were investigated. The blood coagulation in human and in rat were investigated in vivo and in-vitro. In this paper, we show that the procoagulant action of Echis carinatus venom is due in part to a protein component that activates prothrombin and the procoagulant activity on human and rat plasma was evaluated (Tab. 2, Fig. 2, Ref. 31). PMID:25077367

  17. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    PubMed

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins).

  18. Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties.

    PubMed

    Gonçalves, Rui F; Silva, Artur M S; Silva, Ana Margarida; Valentão, Patrícia; Ferreres, Federico; Gil-Izquierdo, Angel; Silva, João B; Santos, Delfim; Andrade, Paula B

    2013-12-15

    Colocasia esculenta (L.) Shott, commonly known as taro, is an essential food for millions of people. The leaves are consumed in sauces, purees, stews, and soups, being also used in wound healing treatment. Nowadays, the consumers' demand for bioactive compounds from the diet led to the development of new agricultural strategies for the production of health-promoting constituents in vegetables. In this work, two strategies (variety choice and irrigation conditions) were considered in the cultivation of C. esculenta. The effect on the phenolic composition of the leaves was evaluated. Furthermore, a correlation between the biological activity of the different varieties and their chemical composition was established. Qualitative and quantitative differences in the phenolic composition were observed between varieties; furthermore, the irrigation conditions also influenced the composition. C. esculenta varieties were able to scavenge several oxidant species and to inhibit hyaluronidase, but data suggest that metabolites other than phenolics are involved. The results show that cultivation strategies can effectively modulate the accumulation of these types of bioactive compounds. Furthermore C. esculenta wound healing potential can be attributed, at least in part, to the protection of the wound site against oxidative/nitrosative damage and prevention of hyaluronic acid degradation. PMID:23993510

  19. Biological and Immunological Properties of Encapsulated Strains of Staphylococcus aureus from Human Sources

    PubMed Central

    Yoshida, Kosaku; Smith, Melvin R.; Naito, Yoshiko

    1970-01-01

    Of 875 strains of Staphylococcus aureus isolated from human source clinical specimens, 37 (4.2%) were encapsulated strains. These were all negative for clumping factor and could not be typed with bacteriophages or by serology. Twenty-one of these did not produce any hemolysins, 15 produced alpha hemolysin, 1 produced beta hemolysin, and 1 produced both beta and delta hemolysins. After one or two subcultures, 27 of the encapsulated strains converted to the compact variant form, all became positive for clumping factor, 12 became phage-typable, and 24 became sero-typable. In addition, 7 strains converted from negative to alpha hemolysin production. Comparison of phage- and sero-types did not reveal any relationships. Immunologically, mice challenged with heat-killed encapsulated strains were protected against a challenge infection with the Smith diffuse strain. Protective antibodies in rabbit anti-Smith diffuse strain antisera were removed by adsorption using the encapsulated organisms isolated in this study. The adsorbed sera no longer protected against challenge infection in mice with the Smith diffuse strain. From these results, it appears that the encapsulated strains isolated were immunologically and biologically similar to the classical Smith diffuse strain. PMID:16557873

  20. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey K.; Granskog, Mats A.; Stedmon, Colin A.; Ivanov, Boris V.; Hudson, Stephen R.; Falk-Petersen, Stig

    2015-03-01

    Underwater light regime is controlled by distribution and optical properties of colored dissolved organic matter (CDOM) and particulate matter. The Fram Strait is a region where two contrasting water masses are found. Polar water in the East Greenland Current (EGC) and Atlantic water in the West Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC was significantly higher (more than 3-fold) compared to Atlantic water in the WSC, with values of absorption coefficient, aCDOM(350), m- 1 of 0.565 ± 0.100 (in 2009) and 0.458 ± 0.117 (in 2010), and 0.138 ± 0.036 (in 2009) and 0.153 ± 0.039 (in 2010), respectively. An opposite pattern was observed for particle absorption with higher absorption found in the eastern part of the Fram Strait. Average values of particle absorption (aP(440), m- 1) were 0.016 ± 0.013 (in 2009) and 0.014 ± 0.011 (in 2010), and 0.047 ± 0.012 (in 2009) and 0.016 ± 0.014 (in 2010), respectively for Polar and Atlantic water. Thus absorption of light in eastern part of the Fram Strait is dominated by particles - predominantly phytoplankton, and the absorption of light in the western part of the strait is dominated by CDOM, with predominantly terrigenous origin. As a result the balance between the importance of CDOM and particulates to the total absorption budget in the upper 0-10 m shifts across Fram Strait. Under water spectral irradiance profiles were generated using ECOLIGHT 5.4.1 and the results indicate that the shift in composition between dissolved and particulate material does not influence substantially the penetration of photosynthetic active radiation (PAR, 400-700 nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the

  1. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study

    NASA Astrophysics Data System (ADS)

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-01

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  2. Identification of a family of fatty acid-speciated Sonic Hedgehog proteins, whose members display differential biological properties

    PubMed Central

    Houel, Stephane; Rodgriguez-Blanco, Jezabel; Singh, Samer; Schilling, Neal; J.Capobianco, Anthony; Ahn, Natalie G.; Robbins, David J.

    2015-01-01

    SUMMARY Hedgehog (HH) proteins are proteolytically processed into a biologically active form, which is covalently modified by cholesterol and palmitate. However, most studies of HH biogenesis have characterized protein from cells in which HH is over-expressed. We purified Sonic Hedgehog (SHH) from cells expressing physiologically relevant levels, and showed that it was more potent than SHH isolated from over-expressing cells. Furthermore, the SHH in our preparations were modified with a diverse spectrum of fatty acids on their amino-termini, and this spectrum of fatty acids varied dramatically depending on the growth conditions of the cells. The fatty acid composition of SHH affected its trafficking to lipid rafts, as well as its potency. Our results suggest that HH proteins exist as a family of diverse lipid-speciated proteins, which might be altered in different physiological and pathological contexts to regulate distinct properties of HH proteins. PMID:25732819

  3. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite.

    PubMed

    Bahrami, M; Fathi, M H; Ahmadian, M

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co-Cr-Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co-Cr-Mo alloy to bioactive type by adding 10, 15, and 20wt.% HA which have lower modulus elasticity and higher microhardness.

  4. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: a theoretical study.

    PubMed

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-10

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  5. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells.

    PubMed

    Fujita, Nobuyuki; Suzuki, Satoshi; Watanabe, Kota; Ishii, Ken; Watanabe, Ryuichi; Shimoda, Masayuki; Takubo, Keiyo; Tsuji, Takashi; Toyama, Yoshiaki; Miyamoto, Takeshi; Horiuchi, Keisuke; Nakamura, Masaya; Matsumoto, Morio

    2016-08-01

    Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.

  6. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.

    PubMed

    Thein-Han, W W; Shah, J; Misra, R D K

    2009-09-01

    A potential approach to achieving the objective of favorably modulating the biological response of implantable biopolymers combined with good mechanical properties is to consider compounding the biopolymer with a bioactive nanocrystalline ceramic biomimetic material with high surface area. The processing of silicone rubber (SR)-nanohydroxyapatite (nHA) composite involved uniform dispersion of nHA via shear mixing and ultrasonication, followed by compounding at sub-ambient temperature, and high-pressure solidification when the final curing reaction occurs. The high-pressure solidification approach enabled the elastomer to retain the high elongation of SR even in the presence of the reinforcement material, nHA. The biological response of the nanostructured composite in terms of initial cell attachment, cell viability and proliferation was consistently greater on SR-5wt.% nHA composite surface compared to pure SR. Furthermore, in the nanocomposite, cell spreading, morphology and density were distinctly different from that of pure SR. Pre-osteoblasts grown on SR-nHA were well spread, flat, large in size with a rough cell surface, and appeared as a group. In contrast, these features were less pronounced in SR (e.g. smooth cell surface, not well spread). Interestingly, an immunofluorescence study illustrated distinct fibronectin expression level, and stronger vinculin focal adhesion contacts associated with abundant actin stress fibers in pre-osteoblasts grown on the nanocomposite compared to SR, implying enhanced cell-substrate interaction. This finding was consistent with the total protein content and SDS-PAGE analysis. The study leads us to believe that further increase in nHA content in the SR matrix beyond 5wt.% will encourage even greater cellular response. The integration of cellular and molecular biology with materials science and engineering described herein provides a direction for the development of a new generation of nanostructured materials. PMID:19435616

  7. Method for Finding Metabolic Properties Based on the General Growth Law. Liver Examples. A General Framework for Biological Modeling

    PubMed Central

    Shestopaloff, Yuri K.

    2014-01-01

    We propose a method for finding metabolic parameters of cells, organs and whole organisms, which is based on the earlier discovered general growth law. Based on the obtained results and analysis of available biological models, we propose a general framework for modeling biological phenomena and discuss how it can be used in Virtual Liver Network project. The foundational idea of the study is that growth of cells, organs, systems and whole organisms, besides biomolecular machinery, is influenced by biophysical mechanisms acting at different scale levels. In particular, the general growth law uniquely defines distribution of nutritional resources between maintenance needs and biomass synthesis at each phase of growth and at each scale level. We exemplify the approach considering metabolic properties of growing human and dog livers and liver transplants. A procedure for verification of obtained results has been introduced too. We found that two examined dogs have high metabolic rates consuming about 0.62 and 1 gram of nutrients per cubic centimeter of liver per day, and verified this using the proposed verification procedure. We also evaluated consumption rate of nutrients in human livers, determining it to be about 0.088 gram of nutrients per cubic centimeter of liver per day for males, and about 0.098 for females. This noticeable difference can be explained by evolutionary development, which required females to have greater liver processing capacity to support pregnancy. We also found how much nutrients go to biomass synthesis and maintenance at each phase of liver and liver transplant growth. Obtained results demonstrate that the proposed approach can be used for finding metabolic characteristics of cells, organs, and whole organisms, which can further serve as important inputs and constraints for many applications in biology (such as protein expression), biotechnology (synthesis of substances), and medicine. PMID:24940740

  8. [Influence of the Composition of the Initial Mixtures on the Physicochemical and Biological Properties and Spectral Characteristics of Composts].

    PubMed

    Song, Cai-hong; Li, Ming-xiao; Wei, Zi-min; Xi, Bei-dou; Zhao, Yue; Jia, Xuan; Liu, Ya-ru; Liu, Dong-ming

    2015-08-01

    In this work, biogas residues, the remnant of the anaerobic digestion, was used for composting with livestock manure as the co-substrate. It is important for improving the soil quality in China, because the negative influence of biogas residues being utilized directly as organic fertilizer (a mainstream way of disposing biogas residues in China) on the soil could be eliminated or mitigated via composting. The composition of composting substrate has a great influence on the composting process. To explore the influence of the composition of the initial mixtures on the physicochemical properties and spectroscopic characteristics of composts, fifteen co-composting of biogas residue, pig manure and chicken manure, with different material ratios, were carried out. Physicochemical and biological indicators were determined. Meanwhile, spectroscopic methods, such as UV-Vis, synchronous fluorescence and 3D-EEM spectra were used for identifying characteristic spectral parameters companied with FRI and PARAFAC. Therefore, spectroscopic characteristics of composts were characterized. The relationship between physicochemical properties of composts and the composition of the initial mixtures was established using CCA. Similarly, that between spectroscopic characteristics of composts and the composition of the initial mixtures was also established. The results showed that: physicochemical properties of composts exhibits a significant correlation with the composition of the initial mixtures. A significant correlation between spectroscopic characteristics of composts and the composition of the initial mixtures was also observed. In the two CCA, the former four axes account for 83.9% and 97.5% of the total sample variation. The influence of enviro nmental factors on physicochemical properties of composts was in the order of pig manure amount>chicken manure amount>biogas residue amount and that on spectroscopic characteristics of composts was in the order of biogas residue amount

  9. Photothermal deflection of laser beam as means to characterize thermal properties of biological tissue: numerical study

    NASA Astrophysics Data System (ADS)

    Gutierrez-Herrera, Enoch; Sánchez-Pérez, Celia; García-Cadena, Carlos A.; Hernández-Ruiz, Joselín.

    2015-08-01

    Non-subjective and early diagnostic technique for liver fibrosis may decrease morbidity in patients and reduce medical costs. Liver fibrosis results in changes in density and thermal properties of tissue. In this work, we evaluate numerically the feasibility of using the optical beam deflection method (OBDM) by means of a thermo-optic material in contact with liver tissue to quantitate changes in thermal conduction. We use the finite-difference method to model the heat transfer in liver and acrylic slab. The response required for thermal characterization for different fibrosis stages is assessed by calculating the deflection angle using ray trace analysis. Numerical study shows the potential of the OBDM for developing an optical-integrated sensor as non-subjective diagnostic technique for liver fibrosis.

  10. Piperazinomycin, a new antifungal antibiotic. I. Fermentation, isolation, characterization and biological properties.

    PubMed

    Tamai, S; Kaneda, M; Nakamura, S

    1982-09-01

    A new antifungal antibiotic, named piperazinomycin, was isolated from the cultured broth of Streptoverticillium olivoreticuli subsp. neoenacticus. The antibiotic was obtained from the mycelial cake by extraction with methanol and also from the broth filtrate by adsorption on Amberlite XAD-2 and subsequent elution with aqueous acetone. The antibitoic is of basic and lipophilic nature and can be extracted with methyl isobutyl ketone at alkaline pH. Its purification was carried out by column chromatography on Sephadex LH-20 and then on Sephadex G-15 followed by preparative thin-layer chromatography on silica gel. The molecular formula of piperazinomycin was determined to be C125H20NsO2 by high resolution mass spectrum and the spectroscopic and chemical properties were examined. Piperazinomycin showed inhibitory activity against fungi and yeasts, especially against Trichophyton. PMID:7142019

  11. The species- and site-specific acid-base properties of biological thiols and their homodisulfides.

    PubMed

    Mirzahosseini, Arash; Noszál, Béla

    2014-07-01

    Cysteamine, cysteine, homocysteine, their homodisulfides and 9 related compounds were studied by ¹H NMR-pH titrations and case-tailored evaluation methods. The resulting acid-base properties are quantified in terms of 33 macroscopic and 62 microscopic protonation constants and the concomitant 16 interactivity parameters, providing thus the first complete microspeciation of this vitally important family of biomolecules. The species- and site-specific basicities are interpreted by means of inductive and hydrogen-bonding effects through various intra- and intermolecular comparisons. The pH-dependent distribution of the microspecies is depicted. The thiolate basicities determined this way provide exclusive means for the prediction of thiolate oxidizabilities, a key parameter to understand and influence oxidative stress at the molecular level.

  12. Synthesis, and Fluorescence Properties of Coumarin and Benzocoumarin Derivatives Conjugated Pyrimidine Scaffolds for Biological Imaging Applications.

    PubMed

    Al-Masoudi, Najim A; Al-Salihi, Niran J; Marich, Yossra A; Markus, Timo

    2015-11-01

    Series of coumarin and 5,6-benzomcomarin substituted pyrimidine derivatives 11-15 and 22-25 were synthesized, aiming to develop new imaging fluorescent agents. Analogously, treatment of 4-chloropyrimidine analog 16 with coumarin 3-carbohyrazide 5 under MWI condition followed by boiling with NH4OAc in HOAc furnished coumarin-1,2,4-triazolo-pyrimidine analog 18. The fluorescence property was investigated spectrophotometrically in MeOH with Rhodamine 6G as standard dye. All the compounds showed emission in the region between 331 and 495 nm. The quantum yield of all the compounds were found to be weak, except methyl benzocoumarin 3-carboxylate 22 which showed (ΦF = 0.98) in comparison to Rhodamine 6G as standard (ΦF = 0.95).

  13. A review of the toxicosis and biological properties of the genus Eupatorium.

    PubMed

    Sharma, O P; Dawra, R K; Kurade, N P; Sharma, P D

    1998-01-01

    Eupatorium genus grows wild in many parts of the world. A number of species of Eupatorium are toxic to grazing animals. Milk sickness in humans is caused by ingestion of milk of the animals reared on the pastures infested with Eupatorium rugosum (white snakeroot). While some information is available on the toxins in various species of Eupatorium, ambiguities still persist in extrapolation of the data to field incidence of toxicosis. Eupatorium genus has been used for its medicinal properties for many decades. A number of bioactive natural products have been reported in the extracts of Eupatorium spp. and the genus is a promising bioresource for preparation of drugs and value-added products. PMID:9851506

  14. Synthesis and biological properties of conjugates between fluoroquinolones and a N3''-functionalized pyochelin.

    PubMed

    Noël, Sabrina; Gasser, Véronique; Pesset, Bénédicte; Hoegy, Françoise; Rognan, Didier; Schalk, Isabelle J; Mislin, Gaëtan L A

    2011-12-21

    Pyochelin is a siderophore common to Pseudomonas aeruginosa and several other pathogenic bacteria. A pyochelin functionalized at the N3'' position with a propyl-amine extension was previously synthesized. In the present work we proved that this analog binds FptA, the pyochelin outer membrane receptor, and transports iron(III) efficiently into bacteria. This functionalized pyochelin seemed to be a good candidate for antibiotic vectorization in the framework of a Trojan horse prodrug strategy. In this context, conjugates between pyochelin and three fluoroquinolones (norfloxacin, ciprofloxacin and N-desmethyl-ofloxacin) were synthesized with a spacer arm that was either stable or hydrolyzable in vivo. Some pyochelin-fluoroquinolone conjugates had antibacterial activities in growth inhibition experiments on several P. aeruginosa strains. However, these activities were weaker than those of the antibiotic alone. These properties appeared to be related to both the solubility and bioavailability of conjugates and to the stability of the spacer arm used. PMID:22052022

  15. Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications.

    PubMed

    Tran, Quoc Tuan; Nguyen, Van Son; Hoang, Thi Kim Dung; Nguyen, Hoang Luong; Bui, Thu Thuy; Nguyen, Thi Van Anh; Nguyen, Dinh Hoa; Nguyen, Hoang Hai

    2011-09-15

    Silver nanoparticles colloid has been prepared by a modified sonoelectrodeposition technique in which a silver plate was used as the source of silver ions. This technique allows producing Ag nanoparticles with the size of 4-30 nm dispersed in a non-toxic solution. The Ag nanoparticles were loaded in a high surface activated carbon produced from coconut husk, a popular agricultural waste in Vietnam by thermal activation. The surface area of the best activated carbon is 890 m(2)/g. The presence of Ag nanoparticles does not change significantly properties of the activated carbon in terms of morphology and methylene blue adsorption ability. The Ag nanoparticle-loaded activated carbon shows a good antibacterial activity against Escherichia coli with very low minimal inhibitory concentration of 16 μg/ml and strong As(V) adsorption. The materials are potential for prevention and treatment of microbial infection and contamination for environmental applications.

  16. Biological properties of a hemagglutinin mutant of influenza virus selected by host cells.

    PubMed

    Crecelius, D M; Deom, C M; Schulze, I T

    1984-11-01

    Chick embryo fibroblast (CEF)-grown stocks of the WSN strain of influenza A(HINI) contain two variants which were designated F and C for fuzzy and clear plaque morphology on Madin-Darby bovine kidney (MDBK) cells. During growth in MDBK cells plaque-isolated F virus was completely replaced by C virus (L. Noronha-Blob and I.T. Schulze (1976), Virology 69, 314-322). The parental (F) and the mutant (C) viruses contain hemagglutinins which differ in their ability to bind to host cells. In addition, the host cells from which the purified viruses are obtained affect their binding properties. Thus, as compared to MDBK-grown F virus (FBK), MDBK-grown C virus (CBK) produced high amounts of mRNA and high virus yields in MDBK cells. CBK had greater affinity for SA alpha 2,3Gal and SA alpha 2,6Gal linkages on derivatized human erythrocytes than did FBK, independent of whether neuraminidase was present on the virions. CBK was also resistant to components of calf serum which inhibited FBK hemagglutination at 37 degrees. As compared to FBK, CBK had increased ability to bind to both MDBK cells and CEF at 37 degrees in the presence or absence of an inhibitor of neuraminidase. In addition, when cells with virus bound at 0 degrees were transferred to 37 degrees, CBK remained cell associated whereas about 80% of FBK dissociated from both cells. Thus, mutation from F to C increased the ability of the virus to associate with MDBK cell receptors. Studies carried out with F and C viruses from both cells indicated that the expression of the mutation depended in part on the host cells in which the virus was grown and in part on the cells used to measure the binding properties. A model relating these observations to selection of HA variants in nature is presented.

  17. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.

    PubMed

    Caparrós, C; Guillem-Martí, J; Molmeneu, M; Punset, M; Calero, J A; Gil, F J

    2014-11-01

    The generation of titanium foams is a promising strategy for modifying the mechanical properties of intervertebral reinforcements. Thus, the aim of this study was to compare the in vitro biological response of Ti6Al4V alloys with different pore sizes for use in intervertebral implants in terms of the adhesion, proliferation, and differentiation of pre-osteoblastic cells. We studied the production of Ti6Al4V foams by powder metallurgy and the biological responses to Ti6Al4V foams were assessed in terms of different pore interconnectivities and elastic moduli. The Ti6Al4V foams obtained had similar porosities of approximately 34%, but different pore sizes (66 µm for fine Ti6Al4V and 147 µm for coarse Ti6Al4V) due to the sizes of the microsphere used. The Ti6Al4V foams had a slightly higher Young׳s modulus compared with cancellous bone. The dynamic mechanical properties of the Ti6Al4V foams were slightly low, but these materials can satisfy the requirements for intervertebral prosthesis applications. The cultured cells colonized both sizes of microspheres near the pore spaces, where they occupied almost the entire area of the microspheres when the final cell culture time was reached. No statistical differences in cell proliferation were observed; however, the cells filled the pores on fine Ti6Al4V foams but they only colonized the superficial microspheres, whereas the cells did not fill the pores on coarse Ti6Al4V foams but they were distributed throughout most of the material. In addition, the microspheres with wide pores (coarse Ti6Al4V) stimulated higher osteoblast differentiation, as demonstrated by the Alcaline Phosphatase (ALP) activity. Our in vitro results suggest that foams with wide pore facilitate internal cell colonization and stimulate osteoblast differentiation. PMID:25108271

  18. Comparison of biological activity of phenolic fraction from roots of Alhagi maurorum with properties of commercial phenolic extracts and resveratrol.

    PubMed

    Olas, Beata; Hamed, Arafa I; Oleszek, Wieslaw; Stochmal, Anna

    2015-01-01

    Phenolic compounds have different biological properties, including antioxidative activities, but they may also be prooxidants. The effect of phenolic fraction from roots of Alhagi maurorum on oxidative protein/lipid damages (determined by such parameters as levels of protein thiol groups and the concentration of thiobarbituric acid reactive species--TBARS) in human blood platelets and human plasma after treatment with hydrogen peroxide--H2O2 (which is the strong biologic oxidant and inflammatory mediator) was studied in vitro. We also studied the effect of A. maurorum extract on blood platelet activation corresponding to thrombin-induced arachidonic acid pathway. Moreover, the present work was designed to study the effect of A. maurorum extract on selected physiological function of blood platelets--adhesion of blood platelets to collagen in vitro. The action of phenolic fraction from A. maurorum was compared with the selected commercial phenolic extracts: extract from berries of Aronia melanocarpa (Aronox®), extract from bark of Yucca schidigera and monomeric polyphenol-resveratrol (3,4',5-trihydroxystilbene). Exposure of blood platelets or plasma to H2O2 resulted in a decrease of the level of thiol groups in proteins, and an increase of TBARS. In the presence of phenolic fraction from A. maurorum (0.5-50 µg/ml), a reduction of thiol groups oxidation together with the decrease of autoperoxidation of lipids and lipid peroxidation caused by H2O2 or thrombin was observed. The inhibitory, concentration-dependent effects of A. maurorum extract on adhesion of thrombin-activated platelets to collagen were also found. The phenolic fraction from A. maurorum acts as an antioxidant and can be useful as the natural factor protecting against diseases associated with oxidative stress. Tested fraction from A. maurorum has more effective antioxidative activity and antiplatelet properties than aronia extract or other commercial extract, however differences between their actions

  19. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    NASA Astrophysics Data System (ADS)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  20. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.

    PubMed

    Caparrós, C; Guillem-Martí, J; Molmeneu, M; Punset, M; Calero, J A; Gil, F J

    2014-11-01

    The generation of titanium foams is a promising strategy for modifying the mechanical properties of intervertebral reinforcements. Thus, the aim of this study was to compare the in vitro biological response of Ti6Al4V alloys with different pore sizes for use in intervertebral implants in terms of the adhesion, proliferation, and differentiation of pre-osteoblastic cells. We studied the production of Ti6Al4V foams by powder metallurgy and the biological responses to Ti6Al4V foams were assessed in terms of different pore interconnectivities and elastic moduli. The Ti6Al4V foams obtained had similar porosities of approximately 34%, but different pore sizes (66 µm for fine Ti6Al4V and 147 µm for coarse Ti6Al4V) due to the sizes of the microsphere used. The Ti6Al4V foams had a slightly higher Young׳s modulus compared with cancellous bone. The dynamic mechanical properties of the Ti6Al4V foams were slightly low, but these materials can satisfy the requirements for intervertebral prosthesis applications. The cultured cells colonized both sizes of microspheres near the pore spaces, where they occupied almost the entire area of the microspheres when the final cell culture time was reached. No statistical differences in cell proliferation were observed; however, the cells filled the pores on fine Ti6Al4V foams but they only colonized the superficial microspheres, whereas the cells did not fill the pores on coarse Ti6Al4V foams but they were distributed throughout most of the material. In addition, the microspheres with wide pores (coarse Ti6Al4V) stimulated higher osteoblast differentiation, as demonstrated by the Alcaline Phosphatase (ALP) activity. Our in vitro results suggest that foams with wide pore facilitate internal cell colonization and stimulate osteoblast differentiation.

  1. Putative Bioactive Motif of Tritrpticin Revealed by an Antibody with Biological Receptor-Like Properties

    PubMed Central

    Sharma, Raghava; Lomash, Suvendu; Salunke, Dinakar M.

    2013-01-01

    Antimicrobial peptides represent one of the most promising future strategies for combating infections and microbial drug resistance. Tritrpticin is a 13mer tryptophan-rich cationic antimicrobial peptide with a broad spectrum of activity whose application in antimicrobial therapy has been hampered by ambiguity about its biological target and consequently the molecular interactions necessary for its antimicrobial activity. The present study provides clues about the mechanism of action of tritripticin by using a unique monoclonal antibody (mAb) as a ‘physiological’ structural scaffold. A pool of mAbs were generated against tritrpticin and based on its high affinity and ability to bind tritrpticin analogs, mAb 6C6D7 was selected and characterized further. In a screening of phage displayed random peptides, this antibody was able to identify a novel antimicrobial peptide with low sequence homology to tritrpticin, suggesting that the mAb possessed the physico-chemical characteristics mimicking the natural receptor. Subsequently, thermodynamics and molecular modeling identified a core group of hydrophobic residues in tritrpticin arranged in a distorted’s’ shaped conformation as critical for antibody binding. Comparison of the mAb induced conformation with the micelle bound structure of tritrpticin reveals how a common motif may be able to interact with multiple classes of biomolecules thus extending the target range of this innate immune peptide. Based on the concurrence between thermodynamic and structural data our results reveal a template that can be used to design novel antimicrobial pharmacophores while simultaneously demonstrating at a more fundamental level the potential of mAbs to act as receptor surrogates. PMID:24086578

  2. Biochemical and biological properties of phospholipases A(2) from Bothrops atrox snake venom.

    PubMed

    Kanashiro, Milton M; de Cássia M Escocard, Rita; Petretski, Jorge H; Prates, Maura V; Alves, Elias W; Machado, Olga L T; da Silva, Wilmar Dias; Kipnis, Thereza L

    2002-10-01

    Phospholipases A(2) (PLA(2)s), of molecular mass 13-15kDa, are commonly isolated from snake venom. Two myotoxins with PLA(2) activity, BaPLA(2)I and BaPLA(2)III, with estimated molecular masses of 15kDa were isolated from the venom of Bothrops atrox using Sephacryl S-100-HR and reverse-phase chromatography. BaPLA(2)I was basic, with a pI of 9.1, while BaPLA(2)III was neutral with a pI of 6.9. On a molecular basis, BaPLA(2)III exhibited higher catalytic activity on synthetic substrates than BaPLA(2)I. Comparison of the N-terminal residues of BaPLA(2)I with other PLA(2) proteins from snake venoms showed that it has the highest homology (94%) with B. asper myotoxin II and homology with a PLA(2) Lys(49) from B. atrox (89%). In contrast, BaPLA(2)III demonstrated 75, 72, and 71% homology with PLA(2) from Vipera ammodytes meridionalis, B. jararacussu, and B. jararaca, respectively. BaPLA(2)I and BaPLA(2)III were capable, in vitro, of inducing mast cell degranulation and, in vivo, of causing creatine kinase release, edema, and myonecrosis typical of PLA(2)s from snake venoms, characterized by rapid disruption of the plasma membrane as indicated by clumping of myofilaments and necrosis of affected skeletal muscle cells. BaPLA(2)I- and BaPLA(2)III-specific monoclonal and polyclonal antibodies, although incapable of neutralizing PLA(2) edematogenic activity, blocked myonecrosis efficiently in an in vivo neutralization assay. The results presented herein suggest that the biological active site responsible for edema induction by these two PLA(2) enzymes is distinct from the myonecrosis active site and is not dependent upon the catalytic activity of the PLA(2) enzyme. PMID:12234622

  3. Solubility properties in polymers and biological media. 7. An analysis of toxicant properties that influence inhibition of bioluminescence in photobacterium phosphoreum (the Microtox test)

    SciTech Connect

    Kamlet, M.J.; Doherty, R.M.; Veith, G.D.; Taft, R.W.; Abraham, M.H.

    1986-07-01

    Inhibition of bioluminescence in Photobacterium phosphoreum (the Microtox test) has been proposed as a cost-effective prescreening procedure to eliminate the relatively more innocuous chemicals from testing programs for toxicities of organic chemicals to fish. The biological response, as a function of toxicant properties, is given by log EC/sub 50/ (in ..mu..molL) = 7.61 - 4.11 anti V100 - 1.54 ..pi..* + 3.94..beta.. - 1.51..cap alpha../sub m/ n = 38, r = 0.987, SD = 0.28 where anti V is the solute molar volume and ..pi..*, ..beta.., and ..cap alpha../sub m/ are the solvatochromic parameters that measure dipolaritypolarizability, hydrogen-bond acceptor basicity, and hydrogen-bond donor acidity of the solute (toxicant). The above equation applies to compounds that act by a nonreactive toxicity mechanism, and it is suggested that for certain compounds, which are outliers relative to the above equation, reactive toxicity properties mask the effects of the nonreactive mechanism. The above equation is compared with a correlation of log EC/sub 50/ with octanolwater partition coefficients. 25 references, 2 figures, 2 tables.

  4. Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    PubMed Central

    2012-01-01

    Background Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue. Methods A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured in vitro and in vivo in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific in situ hybridization was performed to discriminate between cells of human and murine origin in xenotransplants. Results The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. In vitro and in vivo (subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels in vitro and in vivo, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of

  5. Biological properties of extremely acidic cyanide-laced mining waste.

    PubMed

    Feketeová, Zuzana; Hulejová Sládkovičová, Veronika; Mangová, Barbara; Pogányová, Andrea; Šimkovic, Ivan; Krumpál, Miroslav

    2016-01-01

    With respect to acidic, cyanide-laced tailings, the data about in situ toxicity and biological activity in highly polluted environment are often lacking. The aim of this study was to assess the microbial characteristics, composition of oribatid mite species, and level of genotoxic impact on plants in the area of inactive tailings pond (Horná Ves, Kremnica region). Sampling of the tailings, soils and selected plant species was carried out in spring of 2012. Trace element analysis (inductively coupled plasma emission and mass spectrometry) showed that concentration of Pb, Zn, and Cu in the tailings is approximately in thousands of ppm (mg kg(-1)). Amount of lead exceeded 16,000 mg kg(-1), which is perceived as the biggest threat with respect to possible toxicity. The risk is accentuated by extremely acidic pH of the tailings material which approached 2. In such conditions great mobility of (divalent) heavy metal cations is expected. The total cyanide concentration in the tailings was 472 mg kg(-1). Results of performed tests and measurements suggest that microbial activity at the tailings site (and its close environment) is hampered markedly. In the sludge material we detected low abundance of soil bacteria (2.08 × 10(4) CFU) and predominance of slowly growing K-strategists. On the other hand, the content of microbial C in the sludge sample was not too low, considering its extreme acidity and high amount of risk elements. In the same sample, just one mite species, Oppiella (O.) uliginosa (Willmann 1919), was identified. Also in case of the dam site the abundance of mites was considerably lower in comparison to reference sample. Values of Oribatida abundance were in positive correlation with values of microbial biomass carbon. Results of the pollen grain abortivity test, applied in situ on chosen plant species, indicated substantial presence of genotoxicity in the environment. Total induction index of tailings pond reached 3.59(±2.4) which expresses also

  6. Stable Oligomeric Clusters of Gold Nanoparticles: Preparation, Size Distribution, Derivatization, and Physical and Biological Properties

    PubMed Central

    2015-01-01

    Reducing dilute aqueous HAuCl4 with NaSCN under alkaline conditions produces 2–3 nm diameter yellow nanoparticles without the addition of extraneous capping agents. We here describe two very simple methods for producing highly stable oligomeric grape-like clusters (oligoclusters) of these small nanoparticles. The oligoclusters have well-controlled diameters ranging from ∼5 to ∼30 nm, depending mainly on the number of subunits in the cluster. Our first [“delay-time”] method controls the size of the oligoclusters by varying from seconds to hours the delay time between making the HAuCl4 alkaline and adding the reducing agent, NaSCN. Our second [“add-on”] method controls size by using yellow nanoparticles as seeds onto which varying amounts of gold derived from “hydroxylated gold”, Na+[Au(OH4–x)Clx]−, are added-on catalytically in the presence of NaSCN. Possible reaction mechanisms and a simple kinetic model fitting the data are discussed. The crude oligocluster preparations have narrow size distributions, and for most purposes do not require fractionation. The oligoclusters do not aggregate after ∼300-fold centrifugal-filter concentration, and at this high concentration are easily derivatized with a variety of thiol-containing reagents. This allows rare or expensive derivatizing reagents to be used economically. Unlike conventional glutathione-capped nanoparticles of comparable gold content, large oligoclusters derivatized with glutathione do not aggregate at high concentrations in phosphate-buffered saline (PBS) or in the circulation when injected into mice. Mice receiving them intravenously show no visible signs of distress. Their sizes can be made small enough to allow their excretion in the urine or large enough to prevent them from crossing capillary basement membranes. They are directly visible in electron micrographs without enhancement, and can model the biological fate of protein-like macromolecules with controlled sizes and charges

  7. Trypanosoma cruzi I and IV Stocks from Brazilian Amazon Are Divergent in Terms of Biological and Medical Properties in Mice

    PubMed Central

    Monteiro, Wuelton Marcelo; Margioto Teston, Ana Paula; Gruendling, Ana Paula; dos Reis, Daniele; Gomes, Mônica Lúcia; Marques de Araújo, Silvana; Bahia, Maria Terezinha; Costa Magalhães, Laylah Kelre; de Oliveira Guerra, Jorge Augusto; Silveira, Henrique; de Ornelas Toledo, Max Jean; Vale Barbosa, Maria das Graças

    2013-01-01

    Background In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties. Methodology/Principal Findings Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001), a longer patent period (p<0.001), higher values of mean daily parasitemia (p = 0.009) and maximum of parasitemia (p = 0.015), earlier days of maximum parasitemia (p<0.001) and mortality (p = 0.018), higher mortality rates in the acute phase (p = 0.047), higher infectivity rates (p = 0.002), higher positivity in the fresh blood examination (p<0.001), higher positivity in the ELISA at the early chronic phase (p = 0.022), and a higher positivity in the ELISA at the late chronic phase (p = 0.003). On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014), higher frequency of mice with inflammatory process in any organ (p = 0.005), higher frequency of mice with tissue parasitism in any organ (p = 0.027) and a higher susceptibility to benznidazole (p = 0.002) than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the

  8. A Comparison between Characterization and Biological Properties of Brazilian Fresh and Aged Propolis

    PubMed Central

    Schmidt, Eduardo Morgado; Stock, Daniele; Chada, Fabio José Garcia; Finger, Daiane; Christine Helena Frankland Sawaya, Alexandra; Eberlin, Marcos Nogueira; Felsner, Maria Lurdes; Quináia, Sueli Pércio; Torres, Yohandra Reyes

    2014-01-01

    Objective. As propolis is a highly valued bee product, we aimed to verify the quality of aged propolis, investigating their phenolic and flavonoid composition, levels of toxic metals, radical scavenging and antimicrobial activities. Material and Methods. Samples of fresh and aged propolis of six different beekeepers, from the same geographical location, were investigated in terms of their phenolic and flavonoid composition and levels of Pb, Cd, and Cr, as well as radical scavenging and antimicrobial activities. Results. The two groups of propolis had similar qualitative composition by HPLC-PDA and ESI(-)-MS. Fresh propolis and aged propolis show no differences when average values of extraction yield, flavonoids, EC50, or MIC were compared and both types of propolis showed good antimicrobial activity at low concentrations. Only levels of phenolic compounds were higher in fresh propolis. Conclusion. The propolis samples considered in this study, aged or fresh, had similar qualitative composition, although they were collected in different periods. Samples only differed in their levels of total phenolic content. Moreover, aged propolis conserves significant radical scavenging and antimicrobial properties. We suggest that aged propolis should not be discarded but explored for alternative applications. PMID:25530958

  9. Ferrocenyl-cymantrenyl hetero-bimetallic chalcones: Synthesis, structure and biological properties

    NASA Astrophysics Data System (ADS)

    Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav

    2015-04-01

    Two new ferrocenyl-cymantrenyl bimetallic chalcones, [(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)Fe(η5-C5H5)] (1) and [{(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)}2Fe] (2) have been synthesized. Their reactivity study with triphenylphosphine and bis-(diphenylphosphino)ferrocene led to the isolation of phosphine substituted bimetallic chalcones (3-6). Single crystal X-ray structural characterization for 1 and its phosphine analogue (3) reveals their different conformational identity with anti-conformation for 1, while syn-conformation for 3. Investigation of antimalarial and antibacterial activities was carried out for compounds 1 and 2 against two strains of Plasmodium falciparum (3D7, K1) and four bacterial strains. TD-DFT calculation was performed for compound 1 and electrochemical properties were studied for bimetallic chalcone compounds by cyclic voltammetric technique.

  10. Physical and biological properties of the ion beam irradiated PMMA-based composite films

    NASA Astrophysics Data System (ADS)

    Shanthini, G. M.; Martin, Catherine Ann; Sakthivel, N.; Veerla, Sarath Chandra; Elayaraja, K.; Lakshmi, B. S.; Asokan, K.; Kanjilal, D.; Kalkura, S. Narayana

    2015-02-01

    Polymethyl methacrylate (PMMA) and PMMA-hydroxyapatite (PMMA-HAp) composite films, prepared by the solvent evaporation method were irradiated with 100 MeV Si7+ ions. Crystallographic, morphological and the functional groups of the pristine and irradiated samples were studied using glancing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) respectively. SEM reveals the creation of pores, along with an increase in porosity and cluster size on irradiation. Decrease in crystalline nature and crystallite size with an increase in ion fluence was observed from GIXRD patterns. The surface roughness and the wettability of the material were also enhanced, which could favour the cell-material interaction. The irradiated samples adsorbed significantly greater amount of proteins than pristine. Also, irradiation does not produce any toxic byproducts or leachants, and maintains the viability of 3T3 cells. The response of the irradiated samples towards biomedical applications was demonstrated by the improved antimicrobial activity, haemocompatibility and cytocompatibility. Swift heavy ion irradiation (SHI) could be an effective tool to modify and engineer the surface properties of the polymers to enhance the biocompatibility.

  11. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Koşarsoy, Gözde; Şen, Elif Hilal; Aksöz, Nilüfer; İde, Semra; Aksoy, Hüsnü

    2014-11-01

    Some novel nanocomposites, which contain different concentrations of TiO2 nanopowders, were firstly prepared by using marble dust with convenient chemical components. Their nano structures characterized and distributions of the nano-aggregations related with internal structural content of the samples have been determined by X-ray Scattering Methods (SAXS and WAXS) and mechanical properties were determined by using strain-stress measurements to increase their potential usage possibility as building materials in health and research centers. In the last and important part of the study, Candida albicans and Aspergillus niger which are a significant risk to medical patients were used to investigate originally prepared nanostructured samples' photocatalyst effect. During the last part of the study, effect of UV and visible light on photocatalyst nanocomposites were also researched. Heterogeneous photocatalysts can carry out advanced oxidation processes used for an antimicrobial effect on microorganisms. TiO2 nanoparticles as one of heterogeneous photocatalysts have been shown to exhibit strong cytotoxicity when exposed to UV and visible light.

  12. Immunological properties and biological function of monoclonal antibodies to tobacco mosaic virus.

    PubMed

    Dietzgen, R G

    1986-01-01

    Monoclonal antibodies to TMV vulgare produced in hybridoma cultures as well as in ascitic fluid were characterized according to their reactivity with the virion and/or the coat protein monomer thus revealing specificity for epitopes, cryptotopes or neotopes. Different patterns of crossreactivity of these monoclonal antibodies with TMV strains dahlemense and Holmes' Ribgrass occurred. Some monoclonal antibodies showed stronger reactivity with these strains than with the immunizing strain. The monoclonal antibodies were TMV-specific as they did not react with ArMV and PLRV and proteins of healthy tobacco plants. The monoclonal antibodies were of the IgG2a or IgM isotype. The specific activity (Ext405nm/hour/100 micrograms MCA) with the immunizing virus and its coat protein monomers was determined as characteristic property of each monoclonal antibody. A monoclonal antibody specific for the C-terminal epitope of TMV coat protein was selected by means of the corresponding chemically synthesized tetrapeptide. With this monoclonal antibody infectivity of TMV was neutralized.

  13. Keratin-based peptide: biological evaluation and strengthening properties on relaxed hair.

    PubMed

    Fernandes, M M; Lima, C F; Loureiro, A; Gomes, A C; Cavaco-Paulo, A

    2012-08-01

    A peptide based on a fragment of hair keratin type II cuticular protein, keratin peptide (KP), was studied as a possible strengthening agent for weakened relaxed hair. The peptide was prepared both in aqueous water formulation (WF) and organic solvent formulations (OF), to determine the effect of organic solvents on peptide interaction with hair and the differences in hair recovery. Both peptide formulations were shown to improve mechanical and thermal properties of weakened hair with peptide in OF showing the stronger effect. As a potential new hair care product, and so would necessitate contact with skin, the cytotoxicity and genotoxicity of the peptide were also evaluated through different methodologies (Alamar Blue assay, 2'-7'-dichlorofluorescein probe, cell morphology and growth and evaluation of DNA damage by an alkaline version of the comet assay) in skin fibroblasts. These tests are indicators of the potential of peptide to cause irritation on skin or to be carcinogenic, respectively. The peptide in WF did not cause cytotoxicity or genotoxicity in any of the concentrations tested. The presence of OF, however, induced a 20% decrease in cell viability in all of the range of concentrations used after 72-h incubation. Moreover, OF inhibited cell growth and was considered genotoxic at first contact with cells. The peptide was therefore considered a promising strengthening agent for hair and was shown to be innocuous when applied in WF.

  14. Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite.

    PubMed

    Currey, J D; Brear, K; Zioupos, P

    1994-07-01

    The successful modelling of the mechanical properties of mineralized tissues depends critically on the knowledge of the off-axis behaviour of individual unidirectional lamellae. Information on this is lacking. In this work we attempt to rectify the situation. Young's modulus, measured in bending and tension, and the tensile strength and ultimate strain to failure of the dentine of the narwhal Monodon monoceros, were determined on specimens that had almost unidirectional fibres, whose direction differed considerably from specimen to specimen. Modulus and strength decreased steadily with the degree of off-angle loading, falling to about 45% of maximum for modulus, and 35% of maximum for strength. Ultimate strain showed a less uniform behaviour, and remained remarkably high at large angles. Differences in mechanical behaviour were not related to the very small differences in mineral content measured between specimens. These findings have strong implications for modelling the anisotropic behaviour of bone, because dentine is very much like bone in most important respects. Predictions using classical composite theory are reasonably satisfactory, as long as the mineral crystals are assumed to be platelets, not rods. PMID:8063839

  15. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    NASA Astrophysics Data System (ADS)

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-09-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.

  16. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-01-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139

  17. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass

    PubMed Central

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-01-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139

  18. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    PubMed Central

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  19. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass

    NASA Astrophysics Data System (ADS)

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-06-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.

  20. A Series of COX-2 Inhibitors Endowed with NO-Releasing Properties: Synthesis, Biological Evaluation, and Docking Analysis.

    PubMed

    Consalvi, Sara; Poce, Giovanna; Ragno, Rino; Sabatino, Manuela; La Motta, Concettina; Sartini, Stefania; Calderone, Vincenzo; Martelli, Alma; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Biava, Mariangela

    2016-08-19

    Herein we report the synthesis, biological evaluation, and docking analysis of a class of cyclooxygenase-2 (COX-2) inhibitors with nitric oxide (NO)-releasing properties. In an earlier study, a number of selective COX-2 inhibitors/NO donors were developed by conjugating a diarylpyrrole scaffold endowed with selective COX-2 inhibitory properties with various nitrooxyalkyl side chains such as esters, α-amino esters, amides, α-amino amides, ethers, β-amino ethers, inverse esters, and amides. These candidates were found to have high in vitro potencies (COX-2 inhibition at 10 μm: ≥96 %), great efficacy in determining NO-vasorelaxing responses, and good antinociceptive activity in an abdominal writhing test. Among the compounds synthesized in the present work, derivative 2 b [2-(2-(1-(3-fluorophenyl)-2-methyl-5-(4-sulfamoylphenyl)-1H-pyrrol-3-yl)acetamido)ethyl nitrate] showed particularly outstanding activity, with efficacy similar to that of celecoxib even at very low concentrations. PMID:27229194

  1. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds.

    PubMed

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  2. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-06-17

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.

  3. Pseudomonas fluorescens: fur is required for multiple biological properties associated with pathogenesis.

    PubMed

    Zhou, Ze-jun; Zhang, Lu; Sun, Li

    2015-01-30

    Pseudomonas fluorescens, a Gram-negative bacterium, is an aquaculture pathogen with a broad host range. In a previous study, we had demonstrated that knockout of the fur gene of a pathogenic P. fluorescens strain, TSS, resulted in profound virulence attenuation. In this work, we studied the properties of the fur knockout mutant, TFM, in comparison with the wild type strain TSS. We found that compared to TSS, TFM (i) was impaired in siderophore production and extracellular enzyme activities, (ii) exhibited altered global polarity, (iii) was dramatically reduced in the ability to resist oxidative stress, (iv) showed higher tolerance to manganese, and (v) exhibited significantly reduced cytotoxicity. When incubated with cultured host cells, TFM displayed a cellular binding index much lower than that of TSS. Neither TFM nor TSS was able to survive and replicate in host cells. Following inoculation into Japanese flounder (Paralichthys olivaceus), TSS upregulated the expression of a wide range of genes involved in innate immunity, notably IL-1β and two CC chemokines. In contrast, TFM caused significant inductions of only a few genes and to much lower magnitudes than TSS. Given the strong inductions of IL-1β and the two chemokines by TSS, the effect of these three genes on P. fluorescens invasion was examined. The results showed that overexpression of these genes in flounder significantly inhibited TSS dissemination into and colonization of host tissues. Taken together, these results indicate that Fur is required for multiple processes associated with virulence, and that proinflammatory cytokines and chemokines likely play important roles in the clearance of P. fluorescens infection.

  4. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles

    PubMed Central

    Yallapu, Murali M.; Chauhan, Neeraj; Othman, Shadi F.; Khalilzad-Sharghi, Vahid; Ebeling, Mara C.; Khan, Sheema; Jaggi, Meena; Chauhan, Subhash C.

    2015-01-01

    Interaction of serum proteins and nanoparticles leads to a nanoparticle-protein complex formation that defines the rational strategy for a clinically relevant formulation for drug delivery, hyperthermia, and magnetic resonance imaging (MRI) applications in cancer nanomedicine. Given this perspective, we have examined the pattern of human serum protein corona formation with our recently engineered magnetic nanoparticles (MNPs). The alteration in particle size, zeta potential, hemotoxicity, cellular uptake/cancer cells targeting potential, and MRI properties of the MNPs after formation of human serum (HS) protein corona were studied. Our results indicated no significant change in particle size of our MNPs upon incubation with 0.5-50 wt/v% human serum, while zeta potential of MNPs turned negative due to human serum adsorption. When incubated with an increased serum and particle concentration, apolipoprotein E was adsorbed on the surface of MNPs apart from serum albumin and transferrin. However, there was no significant primary or secondary structural alterations observed in serum proteins through Fourier transform infrared spectroscopy, X-ray diffraction, and circular dichroism. Hemolysis assay suggests almost no hemolysis at the tested concentrations (up to 1 mg/mL) for MNPs compared to the sodium dodecyl sulphate (positive control). Additionally, improved internalization and uptake of MNPs by C4-2B and Panc-1 cancer cells were observed upon incubation with human serum (HS). After serum protein adsorption to the surface of MNPs, the close vicinity within T1 (~1.33-1.73 s) and T2 (~ 12.35-13.43 ms) relaxation times suggest our MNPs retained inherent MRI potential even after biomolecular protein adsorption. All these superior clinical parameters potentially enable clinical translation and use of this formulation for next generation nanomedicine for drug delivery, cancer-targeting, imaging and theranostic applications. PMID:25678111

  5. Fabrication and physical and biological properties of fibrin gel derived from human plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Haiguang; Ma, Lie; Zhou, Jie; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2008-03-01

    The fast development of tissue engineering and regenerative medicine drives the old biomaterials, for example, fibrin glue, to find new applications in these areas. Aiming at developing a commercially available hydrogel for cell entrapment and delivery, in this study we optimized the fabrication and gelation conditions of fibrin gel. Fibrinogen was isolated from human plasma by a freeze-thaw circle. Gelation of the fibrinogen was accomplished by mixing with thrombin. Absorbance of the fibrinogen/thrombin mixture at 550 nm as a function of reaction time was monitored by UV-VIS spectroscopy. It was found that the clotting time is significantly influenced by the thrombin concentration and the temperature, while less influenced by the fibrinogen concentration. After freeze-drying, the fibrin gel was characterized by scanning electron microscopy (SEM), revealing fibrous microstructure. Thermal gravimetric analysis found that the degradation temperature of the crosslinked fibrin gel starts from 288 °C, which is about 30 °C higher than that of the fibrinogen. The hydrogel has an initial water-uptake ratio of ~50, decreased to 30-40 after incubation in water for 11 h depending on the thrombin concentration. The fibrin gels lost their weights in PBS very rapidly, while slowly in DMEM/fetal bovine serum and DMEM. In vitro cell culture found that human fibroblasts could normally proliferate in the fibrin gel with spreading morphology. In conclusion, the fibrin gel containing higher concentration of fibrinogen (20 mg ml-1) and thrombin (5 U ml-1) has suitable gelation time and handling properties, and thus is applicable as a delivery vehicle for cells such as fibroblasts.

  6. Pseudomonas fluorescens: fur is required for multiple biological properties associated with pathogenesis.

    PubMed

    Zhou, Ze-jun; Zhang, Lu; Sun, Li

    2015-01-30

    Pseudomonas fluorescens, a Gram-negative bacterium, is an aquaculture pathogen with a broad host range. In a previous study, we had demonstrated that knockout of the fur gene of a pathogenic P. fluorescens strain, TSS, resulted in profound virulence attenuation. In this work, we studied the properties of the fur knockout mutant, TFM, in comparison with the wild type strain TSS. We found that compared to TSS, TFM (i) was impaired in siderophore production and extracellular enzyme activities, (ii) exhibited altered global polarity, (iii) was dramatically reduced in the ability to resist oxidative stress, (iv) showed higher tolerance to manganese, and (v) exhibited significantly reduced cytotoxicity. When incubated with cultured host cells, TFM displayed a cellular binding index much lower than that of TSS. Neither TFM nor TSS was able to survive and replicate in host cells. Following inoculation into Japanese flounder (Paralichthys olivaceus), TSS upregulated the expression of a wide range of genes involved in innate immunity, notably IL-1β and two CC chemokines. In contrast, TFM caused significant inductions of only a few genes and to much lower magnitudes than TSS. Given the strong inductions of IL-1β and the two chemokines by TSS, the effect of these three genes on P. fluorescens invasion was examined. The results showed that overexpression of these genes in flounder significantly inhibited TSS dissemination into and colonization of host tissues. Taken together, these results indicate that Fur is required for multiple processes associated with virulence, and that proinflammatory cytokines and chemokines likely play important roles in the clearance of P. fluorescens infection. PMID:25465175

  7. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials.

    PubMed

    Lee, Chang Hoon; Lee, Do Kyoung; Ali, Muhammad Aslam; Kim, Pil Joo

    2008-12-01

    Oyster shell, a byproduct of shellfish-farming in Korea and containing a high amount of CaCO(3), has a high potential to be used as a liming material in agriculture. However, the agricultural utilization of oyster shell is limited due to its high concentration NaCl. The oyster-shell meal collected had a low concentration of water soluble NaCl (mean 2.7 g kg(-1)), which might be a result of stacking the material for 6 months in the open field. It has a very similar liming potential with calcium carbonate, with 3.4 and 3.8 Mg ha(-1) for silt loam (SiL, pH 6.2) and sandy loam (SL, pH 5.8) to bring the soil pH to 6.5, respectively. To determine the effect of crushed oyster-shell meal on improving soil chemical and biological properties and crop plant productivity, oyster-shell meal was applied at rates of 0, 4, 8, 12, and 16 Mg ha(-1) before transplanting Chinese cabbage (Brassica campestris L.) in the two soils mentioned above. Soil pH was significantly increased to 6.9 and 7.4 by 16 Mg ha(-1) shell meal application (4 times higher level than the recommendation) in SiL and SL, respectively, at harvesting stage. The effect of liming was found higher in SL compared to SiL soil, probably due to the different buffering capacity of the two soils. The concentration of NaCl and EC value of soils were found slightly increased with shell meal applications, but no salt damage was observed. Oyster-shell meal application increased soil organic matter, available P, and exchangeable cations concentrations. The improved soil pH and nutrient status significantly increased the microbial biomass C and N concentrations and stimulated soil enzyme activities. With the exception of acid phosphomonoesterase (PMEase) activity, which decreased with increasing soil pH in SL but slightly increased in SiL, the activities of urease and alkali PMEase increased markedly with increasing soil pH by shell meal application. The improved soil chemical and biological properties resulted in increased crop

  8. Modification of the properties of biological membrane and its protection against oxidation by Actinidia arguta leaf extract.

    PubMed

    Cyboran, Sylwia; Oszmiański, Jan; Kleszczyńska, Halina

    2014-10-01

    The aim of the study was to determine the polyphenol composition and biological activity of an extract from the leaves of kiwi. Antioxidant and hemolytic activity of the extract were examined, as well as its effect on the physical properties of the erythrocyte membrane such as osmotic resistance, membrane fluidity, and packing order of its hydrophilic area. Antioxidant activity of the extract was determined in relation to the erythrocyte membrane oxidized with free radicals induced by UVB and UVC radiation and the compound AAPH. Chromatographic, spectrophotometric and fluorimetric methods were applied in the research. The obtained results showed that kiwi leaves are a rich source of polyphenolic substances, mainly catechins and their dimers, which do not induce red blood cell hemolysis but make them stronger and more resistant to changes in medium tonicity. Substances contained in the extract effectively protect erythrocyte membranes against oxidation induced by physicochemical factors, the effectiveness of the protection depending on the concentration and type of free radical inducer. In addition, the study showed that the kiwi extract increases fluidity of the erythrocyte membrane and causes an increase in packing disorder in the hydrophilic membrane area. The changes seem to be due to the presence of polyphenolic substances in the extract, mainly in the region of the polar heads of lipids, where they can form a barrier protecting the membrane against diffusion of free radicals to the membrane interior. The effects of the extract evidenced by the present research, in particular protection of the biological membrane against free radicals induced by physicochemical agents, make it a potential valuable food additive, to enrich it with polyphenolic compounds that inhibit lipid oxidation in food exposed to UVB radiation. Supplementing the organism with substances contained in kiwi leaves is expected to provide protection against many diseases that develop as a result

  9. Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth factor family with oncogenic potential.

    PubMed Central

    Delli-Bovi, P; Curatola, A M; Newman, K M; Sato, Y; Moscatelli, D; Hewick, R M; Rifkin, D B; Basilico, C

    1988-01-01

    We recently reported that the protein encoded in a novel human oncogene isolated from Kaposi sarcoma DNA was a growth factor with significant homology to basic and acidic fibroblast growth factors (FGFs). To study the properties of this growth factor (referred to as K-FGF) and the mechanism by which the K-fgf oncogene transforms cells, we have studied the production and processing of K-FGF in COS-1 cells transfected with a plasmid encoding the K-fgf cDNA. The results show that, unlike basic and acidic FGFs, the K-FGF protein is cleaved after a signal peptide, glycosylated, and efficiently secreted as a mature protein of 176 or 175 amino acids. Inhibition of glycosylation impaired secretion, and the stability of the secreted K-FGF was greatly enhanced by the presence of heparin in the cultured medium. We have used the conditioned medium from transfected COS-1 cells to test K-FGF biological activity. Similar to basic FGF, the K-FGF protein was mitogenic for fibroblasts and endothelial cells and induced the growth of NIH 3T3 mouse cells in serum-free medium. Accordingly, K-fgf-transformed NIH 3T3 cells grew in serum-free medium, consistent with an autocrine mechanism of growth. We have also expressed the protein encoded in the K-fgf protooncogene in COS-1 cells, and it was indistinguishable in its molecular weight, glycosylation, secretion, and biological activity from K-FGF. Taken together, these results suggest that the mechanism of activation of this oncogene is due to overexpression rather than to mutations in the coding sequences. Images PMID:3043199

  10. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties.

    PubMed

    Schulz, Karoline; Mikhailyuk, Tatiana; Dreßler, Mirko; Leinweber, Peter; Karsten, Ulf

    2016-01-01

    Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.

  11. Improvement of the titanium implant biological properties by coating with poly (ɛ-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    NASA Astrophysics Data System (ADS)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2016-05-01

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ɛ-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of the obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.

  12. The effect of partially stabilized zirconia on the biological properties of HA/HDPE composites in vitro.

    PubMed

    Sadi, A Yari; Shokrgozar, M A; Homaeigohar, S Sh; Hosseinalipour, M; Khavandi, A; Javadpour, J

    2006-05-01

    The effect of partially stabilized zirconia (PSZ) on the biological properties of the hyroxyapatite - high density polyethylene (HA/HDPE) composites was studied by investigating the simultaneous effect of hydroxyapatite and PSZ volume fractions on the in vitro response of human osteoblast cells. The biocompatibility of composite samples with different volume fraction of HA and PSZ powders was assessed by proliferation, alkaline phosphatase (ALP) and cell attachment assays on the osteoblast cell line (G-292) in different time periods. The effect of composites on the behavior of G-292 cells was compared with those of HDPE and TPS (Tissue Culture Poly Styrene as negative control) samples. Results showed a higher proliferation rate of G-292 cells in the presence of composite samples as compared to the HDPE sample after 7 and 14 days of incubation period. ALP production rate in all composite samples was higher than HDPE and TPS samples. The number of adhered cells on the composite samples was higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods. These findings indicates that the addition of PSZ does not have any adverse affect on the biocompatibility of HA/HDPE composites. In fact in some experiments PSZ added HA/HDPE composites performed better in proliferation, differentiation and attachment of osteoblastic cells.

  13. The Protein Information and Property Explorer 2: gaggle-like exploration of biological proteomic data within one webpage.

    PubMed

    Ramos, Hector; Shannon, Paul; Brusniak, Mi-Youn; Kusebauch, Ulrike; Moritz, Robert L; Aebersold, Ruedi

    2011-01-01

    The Protein Information and Property Explorer 2 (PIPE2) is an enhanced software program and updated web application that aims at providing the proteomic researcher a simple, intuitive user interface through which to begin inquiry into the biological significance of a list of proteins typically produced by MS/MS proteomic processing software. PIPE2 includes an improved interface, new data visualization options, and new data analysis methods for combining disparate, but related, data sets. In particular, PIPE2 has been enhanced to handle multi-dimensional data such as protein abundance, gene expression, and/or interaction data. The current architecture of PIPE2, modeled after that of Gaggle (a programming infrastructure for interoperability between separately developed software tools), contains independent functional units that can be instantiated and pieced together at the user's discretion to form a pipelined analysis workflow. Among these functional units is the Network Viewer component, which adds rich network analysis capabilities to the suite of existing proteomic web resources. Additionally, PIPE2 implements a framework within which new analysis procedures can be easily deployed and distributed over the World Wide Web. PIPE2 is available as a web service at http://pipe2.systemsbiology.net/.

  14. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C

    2014-01-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.

  15. Biological and immunological properties of the venom of Bothrops alcatraz, an endemic species of pitviper from Brazil.

    PubMed

    Furtado, M F D

    2005-06-01

    Bothrops alcatraz is a new pitviper species derived from the Bothrops jararaca group, whose natural habitat is situated in Alcatrazes Archipelago, a group of marine islands near São Paulo State coast in Brazil. Herein, the biological and biochemical properties of venoms of four adult specimens of B. alcatraz were examined comparatively to a reference pool of Bothrops jararaca venom. Both venoms showed similar activities and electrophoretic patterns, but B. alcatraz venom showed three protein bands of molecular masses of 97, 80 and 38 kDa that were not present in B. jararaca reference venom. The i.p. median lethal dose of B. alcatraz venom ranged from 5.1 to 6.6 mg/kg, while it was 1.5 mg/kg for B. jararaca venom. The minimum hemorrhagic dose of B. jararaca venom was 0.63, whereas 2.28 mug/mouse for B. alcatraz venom. In contrast, B. alcatraz venom was more potent in regard to procoagulant and proteolytic activities. These differences were supported by western blotting and neutralization tests, employing commercial bothropic antivenom, which showed that hemorrhagic and lethal activities of B. alcatraz venom were less effectively inhibited than B. jararaca venom. Such results evidence that B. alcatraz shows quantitative and qualitative differences in venom composition in comparison with its B. jararaca relatives, which might represent an optimization of venom towards a specialized diet. PMID:16002343

  16. Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-12-01

    In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.

  17. Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC.

    PubMed

    Raghavendra, U P; Basanagouda, Mahantesha; Thipperudrappa, J

    2015-01-01

    The role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4-p-tolyloxymethyl-benzo[h]coumarin (4PTMBC) and 1-(4-iodophenoxymethyl)-benzo[f]coumarin (1IPMBC) has been investigated using absorption and fluorescence spectroscopy. Silver nanoparticles are synthesized by chemical reduction method and the estimated size by Mie theory is 12 nm. The absorption spectral changes of dyes in the presence of silver nanoparticles suggest their possible interaction with silver nanoparticles. The apparent association constants of the interaction are estimated using Benesi-Hildebrand model. Fluorescence quenching has been observed in both the dyes with the addition of silver nanoparticles. The Stern-Volmer plots of fluorescence quenching are found to be nonlinear showing positive deviation. The magnitudes of quenching rate parameter and fluorescence lifetime measurements indicate the presence of both collisional and static quenching mechanisms. The binding constants and the number of binding sites for the static type of quenching have been estimated from the fluorescence data. The role of diffusion, energy transfer and electron transfer processes in fluorescence quenching mechanism has been discussed.

  18. [Effect of NPK and B supply levels on boron uptake and biological properties of different genotypic oilseed rape].

    PubMed

    Lou, Y; Yang, Y

    2001-04-01

    Pot experiment was conducted to study the boron absorption by oilseed rape(Brassica napus), the mechanism of its resistance to boron deficiency, and the effect of boron deficiency on its biological properties under different NPK supply levels. The results indicated that under boron deficiency, increasing NPK supply aggravated boron deficiency symptoms, which led to the decrease of leaf area and its growth rate and nitrate reductase activity(NRA) and the increase of chlorophyll(a + b) content at seedling stage, and the decrease of the number of productive branches and pods of each plant and seed yield at maturity. It was suggested that the ratio of boron concentration in youngest open leaves(YOL) to youngest mature leaves(YML) at seedling stage could be an index to judge the boron mobility in plants of different genotypic oilseed rape. Boron mobility and its utilization efficiency were one of the important nutritional mechanisms responsible for the difference in response of different genotypic oilseed rapes to boron deficiency. PMID:11757364

  19. Biological properties of titanium implants covered with hydroxyapatite and zirconia layers by pulsed laser: In vitro study

    SciTech Connect

    Seydlova, Michaela; Teuberova, Zuzana; Dostalova, Tatjana; Dvorankova, Barbora; Smetana, Karel Jr.; Jelinek, Miroslav; Kocourek, Tomas; Mroz, Waldemar

    2006-01-01

    The biological and physical properties of dental implants coated by the sandwich technique with a thin layer of hydroxyapatite and an interlayer of zirconia were evaluated. The implant samples were covered by pulsed laser deposition. The aim of our study is to evaluate the cytotoxicity and the surface characteristics of the titanium targets modified with zirconia and hydroxyapatite. The titanium substrates were analyzed physically by x-ray diffraction and scanning electron microscopy. We used a direct test of cytotoxicity to compare the prepared samples with other reference materials. No changes in the morphology or the proliferation rate of the cells used were found in the presence of the modified titanium targets. The adhesion, proliferation, and fibronectin expressions of human fibroblasts were also evaluated on the surface of the modified titanium targets. The results show that the modified titanium samples are at least as attractive as the tissue grade polystyrene in promoting fibroblasts' adhesion and proliferation. The results show adhesion and cell proliferation, which in turn implies that the studied material is not cytotoxic and is suitable for cell colonization. Titanium modified with zirconia and hydroxyapatite can be beneficially employed in oral bone surgery.

  20. Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials

    PubMed Central

    Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.

    2014-01-01

    The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670

  1. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: preparation, characterization and biological properties.

    PubMed

    Tavano, Lorena; Aiello, Rossana; Ioele, Giuseppina; Picci, Nevio; Muzzalupo, Rita

    2014-06-01

    Niosomes are vesicular systems composed of surfactant molecules, claimed to be used as drug delivery carriers thanks to their physico-chemical and biological properties. The aim of this work was to design niosomes obtained with a surfactant synthesized from glucuronic acid. Doxorubicin and 5FU were used as model drugs. Niosomes were prepared with different ratios between surfactant and cholesterol, and characterized in terms of size, morphology, drugs entrapment efficiency and in vitro releases, to identify the optimal formulation to be used in pharmaceutical fields. In addition, the hemolytic activity of all formulations have been also evaluated. Results showed that dodecylglucuronamide surfactant was able to produce vesicular systems with or without the presence of cholesterol. Niosomes resulted regular in size and shape and they have been found to encapsulate and release in a controlled manner both doxorubicin and 5-fluorouracil. Hemolytic tests showed that the capability of disrupting erythrocyte only depend on the size of colloidal aggregates. Finally, our formulations could be potentially used as antitumoral delivery systems in anticancer therapy. PMID:24709252

  2. Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus Pospiviroid.

    PubMed

    Verhoeven, J Th J; Jansen, C C C; Roenhorst, J W; Flores, R; de la Peña, M

    2009-09-01

    In autumn 2006, a new disease was observed in a glasshouse-grown crop of sweet pepper (Capsicum annuum L.) in the Netherlands. Fruit size of the infected plants was reduced up to 50%, and plant growth was also slightly reduced. Here we show that the disease is caused by a previously non-described viroid. The pepper viroid is transmitted by both mechanical inoculation and pepper seeds and, when inoculated experimentally, it infects several solanaceous plant species inducing vein necrosis and reduced fruit and tuber size in tomato and potato, respectively. The viroid RNA genome consists of 348 nucleotides and, with minor modifications, it has the central conserved and the terminal conserved regions characteristic of members of the genus Pospiviroid. Classification of the pepper viroid within the genus Pospiviroid is further supported by the presence and structure of hairpins I and II, the presence of internal and external RY motifs, and phylogenetic analyses. The primary structure of the pepper viroid only showed a maximum of 66% nucleotide sequence identity with other viroids, which is far below the main species demarcation limit of 90%. According to its biological and molecular properties, we propose to assign the pepper viroid to a new species within the genus Pospiviroid, and to name this new species Pepper chat fruit viroid.

  3. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.

    PubMed

    Ryan, Alan J; Gleeson, John P; Matsiko, Amos; Thompson, Emmet M; O'Brien, Fergal J

    2015-12-01

    Scaffolds which aim to provide an optimised environment to regenerate bone tissue require a balance between mechanical properties and architecture known to be conducive to enable tissue regeneration, such as a high porosity and a suitable pore size. Using freeze-dried collagen-based scaffolds as an analogue of native ECM, we sought to improve the mechanical properties by incorporating hydroxyapatite (HA) in different ways while maintaining a pore architecture sufficient to allow cell infiltration, vascularisation and effective bone regeneration. Specifically we sought to elucidate the effect of different hydroxyapatite incorporation methods on the mechanical, morphological, and cellular response of the resultant collagen-HA scaffolds. The results demonstrated that incorporating either micron-sized (CHA scaffolds) or nano-sized HA particles (CnHA scaffolds) prior to freeze-drying resulted in moderate increases in stiffness (2.2-fold and 6.2-fold, respectively, vs. collagen-glycosaminoglycan scaffolds, P < 0.05, a scaffold known to support osteogenesis), while enabling good cell attachment, and moderate mesenchymal stem cell (MSC)-mediated calcium production after 28 days' culture (2.1-fold, P < 0.05, and 1.3-fold, respectively, vs. CG scaffolds). However, coating of collagen scaffolds with a hydroxyapatite precipitate after freeze-drying (CpHA scaffolds) has been shown to be a highly effective method to increase the compressive modulus (26-fold vs. CG controls, P < 0.001) of scaffolds while maintaining a high porosity (~ 98%). The coating of the ligand-dense collagen structure results in a lower cell attachment level (P < 0.05), although it supported greater cell-mediated calcium production (P < 0.0001) compared with other scaffold variants after 28 days' culture. The comparatively good mechanical properties of these high porosity scaffolds is obtained partially through highly crosslinking the scaffolds with both a physical (DHT) and chemical (EDAC) crosslinking

  4. Recombinant Paracoccin Reproduces the Biological Properties of the Native Protein and Induces Protective Th1 Immunity against Paracoccidioides brasiliensis Infection

    PubMed Central

    Alegre, Ana Claudia Paiva; Oliveira, Aline Ferreira; Dos Reis Almeida, Fausto Bruno; Roque-Barreira, Maria Cristina; Hanna, Ebert Seixas

    2014-01-01

    Background Paracoccin is a dual-function protein of the yeast Paracoccidioides brasiliensis that has lectin properties and N-acetylglucosaminidase activities. Proteomic analysis of a paracoccin preparation from P. brasiliensis revealed that the sequence matched that of the hypothetical protein encoded by PADG-3347 of isolate Pb-18, with a polypeptide sequence similar to the family 18 endochitinases. These endochitinases are multi-functional proteins, with distinct lectin and enzymatic domains. Methodology/principal findings The multi-exon assembly and the largest exon of the predicted ORF (PADG-3347), was cloned and expressed in Escherichia coli cells, and the features of the recombinant proteins were compared to those of the native paracoccin. The multi-exon protein was also used for protection assays in a mouse model of paracoccidioidomycosis. Conclusions/Significance Our results showed that the recombinant protein reproduced the biological properties described for the native protein—including binding to laminin in a manner that is dependent on carbohydrate recognition—showed N-acetylglucosaminidase activity, and stimulated murine peritoneal macrophages to produce high levels of TNF-α and nitric oxide. Considering the immunomodulatory potential of glycan-binding proteins, we also investigated whether prophylactic administration of recombinant paracoccin affected the course of experimental paracoccidioidomycosis in mice. In comparison to animals injected with vehicle (controls), mice treated with recombinant paracoccin displayed lower pulmonary fungal burdens and reduced pulmonary granulomas. These protective effects were associated with augmented pulmonary levels of IL-12 and IFN-γ. We also observed that injection of paracoccin three days before challenge was the most efficient administration protocol, as the induced Th1 immunity was balanced by high levels of pulmonary IL-10, which may prevent the tissue damage caused by exacerbated inflammation. The

  5. Molecular and physical characteristics of squid (Todarodes pacificus) skin collagens and biological properties of their enzymatic hydrolysates.

    PubMed

    Nam, K A; You, S G; Kim, S M

    2008-05-01

    The physicochemical properties of squid skin collagens and biological activity of their enzymatic hydrolysates were determined to produce more value-added materials. The amino acid compositions of the inner and outer squid skin collagens were similar, but distinct from that of bovine tendon collagen in respect to the higher levels of aspartic acid, arginine, threonine, and serine, and of the lower levels of alanine, proline, and hydroxyproline. SDS-PAGE patterns suggested that squid skin collagen consisted of at least 2 different polypeptides (alpha1 and alpha2 chains) and their cross-linked chains. The molecular weights of alpha1 and alpha2 chains of bovine tendon collagens were higher than those of the corresponding alpha1 and alpha2 chains of squid skin collagens. The denaturation temperatures of inner and outer skin collagens were 27.1 and 27.3 degrees C, respectively, which were about 9 degrees C lower than that of bovine tendon collagen. Water holding capacities of inner and outer squid skin collagens were relatively similar, but were significantly greater than that of bovine tendon collagen. The maximum hydrolysis of squid skin collagens was obtained as follows: for outer skin collagen, enzyme concentration, 3.5%; hydrolysis time, 83 min; pH 7.0; hydrolysis temperature, 60 degrees C, whereas for inner skin collagen, enzyme concentration, 3.2%; hydrolysis time, 83 min; pH 7.0; hydrolysis temperature, 60 degrees C. The enzymatic hydrolysates of outer and inner skin collagens were separated by Sephacryl S-100 column, resulting in the production of 3 fractions (F1, F2, and F3). F3 fraction exhibited higher antioxidant, tyrosinase inhibitory, and antielastase activities than the other fractions.

  6. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  7. Hydration Structures and Thermodynamic Properties of Cationized Biologically Relevant Molecules, M+(Indole)(H2O)n (M = Na, K; n = 3-6)

    NASA Astrophysics Data System (ADS)

    Ke, Haochen; Lisy, James

    2015-03-01

    The balance between various noncovalent interactions plays a key role in determining the hydration structures and thermodynamic properties of biologically relevant molecules in biological mediums. Such properties of biologically relevant molecules are closely related to their often unique biological functionalities. The indole moiety is a basic functional group of many important neurotransmitters and hormones and has been used as tractable model for more complex biomolecules. The cationized indole water cluster is a perfect system for the quantitative and systematic study of the competition and cooperation of noncovalent interactions, as electrostatic interactions can be adjusted by introducing different monovalent cations and hydrogen bonding interactions can be adjusted by varying the level of hydration. IRPD spectra with isotopic (H/D) analysis helped unravel the overlapping N-H and O-H stretching modes, a major challenge of earlier studies. Thermodynamic analysis using relative Gibbs free energies, for energy ordering, together with spectral analysis provided unambiguous assignment of spectral features and structural configurations. A systematic hydration model with an in-depth account of noncovalent interactions is presented.

  8. Biological and physical properties of a model calcitonin containing a glutamate residue interrupting the hydrophobic face of the idealized amphiphilic alpha-helical region.

    PubMed Central

    Green, F R; Lynch, B; Kaiser, E T

    1987-01-01

    2A new calcitonin analogue, model calcitonin III (MCt-III), has been synthesized, and its biological and physical characteristics have been studied. This analogue has an idealized alpha-helix from residue 8-22 with glutamate at position 15 interrupting an otherwise continuous surface of aliphatic side chains (those of leucine residues) on the hydrophobic face of the helix. MCt-III differs from a previous model, MCt-II, only by the substitution Leu15----Glu and is here compared with salmon calcitonin I (sCt-I) and MCt-II to elucidate further the role of the putative amphiphilic alpha-helix in determining biological and physical properties of the hormone. MCt-III shows physical properties intermediate between those of sCt-I and MCt-II, demonstrating the influence of appropriately positioned single residues on properties of amphiphilic structures. In our two biological assays, a brain-binding assay and an in vivo hypocalcemic assay, MCt-III reproduces the sigmoidal dose-response curves of sCt-I; this contrasts with the behavior of MCt-II, which demonstrated unusual dose-response curves in these two assays. MCt-III is almost three times more potent than sCt-I in our hypocalcemic assay; this activity groups MCt-III among the most potent known analogues of sCt-I. PMID:2825187

  9. Effect of RNAi-mediated silencing of Livin gene on biological properties of colon cancer cell line LoVo.

    PubMed

    Zou, A M; Wang, H F; Zhu, W F; Wang, F X; Shen, J J

    2014-05-16

    This study aimed to investigate the effect of RNAi-mediated silencing of the Livin gene on biological properties of the colon cancer cell line LoVo. Interference vectors pSilencer4.1-Ll and pSilencer4.1-L2 targeting the Livin gene were constructed and transfected into LoVo cells. The expression of the Livin gene was determined by RT-PCR and Western blotting. The apoptosis, cell cycle, colony formation, proliferation of LoVo cells, as well as their sensitivity to cisplatin, were detected by flow cytometry, colony formation assay and MTT. Livin mRNA and protein expression in LoVo cells could be effectively silenced by pSilencer4.1-Ll but not pSilencer4.1-L2. In the pSilencer4.1-Ll transfection group, the apoptosis rate of LoVo cells was significantly higher than in the control group (24.2 ± 3.2 vs 8.1 ± 1.4%, P < 0.01), and after 72 h, cell proliferation was clearly decreased (about 70% inhibition). Compared with the control group, the colony formation rate in pSilencer4.1-Ll transfection group was obviously decreased (15 ± 4.6 vs 85 ± 5.8%, P < 0.01), with increased proportion of S phase cells (45.7 ± 4.9 vs 28.0 ± 3.0%, P < 0.01), decreased proportion of G1 phase cells (43.0 ± 5.2 vs 62.8 ± 5.1%, P < 0.01), and increased sensitivity to cisplatin (apoptosis rate increased from 43.4 ± 6.9 to 65.3 ± 6.2%, P < 0.01). pSilencer4.1-Ll can effectively silence Livin gene expression in LoVo colon cancer cells, inhibit cell proliferation and colony formation, induce apoptosis, and enhance sensitivity to cisplatin.

  10. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.

    PubMed

    Jain, Prashant K; Lee, Kyeong Seok; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2006-04-13

    The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing

  11. INTERACTIONS BETWEEN PHOTOCHEMICAL AND MICROBIAL DECOMPOSITION IN MODIFYING THE BIOLOGICAL AVAILABILITY AND OPTICAL PROPERTIES OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Direct photodecomposition and photochemically-mediated bacterial degradation (via photochemical modification of otherwise refractory DOM into biologically labile forms) provide
    important pathways for the loss of dissolved organic matter in coastal waters. Here we report
    lab...

  12. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.

    PubMed

    Wang, Amy; Marinakos, Stella M; Badireddy, Appala Raju; Powers, Christina M; Houck, Keith A

    2013-01-01

    Thousands of nanomaterials (NMs) are in commerce and few have toxicity data. To prioritize NMs for toxicity testing, high-throughput screening (HTS) of biological activity may be the only practical and timely approach to provide the necessary information. As in all nanotoxicologic studies, characterization of physicochemical properties of NMs and their immediate environments in HTS is critical to understanding how these properties affect NM bioactivity and to allow extrapolation to NMs not screened. The purpose of the study, the expert-groups-recommended minimal characterization, and NM physicochemical properties likely to affect measured bioactivity all help determine the scope of characterization. A major obstacle in reaping the full benefits of HTS for NMs is the low throughput of NM physicochemical characterization, which may require more sample quantity than HTS assays. Increasing the throughput and speed, and decreasing the amount of NMs needed for characterization are crucial. Finding characterization techniques and biological activity assays compatible with diverse classes of NMs is a challenge and multiple approaches for the same endpoints may be necessary. Use of computational tools and nanoinformatics for organizing and analyzing data are important to fully utilize the power of HTS. Other desired advances include the ability to more fully characterize: pristine NM without prior knowledge of NM physicochemical properties; non-pristine NMs (e.g., after use); NM in not-perfectly-dispersed suspension; and NM in biological samples at exposure-relevant conditions. Through combining HTS and physicochemical characterization results, we will better understand NM bioactivities, prioritize NMs for further testing, and build computational models to predict NM toxicity.

  13. The influence of carbonates in parent rocks on the biological properties of mountain soils of the Northwest Caucasus region

    NASA Astrophysics Data System (ADS)

    Kazeev, K. Sh.; Kutrovskii, M. A.; Dadenko, E. V.; Vezdeneeva, L. S.; Kolesnikov, S. I.; Val'kov, V. F.

    2012-03-01

    The biological activity of different subtypes of soddy-calcareous soils (rendzinas) of the Northwest Caucasus region was studied. In the Novorossiisk-Abrau-Dyurso region (dry subtropics), typical soddy-calcareous soils with the high content of carbonates predominate; in the more humid conditions of the Lagonaki Plateau (Republic of Adygeya), leached soddy-calcareous soils carbonate-free down to the parent rock are spread. The number of microarthropods, the populations of fungi and bacteria, and the enzyme activity (catalase, dehydrogenase, and invertase) testify that the biological activity of these soils significantly differs. In the typical soddy-calcareous soils of the dry subtropics, the content of carbonates does not affect the characteristics mentioned; in the more humid conditions of the West Caucasus region, the presence of carbonates in the parent rocks intensifies the biological activity of the soddy-calcareous soils.

  14. To be or not IP? Exploring limits within patent law for the constitutionalization of intellectual property rights and the governance of synthetic biology in human health.

    PubMed

    Schneider, Ingrid

    2012-01-01

    The article explores limits within patent law for the constitutionalization of Intellectual Property Rights and the governance of synthetic biology in human health. To this end, it starts by explaining the inherent rationales of two fundamental limits within European patent law, namely (1) the boundary between discovery and invention (Art. 52 EPC); (2) the ordre public and public policy clause (Art. 53 (a) EPC). Both these exclusions from patent eligibility bear a normative function but rely on opposing inherent logics, functions, and regulatory aims. While in the first type of logics, "enabling access for all" is the guiding principle, in the second, converse logics, no one should have access to the technological knowledge in question. The second part contends that decisions on whether and how to grant patents in synthetic biology are not independent from institutional frameworks: The arena in which synthetic biology patenting will be dealt with will be decisive for whether and how boundaries will be deployed. From a political science perspective, the administrative, legislative and judicial arena can be distinguished. If synthetic biology will be negotiated in the legislative arena, in particular in the European Parliament, the probabilities will be higher that either the discovery clause or the ordre public clause will be applied. In contrast, patent offices and courts have, at least in the past decades, employed a narrow interpretation of these absolute exemptions from patentability and hardly ever used them. The third part asserts that metaphoric framing of synthetic biology is another crucial factor for patentability questions. Semantic framing may relate to the articulation and mobilization of consent or dissent, and thus public acceptance of synthetic biology. Whether applications of synthetic biology are conceived as "natural" or "synthetic" DNA may have an influence on whether patenting might become contested as "patenting life" or accepted as novel, and

  15. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part II. Soil biological and biochemical properties in relation to trace element speciation.

    PubMed

    D'Ascoli, R; Rao, M A; Adamo, P; Renella, G; Landi, L; Rutigliano, F A; Terribile, F; Gianfreda, L

    2006-11-01

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community.

  16. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part II. Soil biological and biochemical properties in relation to trace element speciation.

    PubMed

    D'Ascoli, R; Rao, M A; Adamo, P; Renella, G; Landi, L; Rutigliano, F A; Terribile, F; Gianfreda, L

    2006-11-01

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community. PMID:16406624

  17. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage

    PubMed Central

    Jurczak-Kurek, Agata; Gąsior, Tomasz; Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Dydecka, Aleksandra; Topka, Gracja; Necel, Agnieszka; Jakubowska-Deredas, Magdalena; Narajczyk, Magdalena; Richert, Malwina; Mieszkowska, Agata; Wróbel, Borys; Węgrzyn, Grzegorz; Węgrzyn, Alicja

    2016-01-01

    A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its characteristics, both morphological (electron microscopic analyses) and biological (host range, plaque size and morphology, growth at various temperatures, thermal inactivation, sensitivity to low and high pH, sensitivity to osmotic stress, survivability upon treatment with organic solvents and detergents), and further supported by hierarchical cluster analysis. By the end of the research no larger collection of phages from a single environmental source investigated by these means had been found. The finding was confirmed by whole genome analysis of 7 selected bacteriophages. Moreover, particular bacteriophages revealed unusual biological features, like the ability to form plaques at low temperature (4 °C), resist high temperature (62 °C or 95 °C) or survive in the presence of an organic solvents (ethanol, acetone, DMSO, chloroform) or detergent (SDS, CTAB, sarkosyl) making them potentially interesting in the context of biotechnological applications. PMID:27698408

  18. Genus Cistus: a model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties

    PubMed Central

    Papaefthimiou, Dimitra; Papanikolaou, Antigoni; Falara, Vasiliki; Givanoudi, Stella; Kostas, Stefanos; Kanellis, Angelos K.

    2014-01-01

    The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum, and Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk medicine as herbal tea infusions for healing digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analyses but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius, and C. clusii. PMID:24967222

  19. Genus Cistus: a model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic and pharmacological properties

    NASA Astrophysics Data System (ADS)

    Papaefthimiou, Dimitra; Papanikolaou, Antigoni; Falara, Vasiliki; Givanoudi, Stella; Kostas, Stefanos; Kanellis, Angelos

    2014-06-01

    The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native of the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum and Tuberaria). Traditionally, a number of Cistus specie have been used in Mediterranean folk medicine as herbal tea infusions for healing, digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analysis but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius and C. clusii.

  20. Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair

    PubMed Central

    Won, Jong-Eun; El-Fiqi, Ahmed; Jegal, Seung-Hwan; Han, Cheol-Min; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Synthetic biopolymers are commonly used for the repair and regeneration of damaged tissues. Specifically targeting bone, the composite approach of utilizing inorganic components is considered promising in terms of improving mechanical and biological properties. We developed gelatin-apatite co-precipitates which mimic the native bone matrix composition within poly(lactide-co-caprolactone) (PLCL). Ionic reaction of calcium and phosphate with gelatin molecules enabled the co-precipitate formation of gelatin-apatite nanocrystals at varying ratios. The gelatin-apatite precipitates formed were carbonated apatite in nature, and were homogeneously distributed within the gelatin matrix. The incorporation of gelatin-apatite significantly improved the mechanical properties, including tensile strength, elastic modulus and elongation at break, and the improvement was more pronounced as the apatite content increased. Of note, the tensile strength increased to as high as 45 MPa (a four-fold increase vs. PLCL), the elastic modulus was increased up to 1500 MPa (a five-fold increase vs. PLCL), and the elongation rate was ∼240% (twice vs. PLCL). These results support the strengthening role of the gelatin-apatite precipitates within PLCL. The gelatin-apatite addition considerably enhanced the water affinity and the acellular mineral-forming ability in vitro in simulated body fluid; moreover, it stimulated cell proliferation and osteogenic differentiation. Taken together, the GAp-PLCL nanocomposite composition is considered to have excellent mechanical and biological properties, which hold great potential for use as bone regenerative matrices. PMID:23985536

  1. Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties.

    PubMed

    Song, Wen; Xu, Xing; Tan, Xin; Wang, Yan; Ling, Jianya; Gao, Baoyu; Yue, Qinyan

    2015-01-22

    Column adsorption of perchlorate by amine-crosslinked biopolymer based resin was investigated by considering the bed depth, stream flow rate and influent pH. The empty bed contact time (EBCT) increased with the growth of bed depths, meanwhile rising flow rate at constant bed depth (3.4 cm) decreased the breakthrough time. It was observed that perchlorate adsorption capacity was optimum at neutral condition (pH: 6.0, 170.4 mg/g), and decreased at acidic (pH: 3.0, 96.4 mg/g) or alkalic (pH: 12.0, 72.8 mg/g) influents. The predominant strains of the acclimated sludge for resin biological regeneration were the β-subclass of Proteobacteria. Biological regeneration of the saturated amine-crosslinked biopolymer based resin with mixed bacteria have shown its merit with regeneration and biological perchlorate destruction simultaneously, although its regeneration efficiency was only 61.2-84.1% by contrast to chemical regeneration with efficiency more than 95%. PMID:25439915

  2. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  3. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    PubMed

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics.

  4. FREEDOM TO OPERATE: Intellectual Property Protection in Plant Biology and Its Implications for the Conduct of Research.

    PubMed

    Kimpel, J A

    1999-09-01

    ▪ Abstract  Research endeavors are being affected by issues involving intellectual property (patents, copyrights, and trademarks). The acquisition of rights in intellectual property by universities can result in the transfer of new innovations to the private sector, with the university recouping a share of the profits for support of further scientific research. Intellectual property rights available for new plant cultivars include plant patents, plant variety protection certificates, plant breeder's rights, and utility patents. Under the patent laws, there is no explicit exemption for research use, so researchers are increasingly being required to execute materials transfer agreements to obtain permission to use patented materials, such as techniques, genes, seeds, and cell lines, in laboratory research and in breeding programs. Research scientists must educate themselves on these issues so that they can make informed decisions regarding their research practices and the licensing of their discoveries. PMID:11701816

  5. Synthesis of organometallic-based biologically active compounds: In vitro antibacterial, antifungal and cytotoxic properties of some sulfonamide incorporated ferrocences.

    PubMed

    Chohan, Zahid H

    2009-02-01

    Sulfonamides incorporated ferrocene (SIF) have been synthesized by the condensation reaction of sulfonamides (sulfanilamide, sulfathiazole or sulfamethaxazole) with 1,1'-diacetylferrocene. The synthesized compounds (SIF(1)-SIF(4)) have been characterized by their physical, spectral and analytical properties and have been screened for their in vitro antibacterial properties against pathogenic bacterial strains e.g., Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis Staphylococcus aureus and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using Agar-well diffusion method. Most of the compounds showed good antibacterial activity whereas, all the compounds exhibited significant antifungal activity. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:18608785

  6. Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from Mediterranean region of Turkey.

    PubMed

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  7. Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from Mediterranean region of Turkey.

    PubMed

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils.

  8. Short-Term Effect of Vermicompost Application on Biological Properties of an Alkaline Soil with High Lime Content from Mediterranean Region of Turkey

    PubMed Central

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  9. A Modular Class of Fluorescent Difluoroboranes: Synthesis, Structure, Optical Properties, Theoretical Calculations and Applications for Biological Imaging.

    PubMed

    Bachollet, Sylvestre P J T; Volz, Daniel; Fiser, Béla; Münch, Stephan; Rönicke, Franziska; Carrillo, Jokin; Adams, Harry; Schepers, Ute; Gómez-Bengoa, Enrique; Bräse, Stefan; Harrity, Joseph P A

    2016-08-22

    Ten borylated bipyridines (BOBIPYs) have been synthesized and selected structural modifications have been made that allow useful structure-optical property relationships to be gathered. These systems have been further investigated using DFT calculations and spectroscopic measurements, showing blue to green fluorescence with quantum yields up to 41 %. They allow full mapping of the structure to determine where selected functionalities can be implemented, to tune the optical properties or to incorporate linking groups. The best derivative was thus functionalised with an alkyne linker, which would enable further applications through click chemistry and in this optic, the stability of the fluorophores has been evaluated. PMID:27465819

  10. A human-phantom coupling experiment and a dispersive simulation model for investigating the variation of dielectric properties of biological tissues.

    PubMed

    Gomez-Tames, Jose; Fukuhara, Yuto; He, Siyu; Saito, Kazuyuki; Ito, Koichi; Yu, Wenwei

    2015-06-01

    Variation of the dielectric properties of tissues could happen due to aging, moisture of the skin, muscle denervation, and variation of blood flow by temperature. Several studies used burst-modulated alternating stimulation to improve activation and comfort by reducing tissue impedance as a possible mechanism to generate muscle activation with less energy. The study of the effect of dielectric properties of biological tissues in nerve activation presents a fundamental problem, which is the difficulty of systematically changing the morphological factors and dielectric properties of the subjects under study. We tackle this problem by using a simulation and an experimental study. The experimental study is a novel method that combines a fat tissue-equivalent phantom, with known and adjustable dielectric properties, with the human thigh. In this way, the dispersion of the tissue under study could be modified to observe its effects systematically in muscle activation. We observed that, to generate a given amount of muscle or nerve activation under conditions of decreased impedance, the magnitude of the current needs to be increased while the magnitude of the voltage needs to be decreased.

  11. Behaviour of oxyfluorfen in soils amended with edaphic biostimulants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties.

    PubMed

    Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; Tejada, Manuel

    2014-09-01

    We studied the behaviour of oxyfluorfen herbicide at a rate of 4 l ha(-1) on biological properties of a Calcaric Regosol amended with two edaphic biostimulants/biofertilizers (SS, derived from sewage sludge; and CF, derived from chicken feathers). Oxyfluorfen was surface broadcast on 11 March 2013. Two days after application of oxyfluorfen to soil, both biostimulants/biofertilizers (BS) were also applied to the soil. An unamended soil without oxyfluorfen was used as control. For 2, 4, 7, 9, 20, 30, 60, 90 and 120 days of the application of herbicide to the soil and for each treatment, the soil dehydrogenase, urease, β-glucosidase and phosphatase activities were measured. For 2, 7, 30 and 120 days of the application of herbicide to the soil and for each treatment, soil microbial community was determined. The application of both BS to soil without the herbicide increased the enzymatic activities and soil biodiversity, mainly at 7 days of beginning the experiment. However, this stimulation was higher in the soil amended with SS than for CF. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly, the low-molecular-weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biological properties.

  12. LASER BIOLOGY AND MEDICINE: Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation

    NASA Astrophysics Data System (ADS)

    Fedosov, I. V.; Tuchin, Valerii V.; Galanzha, E. I.; Solov'eva, A. V.; Stepanova, T. V.

    2002-11-01

    The direction-sensitive method of microflow velocity measurements based on the space — time correlation properties of the dynamic speckle field is described and used for in vivo monitoring of lymph flow in the vessels of rat mesentery. The results of measurements are compared with the data obtained from functional video microscopy of the microvessel region.

  13. An x-ray tomography facility for quantitative prediction of mechanical and transport properties in geological, biological, and synthetic systems

    NASA Astrophysics Data System (ADS)

    Sakellariou, Arthur; Senden, Tim J.; Sawkins, Tim J.; Knackstedt, Mark A.; Turner, Michael L.; Jones, Anthony C.; Saadatfar, Mohammad; Roberts, Ray J.; Limaye, Ajay; Arns, Christoph H.; Sheppard, Adrian P.; Sok, Rob M.

    2004-10-01

    A fully integrated X-ray tomography facility with the ability to generate tomograms with 20483 voxels at 2 micron spatial resolution was built to satisfy the requirements of a virtual materials testing laboratory. The instrument comprises of a continuously pumped micro-focus X-ray gun, a milli-degree rotation stage and a high resolution and large field X-ray camera, configured in a cone beam geometry with a circular trajectory. The purpose of this facility is to routinely analyse and investigate real world biological, geological and synthetic materials at a scale in which the traditional domains of physics, chemistry, biology and geology merge. During the first 2 years of operation, approximately 4 Terabytes of data have been collected, processed and analysed, both as static and in some cases as composite dynamic data sets. This incorporates over 300 tomograms with 10243 voxels and 50 tomograms with 20483 voxels for a wide range of research fields. Specimens analysed include sedimentary rocks, soils, bone, soft tissue, ceramics, fibre-reinforced composites, foams, wood, paper, fossils, sphere packs, bio-morphs and small animals. In this paper, the exibility of the facility is highlighted with some prime examples.

  14. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    PubMed Central

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. PMID:24073005

  15. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media.

    PubMed

    Hedberg, Yolanda; Karlsson, Maria-Elisa; Blomberg, Eva; Odnevall Wallinder, Inger; Hedberg, Jonas

    2014-10-01

    Stainless steel is widely used in biological environments, for example as implant material or in food applications, where adsorption-controlled ligand-induced metal release is of importance from a corrosion, health, and food safety perspective. The objective of this study was to elucidate potential correlations between surface energy and wettability of stainless steel surfaces and the release of iron in complexing biological media. This was accomplished by studying changes in surface energies calculated from contact angle measurements, surface oxide composition (X-ray photoelectron spectroscopy), and released iron (graphite furnace atomic absorption spectroscopy) for stainless steel grade AISI 304 immersed in fluids containing bovine serum albumin or citric acid, and non-complexing fluids such as NaCl, NaOH, and HNO3. It was shown that the surface wettability and polar surface energy components were all influenced by adventitious atmospheric carbon (surface contamination of low molecular weight), rather than differences in surface oxide composition in non-complexing solutions. Adsorption of both BSA and citrate, which resulted in ligand-induced metal release, strongly influenced the wettability and the surface energy, and correlated well with the measured released amount of iron.

  16. How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules.

    PubMed

    Matta, Chérif F

    2010-04-30

    This article compares molecular properties and atomic properties defined by the quantum theory of atoms in molecules (QTAIM) obtained from three underlying levels of theory: MP2(full), density functional theory (DFT) (B3LYP), and Hartree-Fock (H-F). The same basis set (6-311++G(d,p)) has been used throughout the study. The calculations and comparisons were applied to a set of 30 small molecules representing common fragments of biological molecules. The molecular properties investigated are the energies and the electrostatic moments (up to and including the quadrupoles), and the atomic properties include electron populations (and atomic charge), atomic dipolar and quadrupolar polarizations, atomic volumes, and corrected and raw atomic energies. The Cartesian distance between dipole vectors and the Frobenius distance between the quadrupole tensors calculated at the three levels of theory provide a measure of their correlation (or lack thereof). With the exception of energies (atomic and molecular), it is found that both DFT and H-F are in excellent agreement with MP2, especially with regards to the electrostatic mutipoles up to the quadrupoles, but DFT and MP2 agree better in almost all studied properties (with the exception of molecular geometries). QTAIM properties whether obtained from H-F, DFT(B3LYP), or MP2 calculations when used in the construction of empirical correlations with experiment such as quantitative structure-activity-(or property)-relationships (QSAR/QSPR) are equivalent (because the properties calculated at the three levels are very highly correlated among themselves with r(2) typically >0.95, and therefore preserving trends). These results suggest that the massive volume of results that were published in the older literature at the H-F level is valid especially when used to study trends or in QSAR or QSPR studies, and, as long as our test set of molecules is representative, there is no pressing need to re-evaluate them at other levels of theory

  17. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    NASA Astrophysics Data System (ADS)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  18. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    PubMed Central

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  19. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs.

    PubMed

    Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L

    2015-02-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.

  20. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  1. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  2. Combining in the melt physical and biological properties of poly(caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments.

    PubMed

    Scaffaro, R; Botta, L; Sanfilippo, M; Gallo, G; Palazzolo, G; Puglia, A M

    2013-01-01

    Bacterial infections on a sutured wound represent a critical problem, and the preparation of suture threads possessing antimicrobial properties is valuable. In this work, poly(caprolactone) (PCL) monofilaments were compounded at the concentration of 1, 2 and 4 % (w/w), respectively, to the antiseptic chlorhexidine diacetate (CHX). The incorporation was carried out in the melt by a single-step methodology, i.e. "online" approach. Mechanical tests revealed that the incorporation of CHX does not significantly change tensile properties of PCL fibres as the thermal profile adopted to prepare the compounded fibres does not compromise the antibacterial activity of CHX. In fact, CHX confers to compounded PCL fibres' antimicrobial property even at the lowest CHX concentration as revealed by microbiological assays performed on Escherichia coli, Micrococcus luteus and Bacillus subtilis strains. The scanning electron microscope micrographs and energy-dispersive X-ray analysis of compounded threads revealed that CHX is uniformly distributed on fibre surface and that the overall amount of superficial CHX increases by increasing compounded CHX concentration. This distribution determines a biphasic CHX release kinetics characterized by an initial rapid solubilisation of superficial CHX micro-crystals, followed by a slow and gradual release of CHX incorporated in the bulk. Interestingly, the compounded threads did not show any toxic effect compromising cell viability of human fibroblasts in vitro, differently from that observed using an equal amount of pure CHX. Thus, this study originally demonstrated the effectiveness of an "online" approach to confer antimicrobial properties to an organic thermoplastic polymeric material commonly used for medical devices. PMID:22821439

  3. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens.

    PubMed

    Ownley, Bonnie H; Duffy, Brion K; Weller, David M

    2003-06-01

    Pseudomonas fluorescens 2-79RN(10) protects wheat against take-all disease caused by Gaeumannomyces graminis var. tritici; however, the level of protection in the field varies from site to site. Identification of soil factors that exert the greatest influence on disease suppression is essential to improving biocontrol. In order to assess the relative importance of 28 soil properties on take-all suppression, seeds were treated with strain 2-79RN(10) (which produces phenazine-1-carboxylate [PCA(+)]) or a series of mutants with PCA(+) and PCA(-) phenotypes. Bacterized seeds were planted in 10 soils, representative of the wheat-growing region in the Pacific Northwest. Sixteen soil properties were correlated with disease suppression. Biocontrol activity of PCA(+) strains was positively correlated with ammonium-nitrogen, percent sand, soil pH, sodium (extractable and soluble), sulfate-sulfur, and zinc. In contrast, biocontrol was negatively correlated with cation-exchange capacity (CEC), exchangeable acidity, iron, manganese, percent clay, percent organic matter (OM), percent silt, total carbon, and total nitrogen. Principal component factor analysis of the 16 soil properties identified a three-component solution that accounted for 87 percent of the variance in disease rating (biocontrol). A model was identified with step-wise regression analysis (R(2) = 0.96; Cp statistic = 6.17) that included six key soil properties: ammonium-nitrogen, CEC, iron, percent silt, soil pH, and zinc. As predicted by our regression model, the biocontrol activity of 2-79RN(10) was improved by amending a soil low in Zn with 50 micro g of zinc-EDTA/g of soil. We then investigated the negative correlation of OM with disease suppression and found that addition of OM (as wheat straw) at rates typical of high-OM soils significantly reduced biocontrol activity of 2-79RN(10).

  4. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    NASA Astrophysics Data System (ADS)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

  5. Synthesis, characterization and biological properties of thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2012-04-01

    A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds. PMID:21635212

  6. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    PubMed

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  7. Ichthyotoxic Brominated Diphenyl Ethers from a Mixed Assemblage of a Red Alga and Cyanobacterium: Structure Clarification and Biological Properties

    PubMed Central

    Suyama, Takashi L.; Cao, Zhengyu; Murray, Thomas F.; Gerwick, William H.

    2009-01-01

    Primary fractions from the extract of a tropical red alga mixed with filamentous cyanobacteria, collected from Papua New Guinea, were active in a neurotoxicity assay. Bioassay guided isolation led to two natural products (1, 2) with relatively potent calcium ion influx properties. The more prevalent of the neurotoxic compounds (1) was characterized by extensive NMR, mass spectrometry, and X-ray crystallography, and shown to be identical to a polybrominated diphenyl ether metabolite present in the literature, but reported with different NMR properties. To clarify this anomalous result, we synthesized a candidate isomeric polybrominated diphenyl ether (3), but this clearly had different NMR shifts than the reported compound. We conclude that the original isolate of 3,4,5-tribromo-2-(2,4-dibromophenoxy)phenol was contaminated with a minor compound, giving rise to the observed anomalous NMR shifts. The second and less abundant natural product (2) isolated in this study was a more highly brominated species. All three compounds showed a low micromolar ability to increase intracellular calcium ion concentrations in mouse neocortical neurons as well as toxicity to zebrafish. Because polybrominated diphenyl ethers have both natural as well as anthropomorphic origins, and accumulate in marine organisms at higher trophic level (mammals, fish, birds), these neurotoxic properties are of environmental significance and concern. PMID:19638282

  8. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    PubMed

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas. PMID:25822889

  9. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation

    NASA Astrophysics Data System (ADS)

    Escobar, Indra Elena C.; Santos, Vilma M.; da Silva, Danielle Karla A.; Fernandes, Marcelo F.; Cavalcante, Uided Maaze T.; Maia, Leonor C.

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  10. Development and evaluation of a pliable biological valved conduit. Part I: Preparation, biochemical properties, and histological findings.

    PubMed

    Noishiki, Y; Hata, C; Tu, R; Shen, S H; Lin, D; Sung, H W; Witzel, T; Wang, E; Thyagarajan, K; Tomizawa, Y

    1993-04-01

    Different types of external valved conduits have been used for the repair of complex congenital cardiac anomalies that may have otherwise been inoperable. However, an ideal conduit has yet to be found due to complications such as stenosis, thrombosis, calcification of the valve and graft wall, and "peeling" of the neointima. To address those problems, a new extracardiac valved conduit made of bovine jugular vein was developed and evaluated in a preliminary animal study. Harvested bovine vein containing a naturally existing valve was initially incorporated with protamine on the inner surface and then was cross-linked in diglycidyl ether (DE). Fixation with DE allowed the vein and its leaflets to retain a tissue-like elasticity. To provide antithrombogenicity to the graft, heparin was introduced into the lumen to bind ionically to the pre-entrapped protamine. The biological valved conduit of approximately 14 mm diameter was implanted from the right ventricle to pulmonary artery as bypass graft in three dogs. After implantation, the native main pulmonary artery was ligated between the anastomotic sites of the bypass conduit. No anticoagulant or antiplatelet drugs were administered after surgery. One DE-fixed valved conduit was retrieved at 3 months, and the others were removed at 5 months. Only small thrombus areas were found on the white luminal surfaces. The valves and the conduits maintained softness and pliability, similar to before implantation. Additionally, the collagen content, shrink temperature, and tanning index of this newly developed biological valved conduit before and after fixation were measured in the study.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8325696

  11. Characterization and biological properties of NanoCUR formulation and its effect on major human cytochrome P450 enzymes.

    PubMed

    Shamsi, Suhaili; Chen, Yan; Lim, Lee Yong

    2015-11-10

    Curcumin (CUR) has been formulated into a host of nano-sized formulations in a bid to improve its in vivo solubility, stability and bioavailability. The aim of this study was to investigate whether the encapsulation of CUR in nanocarriers would impede its biological interactivity, specifically its potential anti-cancer adjuvant activity via the modulation of CYP enzymes in vitro. NanoCUR, a micellar dispersion prepared via a thin film method using only Pluronic F127 as excipient, was amenable to lyophilization, and retained its nano-sized spherical dimensions (17-33 nm) upon reconstitution with water followed by dilution to 5 μM with HBSS or EMEM. NanoCUR was a weaker cytotoxic agent compared to CUR in solution (sCUR), affecting HepG2 cell viability only when the incubation time was prolonged from 4h to 48 h. Correlation with 2h uptake data suggests this was due to a lower cellular uptake rate of CUR from NanoCUR than from sCUR. The poorer CUR accessibility might also account for NanoCUR being a weaker inhibitor of CYP2C9 and CYP2D6 than sCUR. NanoCUR was, however, 1.76-fold more potent against the CYP3A4 (IC50 5.13 ± 0.91 μM) metabolic function. The higher activity against CYP3A4 might be attributed to the synergistic action of Pluronic F127, since the blank micellar dispersion also inhibited CYP3A4 activity. Both sCUR and NanoCUR had no effect on the CYP3A4 mRNA levels in the HepG2 cells. NanoCUR therefore, maintained most of the biological activities of CUR in vitro, albeit at a lower potency and response rate. PMID:26319630

  12. Taurolidine antiadhesive properties on interaction with E. coli; its transformation in biological environment and interaction with bacteria cell wall.

    PubMed

    Caruso, Francesco; Darnowski, James W; Opazo, Cristian; Goldberg, Alexander; Kishore, Nina; Agoston, Elin S; Rossi, Miriam

    2010-01-28

    The taurine amino-acid derivative, taurolidine, bis-(1,1-dioxoperhydro-1,2,4-thiabiazinyl-4)methane, shows broad antibacterial action against gram-positive and gram-negative bacteria, mycobacteria and some clinically relevant fungi. It inhibits, in vitro, the adherence of Escherichia coli and Staphylococcus aureus to human epithelial and fibroblast cells. Taurolidine is unstable in aqueous solution and breaks down into derivatives which are thought to be responsible for the biological activity. To understand the taurolidine antibacterial mechanism of action, we provide the experimental single crystal X-ray diffraction results together with theoretical methods to characterize the hydrolysis/decomposition reactions of taurolidine. The crystal structure features two independent molecules linked through intermolecular H-bonds with one of them somewhat positively charged. Taurolidine in a biological environment exists in equilibrium with taurultam derivatives and this is described theoretically as a 2-step process without an energy barrier: formation of cationic taurolidine followed by a nucleophilic attack of O(hydroxyl) on the exocyclic C(methylene). A concerted mechanism describes the further hydrolysis of the taurolidine derivative methylol-taurultam. The interaction of methylol-taurultam with the diaminopimelic NH(2) group in the E. coli bacteria cell wall (peptidoglycan) has a negative DeltaG value (-38.2 kcal/mol) but a high energy barrier (45.8 kcal/mol) suggesting no reactivity. On the contrary, taurolidine docking into E. coli fimbriae protein, responsible for bacteria adhesion to the bladder epithelium, shows it has higher affinity than mannose (the natural substrate), whereas methylol-taurultam and taurultam are less tightly bound. Since taurolidine is readily available because it is administered in high doses after peritonitis surgery, it may successfully compete with mannose explaining its effectiveness against bacterial infections at laparoscopic lesions.

  13. Gradient-based Electrical Properties Tomography (gEPT): a Robust Method for Mapping Electrical Properties of Biological Tissues In Vivo Using Magnetic Resonance Imaging

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin

    2014-01-01

    Purpose To develop high-resolution electrical properties tomography (EPT) methods and investigate a gradient-based EPT (gEPT) approach which aims to reconstruct the electrical properties (EP), including conductivity and permittivity, of an imaged sample from experimentally measured B1 maps with improved boundary reconstruction and robustness against measurement noise. Theory and Methods Using a multi-channel transmit/receive stripline head coil, with acquired B1 maps for each coil element, by assuming negligible Bz component compared to transverse B1 components, a theory describing the relationship between B1 field, EP value and their spatial gradient has been proposed. The final EP images were obtained through spatial integration over the reconstructed EP gradient. Numerical simulation, physical phantom and in vivo human experiments at 7 T have been conducted to evaluate the performance of the proposed methods. Results Reconstruction results were compared with target EP values in both simulations and phantom experiments. Human experimental results were compared with EP values in literature. Satisfactory agreement was observed with improved boundary reconstruction. Importantly, the proposed gEPT method proved to be more robust against noise when compared to previously described non-gradient-based EPT approaches. Conclusion The proposed gEPT approach holds promises to improve EP mapping quality by recovering the boundary information and enhancing robustness against noise. PMID:25213371

  14. Modeling Biophysical and Biological Properties From the Characteristics of the Molecular Electron Density, Electron Localization and Delocalization Matrices, and the Electrostatic Potential

    PubMed Central

    Matta*, Chérif F

    2014-01-01

    The electron density and the electrostatic potential are fundamentally related to the molecular hamiltonian, and hence are the ultimate source of all properties in the ground- and excited-states. The advantages of using molecular descriptors derived from these fundamental scalar fields, both accessible from theory and from experiment, in the formulation of quantitative structure-to-activity and structure-to-property relationships, collectively abbreviated as QSAR, are discussed. A few such descriptors encode for a wide variety of properties including, for example, electronic transition energies, pKa's, rates of ester hydrolysis, NMR chemical shifts, DNA dimers binding energies, π-stacking energies, toxicological indices, cytotoxicities, hepatotoxicities, carcinogenicities, partial molar volumes, partition coefficients (log P), hydrogen bond donor capacities, enzyme–substrate complementarities, bioisosterism, and regularities in the genetic code. Electronic fingerprinting from the topological analysis of the electron density is shown to be comparable and possibly superior to Hammett constants and can be used in conjunction with traditional bulk and liposolubility descriptors to accurately predict biological activities. A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully. Properties such as “interacting quantum atoms (IQA)” energies which are expressible into an interaction matrix of two body terms (and diagonal one body “self” terms, as IQA energies) can be used in the same manner. The proposed QSAR-type studies based on similarity distances derived from such matrix representatives of molecular structure necessitate extensive investigation before their utility is unequivocally established. © 2014 The Author and the Journal of Computational Chemistry Published

  15. Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential.

    PubMed

    Matta, Chérif F

    2014-06-15

    The electron density and the electrostatic potential are fundamentally related to the molecular hamiltonian, and hence are the ultimate source of all properties in the ground- and excited-states. The advantages of using molecular descriptors derived from these fundamental scalar fields, both accessible from theory and from experiment, in the formulation of quantitative structure-to-activity and structure-to-property relationships, collectively abbreviated as QSAR, are discussed. A few such descriptors encode for a wide variety of properties including, for example, electronic transition energies, pK(a)'s, rates of ester hydrolysis, NMR chemical shifts, DNA dimers binding energies, π-stacking energies, toxicological indices, cytotoxicities, hepatotoxicities, carcinogenicities, partial molar volumes, partition coefficients (log P), hydrogen bond donor capacities, enzyme-substrate complementarities, bioisosterism, and regularities in the genetic code. Electronic fingerprinting from the topological analysis of the electron density is shown to be comparable and possibly superior to Hammett constants and can be used in conjunction with traditional bulk and liposolubility descriptors to accurately predict biological activities. A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully. Properties such as "interacting quantum atoms (IQA)" energies which are expressible into an interaction matrix of two body terms (and diagonal one body "self" terms, as IQA energies) can be used in the same manner. The proposed QSAR-type studies based on similarity distances derived from such matrix representatives of molecular structure necessitate extensive investigation before their utility is unequivocally established.

  16. Synthesis, potentiometric titration, electrochemical investigation and biological properties of trans-[RuCl2(dinic)4] (dinic = 3,5-pyridinecarboxylic acid).

    PubMed

    Seifriz, I; Konzen, M; Paula, M M; Gonçalves, N S; Spoganickz, B; Creczynski-Pasa, T B; Bonetti, V R; Beirith, A; Calixto, J B; Franco, C V

    1999-09-30

    This work discusses both the synthesis of trans-[RuCl2(dinic)4], dinic = 3,5-pyridinecarboxylic acid, and its main characteristics including potentiometric titration, spectroscopic and electrochemical properties, and some biological properties. The complex was synthesized using ruthenium blue solution as the precursor in a synthetic route. The complex was characterized using electronic spectroscopy, vibrational FT-IR spectroscopy, and Raman spectroscopy, as well as 1H and 13C NMR. The results indicated that the complex exhibits a trans-geometry. Cyclic voltammetry carried out in water:acetone 1:1 solution revealed a quasi-reversible process centered on the Ru(II) atom, as well as a dependence of the redox potential, E1/2, on pH. An analysis of the electronic spectra revealed that the MLCT (metal ligand charge transfer) band underwent a hypsochromic shift as the pH increased. Spectroelectrochemical analysis indicated that the visible region band progressively faded out upon oxidation. The equilibrium constants for the eight protons of the complex were determined by potentiometric titration. The complex neither inhibits the activity of nitrogen monoxide synthase nor acts as a scavenger for nitrogen monoxide. Nevertheless, the complex shows antinociceptive properties and acts as a scavenger for hydroxyl radicals.

  17. Effects of temperature-dependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy.

    PubMed

    Kim, Soogeun; Jeong, Sungho

    2014-03-01

    The effects of temperature-dependent optical properties on the change of fluence rate and temperature distribution within biological tissues during low-level laser therapy (LLLT) were investigated by experimental and numerical methods. The fluence rate and temperature within a porcine skin were measured in vitro using an optical fiber sensor and a thermocouple, respectively, while irradiating the sample with a continuous wave laser (IPG Laser GmbH, Burbach, Germany, 1,064 nm, 3.14 W/cm(2)). The absorption and reduced scattering coefficients of porcine skin were estimated using an inverse adding-doubling algorithm from the total reflectance and transmittance measured with a double-integrating sphere. It was shown that the reduced scattering coefficient of porcine skin decreased significantly as the skin temperature increased within the range of 26-40 °C. To incorporate the temperature dependency of tissue optical properties in the simulation, a mathematical model that adopted coupled equations for fluence rate and bioheat transfer was developed. It was shown that the predicted fluence rate and temperature by the proposed mathematical model agreed closely with the measured values of porcine skin. The calculation of human skin temperature using the developed model revealed that the skin temperature could be significantly underestimated if the temperature dependency of optical properties of human skin were ignored during LLLT simulation.

  18. Photo-Crosslinked Poly(ε-caprolactone fumarate) Networks for Peripheral Nerve Regeneration: Physical Properties and Preliminary Biological Evaluations

    PubMed Central

    Wang, Shanfeng; Yaszemski, Michael J.; Knight, Andrew M.; Gruetzmacher, James A.; Windebank, Anthony J.; Lu, Lichun

    2010-01-01

    In an effort of achieving suitable biomaterials for peripheral nerve regeneration, we present a material design strategy of combining a crystallite-based physical network and a crosslink-based chemical network. Biodegradable polymer disks and conduits have been fabricated by photo-crosslinking three poly(ε-caprolactone fumarate)s (PCLF530, PCLF1250, and PCLF2000), which were synthesized from the precursor poly(ε-caprolactone) (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g.mol−1, respectively. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and crystallinity of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties. Furthermore, in vitro degradation of uncrosslinked and crosslinked PCLFs in PBS crosslinked PCLFs in 1 N NaOH aqueous solution at 37 °C was studied. In vitro cytocompatibility, attachment, and proliferation of Schwann cell precursor line SPL201 cells on three PCLF networks were investigated. Crosslinked PCLF2000 with the highest crystallinity and mechanical properties was found to best support cell attachment and proliferation. Using a new photo-crosslinking method, single-lumen crosslinked PCLF nerve conduits without defects were fabricated in a glass mold. Crosslinked PCLF2000 nerve conduits were selected for evaluation in a 1-cm gap rat sciatic nerve model. Histological evaluation demonstrated that the material was biocompatible with sufficient strength to hold sutures in place after 6 and 17 weeks of implantation. Nerve cable with myelinated axons was found in the crosslinked PCLF2000 nerve conduit. PMID:19171506

  19. Tetrahydroquinolines as a novel series of nonsteroidal selective androgen receptor modulators: structural requirements for better physicochemical and biological properties.

    PubMed

    Nagata, Naoya; Miyakawa, Motonori; Amano, Seiji; Furuya, Kazuyuki; Yamamoto, Noriko; Nejishima, Hiroaki; Inoguchi, Kiyoshi

    2011-11-01

    A rationally designed tetrahydroquinoline (1) for nonsteroidal selective androgen receptor modulators was modified for the exploration of promising compounds by Grieco three-component condensation using various dienophiles. Based on the in vitro effects and physicochemical properties of the synthesized compounds, compound 4c was selected for further study. Compound 4c increased the femoral bone mineral density as much as DHT, but it reduced the uterus effect compared with DHT in ovariectomized rats. Thus, compound 4c has desirable osteoanabolic effects with weak undesirable effects on the uterus in a female osteoporosis model.

  20. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis

    PubMed Central

    Duenas-Decamp, Maria José; Peters, Paul J; Repik, Alexander; Musich, Thomas; Gonzalez-Perez, Maria Paz; Caron, Catherine; Brown, Richard; Ball, Jonathan; Clapham, Paul R

    2010-01-01

    HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4+ T cells and macrophages. While R5 viruses generally infect CD4+ T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines. PMID:20930940

  1. Improvement of mechanical and biological properties of TiNi alloys by addition of Cu and Co to orthodontic archwires.

    PubMed

    Phukaoluan, Aphinan; Khantachawana, Anak; Kaewtatip, Pongpan; Dechkunakorn, Surachai; Kajornchaiyakul, Julathep

    2016-09-01

    The purpose of this study was to investigate improved performances of TiNi in order to promote tooth movement. Special attention was paid to the effect on the clinical properties of TiNi of adding Cu and Co to this alloy. Ti49.4Ni50.6, Ti49Ni46Cu5 and Ti50Ni47Co3 (at %) alloys were prepared. Specimens were cold-rolled at 30% reduction and heat-treated at 400°C for 60min. Then, the test results were compared with two types of commercial archwires. The findings showed that superelasticity properties were confirmed in the manufactured commercial alloys at mouth temperature. The difference of stress plateau in TiNi, TiNiCo and commercial wires B at 25°C changed significantly at various testing temperatures due to the combination of martensite and austenite phases. At certain temperatures the alloys exhibited zero recovery stress at 2% strain and consequently produced zero activation force for moving teeth. The corrosion test showed that the addition of Cu and Co to TiNi alloys generates an increase in corrosion potential (Ecorr) and corrosion current densities (Icorr). Finally, we observed that addition of Cu and Co improved cell viability. We conclude that addition of an appropriate amount of a third alloying element can help enhance the performances of TiNi orthodontic archwires. PMID:27520713

  2. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite vs. monetite.

    PubMed

    Tamimi, Faleh; Le Nihouannen, Damien; Eimar, Hazem; Sheikh, Zeeshan; Komarova, Svetlana; Barralet, Jake

    2012-08-01

    Dicalcium phosphate dihydrate (brushite) is an osteoconductive biomaterial with great potential as a bioresorbable cement for bone regeneration. Preset brushite cement can be dehydrated into dicalcium phosphate anhydrous (monetite) bioceramics by autoclaving. This heat treatment results in changes in the physical characteristics of the material, improving in vivo bioresorption. This property is a great advantage in bone regeneration; however, it is not known how autoclaving brushite preset cement might improve its capacity to regenerate bone. This study was designed to compare brushite bioceramics with monetite bioceramics in terms of physical characteristics in vitro, and in vivo performance upon bone implantation. In this study we observed that monetite bioceramics prepared by autoclaving preset brushite cements had higher porosity, interconnected porosity and specific surface area than their brushite precursors. In vitro cell culture experiments revealed that bone marrow cells expressed higher levels of osteogenic genes Runx2, Opn, and Alp when the cells were cultured on monetite ceramics rather than on brushite ones. In vivo experiments revealed that monetite bioceramics resorbed faster than brushite ones and were more infiltrated with newly formed bone. In summary, autoclaving preset brushite cements results in a material with improved properties for bone regeneration procedures. PMID:22522010

  3. Evaluation of mechanical properties and biological response of an alumina-forming Ni-free ferritic alloy.

    PubMed

    González-Carrasco, J L; Ciapetti, G; Montealegre, M A; Pagani, S; Chao, J; Baldini, N

    2005-06-01

    PM 2000 is a Ni-free oxide dispersion strengthened Fe-20Cr-5Al alloy able to develop a fine, dense and tightly adherent alpha-alumina scale during high-temperature oxidation. Despite the high temperature involved during thermal oxidation (1100 degrees C), microstructural changes in the candidate material, a hot rolled product, hardly occurs. Consequently, the good mechanical properties of the as-received material are not significantly affected. Moreover, due to the high compressive residual stresses at the alumina scale, an increase in the fatigue limit from 500 to 530 MPa is observed. Such stresses also account for the high capability of the coating/metal system to withstand more than 1% tensile deformation without cracking. The biocompatibility of the alloy was assessed in comparison to commercial alumina. Saos-2 osteoblast-like cells were either challenged with PM 2000 particles, or seeded onto PM 2000 (with and without scale) solid samples. Viability, growth, and ALP release from cells were assessed after 3 or 7 days, while mineralization was checked at 18 days. This study has demonstrated that PM 2000 with and without scale are capable of supporting in vitro growth and function of osteoblast-like cells over a period of 18 days. Results from this study suggest that the resulting alumina/alloy system combines the good mechanical properties of the alloy with the superior biocompatibility of the alpha-alumina, for which there is very good clinical experience. PMID:15626434

  4. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Ibey, Bennett L.; Tongue, Thomas; Schulkin, Brian; Laman, Norman; Peralta, Xomalin G.; Roth, Caleb C.; Cerna, Cesario Z.; Rivest, Benjamin D.; Grundt, Jessica E.; Roach, William P.

    2011-04-01

    Terahertz spectrometers and imaging systems are currently being evaluated as biomedical tools for skin burn assessment. These systems show promise, but due to their size and weight, they have restricted portability, and are impractical for military and battlefield settings where space is limited. In this study, we developed and tested the performance of a compact, light, and portable THz time-domain spectroscopy (THz-TDS) device. Optical properties were collected with this system from 0.1 to 1.6 THz for water, ethanol, and several ex vivo porcine tissues (muscle, adipose, skin). For all samples tested, we found that the index of refraction (n) decreases with frequency, while the absorption coefficient (μa) increases with frequency. Muscle, adipose, and frozen/thawed skin samples exhibited comparable n values ranging between 2.5 and 2.0, whereas the n values for freshly harvested skin were roughly 40% lower. Additionally, we found that the freshly harvested samples exhibited higher μa values than the frozen/thawed skin samples. Overall, for all liquids and tissues tested, we found that our system measured optical property values that were consistent with those reported in the literature. These results suggest that our compact THz spectrometer performed comparable to its larger counterparts, and therefore may be a useful and practical tool for skin health assessment.

  5. Biologically compatible, phosphorescent dimetallic rhenium complexes linked through functionalized alkyl chains: syntheses, spectroscopic properties, and applications in imaging microscopy.

    PubMed

    Balasingham, Rebeca G; Thorp-Greenwood, Flora L; Williams, Catrin F; Coogan, Michael P; Pope, Simon J A

    2012-02-01

    A range of luminescent, dimetallic complexes based upon the rhenium fac-tricarbonyl diimine core, linked by aliphatic chains of varying lengths and functionality, have been synthesized and their photophysical properties examined. Each complex displays characteristic (3)M(Re)L(diimine)CT emission in aerated acetonitrile solution, with long lifetimes in the range of 129-248 ns and corresponding quantum yields in the range 3.2-8.0%. In aqueous solution, as opposed to acetonitrile, the complexes generally show a small hypsochromic shift in λ(em) and an extension of the (3)MLCT lifetime, attributed to a hydrophobically driven association of the alkyl chains with the rhenium-bound diimine units. In live cell imaging experiments using MCF7 cells the complexes all show good uptake by non-energy dependent mechanisms without endosomal entrainment, and with varying propensity to localize in organelles. The degrees of uptake and localization properties are discussed in terms of the length and chemical nature of the linkers, and in terms of the likely interactions between these and the various cellular components encountered.

  6. The nonconservative property of dissolved molybdenum in the western Taiwan Strait: Relevance of submarine groundwater discharges and biological utilization

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Xia, Weiwei; Lu, Shuimiao; Wang, Guizhi; Liu, Qian; Moore, Willard S.; Arthur Chen, Chen-Tung

    2016-01-01

    This study examined dissolved Mo and sedimentary Mo along with hydrochemical parameters in the western Taiwan Strait (WTS) in May and August 2012. The results demonstrate that dissolved Mo could be depleted of as high as 10-20 nM during our May sampling period when the nutrient-enriched Min-Zhe coastal current ceased and spring blooms developed. The negative correlation between Chl-a and dissolved Mo suggests the possible involvement of high algal productivity in removing dissolved Mo out of the water column. Specific oceanographic settings (little currents) permitted a high sedimentary enrichment of Mo (>6 µg/g Mo) within the highly productive waters outside the Jiulong River mouth. Possibly, the high algal productivities and consequent organic matter sinks provide a pathway of Mo burial from water columns into sediments. Dissolved Mo was relatively high in groundwater samples, but we observed that submarine groundwater discharges (SGDs) only contributed to a relatively small percentage of the total dissolved Mo pool in WTS. It is probably attributable to the immediate removal of SGD-released Mo ions via adsorption onto newly formed Mn oxides once exposed to oxygenated seawater, followed by an elevated sedimentary Mo accumulation near the SGDs (˜5 µg/g). In addition to metal oxide particle scavenging and sulfide precipitation, we estimated that biological uptake along with Mo adsorption onto organic matter carriers could finally provide more than 10% of the annual sedimentary Mo accumulation in WTS.

  7. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    PubMed

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15). PMID:26032451

  8. Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy)propane-1,2-diol metal complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Bindary, Ashraf A.; El-Sonbati, Adel Z.

    2015-04-01

    New bi- and trivalent transition metal complexes of ligand 3-(2-methoxyphenoxy)propane-1,2-diol (GFS) were synthesized. The ligand and complexes were characterized via: melting point, UV/Visible, IR, 1H NMR, mass and diffused reflectance spectroscopy. The molecular structure of the investigated ligand (GFS) is optimized theoretically and the quantum chemical parameters are calculated. In addition, the complexes were characterized based on conductivity measurement, thermal analysis and biological activity. The infrared spectral study of GFS and its complexes, act as monobasic tridentate through the oxygen atom of hydroxyl group and two etheric oxygen atoms. Also, coordination to the unprotonated oxygen is evidenced from the disappearance of the OH signal in the 1H NMR spectra after complexation. The thermogravimetric analysis of the complexes shows metal oxide remaining as the final product. The compounds were tested against four bacterial species; two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) as well as antifungal activity against (Candida albicans). The complexes showed significant activities against Gram positive bacteria than Gram negative bacteria. [Cd(GFS)Cl(H2O)2] complex showed remarkable antifungal activity. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The drug and complexes were also screened for their in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity.

  9. An infection-preventing bilayered collagen membrane containing antibiotic-loaded hyaluronan microparticles: physical and biological properties.

    PubMed

    Lee, Jong-Eun; Park, Jong-Chul; Lee, Kwang Hoon; Oh, Sang Ho; Kim, Joong-Gon; Suh, Hwal

    2002-07-01

    An infection-preventing bilayered membrane consisting of a dense and porous collagen membrane has been developed. The membrane was fabricated using a combined freeze-drying/air-drying method. Hyaluronan (HA) microparticles containing silver sulfadiazine (AgSD) were fabricated by gelling an HA solution with calcium chloride and were incorporated into collagen layers to allow the sustained release of AgSD. In vitro biodegradability of the membrane and the release of AgSD from the membrane could be controlled by cross-linking the membrane with ultraviolet (UV) irradiation. In a cytotoxicity test, cellular damage was minimized by the sustained release of AgSD from dressings. The antibacterial capacity of the material against Pseudomonas aeruginosa was investigated using the Bauer-Kirby disk diffusion test, and bacterial growth was found to be inhibited for 4 days. In vivo tests showed that the bilayered membrane was associated with greater tissue regeneration than a polymeric membrane and with no infection-related biological signs.

  10. SAR of Cu (II) thiosemicarbazone complexes as hypoxic imaging agents: MM3 analysis and prediction of biologic properties.

    PubMed

    Singh, Sweta; Tiwari, Anjani K; Ojha, Himanshu; Kumar, Nitin; Singh, Bachcha; Mishra, Anil K

    2010-02-01

    Copper(II) bis(thiosemicarbazone) are very useful for blood flow and hypoxic imaging. The aim of this study was to identify structure-activity relationships (SARs) within a series of analogues with different substitution patterns in the ligands, in order to design improved hypoxia imaging agents and elucidate hypoxia selectivity mechanisms. Genetic algorithms (GAs) were used to develop specific copper metal-ligand force field parameters for the MM3 force-field calculations. These new parameters produced results in good agreement with experiment and previously reported copper metal-ligand parameters. A successful quantitative SAR (QSAR) for predicting the several classes of Cu(II)-chelating ligands was built using a training set of 21 Cu(II) complexes. The QSAR exhibited a correlation between the predicted and experimental test set. The QSAR preformed with great accuracy; r(2) = 0.95 and q(2) = 0.90 utilizing a leave-one-out cross-validation with multiple linear regression analysis to find correlation between different calculated molecular descriptors of these complexes. The final QSAR mathematical models were found as the following: Log P = {3.01698 (+/-0.0590)} - LUMO {0.1248 (+/-0.068)} + MR {0.3219 (+/-0.086)} n = 21 |r| = 0.972 s = 0.188 F = 98.102 The resulting models could act as an efficient strategy for estimating the hypoxic conditions through imaging and provide some insights into the structural features related to the biological activity of these compounds.

  11. Construction of a deep-rough mutant of Burkholderia cepacia ATCC 25416 and characterization of its chemical and biological properties.

    PubMed

    Gronow, Sabine; Noah, Christian; Blumenthal, Antje; Lindner, Buko; Brade, Helmut

    2003-01-17

    Burkholderia cepacia is a bacterium with increasing importance as a pathogen in patients with cystic fibrosis. The deep-rough mutant Ko2b was generated from B. cepacia type strain ATCC 25416 by insertion of a kanamycin resistance cassette into the gene waaC encoding heptosyltransferase I. Mass spectrometric analysis of the de-O-acylated lipopolysaccharide (LPS) of the mutant showed that it consisted of a bisphosphorylated glucosamine backbone with two 3-hydroxyhexadecanoic acids in amide-linkage, 4-amino-4-deoxyarabinose (Ara4N) residues on both phosphates, and a core oligosaccharide of the sequence Ara4N-(1 --> 8) D-glycero-D-talo-oct-2-ulosonic acid (Ko)-(2 --> 4)3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). The mutant allowed investigations on the biosynthesis of the LPS as well as on its role in human infection. Mutant Ko2b showed no difference in its ability to invade human macrophages as compared with the wild type. Furthermore, isolated LPS of both strains induced the production of tumor necrosis factor alpha from macrophages to the same extent. Thus, the truncation of the LPS did not decrease the biological activity of the mutant or its LPS in these aspects.

  12. [BIOLOGICAL PROPERTIES OF BACTERIA OF THE FAMILY ENTEROBACTERIACEAE AS COMPONENTS OF MICROSYMBIOCENOSIS OF THE FIRST INTERMEDIATE HOSTS OF O.FELINEUS].

    PubMed

    Stepanova, T F; Bukharin, O V; Kataeva, L V; Perunova, N B; Karpukhina, N F

    2015-01-01

    The objective of the investigation was to study the biological properties (antilysozyme activity (ALA), biofilm formation (BFF), and virulence factors) of different Enterobacteriaceae species isolated from Bithyniidae mollusks and their habitats. A total of 117 strains isolated from Bithyniidae mollusks of the genera Codiella and Bithynia and those from their habitats were the material to be studied. Thus, comparison of the mean values of ALA in Enterobacteriaceae species suggests that the strains isolated from the mollusks and their aqueous habitat did not virtually differ in this indicator. Also, there were no statistically significant differences in the detection rate of the Enterobacteriaceae strains having a pronounced antilysozyme activity and in that of mollusks circulating in the aqueous habitat when compared with the strains isolated from the mollusks. Comparison of BFF in the aqueous bacterial strains and mollusk microbiota representatives revealed the highest values in the former; just lower value was noted in the latter. Soil Enterobacteriaceae isolates had very low BFF values. PMID:26827577

  13. Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation

    PubMed Central

    Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke

    2015-01-01

    Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating could effectively retard the degradation according to immersion and electrochemical tests as well as 3D reconstruction by X-ray tomography after implantation. The MAO coating exhibited no toxicity and could stimulate the new bone formation. Therefore, the Ca-P self-sealing MAO coating could be a potential candidate for application of biodegradable Mg-based implant in bone fixations. PMID:26816635

  14. New series of aromatic/ five-membered heteroaromatic butanesulfonyl hydrazones as potent biological agents: Synthesis, physicochemical and electronic properties

    NASA Astrophysics Data System (ADS)

    Hamurcu, Fatma; Mamaş, Serhat; Ozdemir, Ummuhan Ozmen; Gündüzalp, Ayla Balaban; Senturk, Ozan Sanlı

    2016-08-01

    The aromatic/five-membered heteroaromatic butanesulfonylhydrazone derivatives; 5-bromosalicylaldehydebutanesulfonylhydrazone(1), 2-hydroxy-1-naphthaldehydebutane sulfonylhydrazone(2), indole-3-carboxaldehydebutanesulfonylhydrazone (3), 2-acetylfuran- carboxyaldehydebutanesulfonylhydrazone(4), 2-acetylthiophenecarboxyaldehydebutane- sulfonylhydrazone(5) and 2-acetyl-5-chlorothiophenecarboxyaldehydebutanesulfonyl hydrazone (6) were synthesized by the reaction of butane sulfonic acid hydrazide with aldehydes/ketones and characterized by using elemental analysis, 1H NMR, 13C NMR and FT-IR technique. Their geometric parameters and electronic properties consist of global reactivity descriptors were also determined by theoretical methods. The electrochemical behavior of the butanesulfonylhydrazones were investigated by using cyclic voltammetry (CV), controlled potential electrolysis and chronoamperometry (CA) techniques. The number of electrons transferred (n), diffusion coefficient (D) and standard heterogeneous rate constants (ks) were determined by electrochemical methods.

  15. The Role of Laboratory-Based Studies of the Physical and Biological Properties of Sea Ice in Supporting the Observation and Modeling of Ice Covered Seas

    NASA Astrophysics Data System (ADS)

    Light, B.; Krembs, C.

    2003-12-01

    Laboratory-based studies of the physical and biological properties of sea ice are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on sea ice and the structure of ice-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between sea ice and the atmosphere and sea ice and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of sea ice under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural sea ice core samples and laboratory-grown ice. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of sea ice microstructure to changes in temperature, assessment of the relationships between ice structure and the partitioning of solar radiation by first-year sea ice covers, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of sea ice.

  16. Evaluation of polyphenolic fraction isolated from aerial parts of Tribulus pterocarpus on biological properties of blood platelets in vitro.

    PubMed

    Olas, Beata; Morel, Agnieszka; Hamed, Arafa I; Oleszek, Wieslaw; Stochmal, Anna

    2013-01-01

    The antiplatelet and antioxidative activity of polyphenolic fraction isolated from aerial parts of Tribulus pterocarpus in blood platelets stimulated by thrombin was studied. Thrombin as a strong physiological agonist induces the enzymatic peroxidation of endogenous arachidonic acid, the formation of different reactive oxygen species, including superoxide anion radicals ([Formula: see text](·)) and the platelet aggregation. Therefore, the aim of our study was to assess if the polyphenolic fraction from aerial parts of T. pterocarpus may change the biological properties of blood platelets activated by thrombin. We used cytochrome c reduction method to test the ability of this fraction to change [Formula: see text](·) generation in platelets. Arachidonic acid metabolism was measured by the level of thiobarbituric acid reactive substances (TBARS) and by the production of 8-epi-prostaglandin (8-EPI) F(2). Moreover, we determined the effects of the fraction on blood platelet aggregation induced by thrombin. We observed that the polyphenolic fraction from T. pterocarpus reduced [Formula: see text](·), 8-EPI and TBARS production in these cells. The ability of the fraction to decrease the [Formula: see text](·) generation in blood platelets supports the importance of free radicals in platelet functions, including aggregation process. This study may suggest that the tested plant fraction might be a good candidate for protecting blood platelets against changes of their biological functions, which may be associated with the pathogenesis of different cardiovascular disorders.

  17. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same.

  18. Effect of non-steroidal anti-inflammatory drugs on biological properties of Acanthamoeba castellanii belonging to the T4 genotype.

    PubMed

    Siddiqui, Ruqaiyyah; Lakhundi, Sahreena; Iqbal, Junaid; Khan, Naveed Ahmed

    2016-09-01

    Non-steroidal anti-inflammatory drug, Diclofenac, targeting COX have shown promise in the treatment of Acanthamoeba keratitis, but the underlying mechanisms remain unknown. Using various NSAIDs, Diclofenac sodium, Indomethacin, and Acetaminophen, here we determined the effects of NSAIDs on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Using amoebicidal assays, the results revealed that Diclofenac sodium, and Indomethacin affected growth of A. castellanii. In contrast, none of the compounds tested had any effect on the viability of A. castellanii. Importantly, all NSAIDs tested abolished A. castellanii encystation. This is a significant finding as the ability of amoebae to transform into the dormant cyst form presents a significant challenge in the successful treatment of infection. The NSAIDs inhibit production of cyclo-oxegenase, which regulates the synthesis of prostaglandins suggesting that cyclooxygenases (COX-1 and COX-2) and prostaglandins play significant role(s) in Acanthamoeba biology. As NSAIDs are routinely used in the clinical practice, these findings may help design improved preventative strategies and/or of therapeutic value to improve prognosis, when used in combination with other anti-amoebic drugs. PMID:27381503

  19. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. PMID:25863578

  20. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology.

    PubMed

    Liu, Yindong; Bao, Chongyun; Wismeijer, Daniel; Wu, Gang

    2015-04-01

    More rapid restoration and more rigid functionality have been pursued for decades in the field of dental implantology. Under such motivation, porous tantalum has been recently introduced to design a novel type of dental implant. Porous tantalum bears interconnected porous structure with pore size ranging from 300 to 600μm and a porosity of 75-85%. Its elastic modulus (1.3-10GPa) more closely approximates that of natural cortical (12-18GPa) and cancellous bone (0.1-0.5GPa) in comparison with the most commonly used dental materials, such as titanium and titanium alloy (106-115GPa). Porous tantalum is highly corrosion-resistant and biocompatible. It can significantly enhance the proliferation and differentiation of primary osteoblasts derived from elderly people than titanium. Porous tantalum can allow bone ingrowth and establish not only osseointegration but also osseoincorporation, which will significantly enhance the secondary stability of implants in bone tissue. In this review, we summarize the physicochemical, mechanical and biological properties of porous tantalum. We further discuss the performance of current tantalum dental implants and present the methodologies of surface modifications in order to improve their biological performance.

  1. Evaluation of Biological Properties of Electron Beam Melted Ti6Al4V Implant with Biomimetic Coating In Vitro and In Vivo

    PubMed Central

    Wang, Cheng-Tao; Li, Guo-Chen; Lei, Wei; Zhang, Zhi-Yong; Wang, Lin

    2012-01-01

    Background High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation. Methods In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating. Results The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young’s modulus being 14.5–38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation. Conclusions This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields. PMID:23272208

  2. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  3. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  4. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties.

    PubMed

    Dehaghani, Majid Taghian; Ahmadian, Mehdi

    2016-04-01

    Porous nano-composites were successfully prepared on addition of 58S bioactive glass to Co-base alloy with porosities of 37.2-58.8% by the combination of milling, space-holder and powder metallurgy techniques. The results of X-ray diffraction analysis showed that induced strain during milling of the Co-base alloy powder and also isothermal heat treatment during sintering process led to HCP↔FCC phase transformation which affected mechanical properties of the samples during compression test. Field emission scanning electron microscopy images showed that despite the remaining 58S powder in nanometer size in the composite, there were micro-particles due to sintering at high temperature which led to two different apatite morphologies after immersion in simulated body fluid. Calculated elastic modulus and 0.2% proof strength from stress-strain curves of compression tests were in the range of 2.2-8.3GPa and 34-198MPa, respectively. In particular, the mechanical properties of sample with 37.2% were found to be similar to those of human cortical bone. Apatite formation which was identified by scanning electron microscopy (SEM), pH meter and Fourier-transform infrared spectroscopy (FTIR) analysis showed that it could successfully convert bioinert Co-base alloy to bioactive type by adding 58S bioglass nano-particles. SEM images of cell cultured on the porous nano-composite with 37.2% porosity showed that cells properly grew on the surface and inside the micro and macro-pores. PMID:26874088

  5. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.

    PubMed

    Lewandowska, Żaneta; Piszczek, Piotr; Radtke, Aleksandra; Jędrzejewski, Tomasz; Kozak, Wiesław; Sadowska, Beata

    2015-04-01

    The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as ~200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications. The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties.

  6. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.

    PubMed

    Lewandowska, Żaneta; Piszczek, Piotr; Radtke, Aleksandra; Jędrzejewski, Tomasz; Kozak, Wiesław; Sadowska, Beata

    2015-04-01

    The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as ~200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications. The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. PMID:25791457

  7. Physical properties and biological/odontogenic effects of an experimentally developed fast-setting α-tricalcium phosphate-based pulp capping material

    PubMed Central

    2014-01-01

    Background Recently, fast-setting α-tricalcium-phosphate (TCP) cement was developed for use in the pulp capping process. The aim of this study was to investigate the physical properties and biological effects of α-TCP cement in comparison with mineral trioxide aggregate (MTA). Methods We measured the setting time, pH values, compressive strength, and solubility of the two materials. We evaluated biocompatibility on the basis of cell morphology and a viability test using human dental pulp cells (hDPCs). Chemical composition of each material was analyzed by energy dispersive x-ray spectroscopic (EDS) analysis. The expression of odontogenic-related genes was evaluated by Western blotting and immunofluorescence. The calcified nodule formation was measured by Alizarin red staining. We performed the pulp capping procedure on rat teeth for histological investigation. The data were analyzed by an independent t-test for physical properties, one-way ANOVA for biological effects, and the Mann-Whitney U test for tertiary dentin formation. A P value of less than 0.05 was considered statistically significant for all tests. Results The setting time, pH values, and compressive strength of α-TCP was lower than that of MTA (P < 0.05); however, the solubility of α-TCP was higher than that of MTA (P < 0.05). The resultant cell viability observed with the two materials was similar (P > 0.05). Scanning electron microscopy (SEM) revealed that cells attached to both materials were flat and had cytoplasmic extensions. The expression of odontogenic-related markers and mineralized nodule formation were higher in the two experimental groups compared to the control group (P < 0.05). Continuous tertiary dentin was formed underneath the capping materials in all samples of the tested groups. Conclusions Our study demonstrated that the α-TCP exhibited biocompatibility and odontogenicity comparable to MTA, whereas it had a quicker setting time. PMID:25015173

  8. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents.

    PubMed

    Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A

    2016-01-01

    The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a-k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a-k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski's rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774

  9. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    PubMed Central

    Bashi, Davoud Salar; Dowom, Samaneh Attaran; Bazzaz, Bibi Sedigheh Fazly; Khanzadeh, Farhad; Soheili, Vahid; Mohammadpour, Ali

    2016-01-01

    Objective(s): To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. Materials and Methods: Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. Results: A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. Conclusion: RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds. PMID:27403260

  10. Biological Threats

    MedlinePlus

    ... Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Main Content Biological Threats Biological agents are organisms or toxins that ... Centers for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may ...

  11. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  12. Investigation of the biological and anti-cancer properties of ellagic acid-encapsulated nano-sized metalla-cages.

    PubMed

    Dubey, Abhishek; Park, Dae Won; Kwon, Jung Eun; Jeong, Yong Joon; Kim, Taegeun; Kim, Inhye; Kang, Se Chan; Chi, Ki-Whan

    2015-01-01

    Three new large hexanuclear metalla-prisms 9-11 incorporating 1,3, 5-tris(pyridin-4-ylethynyl)benzene (tpeb) 4 and one of the dinuclear arene ruthenium clips [Ru2(p-iPrC6H4Me)2(OO∩OO)][CF3SO3]2 (OO∩OO =2,5-dioxydo-1,4-benzoquinonato [dobq] 1, 5,8-dihydroxy-1,4-naphthaquinonato (donq) 2, and 6,11-dihydroxy-5,12-naphthacenedionato [dotq] 3), which encapsulate the guest molecule ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione, 5) were prepared. All complexes were isolated as triflate salts in good yields and were fully characterized by (1)H NMR spectroscopy and electrospray ionization mass spectrometry. The photophysical properties of these metalla-prisms were also investigated. Compounds 9 and 10 showed potent antioxidant activity, but 10 had the superior ORACPE value (1.30 ± 0.020). Ellagic acid (5) and compound 11 showed weaker activity than that of Trolox. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the metalla-prism compounds exhibit anticancer properties in vitro. Compound 10 inhibited the growth of all cancer cell lines at micromolar concentrations, with the highest cytotoxicity observed against A549 human lung cancer cells (IC50 =25.9 μM). However, these compounds had a lower anti-cancer activity than that of doxorubicin. In a tumoricidal assay, ellagic acid (5) and compound 10 induced cytotoxicity in tumor cells, while doxorubicin did not. While free ellagic acid had no effect on the granulocyte-colony stimulating factor and regulated on activation normal T cell expressed and secreted protein, the encapsulated metalla-prism 10 stimulated granulocyte-colony stimulating factor and reduced regulated on activation normal T cell expressed and secreted protein expression in the RAW264.7 macrophage line. Our results show that ellagic acid encapsulated in metalla-prisms inhibited cancer cells via the modulation of mRNA induction and protein expression levels of the granulocyte-colony stimulating

  13. Investigation of the biological and anti-cancer properties of ellagic acid-encapsulated nano-sized metalla-cages

    PubMed Central

    Dubey, Abhishek; Park, Dae Won; Kwon, Jung Eun; Jeong, Yong Joon; Kim, Taegeun; Kim, Inhye; Kang, Se Chan; Chi, Ki-Whan

    2015-01-01

    Three new large hexanuclear metalla-prisms 9–11 incorporating 1,3, 5-tris(pyridin-4-ylethynyl)benzene (tpeb) 4 and one of the dinuclear arene ruthenium clips [Ru2(p-iPrC6H4Me)2(OO∩OO)][CF3SO3]2 (OO∩OO =2,5-dioxydo-1,4-benzoquinonato [dobq] 1, 5,8-dihydroxy-1,4-naphthaquinonato (donq) 2, and 6,11-dihydroxy-5,12-naphthacenedionato [dotq] 3), which encapsulate the guest molecule ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione, 5) were prepared. All complexes were isolated as triflate salts in good yields and were fully characterized by 1H NMR spectroscopy and electrospray ionization mass spectrometry. The photophysical properties of these metalla-prisms were also investigated. Compounds 9 and 10 showed potent antioxidant activity, but 10 had the superior ORACPE value (1.30±0.020). Ellagic acid (5) and compound 11 showed weaker activity than that of Trolox. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the metalla-prism compounds exhibit anticancer properties in vitro. Compound 10 inhibited the growth of all cancer cell lines at micromolar concentrations, with the highest cytotoxicity observed against A549 human lung c