Sample records for biological specimens based

  1. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  2. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  3. Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry

    PubMed Central

    Choudhury, Niloy; Chen, Fangyi; Wang, Ruikang K.; Jacques, Steven L.; Nuttall, Alfred L.

    2013-01-01

    Abstract. We present an optical vibrometer based on delay-encoded, dual-beamlet phase-sensitive Fourier domain interferometric system to provide depth-resolved subnanometer scale vibration information from scattering biological specimens. System characterization, calibration, and preliminary vibrometry with biological specimens were performed. The proposed system has the potential to provide both amplitude and direction of vibration of tissue microstructures on a single two-dimensional plane. PMID:23455961

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolutionmore » FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.« less

  5. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

    NASA Astrophysics Data System (ADS)

    Rasmi, Chelur K.; Padmanabhan, Sreedevi; Shirlekar, Kalyanee; Rajan, Kanhirodan; Manjithaya, Ravi; Singh, Varsha; Mondal, Partha Pratim

    2017-12-01

    We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

  6. Endoscopic ultrasound-guided fine-needle aspiration with liquid-based cytologic preparation in the diagnosis of primary pancreatic lymphoma.

    PubMed

    Rossi, Esther Diana; Larghi, Alberto; Verna, Elizabeth C; Martini, Maurizio; Galasso, Domenico; Carnuccio, Antonella; Larocca, Luigi Maria; Costamagna, Guido; Fadda, Guido

    2010-11-01

    The diagnosis subtyping of lymphoma on specimens collected by endoscopic ultrasound fine-needle aspiration (EUS-FNA) can be extremely difficult. When a cytopathologist is available for the on-site evaluation, the diagnosis may be achieved by applying flow cytometric techniques. We describe our experience with immunocytochemistry (ICC) and molecular biology studies applied on EUS-FNA specimens processed with a liquid-based cytologic (LBC) preparation for the diagnosis of primary pancreatic lymphoma (PPL). Three patients with a pancreatic mass underwent EUS-FNA. The collected specimens were processed with the ThinPrep method for the cytologic diagnosis and eventual additional investigations. A morphologic picture consistent with PPL was found on the LBC specimens of the 3 patients. Subsequent ICC and molecular biology studies for immunoglobulin heavy chain gene rearrangement established the diagnosis of pancreatic large B-cell non-Hodgkin lymphoma in 2 patients and a non-Hodgkin lymphoma with plasmoblastic/immunoblastic differentiation in the remaining one. An LBC preparation can be used to diagnose and subtype PPL by applying ICC and molecular biology techniques to specimens collected with EUS-FNA. This method can be an additional processing method for EUS-FNA specimens in centers where on-site cytopathologist expertise is not available.

  7. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Tsutsui, Haruhito; Maeda, Toshio; Min, Jun Zhe; Inagaki, Shinsuke; Higashi, Tatsuya; Kagawa, Yoshiyuki; Toyo'oka, Toshimasa

    2011-05-12

    The number of diabetic patients has recently been increasing worldwide. Diabetes is a multifactorial disorder based on environmental factors and genetic background. In many cases, diabetes is asymptomatic for a long period and the patient is not aware of the disease. Therefore, the potential biomarker(s), leading to the early detection and/or prevention of diabetes mellitus, are strongly required. However, the diagnosis of the prediabetic state in humans is a very difficult issue, because the lifestyle is variable in each person. Although the development of a diagnosis method in humans is the goal of our research, the extraction and structural identification of biomarker candidates in several biological specimens (i.e., plasma, hair, liver and kidney) of ddY strain mice, which undergo naturally occurring diabetes along with aging, were carried out based upon a metabolite profiling study. The low-molecular-mass compounds including metabolites in the biological specimens of diabetic mice (ddY-H) and normal mice (ddY-L) were globally separated by ultra-performance liquid chromatography (UPLC) using different reversed-phase columns (i.e., T3-C18 and HS-F5) and detected by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The biomarker candidates related to diabetes mellitus were extracted from a multivariate statistical analysis, such as an orthogonal partial least-squares-discriminant analysis (OPLS-DA), followed by a database search, such as ChemSpider, KEGG and HMDB. Many metabolites and unknown compounds in each biological specimen were detected as the biomarker candidates related to diabetic mellitus. Among them, the elucidation of the chemical structures of several possible metabolites, including more than two biological specimens, was carried out along with the comparison of the tandem MS/MS analyses using authentic compounds. One metabolite was clearly identified as N-acetyl-L-leucine based upon the MS/MS spectra and the retention time on the chromatograms. N-acetyl-L-leucine is an endogenous compound included in all biological specimens (plasma, hair, liver and kidney). Therefore, this metabolite appears to be a potential biomarker candidate related to diabetes. Although the structures of other biomarker candidates have still not yet determined, the present approach based upon a metabolite profiling study using UPLC-ESI-TOF-MS could be helpful for understanding the abnormal state of various diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Assessing the Biological Safety Profession's Evaluation and Control of Risks Associated with the Field Collection of Potentially Infectious Specimens.

    PubMed

    Patlovich, Scott J; Emery, Robert J; Whitehead, Lawrence W; Brown, Eric L; Flores, Rene

    2015-03-01

    Because the origins of the biological safety profession are rooted in the control and prevention of laboratory-associated infections, the vocation focuses primarily on the safe handling of specimens within the laboratory. But in many cases, the specimens and samples handled in the lab are originally collected in the field where a broader set of possible exposure considerations may be present, each with varying degrees of controllability. The failure to adequately control the risks associated with collecting biological specimens in the field may result in illness or injury, and could have a direct impact on laboratory safety, if infectious specimens were packaged or transported inappropriately, for example. This study developed a web-based survey distributed to practicing biological safety professionals to determine the prevalence of and extent to which biological safety programs consider and evaluate field collection activities. In cases where such issues were considered, the data collected characterize the types of controls and methods of oversight at the institutional level that are employed. Sixty-one percent (61%) of the survey respondents indicated that research involving the field collection of biological specimens is conducted at their institutions. A majority (79%) of these field collection activities occur at academic institutions. Twenty-seven percent (27%) of respondents indicated that their safety committees do not consider issues related to biological specimens collected in the field, and only 25% with an oversight committee charged to review field collection protocols have generated a field research-specific risk assessment form to facilitate the assembly of pertinent information for a project risk assessment review. The results also indicated that most biosafety professionals (73% overall; 71% from institutions conducting field collection activities) have not been formally trained on the topic, but many (64% overall; 87% from institutions conducting field collection activities) indicated that training on field research safety issues would be helpful, and even more (71% overall; 93% from institutions conducting field collection activities) would consider participation in such a training course. Results obtained from this study can be used to develop a field research safety toolkit and associated training curricula specifically targeted to biological safety professionals.

  9. Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion

    NASA Astrophysics Data System (ADS)

    Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel

    2008-03-01

    Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.

  10. Robust analysis method for acoustic properties of biological specimens measured by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi

    2018-07-01

    We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.

  11. Performance of Northeastern United States wood species treated with copper based preservatives: 10 year above-ground decking evaluation

    Treesearch

    S. T. Lebow; S. A. Halverson

    2015-01-01

    Research was conducted to evaluate the decking performance of northeastern United States wood species treated with copper based preservatives. Decking specimens were treated with one of four wood preservatives and exposed near Madison, Wisconsin. Specimens were evaluated for biological attack and dimensional stability. After 10 years, none of the preservative treated...

  12. Biological Sexing of a 4000-Year-Old Egyptian Mummy Head to Assess the Potential of Nuclear DNA Recovery from the Most Damaged and Limited Forensic Specimens

    PubMed Central

    Loreille, Odile; Ratnayake, Shashikala; Stockwell, Timothy B.; Mallick, Swapan; Skoglund, Pontus; Onorato, Anthony J.; Bergman, Nicholas H.; Reich, David; Irwin, Jodi A.

    2018-01-01

    High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens. PMID:29494531

  13. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    PubMed Central

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  14. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation.

    PubMed

    Koroiva, Ricardo; Pepinelli, Mateus; Rodrigues, Marciel Elio; Roque, Fabio de Oliveira; Lorenz-Lemke, Aline Pedroso; Kvist, Sebastian

    2017-01-01

    We present a DNA barcoding study of Neotropical odonates from the Upper Plata basin, Brazil. A total of 38 species were collected in a transition region of "Cerrado" and Atlantic Forest, both regarded as biological hotspots, and 130 cytochrome c oxidase subunit I (COI) barcodes were generated for the collected specimens. The distinct gap between intraspecific (0-2%) and interspecific variation (15% and above) in COI, and resulting separation of Barcode Index Numbers (BIN), allowed for successful identification of specimens in 94% of cases. The 6% fail rate was due to a shared BIN between two separate nominal species. DNA barcoding, based on COI, thus seems to be a reliable and efficient tool for identifying Neotropical odonate specimens down to the species level. These results underscore the utility of DNA barcoding to aid specimen identification in diverse biological hotspots, areas that require urgent action regarding taxonomic surveys and biodiversity conservation.

  15. National environmental specimen bank survey. [Location of 657 collections of environmental specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hook, R.I.; Huber, E.E.

    1976-01-01

    This report presents the data base developed in the National Environmental Specimen Bank (NESB) Survey. The methodology utilized in developing the mailing lists and in developing and maintaining the data base records also is included. The NESB Survey Data Base is computerized in the Oak Ridge Computerized Hierarchical Information System, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830. The NESB Survey mailing list consisted of 4500 names and addresses. The 657 environmental specimen collections that were located and documented in the NESB Survey Data Base include the following categories: animal, atmospheric, geological, microbiological, plant, and water. However, the majority ofmore » the collections identified are biological in nature. Three indices of the NESB Survey Data Base are included in this report: respondents names and addresses categorized by organizational affiliation; (2) alphabetical listing of respondents; and geographical sampling location for materials in collections.« less

  16. Specimen Sample Preservation for Cell and Tissue Cultures

    NASA Technical Reports Server (NTRS)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  17. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation.

    PubMed

    Deerinck, T J; Shone, T M; Bushong, E A; Ramachandra, R; Peltier, S T; Ellisman, M H

    2018-05-01

    A longstanding limitation of imaging with serial block-face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block-face due to image jitter. Typically, variable-pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal-to-noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block-face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block-face ultramicrotome. This system enables the application of nitrogen gas precisely over the block-face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high-resolution block-face imaging of even the most charge prone of epoxy-embedded biological samples. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. Apparatus for automated testing of biological specimens

    DOEpatents

    Layne, Scott P.; Beugelsdijk, Tony J.

    1999-01-01

    An apparatus for performing automated testing of infections biological specimens is disclosed. The apparatus comprise a process controller for translating user commands into test instrument suite commands, and a test instrument suite comprising a means to treat the specimen to manifest an observable result, and a detector for measuring the observable result to generate specimen test results.

  19. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope.

    PubMed

    Wu, J S; Kim, A M; Bleher, R; Myers, B D; Marvin, R G; Inada, H; Nakamura, K; Zhang, X F; Roth, E; Li, S Y; Woodruff, T K; O'Halloran, T V; Dravid, Vinayak P

    2013-05-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT)

    PubMed Central

    Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos

    2016-01-01

    Abstract Background During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CTvlab) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. New information The Micro-CTvlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CTvlab can be accessed either on a normal computer or through a dedicated version for mobile devices. PMID:27956848

  1. Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT).

    PubMed

    Keklikoglou, Kleoniki; Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos

    2016-01-01

    During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CT vlab ) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. The Micro-CT vlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CT vlab can be accessed either on a normal computer or through a dedicated version for mobile devices.

  2. Scanning transmission ion micro-tomography (STIM-T) of biological specimens.

    PubMed

    Schwertner, Micheal; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-05-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations.

  3. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation

    PubMed Central

    Pepinelli, Mateus; Rodrigues, Marciel Elio; Roque, Fabio de Oliveira; Lorenz-Lemke, Aline Pedroso; Kvist, Sebastian

    2017-01-01

    We present a DNA barcoding study of Neotropical odonates from the Upper Plata basin, Brazil. A total of 38 species were collected in a transition region of “Cerrado” and Atlantic Forest, both regarded as biological hotspots, and 130 cytochrome c oxidase subunit I (COI) barcodes were generated for the collected specimens. The distinct gap between intraspecific (0–2%) and interspecific variation (15% and above) in COI, and resulting separation of Barcode Index Numbers (BIN), allowed for successful identification of specimens in 94% of cases. The 6% fail rate was due to a shared BIN between two separate nominal species. DNA barcoding, based on COI, thus seems to be a reliable and efficient tool for identifying Neotropical odonate specimens down to the species level. These results underscore the utility of DNA barcoding to aid specimen identification in diverse biological hotspots, areas that require urgent action regarding taxonomic surveys and biodiversity conservation. PMID:28763495

  4. Sequence-based classification and identification of fungi

    USDA-ARS?s Scientific Manuscript database

    Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomi...

  5. Using Web-Based Key Character and Classification Instruction for Teaching Undergraduate Students Insect Identification

    NASA Astrophysics Data System (ADS)

    Golick, Douglas A.; Heng-Moss, Tiffany M.; Steckelberg, Allen L.; Brooks, David. W.; Higley, Leon G.; Fowler, David

    2013-08-01

    The purpose of the study was to determine whether undergraduate students receiving web-based instruction based on traditional, key character, or classification instruction differed in their performance of insect identification tasks. All groups showed a significant improvement in insect identifications on pre- and post-two-dimensional picture specimen quizzes. The study also determined student performance on insect identification tasks was not as good as for family-level identification as compared to broader insect orders and arthropod classification identification tasks. Finally, students erred significantly more by misidentification than misspelling specimen names on prepared specimen quizzes. Results of this study support that short web-based insect identification exercises can improve insect identification performance. Also included is a discussion of how these results can be used in teaching and future research on biological identification.

  6. Metal shadowing for electron microscopy.

    PubMed

    Hendricks, Gregory M

    2014-01-01

    Metal shadowing of bacteria, viruses, isolated molecules, and macromolecular assemblies is another high-resolution method for observing the ultrastructure of biological specimens. The actual procedure for producing a metal shadow is relatively simple; a heavy metal is evaporated from a source at an oblique angle to the specimen. The metal atoms pile up on the surfaces that face the source, but the surfaces away from the source are shielded and receive little metal deposit, creating a "shadow." However, the process of producing biological specimens that are suitable for metal shadowing can be very complex. There are a whole host of specimen preparation techniques that can precede metal shadowing, and all provide superior preservation in comparison to air drying, a required step in negative staining procedures. The physical forces present during air drying (i.e., surface tension of the water-air interface) will literally crush most biological specimens as they dry. In this chapter I explain the development of and procedures for the production of biological specimens from macromolecular assemblies (e.g., DNA and RNA), purified isolated molecules (e.g., proteins), and isolated viruses and bacteria preparations suitable for metal shadowing. A variation on this basic technique is to rotate the specimen during the metal deposition to produce a high-resolution three-dimensional rendering of the specimen.

  7. Five task clusters that enable efficient and effective digitization of biological collections

    PubMed Central

    Nelson, Gil; Paul, Deborah; Riccardi, Gregory; Mast, Austin R.

    2012-01-01

    Abstract This paper describes and illustrates five major clusters of related tasks (herein referred to as task clusters) that are common to efficient and effective practices in the digitization of biological specimen data and media. Examples of these clusters come from the observation of diverse digitization processes. The staff of iDigBio (The U.S. National Science Foundation’s National Resource for Advancing Digitization of Biological Collections) visited active biological and paleontological collections digitization programs for the purpose of documenting and assessing current digitization practices and tools. These observations identified five task clusters that comprise the digitization process leading up to data publication: (1) pre-digitization curation and staging, (2) specimen image capture, (3) specimen image processing, (4) electronic data capture, and (5) georeferencing locality descriptions. While not all institutions are completing each of these task clusters for each specimen, these clusters describe a composite picture of digitization of biological and paleontological specimens across the programs that were observed. We describe these clusters, three workflow patterns that dominate the implemention of these clusters, and offer a set of workflow recommendations for digitization programs. PMID:22859876

  8. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patternsmore » from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.« less

  10. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  11. Coherent X-ray diffraction from collagenous soft tissues.

    PubMed

    Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K

    2009-09-08

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  12. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  13. Proposal of a punch biopsy protocol as a pre-requisite for the establishment of a tissue bank from resected esophageal tumors.

    PubMed

    Bonavina, Luigi; Laface, Letizia; Picozzi, Stefano; Nencioni, Marco; Siboni, Stefano; Bona, Davide; Sironi, Andrea; Sorba, Francesca; Clemente, Claudio

    2010-09-01

    With the development of tissue banking, a need for homogeneous methods of collection, processing, and storage of tissue has emerged. We describe the implementation of a biological bank in a high-volume, tertiary care University referral center for esophageal cancer surgery. We also propose an original punch biopsy technique of the surgical specimen. The method proved to be simple, reproducible, and not expensive. Unified standards for specimen collection are necessary to improve results of specimen-based diagnostic testing and research in surgical oncology.

  14. Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.

    PubMed

    Model, Michael A; Blank, James L

    2006-10-01

    To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.

  15. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.

    PubMed

    Mathew, B; Schmitz, A; Muñoz-Descalzo, S; Ansari, N; Pampaloni, F; Stelzer, E H K; Fischer, S C

    2015-06-08

    Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91%) whereas the other methods each failed for at least one dataset (F-measure≤69%). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.

  16. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  17. Proposed BioRepository platform solution for the ALS research community.

    PubMed

    Sherman, Alex; Bowser, Robert; Grasso, Daniela; Power, Breen; Milligan, Carol; Jaffa, Matthew; Cudkowicz, Merit

    2011-01-01

    ALS is a rare disorder whose cause and pathogenesis is largely unknown ( 1 ). There is a recognized need to develop biomarkers for ALS to better understand the disease, expedite diagnosis and to facilitate therapy development. Collaboration is essential to obtain a sufficient number of samples to allow statistically meaningful studies. The availability of high quality biological specimens for research purposes requires the development of standardized methods for collection, long-term storage, retrieval and distribution of specimens. The value of biological samples to scientists and clinicians correlates with the completeness and relevance of phenotypical and clinical information associated with the samples ( 2 , 3 ). While developing a secure Web-based system to manage an inventory of multi-site BioRepositories, algorithms were implemented to facilitate ad hoc parametric searches across heterogeneous data sources that contain data from clinical trials and research studies. A flexible schema for a barcode label was introduced to allow association of samples to these data. The ALSBank™ BioRepository platform solution for managing biological samples and associated data is currently deployed by the Northeast ALS Consortium (NEALS). The NEALS Consortium and the Massachusetts General Hospital (MGH) Neurology Clinical Trials Unit (NCTU) support a network of multiple BioBanks, thus allowing researchers to take advantage of a larger specimen collection than they might have at an individual institution. Standard operating procedures are utilized at all collection sites to promote common practices for biological sample integrity, quality control and associated clinical data. Utilizing this platform, we have created one of the largest virtual collections of ALS-related specimens available to investigators studying ALS.

  18. Atom Probe Tomographic Analysis of Biological Systems Enabled by Advanced Specimen Preparation Approaches

    NASA Astrophysics Data System (ADS)

    Perea, D. E.; Evans, J. E.

    2017-12-01

    The ability to image biointerfaces over nanometer to micrometer length scales is fundamental to correlating biological composition and structure to physiological function, and is aided by a multimodal approach using advanced complementary microscopic and spectroscopic characterization techniques. Atom Probe Tomography (APT) is a rapidly expanding technique for atomic-scale three-dimensional structural and chemical analysis. However, the regular application of APT to soft biological materials is lacking in large part due to difficulties in specimen preparation and inabilities to yield meaningful tomographic reconstructions that produce atomic scale compositional distributions as no other technique currently can. Here we describe the atomic-scale tomographic analysis of biological materials using APT that is facilitated by an advanced focused ion beam based approach. A novel specimen preparation strategy is used in the analysis of horse spleen ferritin protein embedded in an organic polymer resin which provides chemical contrast to distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell of the ferritin protein. One-dimensional composition profiles directly reveal an enhanced concentration of P and Na at the surface of the ferrihydrite mineral core. We will also describe the development of a unique multifunctional environmental transfer hub allowing controlled cryogenic transfer of specimens under vacuum pressure conditions between an Atom Probe and cryo-FIB/SEM. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organometallic molecule made possible via controlled cryogenic transfer. The results demonstrate a viable application of APT analysis to study complex biological organic/inorganic interfaces relevant to energy and the environment. References D.E. Perea et al. An environmental transfer hub for multimodal atom probe tomography, Adv. Struct. Chem. Imag, 2017, 3:12 The research was performed at the Environmental Molecular Sciences Laboratory; a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.

  19. AnnoSys—implementation of a generic annotation system for schema-based data using the example of biodiversity collection data

    PubMed Central

    Kusber, W.-H.; Tschöpe, O.; Güntsch, A.; Berendsohn, W. G.

    2017-01-01

    Abstract Biological research collections holding billions of specimens world-wide provide the most important baseline information for systematic biodiversity research. Increasingly, specimen data records become available in virtual herbaria and data portals. The traditional (physical) annotation procedure fails here, so that an important pathway of research documentation and data quality control is broken. In order to create an online annotation system, we analysed, modeled and adapted traditional specimen annotation workflows. The AnnoSys system accesses collection data from either conventional web resources or the Biological Collection Access Service (BioCASe) and accepts XML-based data standards like ABCD or DarwinCore. It comprises a searchable annotation data repository, a user interface, and a subscription based message system. We describe the main components of AnnoSys and its current and planned interoperability with biodiversity data portals and networks. Details are given on the underlying architectural model, which implements the W3C OpenAnnotation model and allows the adaptation of AnnoSys to different problem domains. Advantages and disadvantages of different digital annotation and feedback approaches are discussed. For the biodiversity domain, AnnoSys proposes best practice procedures for digital annotations of complex records. Database URL: https://annosys.bgbm.fu-berlin.de/AnnoSys/AnnoSys PMID:28365735

  20. Quantitative Cryo-Scanning Transmission Electron Microscopy of Biological Materials.

    PubMed

    Elbaum, Michael

    2018-05-11

    Electron tomography provides a detailed view into the 3D structure of biological cells and tissues. Physical fixation by vitrification of the aqueous medium provides the most faithful preservation of biological specimens in the native, fully hydrated state. Cryo-microscopy is challenging, however, because of the sensitivity to electron irradiation and due to the weak electron scattering of organic material. Tomography is even more challenging because of the dependence on multiple exposures of the same area. Tomographic imaging is typically performed in wide-field transmission electron microscopy (TEM) mode with phase contrast generated by defocus. Scanning transmission electron microscopy (STEM) is an alternative mode based on detection of scattering from a focused probe beam, without imaging optics following the specimen. While careful configuration of the illumination and detectors is required to generate useful contrast, STEM circumvents the major restrictions of phase contrast TEM to very thin specimens and provides a signal that is more simply interpreted in terms of local composition and density. STEM has gained popularity in recent years for materials science. The extension of STEM to cryomicroscopy and tomography of cells and macromolecules is summarized herein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Systematics and biology of Xylocopa subgenus Schonnherria (Hymenoptera, Apidae) in Argentina

    PubMed Central

    Lucia, Mariano; Gonzalez, Victor H.; Abrahamovich, Alberto H.

    2015-01-01

    Abstract Biological information on the species of the large carpenter bee Xylocopa subgenus Schonnherria occurring in Argentina is revised. Based on the appraisal of museum specimens, the study of type material, and field surveys conducted across 15 provinces between 2007 and 2011, the following seven species are recognized for the country: Xylocopa bambusae Schrottky, Xylocopa chrysopoda Schrottky, Xylocopa macrops Lepeletier de Saint Fargeau, Xylocopa simillima Smith Xylocopa splendidula Lepeletier de Saint Fargeau, Xylocopa pulchra Smith, and Xylocopa viridis Smith. Previous literature records of Xylocopa dimidiata Latreille, Xylocopa subcyanea Pérez, and Xylocopa varians Smith for the province of Misiones appear to have been misidentified specimens, although the presence of these species in Argentina cannot be entirely ruled out given the proximity of this province to Brazil and Paraguay where they occur; Xylocopa boops Maidl was described from a male specimen with unusually enlarged eyes and is newly synonymized under Xylocopa macrops. Males and females of all species are diagnosed, described, and figured, including details of the male genitalia. Taxonomic comments, data on the geographical distribution and nesting substrates, and identification keys to all Argentinean species of Schonnherria are provided. The nesting biologies of Xylocopa splendidula and Xylocopa viridis are documented. PMID:26798288

  3. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    NASA Astrophysics Data System (ADS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  4. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique overmore » conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.« less

  5. Biological parameters used in setting captive-breeding quotas for Indonesia's breeding facilities.

    PubMed

    Janssen, Jordi; Chng, Serene C L

    2018-02-01

    The commercial captive breeding of wildlife is often seen as a potential conservation tool to relieve pressure on wild populations, but laundering of wild-sourced specimens as captive bred can seriously undermine conservation efforts and provide a false sense of sustainability. Indonesia is at the center of such controversy; therefore, we examined Indonesia's captive-breeding production plan (CBPP) for 2016. We compared the biological parameters used in the CBPP with parameters in the literature and with parameters suggested by experts on each species and identified shortcomings of the CBPP. Production quotas for 99 out of 129 species were based on inaccurate or unrealistic biological parameters and production quotas deviated more than 10% from what parameters in the literature allow for. For 38 species, the quota exceeded the number of animals that can be bred based on the biological parameters (range 100-540%) calculated with equations in the CBPP. We calculated a lower reproductive output for 88 species based on published biological parameters compared with the parameters used in the CBPP. The equations used in the production plan did not appear to account for other factors (e.g., different survival rate for juveniles compared to adult animals) involved in breeding the proposed large numbers of specimens. We recommend the CBPP be adjusted so that realistic published biological parameters are applied and captive-breeding quotas are not allocated to species if their captive breeding is unlikely to be successful or no breeding stock is available. The shortcomings in the current CBPP create loopholes that mean mammals, reptiles, and amphibians from Indonesia declared captive bred may have been sourced from the wild. © 2017 Society for Conservation Biology.

  6. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less

  7. Iberian Odonata distribution: data of the BOS Arthropod Collection (University of Oviedo, Spain)

    PubMed Central

    Torralba-Burrial, Antonio; Ocharan, Francisco J.

    2013-01-01

    Abstract Odonata are represented from the Iberian Peninsula by 79 species. However, there exists a significant gap in accessible knowledge about these species,especially regarding their distribution. This data paper describes the specimen-based Odonata data of the Arthropod Collection of the Department of Biología de Organismos y Sistemas (BOS), University of Oviedo, Spain. The specimens were mainly collected from the Iberian Peninsula (98.63% of the data records), especially the northern region. The earliest specimen deposited in the collection dates back to 1950, while the 1980’s and 2000’s are the best-represented time periods. Between 1950 and 2009, 16, 604 Odonata specimens were deposited and are documented in the dataset. Approximately 20% of the specimens belong to the families Coenagrionidae and Calopterygidae. Specimens include the holotype and paratypes of the Iberian subspecies Calopteryx haemorrhoidalis asturica Ocharan, 1983 and Sympetrum vulgatum ibericum Ocharan, 1985. The complete dataset is also provided in Darwin Core Archive format. PMID:23794917

  8. Iberian Odonata distribution: data of the BOS Arthropod Collection (University of Oviedo, Spain).

    PubMed

    Torralba-Burrial, Antonio; Ocharan, Francisco J

    2013-01-01

    Odonata are represented from the Iberian Peninsula by 79 species. However, there exists a significant gap in accessible knowledge about these species,especially regarding their distribution. This data paper describes the specimen-based Odonata data of the Arthropod Collection of the Department of Biología de Organismos y Sistemas (BOS), University of Oviedo, Spain. The specimens were mainly collected from the Iberian Peninsula (98.63% of the data records), especially the northern region. The earliest specimen deposited in the collection dates back to 1950, while the 1980's and 2000's are the best-represented time periods. Between 1950 and 2009, 16, 604 Odonata specimens were deposited and are documented in the dataset. Approximately 20% of the specimens belong to the families Coenagrionidae and Calopterygidae. Specimens include the holotype and paratypes of the Iberian subspecies Calopteryx haemorrhoidalis asturica Ocharan, 1983 and Sympetrum vulgatum ibericum Ocharan, 1985. The complete dataset is also provided in Darwin Core Archive format.

  9. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    EPA Science Inventory

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  10. Development and validation of an ELISA kit for the detection of ricin toxins from biological specimens and environmental samples.

    PubMed

    Chen, Hsiao Ying; Tran, Hung; Foo, Ling Yann; Sew, Tracey Wenhui; Loke, Weng Keong

    2014-08-01

    Ricin is a toxin that can be easily extracted from seeds of Ricinus communis plants. Ricin is considered to be a major bio-threat as it can be freely and easily acquired in large quantities. A deliberate release of such toxin in civilian populations would very likely overwhelm existing public health systems, resulting in public fear and social unrest. There is currently no commercially available or FDA-approved prophylaxis such as vaccines, or therapeutic antitoxins or antidotes, available for ricin intoxication. Patient treatment is typically supportive care based on symptoms, often designed to reinforce the body's natural response. This paper describes the development and validation of a robust ELISA test kit, which can be used to screen for ricin in biological specimens such as whole blood and faeces. Faecal specimens are shown in this study to have better diagnostic sensitivity and a wider diagnostic window compared to whole blood. From these results, it is concluded that faeces is the most suitable clinical specimen for diagnosis of ricin poisoning via the oral route. The ELISA test kit can also detect ricin in environmental samples. An advantage of this ELISA kit over other commercial off-the-shelf (COTS) detection kits currently on the market that are developed to screen environmental samples only is its ability to diagnose ricin poisoning from clinical specimens as well as detect ricin from environmental samples.

  11. Imaging fully hydrated whole cells by coherent x-ray diffraction microscopy.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Naitow, Hisashi; Kunishima, Naoki; Yoshida, Takashi; Ishikawa, Tetsuya; Song, Changyong

    2013-03-01

    Nanoscale imaging of biological specimens in their native condition is of long-standing interest, in particular with direct, high resolution views of internal structures of intact specimens, though as yet progress has been limited. Here we introduce wet coherent x-ray diffraction microscopy capable of imaging fully hydrated and unstained biological specimens. Whole cell morphologies and internal structures better than 25 nm can be clearly visualized without contrast degradation.

  12. New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation.

    PubMed

    Massover, William H

    2011-02-01

    Resolution in transmission electron microscopy (TEM) now is limited by the properties of specimens, rather than by those of instrumentation. The long-standing difficulties in obtaining truly high-resolution structure from biological macromolecules with TEM demand the development, testing, and application of new ideas and unconventional approaches. This review concisely describes some new concepts and innovative methodologies for TEM that deal with unsolved problems in the preparation and preservation of macromolecular specimens. The selected topics include use of better support films, a more protective multi-component matrix surrounding specimens for cryo-TEM and negative staining, and, several quite different changes in microscopy and micrography that should decrease the effects of electron radiation damage; all these practical approaches are non-traditional, but have promise to advance resolution for specimens of biological macromolecules beyond its present level of 3-10 Å (0.3-1.0 nm). The result of achieving truly high resolution will be a fulfillment of the still unrealized potential of transmission electron microscopy for directly revealing the structure of biological macromolecules down to the atomic level. Published by Elsevier Ltd.

  13. Idea Bank.

    ERIC Educational Resources Information Center

    Talesnick, Irwin, Ed.

    1984-01-01

    Provides innovative ideas in biology, chemistry, and physics on the following topics: enzyme decomposition; chemical waste; time measurement; acid-base color magic; ball bouncing properties; heat; cell theory; and specimen boxes. Materials and procedures are listed when appropriate along with hints for expanding these ideas and investigations. (JM)

  14. HOME-BASED COLLECTION OF BIOLOGICAL MEASUREMENTS AND SPECIMENS FROM MEN

    EPA Science Inventory

    Environmental epidemiology studies of relations between exposures and male reproductive health face the same challenges as studies of female reproductive health in geographically dispersed individuals or groups (as discussed in the previous talk). Semen quality can be used as an...

  15. Using Spot Biomarker Data to Inform Chronic Exposure and Health Risk

    EPA Science Inventory

    The U.S. NHANES and other health surveys frequently collect and analyze spot biological specimens to inform chemical exposures. These spot measurements can be compared to biomarker-based reference levels, such as “Biomonitoring Equivalents” (BEs), to evaluate health r...

  16. Improving signal to noise in labeled biological specimens using energy-filtered TEM of sections with a drift correction strategy and a direct detection device.

    PubMed

    Ramachandra, Ranjan; Bouwer, James C; Mackey, Mason R; Bushong, Eric; Peltier, Steven T; Xuong, Nguyen-Huu; Ellisman, Mark H

    2014-06-01

    Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD's) to increase the signal to noise as compared with CCD's. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.

  17. Morphometric analyses of hominoid crania, probabilities of conspecificity and an approximation of a biological species constant.

    PubMed

    Thackeray, J F; Dykes, S

    2016-02-01

    Thackeray has previously explored the possibility of using a morphometric approach to quantify the "amount" of variation within species and to assess probabilities of conspecificity when two fossil specimens are compared, instead of "pigeon-holing" them into discrete species. In an attempt to obtain a statistical (probabilistic) definition of a species, Thackeray has recognized an approximation of a biological species constant (T=-1.61) based on the log-transformed standard error of the coefficient m (log sem) in regression analysis of cranial and other data from pairs of specimens of conspecific extant species, associated with regression equations of the form y=mx+c where m is the slope and c is the intercept, using measurements of any specimen A (x axis), and any specimen B of the same species (y axis). The log-transformed standard error of the co-efficient m (log sem) is a measure of the degree of similarity between pairs of specimens, and in this study shows central tendency around a mean value of -1.61 and standard deviation 0.10 for modern conspecific specimens. In this paper we focus attention on the need to take into account the range of difference in log sem values (Δlog sem or "delta log sem") obtained from comparisons when specimen A (x axis) is compared to B (y axis), and secondly when specimen A (y axis) is compared to B (x axis). Thackeray's approach can be refined to focus on high probabilities of conspecificity for pairs of specimens for which log sem is less than -1.61 and for which Δlog sem is less than 0.03. We appeal for the adoption of a concept here called "sigma taxonomy" (as opposed to "alpha taxonomy"), recognizing that boundaries between species are not always well defined. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. [Establishment and Management of Multiple Myeloma Specimen Bank Applied for Molecular Biological Researches].

    PubMed

    Li, Han-Qing; Mei, Jian-Gang; Cao, Hong-Qin; Shao, Liang-Jing; Zhai, Yong-Ping

    2017-12-01

    To establish a multiple myeloma specimen bank applied for molecular biological researches and to explore the methods of specimen collection, transportation, storage, quality control and the management of specimen bank. Bone marrow and blood samples were collected from multiple myeloma patients, plasma cell sorting were operated after the separation of mononuclear cells from bone marrow specimens. The plasma cells were divided into 2 parts, one was added with proper amount of TRIzol and then kept in -80 °C refrigerator for subsequent RNA extraction, the other was added with proper amount of calf serum cell frozen liquid and then kept in -80 °C refrigerator for subsequent cryopreservation of DNA extraction after numbered respectively. Serum and plasma were separated from peripheral blood, specimens of serum and plasma were then stored at -80 °C refrigerator after registration. Meantime, the myeloma specimen information management system was established, managed and maintained by specially-assigned persons and continuous modification and improvement in the process of use as to facilitate the rapid collection, management, query of the effective samples and clinical data. A total of 244 portions plasma cells, 564 portions of serum, and 1005 portions of plasma were collected, clinical characters were documented. A multiple myeloma specimen bank have been established initially, which can provide quality samples and related clinical information for molecular biological research on multiple myeloma.

  19. A View of the Therapy for Bell's Palsy Based on Molecular Biological Analyses of Facial Muscles.

    PubMed

    Moriyama, Hiroshi; Mitsukawa, Nobuyuki; Itoh, Masahiro; Otsuka, Naruhito

    2017-12-01

    Details regarding the molecular biological features of Bell's palsy have not been widely reported in textbooks. We genetically analyzed facial muscles and clarified these points. We performed genetic analysis of facial muscle specimens from Japanese patients with severe (House-Brackmann facial nerve grading system V) and moderate (House-Brackmann facial nerve grading system III) dysfunction due to Bell's palsy. Microarray analysis of gene expression was performed using specimens from the healthy and affected sides, and gene expression was compared. Changes in gene expression were defined as an affected side/healthy side ratio of >1.5 or <0.5. We observed that the gene expression in Bell's palsy changes with the degree of facial nerve palsy. Especially, muscle, neuron, and energy category genes tended to fluctuate with the degree of facial nerve palsy. It is expected that this study will aid in the development of new treatments and diagnostic/prognostic markers based on the severity of facial nerve palsy.

  20. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  1. DETERMINATION OF INDUCED RADIOACTIVITY IN THE SECOND COSMIC SPACESHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, V.V.; Sokolov, A.D.

    1961-01-01

    The residual gamma activity in a biological specimen on board the second Soviet cosmic spaceship was determined. The biological specimens were in the form of cylinders (3.8-cm dia., 4-cm long) with a total weight of 86 g. The activity of the specimens was measured after return to earth, and it was found that if there was a residual gamma activity 15 days after the return to earth it did not exceed 10-/sup 10/ g equivalents of Ra. (OTS)

  2. Centrifuge-operated specimen staining method and apparatus

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L. (Inventor); Clarke, Mark S. F. (Inventor)

    1999-01-01

    A method of staining preselected, mounted specimens of either biological or nonbiological material enclosed within a staining chamber where the liquid staining reagents are applied and removed from the staining chamber using hypergravity as the propelling force. In the preferred embodiment, a spacecraft-operated centrifuge and method of diagnosing biological specimens while in orbit, characterized by hermetically sealing a shell assembly. The assembly contains slide stain apparatus with computer control therefor, the operative effect of which is to overcome microgravity, for example on board an International Space Station.

  3. Magnetic levitation-based Martian and Lunar gravity simulator

    NASA Technical Reports Server (NTRS)

    Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  4. Magnetic levitation-based Martian and Lunar gravity simulator.

    PubMed

    Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  5. Benefit of STR-based chimerism analysis to identify TA-GVHD as a cause of death: Utility of various biological specimens.

    PubMed

    Raina, Anupuma; Chaudhary, Garima; Dogra, Tirath Das; Khandelwal, Deepchand; Balayan, Ajay; Jain, Vandana; Kanga, Uma; Seth, Tulika

    2016-04-01

    Transfusion-associated graft-versus-host disease (TA-GVHD) is a rare condition. It can occur after blood transfusion in immune-compromised and occasionally even in immune-competent patients, and is associated with a mortality rate of >90%. The diagnosis of TA-GVHD is often delayed because of its non-specific clinical features. A case of an immune-competent child who developed TA-GVHD is reported here. DNA profiling (short tandem repeat analysis), a technique that has a wide application in forensic medicine, was performed to detect the presence of donor cells in this patient. The findings suggest that more studies are needed with this tool, and the diagnostic potential of using other multiple biological specimens for DNA profiling such as the hair follicle and buccal swab should be evaluated. This is the first case report where the donor's DNA fingerprinting pattern was substantiated from a patient's hair follicle sample. Chimerism was also present in the blood and buccal swab specimens. © The Author(s) 2015.

  6. Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry.

    PubMed

    Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford

    2012-03-01

    We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

  7. Maintaining respect and fairness in the usage of stored shared specimens

    PubMed Central

    2013-01-01

    Background Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research insitutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and reserch products requires safeguarding by Ethics Review Committees in both provider and recepient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. Discussion By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recepient institutions in developed countries. Concluding summary Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science. PMID:24565022

  8. Maintaining respect and fairness in the usage of stored shared specimens.

    PubMed

    Mduluza, Takafira; Midzi, Nicholas; Duruza, Donold; Ndebele, Paul

    2013-01-01

    Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research institutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and research products requires safeguarding by Ethics Review Committees in both provider and recipient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recipient institutions in developed countries. Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science.

  9. New data on the taxonomy, ecology, and conservation of the rediscovered Louisea edeaensis (Bott, 1969) (Brachyura: Potamoidea: Potamonautidae), an endangered freshwater crab from Cameroon.

    PubMed

    Ndongo, Pierre A Mvogo; Rintelen, Thomas VON; Schubart, Christoph D; Albrecht, Christian; Tamesse, Joseph L; Cumberlidge, Neil

    2017-02-09

    The rare and endangered Cameroonian potamonautid freshwater crab Louisea edeaensis (Bott, 1969) was recently rediscovered during a biological inventory of the freshwater decapods of southern Cameroon. The previous record dated back more than 100 years. The new specimens allow an updated diagnosis of the species based on comparisons of important taxonomic characters. Photographs of the carapace, gonopods, third maxillipeds, and chelipeds of the largest adult male specimen from Lake Ossa, Cameroon are provided, as are the first photographs of living specimens. The conservation implications of the new data on habitat, population structure, distribution, and threats for this rare and endangered species are discussed.

  10. WATER QUALITY, MERCURY, AND HEAVY METAL DEPOSITION STUDIES IN BIOLOGICAL SPECIMENS AND SEDIMENTS FOR ECOLOGICAL BASELINE DATA IN THE ISLAND PARK WATERWAYS SYSTEM, 1973

    EPA Science Inventory

    The water quality, mercury, and heavy metal deposition in biological specimens from the Island Park waterways (17040202) were measured to establish ecological baseline data. Neutron activation analysis was used to identify quantitatively and qualitatively approximately 20 differ...

  11. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    PubMed

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  12. Automated 100-Position Specimen Loader and Image Acquisition System for Transmission Electron Microscopy

    PubMed Central

    Lefman, Jonathan; Morrison, Robert; Subramaniam, Sriram

    2007-01-01

    We report the development of a novel, multi-specimen imaging system for high-throughput transmission electron microscopy. Our cartridge-based loading system, called the “Gatling”, permits the sequential examination of as many as 100 specimens in the microscope for room temperature electron microscopy using mechanisms for rapid and automated specimen exchange. The software for the operation of the Gatling and automated data acquisition has been implemented in an updated version of our in-house program AutoEM. In the current implementation of the system, the time required to deliver 95 specimens into the microscope and collect overview images from each is about 13 hours. Regions of interest are identified from a low magnification atlas generation from each specimen and an unlimited number of higher magnifications images can be subsequently acquired from these regions using fully automated data acquisition procedures that can be controlled from a remote interface. We anticipate that the availability of the Gatling will greatly accelerate the speed of data acquisition for a variety of applications in biology, materials science and nanotechnology that require rapid screening and image analysis of multiple specimens. PMID:17240161

  13. Process for measuring low cadmium levels in blood and other biological specimens

    DOEpatents

    Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.

    1994-01-01

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  14. Process for measuring low cadmium levels in blood and other biological specimens

    DOEpatents

    Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.

    1994-05-03

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  15. Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?

    ERIC Educational Resources Information Center

    Hostounsky, Zdenek; Pelc, Radek

    2007-01-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…

  16. A Study of Sandy Beach Zonation.

    ERIC Educational Resources Information Center

    Alexander, Steve K.

    1991-01-01

    Describes the study of sandy beach zonations as a seashore activity for either high school or lower-level college courses in biology, ecology, or marine biology. Students first draw a profile of a beach scene and then collect specimens from the zones of the shore. In a laboratory, students identify their specimens and relate them to the beach…

  17. 21 CFR 58.195 - Retention of records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... specimens (except those specimens obtained from mutagenicity tests and wet specimens of blood, urine, feces, and biological fluids), samples of test or control articles, and specially prepared material, which are relatively fragile and differ markedly in stability and quality during storage, shall be retained...

  18. Home-based versus clinic-based specimen collection in the management of Chlamydia trachomatis and Neisseria gonorrhoeae infections.

    PubMed

    Fajardo-Bernal, Luisa; Aponte-Gonzalez, Johanna; Vigil, Patrick; Angel-Müller, Edith; Rincon, Carlos; Gaitán, Hernando G; Low, Nicola

    2015-09-29

    Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the most frequent causes of bacterial sexually transmitted infections (STIs). Management strategies that reduce losses in the clinical pathway from infection to cure might improve STI control and reduce complications resulting from lack of, or inadequate, treatment. To assess the effectiveness and safety of home-based specimen collection as part of the management strategy for Chlamydia trachomatis and Neisseria gonorrhoeae infections compared with clinic-based specimen collection in sexually-active people. We searched the Cochrane Sexually Transmitted Infections Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and LILACS on 27 May 2015, together with the World Health Organization International Clinical Trials Registry (ICTRP) and ClinicalTrials.gov. We also handsearched conference proceedings, contacted trial authors and reviewed the reference lists of retrieved studies. Randomized controlled trials (RCTs) of home-based compared with clinic-based specimen collection in the management of C. trachomatis and N. gonorrhoeae infections. Three review authors independently assessed trials for inclusion, extracted data and assessed risk of bias. We contacted study authors for additional information. We resolved any disagreements through consensus. We used standard methodological procedures recommended by Cochrane. The primary outcome was index case management, defined as the number of participants tested, diagnosed and treated, if test positive. Ten trials involving 10,479 participants were included. There was inconclusive evidence of an effect on the proportion of participants with index case management (defined as individuals tested, diagnosed and treated for CT or NG, or both) in the group with home-based (45/778, 5.8%) compared with clinic-based (51/788, 6.5%) specimen collection (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.60 to 1.29; 3 trials, I² = 0%, 1566 participants, moderate quality). Harms of home-based specimen collection were not evaluated in any trial. All 10 trials compared the proportions of individuals tested. The results for the proportion of participants completing testing had high heterogeneity (I² = 100%) and were not pooled. We could not combine data from individual studies looking at the number of participants tested because the proportions varied widely across the studies, ranging from 30% to 96% in home group and 6% to 97% in clinic group (low-quality evidence). The number of participants with positive test was lower in the home-based specimen collection group (240/2074, 11.6%) compared with the clinic-based group (179/967, 18.5%) (RR 0.72, 95% CI 0.61 to 0.86; 9 trials, I² = 0%, 3041 participants, moderate quality). Home-based specimen collection could result in similar levels of index case management for CT or NG infection when compared with clinic-based specimen collection. Increases in the proportion of individuals tested as a result of home-based, compared with clinic-based, specimen collection are offset by a lower proportion of positive results. The harms of home-based specimen collection compared with clinic-based specimen collection have not been evaluated. Future RCTs to assess the effectiveness of home-based specimen collection should be designed to measure biological outcomes of STI case management, such as proportion of participants with negative tests for the relevant STI at follow-up.

  19. The Sampled Red List Index for Plants, phase II: ground-truthing specimen-based conservation assessments

    PubMed Central

    Brummitt, Neil; Bachman, Steven P.; Aletrari, Elina; Chadburn, Helen; Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin; Rivers, Malin C.; Syfert, Mindy M.; Nic Lughadha, Eimear M.

    2015-01-01

    The IUCN Sampled Red List Index (SRLI) is a policy response by biodiversity scientists to the need to estimate trends in extinction risk of the world's diminishing biological diversity. Assessments of plant species for the SRLI project rely predominantly on herbarium specimen data from natural history collections, in the overwhelming absence of accurate population data or detailed distribution maps for the vast majority of plant species. This creates difficulties in re-assessing these species so as to measure genuine changes in conservation status, which must be observed under the same Red List criteria in order to be distinguished from an increase in the knowledge available for that species, and thus re-calculate the SRLI. However, the same specimen data identify precise localities where threatened species have previously been collected and can be used to model species ranges and to target fieldwork in order to test specimen-based range estimates and collect population data for SRLI plant species. Here, we outline a strategy for prioritizing fieldwork efforts in order to apply a wider range of IUCN Red List criteria to assessments of plant species, or any taxa with detailed locality or natural history specimen data, to produce a more robust estimation of the SRLI. PMID:25561676

  20. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  1. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  2. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneip, S.; Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109; McGuffey, C.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlightingmore » the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.« less

  3. Efficiently Maintaining a National Resource of Historical and Contemporary Biological Collections: The NHLBI Biorepository Model.

    PubMed

    Shea, Katheryn E; Wagner, Elizabeth L; Marchesani, Leah; Meagher, Kevin; Giffen, Carol

    2017-02-01

    Reducing costs by improving storage efficiency has been a focus of the National Heart, Lung, and Blood Institute (NHLBI) Biologic Specimen Repository (Biorepository) and Biologic Specimen and Data Repositories Information Coordinating Center (BioLINCC) programs for several years. Study specimen profiles were compiled using the BioLINCC collection catalog. Cost assessments and calculations on the return on investments to consolidate or reduce a collection, were developed and implemented. Over the course of 8 months, the NHLBI Biorepository evaluated 35 collections that consisted of 1.8 million biospecimens. A total of 23 collections were selected for consolidation, with a total of 1.2 million specimens located in 21,355 storage boxes. The consolidation resulted in a savings of 4055 boxes of various sizes and 10.2 mechanical freezers (∼275 cubic feet) worth of space. As storage costs in a biorepository increase over time, the development and use of information technology tools to assess the potential advantage and feasiblity of vial consolidation can reduce maintenance expenses.

  4. National Aeronautics and Space Administration Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  5. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen-hydrated yeast indicate that the frozen specimens do not exhibit these changes even with doses as high as 5 x 109 Gray.

  6. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  7. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  8. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  9. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  10. Probing the Potential of Neutron Imaging for Biomedical and Biological Applications

    NASA Astrophysics Data System (ADS)

    Watkin, K. L.; Bilheux, H. Z.; Ankner, J. F.

    Neutron imaging of biological specimens began soon after the discovery of the neutron by Chadwick in 1932. The first samples included tumors in tissues, internal organs in rats, and bones. These studies mainly employed thermal neutrons and were often compared with X-ray images of the same or equivalent samples. Although neutron scattering is widely used in biological studies, neutron imaging has yet to be exploited to its full capability in this area. This chapter summarizes past and current research efforts to apply neutron radiography to the study of biological specimens, in the expectation that clinical and medical research, as well as forensic science, may benefit from it.

  11. Sample data processing in an additive and reproducible taxonomic workflow by using character data persistently linked to preserved individual specimens

    PubMed Central

    Kilian, Norbert; Henning, Tilo; Plitzner, Patrick; Müller, Andreas; Güntsch, Anton; Stöver, Ben C.; Müller, Kai F.; Berendsohn, Walter G.; Borsch, Thomas

    2015-01-01

    We present the model and implementation of a workflow that blazes a trail in systematic biology for the re-usability of character data (data on any kind of characters of pheno- and genotypes of organisms) and their additivity from specimen to taxon level. We take into account that any taxon characterization is based on a limited set of sampled individuals and characters, and that consequently any new individual and any new character may affect the recognition of biological entities and/or the subsequent delimitation and characterization of a taxon. Taxon concepts thus frequently change during the knowledge generation process in systematic biology. Structured character data are therefore not only needed for the knowledge generation process but also for easily adapting characterizations of taxa. We aim to facilitate the construction and reproducibility of taxon characterizations from structured character data of changing sample sets by establishing a stable and unambiguous association between each sampled individual and the data processed from it. Our workflow implementation uses the European Distributed Institute of Taxonomy Platform, a comprehensive taxonomic data management and publication environment to: (i) establish a reproducible connection between sampled individuals and all samples derived from them; (ii) stably link sample-based character data with the metadata of the respective samples; (iii) record and store structured specimen-based character data in formats allowing data exchange; (iv) reversibly assign sample metadata and character datasets to taxa in an editable classification and display them and (v) organize data exchange via standard exchange formats and enable the link between the character datasets and samples in research collections, ensuring high visibility and instant re-usability of the data. The workflow implemented will contribute to organizing the interface between phylogenetic analysis and revisionary taxonomic or monographic work. Database URL: http://campanula.e-taxonomy.net/ PMID:26424081

  12. Evidence for Ongoing Modeling-Based Bone Formation in Human Femoral Head Trabeculae via Forming Minimodeling Structures: A Study in Patients with Fractures and Arthritis.

    PubMed

    Sano, Hiroshige; Kondo, Naoki; Shimakura, Taketoshi; Fujisawa, Junichi; Kijima, Yasufumi; Kanai, Tomotake; Poole, Kenneth E S; Yamamoto, Noriaki; Takahashi, Hideaki E; Endo, Naoto

    2018-01-01

    Bone modeling is a biological process of bone formation that adapts bone size and shape to mechanical loads, especially during childhood and adolescence. Bone modeling in cortical bone can be easily detected using sequential radiographic images, while its assessment in trabecular bone is challenging. Here, we performed histomorphometric analysis in 21 bone specimens from biopsies collected during hip arthroplasty, and we proposed the criteria for histologically identifying an active modeling-based bone formation, which we call a "forming minimodeling structure" (FMiS). Evidence of FMiSs was found in 9 of 20 specimens (45%). In histomorphometric analysis, bone volume was significant higher in specimens displaying FMiSs compared with the specimens without these structures (BV/TV, 31.7 ± 10.2 vs. 23.1 ± 3.9%; p  < 0.05). Osteoid parameters were raised in FMiS-containing bone specimens (OV/BV, 2.1 ± 1.6 vs. 0.6 ± 0.3%; p  < 0.001, OS/BS, 23.6 ± 15.5 vs. 7.6 ± 4.2%; p  < 0.001, and O.Th, 7.4 µm ± 2.0 vs. 5.2 ± 1.0; p  < 0.05). Our results showed that the modeling-based bone formation on trabecular bone surfaces occurs even during adulthood. As FMiSs can represent histological evidence of modeling-based bone formation, understanding of this physiology in relation to bone homeostasis is crucial.

  13. Electron microprobe analysis program for biological specimens: BIOMAP

    NASA Technical Reports Server (NTRS)

    Edwards, B. F.

    1972-01-01

    BIOMAP is a Univac 1108 compatible program which facilitates the electron probe microanalysis of biological specimens. Input data are X-ray intensity data from biological samples, the X-ray intensity and composition data from a standard sample and the electron probe operating parameters. Outputs are estimates of the weight percentages of the analyzed elements, the distribution of these estimates for sets of red blood cells and the probabilities for correlation between elemental concentrations. An optional feature statistically estimates the X-ray intensity and residual background of a principal standard relative to a series of standards.

  14. Banking biological collections: data warehousing, data mining, and data dilemmas in genomics and global health policy.

    PubMed

    Blatt, R J R

    2000-01-01

    While DNA databases may offer the opportunity to (1) assess population-based prevalence of specific genes and variants, (2) simplify the search for molecular markers, (3) improve targeted drug discovery and development for disease management, (4) refine strategies for disease prevention, and (5) provide the data necessary for evidence-based decision-making, serious scientific and social questions remain. Whether samples are identified, coded, or anonymous, biological banking raises profound ethical and legal issues pertaining to access, informed consent, privacy and confidentiality of genomic information, civil liberties, patenting, and proprietary rights. This paper provides an overview of key policy issues and questions pertaining to biological banking, with a focus on developments in specimen collection, transnational distribution, and public health and academic-industry research alliances. It highlights the challenges posed by the commercialization of genomics, and proposes the need for harmonization of biological banking policies.

  15. Identification of host response signatures of infection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branda, Steven S.; Sinha, Anupama; Bent, Zachary

    2013-02-01

    Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to themore » pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation for large-scale, highly-efficient efforts to identify and verify infection-specific host NA signatures in human populations.« less

  16. High-speed autofocusing of a cell using diffraction pattern

    NASA Astrophysics Data System (ADS)

    Oku, Hiromasa; Ishikawa, Masatoshi; Theodorus; Hashimoto, Koichi

    2006-05-01

    This paper proposes a new autofocusing method for observing cells under a transmission illumination. The focusing method uses a quick and simple focus estimation technique termed “depth from diffraction,” which is based on a diffraction pattern in a defocused image of a biological specimen. Since this method can estimate the focal position of the specimen from only a single defocused image, it can easily realize high-speed autofocusing. To demonstrate the method, it was applied to continuous focus tracking of a swimming paramecium, in combination with two-dimensional position tracking. Three-dimensional tracking of the paramecium for 70 s was successfully demonstrated.

  17. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device.

    PubMed

    Park, Jong Kang; Rowlands, Christopher J; So, Peter T C

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.

  18. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device

    PubMed Central

    Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484

  19. The use of museum specimens with high-throughput DNA sequencers

    PubMed Central

    Burrell, Andrew S.; Disotell, Todd R.; Bergey, Christina M.

    2015-01-01

    Natural history collections have long been used by morphologists, anatomists, and taxonomists to probe the evolutionary process and describe biological diversity. These biological archives also offer great opportunities for genetic research in taxonomy, conservation, systematics, and population biology. They allow assays of past populations, including those of extinct species, giving context to present patterns of genetic variation and direct measures of evolutionary processes. Despite this potential, museum specimens are difficult to work with because natural postmortem processes and preservation methods fragment and damage DNA. These problems have restricted geneticists’ ability to use natural history collections primarily by limiting how much of the genome can be surveyed. Recent advances in DNA sequencing technology, however, have radically changed this, making truly genomic studies from museum specimens possible. We review the opportunities and drawbacks of the use of museum specimens, and suggest how to best execute projects when incorporating such samples. Several high-throughput (HT) sequencing methodologies, including whole genome shotgun sequencing, sequence capture, and restriction digests (demonstrated here), can be used with archived biomaterials. PMID:25532801

  20. Simulations For Investigating the Contrast Mechanism of Biological Cells with High Frequency Scanning Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Juntarapaso, Yada

    Scanning Acoustic Microscopy (SAM) is one of the most powerful techniques for nondestructive evaluation and it is a promising tool for characterizing the elastic properties of biological tissues/cells. Exploring a single cell is important since there is a connection between single cell biomechanics and human cancer. Scanning acoustic microscopy (SAM) has been accepted and extensively utilized for acoustical cellular and tissue imaging including measurements of the mechanical and elastic properties of biological specimens. SAM provides superb advantages in that it is non-invasive, can measure mechanical properties of biological cells or tissues, and fixation/chemical staining is not necessary. The first objective of this research is to develop a program for simulating the images and contrast mechanism obtained by high-frequency SAM. Computer simulation algorithms based on MatlabRTM were built for simulating the images and contrast mechanisms. The mechanical properties of HeLa and MCF-7 cells were computed from the measurement data of the output signal amplitude as a function of distance from the focal planes of the acoustics lens which is known as V(z) . Algorithms for simulating V(z) responses involved the calculation of the reflectance function and were created based on ray theory and wave theory. The second objective is to design transducer arrays for SAM. Theoretical simulations based on Field II(c) programs of the high frequency ultrasound array designs were performed to enhance image resolution and volumetric imaging capabilities. Phased array beam forming and dynamic apodization and focusing were employed in the simulations. The new transducer array design will be state-of-the-art in improving the performance of SAM by electronic scanning and potentially providing a 4-D image of the specimen.

  1. Simulation of transmission electron microscope images of biological specimens.

    PubMed

    Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O

    2011-09-01

    We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  2. Morphological anomalies in two Lutzomyia (Psathyromyia) shannoni (Diptera: Psychodidae: Phlebotominae) specimens collected from Fort Rucker, Alabama, and Fort Campbell, Kentucky.

    PubMed

    Florin, David A; Lawyer, Phillip; Rowton, Edgar; Schultz, George; Wilkerson, Richard; Davies, Stephen J; Lipnick, Robert; Keep, Lisa

    2010-09-01

    This report describes two male specimens of the sand fly species Lutzomyia shannoni (Dyar) (Diptera: Psychodidae: Phlebotominae) collected at Fort Rucker, AL, and Fort Campbell, KY, in dry ice-baited light traps during September 2005. The specimens were observed to have anomalies to the number of spines on the gonostyli. The taxonomic keys of Young and Perkins (Mosq. News 44: 263-285; 1984) use the number of spines on the gonostylus in the first couplet to differentiate two major groupings of North American sand flies. The two anomalous specimens were identified as L. shannoni based on the following criteria: (1) both specimens possess antennal ascoids with long, distinct proximal spurs (a near diagnostic character of L. shannoni in North America), (2) the sequences of the partial cytochrome c oxidase subunit 1 gene from both specimens indicated L. shannoni, and (3) the sequences of the internal transcribed spacer 2 molecular marker from both specimens indicated L. shannoni. The anomalous features are fundamentally different from each other as the Fort Rucker specimen possesses a fifth spine (basally located) on just one gonostylus, whereas the Fort Campbell specimen possesses five spines (extra spines subterminally located) on both gonostyli. Because the gonostyli are part of the external male genitalia, anomalies in the number of spines on the gonostyli may have serious biological consequences, such as reduced reproductive success, for the possessors. These anomalies are of taxonomic interest as the specimens could easily have been misidentified using available morphological keys.

  3. Immunological Insights into the Life and Times of the Extinct Tasmanian Tiger (Thylacinus cynocephalus).

    PubMed

    Old, Julie M

    2015-01-01

    The thylacine (Thylacinus cynocephalus) was Australia's largest marsupial carnivore until its extinction within the last century. There remains considerable interest and debate regarding the biology of this species. Studies of thylacine biology are now limited to preserved specimens, and parts thereof, as well as written historical accounts of its biology. This study describes the development of the immune tissues of a pouch young thylacine, one of only eleven in existence, and the only specimen to be histologically sectioned. The appearance of the immune tissue of the developing pouch young thylacine is compared to the immune tissues of extant marsupials, providing insights into the immunity, biology and ecology of the extinct thylacine.

  4. Optimization of routine KRAS mutation PCR-based testing procedure for rational individualized first-line-targeted therapy selection in metastatic colorectal cancer.

    PubMed

    Chretien, Anne-Sophie; Harlé, Alexandre; Meyer-Lefebvre, Magali; Rouyer, Marie; Husson, Marie; Ramacci, Carole; Harter, Valentin; Genin, Pascal; Leroux, Agnès; Merlin, Jean-Louis

    2013-02-01

    KRAS mutation detection represents a crucial issue in metastatic colorectal cancer (mCRC). The optimization of KRAS mutation detection delay enabling rational prescription of first-line treatment in mCRC including anti-EGFR-targeted therapy requires robust and rapid molecular biology techniques. Routine analysis of mutations in codons 12 and 13 on 674 paraffin-embedded tissue specimens of mCRC has been performed for KRAS mutations detection using three molecular biology techniques, that is, high-resolution melting (HRM), polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), and allelic discrimination PCR (TaqMan PCR). Discordant cases were assessed with COBAS 4800 KRAS CE-IVD assay. Among the 674 tumor specimens, 1.5% (10/674) had excessive DNA degradation and could not be analyzed. KRAS mutations were detected in 38.0% (256/674) of the analysable specimens (82.4% in codon 12 and 17.6% in codon 13). Among 613 specimens in whom all three techniques were used, 12 (2.0%) cases of discordance between the three techniques were observed. 83.3% (10/12) of the discordances were due to PCR-RFLP as confirmed by COBAS 4800 retrospective analysis. The three techniques were statistically comparable (κ > 0.9; P < 0.001). From these results, optimization of the routine procedure consisted of proceeding to systematic KRAS detection using HRM and TaqMan and PCR-RFLP in case of discordance and allowed significant decrease in delays. The results showed an excellent correlation between the three techniques. Using HRM and TaqMan warrants high-quality and rapid-routine KRAS mutation detection in paraffin-embedded tumor specimens. The new procedure allowed a significant decrease in delays for reporting results, enabling rational prescription of first-line-targeted therapy in mCRC.

  5. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.

  6. Iterative expansion microscopy.

    PubMed

    Chang, Jae-Byum; Chen, Fei; Yoon, Young-Gyu; Jung, Erica E; Babcock, Hazen; Kang, Jeong Seuk; Asano, Shoh; Suk, Ho-Jun; Pak, Nikita; Tillberg, Paul W; Wassie, Asmamaw T; Cai, Dawen; Boyden, Edward S

    2017-06-01

    We recently developed a method called expansion microscopy, in which preserved biological specimens are physically magnified by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ∼4.5× in linear dimension. Here we describe iterative expansion microscopy (iExM), in which a sample is expanded ∼20×. After preliminary expansion a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and the sample is expanded again. iExM expands biological specimens ∼4.5 × 4.5, or ∼20×, and enables ∼25-nm-resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry.

  7. Iterative expansion microscopy

    PubMed Central

    Chang, Jae-Byum; Chen, Fei; Yoon, Young-Gyu; Jung, Erica E.; Babcock, Hazen; Kang, Jeong Seuk; Asano, Shoh; Suk, Ho-Jun; Pak, Nikita; Tillberg, Paul W.; Wassie, Asmamaw; Cai, Dawen; Boyden, Edward S.

    2017-01-01

    We recently discovered it was possible to physically magnify preserved biological specimens by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ~4.5x in linear dimension, a process we call expansion microscopy (ExM). Here we describe iterative expansion microscopy (iExM), in which a sample is expanded, then a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and finally the sample is expanded again. iExM expands biological specimens ~4.5 × 4.5 or ~20x, and enables ~25 nm resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry. PMID:28417997

  8. Specimen preparation for NanoSIMS analysis of biological materials

    NASA Astrophysics Data System (ADS)

    Grovenor, C. R. M.; Smart, K. E.; Kilburn, M. R.; Shore, B.; Dilworth, J. R.; Martin, B.; Hawes, C.; Rickaby, R. E. M.

    2006-07-01

    In order to achieve reliable and reproducible analysis of biological materials by SIMS, it is critical both that the chosen specimen preparation method does not modify substantially the in vivo chemistry that is the focus of the study and that any chemical information obtained can be calibrated accurately by selection of appropriate standards. In Oxford, we have been working with our new Cameca NanoSIMS50 on two very distinct classes of biological materials; the first where the sample preparation problems are relatively undemanding - human hair - but calibration for trace metal analysis is a critical issue and, the second, marine coccoliths and hyperaccumulator plants where reliable specimen preparation by rapid freezing and controlled drying to preserve the distribution of diffusible species is the first and most demanding requirement, but worthwhile experiments on tracking key elements can still be undertaken even when it is clear that some redistribution of the most diffusible ions has occurred.

  9. A universal fluid cell for the imaging of biological specimens in the atomic force microscope.

    PubMed

    Kasas, Sandor; Radotic, Ksenja; Longo, Giovanni; Saha, Bashkar; Alonso-Sarduy, Livan; Dietler, Giovanni; Roduit, Charles

    2013-04-01

    Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Copyright © 2013 Wiley Periodicals, Inc.

  10. Blood lipid measurements. Variations and practical utility.

    PubMed

    Cooper, G R; Myers, G L; Smith, S J; Schlant, R C

    1992-03-25

    To describe the magnitude and impact of the major biological and analytical sources of variation in serum lipid and lipoprotein levels on risk of coronary heart disease; to present a way to qualitatively estimate the total intraindividual variation; and to demonstrate how to determine the number of specimens required to estimate, with 95% confidence, the "true" underlying total cholesterol value in the serum of a patient. Representative references on each source of variation were selected from more than 300 reviewed publications, most published within the past 5 years, to document current findings and concepts. Most articles reviewed were in English. Studies on biological sources of variation were selected using the following criteria: representative of published findings, clear statement of either significant or insignificant results, and acquisition of clinical and laboratory data under standardized conditions. Representative results for special populations such as women and children are reported when results differ from those of adult men. References were selected based on acceptable experimental design and use of standardized laboratory lipid measurements. The lipid levels considered representative for a selected source of variation arose from quantitative measurements by a suitably standardized laboratory. Statistical analysis of data was examined to assure reliability. The proposed method of estimating the biological coefficient of variation must be considered to give qualitative results, because only two or three serial specimens are collected in most cases for the estimation. Concern has arisen about the magnitude, impact, and interpretation of preanalytical as well as analytical sources of variation on reported results of lipid measurements of an individual. Preanalytical sources of variation from behavioral, clinical, and sampling sources constitute about 60% of the total variation in a reported lipid measurement of an individual. A technique is presented to allow physicians to qualitatively estimate the intraindividual biological variation of a patient from the results of two or more specimens reported from a standardized laboratory and to determine whether additional specimens are needed to meet the National Cholesterol Education Program recommendation that the intraindividual serum total cholesterol coefficient of variation not exceed 5.0. A National Reference Method Network has been established to help solve analytical problems.

  11. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging

    PubMed Central

    Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.

    2014-01-01

    The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration. PMID:23174976

  12. Novel spectral imaging system combining spectroscopy with imaging applications for biology

    NASA Astrophysics Data System (ADS)

    Malik, Zvi; Cabib, Dario; Buckwald, Robert A.; Garini, Yuval; Soenksen, Dirk G.

    1995-02-01

    A novel analytical spectral-imaging system and its results in the examination of biological specimens are presented. The SpectraCube 1000 system measures the transmission, absorbance, or fluorescence spectra of images studied by light microscopy. The system is based on an interferometer combined with a CCD camera, enabling measurement of the interferogram for each pixel constructing the image. Fourier transformation of the interferograms derives pixel by pixel spectra for 170 X 170 pixels of the image. A special `similarity mapping' program has been developed, enabling comparisons of spectral algorithms of all the spatial and spectral information measured by the system in the image. By comparing the spectrum of each pixel in the specimen with a selected reference spectrum (similarity mapping), there is a depiction of the spatial distribution of macromolecules possessing the characteristics of the reference spectrum. The system has been applied to analyses of bone marrow blood cells as well as fluorescent specimens, and has revealed information which could not be unveiled by other techniques. Similarity mapping has enabled visualization of fine details of chromatin packing in the nucleus of cells and other cytoplasmic compartments. Fluorescence analysis by the system has enabled the determination of porphyrin concentrations and distribution in cytoplasmic organelles of living cells.

  13. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito

    PubMed Central

    Helgen, Kristofer M.; Pinto, C. Miguel; Kays, Roland; Helgen, Lauren E.; Tsuchiya, Mirian T. N.; Quinn, Aleta; Wilson, Don E.; Maldonado, Jesús E.

    2013-01-01

    Abstract We present the first comprehensive taxonomic revision and review the biology of the olingos, the endemic Neotropical procyonid genus Bassaricyon, based on most specimens available in museums, and with data derived from anatomy, morphometrics, mitochondrial and nuclear DNA, field observations, and geographic range modeling. Species of Bassaricyon are primarily forest-living, arboreal, nocturnal, frugivorous, and solitary, and have one young at a time. We demonstrate that four olingo species can be recognized, including a Central American species (Bassaricyon gabbii), lowland species with eastern, cis-Andean (Bassaricyon alleni) and western, trans-Andean (Bassaricyon medius) distributions, and a species endemic to cloud forests in the Andes. The oldest evolutionary divergence in the genus is between this last species, endemic to the Andes of Colombia and Ecuador, and all other species, which occur in lower elevation habitats. Surprisingly, this Andean endemic species, which we call the Olinguito, has never been previously described; it represents a new species in the order Carnivora and is the smallest living member of the family Procyonidae. We report on the biology of this new species based on information from museum specimens, niche modeling, and fieldwork in western Ecuador, and describe four Olinguito subspecies based on morphological distinctions across different regions of the Northern Andes. PMID:24003317

  14. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.

    PubMed

    Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter

    2010-02-01

    The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.

  15. Surface smoothing, decimation, and their effects on 3D biological specimens.

    PubMed

    Veneziano, Alessio; Landi, Federica; Profico, Antonio

    2018-06-01

    Smoothing and decimation filters are commonly used to restore the realistic appearance of virtual biological specimens, but they can cause a loss of topological information of unknown extent. In this study, we analyzed the effect of smoothing and decimation on a 3D mesh to highlight the consequences of an inappropriate use of these filters. Topological noise was simulated on four anatomical regions of the virtual reconstruction of an orangutan cranium. Sequential levels of smoothing and decimation were applied, and their effects were analyzed on the overall topology of the 3D mesh and on linear and volumetric measurements. Different smoothing algorithms affected mesh topology and measurements differently, although the influence on the latter was generally low. Decimation always produced detrimental effects on both topology and measurements. The application of smoothing and decimation, both separate and combined, is capable of recovering topological information. Based on the results, objective guidelines are provided to minimize information loss when using smoothing and decimation on 3D meshes. © 2018 Wiley Periodicals, Inc.

  16. Plasmonics and metamaterials based super-resolution imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowei

    2017-05-01

    In recent years, surface imaging of various biological dynamics and biomechanical phenomena has seen a surge of interest. Imaging of processes such as exocytosis and kinesin motion are most effective when depth is limited to a very thin region of interest at the edge of the cell or specimen. However, many objects and processes of interest are of size scales below the diffraction limit for safe, visible wavelength illumination. Super-resolution imaging methods such as structured illumination microscopy and others have offered various compromises between resolution, imaging speed, and bio-compatibility. In this talk, I will present our most recent progress in plasmonic structured illumination microscopy (PSIM) and localized plasmonic structured illumination microscopy (LPSIM), and their applications in bio-imaging. We have achieved wide-field surface imaging with resolution down to 75 nm while maintaining reasonable speed and compatibility with biological specimens. These plasmonic enhanced super resolution techniques offer unique solutions to obtain 50nm spatial resolution and 50 frames per second wide imaging speed at the same time.

  17. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, P.C.

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  18. Correlative Instrumental Neutron Activation Analysis, Light Microscopy, Transmission Electron Microscopy, and X-ray Microanalysis for Qualitative and Quantitative Detection of Colloidal Gold Spheres in Biological Specimens

    NASA Astrophysics Data System (ADS)

    Hillyer, Julián F.; Albrecht, Ralph M.

    1998-10-01

    : Colloidal gold, conjugated to ligands or antibodies, is routinely used as a label for the detection of cell structures by light (LM) and electron microscopy (EM). To date, several methods to count the number of colloidal gold labels have been employed with limited success. Instrumental neutron activation analysis (INAA), a physical method for the analysis of the elemental composition of materials, can be used to provide a quantitative index of gold accumulation in bulk specimens. Given that gold is not naturally found in biological specimens in any substantial amount and that colloidal gold and ligand conjugates can be prepared to yield uniform bead sizes, the amount of label can be calculated in bulk biological samples by INAA. Here we describe the use of INAA, LM, transmission EM, and X-ray microanalysis (EDX) in a model to determine both distribution (localization) and amount of colloidal gold at the organ, tissue, cellular, and ultrastructural levels in whole animal systems following administration. In addition, the sensitivity for gold in biological specimens by INAA is compared with that of inductively coupled plasma mass spectrometry (ICP-MS). The correlative use of INAA, LM, TEM, and EDX can be useful, for example, in the quantitative and qualitative tracking of various labeled molecular species following administration in vivo.

  19. Immunological Insights into the Life and Times of the Extinct Tasmanian Tiger (Thylacinus cynocephalus)

    PubMed Central

    Old, Julie M.

    2015-01-01

    The thylacine (Thylacinus cynocephalus) was Australia’s largest marsupial carnivore until its extinction within the last century. There remains considerable interest and debate regarding the biology of this species. Studies of thylacine biology are now limited to preserved specimens, and parts thereof, as well as written historical accounts of its biology. This study describes the development of the immune tissues of a pouch young thylacine, one of only eleven in existence, and the only specimen to be histologically sectioned. The appearance of the immune tissue of the developing pouch young thylacine is compared to the immune tissues of extant marsupials, providing insights into the immunity, biology and ecology of the extinct thylacine. PMID:26655868

  20. Mechanical properties of biological specimens explored by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Longo, G.; Dietler, G.

    2013-04-01

    The atomic force microscope is a widely used surface scanning apparatus capable of reconstructing at a nanometric scale resolution the 3D morphology of biological samples. Due to its unique sensitivity, it is now increasingly used as a force sensor, to characterize the mechanical properties of specimens with a similar lateral resolution. This unique capability has produced, in the last years, a vast increase in the number of groups that have exploited the versatility and sensitivity of the instrument to explore the nanomechanics of various samples in the fields of biology, microbiology and medicine. In this review we outline the state of the art in this field, reporting the most interesting recent works involving the exploration of the nanomechanical properties of various biological samples.

  1. Impregnation of soft biological specimens with thermosetting resins and elastomers.

    PubMed

    von Hagens, G

    1979-06-01

    A new method for impregnation of biological specimens with thermosetting resins and elastomers is described. The method has the advantage that the original relief of the surface is retained. The impregnation is carried out by utilizing the difference between the high vapor tension of the intermedium (e.g., methylene chloride) and the low vapor tension of the solution to be polymerized. After impregnation, the specimen is subject to polymerization conditions without surrounding embedding material. The optical and mechanical properties can be selected by proper choice from various kinds of resins and different procedures, for example, by complete or incomplete impregnation. Acrylic resins, polyester resins, epoxy resins, polyurethanes and silicone rubber have been found suitable for the method. Excellent results have been obtained using transparent silicone rubber since after treatment the specimens are still flexible and resilient, and have retained their natural appearance.

  2. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  3. The joint US-USSR biological satellite program

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1979-01-01

    The joint US-USSR biological satellite missions carried out in 1975 and 1977 using Cosmos 782 and Cosmos 936 spacecraft, respectively, is reviewed. The experimental equipment and the biological specimens aboard the aircraft are considered, and it is noted that Cosmos 782, unlike Cosmos 936, carried no centrifuges for rats, although it did contain a centrifuge where a variety of biological specimens, including carrot tissue and fruit flies, were subjected to artificial gravity during space flight. The ground control groups, designed for biological experiments under simulated space-conditions, are taken into account. The U.S. experiments aboard the aircraft are described, with attention given to the experiments with rats, fish embryos, plants, and insects. Results of the experiments are noted, including the finding that space flight factors, especially weightlessness, have a measurable effect on the erythropoietic and musculoskeletal systems of rats

  4. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling).

    PubMed

    Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha

    2015-07-01

    Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.

  5. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches.

    PubMed

    Yahr, Rebecca; Schoch, Conrad L; Dentinger, Bryn T M

    2016-09-05

    The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  6. Geometric Triangular Chiral Hexagon Crystal-Like Complexes Organization in Pathological Tissues Biological Collision Order

    PubMed Central

    Díaz, Jairo A.; Jaramillo, Natalia A.; Murillo, Mauricio F.

    2007-01-01

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues.The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must be carried out to reproduce, manipulate and amplify their activity and probably use them as a base to develop new therapeutic strategies in cancer. PMID:18074008

  7. Detection of cracks on concrete surfaces by hyperspectral image processing

    NASA Astrophysics Data System (ADS)

    Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo

    2017-06-01

    All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly discretized for crack detection on concrete surfaces, considering cracking combined with the most usual concrete anomalies, namely biological colonization.

  8. Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) | Division of Cancer Prevention

    Cancer.gov

    The PLCO Cancer Screening Trial was a population-based randomized trial to determine the effects of screening on cancer-related mortality and secondary endpoints in more than 150,000 men and women aged 55 to 74. The PLCO Biorepository, accessible by the Cancer Data Access System (CDAS) web portal, contains about 2.7 million biologic specimens from intervention participants

  9. Population and biological parameters of selected fish species from the middle Xingu River, Amazon Basin.

    PubMed

    Camargo, M; Giarrizzo, T; Isaac, V J

    2015-08-01

    This study estimates the main biological parameters, including growth rates, asymptotic length, mortality, consumption by biomass, biological yield, and biomass, for the most abundant fish species found on the middle Xingu River, prior to the construction of the Belo Monte Dam. The specimens collected in experimental catches were analysed with empirical equations and length-based FISAT methods. For the 63 fish species studied, high growth rates (K) and high natural mortality (M) were related to early sexual maturation and low longevity. The predominance of species with short life cycles and a reduced number of age classes, determines high rates of stock turnover, which indicates high productivity for fisheries, and a low risk of overfishing.

  10. High-contrast 3D microscopic imaging of deep layers in a biological medium

    NASA Astrophysics Data System (ADS)

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2014-03-01

    Multilayer imaging of biological specimens is a demanding field of research, but scattering is one of the major obstacles in imaging the internal layers of a specimen. Although in many studies the biological object is assumed to be a weak scatterer, this condition is hardly satisfied for sub-millimeter sized organisms. The scattering medium is inhomogeneously distributed inside the specimen. Therefore, the scattering which occurs in the upper layers of a given internal layer of interest is different from the lower layers. That results in a different amount of collectable information for a specific point in the layer from each view. An opposed view dark-field digital holographic microscope (DHM) has been implemented in this work to collect the information concurrently from both views and increase the image quality. Implementing a DHM system gives the possibility to perform digital refocusing process and obtain multilayer images from each side without depth scanning of the object. The results have been presented and discussed here for a Drosophila embryo.

  11. NASA Bioculture System: From Experiment Definition to Flight Payload

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.; Almeida, Eduardo; Austin, Edward M.

    2014-01-01

    Starting in 2015, the NASA Bioculture System will be available to the science community to conduct cell biology and microbiology experiments on ISS. The Bioculture System carries ten environmentally independent Cassettes, which house the experiments. The closed loop fluids flow path subsystem in each Cassette provides a perfusion-based method for maintain specimen cultures in a shear-free environment by using a biochamber based on porous hollow fiber bioreactor technology. Each Cassette contains an incubator and separate insulated refrigerator compartment for storage of media, samples, nutrients and additives. The hardware is capable of fully automated or manual specimen culturing and processing, including in-flight experiment initiation, sampling and fixation, up to BSL-2 specimen culturing, and the ability to up to 10 independent cultures in parallel for statistical analysis. The incubation and culturing of specimens in the Bioculture System is a departure from standard laboratory culturing methods. Therefore, it is critical that the PI has an understanding the pre-flight test required for successfully using the Bioculture System to conduct an on-orbit experiment. Overall, the PI will conduct a series of ground tests to define flight experiment and on-orbit implementation requirements, verify biocompatibility, and determine base bioreactor conditions. The ground test processes for the utilization of the Bioculture System, from experiment selection to flight, will be reviewed. Also, pre-flight test schedules and use of COTS ground test equipment (CellMax and FiberCell systems) and the Bioculture System will be discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently,more » we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.« less

  13. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGES

    Beetz, T.; Howells, M. R.; Jacobsen, C.; ...

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  14. Infrared Microtransmission And Microreflectance Of Biological Systems

    NASA Astrophysics Data System (ADS)

    Hill, Steve L.; Krishnan, K.; Powell, Jay R.

    1989-12-01

    The infrared microsampling technique has been successfully applied to a variety of biological systems. A microtomed tissue section may be prepared to permit both visual and infrared discrimination. Infrared structural information may be obtained for a single cell, and computer-enhanced images of tissue specimens may be calculated from spectral map data sets. An analysis of a tissue section anomaly may gg suest eitherprotein compositional differences or a localized concentration of foreign matterp. Opaque biological materials such as teeth, gallstones, and kidney stones may be analyzed by microreflectance spectroscop. Absorption anomalies due to specular dispersion are corrected with the Kraymers-Kronig transformation. Corrected microreflectance spectra may contribute to compositional analysis and correlate diseased-related spectral differences to visual specimen anomalies.

  15. Utility of QR codes in biological collections

    PubMed Central

    Diazgranados, Mauricio; Funk, Vicki A.

    2013-01-01

    Abstract The popularity of QR codes for encoding information such as URIs has increased exponentially in step with the technological advances and availability of smartphones, digital tablets, and other electronic devices. We propose using QR codes on specimens in biological collections to facilitate linking vouchers’ electronic information with their associated collections. QR codes can efficiently provide such links for connecting collections, photographs, maps, ecosystem notes, citations, and even GenBank sequences. QR codes have numerous advantages over barcodes, including their small size, superior security mechanisms, increased complexity and quantity of information, and low implementation cost. The scope of this paper is to initiate an academic discussion about using QR codes on specimens in biological collections. PMID:24198709

  16. Utility of QR codes in biological collections.

    PubMed

    Diazgranados, Mauricio; Funk, Vicki A

    2013-01-01

    The popularity of QR codes for encoding information such as URIs has increased exponentially in step with the technological advances and availability of smartphones, digital tablets, and other electronic devices. We propose using QR codes on specimens in biological collections to facilitate linking vouchers' electronic information with their associated collections. QR codes can efficiently provide such links for connecting collections, photographs, maps, ecosystem notes, citations, and even GenBank sequences. QR codes have numerous advantages over barcodes, including their small size, superior security mechanisms, increased complexity and quantity of information, and low implementation cost. The scope of this paper is to initiate an academic discussion about using QR codes on specimens in biological collections.

  17. First instalment in resolution of the Banksia spinulosa complex (Proteaceae): B. neoanglica, a new species supported by phenetic analysis, ecology and geography

    PubMed Central

    Stimpson, Margaret L.; Weston, Peter H.; Telford, Ian R.H.; Bruhl, Jeremy J.

    2012-01-01

    Abstract Taxa in the Banksia spinulosa Sm. complex (Proteaceae) have populations with sympatric, parapatric and allopatric distributions and unclear or disputed boundaries. Our hypothesis is that under biological, phenetic and diagnosable species concepts that each of the currently named taxa within the Banksia spinulosa complex is a separate species. Based on specimens collected as part of this study, and data recorded from specimens in six Australian herbaria, complemented by phenetic analysis (semi–strong multidimensional scaling and UPGMA clustering) and a detailed morphological study, we investigated both morphological variation and geographic distribution in the Banksia spinulosa complex. All specimens used for this study are held at the N.C.W. Beadle Herbarium or the National Herbarium of New South Wales. In total 23 morphological characters (11 quantitative, five binary, and seven multistate characters) were analysed phenetically for 89 specimens. Ordination and cluster analysis resulted in individuals grouping strongly allowing recognition of distinct groups consistent with their recognition as separate species. Additional morphological analysis was completed on all specimens using leaf, floral, fruit and stem morphology, providing clear cut diagnosable groups and strong support for the recognition of Banksia spinulosa var. cunninghamii and Banksia spinulosa var. neoanglica as species. PMID:23170073

  18. A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations.

    PubMed

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Rupp, Jonathan D; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W

    2011-03-01

    Placental abruption is the most common cause of fetal deaths in motor-vehicle crashes, but studies on the mechanical properties of human placenta are rare. This study presents a new method of developing a stochastic visco-hyperelastic material model of human placenta tissue using a combination of uniaxial tensile testing, specimen-specific finite element (FE) modeling, and stochastic optimization techniques. In our previous study, uniaxial tensile tests of 21 placenta specimens have been performed using a strain rate of 12/s. In this study, additional uniaxial tensile tests were performed using strain rates of 1/s and 0.1/s on 25 placenta specimens. Response corridors for the three loading rates were developed based on the normalized data achieved by test reconstructions of each specimen using specimen-specific FE models. Material parameters of a visco-hyperelastic model and their associated standard deviations were tuned to match both the means and standard deviations of all three response corridors using a stochastic optimization method. The results show a very good agreement between the tested and simulated response corridors, indicating that stochastic analysis can improve estimation of variability in material model parameters. The proposed method can be applied to develop stochastic material models of other biological soft tissues.

  19. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenborn, B P

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  20. Preparation and Observation of Thick Biological Samples by Scanning Transmission Electron Tomography.

    PubMed

    Trépout, Sylvain; Bastin, Philippe; Marco, Sergio

    2017-03-12

    This report describes a protocol for preparing thick biological specimens for further observation using a scanning transmission electron microscope. It also describes an imaging method for studying the 3D structure of thick biological specimens by scanning transmission electron tomography. The sample preparation protocol is based on conventional methods in which the sample is fixed using chemical agents, treated with a heavy atom salt contrasting agent, dehydrated in a series of ethanol baths, and embedded in resin. The specific imaging conditions for observing thick samples by scanning transmission electron microscopy are then described. Sections of the sample are observed using a through-focus method involving the collection of several images at various focal planes. This enables the recovery of in-focus information at various heights throughout the sample. This particular collection pattern is performed at each tilt angle during tomography data collection. A single image is then generated, merging the in-focus information from all the different focal planes. A classic tilt-series dataset is then generated. The advantage of the method is that the tilt-series alignment and reconstruction can be performed using standard tools. The collection of through-focal images allows the reconstruction of a 3D volume that contains all of the structural details of the sample in focus.

  1. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  2. Consolidated Checklist of Hard Corals of the Genus Acropora Oken, 1815 (Scleractinia: Acroporidae) in North Borneo, East Malaysia.

    PubMed

    Robert, Rolando; Lee, Dexter Jiunn Herng; Rodrigues, Kenneth Francis; Hussein, Muhammad Ali Syed; Waheed, Zarinah; Kumar, S Vijay

    2016-11-29

    Acropora is the most biologically diverse group of reef-building coral, and its richness peaks at the Indo-Malay-Philippine Archipelago, the centre of global coral reef biodiversity. In this paper, we describe the species richness of Acropora fauna of North Borneo, East Malaysia, based on review of literature and as corroborated by voucher specimens. Eighty-three species of Acropora are reported here; four species are literature based and 79 are supported by voucher specimens that were subsequently photographed. New records for North Borneo were recorded for 12 species, including Acropora suharsonoi Wallace 1994 that was previously thought to be confined to a few islands along Lombok Strait, Indonesia. The diversity of Acropora in North Borneo is comparable to that of Indonesia and the Philippines, despite the area's smaller reef areas. This further reinforces its inclusion as part the global hotspot of coral biodiversity.

  3. A photoelastic modulator-based birefringence imaging microscope for measuring biological specimens

    NASA Astrophysics Data System (ADS)

    Freudenthal, John; Leadbetter, Andy; Wolf, Jacob; Wang, Baoliang; Segal, Solomon

    2014-11-01

    The photoelastic modulator (PEM) has been applied to a variety of polarimetric measurements. However, nearly all such applications use point-measurements where each point (spot) on the sample is measured one at a time. The main challenge for employing the PEM in a camera-based imaging instrument is that the PEM modulates too fast for typical cameras. The PEM modulates at tens of KHz. To capture the specific polarization information that is carried on the modulation frequency of the PEM, the camera needs to be at least ten times faster. However, the typical frame rates of common cameras are only in the tens or hundreds frames per second. In this paper, we report a PEM-camera birefringence imaging microscope. We use the so-called stroboscopic illumination method to overcome the incompatibility of the high frequency of the PEM to the relatively slow frame rate of a camera. We trigger the LED light source using a field-programmable gate array (FPGA) in synchrony with the modulation of the PEM. We show the measurement results of several standard birefringent samples as a part of the instrument calibration. Furthermore, we show results observed in two birefringent biological specimens, a human skin tissue that contains collagen and a slice of mouse brain that contains bundles of myelinated axonal fibers. Novel applications of this PEM-based birefringence imaging microscope to both research communities and industrial applications are being tested.

  4. RNA-Seq-based toxicogenomic assessment of fresh frozen and formalin-fixed tissues yields similar mechanistic insights.

    PubMed

    Auerbach, Scott S; Phadke, Dhiral P; Mav, Deepak; Holmgren, Stephanie; Gao, Yuan; Xie, Bin; Shin, Joo Heon; Shah, Ruchir R; Merrick, B Alex; Tice, Raymond R

    2015-07-01

    Formalin-fixed, paraffin-embedded (FFPE) pathology specimens represent a potentially vast resource for transcriptomic-based biomarker discovery. We present here a comparison of results from a whole transcriptome RNA-Seq analysis of RNA extracted from fresh frozen and FFPE livers. The samples were derived from rats exposed to aflatoxin B1 (AFB1 ) and a corresponding set of control animals. Principal components analysis indicated that samples were separated in the two groups representing presence or absence of chemical exposure, both in fresh frozen and FFPE sample types. Sixty-five percent of the differentially expressed transcripts (AFB1 vs. controls) in fresh frozen samples were also differentially expressed in FFPE samples (overlap significance: P < 0.0001). Genomic signature and gene set analysis of AFB1 differentially expressed transcript lists indicated highly similar results between fresh frozen and FFPE at the level of chemogenomic signatures (i.e., single chemical/dose/duration elicited transcriptomic signatures), mechanistic and pathology signatures, biological processes, canonical pathways and transcription factor networks. Overall, our results suggest that similar hypotheses about the biological mechanism of toxicity would be formulated from fresh frozen and FFPE samples. These results indicate that phenotypically anchored archival specimens represent a potentially informative resource for signature-based biomarker discovery and mechanistic characterization of toxicity. Copyright © 2014 John Wiley & Sons, Ltd.

  5. LBL Whole Frog Project

    Science.gov Websites

    specimens), X-ray CT imaging (industrial imaging of non-biological objects), and direct generation from experimental study unit for biology was developed with the assistance of several high school teachers, and

  6. A Chemoenzymatic Histology Method for O-GlcNAc Detection.

    PubMed

    Aguilar, Aime Lopez; Hou, Xiaomeng; Wen, Liuqing; Wang, Peng G; Wu, Peng

    2017-12-14

    Modification of nuclear and cytoplasmic proteins by the addition or removal of O-GlcNAc dynamically impacts multiple biological processes. Here, we present the development of a chemoenzymatic histology method for the detection of O-GlcNAc in tissue specimens. We applied this method to screen murine organs, uncovering specific O-GlcNAc distribution patterns in different tissue structures. We then utilized our histology method for O-GlcNAc detection in human brain specimens from healthy donors and donors with Alzheimer's disease and found higher levels of O-GlcNAc in specimens from healthy donors. We also performed an analysis using a multiple cancer tissue array, uncovering different O-GlcNAc levels between healthy and cancerous tissues, as well as different O-GlcNAc cellular distributions within certain tissue specimens. This chemoenzymatic histology method therefore holds great potential for revealing the biology of O-GlcNAc in physiopathological processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Herbarium of the university of malaga (Spain): vascular plants collection.

    PubMed

    García-Sánchez, José; Cabezudo, Baltasar

    2013-01-01

    The herbarium of University of Málaga (MGC Herbarium) is formed by four biological collections. The vascular plants collection (MGC-Cormof) is the main collection of the herbarium. MGC-Cormof dataset aims to digitize and publish data associated with over 76.000 specimens deposited in the collection, of which 97.2% of the specimens are identified at species level. Since 2011, the University of Malaga's Central Research Service (SCAI) has been responsible for maintaining the herbariums and the dataset. The collection is growing continuously, with an annual intake of about 1.500 specimens. Nearly 96% of the collection is digitized, by Herbar v3.7.1 software (F. Pando et al. 1996-2011), making over 73.000 specimens accessible through the GBIF network (http://data.gbif.org/datasets/resource/8105/). At present, 247 families and 8.110 taxa, distributed in angiosperms (93.97%), ferns and fern allies (4.89%) and gymnosperms (1.14%), constitute the MGC-Cormof collection. The families and genera best represented in the collection are Compositae, Leguminosae, Gramineae, Labiatae, Caryophyllaceae, Teucrium, Silene, Asplenium, Linaria and Quercus. Most of the specimens are from the Western Mediterranean Region, fundamentally Southern Spain (Andalusia: 82% of specimens) and Northern Morocco (2.17%). Approximately, 63% of the specimens are georeferenced. The identification of the specimens in the collection has been carried out by the plant biology department at the University of Malaga and plus 40% of the specimens has been reviewed by experts. The MGC-Cormof dataset has been revised by DarwinTest v3.2 tool (Ortega-Maqueda and Pando 2008) before being published in GBIF. The data included in this database are important for conservation works, taxonomy, flora, cartography, phenology, palynology, among others. El Herbario de la Universidad de Málaga (Herbario MGC) está constituido por cuatro colecciones biológicas. La colección de plantas vasculares (MGC Cormof) es la colección principal del herbario. La base de datos MGC-Cormof tiene como objetivo la digitalización y publicación de los datos asociados con los más de 76.000 ejemplares depositados en la colección, de los cuales el 97,2% de las muestras se encuentran identificadas a nivel de especie. Desde 2011, los Servicios Centrales de Investigación (SCAI) de la Universidad de Málaga son responsables de mantener el herbario y sus respectivas bases de datos. Esta colección está en continuo crecimiento, con una incorporación anual de unos 1.500 ejemplares. Casi el 96% de la colección está digitalizada, a través del programa Herbar v3.7.1 (F. Pando et al. 1996-2011) por lo que más de 73.000 especímenes son accesibles a través de la red de GBIF (http://data.gbif.org/datasets/resource/8105/). Actualmente, la colección MGC-Cormof está constituida por 247 familias y 8.110 taxones, distribuidos en angiospermas (93,97%), helechos y plantas afines (4,89%) y gimnospermas (1,14%). Las familias y géneros mejor representados en la colección son Compositae, Leguminosae, Gramineae, Labiatae, Caryophyllaceae, Teucrium, Silene, Asplenium, Linaria y Quercus. La mayoría de los especímenes provienen de la región del Mediterráneo Occidental, fundamentalmente del sur de España (Andalucía: 82% de las muestras) y del norte de Marruecos (2,17%). Aproximadamente, el 63% de las muestras se encuentran georreferenciadas. La identificación de los ejemplares de la colección ha sido realizada por personal del departamento de biología vegetal de la Universidad de Málaga y además un 40% de los ejemplares ha sido revisado por especialistas. La base de datos MGC-Cormof ha sido revisada mediante la herramienta DarwinTest v3.2 (Ortega-Maqueda and Pando 2008) antes de ser publicada en GBIF. Los datos incluidos en esta base de datos son importantes para trabajos de conservación, taxonomía, flora, cartografía, fenología, palinología, entre otros.

  8. Herbarium of the University of Malaga (Spain): Vascular Plants Collection

    PubMed Central

    García-Sánchez, José; Cabezudo, Baltasar

    2013-01-01

    Abstract The herbarium of University of Málaga (MGC Herbarium) is formed by four biological collections. The vascular plants collection (MGC-Cormof) is the main collection of the herbarium. MGC-Cormof dataset aims to digitize and publish data associated with over 76.000 specimens deposited in the collection, of which 97.2% of the specimens are identified at species level. Since 2011, the University of Malaga’s Central Research Service (SCAI) has been responsible for maintaining the herbariums and the dataset. The collection is growing continuously, with an annual intake of about 1.500 specimens. Nearly 96% of the collection is digitized, by Herbar v3.7.1 software (F. Pando et al. 1996–2011), making over 73.000 specimens accessible through the GBIF network (http://data.gbif.org/datasets/resource/8105/). At present, 247 families and 8.110 taxa, distributed in angiosperms (93.97%), ferns and fern allies (4.89%) and gymnosperms (1.14%), constitute the MGC-Cormof collection. The families and genera best represented in the collection are Compositae, Leguminosae, Gramineae, Labiatae, Caryophyllaceae, Teucrium, Silene, Asplenium, Linaria and Quercus. Most of the specimens are from the Western Mediterranean Region, fundamentally Southern Spain (Andalusia: 82% of specimens) and Northern Morocco (2.17%). Approximately, 63% of the specimens are georeferenced. The identification of the specimens in the collection has been carried out by the plant biology department at the University of Malaga and plus 40% of the specimens has been reviewed by experts. The MGC-Cormof dataset has been revised by DarwinTest v3.2 tool (Ortega-Maqueda and Pando 2008) before being published in GBIF. The data included in this database are important for conservation works, taxonomy, flora, cartography, phenology, palynology, among others. El Herbario de la Universidad de Málaga (Herbario MGC) está constituido por cuatro colecciones biológicas. La colección de plantas vasculares (MGC Cormof) es la colección principal del herbario. La base de datos MGC-Cormof tiene como objetivo la digitalización y publicación de los datos asociados con los más de 76.000 ejemplares depositados en la colección, de los cuales el 97,2% de las muestras se encuentran identificadas a nivel de especie. Desde 2011, los Servicios Centrales de Investigación (SCAI) de la Universidad de Málaga son responsables de mantener el herbario y sus respectivas bases de datos. Esta colección está en continuo crecimiento, con una incorporación anual de unos 1.500 ejemplares. Casi el 96% de la colección está digitalizada, a través del programa Herbar v3.7.1 (F. Pando et al. 1996–2011) por lo que más de 73.000 especímenes son accesibles a través de la red de GBIF (http://data.gbif.org/datasets/resource/8105/). Actualmente, la colección MGC-Cormof está constituida por 247 familias y 8.110 taxones, distribuidos en angiospermas (93,97%), helechos y plantas afines (4,89%) y gimnospermas (1,14%). Las familias y géneros mejor representados en la colección son Compositae, Leguminosae, Gramineae, Labiatae, Caryophyllaceae, Teucrium, Silene, Asplenium, Linaria y Quercus. La mayoría de los especímenes provienen de la región del Mediterráneo Occidental, fundamentalmente del sur de España (Andalucía: 82% de las muestras) y del norte de Marruecos (2,17%). Aproximadamente, el 63% de las muestras se encuentran georreferenciadas. La identificación de los ejemplares de la colección ha sido realizada por personal del departamento de biología vegetal de la Universidad de Málaga y además un 40% de los ejemplares ha sido revisado por especialistas. La base de datos MGC-Cormof ha sido revisada mediante la herramienta DarwinTest v3.2 (Ortega-Maqueda and Pando 2008) antes de ser publicada en GBIF. Los datos incluidos en esta base de datos son importantes para trabajos de conservación, taxonomía, flora, cartografía, fenología, palinología, entre otros. PMID:24194668

  9. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology

    PubMed Central

    Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C.M.; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J.A.; Lebert, Michael; Medina, F. Javier; Vagt, Nicole; Ullrich, Oliver

    2013-01-01

    Abstract Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature. Key Words: 2-D clinostat—3-D clinostat—Gravity—Magnetic levitation—Random positioning machine—Simulated microgravity—Space biology. Astrobiology 13, 1–17. PMID:23252378

  10. Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)

    NASA Astrophysics Data System (ADS)

    Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.

  11. The phantom leaf effect: a replication, part 1.

    PubMed

    Hubacher, John

    2015-02-01

    To replicate the phantom leaf effect and demonstrate a possible means to directly observe properties of the biological field. Thirty percent to 60% of plant leaves were amputated, and the remaining leaf sections were photographed with corona discharge imaging. All leaves were cut before placement on film. A total of 137 leaves were used. Plant leaves of 14 different species. Ninety-six phantom leaf specimens were successfully obtained; 41 specimens did not yield the phantom leaf effect. A normally undetected phantom "structure," possibly evidence of the biological field, can persist in the area of an amputated leaf section, and corona discharge can occur from this invisible structure. This protocol may suggest a testable method to study properties of conductivity and other parameters through direct observation of the complete biological field in plant leaves, with broad implications for biology and physics.

  12. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404

  13. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    PubMed

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  14. Kennedy Space Center Fixation Tube (KFT)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E.; Levine, Howard G.; Romero, Vergel

    2016-01-01

    Experiments performed on the International Space Station (ISS) frequently require the experimental organisms to be preserved until they can be returned to earth for analysis in the appropriate laboratory facility. The Kennedy Fixation Tube (KFT) was developed to allow astronauts to apply fixative, chemical compounds that are often toxic, to biological samples without the use of a glovebox while maintaining three levels of containment (Fig. 1). KFTs have been used over 200 times on-orbit with no leaks of chemical fixative. The KFT is composed of the following elements: a polycarbonate main tube where the fixative is loaded preflight, the sample tube where the plant or other biological specimens is placed during operations, the expansion plug, actuator, and base plug that provides fixative containment (Fig. 2). The main tube is pre-filled with 25 mL of fixative solution prior to flight. When actuated, the specimen contained within the sample tube is immersed with approximately 22 mL (+/- 2 mL) of the fixative solution. The KFT has been demonstrated to maintain its containment at ambient temperatures, 4degC refrigeration and -100 C freezing conditions.

  15. Life Sciences Division Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  16. Zone-forming fungi experiment MA-147

    NASA Technical Reports Server (NTRS)

    Rogers, T. D.; Taylor, G. R.; Brower, M. E.

    1976-01-01

    Streptomyces levoris was used as an experimental microorganism during the Apollo Soyuz Test Project to study specific biological considerations that may be influenced by space flight factors. Preflight, inflight, and postflight growth rates of the cultures were compared by photographing the specimens at regular intervals. Preliminary results based on visual comparison of the photographic data indicate that an increased growth rate occurred during space flight in two of eight flight specimens. The increased growth rate continued in the two specimens during the postflight period until termination of the experiment. Radiation effects may be responsible for the absence of spores in two areas of the last spore ring that was formed during the inflight period in one of the flight cultures; however, the radiation studies related to this experiment have not been completed. Distinct morphological differences in spore rings were observed when postflight spore rings were compared with inflight spore rings. Factors that are related to space flight recovery and reentry into earth gravity may have effected these alterations.

  17. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  18. Tropical Biological Drawings with Notes.

    ERIC Educational Resources Information Center

    Mitchelmore, June A.

    The annotated illustrations of biological specimens useful for illustrating the "tropical" topics dealt with in African secondary school biology courses are designed to serve a two-fold purpose. The diagrams are intended to show the pupil the structures he should be looking for in his laboratory work, with the textual material being an…

  19. ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.

    PubMed

    Deng, Yuchen; Chen, Yu; Zhang, Yan; Wang, Shengliu; Zhang, Fa; Sun, Fei

    2016-07-01

    Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Electrochemical imaging of cells and tissues

    PubMed Central

    Lin, Tzu-En; Rapino, Stefania; Girault, Hubert H.

    2018-01-01

    The technological and experimental progress in electrochemical imaging of biological specimens is discussed with a view on potential applications for skin cancer diagnostics, reproductive medicine and microbial testing. The electrochemical analysis of single cell activity inside cell cultures, 3D cellular aggregates and microtissues is based on the selective detection of electroactive species involved in biological functions. Electrochemical imaging strategies, based on nano/micrometric probes scanning over the sample and sensor array chips, respectively, can be made sensitive and selective without being affected by optical interference as many other microscopy techniques. The recent developments in microfabrication, electronics and cell culturing/tissue engineering have evolved in affordable and fast-sampling electrochemical imaging platforms. We believe that the topics discussed herein demonstrate the applicability of electrochemical imaging devices in many areas related to cellular functions. PMID:29899947

  1. Spectral imaging of histological and cytological specimens

    NASA Astrophysics Data System (ADS)

    Rothmann, Chana; Malik, Zvi

    1999-05-01

    Evaluation of cell morphology by bright field microscopy is the pillar of histopathological diagnosis. The need for quantitative and objective parameters for diagnosis has given rise to the development of morphometric methods. The development of spectral imaging for biological and medical applications introduced both fields to large amounts of information extracted from a single image. Spectroscopic analysis is based on the ability of a stained histological specimen to absorb, reflect, or emit photons in ways characteristic to its interactions with specific dyes. Spectral information obtained from a histological specimen is stored in a cube whose appellate signifies the two spatial dimensions of a flat sample (x and y) and the third dimension, the spectrum, representing the light intensity for every wavelength. The spectral information stored in the cube can be further processed by morphometric analysis and quantitative procedures. Such a procedure is spectral-similarity mapping (SSM), which enables the demarcation of areas occupied by the same type of material. SSM constructs new images of the specimen, revealing areas with similar stain-macromolecule characteristics and enhancing subcellular features. Spectral imaging combined with SSM reveals nuclear organization through the differentiation stages as well as in apoptotic and necrotic conditions and identifies specifically the nucleoli domains.

  2. A mechanical microcompressor for high resolution imaging of motile specimens

    PubMed Central

    Zinskie, Jessica A.; Shribak, Michael; Bruist, Michael F.; Aufderheide, Karl J.; Janetopoulos, Chris

    2015-01-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. PMID:26192819

  3. A mechanical microcompressor for high resolution imaging of motile specimens.

    PubMed

    Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris

    2015-10-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. X-ray microscopy with high-resolution zone plates: recent developments

    NASA Astrophysics Data System (ADS)

    Schneider, Gerd; Wilhein, Thomas; Niemann, Bastian; Guttman, P.; Schliebe, T.; Lehr, J.; Aschoff, H.; Thieme, Juergen; Rudolph, Dietbert M.; Schmahl, Guenther A.

    1995-09-01

    In order to expand the applications of x-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross- linked polymer chain electron beam resist allows us to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for x-ray microscopy was developed and implemented on the Gottingen x-ray microscope at BESSY. The effects of x ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free x-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T less than or equal to 130 K unfixed biological specimen can be exposed to a radiation dose of 109 - 1010 Gy without any observable structural changes. A multiple-angle viewing stage allows us to take stereoscopic images with the x-ray microscope, giving a 3D-impression of the object. As an example for the applications of x-ray microscopy in biology, erythrocytes infected by malaria parasite have been examined. Studies of the aggregation of hematite by sodium sulfate gives an example for the application of x-ray microscopy in the field of colloid research.

  5. 40 CFR 792.195 - Retention of records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mutagenicity tests, specimens of soil, water, and plants, and wet specimens of blood, urine, feces, biological... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Retention of records. 792.195 Section... ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Records and Reports § 792.195 Retention of records...

  6. 40 CFR 792.195 - Retention of records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mutagenicity tests, specimens of soil, water, and plants, and wet specimens of blood, urine, feces, biological... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Retention of records. 792.195 Section... ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Records and Reports § 792.195 Retention of records...

  7. 40 CFR 792.195 - Retention of records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mutagenicity tests, specimens of soil, water, and plants, and wet specimens of blood, urine, feces, biological... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Retention of records. 792.195 Section... ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Records and Reports § 792.195 Retention of records...

  8. 40 CFR 792.195 - Retention of records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mutagenicity tests, specimens of soil, water, and plants, and wet specimens of blood, urine, feces, biological... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Retention of records. 792.195 Section... ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Records and Reports § 792.195 Retention of records...

  9. 50 CFR 23.36 - What are the requirements for an export permit?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Ginseng Appendix-I Plants Artificially Propagated for Commercial Purposes Biological Specimens Captive... noncommercial purposes. (See § 23.46 for the export of specimens that originated at a commercial breeding... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD...

  10. 50 CFR 23.36 - What are the requirements for an export permit?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Ginseng Appendix-I Plants Artificially Propagated for Commercial Purposes Biological Specimens Captive... noncommercial purposes. (See § 23.46 for the export of specimens that originated at a commercial breeding... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD...

  11. 50 CFR 23.36 - What are the requirements for an export permit?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Ginseng Appendix-I Plants Artificially Propagated for Commercial Purposes Biological Specimens Captive... noncommercial purposes. (See § 23.46 for the export of specimens that originated at a commercial breeding... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD...

  12. 50 CFR 23.36 - What are the requirements for an export permit?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Ginseng Appendix-I Plants Artificially Propagated for Commercial Purposes Biological Specimens Captive... noncommercial purposes. (See § 23.46 for the export of specimens that originated at a commercial breeding... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD...

  13. Apparatus for generating x-ray holograms

    DOEpatents

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  14. Apparatus for generating x-ray holograms

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith; Solem, Johndale C.; Haddad, Waleed S.

    1990-01-01

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  15. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm resolutions. A novel method for recording in-line hologram is proposed which is called X-ray in-line holography with zone-plate magnification in this paper. The magnification factor of the micro zone plate imaging is about 103. The transverse resolution can be 48 nm in this method.

  16. Bioimaging of cells and tissues using accelerator-based sources.

    PubMed

    Petibois, Cyril; Cestelli Guidi, Mariangela

    2008-07-01

    A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.

  17. Operational considerations for the Space Station Life Science Glovebox

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  18. Fundamental technical elements of freeze-fracture/freeze-etch in biological electron microscopy.

    PubMed

    Carson, Johnny L

    2014-09-11

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to ultrarapid freezing rates, often in the presence of cryoprotective agents to limit ice crystal formation, with subsequent fracturing of the specimen at liquid nitrogen cooled temperatures under high vacuum. The resultant fractured surface is replicated and stabilized by evaporation of carbon and platinum from an angle that confers surface three-dimensional detail to the cast. This technique has proved particularly enlightening for the investigation of cell membranes and their specializations and has contributed considerably to the understanding of cellular form to related cell function. In this report, we survey the instrument requirements and technical protocol for performing freeze-fracture, the associated nomenclature and characteristics of fracture planes, variations on the conventional procedure, and criteria for interpretation of freeze-fracture images. This technique has been widely used for ultrastructural investigation in many areas of cell biology and holds promise as an emerging imaging technique for molecular, nanotechnology, and materials science studies.

  19. Space Station Biological Research Project Habitat: Incubator

    NASA Technical Reports Server (NTRS)

    Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

    2001-01-01

    Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

  20. A review of curcumin as a biological stain and as a self-visualizing pharmaceutical agent.

    PubMed

    Hope-Roberts, M; Horobin, R W

    2017-01-01

    Curcumin has been widely used to color textiles but, unlike other natural dyes such as hematoxylin or saffron, it rarely has been discussed as a biological stain. Aspects of the physicochemistry of curcumin relevant to biological staining and self-visualization, i.e., its acidic properties, lipophilicity, metal and pseudometal complexes, and optical properties, are summarized briefly here. Reports of staining of non-living biological specimens in sections and smears, both fixed and unfixed, including specimens embedded in resin, are summarized here. Staining of amyloid, boron and chromatin are outlined and possible reaction mechanisms discussed. Use of curcumin as a vital stain also is described, both in cultured monolayers and in whole organisms. Staining mechanisms are considered especially for the selective uptake of curcumin into cancer cells. Staining with curcumin labeled nanoparticles is discussed. Toxicity and safety issues associated with the dye also are presented.

  1. Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil.

    PubMed

    de Almeida, Roseli R P; Souto, Raimundo N P; Bastos, Cleber N; da Silva, Milton H L; Maia, José G S

    2009-09-01

    The essential oils of the specimens of Piper aduncum that occur in deforested areas of Brazilian Amazon, North Brazil, are rich in dillapiole (35-90%), a derivative of phenylpropene, to which are attributed biological properties. On the other hand, the oils of the specimens with occurrence in the Atlantic Forest, and Northeastern and Southeastern Brazil, do not contain dillapiole, but only terpene compounds such as (E)-nerolidol and linalool. One specimen existing in the Amazon was hydrodistilled. The obtained oil was fractioned on a silica chromatographic column, resulting in fractions rich in dillapiole (95.0-98.9%) utilized for analyses by GC and GC/MS, structural characterization by NMR, confirmation of their biological properties, and to obtain the isomer isodillapiole. Dillapiole showed a fungicide action against the fungus Clinipellis perniciosa (witches' broom) by inhibition of its basidiospores, in concentrations ranging from 0.6 to 1.0 ppm. The larvicide and insecticide actions of dillapiole were tested against the larvae and the adult insects of Anopheles marajoara and Aedes aegypti (malaria and dengue mosquitoes), resulting in mortality of the larvae (48 h, 100%) at a concentration of 100 ppm, and mortality of the insects (30 min, 100%) at a concentration of 600 ppm. The isomeric isodillapiole showed no significant activity in the same biological tests.

  2. The USDA Forest Service-RMRS forest fungi collection: Resource for fungal identification, developing biological controls, predicting invasive pathogens, and predicting potential impacts of climate change

    Treesearch

    Sara M. Ashiglar; John W. Hanna; Amy L. Ross-Davis; Ned B. Klopfenstein

    2014-01-01

    The Moscow Forestry Sciences Laboratory of the Rocky Mountain Research Station (RMRS) has a unique collection of forest/tree-associated fungi with over 15,000 living specimens. Based in Moscow, ID, this USDA APHIS-PPQ (Plant Protection and Quarantine) containment facility houses fungal archives from approximately 35 states and 30 countries. The collection involves the...

  3. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  4. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy

    PubMed Central

    Cha, Jae Won; Ballesta, Jerome; So, Peter T.C.

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration. PMID:20799824

  5. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

    PubMed

    Cha, Jae Won; Ballesta, Jerome; So, Peter T C

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

  6. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    PubMed Central

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  7. Using Plants to Explore the Nature & Structural Complexity of Life

    ERIC Educational Resources Information Center

    Howard, Ava R.

    2014-01-01

    Use of real specimens brings the study of biology to life. This activity brings easily acquired plant specimens into the classroom to tackle common alternative conceptions regarding life, size, complexity, the nature of science, and plants as multicellular organisms. The activity occurs after a discussion of the characteristics of life and engages…

  8. Conceptual design of a biological specimen holding facility. [Life Science Laboratory for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.; Yakut, M. M.

    1976-01-01

    An all-important first step in the development of the Spacelab Life Science Laboratory is the design of the Biological Specimen Holding Facility (BSHF) which will provide accommodation for living specimens for life science research in orbit. As a useful tool in the understanding of physiological and biomedical changes produced in the weightless environment, the BSHF will enable biomedical researchers to conduct in-orbit investigations utilizing techniques that may be impossible to perform on human subjects. The results of a comprehensive study for defining the BSHF, description of its experiment support capabilities, and the planning required for its development are presented. Conceptual designs of the facility, its subsystems and interfaces with the Orbiter and Spacelab are included. Environmental control, life support and data management systems are provided. Interface and support equipment required for specimen transfer, surgical research, and food, water and waste storage is defined. New and optimized concepts are presented for waste collection, feces and urine separation and sampling, environmental control, feeding and watering, lighting, data management and other support subsystems.

  9. FluoroSim: A Visual Problem-Solving Environment for Fluorescence Microscopy

    PubMed Central

    Quammen, Cory W.; Richardson, Alvin C.; Haase, Julian; Harrison, Benjamin D.; Taylor, Russell M.; Bloom, Kerry S.

    2010-01-01

    Fluorescence microscopy provides a powerful method for localization of structures in biological specimens. However, aspects of the image formation process such as noise and blur from the microscope's point-spread function combine to produce an unintuitive image transformation on the true structure of the fluorescing molecules in the specimen, hindering qualitative and quantitative analysis of even simple structures in unprocessed images. We introduce FluoroSim, an interactive fluorescence microscope simulator that can be used to train scientists who use fluorescence microscopy to understand the artifacts that arise from the image formation process, to determine the appropriateness of fluorescence microscopy as an imaging modality in an experiment, and to test and refine hypotheses of model specimens by comparing the output of the simulator to experimental data. FluoroSim renders synthetic fluorescence images from arbitrary geometric models represented as triangle meshes. We describe three rendering algorithms on graphics processing units for computing the convolution of the specimen model with a microscope's point-spread function and report on their performance. We also discuss several cases where the microscope simulator has been used to solve real problems in biology. PMID:20431698

  10. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.

    PubMed

    Chin, Lip Ket; Lee, Chau-Hwang; Chen, Bi-Chang

    2016-05-24

    Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.

  11. Hyperchromatic laser scanning cytometry

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Mittag, Anja

    2007-02-01

    In the emerging fields of high-content and high-throughput single cell analysis for Systems Biology and Cytomics multi- and polychromatic analysis of biological specimens has become increasingly important. Combining different technologies and staining methods polychromatic analysis (i.e. using 8 or more fluorescent colors at a time) can be pushed forward to measure anything stainable in a cell, an approach termed hyperchromatic cytometry. For cytometric cell analysis microscope based Slide Based Cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide. Based on the feature of relocation identical cells can be subsequently reanalyzed. In this manner data on the single cell level after manipulation steps can be collected. In this overview various components for hyperchromatic cytometry are demonstrated for a SBC instrument, the Laser Scanning Cytometer (Compucyte Corp., Cambridge, MA): 1) polychromatic cytometry, 2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), 3) differential photobleaching (differentiating fluorochromes by their different photostability), 4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and 5) photodestruction (destruction of FRET dyes). With the intelligent combination of several of these techniques hyperchromatic cytometry allows to quantify and analyze virtually all components of relevance on the identical cell. The combination of high-throughput and high-content SBC analysis with high-resolution confocal imaging allows clear verification of phenotypically distinct subpopulations of cells with structural information. The information gained per specimen is only limited by the number of available antibodies and by sterical hindrance.

  12. Harvestmen of the BOS Arthropod Collection of the University of Oviedo (Spain) (Arachnida, Opiliones).

    PubMed

    Merino-Sáinz, Izaskun; Anadón, Araceli; Torralba-Burrial, Antonio

    2013-01-01

    There are significant gaps in accessible knowledge about the distribution and phenology of Iberian harvestmen (Arachnida: Opiliones). Harvestmen accessible datasets in Iberian Peninsula are unknown, an only two other datasets available in GBIF are composed exclusively of harvestmen records. Moreover, only a few harvestmen data from Iberian Peninsula are available in GBIF network (or in any network that allows public retrieval or use these data). This paper describes the data associated with the Opiliones kept in the BOS Arthropod Collection of the University of Oviedo, Spain (hosted in the Department of Biología de Organismos y Sistemas), filling some of those gaps. The specimens were mainly collected from the northern third of the Iberian Peninsula. The earliest specimen deposited in the collection, dating back to the early 20(th) century, belongs to the P. Franganillo Collection. The dataset documents the collection of 16,455 specimens, preserved in 3,772 vials. Approximately 38% of the specimens belong to the family Sclerosomatidae, and 26% to Phalangidae; six other families with fewer specimens are also included. Data quality control was incorporated at several steps of digitisation process to facilitate reuse and improve accuracy. The complete dataset is also provided in Darwin Core Archive format, allowing public retrieval, use and combination with other biological, biodiversity of geographical variables datasets.

  13. In Vitro Analysis of Fibronectin-Modified Titanium Surfaces

    PubMed Central

    Chang, Yu-Chi; Lee, Wei-Fang; Feng, Sheng-Wei; Huang, Haw-Ming; Lin, Che-Tong; Teng, Nai-Chia; Chang, Wei Jen

    2016-01-01

    Background Glow discharge plasma (GDP) procedure is an effective method for grafting various proteins, including albumin, type I collagen, and fibronectin, onto a titanium surface. However, the behavior and impact of titanium (Ti) surface modification is yet to be unraveled. Purpose The purpose of this study is to evaluate and analyze the biological properties of fibronectin-grafted Ti surfaces treated by GDP. Materials and Methods Grade II Ti discs were initially cleaned and autoclaved to obtain original specimens. Subsequently, the specimens were GDP treated and grafted with fibronectin to form Ar-GDP (Argon GDP treatment only) and GDP-fib (fibronectin coating following GDP treatment) groups. Blood coagulation test and MG-63 cell culture were performed to evaluate the biological effects on the specimen. Results There was no significant difference between Ar-GDP and GDP-fib groups in blood compatibility analysis. While in the MTT test, cellular proliferation was benefited from the presence of fibronectin coating. The numbers of cells on Ar-GDP and GDP-fib specimens were greater than those in the original specimens after 24 h of culturing. Conclusions GDP treatment combined with fibronectin grafting favored MG-63 cell adhesion, migration, and proliferation on titanium surfaces, which could be attributed to the improved surface properties. PMID:26731536

  14. On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falcon-Gonzalez, J. M.; Bernal-Alvarado, J.; Sosa, M.

    2008-08-11

    The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard wasmore » used.« less

  15. Cryo-scanning transmission electron tomography of vitrified cells.

    PubMed

    Wolf, Sharon Grayer; Houben, Lothar; Elbaum, Michael

    2014-04-01

    Cryo-electron tomography (CET) of fully hydrated, vitrified biological specimens has emerged as a vital tool for biological research. For cellular studies, the conventional imaging modality of transmission electron microscopy places stringent constraints on sample thickness because of its dependence on phase coherence for contrast generation. Here we demonstrate the feasibility of using scanning transmission electron microscopy for cryo-tomography of unstained vitrified specimens (CSTET). We compare CSTET and CET for the imaging of whole bacteria and human tissue culture cells, finding favorable contrast and detail in the CSTET reconstructions. Particularly at high sample tilts, the CSTET signals contain more informative data than energy-filtered CET phase contrast images, resulting in improved depth resolution. Careful control over dose delivery permits relatively high cumulative exposures before the onset of observable beam damage. The increase in acceptable specimen thickness broadens the applicability of electron cryo-tomography.

  16. The taxonomic status of Japanese threadfin bream Nemipterus japonicus (Bloch, 1791) (Perciformes: Nemipteridae) with a redescription of this species from the south china sea based on morphology and DNA barcodes

    NASA Astrophysics Data System (ADS)

    Ning, Ping; Sha, Zhongli; Hebert, Paul D. N.; Russell, Barry

    2015-02-01

    Because of its importance as a food source, Nemipterus japonicus (Bloch, 1791) (Nemipteridae) or Japanese threadfin bream is the best studied of these taxa, and numerous investigations have examined its fisheries, its biology and biochemistry. Despite such intensive work, the taxonomic status of N. japonicus has never been seriously questioned and it is regarded as a common species, widely distributed throughout the Indo-Western Pacific Ocean. In fact, Bloch's description of the type specimen of N. japonicus has ambiguous collection data and lacks a designation for the type locality, though it is probably Java. In this paper, DNA barcode results based on COI gene support the existence of two geographically separated lineages of the Japanese threadfin bream, both being an Indian Ocean and western Pacific lineage, with 2.7% sequence divergence, and the results indicate a possible existing of some cryptic species. The two lineages also possess a diagnostic difference in their belly color, with specimens in the South China Sea having a silver belly, while those from the Indian Ocean isolate specimen have a yellow coloration. Based upon new collections from the South China Sea, this species from the western Pacific is morphologically redescribed and its details of DNA barcode diversity are shown for the future investigations.

  17. NASA Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  18. Preliminary Results on the Surface of a New Fe-Based Metallic Material after “In Vivo” Maintaining

    NASA Astrophysics Data System (ADS)

    Săndulache, F.; Stanciu, S.; Cimpoeşu, N.; Stanciu, T.; Cimpoeșu, R.; Enache, A.; Baciu, R.

    2017-06-01

    Abstract A new Fe-based alloy was obtained using UltraCast melting equipment. The alloy, after mechanical processing, was implanted in five rabbit specimens (with respect for the “in-bone” procedure). After 30 days of implantation the samples were recovered and analyzed by weight and surface state meanings. Scanning electron microscopy technique was used to determine the new compounds morphology from the metallic surface and X-ray dispersive energy spectroscopy for chemical analyze results. A bond between the metallic material and biological material of the bone was observed through increasing of sample weight and by SEM images. After the first set of tests, as the samples were extracted and biologically cleaned, the samples were ultrasonically cleaned and re-analyzed in order to establish the stability of the chemical compounds.

  19. From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition.

    PubMed

    Besnard, Guillaume; Christin, Pascal-Antoine; Malé, Pierre-Jean G; Lhuillier, Emeline; Lauzeral, Christine; Coissac, Eric; Vorontsova, Maria S

    2014-12-01

    Collections of specimens held by natural history museums are invaluable material for biodiversity inventory and evolutionary studies, with specimens accumulated over 300 years readily available for sampling. Unfortunately, most museum specimens yield low-quality DNA. Recent advances in sequencing technologies, so called next-generation sequencing, are revolutionizing phylogenetic investigations at a deep level. Here, the Illumina technology (HiSeq) was used on herbarium specimens of Sartidia (subfamily Aristidoideae, Poaceae), a small African-Malagasy grass lineage (six species) characteristic of wooded savannas, which is the C3 sister group of Stipagrostis, an important C4 genus from Africa and SW Asia. Complete chloroplast and nuclear ribosomal sequences were assembled for two Sartidia species, one of which (S. perrieri) is only known from a single specimen collected in Madagascar 100 years ago. Partial sequences of a few single-copy genes encoding phosphoenolpyruvate carboxylases (ppc) and malic enzymes (nadpme) were also assembled. Based on these data, the phylogenetic position of Malagasy Sartidia in the subfamily Aristidoideae was investigated and the biogeographical history of this genus was analysed with full species sampling. The evolutionary history of two genes for C4 photosynthesis (ppc-aL1b and nadpme-IV) in the group was also investigated. The gene encoding the C4 phosphoenolpyruvate caroxylase of Stipagrostis is absent from S. dewinteri suggesting that it is not essential in C3 members of the group, which might have favoured its recruitment into a new metabolic pathway. Altogether, the inclusion of historical museum specimens in phylogenomic analyses of biodiversity opens new avenues for evolutionary studies. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Instructional Methods for Human Anatomy and Cell Biology in Nurse Anesthesia Graduate Programs: A Survey With a Focus on Regional Anesthesia

    DTIC Science & Technology

    1997-07-14

    and Wieland (1995) examined Anatomy and Physiology as a predictor of success in undergraduate nursing students . They concluded that students who did... Student Registered Nurse Anesthetist (SRNA). 1991 -1995 1 st Medical Group, Langley Air Force Base, Virginia. Clinical Nurse, Special Care Unit...anesthetic techniques in situ, and 3 (4%) of the programs afford the students the opportunity to practice regional anesthetic techniques on the specimens

  1. Biomagnetic Imaging Applications using NV Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Glenn, David; Lesage, David; Connolly, Colin; Walsworth, Ronald

    2015-05-01

    We present new measurements of magnetic fields produced by a range of biological specimens using a wide-field magnetic imaging system based on NV centers in diamond. In particular, we show (i) the first magnetic images of a previously unstudied strain of magnetotactic bacteria, and (ii) a general platform for magnetic imaging of immunomagnetically labeled cells, which provides a useful alternative to traditional immunofluorescence techniques in the presence of strong autofluorescence and/or optically scattering media.

  2. The "wild shot": photography for more biology in natural history collections, not for replacing vouchers.

    PubMed

    Garrouste, Romain

    2017-05-24

    Recently a correspondence in Zootaxa (Ceríaco et al., 2016) with more than 450 signatories including taxonomists, curators and other taxonomy users from all continents has received wide attention and has stimulated extensive discussion (a true buzz) around the possible interpretations of the Code (ICZN) about photography in taxonomy (Researchgate website link). This short note was necessary to recall the necessity of preserved specimens as vouchers for taxonomy, in response to photography-based taxonomy (PBT) as defended by Pape et al. (2016), and in a broad sense, for all the life sciences. This had been widely discussed and argued by Dubois & Nemésio (2007) who concluded on the importance of vouchers in taxonomy. But if the subject of these papers and discussions are about photography as the only way to document a new species, none of them discussed really what photography could represent in enhancing knowledge in natural sciences based on collections of specimens including type series and in association with other media (video and sound).

  3. An Information Storage and Retrieval System for Biological and Geological Data. Interim Report.

    ERIC Educational Resources Information Center

    Squires, Donald F.

    A project is being conducted to test the feasibility of an information storage and retrieval system for museum specimen data, particularly for natural history museums. A pilot data processing system has been developed, with the specimen records from the national collections of birds, marine crustaceans, and rocks used as sample data. The research…

  4. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology.

    PubMed

    Herranz, Raul; Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C M; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J A; Lebert, Michael; Medina, F Javier; Vagt, Nicole; Ullrich, Oliver; van Loon, Jack J W A; Hemmersbach, Ruth

    2013-01-01

    Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.

  5. Light field creating and imaging with different order intensity derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Huan

    2014-10-01

    Microscopic image restoration and reconstruction is a challenging topic in the image processing and computer vision, which can be widely applied to life science, biology and medicine etc. A microscopic light field creating and three dimensional (3D) reconstruction method is proposed for transparent or partially transparent microscopic samples, which is based on the Taylor expansion theorem and polynomial fitting. Firstly the image stack of the specimen is divided into several groups in an overlapping or non-overlapping way along the optical axis, and the first image of every group is regarded as reference image. Then different order intensity derivatives are calculated using all the images of every group and polynomial fitting method based on the assumption that the structure of the specimen contained by the image stack in a small range along the optical axis are possessed of smooth and linear property. Subsequently, new images located any position from which to reference image the distance is Δz along the optical axis can be generated by means of Taylor expansion theorem and the calculated different order intensity derivatives. Finally, the microscopic specimen can be reconstructed in 3D form using deconvolution technology and all the images including both the observed images and the generated images. The experimental results show the effectiveness and feasibility of our method.

  6. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  7. The biobank of the Norwegian mother and child cohort Study: A resource for the next 100 years

    PubMed Central

    Rønningen, Kjersti S.; Paltiel, Liv; Meltzer, Helle M.; Nordhagen, Rannveig; Lie, Kari K.; Hovengen, Ragnhild; Haugen, Margaretha; Nystad, Wenche; Magnus, Per; Hoppin, Jane A.

    2007-01-01

    Introduction Long-term storage of biological materials is a critical component of any epidemiological study. In designing specimen repositories, efforts need to balance future needs for samples with logistical constraints necessary to process and store samples in a timely fashion. Objectives In the Norwegian Mother and Child Cohort Study (MoBa), the Biobank was charged with long-term storage of more than 380,000 biological samples from pregnant women, their partners and their children for up to 100 years. Methods Biological specimens include whole blood, plasma, DNA and urine; samples are collected at 50 hospitals in Norway. All samples are sent via ordinary mail to the Biobank in Oslo where the samples are registered, aliquoted and DNA extracted. DNA is stored at −20 °C while whole blood, urine and plasma are stored at − 80 °C. Results As of July 2006, over 227,000 sample sets have been collected, processed and stored at the Biobank. Currently 250–300 sets are received daily. An important part of the Biobank is the quality control program. Conclusion With the unique combination of biological specimens and questionnaire data, the MoBa Study will constitute a resource for many future investigations of the separate and combined effects of genetic, environmental factors on pregnancy outcome and on human morbidity, mortality and health in general. PMID:17031521

  8. [Application of polyguanidine solution for fixation of biological and anatomical specimens].

    PubMed

    Anichkov, N M; Danilova, I A; Riabinin, I A; Kipenko, A V

    2010-01-01

    A new method for fixation of biological material is described, and its effectiveness is compared to that one of formalin fixation. As an embalming agent, polyhexamethylenguanidine (PHMG) hydrochloride was used. Using the proposed method of fixation, the anatomical and histological preparations of human organs and of chick embryos at developmental 12 days, were produced. The anatomical preparations obtained show the appearance, similar to that of the recently removed organs. Histological preparations were free from significant distortions of the microscopic characteristics of the specimens, which are typical to the material fixed with formalin. The results of the study suggest the possibility of PHMG application in the morphological studies.

  9. Beam deceleration for block-face scanning electron microscopy of embedded biological tissue.

    PubMed

    Ohta, Keisuke; Sadayama, Shoji; Togo, Akinobu; Higashi, Ryuhei; Tanoue, Ryuichiro; Nakamura, Kei-ichiro

    2012-04-01

    The beam deceleration (BD) method for scanning electron microscopes (SEM) also referred to as "retarding" was applied to back-scattered electron (BSE) imaging of the flat block face of a resin embedded biological specimen under low accelerating voltage and low beam current conditions. BSE imaging was performed with 0-4 kV of BD on en bloc stained rat hepatocyte. BD drastically enhanced the compositional contrast of the specimen and also improved the resolution at low landing energy levels (1.5-3 keV) and a low beam current (10 pA). These effects also functioned in long working distance observation, however, stage tilting caused uncorrectable astigmatism in BD observation. Stage tilting is mechanically required for a FIB/SEM, so we designed a novel specimen holder to minimize the unfavorable tilting effect. The FIB/SEM 3D reconstruction using the new holder showed a reasonable contrast and resolution high enough to analyze individual cell organelles and also the mitochondrial cristae structures (~5 nm) of the hepatocyte. These results indicate the advantages of BD for block face imaging of biological materials such as cells and tissues under low-voltage and low beam current conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.

    PubMed

    Nebesářová, Jana; Hozák, Pavel; Frank, Luděk; Štěpan, Petr; Vancová, Marie

    2016-06-01

    Low voltage electron microscopes working in transmission mode, like LVEM5 (Delong Instruments, Czech Republic) working at accelerating voltage 5 kV or scanning electron microscope working in transmission mode with accelerating voltage below 1 kV, require ultrathin sections with the thickness below 20 nm. Decreasing of the primary electron energy leads to enhancement of image contrast, which is especially useful in the case of biological samples composed of elements with low atomic numbers. As a result treatments with heavy metals, like post-fixation with osmium tetroxide or ultrathin section staining, can by omitted. The disadvantage is reduced penetration ability of incident electrons influencing the usable thickness of the specimen resulting in the need of ultrathin sections of under 20 nm thickness. In this study we want to answer basic questions concerning the cutting of extremely ultrathin sections: Is it possible routinely and reproducibly to cut extremely thin sections of biological specimens embedded in commonly used resins with contemporary ultramicrotome techniques and under what conditions? Microsc. Res. Tech. 79:512-517, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. A new species of Echinolaophonte and record of E. armiger (Gurney, 1927) (Crustacea, Copepoda, Harpacticoida, Laophontidae) from the Caribbean with a key to species

    PubMed Central

    Fuentes-Reinés, Juan Manuel; Suárez-Morales, Eduardo

    2017-01-01

    Abstract A new species of the harpacticoid copepod genus Echinolaophonte is described here from specimens obtained during a biological survey of Rodadero Bay, a coastal system in the Colombian Caribbean. This species has been previously recorded as E. armiger Gurney, 1927 in different geographic areas (Indian and Pacific Oceans). The Colombian specimens recognized as E. villabonae sp. n. and true E. armiger are deemed as distinct species based on differences in several features of which the shape of the rostrum and the dorsal spinous process on the prosome are among the most distinctive. These and other characters are shared by specimens recorded as E. armiger from Caroline Islands and Australia that are now incorporated to the new species. The finding of the true E. armiger, previously known only from Egypt, the Texan coast, Brazil, and possibly Bermuda, constitutes the first record of this species in the western Caribbean and a regional range extension. A key to the identification of the 13 known species of the genus is also provided. PMID:29308028

  12. A new species of Echinolaophonte and record of E. armiger (Gurney, 1927) (Crustacea, Copepoda, Harpacticoida, Laophontidae) from the Caribbean with a key to species.

    PubMed

    Fuentes-Reinés, Juan Manuel; Suárez-Morales, Eduardo

    2017-01-01

    A new species of the harpacticoid copepod genus Echinolaophonte is described here from specimens obtained during a biological survey of Rodadero Bay, a coastal system in the Colombian Caribbean. This species has been previously recorded as E. armiger Gurney, 1927 in different geographic areas (Indian and Pacific Oceans). The Colombian specimens recognized as E. villabonae sp. n. and true E. armiger are deemed as distinct species based on differences in several features of which the shape of the rostrum and the dorsal spinous process on the prosome are among the most distinctive. These and other characters are shared by specimens recorded as E. armiger from Caroline Islands and Australia that are now incorporated to the new species. The finding of the true E. armiger , previously known only from Egypt, the Texan coast, Brazil, and possibly Bermuda, constitutes the first record of this species in the western Caribbean and a regional range extension. A key to the identification of the 13 known species of the genus is also provided.

  13. Factors Associated with Returning At-Home Specimen Collection Kits for HIV Testing among Internet-Using Men Who Have Sex with Men.

    PubMed

    Ricca, Alexandra V; Hall, Eric W; Khosropour, Christine M; Sullivan, Patrick S

    2016-11-01

    In the United States, men who have sex with men (MSM) are known to disproportionately have HIV. The authors sought to describe the acceptability of providing at-home dried blood spot specimen collection kits for HIV testing among MSM. Between August 2010 and December 2010, the authors recruited Internet-using, HIV-negative or -unknown MSM to participate in a 12-month study of behavioral risks. Eligible participants were mailed an at-home HIV test. Of the 896 men who were sent a test kit, 735 (82%) returned the kit. Returning a test kit was significantly associated with race (P = .002), highest level of education (P = .012), and annual income (P = .026). The adjusted odds of black, non-Hispanic men returning a test kit were about half of the odds of white, non-Hispanic men returning a test kit (adjusted odds ratios: 0.49; 95% confidence intervals: 0.31-0.78). Men who have sex with men are willing to provide biological specimens as part of an Internet-based HIV prevention study. © The Author(s) 2016.

  14. Biophysical and biological factors determining the ability to achieve long-term cryobiological preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, P.

    1997-12-01

    The BESTCapsule will maintain appropriate biological specimens for decades or centuries at cryogenic temperatures in the living state. Maintenance at temperatures below {approximately} {minus}140 C is not a problem. No ordinary chemical reactions in aqueous solutions can occur. The only source of damage will be the slow accumulation of physical damage to DNA from background ionizing radiation. But this source of damage should not become serious in less than a millennium. Rather, the main problem in cryopreservation is to devise procedures for cooling the biological specimens to {minus}196 C and returning them to normal temperatures without inflicting lethal injury. Regardlessmore » of the cell type, there are certain encompassing biophysical factors and constraints that determine whether they will survive or die during freezing and thawing. Superimposed on these may be special biological factors that apply to specific cell types. This paper will emphasize the former and give illustrative examples of the latter.« less

  15. Scientific experiments in the flight of the 1977 biological satellite (draft plan)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The physiological, biological, radiobiological and radiophysical experiments planned for the 1977 biological satellite are described. The biological experiments will involve rats, higher and lower plants, insects and other biological specimens carried on the biosatellite. The responses of these organisms to weightlessness, artificial gravity, cosmic radiation particles and general flight factors will be studied. The radiophysical experiments will investigate certain properties of cosmic radiation as well as the possibility of creating electrostatic and dielectric radiation shields under actual space-flight conditions.

  16. The Alaska Area Specimen Bank: a tribal-federal partnership to maintain and manage a resource for health research.

    PubMed

    Parkinson, Alan J; Hennessy, Thomas; Bulkow, Lisa; Smith, H Sally

    2013-01-01

    Banked biospecimens from a defined population are a valuable resource that can be used to assess early markers for illness or to determine the prevalence of a disease to aid the development of intervention strategies to reduce morbidity and mortality. The Alaska Area Specimen Bank (AASB) currently contains 266,353 residual biologic specimens (serum, plasma, whole blood, tissue, bacterial cultures) from 83,841 persons who participated in research studies, public health investigations and clinical testing conducted by the U.S. Public Health Service and Alaska Native tribal health organisations dating back to 1961. The majority (95.7%) are serum specimens, 77% were collected between 1981 and 1994 and 85% were collected from Alaska Native people. Oversight of the specimen bank is provided by a working group with representation from tribal, state and federal health organisations, the Alaska Area IRB and a specimen bank committee which ensures the specimens are used in accordance with policies and procedures developed by the working group.

  17. Specimen preparation for high-resolution cryo-EM

    PubMed Central

    Passmore, Lori A.; Russo, Christopher J.

    2016-01-01

    Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various specimen supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector and support technology. PMID:27572723

  18. Finding the patterns in complex specimens by improving the acquisition and analysis of x-ray spectromicroscopy data

    NASA Astrophysics Data System (ADS)

    Lerotic, Mirna

    Soft x-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. The high resolution imaging places a strong demand on the microscope stability and on the reproducibility of the scanned image field, and the volume of data necessitates the need for improved data analysis methods. This dissertation concerns two developments in extending the capability of soft x-ray transmission microscopes to carry out studies of chemical speciation at high spatial resolution. One development involves an improvement in x-ray microscope instrumentation: a new Stony Brook scanning transmission x-ray microscope which incorporates laser interferometer feedback in scanning stage positions. The interferometer is used to control the position between the sample and focusing optics, and thus improve the stability of the system. A second development concerns new analysis methods for the study of chemical speciation of complex specimens, such as those in biological and environmental science studies. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), where the specimen may be too complicated or provide at least some unknown spectral signatures, other approaches must be used. We describe here an approach that uses principal component analysis (similar to factor analysis) to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides. Also, we describe here an extension of that work employing an angle distance measure; this measure provides better classification based on spectral signatures alone in specimens with significant thickness variations. The method is illustrated using simulated data, and also to examine sporulation in the bacterium Clostridium sp.

  19. Raman spectroscopy and the search for life signatures in the ExoMars Mission*

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Hutchinson, Ian B.; Ingley, Richard

    2012-10-01

    The survival strategies of extremophilic organisms in terrestrially stressed locations and habitats are critically dependent on the production of protective chemicals in response to desiccation, low wavelength radiation insolation, temperature and the availability of nutrients. The adaptation of life to these harsh prevailing conditions involves the control of the substratal geology; the interaction between the rock and the organisms is critical and the biological modification of the geological matrix plays a very significant role in the overall survival strategy. Identification of these biological and biogeological chemical molecular signatures in the geological record is necessary for the recognition of the presence of extinct or extant life in terrestrial and extraterrestrial scenarios. Raman spectroscopic techniques have been identified as valuable instrumentation for the detection of life extra-terrestrially because of the use of non-invasive laser-based excitation of organic and inorganic molecules, and molecular ions with high discrimination characteristics; the interactions effected between biological organisms and their environments are detectable through the molecular entities produced at the interfaces, for which the vibrational spectroscopic band signatures are unique. A very important attribute of Raman spectroscopy is the acquisition of molecular experimental data non-destructively without the need for chemical or mechanical pre-treatment of the specimen; this has been a major factor in the proposal for the adoption of Raman instrumentation on robotic landers and rovers for planetary exploration, particularly for the forthcoming European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) ExoMars mission. In this paper, the merits of using Raman spectroscopy for the recognition of key molecular biosignatures from several terrestrial extremophile specimens will be illustrated. The data and specimens used in this presentation have been acquired from Arctic and Antarctic cold deserts and a meteorite crater, from which it will be possible to assess spectral data relevant for the detection of extra-terrestrial extremophilic life signatures.

  20. Water without windows: Evaluating the performance of open cell transmission electron microscopy under saturated water vapor conditions, and assessing its potential for microscopy of hydrated biological specimens.

    PubMed

    Cassidy, Cathal; Yamashita, Masao; Cheung, Martin; Kalale, Chola; Adaniya, Hidehito; Kuwahara, Ryusuke; Shintake, Tsumoru

    2017-01-01

    We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes.

  1. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    NASA Technical Reports Server (NTRS)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; hide

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  2. Evaluation of Intraosseous Fluid as an Alternative Biological Specimen in Postmortem Toxicology.

    PubMed

    Rodda, Luke N; Volk, Justin A; Moffat, Ellen; Williams, Chinyere M; Lynch, Kara L; Wu, Alan H B

    2018-04-01

    The postmortem redistribution phenomenon is an important factor in the interpretation of blood drug concentrations as a cause or factor in death. Intraosseous fluid (IOF) may serve as an alternative matrix for drug testing. Intraosseous fluid was collected from the left and right tibias and humerus of 29 decedents using the Arrow EZ-IO Intraosseous Vascular Access System. Standard autopsy specimens including blood were also collected at the same time during autopsy. Blood and IOF specimens were screened by immunoassay for opioids, fentanyl analogs, oxycodone, methadone, cocaine, methamphetamine, amphetamines, phencyclidine, tricyclic antidepressants, benzodiazepines and cannabinoids, using commercially available enzyme-linked immunosorbent assay (ELISA) kits. Correlation between cardiac/central blood ELISA and IOF ELISA results was mostly 100% for drug targets. Further blood confirmation analysis was performed by gas chromatography mass spectrometry also showed comparable correlation to IOF screen results. There was no significant difference between the IOF sites or sides of the body. This novel study supports the use of IOF as an alternative postmortem specimen for toxicological investigations as a potentially less-compromised tissue in decomposed or traumatized bodies. Preliminary data is provided for the screening of common drugs of abuse in IOF that may show to be subject to alternative rates of postmortem redistribution than to that of other biological specimens in future studies that quantitate IOF drug concentrations.

  3. Harvestmen of the BOS Arthropod Collection of the University of Oviedo (Spain) (Arachnida, Opiliones)

    PubMed Central

    Merino-Sáinz, Izaskun; Anadón, Araceli; Torralba-Burrial, Antonio

    2013-01-01

    Abstract There are significant gaps in accessible knowledge about the distribution and phenology of Iberian harvestmen (Arachnida: Opiliones). Harvestmen accessible datasets in Iberian Peninsula are unknown, an only two other datasets available in GBIF are composed exclusively of harvestmen records. Moreover, only a few harvestmen data from Iberian Peninsula are available in GBIF network (or in any network that allows public retrieval or use these data). This paper describes the data associated with the Opiliones kept in the BOS Arthropod Collection of the University of Oviedo, Spain (hosted in the Department of Biología de Organismos y Sistemas), filling some of those gaps. The specimens were mainly collected from the northern third of the Iberian Peninsula. The earliest specimen deposited in the collection, dating back to the early 20th century, belongs to the P. Franganillo Collection. The dataset documents the collection of 16,455 specimens, preserved in 3,772 vials. Approximately 38% of the specimens belong to the family Sclerosomatidae, and 26% to Phalangidae; six other families with fewer specimens are also included. Data quality control was incorporated at several steps of digitisation process to facilitate reuse and improve accuracy. The complete dataset is also provided in Darwin Core Archive format, allowing public retrieval, use and combination with other biological, biodiversity of geographical variables datasets. PMID:24146596

  4. The Morphological Characterization of the Forewing of the Manduca sexta Species for the Application of Biomimetic Flapping Wing Micro Air Vehicles

    DTIC Science & Technology

    2012-01-01

    16.64 Figure 3. Venation map of Manduca sexta forewing [11]. 2.4. Venation Insect wings are formed from a complex makeup of polymer based chains, Chitin ...for coloration, but may subtly influence flow patterns and boundary layer structure over wings [4, 24]. There is significant understanding of chitin ...biological specimen to vary the bonding chains, assemblage of nanofibers and crystalline structure, the material properties of chitin can vary over a

  5. Space Science

    NASA Image and Video Library

    2003-06-01

    NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  6. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  7. Identification of miRNA Signatures Associated with Epithelial Ovarian Cancer Chemoresistance with Further Biological and Functional Validation of Identified Key miRNAs

    DTIC Science & Technology

    2015-02-01

    OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 2. REPORT TYPE Annual 3 . DATES COVERED (From - To) 1/30...specimens from women diagnosed with stage III, grade 3 , papillary serous adenocarcinoma all treated with platinum-based chemotherapy. Furthermore, we...and reveal that targeting this miRNA as a novel therapeutic option in ovarian cancer (Task 3 ). 15. SUBJECT TERMS microRNA, ovarian cancer, platinum

  8. Sylvatic host associations of Triatominae and implications for Chagas disease reservoirs: a review and new host records based on archival specimens

    PubMed Central

    Weirauch, Christiane

    2017-01-01

    Background The 152 extant species of kissing bug include important vectors of the debilitating, chronic, and often fatal Chagas disease, which affects several million people mainly in Central and South America. An understanding of the natural hosts of this speciose group of blood-feeding insects has and will continue to aid ongoing efforts to impede the spread of Chagas disease. However, information on kissing bug biology is piecemeal and scattered, developed using methods with varying levels of accuracy over more than 100 years. Existing host records are heavily biased towards well-studied primary vector species and are derived from primarily three different types of observations, associational, immunological or DNA-based, with varying reliability. Methods We gather a comprehensive and unparalleled number of sources reporting host associations via rigorous targeted searches of publication databases to review all known natural, or sylvatic, host records including information on how each record was collected. We integrate this information with novel host records obtained via attempted amplification and sequencing of a ∼160 base pair (bp) region of the vertebrate 12S mitochondrial gene from the gastrointestinal tract of 64 archival specimens of Triatominae representing 19 species collected primarily in sylvatic habitats throughout the southern United States and Central and South America during the past 10 years. We show the utility of this method for uncovering novel and under-studied groups of Triatominae hosts, as well as detecting the presence of the Chagas disease pathogen via Polymerase Chain Reaction (PCR) of a ∼400 bp sequence of the trypanosome 18S gene. Results New host associations for several groups of arboreal mammals were determined including sloths, New World monkeys, coatis, arboreal porcupines and, for the first time as a host of any Triatominae, tayras. A thorough review of previously documented sylvatic hosts, organized by triatomine species and the type of observation (associational, antibody-based, or DNA-based), is presented in a phylogenetic context and highlights large gaps in our knowledge of Triatominae biology. Conclusion The application of DNA-based methods of host identification towards additional species of Triatominae, including rarely collected species that may require use of archival specimens, is the most efficient and promising way to resolve recognized shortfalls. PMID:28948106

  9. Preparation of Plant Samples for Phytochemical Research and the Study of Their Biological Activities

    USDA-ARS?s Scientific Manuscript database

    Prior to investigating plant natural products for biologically active constituents, it is necessary to establish guidelines and procedures for carefully collecting, cataloging, and storing specimens. All field collections should begin with detailed records on location, which should include a list o...

  10. Signal enhancement in optical projection tomography via virtual high dynamic range imaging of single exposure

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Dong, Di; Shi, Liangliang; Wang, Jun; Yang, Xin; Tian, Jie

    2015-03-01

    Optical projection tomography (OPT) is a mesoscopic scale optical imaging technique for specimens between 1mm and 10mm. OPT has been proven to be immensely useful in a wide variety of biological applications, such as developmental biology and pathology, but its shortcomings in imaging specimens containing widely differing contrast elements are obvious. The longer exposure for high intensity tissues may lead to over saturation of other areas, whereas a relatively short exposure may cause similarity with surrounding background. In this paper, we propose an approach to make a trade-off between capturing weak signals and revealing more details for OPT imaging. This approach consists of three steps. Firstly, the specimens are merely scanned in 360 degrees above a normal exposure but non-overexposure to acquire the projection data. This reduces the photo bleaching and pre-registration computation compared with multiple different exposures in conventional high dynamic range (HDR) imaging method. Secondly, three virtual channels are produced for each projection image based on the histogram distribution to simulate the low, normal and high exposure images used in the traditional HDR technology in photography. Finally, each virtual channel is normalized to the full gray scale range and three channels are recombined into one image using weighting coefficients optimized by a standard eigen-decomposition method. After applying our approach on the projection data, filtered back projection (FBP) algorithm is carried out for 3-dimentional reconstruction. The neonatal wild-type mouse paw has been scanned to verify this approach. Results demonstrated the effectiveness of the proposed approach.

  11. Defining contamination control requirements for non-human research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Funk, Glenn A.

    1992-01-01

    The use of non-human biological specimens for life sciences research on Space Station Freedom has generated concerns about spacecraft internal contamination, crew safety and hardware utility. Various NASA organizations convened to discuss the concerns and determine how they should be addressed. This paper will present the issues raised at this meeting, the process by which safety concerns were identified, and the means by which contamination control requirements for all biological payloads were recommended for incorporation into Space Station Freedom safety requirements. The microbiological, toxicological and particulate contamination criteria for long-term spaceflight will be based on realistic assessment of risk and hardware will be designed to meet established contamination criteria while facilitating crew operations, thereby meeting the needs of the investigator.

  12. X-ray microanalysis in the scanning electron microscope.

    PubMed

    Roomans, Godfried M; Dragomir, Anca

    2014-01-01

    X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semi-thick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures, and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.

  13. X-ray microanalysis in the scanning electron microscope.

    PubMed

    Roomans, Godfried M; Dragomir, Anca

    2007-01-01

    X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semithick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.

  14. Laser Plasma Soft X-ray Microscope with Wolter Mirrors for Observation of Biological Specimens in Air

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Aoki, Sadao

    2006-02-01

    A laser plasma soft X-ray microscope with Wolter mirrors was developed so that specimens could be set in the atmosphere. Silicon nitride membranes 100 nm thick were used as vacuum-tight windows. Using relatively large windows (0.46× 0.46 mm2), an adequate working distance for samples, which was approximately 1.2 mm, was assured. The endurance of the vacuum-tight window was measured briefly. Dry biological cells could be observed with resolution better than 100 nm. A preliminary observation of wet biological cells was carried out using a wet environmental sample holder which was composed of only two sheets of silicon nitride membrane. An X-ray micrograph of wet red blood cells from a chicken was obtained without apparent effects of radiation damage. The properties of a vacuum-tight window and a wet sample holder are discussed.

  15. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    NASA Astrophysics Data System (ADS)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques with regards to regression error and classification.

  16. Biological field stations: research legacies and sites for serendipity

    Treesearch

    William K. Michener; Keith L. Bildstein; Arthur McKee; Robert R. Parmenter; William W. Hargrove; Deedra McClearn; Mark Stromberg

    2009-01-01

    Biological field stations are distributed throughout North America, capturing much of the ecological variability present at the continental scale and encompassing many unique habitats. In addition to their role in supporting research and education, field stations offer legacies of data, specimens, and accumulated knowledge. Such legacies often provide the only...

  17. Biomonitoring: Uses and Considerations for Assessing Non-Occupational Human Exposure to Pesticides

    EPA Science Inventory

    Biomonitoring is an important tool that can be used to evaluate human exposure to pesticides by measuring the levels of pesticides, pesticide metabolites, or altered biological structures or functions in biological specimens or tissues (Barr et al., 2005b; Needham et al., 2005, 2...

  18. Photographic catalog of Platygastroidea (Hymenoptera) in the Institute of Ecology and Biological Resources (Hanoi, Vietnam)

    USDA-ARS?s Scientific Manuscript database

    All holotypes of Platygastroidea housed in the Institute of Ecology and Biological Resources were photographed and these images are now publicly available online, as are images of most species represented in this collection by paratypes alone. Following examination of these specimens, the following ...

  19. Gateway BioBox: A Compact, Multi-Purpose Biological Hardware Suite for In Situ Experiments and Analyses in Deep Space

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Parra, M.; Lane, M.; Almeida, E. A.; Space Biosciences Research Branch

    2018-02-01

    A compilation of NASA's smallest biological hardware systems (plus 1-g gravity controls and ancillary sensors) that will allow for a wide range of specimen cultivation and analysis, from molecular measurements to broader cell and tissue assays.

  20. A framework for assessing supply-side wildlife conservation.

    PubMed

    Phelps, J; Carrasco, L R; Webb, E L

    2014-02-01

    Market-based, supply-side interventions such as domestication, cultivation, and wildlife farming have been proposed as legal substitutes for wild-collected plants and animals in the marketplace. Based on the literature, we devised a list of the conditions under which supply-side interventions may yield positive conservation outcomes. We applied it to the trade of the orchid Rhynchostylis gigantea, a protected ornamental plant. We conducted a survey of R. gigantea at Jatujak Market in Bangkok, Thailand. Farmed (legal) and wild (illegal, protected) specimens of R. gigantea were sold side-by-side at market. These results suggest farmed specimens are not being substituted for wild plants in the marketplace. For any given set of physical plant characteristics (size, condition, flowers), the origin of the plants (wild vs. farmed) did not affect price. For all price classes, farmed plants were of superior quality to wild-collected plants on the basis of most physical variables. These results suggest wild and farmed specimens represent parallel markets and may not be substitutable goods. Our results with R. gigantea highlight a range of explanations for why supply-side interventions may lack effectiveness, for example, consumer preferences for wild-collected products and low financial incentives for farming. Our results suggest that market-based conservation strategies may not be effective by themselves and may be best utilized as supplements to regulation and education. This approach represents a broad, multidisciplinary evaluation of supply-side interventions that can be applied to other plant and animal species. © 2013 Society for Conservation Biology.

  1. Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran

    PubMed Central

    Chavshin, Ali Reza; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Hanafi-Bojd, Ahmad Ali; Raeisi, Ahmad; Nikpoor, Fatemeh

    2014-01-01

    Objective To identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran. Methods Wild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested–PCR method. Results Results showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples. Conclusions Presence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region. PMID:24144130

  2. Biological false-positive venereal disease research laboratory test in cerebrospinal fluid in the diagnosis of neurosyphilis - a case-control study.

    PubMed

    Zheng, S; Lin, R J; Chan, Y H; Ngan, C C L

    2018-03-01

    There is no clear consensus on the diagnosis of neurosyphilis. The Venereal Disease Research Laboratory (VDRL) test from cerebrospinal fluid (CSF) has traditionally been considered the gold standard for diagnosing neurosyphilis but is widely known to be insensitive. In this study, we compared the clinical and laboratory characteristics of true-positive VDRL-CSF cases with biological false-positive VDRL-CSF cases. We retrospectively identified cases of true and false-positive VDRL-CSF across a 3-year period received by the Immunology and Serology Laboratory, Singapore General Hospital. A biological false-positive VDRL-CSF is defined as a reactive VDRL-CSF with a non-reactive Treponema pallidum particle agglutination (TPPA)-CSF and/or negative Line Immuno Assay (LIA)-CSF IgG. A true-positive VDRL-CSF is a reactive VDRL-CSF with a concordant reactive TPPA-CSF and/or positive LIA-CSF IgG. During the study period, a total of 1254 specimens underwent VDRL-CSF examination. Amongst these, 60 specimens from 53 patients tested positive for VDRL-CSF. Of the 53 patients, 42 (79.2%) were true-positive cases and 11 (20.8%) were false-positive cases. In our setting, a positive non-treponemal serology has 97.6% sensitivity, 100% specificity, 100% positive predictive value and 91.7% negative predictive value for a true-positive VDRL-CSF based on our laboratory definition. HIV seropositivity was an independent predictor of a true-positive VDRL-CSF. Biological false-positive VDRL-CSF is common in a setting where patients are tested without first establishing a serological diagnosis of syphilis. Serological testing should be performed prior to CSF evaluation for neurosyphilis. © 2017 European Academy of Dermatology and Venereology.

  3. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne

    PubMed Central

    Welker, Frido; Hajdinjak, Mateja; Talamo, Sahra; Jaouen, Klervia; Dannemann, Michael; David, Francine; Julien, Michèle; Meyer, Matthias; Barnes, Ian; Brace, Selina; Kamminga, Pepijn; Fischer, Roman; Kessler, Benedikt M.; Stewart, John R.; Pääbo, Svante; Collins, Matthew J.; Hublin, Jean-Jacques

    2016-01-01

    In Western Europe, the Middle to Upper Paleolithic transition is associated with the disappearance of Neandertals and the spread of anatomically modern humans (AMHs). Current chronological, behavioral, and biological models of this transitional period hinge on the Châtelperronian technocomplex. At the site of the Grotte du Renne, Arcy-sur-Cure, morphological Neandertal specimens are not directly dated but are contextually associated with the Châtelperronian, which contains bone points and beads. The association between Neandertals and this “transitional” assemblage has been controversial because of the lack either of a direct hominin radiocarbon date or of molecular confirmation of the Neandertal affiliation. Here we provide further evidence for a Neandertal–Châtelperronian association at the Grotte du Renne through biomolecular and chronological analysis. We identified 28 additional hominin specimens through zooarchaeology by mass spectrometry (ZooMS) screening of morphologically uninformative bone specimens from Châtelperronian layers at the Grotte du Renne. Next, we obtain an ancient hominin bone proteome through liquid chromatography-MS/MS analysis and error-tolerant amino acid sequence analysis. Analysis of this palaeoproteome allows us to provide phylogenetic and physiological information on these ancient hominin specimens. We distinguish Late Pleistocene clades within the genus Homo based on ancient protein evidence through the identification of an archaic-derived amino acid sequence for the collagen type X, alpha-1 (COL10α1) protein. We support this by obtaining ancient mtDNA sequences, which indicate a Neandertal ancestry for these specimens. Direct accelerator mass spectometry radiocarbon dating and Bayesian modeling confirm that the hominin specimens date to the Châtelperronian at the Grotte du Renne. PMID:27638212

  4. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne.

    PubMed

    Welker, Frido; Hajdinjak, Mateja; Talamo, Sahra; Jaouen, Klervia; Dannemann, Michael; David, Francine; Julien, Michèle; Meyer, Matthias; Kelso, Janet; Barnes, Ian; Brace, Selina; Kamminga, Pepijn; Fischer, Roman; Kessler, Benedikt M; Stewart, John R; Pääbo, Svante; Collins, Matthew J; Hublin, Jean-Jacques

    2016-10-04

    In Western Europe, the Middle to Upper Paleolithic transition is associated with the disappearance of Neandertals and the spread of anatomically modern humans (AMHs). Current chronological, behavioral, and biological models of this transitional period hinge on the Châtelperronian technocomplex. At the site of the Grotte du Renne, Arcy-sur-Cure, morphological Neandertal specimens are not directly dated but are contextually associated with the Châtelperronian, which contains bone points and beads. The association between Neandertals and this "transitional" assemblage has been controversial because of the lack either of a direct hominin radiocarbon date or of molecular confirmation of the Neandertal affiliation. Here we provide further evidence for a Neandertal-Châtelperronian association at the Grotte du Renne through biomolecular and chronological analysis. We identified 28 additional hominin specimens through zooarchaeology by mass spectrometry (ZooMS) screening of morphologically uninformative bone specimens from Châtelperronian layers at the Grotte du Renne. Next, we obtain an ancient hominin bone proteome through liquid chromatography-MS/MS analysis and error-tolerant amino acid sequence analysis. Analysis of this palaeoproteome allows us to provide phylogenetic and physiological information on these ancient hominin specimens. We distinguish Late Pleistocene clades within the genus Homo based on ancient protein evidence through the identification of an archaic-derived amino acid sequence for the collagen type X, alpha-1 (COL10α1) protein. We support this by obtaining ancient mtDNA sequences, which indicate a Neandertal ancestry for these specimens. Direct accelerator mass spectometry radiocarbon dating and Bayesian modeling confirm that the hominin specimens date to the Châtelperronian at the Grotte du Renne.

  5. Designs for a quantum electron microscope.

    PubMed

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Evaluating performance in three-dimensional fluorescence microscopy

    PubMed Central

    MURRAY, JOHN M; APPLETON, PAUL L; SWEDLOW, JASON R; WATERS, JENNIFER C

    2007-01-01

    In biological fluorescence microscopy, image contrast is often degraded by a high background arising from out of focus regions of the specimen. This background can be greatly reduced or eliminated by several modes of thick specimen microscopy, including techniques such as 3-D deconvolution and confocal. There has been a great deal of interest and some confusion about which of these methods is ‘better’, in principle or in practice. The motivation for the experiments reported here is to establish some rough guidelines for choosing the most appropriate method of microscopy for a given biological specimen. The approach is to compare the efficiency of photon collection, the image contrast and the signal-to-noise ratio achieved by the different methods at equivalent illumination, using a specimen in which the amount of out of focus background is adjustable over the range encountered with biological samples. We compared spot scanning confocal, spinning disk confocal and wide-field/deconvolution (WFD) microscopes and find that the ratio of out of focus background to in-focus signal can be used to predict which method of microscopy will provide the most useful image. We also find that the precision of measurements of net fluorescence yield is very much lower than expected for all modes of microscopy. Our analysis enabled a clear, quantitative delineation of the appropriate use of different imaging modes relative to the ratio of out-of-focus background to in-focus signal, and defines an upper limit to the useful range of the three most common modes of imaging. PMID:18045334

  7. NASA Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    Pietrzyk, Robert; McMonigal, K. A.; Sams, C. F.; Johnson, M. A.

    2009-01-01

    The NASA Biological Specimen Repository (NBSR) has been established to collect, process, annotate, store, and distribute specimens under the authority of the NASA/JSC Committee for the Protection of Human Subjects. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The NBSR is a secure controlled storage facility that is used to maintain biological specimens over extended periods of time, under well-controlled conditions, for future use in approved human spaceflight-related research protocols. The repository supports the Human Research Program, which is charged with identifying and investigating physiological changes that occur during human spaceflight, and developing and implementing effective countermeasures when necessary. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can validate clinical hypotheses, study space-flight related changes, and investigate physiological markers All samples collected require written informed consent from each long duration crewmember. The NBSR collects blood and urine samples from all participating long duration ISS crewmembers. These biological samples are collected pre-flight at approximately 45 days prior to launch, during flight on flight days 15, 30, 60 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days following landing. The number of inflight sessions is dependent on the duration of the mission. Operations began in 2007 and as of October 2009, 23 USOS crewmembers have completed or agreed to participate in this project. As currently planned, these human biological samples will be collected from crewmembers covering multiple ISS missions until the end of U.S. presence on the ISS or 2017. The NBSR will establish guidelines for sample distribution that are consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. A NBSR Advisory Board composed of representatives of all participating agencies will be established to evaluate each request by an investigator for use of the samples to ensure the request reflects the mission of the NBSR.

  8. The Development of a Scanning Soft X-Ray Microscope.

    NASA Astrophysics Data System (ADS)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  9. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    PubMed

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  10. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  11. Classification of cryo electron microscopy images, noisy tomographic images recorded with unknown projection directions, by simultaneously estimating reconstructions and application to an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Zheng, Yili; Yin, Zhye; Doerschuk, Peter C.; Johnson, John E.

    2010-08-01

    Cryo electron microscopy is frequently used on biological specimens that show a mixture of different types of object. Because the electron beam rapidly destroys the specimen, the beam current is minimized which leads to noisy images (SNR substantially less than 1) and only one projection image per object (with an unknown projection direction) is collected. For situations where the objects can reasonably be described as coming from a finite set of classes, an approach based on joint maximum likelihood estimation of the reconstruction of each class and then use of the reconstructions to label the class of each image is described and demonstrated on two challenging problems: an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22.

  12. Exploring Biological and Geological Age-related Changes through Variations in Intra- and Intertooth Proteomes of Ancient Dentine.

    PubMed

    Procopio, Noemi; Chamberlain, Andrew T; Buckley, Michael

    2018-03-02

    Proteomic analyses are becoming more widely used in archeology not only due to the greater preservation of proteins in ancient specimens than DNA but also because they can offer different information, particularly relating to compositional preservation and potentially a means to estimate biological and geological age. However, it remains unclear to what extent different burial environments impact these aspects of proteome decay. Teeth have to date been much less studied than bone but are ideal to explore how proteins decay with time due to the negligible turnover that occurs in dentine relative to bone. We investigated the proteome variability and deamidation levels of different sections of molar teeth from archeological bovine mandibles as well as their mandibular bone. We obtained a greater yield of proteins from the crown of the teeth but did not find differences between the different molars analyzed within each mandible. We also obtained the best variety of protein from a well-preserved mandible that was not the youngest one in terms of chronological age, showing the influence of the preservation conditions on the final proteomic outcome. Intriguingly, we also noticed an increase in abundance levels of fetuin-A in biologically younger mandibles as reported previously, but the opposite trend in tooth dentine. Interestingly, we observed higher glutamine deamidation levels in teeth from the geologically oldest mandible despite it being the biologically youngest specimen, showing that the archeological age strongly impacts on the level of deamidations observed, much more so than biological aging. This indicates that the glutamine deamidation ratio of selected peptides may act as a good predictor of the relative geochronological age of archeological specimens.

  13. Defining Hepatocellular Carcinoma Subtypes and Treatment Responses in Patient-Derived Tumorgrafts

    DTIC Science & Technology

    2017-10-01

    models to uncover novel biology and establish a platform to study experimental therapeutics. 1. KEYWORDS: HCC, patient derived xenografts, siRNA...have distinct cell-intrinsic biology in PDX engraftment assays Major Task 1: Expand and characterize PDX models derived from surgical and biopsy HCC...intrinsic biology in PDX engraftment assays Major Task 1: Expand and characterize PDX models derived from surgical and biopsy HCC specimens Pre-task

  14. Comparative Analytical Utility of DNA Derived from Alternative Human Specimens for Molecular Autopsy and Diagnostics

    PubMed Central

    Klassen, Tara L.; von Rüden, Eva-Lotta; Drabek, Janice; Noebels, Jeffrey L.; Goldman, Alica M.

    2013-01-01

    Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card–based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms. PMID:22796560

  15. Assessment of the stability of DNA in specimens collected under conditions for drug testing-A pilot study.

    PubMed

    White, Robert M; Mitchell, John M; Hart, E Dale; Evans, Amy; Meaders, Meredith; Norsworthy, Sarah E; Hayes, Eugene D; Flegel, Ron; Maha, George C; Shaffer, Megan D; Hall, Erin M; Rogers, Kelley

    2018-02-01

    For forensic biological sample collections, the specimen donor is linked solidly to his or her specimen through a chain of custody (CoC) sometimes referenced as a chain of evidence. Rarely, a donor may deny that a urine or oral fluid (OF) specimen is his or her specimen even with a patent CoC. The goal of this pilot study was to determine the potential effects of short-term storage on the quality and quantity of DNA in both types of specimen under conditions that may be encountered with employment-related drug testing specimens. Fresh urine and freshly collected oral fluid all produced complete STR profiles. For the "pad" type OF collectors, acceptable DNA was extractable both from the buffer/preservative and the pad. Although fresh urine and OF produced complete STR profiles, partial profiles were obtained after storage for most samples. An exception was the DNA in the Quantisal OF collector, from which a complete profile was obtained for both freshly collected OF and stored OF. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  17. ON THE FREEZING AND IDENTIFICATION OF LIPID MONOLAYER 2-D ARRAYS FOR CRYOELECTRON MICROSCOPY

    PubMed Central

    Taylor, Dianne W.; Kelly, Deborah F.; Cheng, Anchi; Taylor, Kenneth A.

    2008-01-01

    Lipid monolayers provide a convenient vehicle for the crystallization of biological macromolecules for 3-D electron microscopy. Although numerous examples of 3-D images from 2-D protein arrays have been described from negatively stained specimens, only six structures have been done from frozen hydrated specimens. We describe here a method that makes high quality frozen-hydrated specimens of lipid monolayer arrays for cryoelectron microscopy. The method uses holey carbon films with patterned holes for monolayer recovery, blotting and plunge freezing to produce thin aqueous films which cover >90% of the available grid area. With this method, even specimens with relatively infrequent crystals can be screened using automated data collection techniques. Though developed for microscopic examination of 2-D arrays, the method may have wider application to the preparation of single particle specimens for 3-D image reconstruction. PMID:17561414

  18. A numerical analysis of the Born approximation for image formation modeling of differential interference contrast microscopy for human embryos

    NASA Astrophysics Data System (ADS)

    Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir

    2008-03-01

    The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.

  19. Biocore experiment. [Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Bailey, O. T.; Benton, E. V.; Cruty, M. R.; Harrison, G. A.; Haymaker, W.; Humason, G.; Leon, H. A.; Lindberg, R. L.; Look, B. C.; Lushbaugh, C. C.

    1973-01-01

    The Apollo 17 biological cosmic ray experiment to determine the effect of heavy cosmic ray particles on the brain and eyes is reported. The pocket mouse was selected as the biological specimen for the experiment. The radiation monitors, animal autopsy and animal processing are described, and the radiation effects on the scalp, retina, and viscera are analyzed.

  20. Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes

    PubMed Central

    Cope, Julia; Heumann, John; Hoenger, Andreas

    2011-01-01

    Cryo-electron tomography (cryo-ET) is an emerging 3-D reconstruction technology that combines the principles of tomographic 3-D reconstruction with the unmatched structural preservation of biological material embedded in vitreous ice. Cryo-ET is particularly suited to investigating cell-biological samples and large macromolecular structures that are too polymorphic to be reconstructed by classical averaging-based 3-D reconstruction procedures. This unit aims to make cryo-ET accessible to newcomers and discusses the specialized equipment required, as well as the relevant advantages and hurdles associated with sample preparation by vitrification and cryo-ET. Protocols describe specimen preparation, data recording and 3-D data reconstruction for cryo-ET, with a special focus on macromolecular complexes. A step-by-step procedure for specimen vitrification by plunge freezing is provided, followed by the general practicalities of tilt-series acquisition for cryo-ET, including advice on how to select an area appropriate for acquiring a tilt series. A brief introduction to the underlying computational reconstruction principles applied in tomography is described, along with instructions for reconstructing a tomogram from cryo-tilt series data. Finally, a method is detailed for extracting small subvolumes containing identical macromolecular structures from tomograms for alignment and averaging as a means to increase the signal-to-noise ratio and eliminate missing wedge effects inherent in tomographic reconstructions. PMID:21842467

  1. [Dosimetric aspects in studying the biological action of nonionizing electromagnetic radiation].

    PubMed

    Karpov, V N; Galkin, A A; Davydov, B I

    1984-01-01

    In order to clarify mechanisms of biological reactions, it is very important to study the absorption and spatial distribution of the absorbed electromagnetic energy. The procedures and methods of calculating the electromagnetic energy absorption of biological specimens exposed to nonionizing electromagnetic irradiation in a wide frequency range (0-300 GHz) are described. Also presented are formulas and plots to be used in calculating the specific absorption of the dose rate by biological specimens, with the inclusion of resonance absorption, polarization of the incident electromagnetic wave, presence of reflecting surfaces and grounding. The extrapolation of the average energy absorption from one animal species to another and to man is discussed, assuming that spatial and energy distributions are equivalent. The notion of the irradiation quality coefficient is introduced. The magnitudes of the coefficients are given as related to the irradiation frequency and polarization type. A mathematical relation is offered to determine the safety of a complex spectrum of electromagnetic irradiation. The relation takes into consideration different dimensionality of the parameters of the electromagnetic field in the low- and high-frequency ranges.

  2. Water without windows: Evaluating the performance of open cell transmission electron microscopy under saturated water vapor conditions, and assessing its potential for microscopy of hydrated biological specimens

    PubMed Central

    Yamashita, Masao; Cheung, Martin; Kalale, Chola; Adaniya, Hidehito; Kuwahara, Ryusuke; Shintake, Tsumoru

    2017-01-01

    We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes. PMID:29099843

  3. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    NASA Astrophysics Data System (ADS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-08-01

    An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  4. Biological collections and ecological/environmental research: a review, some observations and a look to the future.

    PubMed

    Pyke, Graham H; Ehrlich, Paul R

    2010-05-01

    Housed worldwide, mostly in museums and herbaria, is a vast collection of biological specimens developed over centuries. These biological collections, and associated taxonomic and systematic research, have received considerable long-term public support. The work remaining in systematics has been expanding as the estimated total number of species of organisms on Earth has risen over recent decades, as have estimated numbers of undescribed species. Despite this increasing task, support for taxonomic and systematic research, and biological collections upon which such research is based, has declined over the last 30-40 years, while other areas of biological research have grown considerably, especially those that focus on environmental issues. Reflecting increases in research that deals with ecological questions (e.g. what determines species distribution and abundance) or environmental issues (e.g. toxic pollution), the level of research attempting to use biological collections in museums or herbaria in an ecological/environmental context has risen dramatically during about the last 20 years. The perceived relevance of biological collections, and hence the support they receive, should be enhanced if this trend continues and they are used prominently regarding such environmental issues as anthropogenic loss of biodiversity and associated ecosystem function, global climate change, and decay of the epidemiological environment. It is unclear, however, how best to use biological collections in the context of such ecological/environmental issues or how best to manage collections to facilitate such use. We demonstrate considerable and increasingly realized potential for research based on biological collections to contribute to ecological/environmental understanding. However, because biological collections were not originally intended for use regarding such issues and have inherent biases and limitations, they are proving more useful in some contexts than in others. Biological collections have, for example, been particularly useful as sources of information regarding variation in attributes of individuals (e.g. morphology, chemical composition) in relation to environmental variables, and provided important information in relation to species' distributions, but less useful in the contexts of habitat associations and population sizes. Changes to policies, strategies and procedures associated with biological collections could mitigate these biases and limitations, and hence make such collections more useful in the context of ecological/environmental issues. Haphazard and opportunistic collecting could be replaced with strategies for adding to existing collections that prioritize projects that use biological collections and include, besides taxonomy and systematics, a focus on significant environmental/ecological issues. Other potential changes include increased recording of the nature and extent of collecting effort and information associated with each specimen such as nearby habitat and other individuals observed but not collected. Such changes have begun to occur within some institutions. Institutions that house biological collections should, we think, pursue a mission of 'understanding the life of the planet to inform its stewardship' (Krishtalka & Humphrey, 2000), as such a mission would facilitate increased use of biological collections in an ecological/environmental context and hence lead to increased appreciation, encouragement and support from the public for these collections, their associated research, and the institutions that house them.

  5. Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM

    PubMed Central

    Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.

    2012-01-01

    Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522

  6. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.

    PubMed

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W; Rupp, Jonathan D

    2009-11-13

    Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472+/-0.097 and the mean failure stress is 34.80+/-12.62 kPa. A first-order Ogden material model with ground-state shear modulus (mu) of 23.97+/-5.52 kPa and exponent (alpha(1)) of 3.66+/-1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.

  7. Increased epithelial cadherin expression among Japanese intestinal-type gastric cancers compared with specimens from American patients of European descent.

    PubMed

    Theuer, Charles P; Al-Kuran, Rasha; Akiyama, Yoshiyuki; Okumura, Minoru; Ziogas, Al; Carpenter, Philip M

    2006-04-01

    The different patterns of gastric cancer in the Far East and West have evolved to the extent that it has been suggested that the disease in Japan is biologically less aggressive than in the West. We studied paraffin-embedded, formalin-fixed tissue blocks from Japanese patients and American patients of European descent who had undergone gastrectomy for gastric cancer not involving the gastroesophageal junction. Specimens were staged (T stage), graded (Lauren classification), and biomarker expression (epithelial cadherin [E-cadherin], c-erbB2, Ki67, and p53) was quantified using immunohistochemistry without knowledge of the country of origin. E-cadherin was expressed in 49 per cent of malignant cells from Japanese specimens compared with 27 per cent of malignant cells from American specimens (P = 0.04). The expression of E-cadherin on diffuse cancers from the two countries was similar (34.4 in Japanese vs 41.5 in American, P = 0.92). E-cadherin expression, however, was significantly higher among intestinal cancers from the two countries: 56.3 per cent of cells from intestinal or mixed cancers from Japan (n = 32) expressed E-cadherin compared with 22.2 per cent of American specimens (n = 12; P = 0.008).-c-erbB2 was expressed on a higher proportion of malignant cells from American specimens (30% vs 22%; P = 0.20). E-cadherin expression, a favorable prognostic factor, is more common in Japanese intestinal-type gastric cancer not involving the gastroesophageal junction. If the biology of gastric cancer in the Far East is less aggressive than that in the United States, it is likely that treatments need to be individualized.

  8. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    PubMed

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Inventory of Amphibians and Reptiles at Mojave National Preserve: Final Report

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2007-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Mojave National Preserve in 2004-2005. Objectives for this inventory were to use fieldwork, museum collections, and literature review to document the occurrence of reptile and amphibian species occurring at MOJA. Our goals were to document at least 90% of the species present, provide one voucher specimen for each species identified, provide GIS-referenced distribution information for sensitive species, and provide all deliverables, including NPSpecies entries, as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys and nighttime road driving. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 31 species during our surveys. During literature review and museum specimen database searches, we found records for seven additional species from MOJA, elevating the documented species list to 38 (two amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 95% for Mojave National Preserve herpetofauna; 67% for amphibians and 97% for reptiles.

  10. [Reproductive biology of Lutjanus guttatus (Perciformes: Lutjanidae) in Utria National Park, Colombian Pacific].

    PubMed

    Correa-Herrera, Tatiana; Jiménez-Segura, Luz Fernanda

    2013-06-01

    Protected areas are important for natural population conservation since they work as refuge, feeding and breeding areas, where specimens should be exempt from human pressure. The generation of better criteria for management decisions and conservation of fishery resources, is based on the reproductive aspects of species that support fishing activities, since this information is related to the abundance, size and frequency of capture. With this aim, the reproductive biology of the spotted snapper Lutjanus guttatus was studied from April 2008 and February 2009 at the Utría National Park, Colombian Pacific. For this, we analyzed the volume of catch, size structure, sex ratio, fecundity, maturity size, breeding areas and seasons (n = 278), of daily landings of 21 units of artisanal fisheries in ten fishing grounds in the Park. Form all landings, we evaluated a total of 4319 individuals belonging to 84 species. Based on the number of individuals, Lutjanus guttatus ranked third in catches representing 6.4% (278 individuals), and 16th with 1.8% (95.79kg), based on catch biomass. The average weight was 0.34 kg +/- 0.25 kg, while 29 cm +/- 6.4 cm for total length. The total length-weight relationship had the best fit (Kruskal-Wallis, p < 0.05, n = 272) with the equation P(T) = 0.00000885* LT3.09. The occurrence of mature fish and high condition factors suggested a spawning season in June, September and October in sandy and rocky shores. This species showed an asynchronical gonadal development, with a mean sexual maturity size estimated in 23.5cm total length, and an absolute fecundity of 156 253.11 oocytes (mode of 4 microm diameter). We concluded that L. guttatus medium sizes observed indicated a fishing pressure on small size specimens (the minimum size being 18cm); thus, we recommend the implementation of minimum catch sizes based on the criterion of size at maturity LT100 (25.5 cm) and to apply seasonal fishing closures during the highest reproductive activity (June-October). However, it is necessary to obtain additional biological information with multi-year monitoring to improve fisheries management criteria in the area.

  11. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.

    PubMed

    Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge

    2014-04-01

    The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations.

  12. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems

    PubMed Central

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.

    2016-01-01

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. PMID:26732243

  13. Metabolome analysis for discovering biomarkers of gastroenterological cancer.

    PubMed

    Suzuki, Makoto; Nishiumi, Shin; Matsubara, Atsuki; Azuma, Takeshi; Yoshida, Masaru

    2014-09-01

    Improvements in analytical technologies have made it possible to rapidly determine the concentrations of thousands of metabolites in any biological sample, which has resulted in metabolome analysis being applied to various types of research, such as clinical, cell biology, and plant/food science studies. The metabolome represents all of the end products and by-products of the numerous complex metabolic pathways operating in a biological system. Thus, metabolome analysis allows one to survey the global changes in an organism's metabolic profile and gain a holistic understanding of the changes that occur in organisms during various biological processes, e.g., during disease development. In clinical metabolomic studies, there is a strong possibility that differences in the metabolic profiles of human specimens reflect disease-specific states. Recently, metabolome analysis of biofluids, e.g., blood, urine, or saliva, has been increasingly used for biomarker discovery and disease diagnosis. Mass spectrometry-based techniques have been extensively used for metabolome analysis because they exhibit high selectivity and sensitivity during the identification and quantification of metabolites. Here, we describe metabolome analysis using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Furthermore, the findings of studies that attempted to discover biomarkers of gastroenterological cancer are also outlined. Finally, we discuss metabolome analysis-based disease diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems

    DOE PAGES

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; ...

    2016-02-15

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less

  15. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less

  16. Re-thinking organisms: The impact of databases on model organism biology.

    PubMed

    Leonelli, Sabina; Ankeny, Rachel A

    2012-03-01

    Community databases have become crucial to the collection, ordering and retrieval of data gathered on model organisms, as well as to the ways in which these data are interpreted and used across a range of research contexts. This paper analyses the impact of community databases on research practices in model organism biology by focusing on the history and current use of four community databases: FlyBase, Mouse Genome Informatics, WormBase and The Arabidopsis Information Resource. We discuss the standards used by the curators of these databases for what counts as reliable evidence, acceptable terminology, appropriate experimental set-ups and adequate materials (e.g., specimens). On the one hand, these choices are informed by the collaborative research ethos characterising most model organism communities. On the other hand, the deployment of these standards in databases reinforces this ethos and gives it concrete and precise instantiations by shaping the skills, practices, values and background knowledge required of the database users. We conclude that the increasing reliance on community databases as vehicles to circulate data is having a major impact on how researchers conduct and communicate their research, which affects how they understand the biology of model organisms and its relation to the biology of other species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Search for biological specimens from midwestern parks: pitfalls and solutions

    USGS Publications Warehouse

    Bennett, J.P.

    2001-01-01

    This paper describes the results of searches of herbarium and museum collections and databases for records of vertebrate and vascular plant specimens that had been collected in 15 midwestern National Park System units. The records of these specimens were previously unknown to the National Park Service (NPS). In the course of our searches, numerous obstacles were encountered that prevented us from fully completing our task. These ranged from difficulties with the way databases are structured, to poor record-keeping, to incomplete or incorrect information on the actual location of specimens within collections. Despite these problems, we are convinced that the information to be gained from such searches in invaluable, and we believe that our experience, and the recommendations we offer, may well prove instructive to others undertaking this kind of work.

  18. A Monochromatic, Aberration-Corrected, Dual-Beam Low Energy Electron Microscope

    PubMed Central

    Mankos, Marian; Shadman, Khashayar

    2013-01-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. PMID:23582636

  19. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    PubMed

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM.

    PubMed

    Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J

    2016-08-01

    We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.

  1. Operational, quality, and risk management in the transfusion service: lessons learned.

    PubMed

    Goodnough, Lawrence Tim

    2012-07-01

    For general health care, the difference between quality and safety has been unclear for measurable patient outcomes. In contrast, in the transfusion service (TS), the relationship between quality and safety has been direct and demonstrable. Case studies are summarized to illustrate the relationship between operations, quality management, and risk management in the TS. In blood availability for elective surgery over 3 audited intervals, the incidence of patients undergoing elective surgery without available crossmatched blood that had been requested was 1:333, 1:328, and 1:225 for pre-quality improvement, post-quality improvement, and subsequent postintervention audit assessment, respectively. In event discovery reports (EDRs) over 2 years, incidence of biologic product deviation reports (Food and Drug Administration reportable) was successfully reduced from 60 biologic product deviation reports (12%) of 507 EDRs in 2009 to 42 (12%) of 336 EDRs in 2010. In wrong blood in tube, 102 specimens were identified (by a change in patient's ABO/Rh) from 176,711 type and screen/cross-match specimens received over a 5-year interval, detected either by previous patient record of ABO/Rh or by a second specimen for blood type confirmation implemented in our TS for the last 3 years. No known cases of "mismatched" red blood cell transfusion have occurred during this interval. There is an inverse relationship between resources/time expended on quality and risk management relative to volumes of operations in the TS. Laboratory-based initiatives that improve patient safety and clinical outcomes need to have resources aligned with the personnel and time required for quality management and risk management. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The Characterization of Material Properties and Structural Dynamics of the Manduca Sexta Forewing for Application to Flapping Wing Micro Air Vehicle Design

    DTIC Science & Technology

    2012-09-13

    2.1.1 Wing Morphology. Insect wings are formed from a complex makeup of polymer based chains, Chitin , that form the Cuticle, which provides the strong... Chitin , a long-chain polymer and a deriva- tive of glucose, is the main component of the exoskeletons and wings of insects . Due to the ability of the...biological specimen to vary the bonding chains, assemblage of nanofibers, and crystalline structure, the material properties of chitin can vary over a

  3. Light sheet-based fluorescence microscopy (LSFM) reduces phototoxic effects and provides new means for the modern life sciences

    NASA Astrophysics Data System (ADS)

    Pampaloni, Francesco; Ansari, Nari; Girard, Philippe; Stelzer, Ernst H. K.

    2011-07-01

    Most optical technologies are applied to flat, basically two-dimensional cellular systems. However, physiological meaningful information relies on the morphology, the mechanical properties and the biochemistry of a cell's context. A cell requires the complex three-dimensional relationship to other cells. However, the observation of multi-cellular biological specimens remains a challenge. Specimens scatter and absorb light, thus, the delivery of the probing light and the collection of the signal light become inefficient; many endogenous biochemical compounds also absorb light and suffer degradation of some sort (photo-toxicity), which induces malfunction of a specimen. In conventional and confocal fluorescence microscopy, whenever a single plane, the entire specimen is illuminated. Recording stacks of images along the optical Z-axis thus illuminates the entire specimen once for each plane. Hence, cells are illuminated 10-20 and fish 100-300 times more often than they are observed. This can be avoided by changing the optical arrangement. The basic idea is to use light sheets, which are fed into the specimen from the side and overlap with the focal plane of a wide-field fluorescence microscope. In contrast to an epi-fluorescence arrangement, such an azimuthal fluorescence arrangement uses two independently operated lenses for illumination and detection. Optical sectioning and no photo-toxic damage or photo-bleaching outside a small volume close to the focal plane are intrinsic properties. Light sheet-based fluorescence microscopy (LSFM) takes advantage of modern camera technologies. LSFM can be operated with laser cutters and for fluorescence correlation spectroscopy. During the last few years, LSFM was used to record zebrafish development from the early 32-cell stage until late neurulation with sub-cellular resolution and short sampling periods (60-90 sec/stack). The recording speed was five 4-Megapixel large frames/sec with a dynamic range of 12-14 bit. We followed cell movements during gastrulation, revealed the development during cell migration processes and showed that an LSFM exposes an embryo to 200 times less energy than a conventional and 5,000 times less energy than a confocal fluorescence microscope. Most recently, we implemented incoherent structured illumination in our DSLM. The intensity modulated light sheets can be generated with dynamic frequencies and allow us to estimate the effect of the specimen on the image formation process at various depths in objects of different age.

  4. Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament.

    PubMed

    Chen, Huan; Zhao, Xuefeng; Berwick, Zachary C; Krieger, Joshua F; Chambers, Sean; Kassab, Ghassan S

    2016-06-01

    There is a significant need for fixed biological tissues with desired structural and material constituents for tissue engineering applications. Here, we introduce the lung ligament as a fixed biological material that may have clinical utility for tissue engineering. To characterize the lung tissue for potential clinical applications, we studied glutaraldehyde-treated porcine pulmonary ligament (n = 11) with multiphoton microscopy (MPM) and conducted biaxial planar experiments to characterize the mechanical property of the tissue. The MPM imaging revealed that there are generally two families of collagen fibers distributed in two distinct layers: The first family largely aligns along the longitudinal direction with a mean angle of θ = 10.7 ± 9.3 deg, while the second one exhibits a random distribution with a mean θ = 36.6 ± 27.4. Elastin fibers appear in some intermediate sublayers with a random orientation distribution with a mean θ = 39.6 ± 23 deg. Based on the microstructural observation, a microstructure-based constitutive law was proposed to model the elastic property of the tissue. The material parameters were identified by fitting the model to the biaxial stress-strain data of specimens, and good fitting quality was achieved. The parameter e0 (which denotes the strain beyond which the collagen can withstand tension) of glutaraldehyde-treated tissues demonstrated low variability implying a relatively consistent collagen undulation in different samples, while the stiffness parameters for elastin and collagen fibers showed relatively greater variability. The fixed tissues presented a smaller e0 than that of fresh specimen, confirming that glutaraldehyde crosslinking increases the mechanical strength of collagen-based biomaterials. The present study sheds light on the biomechanics of glutaraldehyde-treated porcine pulmonary ligament that may be a candidate for tissue engineering.

  5. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other biological...

  6. Rapid biological speciation driven by tectonic evolution in New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.

    2016-02-01

    Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.

  7. [Research status and prospects of DNA test on difficult specimens].

    PubMed

    Dang, Hua-Wei; Mao, Jiong; Wang, Hui; Huang, Jiang-Ping; Bai, Xiao-Gang

    2012-02-01

    This paper reviews the advances of DNA detection on three types of difficult biological specimens including degraded samples, trace evidences and mixed samples. The source of different samples, processing methods and announcements were analyzed. New methods such as mitochondrial test system, changing the original experimental conditions, low-volume PCR amplification and new technologies such as whole genome amplification techniques, laser capture micro-dissection, and mini-STR technology in recent years are introduced.

  8. Norovirus Real Time RT-PCR Detection Technology Transition to the Joint Biological Identification and Diagnosis System (JBAIDS)

    DTIC Science & Technology

    2012-09-21

    virus and Southampton virus, and II (GII), which includes Bristol virus, Lordsdale virus, Toronto virus, Mexico virus, Hawaii virus and Snow Mountain...Shigella flexneriATCC12022 1 Negative Shigella sonnei ATCC25931 1 Negative Vibrio cholera (NAG) (Culture) 2 Negative Vibrio cholera (Ogawa...Culture) 1 Negative Vibrio cholera (Inaga) (Culture) 1 Negative Sapovivus (Known specimen extract) 2 Negative Rotavirus (Known specimen extract) 2

  9. LifeSat - A new research vehicle

    NASA Technical Reports Server (NTRS)

    Gilbreath, William P.; Dunning, Robert W.

    1990-01-01

    LifeSat is a reusable recoverable satellite that will support research in the gravitation and radiation biology fields. It can provide sustained lower gravitational levels than manned vehicles and can access orbits where specimens can be exposed to cosmic radiation. The satellite design encompasses environmental support for vertebrate, invertebrate and plant specimens ranging from cells and tissues up to small mammals. The first launch, in a series of 7 satellite flights, is planned for late 1995.

  10. The Responsible Use of Animals in Biology Classrooms Including Alternatives to Dissection. Monograph IV.

    ERIC Educational Resources Information Center

    Hairston, Rosalina V., Ed.

    This monograph discusses the care and maintenance of animals, suggests some alternative teaching strategies, and affirms the value of teaching biology as the study of living organisms, rather than dead specimens. The lessons in this monograph are intended as guidelines that teachers should adapt for their own particular classroom needs. Chapter 1,…

  11. Amber: Using "Tree Tears Turned to Stone" to Teach Biology, Ecology, and More!

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2009-01-01

    Amber is a fossil by itself, and can also contain plants and animals that lived millions of years ago. Some of these perfectly preserved specimens give scientists a convenient window to past environments, including the biology, ecology, geology, and chemistry of Earth's past. By using an interdisciplinary approach, we can demonstrate to students a…

  12. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE--HUMAN BIOLOGICAL MARKERS:BLOOD AND URINE SAMPLE COLLECTION AND ANALYSES (EOHSI-AP-209-040)

    EPA Science Inventory

    This procedure describes the process for collecting and analyzing blood and urine samples. The presence of chemical contaminants in biological specimens such as blood, urine, and hair represent a measure of the internal dose or body burden for a given individual derived from the ...

  13. Guidelines for Marine Biological Reference Collections. Unesco Reports in Marine Sciences, No. 22.

    ERIC Educational Resources Information Center

    Hureau, J. C.; Rice, A. L.

    This manual provides practical advice on the appropriation, conservation, and documentation of a marine biological reference collection, in response to needs expressed by Mediterranean Arab countries. A reference collection is defined as a working museum containing a series of specimens with which biologists are able to compare their own material.…

  14. The preanalytic phase in veterinary clinical pathology.

    PubMed

    Braun, Jean-Pierre; Bourgès-Abella, Nathalie; Geffré, Anne; Concordet, Didier; Trumel, Cathy

    2015-03-01

    This article presents the general causes of preanalytic variability with a few examples showing specialists and practitioners that special and improved care should be given to this too often neglected phase. The preanalytic phase of clinical pathology includes all the steps from specimen collection to analysis. It is the phase where most laboratory errors occur in human, and probably also in veterinary clinical pathology. Numerous causes may affect the validity of the results, including technical factors, such as the choice of anticoagulant, the blood vessel sampled, and the duration and conditions of specimen handling. While the latter factors can be defined, influence of biologic and physiologic factors such as feeding and fasting, stress, and biologic and endocrine rhythms can often not be controlled. Nevertheless, as many factors as possible should at least be documented. The importance of the preanalytic phase is often not given the necessary attention, although the validity of the results and consequent clinical decision making and medical management of animal patients would likely be improved if the quality of specimens submitted to the laboratory was optimized. © 2014 American Society for Veterinary Clinical Pathology.

  15. Examining the reproducibility of stable isotope ratios in the marine bivalve, Astarte borealis, from populations in the White Sea, Russia: implications for biological consequences of climate change

    NASA Astrophysics Data System (ADS)

    McNabb, Justin; Surge, Donna

    2015-04-01

    Shells of the marine bivalve, Astarte, are uniquely suited to investigate links between environmental/climate change and biological consequences because of their change in size and biogeographic distribution through time. For example, are there corresponding changes in lifespan and biogeographic distribution depending on warm vs. cold climate states? Does warm vs. cold climate state result in longer or shorter lifespans? Early studies of Astarte have documented a decrease in shell size through geologic time. Modern specimens are much smaller than those from the mid Pliocene at similar latitudes. Astarte had a wide latitudinal and cosmopolitan distribution in the western North Atlantic during the Oligocene to Pliocene. During the early Pleistocene, most of the warm-water species became extinct, and today, their biogeographic distribution is mostly restricted to the northern Pacific, Atlantic, and Arctic Oceans. To answer questions linking biological consequences and climate change, we must first decipher ontogenetic changes in shell growth of modern specimens. Preliminary data using isotope sclerochronology identified slowed shell growth from late summer to winter in modern specimens from the White Sea, Russia, possibly triggered by increasing freshwater input and decreasing temperatures. Here, we present new data examining the reproducibility of isotopic time series and season of slowed growth among modern individuals collected at the same time from the same population.

  16. Bioindicators in the MIDUS National Study: Protocol, Measures, Sample, and Comparative Context

    PubMed Central

    Love, Gayle Dienberg; Seeman, Teresa E.; Weinstein, Maxine; Ryff, Carol D.

    2010-01-01

    Objectives MIDUS is a national study of health and aging among individuals aged 25 to 74 at baseline(1995/96). Longitudinal survey assessments (2004/05), were followed by biological assessments on a subsample aged 35–85. To facilitate public use, we describe the protocol, measures, and sample. Methods Respondents traveled to clinics for a two-day data collection protocol that included fasting blood specimens, 12-hour urine specimen, medical history, physical exam, bone densitometry, a laboratory challenge (heart rate variability, blood pressure, respiration, salivary cortisol). Results Response rates for the biological protocol (N = 1,255) were 39.3%, or 43.1% (adjusting for those who could not be located or contacted). Reasons for non-participation were travel, family obligations, and being too busy. Respondents were comparable to the recruitment pool on most demographic characteristics and health assessments. Discussion Strengths of the protocol vis-à-vis other similar studies include opportunities to link biological factors with diverse content from other MIDUS projects. PMID:20876364

  17. A guide to the winged aphids (Homoptera) of Costa Rica.

    PubMed

    Voegtlin, David; Villalobos, William; Sánchez, Marco Vinicio; Saborio-R, Guido; Rivera, Carmen

    2003-05-01

    This guide is a compilation of limited morphological and biological information on the winged morphs of 60 species of aphids that have been collected in Costa Rica. It should not be viewed as a definitive taxonomic treatise on the aphids of Costa Rica, rather it is a tool that can be used to assist in research on the biology, host plant relationships, taxonomy, and virus transmission capabilities of aphids. Each species is covered in an identical manner. Morphological and biological information is provided in both Spanish and English as well as photographs of slide mounted specimens. Keys are provided to help the user in identifying the species. Most of the specimens examined were taken in traps associated with epidemiological studies. Limited field collecting has generated host records and these have been added to a list of the aphids of Central America that was compiled by Pamela Anderson and appended in the guide with her permission. The authors hope that this book will be useful to entomologists in Costa Rica and Central America.

  18. Type specimens and basic principles of avian taxonomy

    USGS Publications Warehouse

    Banks, Richard C.; Goodman, Steven M.; Lanyon, Scott M.; Schulenberg, Thomas S.

    1993-01-01

    "Ornithology" may be defined as the scientific study of birds. No aspect of avian biology, including management and conservation, can be carried out without reference by name to birds at some taxonomic level. Thus, the names of species of birds, and of groups of species, can fairly be considered to be of primary importance in ornithology. To be useful, these names themselves must be defined and related to biological entities. The definition of a name is accomplished by the designation of a "type." The International Code of Zoological Nomenclature, in paragraph (C) of Article 72 (third edition, 1985), establishes criteria for eligibility of a name-bearing type. The type of a species or sub-species name is the biological specimen defined by the name, and later use of the name implies specific or subspecific identity with the type. It is imperative, therefore, that a type be available for study and comparison so that the identity of other material with it can be established.

  19. Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion

    PubMed Central

    2009-01-01

    Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051

  20. Biospecimens | Division of Cancer Prevention

    Cancer.gov

    The PLCO Biorepository stores approximately 2.9 million biologic specimens collected from PLCO participants. Some of characteristics that make PLCO samples particularly valuable for etiologic and early marker research are: |

  1. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    PubMed

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Automated Microbiological Detection/Identification System

    PubMed Central

    Aldridge, C.; Jones, P. W.; Gibson, S.; Lanham, J.; Meyer, M.; Vannest, R.; Charles, R.

    1977-01-01

    An automated, computerized system, the AutoMicrobic System, has been developed for the detection, enumeration, and identification of bacteria and yeasts in clinical specimens. The biological basis for the system resides in lyophilized, highly selective and specific media enclosed in wells of a disposable plastic cuvette; introduction of a suitable specimen rehydrates and inoculates the media in the wells. An automated optical system monitors, and the computer interprets, changes in the media, with enumeration and identification results automatically obtained in 13 h. Sixteen different selective media were developed and tested with a variety of seeded (simulated) and clinical specimens. The AutoMicrobic System has been extensively tested with urine specimens, using a urine test kit (Identi-Pak) that contains selective media for Escherichia coli, Proteus species, Pseudomonas aeruginosa, Klebsiella-Enterobacter species, Serratia species, Citrobacter freundii, group D enterococci, Staphylococcus aureus, and yeasts (Candida species and Torulopsis glabrata). The system has been tested with 3,370 seeded urine specimens and 1,486 clinical urines. Agreement with simultaneous conventional (manual) cultures, at levels of 70,000 colony-forming units per ml (or more), was 92% or better for seeded specimens; clinical specimens yielded results of 93% or better for all organisms except P. aeruginosa, where agreement was 86%. System expansion in progress includes antibiotic susceptibility testing and compatibility with most types of clinical specimens. Images PMID:334798

  3. Overview on Techniques to Construct Tissue Arrays with Special Emphasis on Tissue Microarrays

    PubMed Central

    Vogel, Ulrich

    2014-01-01

    With the advent of new histopathological staining techniques (histochemistry, immunohistochemistry, in situ hybridization) and the discovery of thousands of new genes, mRNA, and proteins by molecular biology, the need grew for a technique to compare many different cells or tissues on one slide in a cost effective manner and with the possibility to easily track the identity of each specimen: the tissue array (TA). Basically, a TA consists of at least two different specimens per slide. TAs differ in the kind of specimens, the number of specimens installed, the dimension of the specimens, the arrangement of the specimens, the embedding medium, the technique to prepare the specimens to be installed, and the technique to construct the TA itself. A TA can be constructed by arranging the tissue specimens in a mold and subsequently pouring the mold with the embedding medium of choice. In contrast, preformed so-called recipient blocks consisting of the embedding medium of choice have punched, drilled, or poured holes of different diameters and distances in which the cells or tissue biopsies will be deployed manually, semi-automatically, or automatically. The costs of constructing a TA differ from a few to thousands of Euros depending on the technique/equipment used. Remarkably high quality TAs can be also achieved by low cost techniques. PMID:27600339

  4. [Incidence and clinicopathological characteristics of incidental prostatic adenocarcinoma in radical cystoprostatectomy specimens].

    PubMed

    Shen, Qi; Hu, Shuai; Li, Jun; Wang, Jing-hua; He, Qun

    2014-08-18

    To analyze the incidence and clinicopathological features of incidental prostate cancer (IPCa) in specimens from radical cystoprostatectomy (RCP) for bladder cancer. We retrospectively reviewed the histopathological features of 865 male patients who underwent an RCP between January 2005 and March 2014. No patients had preoperative clinical or biological suspicion of prostate cancer (PCa). Among the 865 specimens, IPCa was diagnosed in 235 patients (27.2%). Most tumors (228/235, 97.0%) were organ-confined (pT2); And 7 cases (3.0 %) of them were diagnosed at T3. Gleason score was < 6 in 84 cases (35.7 %), 6 in 77 cases (32.8%), 7 in 64 cases (27.2 %), and > 7 in 10 cases (4.3 %). The rate of incidentally diagnosed IPCa was 8.5%, and that in RCP and TURP specimens was 19.5% and 4.4% respectively. The majority of these IPCas were organ-confined. Gleason score in most of these specimens was ≤ 7. Moreover, prostate examination in the RCP specimen should be careful and sufficient, whole-amount prostate sections improve diagnostic accuracy.

  5. Kits in Motion

    ERIC Educational Resources Information Center

    Gee, Maureen

    1975-01-01

    Discusses three kits developed by museums in British Columbia for use in rural classrooms. The science kit on marine biology consists of modules which included specimens, books, audiovisual materials and student activities. (BR)

  6. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  7. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  8. Acknowledging tissue donation: Human cadaveric specimens in musculoskeletal research.

    PubMed

    Winkelmann, Andreas; Heinze, Anne-Kathrin; Hendrix, Sven

    2016-01-01

    Human cadaveric specimens are an important resource for research, particularly in biomechanical studies, but their use also raises ethical questions and cannot simply be taken for granted. It was asked how much information authors publishing musculoskeletal research actually give about such specimens and about how they were acquired. The aim was to formulate recommendations on how this reporting might be improved. Relevant articles published between 2009 and 2012 in four North American or European journals were scanned for information regarding the characteristics of the human specimens used, their institutional source and the ethical or legal context of their acquisition. While the majority of articles report biological characteristics of specimens (sex, age at death, preservation method), only 40% of articles refer to body donation, only 23% report the institution that provided specimens, and only 17% refer to some kind of formalized approval of their research. There were regional and journal-to-journal differences. No standard for reporting studies involving human specimens could be detected. It is suggested that such a standard be developed by researchers and editors. Information on the source of specimens and on the ethical or legal basis should be regularly reported to acknowledge this unique research resource and to preserve the good relationship between researchers and the communities, that provide the required specimens by body donation and upon which researchers depend. © 2015 Wiley Periodicals, Inc.

  9. Validation of RNA-based molecular clonotype analysis for virus-specific CD8+ T-cells in formaldehyde-fixed specimens isolated from peripheral blood

    PubMed Central

    van Bockel, David; Price, David A.; Asher, Tedi E.; Venturi, Vanessa; Suzuki, Kazuo; Warton, Kristina; Davenport, Miles P.; Cooper, David A.; Douek, Daniel C.; Kelleher, Anthony D.

    2007-01-01

    Recent advances in the field of molecular clonotype analysis have enabled detailed repertoire characterization of viably isolated antigen-specific T cell populations directly ex vivo. However, in the absence of a biologically contained FACS facility, peripheral blood mononuclear cell (PBMC) preparations derived from patients infected with agents such as HIV must be formaldehyde fixed to inactivate the pathogen; this procedure adversely affects nucleic acid template quality. Here, we developed and validated a method to amplify and sequence mRNA species derived from formaldehyde fixed PBMC specimens. Antigen-specific CD8+ cytotoxic T-lymphocyte populations were identified with standard fluorochrome-conjugated peptide-major histocompatibility complex class I tetramers refolded around synthetic peptides representing immunodominant epitopes from HIV p24 Gag (KRWII[M/L]GLNK/HLA B*2705) and CMV pp65 (NLVPMVATV/HLA A*0201 and TPRVTGGGAM/HLA B*0702), and acquired in separate laboratories with or without fixation. In the presence of proteinase K pre-treatment, the observed antigen-specific CD8+ T-cell repertoire determined by molecular clonotype analysis was statistically no different whether derived from fixed or unfixed PBMC. However, oligo-dT recovery methods were not suitable for use with fixed tissue as significant skewing of clonotypic representation was observed. Thus, we have developed a reliable RNA-based method for molecular clonotype analysis that is compatible with formaldehyde fixation and therefore suitable for use with primary human samples isolated by FACS outside the context of a biological safety level 3 containment facility. PMID:17716684

  10. Rediscovery of the enigmatic fungus-farming ant "Mycetosoritis" asper Mayr (Hymenoptera: Formicidae): Implications for taxonomy, phylogeny, and the evolution of agriculture in ants

    PubMed Central

    Ješovnik, Ana; Vasconcelos, Heraldo L.; Bacci, Mauricio; Schultz, Ted R.

    2017-01-01

    We report the rediscovery of the exceedingly rarely collected and enigmatic fungus-farming ant species Mycetosoritis asper. Since the description of the type specimen in 1887, only four additional specimens are known to have been added to the world's insect collections. Its biology is entirely unknown and its phylogenetic position within the fungus-farming ants has remained puzzling due to its aberrant morphology. In 2014 we excavated and collected twenty-one colonies of M. asper in the Floresta Nacional de Chapecó in Santa Catarina, Brazil. We describe here for the first time the male and larva of the species and complement the previous descriptions of both the queen and the worker. We describe, also for the first time, M. asper biology, nest architecture, and colony demographics, and identify its fungal cultivar. Molecular phylogenetic analyses indicate that both M. asper and M. clorindae are members of the genus Cyphomyrmex, which we show to be paraphyletic as currently defined. More precisely, M. asper is a member of the Cyphomyrmex strigatus group, which we also show to be paraphyletic with respect to the genus Mycetophylax. Based on these results, and in the interest of taxonomic stability, we transfer the species M. asper, M. clorindae, and all members of the C. strigatus group to the genus Mycetophylax, the oldest available name for this clade. Based on ITS sequence data, Mycetophylax asper practices lower agriculture, cultivating a fungal species that belongs to lower-attine fungal Clade 2, subclade F. PMID:28489860

  11. Use of egg yolk antibody (IgY) as an immunoanalytical tool in the detection of Indian cobra (Naja naja naja) venom in biological samples of forensic origin.

    PubMed

    Brunda, G; Sashidhar, R B; Sarin, R K

    2006-08-01

    An immunoglobulin Y (IgY) based indirect double antibody sandwich enzyme linked immunosorbent assay (ELISA) was developed for the detection of Indian cobra (Naja naja naja) venom in the biological samples of forensic origin. Polyclonal antibodies were raised and purified from chick egg yolk and rabbit serum. The cobra venom was sandwiched between immobilized affinity purified IgY and the rabbit IgG. The detection concentration of cobra venom was in the range of 0.1 to 300ng. The calibration plot was based on linear regression analysis (y=0.2581x+0.4375, r(2)=0.9886). The limit of detection of the assay was found to be 0.1ng. The coefficient of variation (CV) of different concentrations of working range in inter (n=6) and intra-assay (n=6) was observed to be less than 10%. The recovery of venom was found to be in the range of 80-99%, when different concentrations (0.002, 0.1, 0.2, 1, and 2microg) of cobra venom were spiked to pooled normal human serum (ml(-1)). No cross reactivity was observed with krait and viper venom in the immunoassay system in the concentration range of 0.1-1000ng. The method was initially, validated by analyzing specimens (autopsy) of experimental rats injected with cobra venom (1.2mgkg(-1) body mass). Further, human specimens (autopsy and biopsy) of snake bite victims of forensic origin were also analyzed. The methodology developed may find diagnostic application in forensic laboratories.

  12. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  13. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  14. A comparison of retention of anatomical knowledge in an introductory college biology course: Traditional dissection vs. virtual dissection

    NASA Astrophysics Data System (ADS)

    Taeger, Kelli Rae

    Dissection has always played a crucial role in biology and anatomy courses at all levels of education. However, in recent years, ethical concerns, as well as improved technology, have brought to the forefront the issue of whether virtual dissection is as effective or whether it is more effective than traditional dissection. Most prior research indicated the two methods produced equal results. However, none of those studies examined retention of information past the initial test of knowledge. Two groups of college students currently enrolled in an introductory level college biology course were given one hour to complete a frog dissection. One group performed a traditional frog dissection, making cuts in an actual preserved frog specimen with scalpels and scissors. The other group performed a virtual frog dissection, using "The Digital Frog 2" software. Immediately after the dissections were completed, each group was given an examination consisting of questions on actual specimens, pictures generated from the computer software, and illustrations that neither group had seen. Two weeks later, unannounced, the groups took the same exam in order to test retention. The traditional dissection group scored significantly higher on two of the three sections, as well as the total score on the initial exam. However, with the exception of specimen questions (on which the traditional group retained significantly more information), there was no significant difference in the retention from exam 1 to exam 2 between the two groups. These results, along with the majority of prior studies, show that the two methods produce, for the most part, the same end results. Therefore, the decision of which method to employ should be based on the goals and preferences of the instructor(s) and the department. If that department's goals include: Being at the forefront of new technology, increasing time management, increasing student: teacher ratio for economic reasons, and/or ethical issues, then the choice should be the use of computer software. If the goals include: Students gaining a 3-dimensional feel for the location and relationship of parts to one another, students being able to see various naturally occurring anomalies, and increased experience with manipulation of dissection tools, then the choice should be dissection of actual specimens. It is important to note, however, that regardless of which method is chosen, the effectiveness of that method is very much dependent on the skill and enthusiasm of the instructor.

  15. Smaller than We Normally See: The Fascination of Microscopy Is Not Restricted to Biology

    ERIC Educational Resources Information Center

    Evennett, Peter

    2011-01-01

    Microscopes are especially useful for observing fine detail in biological specimens. However, there are many other small items that may be examined with microscopes, and it is important to introduce children to low-magnification images of items they can recognise before moving on to such large magnification that what they observe has no obvious…

  16. [Comparative cost analysis of molecular biology methods in the diagnosis of sarcomas].

    PubMed

    Baffert, Sandrine; Italiano, Antoine; Pierron, Gaëlle; Traoré, Marie-Angèle; Rapp, Jocelyn; Escande, Fabienne; Ghnassia, Jean-Pierre; Terrier, Philippe; Voegeli, Anne-Claire; Ranchere-Vince, Dominique; Coindre, Jean-Michel; Pedeutour, Florence

    2013-10-01

    Sarcomas represent a complex and heterogeneous group of rare malignant tumors and their correct diagnosis is often difficult. Recent molecular biological techniques have been of great diagnostic use and there is a need to assess the cost of these procedures in routine clinical practice. Using prospective and observational data from eight molecular biology laboratories in France, we used "microcosting" method to assess the cost of molecular biological techniques in the diagnosis of five types of sarcoma. The mean cost of fluorescence in situ hybridization (FISH) was 318 € (273-393) per sample; mean reverse transcription polymerase chain reaction (RT-PCR) cost ranged from 300 € (229-481) per formalin-fixed, paraffin-embedded specimen to 258 € (213-339) per frozen specimen; mean quantitative polymerase chain reaction (Q-PCR) cost was 184 € (112-229) and mean CGH-array cost was 332 € (329-335). The cost of these recently implemented techniques varied according to the type of sarcoma; the method of tissue collection and local organizational factors including the level of local expertise and investment. The cost of molecular diagnostic techniques needs to be balanced against their respective performance.

  17. Relationships Among Perceived Stress, Bullying, Cortisol, and Depressive Symptoms in Ninth-Grade Adolescents: A Pilot Study.

    PubMed

    Williams, Susan G; Turner-Henson, Anne; Davis, Sara; Soistmann, Heather C

    2016-06-29

    Adolescence is considered a critical period for risk of depressive symptoms, with prevalence ranging from 13% to 34%. Few studies have examined the relationships among perceived stress, bullying, and depressive symptoms accompanied by a biological marker of stress (cortisol). The purpose of this pilot study was to determine the feasibility of collecting biological specimens in a high school setting, including a morning and afternoon sample of salivary cortisol as well as computer-based survey data in order to examine the relationships among these variables in ninth-grade adolescents. A convenience sample of 31 ninth-grade students from a Southern suburban high school participated in this cross-sectional, correlational study. Perceived stress contributed the most toward the variance in depressive symptoms (F = 29.379, df = 1, p < .001, partial eta square [[Formula: see text

  18. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  19. Length-weight relationships and condition factor of the eaglebeak pacu Ossubtus xinguense Jégu, 1992 (Characiformes, Serrasalmidae), an endangered species from Rio Xingu rapids, northern Brazil.

    PubMed

    Andrade, M C; Jesus, A J S; Giarrizzo, T

    2015-08-01

    This study reports on the length-weight relationships and condition factor for the endangered rheophilic fish Ossubtus xinguense Jégu from Rio Xingu rapids. This species is threatened by construction of the third largest hydroelectric in the world, the Belo Monte dam close to the city of Altamira, northern Brazil. Specimens were collected in the dry season between July 2012 and September 2012. Male specimens have body length larger than females, atypical in serrasalmid fishes, and different length-weight relationships were found between adult and juvenile specimens. This study presents the first biological characteristics for O. xinguense.

  20. The Biology and Clinical Utility of EBV Monitoring in Blood.

    PubMed

    Kanakry, Jennifer; Ambinder, Richard

    2015-01-01

    Epstein-Barr virus (EBV) DNA in blood can be quantified in peripheral blood mononuclear cells, in circulating cell-free (CCF) DNA specimens, or in whole blood. CCF viral DNA may be actively released or extruded from viable cells, packaged in virions or passively shed from cells during apoptosis or necrosis. In infectious mononucleosis, viral DNA is detected in each of these kinds of specimens, although it is only transiently detected in CCF specimens. In nasopharyngeal carcinoma, CCF EBV DNA is an established tumor marker. In EBV-associated Hodgkin lymphoma and in EBV-associated extranodal NK-/T-cell lymphoma, there is growing evidence for the utility of CCF DNA as a tumor marker.

  1. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... specific binding or chemical reaction with substances in a specimen, are intended for use in a diagnostic application for identification and quantification of an individual chemical substance or ligand in biological...

  2. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... specific binding or chemical reaction with substances in a specimen, are intended for use in a diagnostic application for identification and quantification of an individual chemical substance or ligand in biological...

  3. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... specific binding or chemical reaction with substances in a specimen, are intended for use in a diagnostic application for identification and quantification of an individual chemical substance or ligand in biological...

  4. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... specific binding or chemical reaction with substances in a specimen, are intended for use in a diagnostic application for identification and quantification of an individual chemical substance or ligand in biological...

  5. Multiple, Distinct Intercontinental Lineages but Isolation of Australian Populations in a Cosmopolitan Lichen-Forming Fungal Taxon, Psora decipiens (Psoraceae, Ascomycota)

    PubMed Central

    Leavitt, Steven D.; Westberg, Martin; Nelsen, Matthew P.; Elix, John A.; Timdal, Einar; Sohrabi, Mohammad; St. Clair, Larry L.; Williams, Laura; Wedin, Mats; Lumbsch, H. T.

    2018-01-01

    Multiple drivers shape the spatial distribution of species, including dispersal capacity, niche incumbency, climate variability, orographic barriers, and plate tectonics. However, biogeographic patterns of fungi commonly do not fit conventional expectations based on studies of animals and plants. Fungi, in general, are known to occur across exceedingly broad, intercontinental distributions, including some important components of biological soil crust communities (BSCs). However, molecular data often reveal unexpected biogeographic patterns in lichenized fungal species that are assumed to have cosmopolitan distributions. The lichen-forming fungal species Psora decipiens is found on all continents, except Antarctica and occurs in BSCs across diverse habitats, ranging from hot, arid deserts to alpine habitats. In order to better understand factors that shape population structure in cosmopolitan lichen-forming fungal species, we investigated biogeographic patterns in the cosmopolitan taxon P. decipiens, along with the closely related taxa P. crenata and P. saviczii. We generated a multi-locus sequence dataset based on a worldwide sampling of these taxa in order to reconstruct evolutionary relationships and explore phylogeographic patterns. Both P. crenata and P. decipiens were not recovered as monophyletic; and P. saviczii specimens were recovered as a monophyletic clade closely related to a number of lineages comprised of specimens representing P. decipiens. Striking phylogeographic patterns were observed for P. crenata, with populations from distinct geographic regions belonging to well-separated, monophyletic lineages. South African populations of P. crenata were further divided into well-supported sub-clades. While well-supported phylogenetic substructure was also observed for the nominal taxon P. decipiens, nearly all lineages were comprised of specimens collected from intercontinental populations. However, all Australian specimens representing P. decipiens were recovered within a single well-supported monophyletic clade consisting solely of Australian samples. Our study supports up to 10 candidate species-level lineages in P. decipiens, based on genealogical concordance and coalescent-based species delimitation analyses. Our results support the general pattern of the biogeographic isolation of lichen-forming fungal populations in Australia, even in cases where closely related congeners have documented intercontinental distributions. Our study has important implications for understanding factors influencing diversification and distributions of lichens associated with BSC. PMID:29527197

  6. Reproductive biology and feeding habits of the prickly dogfish Oxynotus bruniensis.

    PubMed

    Finucci, B; Bustamante, C; Jones, E G; Dunn, M R

    2016-11-01

    The reproductive biology and diet of prickly dogfish Oxynotus bruniensis, a deep-sea elasmobranch, endemic to the outer continental and insular shelves of southern Australia and New Zealand, and caught as by-catch in demersal fisheries, are described from specimens caught in New Zealand waters. A total of 53 specimens were obtained from research surveys and commercial fisheries, including juveniles and adults ranging in size from 33·5 to 75·6 cm total length (L T ). Estimated size-at-maturity was 54·7 cm L T in males and 64·0 cm L T in females. Three gravid females (65·0, 67·5 and 71·2 cm L T ) were observed, all with eight embryos. Size-at-birth was estimated to be 25-27 cm L T . Vitellogenesis was not concurrent with embryo development. Analysis of diet from stomach contents, including DNA identification of prey using the mitochondrial genes cox1 and nadh2, revealed that O. bruniensis preys exclusively on the egg capsules of holocephalans, potentially making it the only known elasmobranch with a diet reliant solely upon other chondrichthyans. Based on spatial overlap with deep-sea fisheries, a highly specialized diet, and reproductive characteristics representative of a low productivity fish, the commercial fisheries by-catch of O. bruniensis may put this species at relatively high risk of overfishing. © 2016 The Fisheries Society of the British Isles.

  7. A combined method for correlative 3D imaging of biological samples from macro to nano scale

    NASA Astrophysics Data System (ADS)

    Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios C.; Knudsen, Lars; Wrede, Christoph; Izykowski, Nicole; Grothausmann, Roman; Jonigk, Danny; Ochs, Matthias; Ripken, Tammo; Kühnel, Mark P.; Meyer, Heiko

    2016-10-01

    Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.

  8. Wetlands Commonwealth

    ERIC Educational Resources Information Center

    Davis, Millard C.

    1970-01-01

    Describes the varied animal and plant life of the rocky shore splash pools, salt marshes and tidal mud flats on the eastern coast of North America. Article includes photographs and drawings of biological specimens and plants. (LC)

  9. [Peracetic acid: alternative to the sterilization of bronchofibroscopes].

    PubMed

    Villate, J I; Barrón, J; Zalacaín, R; Urcelay, M I; Hernández, J M; Argumedo, M

    1997-03-01

    The Steris system for cold sterilization with peracetic acid was evaluated by effecting a series of contaminations of a fiberoptic bronchoscope (FB) with specimens of Pseudomonas aeruginosa, Acinetobacter baumanii and Mycobacterium kansasi. The FB was contaminated 24 times, 8 times by each microorganism, using specimens containing more than 10(8) cfu/ml. After fixing the secretions on the FB and washing it with enzyme soap, the BF was sterilized. Specimens were taken for culturing after contamination of the FB, after washing, immediately after sterilization and 1 hour after sterilization. No microorganism growth of any of the samples was detected either immediately after sterilization or one hour later. Microbiological data confirmed contamination of the FB after aspiration and fixation of the inoculate. Chemical and biological tests with B. stearothermophilus spores as specified by the manufacturer were correct in all cases: 24 contaminations and 52 processes of prior training. The efficacy of washing with enzyme soap before sterilization stands out. In 14 of the 24 samples, culture was negative after washing and in 7 the concentration of microorganisms was less than 500 cfu/ml, which confirms the need for appropriate washing before any disinfection or sterilization process is begun. In conclusion, the Steris system based on peracetic acid is an alternative to other systems for cold sterilization or high level disinfection.

  10. Applications of rigid and flexible GRIN-endoscopes

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Ehlers, Alexander; Riemann, Iris; Messerschmidt, Bernhard; Bückle, Rainer; König, Karsten

    2007-02-01

    Multiphoton autofluorescence imaging became an important technique for minimal invasive examination of cells in biological tissue. Rigid and flexible endoscopes based on gradient index lenses (GRIN-lenses) extend this minimalinvasive technique to deep lying cell layers, inner body and specimens, difficult to access. In the rigid endoscope, a GRIN-lens overcomes the limited depth range, given by the working distance of the microscope objective. The focus of the conventional laser scanning tomography is reproduced tens of millimeters in the specimen under study by the GRIN-lens (diameter 1.8 and 3 μm). We will present images of fluorescent beads, proteins cells and skin tissue, as well as first in vivo measurements on human skin. The autofluorescence signal stems from the endogenous fluorophore elastin and SHG from collagen. The flexible endoscope dispenses completely the need of a microscope next to the specimen of interest. The excitation laser pulses is delivered via a well-characterized photonic crystal fiber and subsequently focused by a newly designed GRIN-lens system. The fluorescence, also transferred by a fiber is detected by a PMT detector. We will show the excellent imaging qualities of a newly developed GRIN-lens system with high-resolution images of proteins, cells and plant tissue and give an out-look on multiphoton endoscopy.

  11. ARCTOS: a relational database relating specimens, specimen-based science, and archival documentation

    USGS Publications Warehouse

    Jarrell, Gordon H.; Ramotnik, Cindy A.; McDonald, D.L.

    2010-01-01

    Data are preserved when they are perpetually discoverable, but even in the Information Age, discovery of legacy data appropriate to particular investigations is uncertain. Secure Internet storage is necessary but insufficient. Data can be discovered only when they are adequately described, and visibility increases markedly if the data are related to other data that are receiving usage. Such relationships can be built within (1) the framework of a relational database, or (1) they can be built among separate resources, within the framework of the Internet. Evolving primarily around biological collections, Arctos is a database that does both of these tasks. It includes data structures for a diversity of specimen attributes, essentially all collection-management tasks, plus literature citations, project descriptions, etc. As a centralized collaboration of several university museums, Arctos is an ideal environment for capitalizing on the many relationships that often exist between items in separate collections. Arctos is related to NIH’s DNA-sequence repository (GenBank) with record-to-record reciprocal linkages, and it serves data to several discipline-specific web portals, including the Global Biodiversity Information Network (GBIF). The University of Alaska Museum’s paleontological collection is Arctos’s recent extension beyond the constraints of neontology. With about 1.3 million cataloged items, additional collections are being added each year.

  12. Research in Biological and Medical Sciences, Including Biochemistry, Communicable Disease and Immunology, Internal Medicine, Nuclear Medicine, Physiology, Psychiatry, Surgery and Veterinary Medicine. Volume 2

    DTIC Science & Technology

    1975-07-01

    hepatitis. In addition, fat vacuoles were observed in one specimen. The specimens from the other two men showed mild hepatocellular unrest and mild fatty...right heart pressures in patients with pulmonary embolism . These clinical observations suggest that urokinase has vaso- motor effects which have not...180: 236-242, 1974. 29. Spence, M. R., and Mason, K. G.: Experimental amniotic fluid embolism in rabbits. Am. J. Obst. Gynec. 119: 1073-1078, 1974

  13. Manta rays in the Marquesas Islands: first records of Manta birostris in French Polynesia and most easterly location of Manta alfredi in the Pacific Ocean, with notes on their distribution.

    PubMed

    Mourier, J

    2012-11-01

    Based on direct observations of free-ranging specimens, the giant manta ray Manta birostris is reported from the Marquesas Islands, the first sighting in French Polynesia. Sightings of its sister species, the reef manta ray Manta alfredi, are also reported at the most easterly location in the Pacific Ocean. Preliminary individual identification as well as notes on their distribution are also reported. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  14. Ultra-Sensitive Biological Detection via Nanoparticle-Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques

    DTIC Science & Technology

    2008-10-08

    of reactant to ferrocene and xylene, a liquid carbon source, results in longer nanostructures in larger amount as shown in Fig. 2(g). These samples...with 6.5 mol% ferrocene and 100 mol% xylene. The flow rate was (e) 0.195 ml/hr, (f) 0.98 ml/hr, and (g) 1.95 ml/hr. (d) and (h) are HR-TEM images of...and ferrocene . The flow rate was (a) 0.195 ml/hr and (b) 1.95 ml/hr........................ 19  Fig. A-5. STEM EDS analysis of the CF specimen after

  15. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    PubMed

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  16. The AIDS and Cancer Specimen Resource: Role in HIV/AIDS scientific discovery

    PubMed Central

    Ayers, Leona W; Silver, Sylvia; McGrath, Michael S; Orenstein, Jan M

    2007-01-01

    The AIDS Cancer and Specimen Resource (ACSR) supports scientific discovery in the area of HIV/AIDS-associated malignancies. The ACSR was established as a cooperative agreement between the NCI (Office of the Director, Division of Cancer Treatment and Diagnosis) and regional consortia, University of California, San Francisco (West Coast), George Washington University (East Coast) and Ohio State University (Mid-Region) to collect, preserve and disperse HIV-related tissues and biologic fluids and controls along with clinical data to qualified investigators. The available biological samples with clinical data and the application process are described on the ACSR web site. The ACSR tissue bank has more than 100,000 human HIV positive specimens that represent different processing (43), specimen (15), and anatomical site (50) types. The ACSR provides special biospecimen collections and prepares speciality items, e.g., tissue microarrays (TMA), DNA libraries. Requests have been greatest for Kaposi's sarcoma (32%) and non-Hodgkin's lymphoma (26%). Dispersed requests include 83% tissue (frozen and paraffin embedded), 18% plasma/serum and 9% other. ACSR also provides tissue microarrays of, e.g., Kaposi's sarcoma and non-Hodgkin's lymphoma, for biomarker assays and has developed collaborations with other groups that provide access to additional AIDS-related malignancy specimens. ACSR members and associates have completed 63 podium and poster presentations. Investigators have submitted 125 letters of intent requests. Discoveries using ACSR have been reported in 61 scientific publications in notable journals with an average impact factor of 7. The ACSR promotes the scientific exploration of the relationship between HIV/AIDS and malignancy by participation at national and international scientific meetings, contact with investigators who have productive research in this area and identifying, collecting, preserving, enhancing, and dispersing HIV/AIDS-related malignancy specimens to funded, approved researchers at no fee. Scientific discovery has been advanced by this unique biorepository. Investigators are encouraged to browse the ACSR Internet site for materials to enhance their own scientific initiatives. PMID:17335575

  17. New Specimens of the Rare Taeniodont Wortmania (Mammalia: Eutheria) from the San Juan Basin of New Mexico and Comments on the Phylogeny and Functional Morphology of “Archaic” Mammals

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.

    2013-01-01

    Background Taeniodonta is a clade of Late Cretaceous – Paleogene mammals remarkable for their relatively extreme cranial, dental, and postcranial adaptations and notable for being among the first mammals to achieve relatively large size following the Cretaceous-Paleogene mass extinction. Previous workers have hypothesized that taeniodonts can be divided into two clades: Conoryctidae, a group of small-bodied taeniodonts with supposedly “generalized” postcranial skeletons, and Stylinodontidae, a group of large-bodied, robust animals with massive forelimbs and claws adapted for scratch-digging. However, many taeniodont taxa are poorly known and few are represented by postcranial material, leaving many details about their anatomy, biology, and evolution ambiguous. Methodology/Principal Findings In this paper, we describe three new specimens of the rare taxon Wortmaniaotariidens from the early Paleocene (Puercan) of New Mexico. Among these specimens is one that includes remarkably complete cranial and dental material, including associated upper and lower teeth, and another that consists of partial forelimbs. These specimens allow for an updated anatomical description of this unusual taxon, supply new data for phylogenetic analyses, and enable a more constrained discussion of taeniodont biology and functional morphology. Conclusions/Significance The new specimen of Wortmania that includes associated upper and lower teeth indicates that previous interpretations of the upper dentition of this taxon were not accurate and the taxon Robertschochiasullivani is a junior synonym of W . otariidens . New specimens that include partial forelimbs indicate that Wortmania is very similar to later, large-bodied taeniodonts, with marked and distinctive adaptations for scratch-digging. Comparisons with other taeniodont taxa that include postcranial material suggest that all taeniodonts may have had scratch-digging adaptations. A phylogenetic analysis shows that Schowalteria and Onychodectes are basal taeniodonts, Stylinodontidae (including Wortmania) is monophyletic, and a monophyletic Conoryctidae (but not including Onychodectes) is only recovered when certain characters are ordered. PMID:24098738

  18. New specimens of the rare taeniodont Wortmania (Mammalia: Eutheria) from the San Juan Basin of New Mexico and comments on the phylogeny and functional morphology of "archaic" mammals.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L

    2013-01-01

    Taeniodonta is a clade of Late Cretaceous-Paleogene mammals remarkable for their relatively extreme cranial, dental, and postcranial adaptations and notable for being among the first mammals to achieve relatively large size following the Cretaceous-Paleogene mass extinction. Previous workers have hypothesized that taeniodonts can be divided into two clades: Conoryctidae, a group of small-bodied taeniodonts with supposedly "generalized" postcranial skeletons, and Stylinodontidae, a group of large-bodied, robust animals with massive forelimbs and claws adapted for scratch-digging. However, many taeniodont taxa are poorly known and few are represented by postcranial material, leaving many details about their anatomy, biology, and evolution ambiguous. In this paper, we describe three new specimens of the rare taxon Wortmania otariidens from the early Paleocene (Puercan) of New Mexico. Among these specimens is one that includes remarkably complete cranial and dental material, including associated upper and lower teeth, and another that consists of partial forelimbs. These specimens allow for an updated anatomical description of this unusual taxon, supply new data for phylogenetic analyses, and enable a more constrained discussion of taeniodont biology and functional morphology. The new specimen of Wortmania that includes associated upper and lower teeth indicates that previous interpretations of the upper dentition of this taxon were not accurate and the taxon Robertschochia sullivani is a junior synonym of W. otariidens. New specimens that include partial forelimbs indicate that Wortmania is very similar to later, large-bodied taeniodonts, with marked and distinctive adaptations for scratch-digging. Comparisons with other taeniodont taxa that include postcranial material suggest that all taeniodonts may have had scratch-digging adaptations. A phylogenetic analysis shows that Schowalteria and Onychodectes are basal taeniodonts, Stylinodontidae (including Wortmania) is monophyletic, and a monophyletic Conoryctidae (but not including Onychodectes) is only recovered when certain characters are ordered.

  19. A Differential ECG Amplifier with Single-Ended Output

    NASA Technical Reports Server (NTRS)

    Katchis, L.

    1972-01-01

    Three-stage amplifier is used for ECG measurements which require conversion of differential input to single-ended output. Circuit may be useful in biological telemetry for amplification of signals from specimen-implanted sensors.

  20. Review of Canadian species of the genus Mocyta Mulsant & Rey (Coleoptera, Staphylinidae, Aleocharinae), with the description of a new species and a new synonymy.

    PubMed

    Klimaszewski, Jan; Webster, Reginald P; Bourdon, Caroline; Pelletier, Georges; Godin, Benoit; Langor, David W

    2015-01-01

    Six species of the genus Mocyta Mulsant & Rey are reported from Canada: Mocytaamblystegii (Brundin), Mocytabreviuscula (Mäklin), Mocytadiscreta (Casey), Mocytafungi (Gravenhorst), Mocytaluteola (Erichson), and Mocytasphagnorum Klimaszewski & Webster, sp. n. New provincial and state records include: Mocytabreviuscula - Saskatchewan and Oregon; Mocytadiscreta - Quebec, Ontario and Saskatchewan; Mocytaluteola - New Brunswick, Quebec, Ontario, Massachusetts and Minnesota; and Mocytafungi - Saskatchewan. Mocytasphagnorum is described from eastern Canada from specimens captured in Newfoundland, New Brunswick, Quebec and Ontario. Mocytanegligens Mulsant and Rey, a native European species suspected of occurring in Canada, is excluded from the Nearctic fauna based on comparison of European types with similarly coloured Canadian specimens, which are now identified as Mocytaluteola. The European species, Mocytagilvicollis (Scheerpeltz), is synonymized with another European nominal species, Mocytanegligens, based on examination of type material of the two species. Lectotypes are designated for Eurypronotadiscreta Casey, Athetagilvicollis Scheerpeltz, Homalotaluteola Erichson, Colpodotanegligens Mulsant and Rey, Acrotonaprudens Casey and Dolosotaredundans Casey. The latter species is here synonymized with Mocytaluteola. A review of the six Nearctic species is provided, including keys to species and closely related genera, colour habitus images, images of genitalia, biological information and maps of their distributions in Canada.

  1. The quest for four-dimensional imaging in plant cell biology: it's just a matter of time

    PubMed Central

    Domozych, David S.

    2012-01-01

    Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381

  2. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGES

    Shapiro, D.; Thibault, P.; Beetz, T.; ...

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  3. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  4. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  5. Upgrading Reference Set — EDRN Public Portal

    Cancer.gov

    We are proposing a multi-institutional study to identify molecular biomarkers and clinical measures that will predict presence of Gleason 7 or higher cancer (as evidence in the radical prostatectomy specimen) among patients with a biopsy diagnosis of Gleason score ≤ 6 prostate cancer. This proposal will be conducted in two phases. The first phase will assemble an “Upgrading Reference Set” that will include clinical information as well as biologics on a cohort of 600 men. The first phase will also assess the clinical parameters associated with upgrading, as well as, perform a central pathology review of both biopsies and prostatectomy specimens to confirm tumor grade. The second phase will use the biologics collected in phase 1 to evaluate a series of biomarkers to further refine the prediction of Gleason 7-10 cancer at radical prostatectomy.

  6. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  7. Characterization of some biological specimens using TEM and SEM

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Smith, Don W.

    2009-05-01

    The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.

  8. BRIC-60: Biological Research in Canisters (BRIC)-60

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations evaluating the effects of space flight on small organisms. Specimens flown in the BRIC 60 mm petri dish (BRIC-60) hardware include Lycoperscion esculentum (tomato), Arabidopsis thaliana (thale cress), Glycine max (soybean) seedlings, Physarum polycephalum (slime mold) cells, Pothetria dispar (gypsy moth) eggs and Ceratodon purpureus (moss).

  9. The effect on biological and moisture resistance of epichlorohydrin chemically modified wood

    Treesearch

    Rebecca E. Ibach; Beom-Goo Lee

    2002-01-01

    Southern pine solid wood and fiber were chemically modified with epichlorohydrin to help in understanding the role of moisture in the mechanism of biological effectiveness of chemically modified wood. The solid wood had weight gains from 11% to 34%, while the fiber had weight gains from 9% to 75%. After modification, part of the specimens were water leached for 2 weeks...

  10. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  11. Collection of biological samples in forensic toxicology.

    PubMed

    Dinis-Oliveira, R J; Carvalho, F; Duarte, J A; Remião, F; Marques, A; Santos, A; Magalhães, T

    2010-09-01

    Forensic toxicology is the study and practice of the application of toxicology to the purposes of the law. The relevance of any finding is determined, in the first instance, by the nature and integrity of the specimen(s) submitted for analysis. This means that there are several specific challenges to select and collect specimens for ante-mortem and post-mortem toxicology investigation. Post-mortem specimens may be numerous and can endow some special difficulties compared to clinical specimens, namely those resulting from autolytic and putrefactive changes. Storage stability is also an important issue to be considered during the pre-analytic phase, since its consideration should facilitate the assessment of sample quality and the analytical result obtained from that sample. The knowledge on degradation mechanisms and methods to increase storage stability may enable the forensic toxicologist to circumvent possible difficulties. Therefore, advantages and limitations of specimen preservation procedures are thoroughfully discussed in this review. Presently, harmonized protocols for sampling in suspected intoxications would have obvious utility. In the present article an overview is given on sampling procedures for routinely collected specimens as well as on alternative specimens that may provide additional information on the route and timing of exposure to a specific xenobiotic. Last, but not least, a discussion on possible bias that can influence the interpretation of toxicological results is provided. This comprehensive review article is intented as a significant help for forensic toxicologists to accomplish their frequently overwhelming mission.

  12. Increasing the efficiency of digitization workflows for herbarium specimens.

    PubMed

    Tulig, Melissa; Tarnowsky, Nicole; Bevans, Michael; Anthony Kirchgessner; Thiers, Barbara M

    2012-01-01

    The New York Botanical Garden Herbarium has been databasing and imaging its estimated 7.3 million plant specimens for the past 17 years. Due to the size of the collection, we have been selectively digitizing fundable subsets of specimens, making successive passes through the herbarium with each new grant. With this strategy, the average rate for databasing complete records has been 10 specimens per hour. With 1.3 million specimens databased, this effort has taken about 130,000 hours of staff time. At this rate, to complete the herbarium and digitize the remaining 6 million specimens, another 600,000 hours would be needed. Given the current biodiversity and economic crises, there is neither the time nor money to complete the collection at this rate.Through a combination of grants over the last few years, The New York Botanical Garden has been testing new protocols and tactics for increasing the rate of digitization through combinations of data collaboration, field book digitization, partial data entry and imaging, and optical character recognition (OCR) of specimen images. With the launch of the National Science Foundation's new Advancing Digitization of Biological Collections program, we hope to move forward with larger, more efficient digitization projects, capturing data from larger portions of the herbarium at a fraction of the cost and time.

  13. Increasing the efficiency of digitization workflows for herbarium specimens

    PubMed Central

    Tulig, Melissa; Tarnowsky, Nicole; Bevans, Michael; Anthony Kirchgessner; Thiers,  Barbara M.

    2012-01-01

    Abstract The New York Botanical Garden Herbarium has been databasing and imaging its estimated 7.3 million plant specimens for the past 17 years. Due to the size of the collection, we have been selectively digitizing fundable subsets of specimens, making successive passes through the herbarium with each new grant. With this strategy, the average rate for databasing complete records has been 10 specimens per hour. With 1.3 million specimens databased, this effort has taken about 130,000 hours of staff time. At this rate, to complete the herbarium and digitize the remaining 6 million specimens, another 600,000 hours would be needed. Given the current biodiversity and economic crises, there is neither the time nor money to complete the collection at this rate. Through a combination of grants over the last few years, The New York Botanical Garden has been testing new protocols and tactics for increasing the rate of digitization through combinations of data collaboration, field book digitization, partial data entry and imaging, and optical character recognition (OCR) of specimen images. With the launch of the National Science Foundation’s new Advancing Digitization of Biological Collections program, we hope to move forward with larger, more efficient digitization projects, capturing data from larger portions of the herbarium at a fraction of the cost and time. PMID:22859882

  14. Evaluation of a menstrual cup to collect shed endometrium for in vitro studies.

    PubMed

    Koks, C A; Dunselman, G A; de Goeij, A F; Arends, J W; Evers, J L

    1997-09-01

    To evaluate whether a menstrual cup is a suitable instrument to collect antegradely shed endometrium for in vitro studies. A prospective, descriptive, cell biological and immunohistochemical study. Tertiary care university medical center. Nine female volunteers with regular cycles. Menstrual effluent was collected with a menstrual cup. Experience with the menstrual cup was described. Cytospin specimens, frozen sections, and cultures were prepared from the obtained menstrual tissue. The acceptability of the menstrual cup. The presence and viability of endometrial tissue was evaluated using immunohistochemical staining and culture outcome. All women except one described the menstrual cup as acceptable. Menstrual effluent contained single cells, clumps of cells, and glandlike structures. After 5 days of culture, the endometrial tissue appeared to be viable. Immunohistochemistry showed positive staining for vimentin in most cytospin specimens, in all cryostat specimens, and in 10 of 17 cultures. Cytokeratin 18 stained most cytospin specimens, all cryostat specimens, and 10 of 17 cultures. Positive staining for BW495/36 was observed in most cytospin specimens, all cryostat specimens, and 11 of 17 cultures. A menstrual cup in an acceptable instrument to collect antegradely shed menstrual tissue. Menstruum contains viable endometrial tissue that can be used for in vitro studies of endometrium and endometriosis.

  15. Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.

    PubMed

    Walls, Ramona L; Deck, John; Guralnick, Robert; Baskauf, Steve; Beaman, Reed; Blum, Stanley; Bowers, Shawn; Buttigieg, Pier Luigi; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Morrison, Norman; Ó Tuama, Éamonn; Schildhauer, Mark; Smith, Barry; Stucky, Brian J; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.

  16. Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies

    PubMed Central

    Baskauf, Steve; Blum, Stanley; Bowers, Shawn; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Tuama, Éamonn Ó.; Schildhauer, Mark; Smith, Barry; Stucky, Brian J.; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers. PMID:24595056

  17. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  18. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  19. Orthopoxvirus detection in environmental specimens during suspected bioterror attacks: inhibitory influences of common household products.

    PubMed

    Kurth, Andreas; Achenbach, John; Miller, Liljia; Mackay, Ian M; Pauli, Georg; Nitsche, Andreas

    2008-01-01

    After terrorists attacked the United States in 2001, the appearance of letters and other objects containing powdery substances with unknown potentials for biological threat focused attention on the speed, sensitivity, and reliability of diagnostic methods. This study summarizes the abilities and limitations of real-time PCR, electron microscopy (EM), and virus isolation when used to detect potential bioweapons. In particular, we investigated the inhibitory influences of different common household products present in environmental specimens on PCR yield, EM detection, and virus isolation. We used vaccinia virus as a model for orthopoxviruses by spiking it into specimens. In the second part of the study, we describe modifications of diagnostic methods to overcome inhibitory effects. A variety of PCR amplification enhancers, DNA extraction protocols, and applications of internal controls were evaluated to improve diagnostic simplicity, speed, and reliability. As a result, we strongly recommend using at least two different frontline techniques in parallel, e.g., EM and PCR. A positive result obtained by any one of these techniques should be followed by a biological method to confirm the putative diagnosis. Confirmatory methods include virus isolation followed by an agent-specific immunofluorescence assay to confirm the presence of replication-competent particles.

  20. Crystallographic orientation of the c-axis of biological apatite as a new index of the quality of subchondral bone in knee joint osteoarthritis.

    PubMed

    Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi

    2017-05-01

    The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.

  1. Evaluation of cryoanalysis as a tool for analyzing elemental distribution in "live" tardigrades using micro-PIXE

    NASA Astrophysics Data System (ADS)

    Nilsson, E. J. C.; Pallon, J.; Przybylowicz, W. J.; Wang, Y. D.; Jönsson, K. I.

    2014-08-01

    Although heavy on labor and equipment, thus not often applied, cryoanalysis of frozen hydrated biological specimens can provide information that better reflects the living state of the organism, compared with analysis in the freeze-dried state. In this paper we report a study where the cryoanalysis facility with cryosectioning capabilities at Materials Research Department, iThemba LABS, South Africa was employed to evaluate the usefulness of combining three ion beam analytical methods (μPIXE, RBS and STIM) to analyze a biological target where a better elemental compositional description is needed - the tardigrade. Imaging as well as quantification results are of interest. In a previous study, the element composition and redistribution of elements in the desiccated and active states of two tardigrade species was investigated. This study included analysis of both whole and sectioned tardigrades, and the aim was to analyze each specimen twice; first frozen hydrated and later freeze-dried. The combination of the three analytical techniques proved useful: elements from C to Rb in the tardigrades could be determined and certain differences in distribution of elements between the frozen hydrated and the freeze-dried states were observed. RBS on frozen hydrated specimens provided knowledge of matrix elements.

  2. Orthopoxvirus Detection in Environmental Specimens during Suspected Bioterror Attacks: Inhibitory Influences of Common Household Products▿

    PubMed Central

    Kurth, Andreas; Achenbach, John; Miller, Liljia; Mackay, Ian M.; Pauli, Georg; Nitsche, Andreas

    2008-01-01

    After terrorists attacked the United States in 2001, the appearance of letters and other objects containing powdery substances with unknown potentials for biological threat focused attention on the speed, sensitivity, and reliability of diagnostic methods. This study summarizes the abilities and limitations of real-time PCR, electron microscopy (EM), and virus isolation when used to detect potential bioweapons. In particular, we investigated the inhibitory influences of different common household products present in environmental specimens on PCR yield, EM detection, and virus isolation. We used vaccinia virus as a model for orthopoxviruses by spiking it into specimens. In the second part of the study, we describe modifications of diagnostic methods to overcome inhibitory effects. A variety of PCR amplification enhancers, DNA extraction protocols, and applications of internal controls were evaluated to improve diagnostic simplicity, speed, and reliability. As a result, we strongly recommend using at least two different frontline techniques in parallel, e.g., EM and PCR. A positive result obtained by any one of these techniques should be followed by a biological method to confirm the putative diagnosis. Confirmatory methods include virus isolation followed by an agent-specific immunofluorescence assay to confirm the presence of replication-competent particles. PMID:17965204

  3. 2012 best practices for repositories collection, storage, retrieval, and distribution of biological materials for research international society for biological and environmental repositories.

    PubMed

    2012-04-01

    Third Edition [Formula: see text] [Box: see text] Printed with permission from the International Society for Biological and Environmental Repositories (ISBER) © 2011 ISBER All Rights Reserved Editor-in-Chief Lori D. Campbell, PhD Associate Editors Fay Betsou, PhD Debra Leiolani Garcia, MPA Judith G. Giri, PhD Karen E. Pitt, PhD Rebecca S. Pugh, MS Katherine C. Sexton, MBA Amy P.N. Skubitz, PhD Stella B. Somiari, PhD Individual Contributors to the Third Edition Jonas Astrin, Susan Baker, Thomas J. Barr, Erica Benson, Mark Cada, Lori Campbell, Antonio Hugo Jose Froes Marques Campos, David Carpentieri, Omoshile Clement, Domenico Coppola, Yvonne De Souza, Paul Fearn, Kelly Feil, Debra Garcia, Judith Giri, William E. Grizzle, Kathleen Groover, Keith Harding, Edward Kaercher, Joseph Kessler, Sarah Loud, Hannah Maynor, Kevin McCluskey, Kevin Meagher, Cheryl Michels, Lisa Miranda, Judy Muller-Cohn, Rolf Muller, James O'Sullivan, Karen Pitt, Rebecca Pugh, Rivka Ravid, Katherine Sexton, Ricardo Luis A. Silva, Frank Simione, Amy Skubitz, Stella Somiari, Frans van der Horst, Gavin Welch, Andy Zaayenga 2012 Best Practices for Repositories: Collection, Storage, Retrieval and Distribution of Biological Materials for Research INTERNATIONAL SOCIETY FOR BIOLOGICAL AND ENVIRONMENTAL REPOSITORIES (ISBER) INTRODUCTION T he availability of high quality biological and environmental specimens for research purposes requires the development of standardized methods for collection, long-term storage, retrieval and distribution of specimens that will enable their future use. Sharing successful strategies for accomplishing this goal is one of the driving forces for the International Society for Biological and Environmental Repositories (ISBER). For more information about ISBER see www.isber.org . ISBER's Best Practices for Repositories (Best Practices) reflect the collective experience of its members and has received broad input from other repository professionals. Throughout this document effective practices are presented for the management of specimen collections and repositories. The term "Best Practice" is used in cases where a level of operation is indicated that is above the basic recommended practice or more specifically designates the most effective practice. It is understood that repositories in certain locations or with particular financial constraints may not be able to adhere to each of the items designated as "Best Practices". Repositories fitting into either of these categories will need to decide how they might best adhere to these recommendations within their particular circumstances. While adherence to ISBER Best Practices is strictly on a voluntary basis, it is important to note that some aspects of specimen management are governed by national/federal, regional and local regulations. The reader should refer directly to regulations for their national/federal, regional and local requirements, as appropriate. ISBER has strived to include terminology appropriate to the various specimen types covered under these practices, but here too, the reader should take steps to ensure the appropriateness of the recommendations to their particular repository type prior to the implementation of any new approaches. Important terms within the document are italicized when first used in a section and defined in the glossary. The ISBER Best Practices are periodically reviewed and revised to reflect advances in research and technology. The third edition of the Best Practices builds on the foundation established in the first and second editions which were published in 2005 and 2008, respectively.

  4. Initiatives, prospects, and challenges in tropical marine biosciences in Jagna Bay, Bohol Island, Philippines

    NASA Astrophysics Data System (ADS)

    Bernido, Christopher C.; Halasan, Lorenzo C.; Carpio-Bernido, M. Victoria; Saguil, Noel A.; Sadudaquil, Jerome A.; Salas, Rochelle I.; Nayga, Prince Niño I.; Baja, Paz Kenneth S.; Jumawan, Ethel Jade V.

    2017-08-01

    Marine specimens exhibit diversity in structure as an offshoot of their survival and ecological role in marine communities. The shell structure of gastropods, for example, is so diverse that taxonomic classification could hardly catch up with the myriad specimens many of which remain unidentified, nameless, or worse, unrecorded as large numbers become extinct. As a step towards alleviating the lack of comprehensive marine life assessment, we discuss initial studies conducted in Jagna Bay in the northern part of Bohol Sea to determine the level of biodiversity in this locale. The methods of collecting specimens and their identification are discussed as exemplified by a specimen belonging to the genus Cycloscala. Data collected for specimens whose sizes range from around 1 mm to 250 mm helps establish baseline indicators that could determine ecological balance in this area for monitoring longitudinal effects of climate and human intervention. Given the remarkable marine biodiversity, the perennial challenge is to uncover and learn from the biological structure and functions of many marine specimens for possible applications in different emerging technologies. We illustrate this by citing recent examples where our understanding of marine life inspires innovations for tomorrow's technology.

  5. KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging.

    PubMed

    Nakasako, Masayoshi; Takayama, Yuki; Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane; Shirahama, Keiya; Yamamoto, Masaki; Hikima, Takaaki; Yonekura, Koji; Maki-Yonekura, Saori; Kohmura, Yoshiki; Inubushi, Yuichi; Takahashi, Yukio; Suzuki, Akihiro; Matsunaga, Sachihiro; Inui, Yayoi; Tono, Kensuke; Kameshima, Takashi; Joti, Yasumasa; Hoshi, Takahiko

    2013-09-01

    We have developed an experimental apparatus named KOTOBUKI-1 for use in coherent X-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. For cryogenic specimen stage with small positional fluctuation for a long exposure time of more than several minutes, we here use a cryogenic pot cooled by the evaporation cooling effect for liquid nitrogen. In addition, a loading device is developed to bring specimens stored in liquid nitrogen to the specimen stage in vacuum. The apparatus allows diffraction data collection for frozen-hydrated specimens at 66 K with a positional fluctuation of less than 0.4 μm and provides an experimental environment to easily exchange specimens from liquid nitrogen storage to the specimen stage. The apparatus was developed and utilized in diffraction data collection of non-crystalline particles with dimensions of μm from material and biological sciences, such as metal colloid particles and chloroplast, at BL29XU of SPring-8. Recently, it has been applied for single-shot diffraction data collection of non-crystalline particles with dimensions of sub-μm using X-ray free electron laser at BL3 of SACLA.

  6. Multidisciplinary Russian biomedical research in space

    NASA Astrophysics Data System (ADS)

    Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.

    2014-08-01

    Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.

  7. Microscopic dual-energy CT (microDECT): a flexible tool for multichannel ex vivo 3D imaging of biological specimens.

    PubMed

    Handschuh, S; Beisser, C J; Ruthensteiner, B; Metscher, B D

    2017-07-01

    Dual-energy computed tomography (DECT) uses two different x-ray energy spectra in order to differentiate between tissues, materials or elements in a single sample or patient. DECT is becoming increasingly popular in clinical imaging and preclinical in vivo imaging of small animal models, but there have been only very few reports on ex vivo DECT of biological samples at microscopic resolutions. The present study has three main aims. First, we explore the potential of microscopic DECT (microDECT) for delivering isotropic multichannel 3D images of fixed biological samples with standard commercial laboratory-based microCT setups at spatial resolutions reaching below 10 μm. Second, we aim for retaining the maximum image resolution and quality during the material decomposition. Third, we want to test the suitability for microDECT imaging of different contrast agents currently used for ex vivo staining of biological samples. To address these aims, we used microCT scans of four different samples stained with x-ray dense contrast agents. MicroDECT scans were acquired with five different commercial microCT scanners from four companies. We present a detailed description of the microDECT workflow, including sample preparation, image acquisition, image processing and postreconstruction material decomposition, which may serve as practical guide for applying microDECT. The MATLAB script (The Mathworks Inc., Natick, MA, USA) used for material decomposition (including a graphical user interface) is provided as a supplement to this paper (https://github.com/microDECT/DECTDec). In general, the presented microDECT workflow yielded satisfactory results for all tested specimens. Original scan resolutions have been mostly retained in the separate material fractions after basis material decomposition. In addition to decomposition of mineralized tissues (inherent sample contrast) and stained soft tissues, we present a case of double labelling of different soft tissues with subsequent material decomposition. We conclude that, in contrast to in vivo DECT examinations, small ex vivo specimens offer some clear advantages regarding technical parameters of the microCT setup and the use of contrast agents. These include a higher flexibility in source peak voltages and x-ray filters, a lower degree of beam hardening due to small sample size, the lack of restriction to nontoxic contrast agents and the lack of a limit in exposure time and radiation dose. We argue that microDECT, because of its flexibility combined with already established contrast agents and the vast number of currently unexploited stains, will in future represent an important technique for various applications in biological research. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. Online biospeckle assessment without loss of definition and resolution by motion history image

    NASA Astrophysics Data System (ADS)

    Godinho, R. P.; Silva, M. M.; Nozela, J. R.; Braga, R. A.

    2012-03-01

    The application of the dynamic laser speckle as a reliable instrument to achieve maps of activity in biological material is available in literature optics and laser. The application, particularly in live specimens, such as animals and human beings necessitated some approaches to avoid the kinking of the bodies, which creates changes in the patterns undermining the biological activity under monitoring. The adoption of online techniques circumvented the noise generated by the kinking, however, with considerable reduction in the resolution and definition of the activity maps. This work presents a feasible alternative to the routine online methods based on the Motion History Image (MHI) methodology. The adoption of MHI was tested in biological and non-biological samples and compared with online as well as offline procedures of biospeckle image analysis. Tests on paint drying was associated to alcohol volatilization, and tests on a maize seed and on growing of roots confirmed the hypothesis that the MHI would be able to implement an online approach without the reduction of resolution and definition on the resultant images, thereby presenting in some cases results that were comparable to the offline procedures.

  9. Heavy section fracture toughness screening specimen

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Donald, J. K.; Brown, W. F., Jr.

    1976-01-01

    Size requirements for a pin loaded double edge notch + crack tension specimen proposed for fracture toughness screening heavy section alloys were studied. Ranking of eight selected alloys based on the specimen's net strength was compared with that based on the valid plane strain fracture toughness separately determined. Performance of the specimen was judged on the basis of that comparison. The specimen's net strength was influenced by three critical specimen dimensions: distance between the crack plane and the loading hole, specimen width, and specimen thickness. Interaction between the stress fields of the crack and the loading holes reduced the net strength, but this effect disappeared as the separation reached a dimension equal to the specimen width. The effects of specimen width and thickness are interrelated and affect the net strength through their influence on the development of the crack tip plastic zone.

  10. Improved specimen reconstruction by Hilbert phase contrast tomography.

    PubMed

    Barton, Bastian; Joos, Friederike; Schröder, Rasmus R

    2008-11-01

    The low signal-to-noise ratio (SNR) in images of unstained specimens recorded with conventional defocus phase contrast makes it difficult to interpret 3D volumes obtained by electron tomography (ET). The high defocus applied for conventional tilt series generates some phase contrast but leads to an incomplete transfer of object information. For tomography of biological weak-phase objects, optimal image contrast and subsequently an optimized SNR are essential for the reconstruction of details such as macromolecular assemblies at molecular resolution. The problem of low contrast can be partially solved by applying a Hilbert phase plate positioned in the back focal plane (BFP) of the objective lens while recording images in Gaussian focus. Images recorded with the Hilbert phase plate provide optimized positive phase contrast at low spatial frequencies, and the contrast transfer in principle extends to the information limit of the microscope. The antisymmetric Hilbert phase contrast (HPC) can be numerically converted into isotropic contrast, which is equivalent to the contrast obtained by a Zernike phase plate. Thus, in-focus HPC provides optimal structure factor information without limiting effects of the transfer function. In this article, we present the first electron tomograms of biological specimens reconstructed from Hilbert phase plate image series. We outline the technical implementation of the phase plate and demonstrate that the technique is routinely applicable for tomography. A comparison between conventional defocus tomograms and in-focus HPC volumes shows an enhanced SNR and an improved specimen visibility for in-focus Hilbert tomography.

  11. Lensfree On-Chip Microscopy and Tomography for Bio-Medical Applications

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Mudanyali, Onur; Sencan, Ikbal; Su, Ting-Wei; Tseng, Derek; Yaglidere, Oguzhan; Sikora, Uzair; Ozcan, Aydogan

    2012-01-01

    Lensfree on-chip holographic microscopy is an emerging technique that offers imaging of biological specimens over a large field-of-view without using any lenses or bulky optical components. Lending itself to a compact, cost-effective and mechanically robust architecture, lensfree on-chip holographic microscopy can offer an alternative toolset addressing some of the emerging needs of microscopic analysis and diagnostics in low-resource settings, especially for telemedicine applications. In this review, we summarize the latest achievements in lensfree optical microscopy based on partially coherent on-chip holography, including portable telemedicine microscopy, cell-phone based microscopy and field-portable optical tomographic microscopy. We also discuss some of the future directions for telemedicine microscopy and its prospects to help combat various global health challenges. PMID:24478572

  12. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  13. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  14. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    PubMed

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for further label-free optical tools to diagnose the disease.

  15. Adaptive optical fluorescence microscopy.

    PubMed

    Ji, Na

    2017-03-31

    The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.

  16. Functional protease profiling for diagnosis of malignant disease.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genetic Structure of Two Protist Species (Myxogastria, Amoebozoa) Suggests Asexual Reproduction in Sexual Amoebae

    PubMed Central

    Fiore-Donno, Anna Maria; Novozhilov, Yuri K.; Meyer, Marianne; Schnittler, Martin

    2011-01-01

    Plasmodial slime molds (Myxogastria or Myxomycetes) are common and widespread unicellular organisms that are commonly assumed to have a sexual life cycle culminating with the formation of often macroscopic fruiting bodies that efficiently disseminate spores. However, laboratory studies based on mating compatibility revealed the coexistence of asexual as well as sexual strains. To test this hypothesis in natural populations, we investigated the genetic variability of two species of the genus Lamproderma. Detailed ecological relevés were carried out in 2007 and 2009 in several deep ravines in the Elbsandsteingebirge (Saxony, south-eastern Germany). Morphological characters of 93 specimens of Lamproderma were recorded and genetic analyses, based on the small subunit ribosomal gene, the internal transcribed spacer 1 and partial elongation factor 1α sequences were carried out for 52 specimens. Genetic analyses showed the existence of two major clades, each composed of several discrete lineages. Most of these lineages were composed of several identical sequences (SSU, ITS 1 and EF-1α) which is explained best by an asexual mode of reproduction. Detrended Correspondence Analysis of morphological characters revealed two morphospecies that corresponded to the two major clades, except for one genotype (Lc6), thus challenging the morphospecies concept. Genetic patterns were not related to the geographical distribution: specimens belonging to the same genotype were found in distinct ravines, suggesting effective long-distance dispersal via spores, except for the Lc6 genotype which was found only in one ravine. Implications for the morphological and biological species concept are discussed. PMID:21829662

  18. Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): toward a powerful label-free cell-based assay.

    PubMed

    Vaccari, L; Birarda, G; Businaro, L; Pacor, S; Grenci, G

    2012-06-05

    Until nowadays most infrared microspectroscopy (IRMS) experiments on biological specimens (i.e., tissues or cells) have been routinely carried out on fixed or dried samples in order to circumvent water absorption problems. In this paper, we demonstrate the possibility to widen the range of in-vitro IRMS experiments to vibrational analysis of live cellular samples, thanks to the development of novel biocompatible IR-visible transparent microfluidic devices (MD). In order to highlight the biological relevance of IRMS in MD (MD-IRMS), we performed a systematic exploration of the biochemical alterations induced by different fixation protocols, ethanol 70% and formaldehyde solution 4%, as well as air-drying on U937 leukemic monocytes by comparing their IR vibrational features with the live U937 counterpart. Both fixation and air-drying procedures affected lipid composition and order as well as protein structure at a different extent while they both induced structural alterations in nucleic acids. Therefore, only IRMS of live cells can provide reliable information on both DNA and RNA structure and on their cellular dynamic. In summary, we show that MD-IRMS of live cells is feasible, reliable, and biologically relevant to be recognized as a label-free cell-based assay.

  19. TH-AB-209-10: Breast Cancer Identification Through X-Ray Coherent Scatter Spectral Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapadia, A; Morris, R; Albanese, K

    Purpose: We have previously described the development and testing of a coherent-scatter spectral imaging system for identification of cancer. Our prior evaluations were performed using either tissue surrogate phantoms or formalin-fixed tissue obtained from pathology. Here we present the first results from a scatter imaging study using fresh breast tumor tissues obtained through surgical excision. Methods: A coherent-scatter imaging system was built using a clinical X-ray tube, photon counting detectors, and custom-designed coded-apertures. System performance was characterized using calibration phantoms of biological materials. Fresh breast tumors were obtained from patients undergoing mastectomy and lumpectomy surgeries for breast cancer. Each specimenmore » was vacuum-sealed, scanned using the scatter imaging system, and then sent to pathology for histological workup. Scatter images were generated separately for each tissue specimen and analyzed to identify voxels containing malignant tissue. The images were compared against histological analysis (H&E + pathologist identification of tumors) to assess the match between scatter-based and histological diagnosis. Results: In all specimens scanned, the scatter images showed the location of cancerous regions within the specimen. The detection and classification was performed through automated spectral matching without the need for manual intervention. The scatter spectra corresponding to cancer tissue were found to be in agreement with those reported in literature. Inter-patient variability was found to be within limits reported in literature. The scatter images showed agreement with pathologist-identified regions of cancer. Spatial resolution for this configuration of the scanner was determined to be 2–3 mm, and the total scan time for each specimen was under 15 minutes. Conclusion: This work demonstrates the utility of coherent scatter imaging in identifying cancer based on the scatter properties of the tissue. It presents the first results from coherent scatter imaging of fresh (unfixed) breast tissue using our coded-aperture scatter imaging approach for cancer identification.« less

  20. Physiological response of invasive mussel Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) submitted to transport and experimental conditions.

    PubMed

    Cordeiro, N I S; Andrade, J T M; Montresor, L C; Luz, D M R; Araújo, J M; Martinez, C B; Pinheiro, J; Vidigal, T H D A

    2017-03-01

    Successful animal rearing under laboratory conditions for commercial processes or laboratory experiments is a complex chain that includes several stressors (e.g., sampling and transport) and incurs, as a consequence, the reduction of natural animal conditions, economic losses and inconsistent and unreliable biological results. Since the invasion of the bivalve Limnoperna fortunei (Dunker, 1857) in South America, several studies have been performed to help control and manage this fouling pest in industrial plants that use raw water. Relatively little attention has been given to the laboratory rearing procedure of L. fortunei, its condition when exposed to a stressor or its acclimation into laboratory conditions. Considering this issue, the aims of this study are to (i) investigate L. fortunei physiological responses when submitted to the depuration process and subsequent air transport (without water/dry condition) at two temperatures, based on glycogen concentrations, and (ii) monitor the glycogen concentrations in different groups when maintained for 28 days under laboratory conditions. Based on the obtained results, depuration did not affect either of the groups when they were submitted to approximately eight hours of transport. The variation in glycogen concentration among the specimens that were obtained from the field under depurated and non-depurated conditions was significant only in the first week of laboratory growth for the non-depurated group and in the second week for the depurated group. In addition, the tested temperature did not affect either of the groups that were submitted to transport. The glycogen concentrations were similar to those of the specimens that were obtained from the field in third week, which suggests that the specimens acclimated to laboratory conditions during this period of time. Thus, the results indicate that the air transport and acclimation time can be successfully incorporated into experimental studies of L. fortunei. Finally, the tolerance of L. fortunei specimens to the stressor tested herein can help us understand the invasive capacity of this mussel during the establishment process.

  1. CALIBRATION AND VALIDATION OF CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market can perform spectral characterization of biological specimens containing fluorescent proteins, labels or dyes. Some CSI have been found to present inconsistent spectral characterizations within a particular syst...

  2. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    PubMed

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  3. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  4. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  5. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules

    DOE PAGES

    Han, Bong-Gyoon; Watson, Zoe; Kang, Hannah; ...

    2016-06-15

    We describe a rapid and convenient method of growing streptavidin (SA) monolayer crystals directly on holey-carbon EM grids. As expected, these SA monolayer crystals retain their biotin-binding function and crystalline order through a cycle of embedding in trehalose and, later, its removal. This fact allows one to prepare, and store for later use, EM grids on which SA monolayer crystals serve as an affinity substrate for preparing specimens of biological macromolecules. In addition, we report that coating the lipid-tail side of trehalose-embedded monolayer crystals with evaporated carbon appears to improve the consistency with which well-ordered, single crystals are observed tomore » span over entire, 2 μm holes of the support films. Randomly biotinylated 70S ribosomes are used as a test specimen to show that these support films can be used to obtain a high-resolution cryo-EM structure« less

  6. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    NASA Astrophysics Data System (ADS)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  7. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.

    PubMed

    Jimenez, Connie R; Verheul, Henk M W

    2014-01-01

    Proteomics is optimally suited to bridge the gap between genomic information on the one hand and biologic functions and disease phenotypes at the other, since it studies the expression and/or post-translational modification (especially phosphorylation) of proteins--the major cellular players bringing about cellular functions--at a global level in biologic specimens. Mass spectrometry technology and (bio)informatic tools have matured to the extent that they can provide high-throughput, comprehensive, and quantitative protein inventories of cells, tissues, and biofluids in clinical samples at low level. In this article, we focus on next-generation proteomics employing nanoliquid chromatography coupled to high-resolution tandem mass spectrometry for in-depth (phospho)protein profiling of tumor tissues and (proximal) biofluids, with a focus on studies employing clinical material. In addition, we highlight emerging proteogenomic approaches for the identification of tumor-specific protein variants, and targeted multiplex mass spectrometry strategies for large-scale biomarker validation. Below we provide a discussion of recent progress, some research highlights, and challenges that remain for clinical translation of proteomic discoveries.

  8. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    PubMed Central

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  9. Foreign body reaction to acellular dermal matrix allograft in biologic glenoid resurfacing.

    PubMed

    Namdari, Surena; Melnic, Christopher; Huffman, G Russell

    2013-08-01

    Biologic glenoid resurfacing is a treatment option for young patients with glenohumeral arthritis. An optimal synthetic graft for glenoid resurfacing should allow repopulation with host cells, be durable enough to tolerate suture fixation and forces across the joint, and present no host inflammatory response. We report two cases of giant cell reaction to GraftJacket(®) after biologic glenoid resurfacing. Two patients who underwent hemiarthroplasty and biologic glenoid resurfacing using GraftJacket(®) had a foreign body giant cell reaction that required revision surgery. Intraoperatively, both patients were observed to have a well-fixed humeral component and a dense, erythematous, synovitic membrane overlying the glenoid. Pathology specimens showed a benign reactive synovium, chronic inflammation, and foreign body giant cell reaction. After débridement and conversion to total shoulder arthroplasty, both patients continued to be pain-free at greater than 1-year followup. Multinucleated giant cell and mononuclear cell responses have been observed in an animal model after use of GraftJacket(®). Although the use of acellular matrix-based scaffold for biologic glenoid resurfacing is not new, the possibility of foreign body reaction as a source of persistent symptoms has not been described. Given the lack of data to indicate an advantage to biologic resurfacing of the glenoid over hemiarthroplasty alone, resurfacing should not introduce significant additional surgical complications. We suggest foreign body reaction be considered in the differential diagnosis for a persistently painful shoulder after biologic glenoid resurfacing using an acellular allograft patch.

  10. Hydrogen Isotopes as a Sentinel of Biological Invasion by the Japanese Beetle, Popillia japonica (Newman)

    PubMed Central

    Ogle, Kiona; Caron, Melanie; Marks, Jane C.; Rogg, Helmuth W.

    2016-01-01

    Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.S.A.). The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007–2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3–7 days for beetles trapped from 2012–2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure. PMID:26959686

  11. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  12. Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae).

    PubMed

    Riesch, R; Plath, M; Schlupp, I

    2011-03-01

    Chronic environmental stress is known to induce evolutionary change. Here, we assessed male life-history trait divergence in the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but reproductively isolated toxic/nontoxic and surface/cave habitats. Examining both field-caught and common garden-reared specimens, we investigated the extent of differentiation and plasticity of life-history strategies employed by male P. mexicana. We found strong site-specific life-history divergence in traits such as fat content, standard length and gonadosomatic index. The majority of site-specific life-history differences were also expressed under common garden-rearing conditions. We propose that apparent conservatism of male life histories is the result of other (genetically based) changes in physiology and behaviour between populations. Together with the results from previous studies, this is strong evidence for local adaptation as a result of ecologically based divergent selection. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  13. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran.

    PubMed

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-06-01

    Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies.

  14. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran

    PubMed Central

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-01-01

    Background: Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. Methods: The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. Results: During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. Conclusion: The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies PMID:29062853

  15. Microgravity

    NASA Image and Video Library

    2000-04-20

    Cindy Barnes of University Space Research Association (USRA) at NASA's Marshall Space Flight Center pipettes a protein solution in preparation to grow crystals as part of NASA's structural biology program. Research on Earth helps scientists define conditions and specimens they will use in space experiments.

  16. Miniature grinder for solid specimens

    NASA Technical Reports Server (NTRS)

    Houser, C. P.; Pesch, W. A.

    1971-01-01

    Machine grinds fines to appropriate micron sizes with the least biological trauma and greatest degree of reproducibility. Device controls destruction of material so that recovery of microorganisms is as great as possible and protects operation and grinding products from exogenous contamination.

  17. WAVELENGTH AND ALIGNMENT TESTS FOR CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market delineate multiple fluorescent proteins, labels, or dyes within biological specimens by performing spectral characterizations. However, we find that some CSI present inconsistent spectral profiles of reference s...

  18. Dynamics of supersonic microparticle impact on elastomers revealed by real–time multi–frame imaging

    PubMed Central

    Veysset, David; Hsieh, Alex J.; Kooi, Steven; Maznev, Alexei A.; Masser, Kevin A.; Nelson, Keith A.

    2016-01-01

    Understanding high–velocity microparticle impact is essential for many fields, from space exploration to medicine and biology. Investigations of microscale impact have hitherto been limited to post–mortem analysis of impacted specimens, which does not provide direct information on the impact dynamics. Here we report real–time multi–frame imaging studies of the impact of 7 μm diameter glass spheres traveling at 700–900 m/s on elastomer polymers. With a poly(urethane urea) (PUU) sample, we observe a hyperelastic impact phenomenon not seen on the macroscale: a microsphere undergoes a full conformal penetration into the specimen followed by a rebound which leaves the specimen unscathed. The results challenge the established interpretation of the behaviour of elastomers under high–velocity impact. PMID:27156501

  19. Laser-induced breakdown spectroscopy (LIBS): An innovative tool for studying bacteria

    NASA Astrophysics Data System (ADS)

    Mohaidat, Qassem I.

    Laser-induced breakdown spectroscopy (LIBS) has gained a reputation as a flexible and convenient technique for rapidly determining the elemental composition of samples with minimal or no sample preparation. In this dissertation, I will describe the benefits of using LIBS for the rapid discrimination and identification of bacteria (both pathogenic and non-pathogenic) based on the relative concentration of trace inorganic elements such as Mg, P, Ca, and Na. The speed, portability, and robustness of the technique suggest that LIBS may be applicable as a rapid point-of-care medical diagnostic technology. LIBS spectra of multiple genera of bacteria such as Escherichia, Streptococcus, Mycobacterium, and Staphylococcus were acquired and successfully analyzed using a computerized discriminant function analysis (DFA). It was shown that a LIBS-based bacterial identification might be insensitive to a wide range of biological changes that could occur in the bacterial cell due to a variety of environmental stresses that the cell may encounter. The effect of reducing the number of bacterial cells on the LIBS-based classification was also studied. These results showed that with 2500 bacteria, the identification of bacterial specimens was still possible. Importantly, it was shown that bacteria in mixed samples (more than one type of bacteria being present) were identifiable. The dominant or majority component of a two-component mixture was reliably identified as long as it comprised 70% of the mixture or more. Finally, to simulate a clinical specimen in a precursor to actual clinical tests, Staphylococcus epidermidis bacteria were collected from urine samples (to simulate a urinary tract infection specimen) and were tested via LIBS without washing. The analysis showed that these bacteria possessed exactly the same spectral fingerprint as control bacteria obtained from sterile deionized water, resulting in a 100% correct classification. This indicates that the presence of other trace background biochemicals from clinical fluids will not adversely disrupt a LIBS-based identification of bacteria.

  20. Effect of Heat-Affected Zone on Spot Weldability in Automotive Ultra High Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Nagasaka, Akihiko; Naito, Junya; Chinzei, Shota; Hojo, Tomohiko; Horiguchi, Katsumi; Shimizu, Yuki; Furusawa, Takuro; Kitahara, Yu

    Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (I) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (TS) and total elongation (TEl) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.

  1. A preliminary checklist of the freshwater snails of Sabah (Malaysian Borneo) deposited in the BORNEENSIS collection, Universiti Malaysia Sabah

    PubMed Central

    Ng, Ting Hui; Dulipat, Jasrul; Foon, Junn Kitt; Lopes-Lima, Manuel; Alexandra Zieritz; Liew, Thor-Seng

    2017-01-01

    Abstract Sabah, a Malaysian state at the north-eastern tip of Borneo, is situated in one of the Earth’s biodiversity hotspots yet its freshwater gastropod diversity remains poorly known. An annotated checklist of the freshwater gastropods is presented, based on specimens deposited in the BORNEENSIS collection of the Institute for Tropical Biology and Conservation at Universiti Malaysia Sabah, Malaysia. A KMZ file is also provided, which acts as a repository of digital images and complete collection data of all examined material, so that it can be shared and adapted to facilitate future research. PMID:28769673

  2. Artificial gravity - The evolution of variable gravity research

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  3. Precise observation of C. elegans dynamic behaviours under controlled thermal stimulus using a mobile phone-based microscope.

    PubMed

    Yoon, T; Shin, D-M; Kim, S; Lee, S; Lee, T G; Kim, K

    2017-04-01

    We investigated the temperature-dependent locomotion of Caenorhabditis elegans by using the mobile phone-based microscope. We developed the customized imaging system with mini incubator and smartphone to effectively control the thermal stimulation for precisely observing the temperature-dependent locomotory behaviours of C. elegans. Using the mobile phone-based microscope, we successfully followed the long-term progress of specimens of C. elegans in real time as they hatched and explored their temperature-dependent locomotory behaviour. We are convinced that the mobile phone-based microscope is a useful device for real time and long-term observations of biological samples during incubation, and can make it possible to carry out live observations via wireless communications regardless of location. In addition, this microscope has the potential for widespread use owing to its low cost and compact design. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. Contributions to the mammalogy of Chile

    USGS Publications Warehouse

    Pine, Ronald H.; Miller, Sterling D.; Schamberger, Mel L.

    1979-01-01

    Collections of mammals were made during more than three years of biological investigations in Chile sponsored by the Corporación Nacional Forestal under the aegis of the Peace Corps (Smithsonian Environmental Program). Genera and species hitherto unreported for that country were taken and many useful data concerning distributional patterns of other (mostly little-known) species were gathered. These collections have also proved valuable in better understanding Chilean mammals from a taxonomic point of view and contribute knowledge of the species' natural history. Specimens are to be deposited in the (United States) National Museum of Natural History (USNM) or are to be retained by the Corporación Nacional Forestal, Avda, Bulnes 285, Depto. 401, Santiago. Numbers provided below are field numbers. A final division of specimens between the two institutions has not yet been made. A number of specimens reported here were not taken by Peace Corps personnel but have been obtained by the National Museum of Natural History from other sources. Specimens in the Field Museum of Natural History (FMNH) were used in making comparisons. Some of Fulk's (GWF) specimens are at Texas Tech University. Other are at the Servicio Agricola y Ganadero in Santiago (as are specimens of some introduced species taken by Schamberger). Reise's (DF) are at the Universidad de Chile-Concepción and in his personal collection.

  5. A simple cryo-holder facilitates specimen observation under a conventional scanning electron microscope.

    PubMed

    Tang, Chih-Yuan; Huang, Rong-Nan; Kuo-Huang, Ling-Long; Kuo, Tai-Chih; Yang, Ya-Yun; Lin, Ching-Yeh; Jane, Wann-Neng; Chen, Shiang-Jiuun

    2012-02-01

    A pre-cryogenic holder (cryo-holder) facilitating cryo-specimen observation under a conventional scanning electron microscope (SEM) is described. This cryo-holder includes a specimen-holding unit (the stub) and a cryogenic energy-storing unit (a composite of three cylinders assembled with a screw). After cooling, the cryo-holder can continue supplying cryogenic energy to extend the observation time for the specimen in a conventional SEM. Moreover, the cryogenic energy-storing unit could retain appropriate liquid nitrogen that can evaporate to prevent frost deposition on the surface of the specimen. This device is proved feasible for various tissues and cells, and can be applied to the fields of both biology and material science. We have employed this novel cryo-holder for observation of yeast cells, trichome, and epidermal cells in the leaf of Arabidopsis thaliana, compound eyes of insects, red blood cells, filiform papillae on the surface of rat tongue, agar medium, water molecules, penicillium, etc. All results suggested that the newly designed cryo-holder is applicable for cryo-specimen observation under a conventional SEM without cooling system. Most importantly, the design of this cryo-holder is simple and easy to operate and could adapt a conventional SEM to a plain type cryo-SEM affordable for most laboratories. Copyright © 2011 Wiley Periodicals, Inc.

  6. The biological correction is the new way of preservation of the Face of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Alexander

    2014-05-01

    The major links of terrestrial ecosystems functioning are: composted organic material with mull humus type, nitrogen-fixing microorganisms and litholytic organisms, which capable of active biological weathering of minerals and/or rock in the soil. Now the main ways of influence on plant-soil system functioning are physical and chemical correction. Physical correction is the system of different soil cultivation and land reclamation. It directed on creation and maintenance of favorable water, thermal and air regimes and also the biological activity of soils for crops. Although the general tendency of agriculture is minimized of tillage (strip-till, mini-till and no-till), nevertheless the intensive cultivation is widely used in modern agriculture. Chemical correction is the agriculture chemicalixation. It directed on regulation of plant producing by replenishment of plant, mineral nutrition elements in soils, by foliar nutrition using water solutions of macro- and microelements, and by regulation of acidic and salt soil regimes. In this case the plant protection against the pests and infections is carried out by various pesticides. This way of correction is completely realized in agriculture, but it doesn't consider the natural laws due to plants together with the soil from the interconnected and interdependent system. The continuing increase of agriculture chemicalixation simultaneously with a repeated tillage is led to loss of the major links of plant-soil systems functioning and to the degradation of a soil cover. Such way of plant productivity is a deadlock. New evolutionary way of preservation of the Face of the Earth is biological correction of plant-soil system functioning. A gist of this correction is the replenishment of the lost plant-soil system links. Biological correction leans on scientific achievements of modern biotechnologies, such as: vermicomposting, microbiologic specimens, physiologically active substances, biological agents of plant protection, etc. Methods of biological correction are exact biological analogs of natural links and so they can't cause the negative phenomena of plant growth and development. The principle of biological interrelationship is the base of these methods. At the heart of these methods the principle of biological compliance lies. Herewith, physiological features of plants are considered necessary. There are following main biological correction methods of plant productivity: (i) biological amelioration of soils (using of vermicomposts, earthworms, microbiologic specimens, organic and green manure, etc.); (ii) infection of plants by cultures of living microorganisms (for plant nutrition and protection); (iii) inputting of biological insecticides into plants (allows to fight even against larvae of mining insects successfully); (iv) influence on a plant metabolism by physiologically active substances (such as solutions of humic substances in particular); (v) creation of multilayered mats for gardening of deserts. The field experiments in working conditions, which were carried out in different climatic zones, bear evidence of efficiency of biological correction methods. In our opinion biological correction methods are capable to support and/or restore land-cover, to stop a degradation, and by that to prevent a disfigurement of the Face of the Earth.

  7. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging

    PubMed Central

    Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.

    2012-01-01

    The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750

  8. Self-Renewal and Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours

    PubMed Central

    Shi, Yingai; Bharadwaj, Shantaram; Leng, Xiaoyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Zhang, Yuanyuan

    2013-01-01

    Despite successful approaches to preserve organs, tissues, and isolated cells, the maintenance of stem cell viability and function in body fluids during storage for cell distribution and transportation remains unexplored. The aim of this study was to characterize urine-derived stem cells (USCs) after optimal preservation of urine specimens for up to 24 hours. A total of 415 urine specimens were collected from 12 healthy men (age range 20–54 years old). About 6×104 cells shed off from the urinary tract system in 24 hours. At least 100 USC clones were obtained from the stored urine specimens after 24 hours and maintained similar biological features to fresh USCs. The stored USCs had a “rice grain” shape in primary culture, and expressed mesenchymal stem cell surface markers, high telomerase activity, and normal karyotypes. Importantly, the preserved cells retained bipotent differentiation capacity. Differentiated USCs expressed myogenic specific proteins and contractile function when exposed to myogenic differentiation medium, and they expressed urothelial cell-specific markers and barrier function when exposed to urothelial differentiation medium. These data demonstrated that up to 75% of fresh USCs can be safely persevered in urine for 24 hours and that these cells stored in urine retain their original stem cell properties, indicating that preserved USCs could be available for potential use in cell-based therapy or clinical diagnosis. PMID:23349776

  9. Intraspecific variation in Trichogramma bruni Nagaraja, 1983 (Hymenoptera: Trichogrammatidae) associated with different hosts.

    PubMed

    Querino, R B; Zucchi, R A

    2002-11-01

    Trichogramma bruni is an insufficiently studied South American species whose limits are still not well defined. Thus, the objective of the present study was to characterize T. bruni taxonomically and to determine the association between morphological variations as well as host and habitat, based on morphological and biological studies. Specimens from the Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ) collection, and from the University of California Riverside (UCR) and specimens collected from the vegetation of forest parks with native areas planted with eucalyptus in Piracicaba and Itatinga, State of São Paulo, were also analyzed. The holotype deposited at Univeridade Federal de Minas Gerais (UFMG) collection was also examined. The variability in the genital capsule of T. bruni observed both among individuals of the same progeny and among specimens from different hosts is remarkable and is mainly related to the dorsal lamina. Therefore, an association of diagnostic characters rather than the dorsal lamina alone should be used for the identification of T. bruni and intraspecific variations should be considered. The intraspecific variation observed for T. bruni is a factor that should be considered for its identification, since the influence of the environment (habitat + host) and the variation among individuals itself is responsible for the plasticity observed in the genital capsule. Heliconius erato phyllis, Hamadryas feronia, Erosina hyberniata and Mechanitis lysiminia are new hosts of T. bruni.

  10. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    PubMed Central

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2008-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components. PMID:18607511

  11. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2003-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components.

  12. Use of newborn screening program blood spots for exposure assessment: declining levels of perluorinated compounds in New York State infants.

    PubMed

    Spliethoff, Henry M; Tao, Lin; Shaver, Shannon M; Aldous, Kenneth M; Pass, Kenneth A; Kannan, Kurunthachalam; Eadon, George A

    2008-07-15

    Temporal biomonitoring studies can assess changes in population exposures to contaminants, but collection of biological specimens with adequate representation and sufficient temporal resolution can be resource-intensive. Newborn Screening Programs (NSPs) collect blood as dried spots on filter paper from nearly all infants born in the United States (U.S.). In this study, we investigated the use of NSP blood spots for temporal biomonitoring by analyzing perfluorooctane sulfonate (PFOS), perfluorooctane sulfonamide (PFOSA), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in 110 New York State (NYS) NSP blood spot composite specimens collected between 1997 and 2007, representing a total of 2640 infants. All analytes were detected in > or =90% of the specimens. Concentrations of PFOS, PFOSA, PFHxS, and PFOA exhibited significant exponential declines after the year 2000, coinciding with the phase-out in PFOS production in the U.S. Calculated disappearance half-lives for PFOS, PFHxS, and PFOA (4.4, 8.2, and 4.1 years, respectively) were similar to biological half-lives reported for retired fluorochemical workers. Our results suggest sharp decreases in perinatal exposure of NYS infants to PFOS, PFOSA, PFHxS, and PFOA and demonstrate, for the first time, the utility of NSP blood spots for assessment of temporal trends in exposure.

  13. Controlled microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography

    PubMed Central

    Triffo, W. J.; Palsdottir, H.; McDonald, K. L.; Lee, J. K.; Inman, J. L.; Bissell, M. J.; Raphael, R. M.; Auer, M.

    2009-01-01

    Summary High-pressure freezing is the preferred method to prepare thick biological specimens for ultrastructural studies. However, the advantages obtained by this method often prove unattainable for samples that are difficult to handle during the freezing and substitution protocols. Delicate and sparse samples are difficult to manipulate and maintain intact throughout the sequence of freezing, infiltration, embedding and final orientation for sectioning and subsequent transmission electron microscopy. An established approach to surmount these difficulties is the use of cellulose microdialysis tubing to transport the sample. With an inner diameter of 200 µm, the tubing protects small and fragile samples within the thickness constraints of high-pressure freezing, and the tube ends can be sealed to avoid loss of sample. Importantly, the transparency of the tubing allows optical study of the specimen at different steps in the process. Here, we describe the use of a micromanipulator and microinjection apparatus to handle and position delicate specimens within the tubing. We report two biologically significant examples that benefit from this approach, 3D cultures of mammary epithelial cells and cochlear outer hair cells. We illustrate the potential for correlative light and electron microscopy as well as electron tomography. PMID:18445158

  14. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the undergraduates participated in this project entered Graduate school.

  15. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study.

    PubMed

    Kridel, Robert; Chan, Fong Chun; Mottok, Anja; Boyle, Merrill; Farinha, Pedro; Tan, King; Meissner, Barbara; Bashashati, Ali; McPherson, Andrew; Roth, Andrew; Shumansky, Karey; Yap, Damian; Ben-Neriah, Susana; Rosner, Jamie; Smith, Maia A; Nielsen, Cydney; Giné, Eva; Telenius, Adele; Ennishi, Daisuke; Mungall, Andrew; Moore, Richard; Morin, Ryan D; Johnson, Nathalie A; Sehn, Laurie H; Tousseyn, Thomas; Dogan, Ahmet; Connors, Joseph M; Scott, David W; Steidl, Christian; Marra, Marco A; Gascoyne, Randy D; Shah, Sohrab P

    2016-12-01

    Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories. Using a combination of whole genome sequencing, targeted deep sequencing, and digital droplet PCR on matched diagnostic and relapse specimens, we deciphered the constituent clonal populations in 15 transformation cases and 6 progression cases, and measured the change in clonal population abundance over time. We observed widely divergent patterns of clonal dynamics in transformed cases relative to progressed cases. Transformation specimens were generally composed of clones that were rare or absent in diagnostic specimens, consistent with dramatic clonal expansions that came to dominate the transformation specimens. This pattern was independent of time to transformation and treatment modality. By contrast, early progression specimens were composed of clones that were already present in the diagnostic specimens and exhibited only moderate clonal dynamics, even in the presence of immunochemotherapy. Analysis of somatic mutations impacting 94 genes was undertaken in an extension cohort consisting of 395 samples from 277 patients in order to decipher disrupted biology in the two clinical end points. We found 12 genes that were more commonly mutated in transformed samples than in the preceding FL tumors, including TP53, B2M, CCND3, GNA13, S1PR2, and P2RY8. Moreover, ten genes were more commonly mutated in diagnostic specimens of patients with early progression, including TP53, BTG1, MKI67, and XBP1. Our results illuminate contrasting modes of evolution shaping the clinical histories of transformation and progression. They have implications for interpretation of evolutionary dynamics in the context of treatment-induced selective pressures, and indicate that transformation and progression will require different clinical management strategies.

  16. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study

    PubMed Central

    Mottok, Anja; Boyle, Merrill; Tan, King; Meissner, Barbara; Bashashati, Ali; Roth, Andrew; Shumansky, Karey; Nielsen, Cydney; Giné, Eva; Moore, Richard; Morin, Ryan D.; Sehn, Laurie H.; Tousseyn, Thomas; Dogan, Ahmet; Scott, David W.; Steidl, Christian; Gascoyne, Randy D.; Shah, Sohrab P.

    2016-01-01

    Background Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories. Methods and Findings Using a combination of whole genome sequencing, targeted deep sequencing, and digital droplet PCR on matched diagnostic and relapse specimens, we deciphered the constituent clonal populations in 15 transformation cases and 6 progression cases, and measured the change in clonal population abundance over time. We observed widely divergent patterns of clonal dynamics in transformed cases relative to progressed cases. Transformation specimens were generally composed of clones that were rare or absent in diagnostic specimens, consistent with dramatic clonal expansions that came to dominate the transformation specimens. This pattern was independent of time to transformation and treatment modality. By contrast, early progression specimens were composed of clones that were already present in the diagnostic specimens and exhibited only moderate clonal dynamics, even in the presence of immunochemotherapy. Analysis of somatic mutations impacting 94 genes was undertaken in an extension cohort consisting of 395 samples from 277 patients in order to decipher disrupted biology in the two clinical end points. We found 12 genes that were more commonly mutated in transformed samples than in the preceding FL tumors, including TP53, B2M, CCND3, GNA13, S1PR2, and P2RY8. Moreover, ten genes were more commonly mutated in diagnostic specimens of patients with early progression, including TP53, BTG1, MKI67, and XBP1. Conclusions Our results illuminate contrasting modes of evolution shaping the clinical histories of transformation and progression. They have implications for interpretation of evolutionary dynamics in the context of treatment-induced selective pressures, and indicate that transformation and progression will require different clinical management strategies. PMID:27959929

  17. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  18. History of bioavailable lead and iron in the Greater North Sea and Iceland during the last millennium - a bivalve sclerochronological reconstruction.

    PubMed

    Holland, Hilmar A; Schöne, Bernd R; Marali, Soraya; Jochum, Klaus P

    2014-10-15

    We present the first annually resolved record of biologically available Pb and Fe in the Greater North Sea and Iceland during 1040-2004 AD based on shells of the long-lived marine bivalve Arctica islandica. The iron content in pre-industrial shells from the North Sea largely remained below the detection limit. Only since 1830, shell Fe levels rose gradually reflecting the combined effect of increased terrestrial runoff of iron-bearing sediments and eutrophication. Although the lead gasoline peak of the 20th century was well recorded by the shells, bivalves that lived during the medieval heyday of metallurgy showed four-fold higher shell Pb levels than modern specimens. Presumably, pre-industrial bivalves were offered larger proportions of resuspended (Pb-enriched) organics, whereas modern specimens receive fresh increased amounts of (Pb-depleted) phytoplankton. As expected, metal loads in the shells from Iceland were much lower. Our study confirms that bivalve shells provide a powerful tool for retrospective environmental biomonitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Phosphorus detection in vitrified bacteria by cryo-STEM annular dark-field analysis.

    PubMed

    Wolf, Sharon Grayer; Rez, Peter; Elbaum, Michael

    2015-11-01

    Bacterial cells often contain dense granules. Among these, polyphosphate bodies (PPBs) store inorganic phosphate for a variety of essential functions. Identification of PPBs has until now been accomplished by analytical methods that required drying or chemically fixing the cells. These methods entail large electron doses that are incompatible with low-dose imaging of cryogenic specimens. We show here that Scanning Transmission Electron Microscopy (STEM) of fully hydrated, intact, vitrified bacteria provides a simple means for mapping of phosphorus-containing dense granules based on quantitative sensitivity of the electron scattering to atomic number. A coarse resolution of the scattering angles distinguishes phosphorus from the abundant lighter atoms: carbon, nitrogen and oxygen. The theoretical basis is similar to Z contrast of materials science. EDX provides a positive identification of phosphorus, but importantly, the method need not involve a more severe electron dose than that required for imaging. The approach should prove useful in general for mapping of heavy elements in cryopreserved specimens when the element identity is known from the biological context. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. Use of shuttle for life sciences

    NASA Technical Reports Server (NTRS)

    Mcgaughy, R. E.

    1972-01-01

    The use of the space shuttle in carrying out biological and medical research programs, with emphasis on the sortie module, is examined. Detailed descriptions are given of the goals of space life science disciplines, how the sortie can meet these goals, and what shuttle design features are necessary for a viable biological and medical experiment program. Conclusions show that the space shuttle sortie module is capable of accommodating all biological experiments contemplated at this time except for those involving large specimens or large populations of small animals; however, these experiments can be done with a specially designed module. It was also found that at least two weeks is required to do a meaningful survey of biological effects.

  1. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.

    PubMed

    Gluck, Christian; Min, Sangwon; Oyelakin, Akinsola; Smalley, Kirsten; Sinha, Satrajit; Romano, Rose-Anne

    2016-11-16

    Mouse models have served a valuable role in deciphering various facets of Salivary Gland (SG) biology, from normal developmental programs to diseased states. To facilitate such studies, gene expression profiling maps have been generated for various stages of SG organogenesis. However these prior studies fall short of capturing the transcriptional complexity due to the limited scope of gene-centric microarray-based technology. Compared to microarray, RNA-sequencing (RNA-seq) offers unbiased detection of novel transcripts, broader dynamic range and high specificity and sensitivity for detection of genes, transcripts, and differential gene expression. Although RNA-seq data, particularly under the auspices of the ENCODE project, have covered a large number of biological specimens, studies on the SG have been lacking. To better appreciate the wide spectrum of gene expression profiles, we isolated RNA from mouse submandibular salivary glands at different embryonic and adult stages. In parallel, we processed RNA-seq data for 24 organs and tissues obtained from the mouse ENCODE consortium and calculated the average gene expression values. To identify molecular players and pathways likely to be relevant for SG biology, we performed functional gene enrichment analysis, network construction and hierarchal clustering of the RNA-seq datasets obtained from different stages of SG development and maturation, and other mouse organs and tissues. Our bioinformatics-based data analysis not only reaffirmed known modulators of SG morphogenesis but revealed novel transcription factors and signaling pathways unique to mouse SG biology and function. Finally we demonstrated that the unique SG gene signature obtained from our mouse studies is also well conserved and can demarcate features of the human SG transcriptome that is different from other tissues. Our RNA-seq based Atlas has revealed a high-resolution cartographic view of the dynamic transcriptomic landscape of the mouse SG at various stages. These RNA-seq datasets will complement pre-existing microarray based datasets, including the Salivary Gland Molecular Anatomy Project by offering a broader systems-biology based perspective rather than the classical gene-centric view. Ultimately such resources will be valuable in providing a useful toolkit to better understand how the diverse cell population of the SG are organized and controlled during development and differentiation.

  2. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance.

    PubMed

    Decousser, Jean-Winoc; Poirel, Laurent; Nordmann, Patrice

    2017-04-01

    The rapid detection of resistance is a challenge for clinical microbiologists who wish to prevent deleterious individual and collective consequences such as (i) delaying efficient antibiotic therapy, which worsens the survival rate of the most severely ill patients, or (ii) delaying the isolation of the carriers of multidrug-resistant bacteria and promoting outbreaks; this last consequence is of special concern, and there are an increasing number of approaches and market-based solutions in response. Areas covered: From simple, cheap biochemical tests to whole-genome sequencing, clinical microbiologists must select the most adequate phenotypic and genotypic tools to promptly detect and confirm β-lactam resistance from cultivated bacteria or from clinical specimens. Here, the authors review the published literature from the last 5 years about the primary technical approaches and commercial laboratory reagents for these purposes, including molecular, biochemical and immune assays. Furthermore, the authors discuss their intrinsic and relative performance, and we challenge their putative clinical impact. Expert commentary: Until the availability of fully automated wet and dry whole genome sequencing solutions, microbiologists should focus on inexpensive biochemical tests for cultured isolates or monomicrobial clinical specimen and on using the expensive molecular PCR-based strategies for the targeted screening of complex biological environments.

  3. Learning About Bird Species on the Primary Level

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2009-04-01

    Animal species identification is often emphasized as a basic prerequisite for an understanding of ecology because ecological interactions are based on interactions between species at least as it is taught on the school level. Therefore, training identification skills or using identification books seems a worthwhile task in biology education, and should already start on the primary level. On the primary level, however, complex interactions could not be taught but pupils are often interested in basic knowledge about species. We developed a hands-on, group-based and self-determined learning phase organized in workstations. About 138 pupils (2nd-4th graders) participated in this study. The two groups received an identification treatment with six different bird species. These were presented either as soft toys or as taxidermy specimen. Both groups scored similar prior and after the treatment (posttest 1) and with a delay of 6-8 weeks (posttest 2). More complex general linear modeling revealed a significant influence of prior knowledge, treatment and of grade (2nd, 3rd or 4th grade) on the first posttest while in the retention test gender differences emerged. We suggest that soft toys may be of equal value for teaching species identification on the primary level compared to natural taxidermic specimen, especially when considering pricing, insensitivity to handling, and contamination with agents used for preservation.

  4. Space Station Biological Research Project.

    PubMed

    Johnson, C C; Wade, C E; Givens, J J

    1997-06-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  5. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wade, C. E.; Givens, J. J.

    1997-01-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  6. Preservation of pathological tissue specimens by freeze-drying for immunohistochemical staining and various molecular biological analyses.

    PubMed

    Matsuo, S; Sugiyama, T; Okuyama, T; Yoshikawa, K; Honda, K; Takahashi, R; Maeda, S

    1999-05-01

    Conditions of preserving DNA, RNA and protein in pathological specimens are of great importance as degradation of such macromolecules would critically affect results of molecular biological analysis. The feasibility of freeze-drying as a means of preserving pathological tissue samples for molecular analysis has previously been shown. In the present study, further tests on long-term storage conditions and analyses of freeze-dried samples by polymerase chain reaction (PCR), reverse transcriptase (RT)-PCR, western blotting and immunohistochemistry are reported. Rat chromosomal DNA of freeze-dried samples stored for 4 years showed slight degradation while RNA degradation was more prominently seen at an earlier stage of storage. However, these 4 year DNA and RNA samples were still able to serve as a template for some PCR and RT-PCR analyses, respectively. Overexpression of c-erbB-2 and p53 protein was demonstrated by western blotting and immunohistochemical staining using freeze-dried human breast cancer tissues. Although macromolecules in freeze-dried samples degrade to some extent during the preservation period, they should still be of value for certain molecular biological analyses and morphological examination; hence, providing more convenient and inexpensive ways of pathological tissue storage.

  7. Effect of welding on creep damage evolution in P91B steel

    NASA Astrophysics Data System (ADS)

    Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.

    2017-07-01

    Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.

  8. Phenotypic Identification of Actinomyces and Related Species Isolated from Human Sources

    PubMed Central

    Sarkonen, Nanna; Könönen, Eija; Summanen, Paula; Könönen, Mauno; Jousimies-Somer, Hannele

    2001-01-01

    Recent advancements in chemotaxonomic and molecular biology-based identification methods have clarified the taxonomy of the genus Actinomyces and have led to the recognition of several new Actinomyces and related species. Actinomyces-like gram-positive rods have increasingly been isolated from various clinical specimens. Thus, an easily accessible scheme for reliable differentiation at the species level is needed in clinical and oral microbiology laboratories, where bacterial identification is mainly based on conventional biochemical methods. In the present study we designed a two-step protocol that consists of a flowchart that describes rapid, cost-efficient tests for preliminary identification of Actinomyces and closely related species and an updated more comprehensive scheme that also uses fermentation reactions for accurate differentiation of Actinomyces and closely related species. PMID:11682514

  9. Load-bearing capacity and biological allowable limit of biodegradable metal based on degradation rate in vivo.

    PubMed

    Cho, Sung Youn; Chae, Soo-Won; Choi, Kui Won; Seok, Hyun Kwang; Han, Hyung Seop; Yang, Seok Jo; Kim, Young Yul; Kim, Jong Tac; Jung, Jae Young; Assad, Michel

    2012-08-01

    In this study, a newly developed Mg-Ca-Zn alloy for low degradation rate and surface erosion properties was evaluated. The compressive, tensile, and fatigue strength were measured before implantation. The degradation behavior was evaluated by analyzing the microstructure and local hardness of the explanted specimen. Mean and maximum degradation rates were measured using micro CT equipment from 4-, 8-, and 16- week explants, and the alloy was shown to display surface erosion properties. Based on these characteristics, the average and minimum load bearing capacities in tension, compression, and bending modes were calculated. According to the degradation rate and references of recommended dietary intakes (RDI), the Mg-Ca-Zn alloy appears to be safe for human use. Copyright © 2012 Wiley Periodicals, Inc.

  10. Improved sensitivity of vaginal self-collection and high-risk human papillomavirus testing.

    PubMed

    Belinson, Jerome L; Du, Hui; Yang, Bin; Wu, Ruifang; Belinson, Suzanne E; Qu, Xinfeng; Pretorius, Robert G; Yi, Xin; Castle, Philip E

    2012-04-15

    Self-collected vaginal specimens tested for high-risk human papillomavirus (HR-HPV) have been shown to be less sensitive for the detection of cervical intraepithelial neoplasia or cancer (≥CIN 3) than physician-collected endocervical specimens. To increase the sensitivity of self-collected specimens, we studied a self-sampling device designed to obtain a larger specimen from the upper vagina (POI/NIH self-sampler) and a more sensitive polymerase chain reaction (PCR)-based HR-HPV assay. Women (10,000) were screened with cervical cytology and HR-HPV testing of vaginal self-collected and endocervical physician-collected specimens. Women were randomly assigned to use either a novel self-collection device (POI/NIH self-sampler) or conical-shaped brush (Qiagen). The self-collected and clinician-collected specimens were assayed by Cervista (Hologic) and the research only PCR-based matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Women with any abnormal screening test underwent colposcopy and biopsy. Women (8,556), mean age of 38.9, had complete data; 1.6% had ≥ CIN 3. For either HR-HPV assay, the sensitivity was similar for the two self-collection devices. Tested with Cervista, the sensitivity for ≥CIN 3 of self-collected specimens was 70.9% and for endocervical specimens was 95.0% (p = 0.0001). Tested with MALDI-TOF, the sensitivity for ≥CIN 3 of self-collected specimens was 94.3% and for endocervical specimens was also 94.3% (p = 1.0). A self-collected sample using a PCR-based assay with the capability of very high throughput has similar sensitivity as a direct endocervical specimen obtained by a physician. Large population-based screening "events" in low-resource settings could be achieved by promoting self-collection and centralized high-throughput, low-cost testing by PCR-based MALDI-TOF. Copyright © 2011 UICC.

  11. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  12. Modern dosimetric tools for 60Co irradiation at high containment laboratories

    PubMed Central

    Twardoski, Barri; Feldmann, Heinz; Bloom, Marshall E.; Ward, Joe

    2011-01-01

    Purpose To evaluate an innovative photo-fluorescent film as a routine dosimetric tool during 60Co irradiations at a high containment biological research laboratory, and to investigate whether manufacturer-provided chamber exposure rates can be used to accurately administer a prescribed dose to biological specimens. Materials and methods Photo-fluorescent, lithium fluoride film dosimeters and National Institutes of Standards and Technology (NIST) transfer dosimeters were co-located in a self-shielded 60Co irradiator and exposed to γ-radiation with doses ranging from 5–85 kGy. Film dose-response relationships were developed for varying temperatures simulating conditions present when irradiating infectious biological specimens. Dose measurement results from NIST transfer dosimeters were compared to doses predicted using manufacturer-provided irradiator chamber exposure rates. Results The film dosimeter exhibited a photo-fluorescent response signal that was consistent and nearly linear in relationship to γ-radiation exposure over a wide dose range. The dosimeter response also showed negligible effects from dose fractionization and humidity. Significant disparities existed between manufacturer-provided chamber exposure rates and actual doses administered. Conclusion This study demonstrates the merit of utilizing dosimetric tools to validate the process of exposing dangerous and exotic biological agents to γ-radiation at high containment laboratories. The film dosimeter used in this study can be utilized to eliminate potential for improperly administering γ-radiation doses. PMID:21961968

  13. Comprehensive analysis of the lipophilic reactive carbonyls present in biological specimens by LC/ESI-MS/MS.

    PubMed

    Tomono, Susumu; Miyoshi, Noriyuki; Ohshima, Hiroshi

    2015-04-15

    A new analytical method has been developed for profiling lipophilic reactive carbonyls (RCs) such as aldehydes and ketones in biological samples using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with selected reaction monitoring (SRM). The method consists of several phases, including (1) extraction of lipophilic RCs with a chloroform/methanol mixture; (2) derivatization of the extracted RCs with dansyl hydrazine (DH); and (3) SRM detection of the characteristic product ion of the 5-dimethylaminonaphthalene-1-sulfonyl moiety (m/z 236.1). The analytical results were expressed as RC maps, which allowed for the occurrence and levels of different lipophilic RCs to be visualized. We also developed a highly reproducible and accurate method to extract, purify and derivatize RCs in small volumes of biological specimens. This method was applied to the detection of free RCs in mice plasma samples, and resulted in the detection of more than 400 RCs in samples obtained from C57BL/6J mice. Thirty-four of these RCs were identified by comparison with authentic RCs. This method could be used to investigate the levels of RCs in biological and environmental samples, as well as studying the role of lipid peroxidation in oxidative stress related-disorders and discovering new biomarkers for the early diagnosis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Functional and proteomic comparison of Bothrops jararaca venom from captive specimens and the Brazilian Bothropic Reference Venom.

    PubMed

    Farias, Iasmim Baptista de; Morais-Zani, Karen de; Serino-Silva, Caroline; Sant'Anna, Sávio S; Rocha, Marisa M T da; Grego, Kathleen F; Andrade-Silva, Débora; Serrano, Solange M T; Tanaka-Azevedo, Anita M

    2018-03-01

    Snake venom is a variable phenotypic trait, whose plasticity and evolution are critical for effective antivenom production. A significant reduction of the number of snake donations to Butantan Institute (São Paulo, Brazil) occurred in recent years, and this fact may impair the production of the Brazilian Bothropic Reference Venom (BBRV). Nevertheless, in the last decades a high number of Bothrops jararaca specimens have been raised in captivity in the Laboratory of Herpetology of Butantan Institute. Considering these facts, we compared the biochemical and biological profiles of B. jararaca venom from captive specimens and BBRV in order to understand the potential effects of snake captivity upon the venom composition. Electrophoretic analysis and proteomic profiling revealed few differences in venom protein bands and some differentially abundant toxins. Comparison of enzymatic activities showed minor differences between the two venoms. Similar cross-reactivity recognition pattern of both venoms by the antibothropic antivenom produced by Butantan Institute was observed. Lethality and neutralization of lethality for B. jararaca venom from captive specimens and BBRV showed similar values. Considering these results we suggest that the inclusion of B. jararaca venom from captive specimens in the composition of BBRV would not interfere with the quality of this reference venom. Snakebite envenomation is a neglected tropical pathology whose treatment is based on the use of specific antivenoms. Bothrops jararaca is responsible for the majority of snakebites in South and Southeastern Brazil. Its venom shows individual, sexual, and ontogenetic variability, however, the effect of animal captivity upon venom composition is unknown. Considering the reduced number of wild-caught snakes donated to Butantan Institute in the last decades, and the increased life expectancy of the snakes raised in captivity in the Laboratory of Herpetology, this work focused on the comparative profiling of B. jararaca venom from captive snakes and the Brazilian Bothropic Reference Venom (BBRV). BBRV is composed of venom obtained upon the first milking of wild-caught B. jararaca specimens, and used to assess the potency of all bothropic antivenoms produced by Brazilian suppliers. The use of proteomic strategies, added to biochemical and neutralization tests, allowed to conclude that, despite some subtle differences detected between these two venoms, venom from captive specimens could be used in the BBRV composition without affecting its quality in antivenom potency assays. Copyright © 2017. Published by Elsevier B.V.

  15. Testing compression strength of wood logs by drilling resistance

    NASA Astrophysics Data System (ADS)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  16. Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica

    PubMed Central

    2014-01-01

    Background Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. (‘intermediate form’) is unclear. Methods Single specimens inferred to represent Fasciola sp. (‘intermediate form’; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). Results The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. Conclusions The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries. PMID:24685294

  17. Inventory of amphibians and reptiles at Death Valley National Park

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.

  18. Complete mitochondrial genomes of the 'intermediate form' of Fasciola and Fasciola gigantica, and their comparison with F. hepatica.

    PubMed

    Liu, Guo-Hua; Gasser, Robin B; Young, Neil D; Song, Hui-Qun; Ai, Lin; Zhu, Xing-Quan

    2014-03-31

    Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. ('intermediate form') is unclear. Single specimens inferred to represent Fasciola sp. ('intermediate form'; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries.

  19. Rapid and Portable Methods for Identification of Bacterially Influenced Calcite: Application of Laser-Induced Breakdown Spectroscopy and AOTF Reflectance Spectroscopy, Fort Stanton Cave, New Mexico

    NASA Astrophysics Data System (ADS)

    McMillan, N. J.; Chavez, A.; Chanover, N.; Voelz, D.; Uckert, K.; Tawalbeh, R.; Gariano, J.; Dragulin, I.; Xiao, X.; Hull, R.

    2014-12-01

    Rapid, in-situ methods for identification of biologic and non-biologic mineral precipitation sites permit mapping of biological hot spots. Two portable spectrometers, Laser-Induced Breakdown Spectroscopy (LIBS) and Acoustic-Optic Tunable Filter Reflectance Spectroscopy (AOTFRS) were used to differentiate between bacterially influenced and inorganically precipitated calcite specimens from Fort Stanton Cave, NM, USA. LIBS collects light emitted from the decay of excited electrons in a laser ablation plasma; the spectrum is a chemical fingerprint of the analyte. AOTFRS collects light reflected from the surface of a specimen and provides structural information about the material (i.e., the presence of O-H bonds). These orthogonal data sets provide a rigorous method to determine the origin of calcite in cave deposits. This study used a set of 48 calcite samples collected from Fort Stanton cave. Samples were examined in SEM for the presence of biologic markers; these data were used to separate the samples into biologic and non-biologic groups. Spectra were modeled using the multivariate technique Partial Least Squares Regression (PLSR). Half of the spectra were used to train a PLSR model, in which biologic samples were assigned to the independent variable "0" and non-biologic samples were assigned the variable "1". Values of the independent variable were calculated for each of the training samples, which were close to 0 for the biologic samples (-0.09 - 0.23) and close to 1 for the non-biologic samples (0.57 - 1.14). A Value of Apparent Distinction (VAD) of 0.55 was used to numerically distinguish between the two groups; any sample with an independent variable value < 0.55 was classified as having a biologic origin; a sample with a value > 0.55 was determined to be non-biologic in origin. After the model was trained, independent variable values for the remaining half of the samples were calculated. Biologic or non-biologic origin was assigned by comparison to the VAD. Using LIBS data alone, the model has a 92% success rate, correctly identifying 23 of 25 samples. Modeling of AOTFRS spectra and the combined LIBS-AOTFRS data set have similar success rates. This study demonstrates that rapid, portable LIBS and AOTFRS instruments can be used to map the spatial distribution of biologic precipitation in caves.

  20. Optical path difference microscopy with a Shack-Hartmann wavefront sensor.

    PubMed

    Gong, Hai; Agbana, Temitope E; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2017-06-01

    In this Letter, we show that a Shack-Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.

  1. A New Camera for Powder Diffraction of Macromolecular Crystallography at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiko; Inoue, Katsuaki; Goto, Shunji

    2004-05-12

    A powder diffractometer of Guinier geometry was developed and tested on a beamline, BL40B2, at SPring-8. The long specimen-to-detector distance, 1,000 mm, is advantageous in recording diffraction from Bragg spacing of 20 nm or larger. The angular resolution, 0.012 degrees, was realized together with the focusing optics, the long specimen-to-detector distance and the small pixel size of Blue-type Imaging Plate detector. Such a high resolution makes the peak separation possible in the powder diffraction from microcrystals with large unit cell and low symmetry of biological macromolecules.

  2. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  3. Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank

    1991-01-01

    The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.

  4. Blind restoration method of three-dimensional microscope image based on RL algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jin-li; Tian, Si; Wang, Xiang-rong; Wang, Jing-li

    2013-08-01

    Thin specimens of biological tissue appear three dimensional transparent under a microscope. The optic slice images can be captured by moving the focal planes at the different locations of the specimen. The captured image has low resolution due to the influence of the out-of-focus information comes from the planes adjacent to the local plane. Using traditional methods can remove the blur in the images at a certain degree, but it needs to know the point spread function (PSF) of the imaging system accurately. The accuracy degree of PSF influences the restoration result greatly. In fact, it is difficult to obtain the accurate PSF of the imaging system. In order to restore the original appearance of the specimen under the conditions of the imaging system parameters are unknown or there is noise and spherical aberration in the system, a blind restoration methods of three-dimensional microscope based on the R-L algorithm is proposed in this paper. On the basis of the exhaustive study of the two-dimension R-L algorithm, according to the theory of the microscopy imaging and the wavelet transform denoising pretreatment, we expand the R-L algorithm to three-dimension space. It is a nonlinear restoration method with the maximum entropy constraint. The method doesn't need to know the PSF of the microscopy imaging system precisely to recover the blur image. The image and PSF converge to the optimum solutions by many alterative iterations and corrections. The matlab simulation and experiments results show that the expansion algorithm is better in visual indicators, peak signal to noise ratio and improved signal to noise ratio when compared with the PML algorithm, and the proposed algorithm can suppress noise, restore more details of target, increase image resolution.

  5. Epoxy Resins in Electron Microscopy

    PubMed Central

    Finck, Henry

    1960-01-01

    A method of embedding biological specimens in araldite 502 (Ciba) has been developed for materials available in the United States. Araldite-embedded tissues are suitable for electron microscopy, but the cutting qualities of the resin necessitates more than routine attention during microtomy. The rather high viscosity of araldite 502 also seems to be an unnecessary handicap. The less viscous epoxy epon 812 (Shell) produces specimens with improved cutting qualities, and has several features—low shrinkage and absence of specimen damage during cure, minimal compression of sections, relative absence of electron beam-induced section damage, etc.—which recommends it as a routine embedding material. The hardness of the cured resin can be easily adjusted by several methods to suit the materials embedded in it. Several problems and advantages of working with sections of epoxy resins are also discussed. PMID:13822825

  6. The role of the pathologist in translational and personalized medicine.

    PubMed

    Perl, Daniel P

    2007-04-01

    Over the years, pathologists have served to make morphologic diagnoses for clinicians when provided with a biopsy or surgically resected tissue specimen. Traditionally, pathologists have used a series of morphologic techniques and relied on the microscopic appearance of resected tissues to determine a pathologic diagnosis and, with respect to neoplastic lesions, provide predictions of the potential growth pattern that might be anticipated. With the introduction of the techniques of molecular biology in medicine, the role of the pathologist has changed as have the tools available for characterizing pathologic specimens. With the pathologist's unique perspective on disease processes and access to tissue specimens from the operating room, he has become a key player in the area of translational and personalized medicine and the development of new approaches to diagnosis and translational research. Copyright (c) 2007 Mount Sinai School of Medicine.

  7. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy

    PubMed Central

    Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang

    2016-01-01

    Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937

  8. Biomedical Experiments Scientific Satellite /BESS/

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Tremor, J. W.; Aepli, T. C.

    1976-01-01

    The Biomedical Experiments Scientific Satellite (BESS) program is proposed to provide a long-duration, earth-orbiting facility to expose selected specimens in a series of biomedical experiments through the 1980's. Launched and retrieved by the Space Transportation System, the fully reusable, free-flying BESS will contain all systems necessary to conduct a six-month to one-year spaceflight mission. The spacecraft system will consist of a large pressurized experiment module and a standard NASA service module currently conceived as the Goddard Multi-Mission Spacecraft (MMS). The experiment module will contain the life-support systems, waste management system, specimen-holding facilities, and monitoring, evaluating, and data-handling equipment. Although a variety of specimens will be flown in basic biological and medical studies, the primate was taken as the principal design driver since it has a maximal life-support demand.

  9. Comparison of gross anatomy test scores using traditional specimens vs. QuickTime Virtual Reality animated specimens

    NASA Astrophysics Data System (ADS)

    Maza, Paul Sadiri

    In recent years, technological advances such as computers have been employed in teaching gross anatomy at all levels of education, even in professional schools such as medical and veterinary medical colleges. Benefits of computer based instructional tools for gross anatomy include the convenience of not having to physically view or dissect a cadaver. Anatomy educators debate over the advantages versus the disadvantages of computer based resources for gross anatomy instruction. Many studies, case reports, and editorials argue for the increased use of computer based anatomy educational tools, while others discuss the necessity of dissection for various reasons important in learning anatomy, such as a three-dimensional physical view of the specimen, physical handling of tissues, interactions with fellow students during dissection, and differences between specific specimens. While many articles deal with gross anatomy education using computers, there seems to be a lack of studies investigating the use of computer based resources as an assessment tool for gross anatomy, specifically using the Apple application QuickTime Virtual Reality (QTVR). This study investigated the use of QTVR movie modules to assess if using computer based QTVR movie module assessments were equal in quality to actual physical specimen examinations. A gross anatomy course in the College of Veterinary Medicine at Cornell University was used as a source of anatomy students and gross anatomy examinations. Two groups were compared, one group taking gross anatomy examinations in a traditional manner, by viewing actual physical specimens and answering questions based on those specimens. The other group took the same examinations using the same specimens, but the specimens were viewed as simulated three-dimensional objects in a QTVR movie module. Sample group means for the assessments were compared. A survey was also administered asking students' perceptions of quality and user-friendliness of the QTVR movie modules. The comparison of the two sample group means of the examinations show that there was no difference in results between using QTVR movie modules to test gross anatomy knowledge versus using physical specimens. The results of this study are discussed to explain the benefits of using such computer based anatomy resources in gross anatomy assessments.

  10. [Tissue repositories for research at Sheba Medical Center(SMC].

    PubMed

    Cohen, Yehudit; Barshack, Iris; Onn, Amir

    2013-06-01

    Cancer is the number one cause of death in both genders. Breakthroughs in the understanding of cancer biology, the identification of prognostic factors, and the development of new treatments are increasingly dependent on access to human cancer tissues with linked clinicopathological data. Access to human tumor samples and a large investment in translational research are needed to advance this research. The SMC tissue repositories provide researchers with biological materials, which are essential tools for cancer research. SMC tissue repositories for research aim to collect, document and preserve human biospecimens from patients with cancerous diseases. This is in order to provide the highest quality and well annotated biological biospecimens, used as essential tools to achieve the growing demands of scientific research needs. Such repositories are partners in acceLerating biomedical research and medical product development through clinical resources, in order to apply best options to the patients. Following Institutional Review Board approval and signing an Informed Consent Form, the tumor and tumor-free specimens are coLLected by a designated pathologist at the operating room only when there is a sufficient amount of the tumor, in excess of the routine needs. Blood samples are collected prior to the procedure. Other types of specimens collected include ascites fluid, pleural effusion, tissues for Optimal Cutting Temperature [OCT] and primary culture etc. Demographic, clinical, pathologicaL, and follow-up data are collected in a designated database. SMC has already established several organ or disease-specific tissue repositories within different departments. The foundation of tissue repositories requires the concentrated effort of a multidisciplinary team composed of paramedical, medical and scientific professionals. Research projects using these specimens facilitate the development of 'targeted therapy', accelerate basic research aimed at clarifying molecular mechanisms involved in cancer, and support the development of novel diagnostic tools.

  11. Real imaging and size values of Saccharomyces cerevisiae cells with comparable contrast tuning to two environmental scanning electron microscopy modes.

    PubMed

    Misirli, Zulal; Oner, Ebru Toksoy; Kirdar, Betul

    2007-01-01

    The combined application of electron microscopy (EM) is frequently used for the microstructural investigation of biological specimens and plays two important roles in the quantification and in gaining an improved understanding of biological phenomena by making use of the highest resolution capability provided by EM. The possibility of imaging wet specimens in their "native" states in the environmental scanning electron microscope (ESEM) at high resolution and large depth of focus in real time is discussed in this paper. It is demonstrated here that new features can be discovered by the elimination of even the least hazardous approaches in some preparation techniques, that destroy the samples. Since the analysis conditions may influence the morphology and the extreme surface sensitivity of living biological systems, the results obtained from the same cultured cell with two different ESEM modes (Lvac mode and wet mode) were compared. This offers new opportunities compared with ESEM-wet/Lvac-mode imaging, since wet-mode imaging involves a real contrast and gives an indication of the changes in cell morphology and structure required for cell viability. In this study, wet-mode imaging was optimized using the unique ability of cell quantities for microcharacterization in situ giving very fine features of topological effects. Accordingly, the progress is reported by comparing the results of these two modes, which demonstrate interesting application details. In general, the functional comparisons have revealed that the fresh unprocessed Saccharomyces cerevisiae cells (ESEM-wet mode) were essentially unaltered with improved and minimal specimen preparation timescales, and the optimal cell viability degree was visualized and also measured quantitatively while the cell size remained unchanged with continuous images.

  12. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Synthetical Analysis for Morphology, biological Species, and stable Isotopes (SAMSI) of single-cell planktonic foraminifer

    NASA Astrophysics Data System (ADS)

    Ujiie, Y.; Kimoto, K.; Ishimura, T.

    2017-12-01

    Planktonic foraminifers are widely used in the studies of paleontology and paleoceanography, because the morphology of their calcareous shells is enough highly variable to identify the morphospecies and the chemical composition of the shells reflect ambient seawater condition. Although the morphospecies were believed to represent environments associating with latitudinal temperature range of the world ocean, molecular phylogeographic studies have unveiled the presence of multiple biological species in a single morphospecies and their species-specific distributions. This implicates the actual complexity of planktonic foraminiferal ecology. Conversely, these biological species have a high potential for providing novel ecological and environmental information to us. In order to reassess the morphological and geochemical characters of biological species, the DNA extraction method with the guanidium isothiocyanate buffer was developed to preserve the calcareous shells. The present study carefully tested the physical and chemical damages of the DNA extraction process to the shells, by our novel approaches with geochemical analysis of the shells after non-destructive analysis for morphometrics on a same specimen. First, we checked the changes of the shell densities between pre- and post-DNA extraction by using the micro-focus X-ray CT (MXCT) scanning. Based on the simultaneous measurement of a sample and the standard material, we confirmed no significant changes to the shell densities through the DNA extraction process. As a next step, we compared stable oxygen and carbon isotopes among individuals of three sample sets: (1) no chemical and incubation as control, (2) incubation in the DNA extraction buffer at 65-70°C for 40 minutes as standard way, and (3) incubation in the DNA extraction buffer at 65-70°C for 120 minutes, by using the microscale isotopic analytical system (MICAL3c). Consequently, there were no significant differences among the three sample sets. These examinations clearly certified that we define morphological and geochemical features from same specimens after genetic identification. Thus, our novel approach (SAMSI) provides future studies to establish the accurate ecological and environmental proxies both in the modern and past oceans.

  14. Israel Marine Bio-geographic Database (ISRAMAR-BIO)

    NASA Astrophysics Data System (ADS)

    Greengrass, Eyal; Krivenko, Yevgeniya; Ozer, Tal; Ben Yosef, Dafna; Tom, Moshe; Gertman, Isaac

    2015-04-01

    The knowledge of the space/time variations of species is the basis for any ecological investigations. While historical observations containing integral concentrations of biological parameters (chlorophyll, abundance, biomass…) are organized partly in ISRAMAR Cast Database, the taxon-specific data collected in Israel has not been sufficiently organized. This has been hindered by the lack of standards, variability of methods and complexity of biological data formalization. The ISRAMAR-BIO DB was developed to store various types of historical and future available information related to marine species observations and related metadata. Currently the DB allows to store biological data acquired by the following sampling devices such as: van veer grab, box corer, sampling bottles, nets (plankton, trawls and fish), quadrates, and cameras. The DB's logical unit is information regarding a specimen (taxa name, barcode, image), related attributes (abundance, size, age, contaminants…), habitat description, sampling device and method, time and space of sampling, responsible organization and scientist, source of information (cruise, project and publication). The following standardization of specimen and attributes naming were implemented: Taxonomy according to World Register of Marine Species (WoRMS: http://www.marinespecies.org). Habitat description according to Coastal and Marine Ecological Classification Standards (CMECS: http://www.cmecscatalog.org) Parameter name; Unit; Device name; Developmental stage; Institution name; Country name; Marine region according to SeaDataNet Vocabularies (http://www.seadatanet.org/Standards-Software/Common-Vocabularies). This system supports two types of data submission procedures, which support the above stated data structure. The first is a downloadable excel file with drop-down fields based on the ISRAMAR-BIO vocabularies. The file is filled and uploaded online by the data contributor. Alternatively, the same dataset can be assembled by filling online forms and then submitted to the DB. Online access to the ISRAMAR-BIO is available through taxon search page, where one can get both biological and geographical data regarding a certain taxon. Further development of the online data access is ongoing. It will include interactive geographical map interface where data may be queried, analyzed and downloaded.

  15. Comparison of intracellular water content measurements by dark-field imaging and EELS in medium voltage TEM

    NASA Astrophysics Data System (ADS)

    Terryn, C.; Michel, J.; Kilian, L.; Bonhomme, P.; Balossier, G.

    2000-09-01

    Knowledge of the water content at the subcellular level is important to evaluate the intracellular concentration of either diffusible or non-diffusible elements in the physiological state measured by the electron microprobe methods. Water content variations in subcellular compartments are directly related to secretion phenomena and to transmembrane exchange processes, which could be attributed to pathophysiological states. In this paper we will describe in details and compare two local water measurement methods using analytical electron microscopy. The first one is based on darkfield imaging. It is applied on freeze-dried biological cryosections; it allows indirect measurement of the water content at the subcellular level from recorded maps of darkfield intensity. The second method uses electron energy loss spectroscopy. It is applied to hydrated biological cryosections. It is based on the differences that appear in the electron energy loss spectra of macromolecular assemblies and vitrified ice in the 0-30 eV range. By a multiple least squares (MLS) fit between an experimental energy loss spectrum and reference spectra of both frozen-hydrated ice and macromolecular assemblies we can deduce directly the local water concentration in biological cryosections at the subcellular level. These two methods are applied to two test specimens: human erythrocytes in plasma, and baker's yeast (Saccharomyses Cerevisiae) cryosections. We compare the water content measurements obtained by these two methods and discuss their advantages and drawbacks.

  16. Common-path digital holographic microscopy based on a beam displacer unit

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Zhang, Jiwei; Song, Yu; Wang, Kaiqiang; Wei, Kun; Zhao, Jianlin

    2018-02-01

    Digital holographic microscopy (DHM) has become a novel tool with advantages of full field, non-destructive, high-resolution and 3D imaging, which captures the quantitative amplitude and phase information of microscopic specimens. It's a well-established method for digital recording and numerical reconstructing the full complex field of wavefront of the samples with a diffraction-limited lateral resolution down to 0.3 μm depending on the numerical aperture of microscope objective. Meanwhile, its axial resolution through axial direction is less than 10 nm due to the interferometric nature in phase imaging. Compared with the typical optical configurations such as Mach-Zehnder interferometer and Michelson interferometer, the common-path DHM has the advantages of simple and compact configuration, high stability, and so on. Here, a simple, compact, and low-cost common-path DHM based on a beam displacer unit is proposed for quantitative phase imaging of biological cells. The beam displacer unit is completely compatible with commercial microscope and can be easily set up in the output port of the microscope as a compact independent device. This technique can be used to achieve the quantitative phase measurement of biological cells with an excellent temporal stability of 0.51 nm, which makes it having a good prospect in the fields of biological and medical science. Living mouse osteoblastic cells are quantitatively measured with the system to demonstrate its capability and applicability.

  17. Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

    PubMed

    Torkzaban, Bahareh; Kayvanjoo, Amir Hossein; Ardalan, Arman; Mousavi, Soraya; Mariotti, Roberto; Baldoni, Luciana; Ebrahimie, Esmaeil; Ebrahimi, Mansour; Hosseini-Mazinani, Mehdi

    2015-01-01

    Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.

  18. Effects of long-term preservation on amphibian body conditions: implications for historical morphological research

    PubMed Central

    Shu, Guocheng; Gong, Yuzhou; Xie, Feng; Wu, Nicholas C.

    2017-01-01

    Measurements of historical specimens are widely applied in studies of taxonomy, systematics, and ecology, but biologists often assume that the effects of preservative chemicals on the morphology of amphibian specimens are minimal in their analyses. We compared the body length and body mass of 182 samples of 13 live and preserved (up to 10 years) anuran species and found that the body length and body mass of preserved specimens significantly decreased by 6.1% and 24.8%, respectively, compared to those measurements of their live counterparts. The changes in body length and mass also exhibited highly significant variations between species. Similarly, there were significant differences in shrinkage of body length and body mass between sexes, where males showed greater shrinkage in body length and body mass compared to females. Preservation distorted the magnitude of the interspecific differences in body length observed in the fresh specimens. Overall, the reduction in body length or mass was greater in longer or heavier individuals. Due to the effects of preservation on amphibian morphology, we propose two parsimonious conversion equations to back-calculate the original body length and body mass of studied anurans for researchers working with historical data, since morphological data from preserved specimens may lead to incorrect biological interpretations when comparing to fresh specimens. Therefore, researchers should correct for errors due to preservation effects that may lead to the misinterpretation of results. PMID:28929024

  19. Exploiting the Lichen Liaison.

    ERIC Educational Resources Information Center

    Raham, R. Gary

    1978-01-01

    For teachers in search of an easily obtainable, readily dissectable, and unique living specimen to arouse the interest of their students and illustrate important biological principles, lichens are the perfect selection. Background information and experiments on lichen anatomy, physiology, and chemistry are given. An appendix gives culture media.…

  20. Harnessing the Power of Digital Data for Science and Society

    DTIC Science & Technology

    2009-01-01

    development and that the research process is responsive to the real-world needs of the implementation sector. Relationship to the Scientific Collections IWG...The Scientific Collections Interagency Working Group focuses on collections of physical objects relevant to science (e.g., biological specimens

  1. 77 FR 38774 - Marine Mammals; File No. 16193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... whole blood taken from dead or captive individuals to study reproductive physiology, including endocrinology, gamete biology, and cryophysiology. Specimens from dead animals, located solely within the... harvesting; killed incidentally to fishing or other operations; found dead at sea or beached; or that died of...

  2. Safety in the Chemical Laboratory: Atmospheric Formaldehyde Levels in an Academic Laboratory.

    ERIC Educational Resources Information Center

    Clausz, John C.; And Others

    1984-01-01

    Determined whether improved ventilation and use of "formaldehyde-free" biological specimens could reduce the levels of formaldehyde in air to which students and faculty would be exposed. Both methods were found to be effective in reducing formaldehyde levels in air. (JN)

  3. An economical alternative for the secondary container used for transporting infectious disease substances.

    DOT National Transportation Integrated Search

    1995-12-01

    The safe containment of biological specimens during air transport is of growing concern as the number of shipments and hazards associated with such material increases. The purpose of this study was to examine the durability of adhesive-closure polyet...

  4. Water Habitat Study: Prediction Makes It More Meaningful.

    ERIC Educational Resources Information Center

    Glasgow, Dennis R.

    1982-01-01

    Suggests a teaching strategy for water habitat studies to help students make a meaningful connection between physiochemical data (dissolved oxygen content, pH, and water temperature) and biological specimens they collect. Involves constructing a poster and using it to make predictions. Provides sample poster. (DC)

  5. Herpetofauna of the Beni Biological Station Biosphere Reserve, Amazonian Bolivia: Additional information, and current knowledge in context

    USGS Publications Warehouse

    Middendorf, G.; Reynolds, R.; Herrera-MacBryde, Olga; Dallmeier, Francisco; MacBryde, Bruce; Cominskey, James A.; Miranda, Carmen

    2000-01-01

    Previous collections in the Departamento del Beni in tropical Bolivia only hinted at high levels of herpetological biodiversity (Fugler 1986, 1988; de la Riva 1990a; Fugler and de la Riva 1990). Fieldwork (totaling 48 days) in July-August 1988 and September 1987 (dry seasons) and November-December 1990 (wet season) has resulted in collection and identification of 401 amphibian and reptilian specimens from the general area of the Beni Biological Station's (EBB) headquarters at El Porvenir. These collections represent 33 amphibian and 17 reptilian species in 29 genera (14 amphibian, 15 reptilian). The inventory of herpetofauna scientifically documented to occur in the Departamento del Beni is considered to have been increased by 6 amphibian and 10 reptilian species. Specimens that could not be definitively identified (reflecting taxonomic uncertainty and/or probably species new to science) include 3 amphibian species (anurans) and 2 reptilian species (snakes). The EBB harbors the richest savanna for anuran species known in South America.

  6. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing.

    PubMed

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2013-08-01

    We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing.

  7. Preparation of the planarian Schmidtea mediterranea for high-resolution histology and transmission electron microscopy

    PubMed Central

    Brubacher, John L.; Vieira, Ana P.; Newmark, Phillip A.

    2014-01-01

    The flatworm Schmidtea mediterranea is an emerging model species in such fields as stem-cell biology, regeneration, and evolutionary biology. Excellent molecular tools have been developed for S. mediterranea, but ultrastructural techniques have received far less attention. Processing specimens for histology and transmission electron microscopy is notoriously idiosyncratic for particular species or specimen types. Unfortunately however, most methods for S. mediterranea described in the literature lack numerous essential details, and those few that do provide them rely on specialized equipment that may not be readily available. Here we present an optimized protocol for ultrastructural preparation of S. mediterranea. The protocol can be completed in six days, much of which is “hands-off” time. To aid with troubleshooting, we also illustrate the significant effects of seemingly minor variations in fixative, buffer concentration, and dehydration steps. This procedure will be useful for all planarian researchers, particularly those with relatively little experience in tissue processing. PMID:24556788

  8. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  9. Quirks of dye nomenclature. 5. Rhodamines.

    PubMed

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  10. Dynamic finite element method modeling of the upper shelf energy of precracked Charpy specimens of neutron irradiated weld metal 72W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.S.; Sidener, S.E.; Hamilton, M.L.

    1999-10-01

    Dynamic finite element modeling of the fracture behavior of fatigue-precracked Charpy specimens in both unirradiated and irradiated conditions was performed using a computer code, ABAQUS Explicit, to predict the upper shelf energy of precracked specimens of a given size from experimental data obtained for a different size. A tensile fracture-strain based method for modeling crack extension and propagation was used. It was found that the predicted upper shelf energies of full and half size precracked specimens based on third size data were in reasonable agreement with their respective experimental values. Similar success was achieved for predicting the upper shelf energymore » of subsize precracked specimens based on full size data.« less

  11. Sex-Based Differences of Medial Collateral Ligament and Anterior Cruciate Ligament Strains With Cadaveric Impact Simulations.

    PubMed

    Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher V; Krych, Aaron J; Hewett, Timothy E

    2018-04-01

    Female patients sustain noncontact knee ligament injuries at a greater rate compared with their male counterparts. The cause of these differences in the injury rate and the movements that load the ligaments until failure are still under dispute in the literature. This study was designed to determine differences in anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains between male and female cadaveric specimens during a simulated athletic task. The primary hypothesis tested was that female limbs would demonstrate significantly greater ACL strain compared with male limbs under similar loading conditions. A secondary hypothesis was that MCL strain would not differ between sexes. Controlled laboratory study. Motion analysis of 67 athletes performing a drop vertical jump was conducted. Kinetic data were used to categorize injury risk according to tertiles, and these values were input into a cadaveric impact simulator to assess ligamentous strain during a simulated landing task. Uniaxial and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect mechanical data for analysis. Conditions of external loads applied to the cadaveric limbs (knee abduction moment, anterior tibial shear, and internal tibial rotation) were varied and randomized. Data were analyzed using 1-way analysis of variance (ANOVA), 2-way repeated-measures ANOVA, and the Fisher exact test. There were no significant differences ( P = .184) in maximum ACL strain between male (13.2% ± 8.1%) and female (16.7% ± 8.3%) specimens. Two-way ANOVA demonstrated that across all controlled external load conditions, female specimens consistently attained at least 3.5% increased maximum ACL strain compared with male specimens ( F 1,100 = 4.188, P = .043); however, when normalized to initial contact, no significant difference was found. There were no significant differences in MCL strain between sexes for similar parameters. When compared with baseline, female specimens exhibited greater values of ACL strain at maximum, initial contact, and after impact (33, 66, and 100 milliseconds, respectively) than male specimens during similar loading conditions, with a maximum strain difference of at least 3.5%. During these same loading conditions, there were no differences in MCL loading between sexes, and only a minimal increase of MCL loading occurred during the impact forces. Our results indicate that female patients are at an increased risk for ACL strain across all similar conditions compared with male patients. These data demonstrate that female specimens, when loaded similarly to male specimens, experience additional strain on the ACL. As the mechanical environment was similar for both sexes with these simulations, the greater ACL strain of female specimens must be attributed to ligament biology, anatomic differences, or muscular stiffness.

  12. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  13. Custom-made composite scaffolds for segmental defect repair in long bones.

    PubMed

    Reichert, Johannes C; Wullschleger, Martin E; Cipitria, Amaia; Lienau, Jasmin; Cheng, Tan K; Schütz, Michael A; Duda, Georg N; Nöth, Ulrich; Eulert, Jochen; Hutmacher, Dietmar W

    2011-08-01

    Current approaches for segmental bone defect reconstruction are restricted to autografts and allografts which possess osteoconductive, osteoinductive and osteogenic properties, but face significant disadvantages. The objective of this study was to compare the regenerative potential of scaffolds with different material composition but similar mechanical properties to autologous bone graft from the iliac crest in an ovine segmental defect model. After 12 weeks, in vivo specimens were analysed by X-ray imaging, torsion testing, micro-computed tomography and histology to assess amount, strength and structure of the newly formed bone. The highest amounts of bone neoformation with highest torsional moment values were observed in the autograft group and the lowest in the medical grade polycaprolactone and tricalcium phosphate composite group. The study results suggest that scaffolds based on aliphatic polyesters and ceramics, which are considered biologically inactive materials, induce only limited new bone formation but could be an equivalent alternative to autologous bone when combined with a biologically active stimulus such as bone morphogenetic proteins.

  14. Multicenter evaluation of the performance characteristics of the bayer VERSANT HCV RNA 3.0 assay (bDNA).

    PubMed

    Elbeik, Tarek; Surtihadi, Johan; Destree, Mark; Gorlin, Jed; Holodniy, Mark; Jortani, Saeed A; Kuramoto, Ken; Ng, Valerie; Valdes, Roland; Valsamakis, Alexandra; Terrault, Norah A

    2004-02-01

    In this multicenter evaluation, the VERSANT HCV RNA 3.0 Assay (bDNA) (Bayer Diagnostics, Tarrytown, N.Y.) was shown to have excellent reproducibility, linearity, and analytical sensitivity across specimen collection matrices (serum, EDTA, ACD-A), and hepatitis C virus (HCV) genotypes 1 to 6. The VERSANT HCV bDNA Assay has a reportable range of 615 to 7690000 (7.69 x 10(6)) IU/ml. The total coefficient of variation (CV) ranged from 32.4% at 615 IU/ml to 17% at 6.8 x 10(6) IU/ml. The assay was linear across the reportable range. Analytical specificity of 98.8% was determined by testing 999 specimens from volunteer blood donors. Evaluation of HCV genotypes using RNA transcripts of representative clones of 1a, 1b, 2a, 2b, 2c, 3a, 4a, 5a, and 6a and patient specimens showed that the largest difference between genotype 1, upon which the assay is standardized, and non-1 genotypes was within 1.5-fold. Testing of potentially interfering endogenous substances and exogenous substances and conditions found no interference in HCV-positive or HCV-negative specimens except for unconjugated bilirubin at concentrations of >or=20 mg/dl and protein at concentrations of >or=9 g/dl. Biological variability was estimated from 29 clinically stable individuals not on HCV therapy who were tested weekly over an 8-week period. The combined estimate of total (biologic plus assay) variability was 0.15 log(10) standard deviation (CV, 36.1%), a fold change of 2.6. Thus, the observed fold change between any two consecutive HCV RNA measures is expected to be less than 2.6-fold (equivalent to 0.41 log(10) IU/ml) 95% of the time in clinically stable individuals.

  15. Monte Carlo Simulation to Determine Geometry Effects on Quantitative X-ray Microanalysis in Plant Cell Walls Using Gelatin Standards

    NASA Astrophysics Data System (ADS)

    Tylko, Grzegorz; Dubchak, Sergyi; Banach, Zuzanna; Turnau, Katarzyna

    2010-04-01

    Monte Carlo simulations of gelatin matrices with known elemental concentrations confirmed the suitability of protein standards to quantify elements of cellulose material in x-ray microanalysis. However, gelatin standards and cellulose plant cell walls differ in structure, what influences x-ray generation and emission in both specimens. The goal of the project was to establish the influence of gelatin structure on x-ray generation and its usefulness to calculate elemental concentrations in plant cell walls of different width. Roots of Medicago truncatula as well as gelatin standards with known elemental composition were prepared according to freeze-drying protocols. The thermanox polymer was chosen to establish background formation for flat and compact organic materials. All analyses were performed with the scanning electron microscope operated at 10 keV and probe current of 350 pA. The Monte Carlo code Casino was applied to calculate the intensities of the generated and the emitted x-rays from biological matrix of different width. No topography effects of gelatin structure were visible when the raster mode of electron impact was applied to the specimen. Monte Carlo simulations of gelatin of different width revealed that a significant decrease of the generated x-ray intensity appears at the width of the specimen around 3.5 μm. However, an increase of emission of low energy x-ray intensities (Na, Mg) was noted at 3.5 μm size with constant emission of higher energy x-rays (Cl, K) down to 2.5 μm width. It determines the minimal size of plant specimen useful for comparison to bulk gelatin standard when quantitative analysis is performed for biologically important elements.

  16. Morphology versus DNA barcoding: two sides of the same coin. A case study of Ceutorhynchus erysimi and C. contractus identification.

    PubMed

    Stepanović, Svetlana; Kosovac, Andrea; Krstić, Oliver; Jović, Jelena; Toševski, Ivo

    2016-08-01

    Genotyping of 2 well-known weevil species from the genus Ceutorhynchus (Coleoptera: Curculionidae) distributed in west Palearctic, C. erysimi and C. contractus, revealed phenotype versus genotype inconsistencies in a set of 56 specimens (25 C. erysimi and 31 C. contractus) collected from 25 locations in Serbia and Montenegro. An analysis of the mitochondrial cytochrome oxidase subunit I gene (COI), widely used as a barcoding region, and a nuclear gene, elongation factor-1α (EF-1α), revealed stable genetic divergence among these species. The average uncorrected pairwise distances for the COI and EF-1α genes were 3.8%, and 1.3%, respectively, indicating 2 genetically well-segregated species. However, the genetic data were not congruent with the phenotypic characteristics of the studied specimens. In the first place, C. erysimi genotypes were attached to specimens with phenotypic characteristics of C. contractus. Species-specific PCR-RFLP assays for the barcoding gene COI were applied for the molecular identification of 101 additional specimens of both morphospecies (33 C. erysimi and 68 C. contractus) and were found to confirm this incongruity. The discrepancy between the genetic and morphological data raises the question of the accuracy of using a barcoding approach, as it may result in misleading conclusions about the taxonomic position of the studied organism. Additionally, the typological species concept shows considerable weakness when genetic data are not supported with phenotypic characteristics as in case of asymmetric introgression, which may cause certain problems, especially in applied studies such as biological control programs in which the biological properties of the studied organisms are the main focus. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  17. NFκB pathway analysis: An approach to analyze gene co-expression networks employing feedback cycles.

    PubMed

    Dillenburg, Fabiane Cristine; Zanotto-Filho, Alfeu; Fonseca Moreira, José Cláudio; Ribeiro, Leila; Carro, Luigi

    2018-02-01

    The genes of the NFκB pathway are involved in the control of a plethora of biological processes ranking from inhibition of apoptosis to metastasis in cancer. It has been described that Gliobastoma multiforme (GBM) patients carry aberrant NFκB activation, but the molecular mechanisms are not completely understood. Here, we present a NFκB pathway analysis in tumor specimens of GBM compared to non-neoplasic brain tissues, based on the different kind of cycles found among genes of a gene co-expression network constructed using quantized data obtained from the microarrays. A cycle is a closed walk with all vertices distinct (except the first and last). Thanks to this way of finding relations among genes, a more robust interpretation of gene correlations is possible, because the cycles are associated with feedback mechanisms that are very common in biological networks. In GBM samples, we could conclude that the stoichiometric relationship between genes involved in NFκB pathway regulation is unbalanced. This can be measured and explained by the identification of a cycle. This conclusion helps to understand more about the biology of this type of tumor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A tensile machine with a novel optical load cell for soft biological tissues application.

    PubMed

    Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah

    2014-11-01

    The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.

  19. Non-contact, Ultrasound-based Indentation Method for Measuring Elastic Properties of Biological Tissues Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-01-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by Harmonic Motion Imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking RF signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the actual Young’s modulus and the HMI modulus in the numerical study (r2>0.99, relative error <10%) and on polyacrylamide gels (r2=0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI=2.62±0.41 kPa, compared to EMechTesting=4.2±2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  20. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    PubMed

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-07

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  1. A Bacillus anthracis Genome Sequence from the Sverdlovsk 1979 Autopsy Specimens

    PubMed Central

    Sahl, Jason W.; Pearson, Talima; Okinaka, Richard; Schupp, James M.; Gillece, John D.; Heaton, Hannah; Birdsell, Dawn; Hepp, Crystal; Fofanov, Viacheslav; Noseda, Ramón; Fasanella, Antonio; Hoffmaster, Alex; Wagner, David M.

    2016-01-01

    ABSTRACT Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both state-sponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. PMID:27677796

  2. Effectiveness of saliva and fingerprints as alternative specimens to urine and blood in forensic drug testing.

    PubMed

    Kuwayama, Kenji; Miyaguchi, Hajime; Yamamuro, Tadashi; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki

    2016-07-01

    In forensic drug testing, it is important to immediately take biological specimens from suspects and victims to prove their drug intake. We evaluated the effectiveness of saliva and fingerprints as alternative specimens to urine and blood in terms of ease of sampling, drug detection sensitivity, and drug detection periods for each specimen type. After four commercially available pharmaceutical products were administered to healthy subjects, each in a single dose, their urine, blood, saliva, and fingerprints were taken at predetermined sampling times over approximately four weeks. Fourteen analytes (the administered drugs and their main metabolites) were extracted from each specimen using simple pretreatments, such as dilution and deproteinization, and were analyzed using liquid chromatography/mass spectrometry (LC/MS). Most of the analytes were detected in saliva and fingerprints, as well as in urine and blood. The time-courses of drug concentrations were similar between urine and fingerprints, and between blood and saliva. Compared to the other compounds, the acidic compounds, for example ibuprofen, acetylsalicylic acid, were more difficult to detect in all specimens. Acetaminophen, dihydrocodeine, and methylephedrine were detected in fingerprints at later sampling times than in urine. However, a relationship between the drug structures and their detection periods in each specimen was not found. Saliva and fingerprints could be easily sampled on site without using special techniques or facilities. In addition, fingerprints could be immediately analyzed after simple and rapid treatment. In cases where it would be difficult to immediately obtain urine and blood, saliva and fingerprints could be effective alternative specimens for drug testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens.

    PubMed

    McDonald, Kent L

    2014-02-01

    A variety of specimens including bacteria, ciliates, choanoflagellates (Salpingoeca rosetta), zebrafish (Danio rerio) embryos, nematode worms (Caenorhabditis elegans), and leaves of white clover (Trifolium repens) plants were high pressure frozen, freeze-substituted, infiltrated with either Epon, Epon-Araldite, or LR White resins, and polymerized. Total processing time from freezing to blocks ready to section was about 6 h. For epoxy embedding the specimens were freeze-substituted in 1% osmium tetroxide plus 0.1% uranyl acetate in acetone. For embedding in LR White the freeze-substitution medium was 0.2% uranyl acetate in acetone. Rapid infiltration was achieved by centrifugation through increasing concentrations of resin followed by polymerization at 100°C for 1.5-2 h. The preservation of ultrastructure was comparable to standard freeze substitution and resin embedding methods that take days to complete. On-section immunolabeling results for actin and tubulin molecules were positive with very low background labeling. The LR White methods offer a safer, quicker, and less-expensive alternative to Lowicryl embedding of specimens processed for on-section immunolabeling without traditional aldehyde fixatives.

  4. High-speed polarized light microscopy for in situ, dynamic measurement of birefringence properties

    NASA Astrophysics Data System (ADS)

    Wu, Xianyu; Pankow, Mark; Shadow Huang, Hsiao-Ying; Peters, Kara

    2018-01-01

    A high-speed, quantitative polarized light microscopy (QPLM) instrument has been developed to monitor the optical slow axis spatial realignment during controlled medium to high strain rate experiments at acquisition rates up to 10 kHz. This high-speed QPLM instrument is implemented within a modified drop tower and demonstrated using polycarbonate specimens. By utilizing a rotating quarter wave plate and a high-speed camera, the minimum acquisition time to generate an alignment map of a birefringent specimen is 6.1 ms. A sequential analysis method allows the QPLM instrument to generate QPLM data at the high-speed camera imaging frequency 10 kHz. The obtained QPLM data is processed using a vector correlation technique to detect anomalous optical axis realignment and retardation changes throughout the loading event. The detected anomalous optical axis realignment is shown to be associated with crack initiation, propagation, and specimen failure in a dynamically loaded polycarbonate specimen. The work provides a foundation for detecting damage in biological tissues through local collagen fiber realignment and fracture during dynamic loading.

  5. Virtual dissection and lifestyle of a 165 -million-year-old female polychelidan lobster.

    PubMed

    Jauvion, Clément; Audo, Denis; Charbonnier, Sylvain; Vannier, Jean

    2016-03-01

    Polychelidan lobsters are fascinating crustaceans that were known as fossils before being discovered in the deep-sea. They differ from other crustaceans by having four to five pairs of claws. Although recent palaeontological studies have clarified the systematics and phylogeny of the group, the biology of extant polychelidans and--first of all--their anatomy are poorly documented. Numerous aspects of the evolutionary history of the group remain obscure, in particular, how and when polychelidans colonized the deep-sea and became restricted to it. Surprisingly, the biology of extant polychelidans and the anatomy of all species, fossil and recent, are poorly documented. Here, X-ray microtomography (XTM), applied to an exceptionally well-preserved specimen from the La Voulte Lagerstätte, reveals for the first time vital aspects of the external and internal morphology of Voulteryon parvulus (Eryonidae), a 165-million-year-old polychelidan: 1) its mouthparts (maxillae and maxillipeds), 2) its digestive tract and 3) its reproductive organs. Comparisons with dissected specimens clearly identify this specimen as a female with mature ovaries. This set of new information offers new insights into the feeding and reproductive habits of Mesozoic polychelidans. Contrasting with other Jurassic polychelidans that lived in shallow-water environments, V. parvulus spawned in, and probably inhabited, relatively deep-water environments, as do the survivors of the group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    DOE PAGES

    Punshon, Tracy; Chen, Si; Finney, Lydia; ...

    2015-07-03

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixationmore » protocol for archived specimens stored at -80° C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40 % with GTA-HEPES), suggesting storage duration be controlled for. Lastly, thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images« less

  7. Discovering Physical Samples Through Identifiers, Metadata, and Brokering

    NASA Astrophysics Data System (ADS)

    Arctur, D. K.; Hills, D. J.; Jenkyns, R.

    2015-12-01

    Physical samples, particularly in the geosciences, are key to understanding the Earth system, its history, and its evolution. Our record of the Earth as captured by physical samples is difficult to explain and mine for understanding, due to incomplete, disconnected, and evolving metadata content. This is further complicated by differing ways of classifying, cataloguing, publishing, and searching the metadata, especially when specimens do not fit neatly into a single domain—for example, fossils cross disciplinary boundaries (mineral and biological). Sometimes even the fundamental classification systems evolve, such as the geological time scale, triggering daunting processes to update existing specimen databases. Increasingly, we need to consider ways of leveraging permanent, unique identifiers, as well as advancements in metadata publishing that link digital records with physical samples in a robust, adaptive way. An NSF EarthCube Research Coordination Network (RCN) called the Internet of Samples (iSamples) is now working to bridge the metadata schemas for biological and geological domains. We are leveraging the International Geo Sample Number (IGSN) that provides a versatile system of registering physical samples, and working to harmonize this with the DataCite schema for Digital Object Identifiers (DOI). A brokering approach for linking disparate catalogues and classification systems could help scale discovery and access to the many large collections now being managed (sometimes millions of specimens per collection). This presentation is about our community building efforts, research directions, and insights to date.

  8. A comparative kinetic RT/-PCR strategy for the quantitation of mRNAs in microdissected human renal biopsy specimens.

    PubMed

    Del Prete, D; Forino, M; Gambaro, G; D'Angelo, A; Baggio, B; Anglani, F

    1998-01-01

    Molecular biology techniques, to be applicable to a diagnostic renal biopsy specimen, should (1) be highly sensitive to be performed on a very small quantity of tissue; (2) be quantitative because they have to analyze genes normally expressed in the tissue and (3) allow the analysis of as large a number of genes as possible. Among different methods, only the reverse-transcriptase polymerase chain reaction (RT/-PCR) might comply with previous requisites, but the few RT/-PCR examples on renal biopsies in the literature do not allow starting RNA quantification and quality control; furthermore they have the drawback of analyzing only few genes. In an ongoing study to assess the expression of a number of genes in glomeruli and in tubulointerstitium of patients with different nephropathies, we developed a comparative RT/-PCR kinetic strategy based on the purification and quantification of total glomerular and tubulointerstitial RNA and on the use of an internal standard, the housekeeping gene G3PDH. We demonstrate that in microdissected diagnostic renal biopsies (1) glomerular and interstitial starting RNA can be quantified; (2) the G3PDH gene may be used both as an internal standard and as an indirect marker of RNA integrity; (3) as low as 28 ng of total RNA is sufficient to obtain PCR products of eight genes, and (4) it is worth to operate on microdissected biopsy specimens because of the different expression of genes in the two renal compartments.

  9. Cohesive fracture of elastically heterogeneous materials: An integrative modeling and experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Xia, Shuman

    2017-01-01

    A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.

  10. Identification of Cytological Features Distinguishing Mucosa-Associated Lymphoid Tissue Lymphoma from Reactive Lymphoid Proliferation Using Thyroid Liquid-Based Cytology

    PubMed Central

    Suzuki, Ayana; Hirokawa, Mitsuyoshi; Ito, Aki; Takada, Nami; Higuchi, Miyoko; Hayashi, Toshitetsu; Kuma, Seiji; Miyauchi, Akira

    2018-01-01

    Objective To identify cytological differences between mucosa-associated lymphoid tissue lymphoma (MALT-L) and nonneoplastic lymphocytes using thyroid liquid-based cytology (LBC). Study Design We observed LBC and conventional specimens from 35 MALT-L cases, 3 diffuse large B-cell cell lymphoma (DLBCL) cases, and 44 prominent nonneoplastic lymphocytic infiltration cases. Results In MALT-L cases, the incidence of lymphoglandular bodies in the LBC specimens was lower than that in the conventional specimens (p < 0.001). Moreover, the nuclear sizes in LBC specimens were larger than those in conventional specimens. In 62.9% of the MALT-L and all DLBCL specimens, large nuclei were present in > 10% of the lymphoid cells in LBC specimens. Two cases with prominent nonneoplastic lymphocytic infiltration also exhibited these findings. In LBC specimens, swollen naked nuclei with less punctate chromatin patterns and thin nuclear margins were observed in 92.1% of lymphoma and 20.5% of prominent nonneoplastic lymphocytic infiltration. Elongated nuclei were significantly more apparent in thyroid lymphoma than in prominent nonneoplastic lymphocytic infiltration (p < 0.001), with a significantly higher incidence in LBC specimens than in conventional specimens (p < 0.001). Conclusions Lymphoglandular bodies are not reliable markers for lymphoma diagnosis using LBC specimens. Large, swollen naked, and elongated nuclei are useful in distinguishing thyroid lymphoma from nonneoplastic lymphocytes in LBC specimens. PMID:29597203

  11. [Periampullary gangliocytic paraganglioma].

    PubMed

    Sankot, J; Svarcová, I

    2008-01-01

    We present the case of very rare periampullary gangliocytic paraganglioma in which we preferred proximal duodenopancreatectomy to local resection of the ampula of Vater because of not clear preoperative pathohistology and biologic behavior of the tumor. Although the definitive examination of the specimen proved its benign character we consider our procedure reasonable.

  12. 75 FR 65505 - Endangered Species; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... Applications A. Endangered Species Applicant: International Elephant Foundation, Fort Worth, TX; PRT- 15923A The applicant requests a permit to import biological specimens of Asian elephant (Elephus maximus) and African elephant (Loxodonta africana) from wild animals in all range countries and captive-held animals in...

  13. Phytochemical, antimicrobial and antiplasmodial investigations of Terminalia brownii

    USDA-ARS?s Scientific Manuscript database

    The stem bark of Terminalia brownii was collected from Machakos county, Kenya, in November 2011, and identified at the University Herbarium, School of Biological Sciences, University of Nairobi, where a voucher specimen (JM2011/502) was deposited. The stem bark was air dried in shade and pulverized....

  14. Applicability of a bioelectronic cardiac monitoring system for the detection of biological effects of pollution in bioindicator species in the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Kholodkevich, Sergey V.; Kuznetsova, Tatiana V.; Sharov, Andrey N.; Kurakin, Anton S.; Lips, Urmas; Kolesova, Natalia; Lehtonen, Kari K.

    2017-07-01

    Field testing of an innovative technology based on a bioelectronic cardiac monitoring system was carried out in the Gulf of Finland (Baltic Sea). The study shows that the bioelectronic system is suitable for the selected bivalve mollusks Mytilus trossulus, Macoma balthica and Anodonta anatina. Specimens taken from reference sites demonstrated a heart rate recovery time of < 60 min after testing with changed salinity load, while those collected from sites characterized by high anthropogenic pressure demonstrated a prolonged recovery time of up to 110-360 min. These results make possible a discrimination of the study sites based on the assessment of physiological adaptive capacities of inhabiting species. In addition, the approach of measuring heart rate characteristics in M. balthica transplanted in cages to specific target areas was successfully used to evaluate the decline in the adaptive potential of mollusks exposed at polluted sites. Application of the novel system is a useful tool for the biomonitoring of freshwater and brackish water areas. Development of methodological basis for the testing of adaptive capacities (health) of key aquatic organisms provides new knowledge of biological effects of anthropogenic chemical stress in aquatic organisms.

  15. Vertical distribution of living ostracods in deep-sea sediments, North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jöst, Anna B.; Yasuhara, Moriaki; Okahashi, Hisayo; Ostmann, Alexandra; Arbizu, Pedro Martínez; Brix, Saskia

    2017-04-01

    The depth distribution of living specimens of deep-sea benthic ostracods (small crustaceans with calcareous shells that are preserved as microfossils) in sediments is poorly understood, despite the importance of this aspect of basic ostracod biology for paleoecologic and paleoceanographic interpretations. Here, we investigated living benthic ostracod specimens from deep-sea multiple core samples, to reveal their depths distributions within sediment cores. The results showed shallow distribution and low population density of living deep-sea benthic ostracods (which are mostly composed of Podocopa). The living specimens are concentrated in the top 1 cm of the sediment, hence deep-sea benthic ostracods are either epifauna or shallow infauna. This observation is consistent with the information from shallow-water species. We also confirmed shallow infaunal (0.5-2 cm) and very shallow infaunal (0-1 cm) habitats of the deep-sea ostracod genera Krithe and Argilloecia, respectively.

  16. Cryo-FIB specimen preparation for use in a cartridge-type cryo-TEM.

    PubMed

    He, Jie; Hsieh, Chyongere; Wu, Yongping; Schmelzer, Thomas; Wang, Pan; Lin, Ying; Marko, Michael; Sui, Haixin

    2017-08-01

    Cryo-electron tomography (cryo-ET) is a well-established technique for studying 3D structural details of subcellular macromolecular complexes and organelles in their nearly native context in the cell. A primary limitation of the application of cryo-ET is the accessible specimen thickness, which is less than the diameters of almost all eukaryotic cells. It has been shown that focused ion beam (FIB) milling can be used to prepare thin, distortion-free lamellae of frozen biological material for high-resolution cryo-ET. Commercial cryosystems are available for cryo-FIB specimen preparation, however re-engineering and additional fixtures are often essential for reliable results with a particular cryo-FIB and cryo-transmission electron microscope (cryo-TEM). Here, we describe our optimized protocol and modified instrumentation for cryo-FIB milling to produce thin lamellae and subsequent damage-free cryotransfer of the lamellae into our cartridge-type cryo-TEM. Published by Elsevier Inc.

  17. A streamlined collecting and preparation protocol for DNA barcoding of Lepidoptera as part of large-scale rapid biodiversity assessment projects, exemplified by the Indonesian Biodiversity Discovery and Information System (IndoBioSys).

    PubMed

    Schmidt, Olga; Hausmann, Axel; Cancian de Araujo, Bruno; Sutrisno, Hari; Peggie, Djunijanti; Schmidt, Stefan

    2017-01-01

    Here we present a general collecting and preparation protocol for DNA barcoding of Lepidoptera as part of large-scale rapid biodiversity assessment projects, and a comparison with alternative preserving and vouchering methods. About 98% of the sequenced specimens processed using the present collecting and preparation protocol yielded sequences with more than 500 base pairs. The study is based on the first outcomes of the Indonesian Biodiversity Discovery and Information System (IndoBioSys). IndoBioSys is a German-Indonesian research project that is conducted by the Museum für Naturkunde in Berlin and the Zoologische Staatssammlung München, in close cooperation with the Research Center for Biology - Indonesian Institute of Sciences (RCB-LIPI, Bogor).

  18. A reevaluation of the specimens of Mesocoelium (Trematoda: Mesocoeliidae) in the Colección Nacional de Helmintos, Mexico.

    PubMed

    López-García, Ashley Samara; García-Prieto, Luis

    2017-06-02

    Species of Mesocoelium Odhner, 1901 (Digenea) are generally similar and are often difficult to distinguish. Currently there are 42 specimens of this genus held in the Colección Nacional de Helmintos (CNHE) of the Instituto de Biología, Universidad Nacional Autónoma de Mexico, which previously have been assigned to three species: M. monas Rudolphi, 1819, M. travassosi Pereira & Cuocolo, 1940 and M. leiperi Bhalerao, 1936. Upon reevaluation of these specimens it was determined that 27, could not be assigned to species level and 15 could only be assigned to body type (carli and leiperi) because of the poor conditions of preservation of the material. The remaining 15 specimens were of sufficient quality to be identified to species and were found to represent M. americanum Harwood, 1932, M. danforthi Hoffman, 1935, M. meggitti Bhalerao, 1927, M. cf. americanum Harwood, 1932, and M. cf. danforthi Hoffman, 1935. Neither M. monas nor M. travassosi could be confirmed among these specimens; however, Mesocoelium meggitti (syn. M. travassosi) was confirmed. Mesocoelium danforthi is recorded for the first time in the Mexican collection. The presence of M. cf. gonocephali Singh, 1967 and M. cf. microon Nicoll, 1914 also among the 15 specimens of sufficient quality to be identified to species, needs to be confirmed through collects of new material. Finally, in future studies, we propose to improve the quality of specimens by fixing them considering the modifications to this process proposed herein, and compliment these morphological studies with molecular studies.

  19. Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.

    PubMed

    Shih, Hua-Ju; Shih, Po-Jen

    2015-07-28

    Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.

  20. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens

    PubMed Central

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188

Top